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Abstract 

 
Cis-regulatory elements control transcription levels, temporal dynamics, and cell-cell 

variation or transcriptional noise. However, the combination of regulatory features that control 
these different attributes is not fully understood. Here, we used single cell RNA-seq during an 
estrogen treatment time course and machine learning to identify predictors of expression timing 
and noise. We find that genes with multiple active enhancers exhibit faster temporal responses. 
We verified this finding by showing that manipulation of enhancer activity changes the temporal 
response of estrogen target genes. Analysis of transcriptional noise uncovered a relationship 
between promoter and enhancer activity, with active promoters associated with low noise and 
active enhancers linked to high noise. Finally, we observed that co-expression across single cells 
is an emergent property associated with chromatin looping, timing, and noise. Overall, our 
results indicate a fundamental tradeoff between a gene’s ability to quickly respond to incoming 
signals and maintain low variation across cells.  

 
Introduction 
 

Cis-Regulatory elements (CREs) control the precise spatiotemporal expression of genes 
across the genome. In addition to a gene’s promoter, many enhancers collaborate to control a 
single gene’s expression in mammalian cells (ENCODE, 2012; Kundaje et al., 2015; Zhang et 
al., 2020). External chemical signals often induce changes in cell phenotypes by altering 
transcription, requiring coordinated gene expression programs. Signal transduction can lead to 
transcription factor (TF) binding changes and epigenetic modifications at CREs (MacKenzie et 
al., 2013). For cells to appropriately respond to stimuli, CREs must guide the amount of 
transcript produced (MacKenzie et al., 2013), the timing of transcriptional changes (Kolch et al., 
2015; Wei et al., 2016), and the amount of transcriptional variation or noise (Kolch et al., 2015; 
Raj and Van Oudenaarden, 2008; Raser and O'Shea, 2005). While there has been extensive 
research on the role that CREs play in transcription levels, less is understood about the properties 
of CREs that control gene expression timing and noise.  

Temporal regulation of gene expression is an essential attribute of transcriptional control 
for cellular processes such as cell fate transitions (Basma et al., 2009; Chamberlain et al., 2008; 
Konstantinides et al., 2022) and responses to signals (Behar and Hoffmann, 2010; Krakauer et 
al., 2002; Uribe et al., 2021). Specific genes, often termed immediate-early genes, are rapidly 
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activated in response to a signal, while other genes change expression more gradually (Sheng 
and Greenberg, 1990; Uhlitz et al., 2017; Uribe et al., 2021). Genes that show coordinated 
trajectories are often functionally related, driving diverse phenotypes at different timescales 
(Gandhi et al., 2011; Krakauer et al., 2002; Schnoes et al., 2008; Szustakowski et al., 2007). 
Previous studies have identified several mechanisms that regulate transcriptional timing. One 
influential factor is the state of a gene’s promoter. For example, pre-loading of RNA polymerase 
II (RNAPII) at the promoter is indicative of earlier gene expression responses (Tullai et al., 
2007). Additional promoter features associated with early responding genes include TATA 
motifs at the promoter, a greater number of TF binding motifs, and increased chromatin 
accessibility (Murai et al., 2020; Tullai et al., 2007). Enhancers are also crucial for gene 
expression timing. Inhibition or deletion of specific enhancers can prolong the time needed for a 
gene to reach maximal expression without altering final expression levels (Juan and Ruddle, 
2003; Simeonov et al., 2017). Stretches of potent enhancers, called super-enhancers, regulate 
some immediate-early genes (Hah et al., 2015). In contrast, enhancers marked by repressive 
chromatin marks, termed latent enhancers, exhibit slower activation and are associated with late-
responding genes (Ostuni et al., 2013). Overall, relatively little is known about which genomic 
features in a gene’s cis-regulatory repertoire are important for influencing stimulus-dependent 
temporal gene expression responses. 

In addition to regulating gene expression timing and levels, CREs control the amount of 
transcriptional noise. Transcriptional noise is a combination of intrinsic stochasticity and 
extrinsic variability that cause transcript variation across a population of isogenic cells (Elowitz 
et al., 2002; Fraser et al., 2021b; Kundaje et al., 2015). Cells must regulate transcriptional 
variation, as both high and low variation have functional consequences. High variation can have 
benefits, as cells may be more adaptable to changing environments (Pedraza et al., 2018; 
Wollman, 2018) and more likely to undergo cell fate transitions (Desai et al., 2021; Suderman et 
al., 2017). Noise may additionally confer the ability of a cell population to produce a diverse 
output to a single incoming signal (Azpeitia et al., 2020). However, noise can be associated with 
negative consequences, such as worse cancer outcomes (Han et al., 2016), cancer therapy 
resistance (Qin et al., 2020; Shaffer et al., 2017), and the ability of cancer cells to metastasize 
(Fidler, 1978; Nguyen et al., 2016). Both promoters and enhancers can regulate intrinsic noise 
kinetics and sensitivity to extrinsic noise sources (Larsson et al., 2019). For example, 
nucleosome positioning and histone modifications at the promoter are important noise regulators 
(Choi and Kim, 2009; Dadiani et al., 2013; Fraser et al., 2021b; Nicolas et al., 2018; Wu et al., 
2017), with active histone marks at promoters often associated with low noise (Urban and 
Johnston, 2018). Additionally, a greater number of transcription factors binding at a promoter 
may be a basis for greater amounts of noise (Parab et al., 2022). The role of enhancers in 
controlling mammalian expression noise is less clear. Thermodynamic modeling approaches 
suggest that multiple enhancers should buffer noise (Hnisz et al., 2017), while experimental 
evidence shows that super-enhancers are generally associated with noisier expression (Fraser et 
al., 2021b; Wibisana et al., 2022). A remaining challenge is understanding the effects of multiple 
enhancers in combination with a promoter on expression noise. 

To investigate the regulatory control of timing and noise in depth, we focused on the 
transcriptional response to estrogens. Estrogen Receptor � (ER) is a nuclear hormone receptor 
activated by estrogens, including endogenously produced 17β-estradiol (E2). In the presence of 
E2, ER becomes an active TF and regulates the expression of hundreds of genes (Bjornstrom and 
Sjoberg, 2005). ER is a clinically relevant TF, a potent oncogenic driver for endometrial and 
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breast cancer (Rodriguez et al., 2019a; Stanford et al., 1986), and a well-studied model TF. Upon 
activation, ER both upregulates and downregulates genes at different timescales (Frasor et al., 
2003; Liberzon et al., 2015). Following an estrogen induction, ER activates successive sets of 
functionally unique genes, as seen in genes related to vascularization, signaling, proliferation, 
and cell cycle (Jagannathan and Robinson-Rechavi, 2011; Schnoes et al., 2008). ER has also 
been shown to regulate transcriptional noise. Live cell imaging of ER target genes GREB1 
(Fritzsch et al., 2018) and TFF1 (Rodriguez et al., 2019b) show that ER impacts transcriptional 
noise by modulating transcription kinetics. The temporal, heterogeneous complexity of the ER 
transcriptional program makes it an ideal model system for studying how CREs regulate 
transcriptional timing and noise in response to an external stimulus. 

To better understand the genomic underpinnings of transcriptional levels, timing, and 
noise, we analyzed the transcriptional response to E2 using a time course of single cell RNA-seq 
(scRNA-seq) in two cell types (human breast and endometrial cancer cells). Feature ranking 
approaches, using genomic data, revealed important determinants that control these 
transcriptional attributes. A strong enhancer repertoire was associated with earlier changes in 
gene expression, which was confirmed using functional perturbation by dCas9-based synthetic 
transcription factors. Promoter features also regulate timing, such as transcriptional repressor 
SIN3A being found at the promoters of “Late” genes. We uncovered a balance between 
enhancers and promoters in regulating expression noise, where strong enhancers drive higher 
noise and strong promoters are associated with low expression variance. The role of enhancers in 
timing and noise reveals a tradeoff between expression noise and the ability to respond quickly 
to incoming signals.  
 
Results 
 
Machine learning approach accurately predicts genomic determinants of expression levels 
 

To uncover features of gene regulation that control expression levels, timing, and noise, 
pooled scRNA-seq was conducted following 0-, 2-, 4-, and 8-hour E2 treatments in two cell 
lines: Ishikawa (human endometrial adenocarcinoma) and T-47D (human breast carcinoma) (QC 
metrics prior to filtering cells shown in Figure S1A and B). After filtering very low expressed 
genes based on mean expression, we observed 12,756 and 11,395 genes across all time points in 
Ishikawa and T-47D cells, respectively. We first set out to identify determinants of mean 
expression levels by focusing on the 0-hour timepoint (no E2 treatment). Genome-wide data, 
mostly on protein-DNA interactions, from publicly available sources (ENCODE, 2012; Shu et 
al., 2016; Zhang et al., 2016) and experiments conducted for this study (Table S3) were 
quantified at promoter and enhancer regions. Due to variations in enhancer number and strength 
across genes, an aggregate enhancer score was used to capture the combined action of multiple 
enhancers (see Methods) (Figure S1C). Genomic features were ranked by importance for 
classifying low (bottom 20% of genes), medium (middle 60%), and high (top 20% of genes) 
expression levels using the Boruta algorithm for feature selection (Kursa and Rudnicki, 2010a), 
which has been previously used to uncover determinants of expression noise in drosophila 
(Sigalova et al., 2020). For feature ranking, we grouped genes from both cell types to find mutual 
predictors, with the expectation that there are common underlying mechanisms for transcription 
control. 
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Elements of the pre-initiation complex and H3K27ac at the promoter ranked as the most 
important predictors for transcript levels (Figure 1A left). These features had stronger promoter 
signals at higher expressed genes (Figure 1B-E), in agreement with previous literature (Schier 
and Taatjes, 2020; Wang et al., 2008). Important factors at promoters and enhancers showed a 
general trend of increased signal for highly expressed genes (Figure 1A, right). Our dataset is 
strongly biased toward activating transcription factors and histone modifications found at active 
regulatory regions. Plotting the average promoter intensity compared to the average enhancer 
score across all confirmed datasets verifies that strong promoters and active enhancers are 
associated with higher gene expression levels (Figure 1F). Overall, the Boruta approach was 
successful at identifying known predictors of transcript levels.  
 
Analysis of temporal trajectories indicates features that control estrogen response timing 
 

We next analyzed genomic predictors of response timing using the scRNA-seq data 
following 0-, 2-, 4- and 8-hours of estrogen treatment. Using dimensionality-reduction UMAP 
plots, the temporal progression of the E2 response in single cells can be observed, although cells 
are not fully separated by timepoint (Figure S1D and E). The clustering of cells suggest that the 
transcriptional response does not follow a tight temporal pattern and that variation in the E2 
response exists between cells. In addition, T-47D cells exhibit distinct clusters prior to E2 
treatment that do not appear to be cell cycle related based on TOP2A expression (Figure S1F). 
Based on a Wilcoxon rank-sum test (Bauer, 1972), there were between 491 and 1146 
differentially expressed genes for each cell type between any E2 treatment timepoint and the 0-
hour control (Figure S2A). scRNA-seq summed counts showed high concordance with 
previously published bulk RNA-seq data in the same cell lines (Figure S2B and C) (Gertz et al., 
2013). Compared to bulk RNA-seq, there are more differentially expressed genes with high 
expression (Figure S2B and C) and lower fold changes (Figure S2D and E), likely due to the 
increased statistical power of scRNA-seq for calling differential expression of highly expressed 
genes. However, there was still high overlap between differentially expressed genes at the 
matching 0-hour vs. 8-hour comparison. Of genes that occur in both single cell and bulk datasets 
48.1% and 73.6% of 8-hour bulk RNA-seq genes overlap with 8-hour scRNA-seq genes (p 
<2.2x10-16, odds ratio = 6.11; and p < 2.2x10-16, odds ratio=12.61; fisher’s exact test in Ishikawa 
and T-47D, respectively). In addition to the comparison with previously published bulk RNA-seq 
from 0- and 8-hour E2 treatment, we performed bulk RNA-seq using the same time course as the 
scRNA-seq experiment. We observed highly significant overlaps between expression trajectories 
in both cell lines (Figure S2F). scRNA-seq can therefore be a valuable tool to capture subtle 
changes in gene expression following E2 treatment. 

Based on the timepoint at which a gene is differentially regulated, genes were classified 
into temporal response trajectories for up- and down-regulated genes. One class of genes rapidly 
changes expression in response to E2 (termed Early genes), while another class changes more 
gradually and takes longer to reach a maximum response (termed Late genes). A representative 
set of Control genes was also randomly selected using stratified sampling to mirror mean levels 
found in differential genes. Early responding genes have a significant initial response to E2 by 2 
hours, then return toward baseline for both up- and down-regulation, consistent with previous 
reports of pulse-like expression in immediate-early genes (Iyer et al., 1999) (Figure 2A and B). 
In contrast, genes classified as Late show a slow and steady response over time (Figure 2A and 
B). We found that both Early Up and Late Up genes were significantly enriched for the 
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previously described hallmarks of estrogen response early and late (Figure S3A-D). As we have 
reported previously (Gertz et al., 2012; Gertz et al., 2013), the transcriptional response to E2 is 
highly cell type-specific. However, genes with Up trajectories are more conserved between cell 
types than genes with Down trajectories (Figure S3E) (p-value=0.013; t-test). 

The Boruta algorithm was used to identify predictors of temporal trajectories. SIN3A 
signal at the promoter was most predictive of gene expression trajectory and is associated with 
Late Up genes (Figure 2C and D). MAX, which is known to repress genes through recruitment of 
SIN3A (Baudino and Cleveland, 2001), was also classified as important and enriched at 
promoters of Late Up genes (Figure 2G). The number of ER binding sites (ERBS) that loop to 
the promoter and the ER signal at enhancers were the next most important features (Figure 2C). 
These two features are enriched in Early Up genes (Figure 2E and F). A higher number of total 
enhancers is enriched for genes that respond Early (Figure S3F); however, specific proteins (e.g., 
FOXA1) (Figure 2H) are more balanced between Early Up and Early Down genes than other 
factors (e.g., ER) that show preferential binding near Early Up genes. Together, these results 
suggest that the number of enhancers plays a prominent role in the temporal response of genes, 
but transcription factors at these sites, such as ER, help control the direction and timing of gene 
expression changes. An example of an optimal decision tree was computed to examine a 
potential hierarchy of factors determining a gene’s temporal response (Figure 2I). This decision 
tree shows how SIN3A is the primary separator of genes into the Late Up trajectory, which may 
take precedence over ER signal. This analysis was run on the combined Ishikawa and T-47D 
data. When we perform the same analysis separately on each cell line, we find that the 
importance scores are highly correlated (r = 0.69; Figure S3G), indicating that shared 
mechanisms control timing across cell types. When analyzing promoter and enhancer activity 
separately, we found that promoter signal is highly correlated between cell types regardless of 
whether or not a gene exhibited the same response to E2 (r = 0.74 vs. 0.7). However, enhancer 
signal is less correlated between cell types and lower when a gene’s trajectory is not conserved 
between cell types (r = 0.39 vs. 0.3), indicating that enhancer features play a larger role in cell 
type-specific gene regulation by estrogen. Overall, Boruta analysis of temporal trajectories 
uncovers unique factors that may regulate transcription response timing and shows the 
association of multiple ER bound enhancers with a rapid up-regulation in response to E2. 

One potential confounding factor of the trajectory analysis is the impact of mRNA half-
life, since the scRNA-seq measurements represent poly-adenylated mRNAs and not simply 
nascent transcripts. To evaluate how mRNA turnover could play a role in trajectory, we 
compared previously published mRNA half-life measurements (Agarwal and Kelley, 2022) 
across E2 regulated genes (Figure S3H). We found that Early Down genes exhibited significantly 
shorter mRNA half-lives than other genes (p < 2.2x10-16, Kolmogorov-Smirnov test; average of 
0.55 standard deviations below control genes). This finding suggests that fast mRNA turnover is 
important for quick down-regulation in response to estrogen treatment. To a lesser extent, we see 
that Early Up genes are also characterized by shorter half-lives (p = 8.x10-12, Kolmogorov-
Smirnov test; average of 0.29 standard deviations below control genes). This feature may help to 
explain the pattern of Early Up genes rapidly increasing by 2 hours, but leveling off during the 
rest of the 8-hour E2 treatment.  
 
Functional perturbation of CREs alters temporal responses 
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To test the functional relationship between CREs and transcriptional response timing, 
dCas9-based activators and repressors were used to modulate the genomic activity of regulatory 
regions in Ishikawa cells, as T-47D cells exhibit low transfection efficiencies. Gene expression 
responses were then measured during a time course of E2 treatment using quantitative PCR. A 
SID(4x)-dCas9-KRAB construct was used for repression (Carleton et al., 2017). This construct 
can directly recruit SIN3A, a good predictor of Late gene expression responses. It also recruits 
Histone deacetylases (HDACs) (Urrutia, 2003), corresponding to the low H3K27ac seen at Late 
Up genes. For activation, dCas9-VP16(10x) was used. We have previously shown that dCas9-
VP16(10x) modulates expression from enhancers and induces acetylation at targeted regions 
(Ginley-Hidinger et al., 2019). dCas9-VP16(10x) recruits many activating cofactors, including 
members of the pre-initiation complex and p300, which are associated with Early genes.  

TACSTD2 is an E2 regulated gene that is a prognostic indicator for endometrial cancer 
disease-free survival (Bignotti et al., 2012), is overexpressed in some breast cancers (Shvartsur 
and Bonavida, 2014), and exhibits an Early Up trajectory. Targeting the enhancers of TACSTD2, 
marked by H3K27ac and ER binding (Figure 3A) with SID(4X)-dCas9-KRAB resulted in a 
slower, more gradual response to E2. The time for expression to reach maximal observed levels 
was increased when targeting 2 out of 3 individual enhancers (Figure 3B). When targeting 
enhancer +4.7kb and enhancer -15.2kb, longer activation times were observed compared to non-
targeting controls based on time to half maximal expression (Figure 3D). Enhancer +4.7kb and 
enhancer -15.2kb exhibited slower activation rates, but reached similar activation levels at 8 
hours compared to controls, indicating that these enhancers can regulate the timing of a response 
without affecting overall levels. Additionally, the slope of gene expression over time showed 
generally slower initial activation when TACSTD2 regulatory regions were inhibited compared to 
the control, followed by more similar rates at later timepoints (Figure 3F). Synthetic activation of 
the same TACSTD2-linked CREs led to a more rapid response when targeting most individual 
enhancers and the combination of all enhancers (Figure 3C), as evidenced by decreased time to 
half maximal expression (Figure 3E). Again, we see that enhancer -15.2kb changes expression 
timing without affecting overall transcript abundance. Analysis of the slopes revealed a generally 
increased initial slope with respect to the control when TACSTD2 regulatory regions were 
targeted (Figure 3G). These results imply that decreasing enhancer activity can reduce initial 
activation rates, while activating enhancers can potentiate quicker responses to E2.  

When targeting five putative enhancers as well as the promoter of TGFA, an Early Up 
gene, with SID(4X)-dCas9-KRAB, we again observed a more gradual expression response to E2 
(Figure S4A). The most substantial effects on time to half maximal expression were observed 
when targeting enhancer -43kb, enhancer -62kb, or all enhancers simultaneously (Figure S4C). 
On aggregate, inhibition of TGFA regulatory regions showed slower activation rates between 
early timepoints, followed by increased rates from 6 to 8 hours relative to the control trajectory 
(Figure S4E). These results are consistent with our TACSTD2 findings and indicate that 
decreasing enhancer activity slows the transcriptional response. To speed up a Late gene, dCas9-
VP16(10x) was used to activate enhancers and the promoter of PEG10. We observed an overall 
faster response when targeting these regulatory elements, although baseline levels were increased 
in all cases, which resulted in more variability in the timing analysis (Figure S4B and D). On 
aggregate, we see that activation of PEG10 enhancers led to earlier responses to E2, which later 
converge with control rates (Figure S4F). Overall, at these three genes, the activity of enhancers 
controls the E2 response trajectory. 
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An enhancer-promoter dichotomy controls gene expression noise 
 

Genes were separated into three levels of variation to find determinants of expression 
noise at the 0-hour timepoint. In scRNA-seq, low gene expression levels often have high noise 
due to the dropout effects of capturing RNAs from the limited amount of RNA in a single cell 
and technical variation in scRNA-seq is related to mean levels (Brennecke et al., 2013). To 
examine mean-independent noise, we used an adjusted coefficient of variation (CV), which is 
calculated as the residuals of a generalized additive model (GAM) where CV is fit to the mean 
(Figure S5A, see Methods). To remove any leftover mean effects, genes were labeled as high or 
low noise based on whether they were in the top 20% or bottom 20% of adjusted CV for ten 
different mean bins from the 0-hour timepoint of both cell types (Figure S5B).  

The strongest predictors of noise levels were SIN3A and JUN at the promoter, both 
associated with low noise (Figure 4A, B, and D). Generally, a strong promoter signal was related 
to low noise across features, with some exceptions, such as p300 (Figure 4A, right panel). Most 
enhancer features were associated with high noise, with ER and FOXA1 at enhancers being the 
most predictive (Figure 4A). Another feature scored as highly important was tri-methylation at 
histone H3 lysine 4 (H3K4me3), which is strongly associated with low amounts of noise (Figure 
4C), supporting a previously reported correlation between H3K4me3 breadth and transcriptional 
consistency (Benayoun et al., 2014). The above analysis was performed on the combined 
Ishikawa and T-47D data; however, the importance scores of features when run separately on the 
cell types were correlated (r = 0.58; Figure S5C), indicating that common features control 
transcriptional noise. 

These results motivated the broader evaluation of how noise relates to promoter and 
enhancer activity. Analysis of the average promoter intensity across all confirmed datasets and 
the average enhancer score revealed an inverse relationship between promoters and enhancers 
(Figures 4E and S6A). Genes with high noise levels had high enhancer scores and low promoter 
signals. Conversely, genes with low noise levels had low enhancer scores and high promoter 
signals. To confirm this relationship in a third cell type, we analyzed publicly available scRNA-
seq and genomic data from LNCaP cells, a prostate cancer cell line. The same association was 
observed between enhancer-driven gene regulation and higher noise (Figure S5D). Consistent 
with these findings, more enhancers connected to a gene associates with greater noise (Figure 4F 
and G). These results indicate that enhancer-driven transcription regulation is less consistent 
across individual cells than promoter-driven transcription regulation. 
 
Shared features of expression levels, timing, and noise 
 

Expression levels, noise, and timing analysis uncovered different importance rankings for 
genomic features. Importance scores fell roughly into five common patterns across our three 
analysis types (Figure 5A). The largest three patterns consisted of features whose importance 
scores were highly enriched for a single analysis. Two smaller patterns were composed of 
features important for both mean and noise or both trajectory and noise. In general, the 
importance scores from the Boruta algorithm are more similar between noise and mean or noise 
and trajectory compared to mean and trajectory, as seen from the first two PCA dimensions 
calculated from the feature importance matrix (Figure 5B) and the correlation between 
importance scores (Figure S6D-F). The relationship between noise and our other analyses 
suggests that noise may be an intermediary between baseline levels and temporal regulation and 
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that mean levels do not strongly influence response trajectory. Generally, we see that most 
features specifically associated with mean levels are found at promoters, while noise and 
trajectory utilize promoter and enhancer features more evenly (Figure 5A). Enhancer features 
important for predicting mean levels are also likely to predict noise. Together, these results 
indicate that enhancers are more critical for noise and trajectory and that many genomic signals 
preferentially predict either levels, noise, or trajectory.  

Since Boruta importance scores do not capture directionality, we examined the group 
with the maximum signal for each feature (Figure S6C). Promoter features are generally 
associated with high mean levels and low noise. Enhancer features are also associated with 
increased mean levels, but contrary to promoters, they show an association with high noise 
levels. Enhancer scores are almost always the highest for Early Up trajectories. As high enhancer 
scores are associated with Early Up trajectories and high noise, we performed a gene level 
comparison of noise at the 0-hour timepoint and trajectory classification. We found that genes 
that respond quickly to E2 treatment are more likely to exhibit high noise at the 0-hour timepoint 
(Figure 5C). Our results suggest that active enhancers drive high noise and rapid up-regulation in 
response to E2, while promoters consistently drive low noise and high mean expression. 
 
Co-expression of genes is associated with looping, timing, and noise levels 
 

scRNA-seq offers a unique advantage in studying the co-regulation of genes on a cell-by-
cell basis and the possible mechanisms that underlie co-regulation. Using the H3K27ac HiChIP 
data, we found that looping can affect co-expression in several ways. First, we found that genes 
whose promoters loop together correlate significantly more than groups of randomly paired 
control genes at the 0-hour timepoint (Figure 6A and B). Genes whose promoters both loop to a 
shared enhancer are significantly more correlated across single cells (Figure 6C and D). These 
results indicate that the 3D genome structure may be involved or associated with gene co-
expression across single cells. 

We next evaluated co-expression during the E2 treatment time course. Co-expression was 
measured using pairwise Spearman correlation in single cells. In Ishikawa cells, both Early Up 
and Early Down genes show increasing pairwise co-expression over time (Figure 6E). Genes that 
respond late exhibited less change in correlation, with Late Up genes increasing correlation 
slightly by 8 hours and Late Down genes slightly decreasing in correlation. In T-47D cells, we 
see the most significant increase in co-correlation at 2 hours for Early Up and Early Down genes 
(Figure 6F). Late Up and Late Down genes show slight increases in correlation during the time 
course.  

The levels of noise also change the probability of two genes being correlated. Perhaps 
expected, genes with high noise levels also show a broader distribution in their pairwise 
correlations, resulting in genes with high noise being more likely to have extremely correlated or 
anti-correlated expression with each other than low noise genes (Figure 6G and H). These results 
indicate that 3D interactions, control of temporal trajectory, and noise regulation can impact gene 
co-regulation. 

 
 
Discussion 
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To investigate the genomic underpinnings of the temporal transcriptional response to 
estrogen, we conducted scRNA-seq at several timepoints in two human cell lines. scRNA-seq 
was able to capture more subtle changes in gene expression of highly expressed genes compared 
to bulk RNA-seq due to the increased statistical power. Using a feature ranking approach, we 
identified several features associated with E2 response timing, including more ER bound 
enhancers regulating “Early Up” genes and SIN3A signal at the promoter of “Late Up” genes. In 
general, multiple enhancers are more predictive of “Early” gene trajectories. Functional 
evaluation of enhancers revealed that multiple enhancers regulate timing at each gene tested as 
activation and repression of several enhancers causes changes in a gene’s temporal response to 
estrogen. From these studies, we conclude that an active enhancer repertoire is important for 
rapid gene responses to estrogen. Active enhancers may present chromatin that is more open to 
ER binding. Alternatively, other TFs already present at enhancers could stabilize the binding of 
ER, permitting ER to activate gene expression immediately. Contrastingly, SIN3A and MAX at 
the promoter, known to repress gene expression together (Baudino and Cleveland, 2001), slow a 
gene’s response to E2, even when a gene is associated with strong ER bound enhancers. 
Activation of gene expression may first require removing repressive signals at the promoter, 
explaining the more gradual responses. A similar mechanism has been described in an enhancer 
context, where inactive enhancers must first be activated by transcription factors before 
activation of gene expression can occur, causing more gradual gene expression changes (Ostuni 
et al., 2013). While transcriptional responses to estrogen (Gertz et al., 2012) as well as 
underlying gene regulatory events (Gertz et al., 2013) are highly cell type-specific, we found that 
the genomic features associated with the transcriptional response are shared between cell types, 
indicating that common mechanisms drive how genes respond to estrogen stimulation.  

It is important to note that we analyzed total poly-adenylated RNA in this study. Since 
mRNA degradation can happen on different time scales across genes (Tani et al., 2012), some 
genes may be misclassified in their transcriptional response to estrogen. In fact, we found that 
Early Down genes had shorter mRNA half-lives in previously published datasets. This 
observation is consistent with quickly down-regulated genes requiring fast mRNA turnover to be 
observed from poly-adenylated RNA, since overall transcript levels would need to be 
significantly reduced in a short time period. The confounding effect of mRNA stability on down-
regulated genes may partially explain why we did not find features that consistently associate 
with Early/Late Down genes. The lack of strong association between the genomic features we 
studied and down-regulated genes could also be related to a focus on features related to gene 
activation and a stronger connection between ER and gene activation as opposed to repression 
(Carleton et al., 2017).   

One unexpected and exciting finding from our analysis is that enhancer and promoter 
activities relate to expression noise in opposing manners. Active promoters are associated with 
low noise levels, whereas multiple active enhancers are associated with high noise levels. In 
concordance with this observation, synthetic activation of promoters drives lower noise levels at 
several genes (Fraser et al., 2021a). Additionally, activation of multiple enhancers causes high 
noise at the NF-κB locus (Wibisana et al., 2022). Our results support a unified model where a 
balance between enhancers and promoters controls noise. Both intrinsic and extrinsic noise could 
potentially explain the observed noise distributions (Ham et al., 2021). If intrinsic noise is the 
driving factor, we expect promoters to cause high-frequency, near-constant transcription levels 
and enhancers to cause infrequent, high-amplitude bursts of expression (Raj and Van 
Oudenaarden, 2008). Noise caused by CREs could also be due to extrinsic noise. Promoters may 
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lead to low noise, as fluctuations in upstream factors may be insignificant compared to activation 
by an ensemble of transcription factors bound to the promoter. In contrast, enhancers may drive 
higher noise levels by increasing sensitivity to upstream factors, which is consistent with our 
observation that enhancers drive rapid temporal responses to estrogen. 

For a gene to respond quickly to a signal, it must be sensitized to incoming signals, which 
may inherently drive higher levels of noise. A noise-robustness tradeoff has been proposed 
previously when observing changes in gene expression over developmental time in drosophila 
(Sigalova et al., 2020) and in a mathematical framework that showed variation is necessary for a 
gene’s responsiveness (Boe et al., 2022). However, a regulatory mechanism has not been found. 
Our results point to multiple enhancers being a primary genomic feature associated with both 
high expression noise and rapid response timing. Additionally, we found that a strong promoter 
is likely to cause more robust gene expression but limited responsiveness. While we identified 
these patterns across the full data set, a small set of individual genes can respond quickly to a 
signal without high cell-cell variation (Figure 5C) and the question remains as to how these 
genes maintain low noise and fast response times. We also found that genes that are quickly 
down-regulated by estrogen are more likely to exhibit high noise than genes that are quickly up-
regulated by estrogen. This pattern could be due to genes that are primarily enhancer driven 
having higher noise and being more susceptible to down regulation, potentially through enhancer 
rewiring because of ER activity and competition for factors that are critical for enhancer activity. 
Shorter mRNA half-lives could also contribute to higher noise of Early Down genes. 

Co-expression analysis of gene pairs showed that co-expression properties depend on 
looping, timing, and noise. We found that genes with shared enhancers and looped promoters 
correlate more in individual cells, genes with different trajectories correlate differently over time, 
and genes with high noise levels are more likely to be strongly correlated or anticorrelated. 
While co-expression correlation effects are modest overall and it is unclear what levels of co-
expression are biologically meaningful, these observations could have implications for gene 
regulatory networks (GRNs) in single cells, as co-expression often underlies regulatory 
networks. Dynamic adjustment of regulatory networks may have critical functional outcomes for 
a cell population (Borriello et al., 2020). For example, GRNs that confer resistance to 
therapeutics may occur at distinct timepoints following treatment (Zhang et al., 2019). Our 
results indicate that genes with high noise may lead to a broader range of implemented 
regulatory networks across single cells, enhancing cellular heterogeneity. Further studies into 
functional GRNs are warranted to determine how noise and timing affect single cell phenotypes 
through the co-expression of many genes. Overall, our study shows that enhancers and promoters 
can play distinct roles in the timing and variation of a transcriptional response.  
 
Methods 
 
Cell culture 

T-47D and Ishikawa cells were cultured in RPMI 1640 medium (Gibco) with 10% fetal 
bovine serum (Gibco) and 1% penicillin–streptomycin (Gibco). LNCaP cells were cultured in 
RPMI media with 10% FBS supplemented. Cells were incubated at 37°C with 5% CO2. 5 days 
before estrogen inductions, cells were transferred to hormone-depleted media consisting of 
phenol red-free RPMI (Gibco) with 10% charcoal-dextran stripped fetal bovine serum (Sigma-
Aldrich) and 1% penicillin–streptomycin (Gibco).  
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ChIP-seq 
After 5 days in hormone-depleted media, cells were plated in 15cm dishes at 

approximately 60% confluency 1 day before estrogen induction. Cells were treated with vehicle 
(DMSO) or E2 at a final concentration of 10nM for either 1 hour for transcription factor ChIP-
seqs, or 8 hours for histone marker ChIP-seqs. ChIP and library preparation was performed as 
previously described (Reddy et al., 2009). Antibodies used for this study were MAX (Sant Cruz 
sc-8011), LSD1 (abcam ab 17721), TAF1 (sc-735), c-MYC (Santa Cruz sc-40), H3K4me3 (Cell 
Signaling 9751S), H3K4me1 (Cell Signaling 5326S), SIN3A (produced as previously described) 
(Hassig et al., 1997), RARA (Santa Cruz sc-515796) and JUN (BD Biosciences 558036). 
 Libraries were sequenced using either an Illumina HiSeq 2500 or Illumina NovaSeq 6000 as 
single- or paired-end 50 bp reads, then aligned to hg19 using bowtie with parameters -m 1 –t –
best -q -S -l 32 -e 80 -n 2 (Langmead et al., 2009). Signal intensity was extracted from bam files 
using samtools view with parameter -c (Li et al., 2009). In the cases where peaks were called, 
peak calling was done using Macs2 with the default q-value cutoff of 0.05 and mfold ratio 
between 15 and 100 (Zhang et al., 2008). 

 
H3K27ac HiChIP 

HiChIP experiments were performed as previously described (Mumbach et al., 2016) 

using an antibody that recognizes H3K27ac (Abcam, ab4729). Ishikawa cells were treated with 
either 10 nM E2 for 1 hour or DMSO as a vehicle control. HiChIP in Ishikawa cells was 
conducted using restriction enzyme DpnII (New England Biolabs). Crosslinked chromatin was 
sonicated using an EpiShear probe-in sonicator (Active Motif) with three cycles of 30 seconds at 
an amplitude of 40% with 30 seconds rest between cycles. HiChIP libraries were sequenced on 
NovaSeq 6000 as paired end 50 base pair reads to an average depth of 300–400 million read-
pairs per sample. 

Experiments in T-47D and LNCaP cells were conducted using restriction enzyme MboI 
(New England Biolabs). Crosslinked chromatin was sonicated using Covaris E220 with the 
settings of fill level=10, duty cycle=5, PIP=140, cycles per burst=200, time=4 mins. HiChIP 
libraries were sequenced on HiSeq 2500 as paired end 75 base pair reads to ~50 million read 
pairs per sample. 

Reads were aligned to human hg19 reference genome using HiC-Pro (Servant et al., 
2015). Hichipper (Lareau and Aryee, 2018) was used to perform restriction site bias-aware 
modeling of the output from HiC-Pro and to call interaction loops. In Ishikawa cells, DMSO and 
E2 treated HiChIP loops were combined to identify all possible putative enhancers. In all 
datasets, loops with less than 3 reads or FDR >= .05 were filtered out. 
 
PRO-seq 

PRO-seq libraries were generated as described in Mahat et al., 2016 (Mahat et al., 2016). 
Briefly, Ishikawa and T-47D cells were grown in hormone-depleted RPMI for five days, then 
2x106 cells were plated into two 10 cm dishes per condition with RPMI lacking phenol red 
supplemented with 10% charcoal/dextran-stripped FBS and penicillin. Cells were treated with 
vehicle (DMSO) or 10 nM E2 for 45 minutes, then permeabilized for five minutes with 
permeabilization buffer [10 mM Tris-HCl, pH 7.4; 300 mM sucrose; 10 mM KCl; 5 mM MgCl2; 
1 mM EGTA; 0.05% Tween-20; 0.1% NP40 substitute; 0.5 mM DTT, protease inhibitor cocktail 
ml(Roche); and SUPERaseIn RNase Inhibitor (Ambion)]. The nuclear run-on was performed by 
adding permeabilized cells to run-on mixture [final composition was 5 mM Tris, pH 8.0; 25 mM 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2023.03.14.532457doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532457
http://creativecommons.org/licenses/by/4.0/


MgCl2; 0.5 mM DTT; 150 mM KCl; 200 μM rATP; 200 μM rGTP; 20 μM biotin-11-rCTP 
(Perkins Elmer); 20 μM biotin-11-rUTP (Perkins Elmer); 1 U/μL SUPERase In RNase Inhibitor 
(Ambion); 0.5% Sarkosyl], then incubating at 37°C for 5 minutes. RNA was extracted with 
Trizol LS (Ambion), fragmented with 0.2 N NaOH for 8 minutes on ice, then neutralized with 
0.5 M Tris, pH 6.8, followed by buffer exchange with a P-30 column (Bio-Rad). Biotinylated 
RNAs were enriched with Dynabeads M280 Streptavidin (Invitrogen), then RNA was extracted 
with Trizol (Ambion), followed by 3′ adapter ligation using T4 RNA ligase (NEB). Biotinylated 
RNAs were enriched for a second time, followed by 5′ cap repair with RppH (NEB) and 5′ 
hydroxyl repair with PNK (NEB). The 5′ adapter was ligated with T4 RNA ligase (NEB), 
followed by a third biotinylated RNA enrichment. Reverse transcription was performed with the 
RP1 primer. Samples were PCR amplified for 13 cycles, then cleaned up with Agencourt 
AMPure XP beads (Beckman Coulter). Libraries were sequenced on an Illumina HiSeq 2500, 
generating a 50nt read. Reads were processed using cutadapt (Martin, 2011) with parameters -a 
TGGAATTCTCGGGTGCCAAGG --cut 7 --length 42 -m 21. Reverse complement sequences 
were generated using fastx_reverse_complement from the FASTX toolkit (v 0.0.13) (Hannon, 
2010). Reads were then aligned to hg19 with bowtie2 (Langmead and Salzberg, 2012) in end-to-
end mode, and non-uniquely aligned reads were discarded.  
 
scRNA-seq  

Cells were treated with 10nM E2 for 0 (vehicle treated), 2, 4, and 8 hours. To mitigate 
technical batch effects, cells were labeled via MULTI-seq as previously described (McGinnis et 
al., 2019). Cells from different timepoints were mixed and then prepared according to the 10x 
Genomics sample prep user guide (2017). Cells were separated into single cell emulsions using 
the 10x Genomics Chromium Controller with a targeted recovery of 10,000 cells. Sequencing 
libraries were prepared using the 10X Genomics Next GEM Single Cell 3' Gene Expression 
Library prep v3.1. Sequencing was performed on an Illumina NovaSeq 6000 with 150bp read 
length. Sequencing output was processed from reads to counts using the 10x Genomics Cell 
Ranger v3.1.0 pipeline. MULTI-seq calls were processed using the demultiplex R package 
(McGinnis et al., 2019) and mapped back to the E2 timepoints. Counts were log normalized 
using the Seurat v3 R package (Stuart et al., 2019), then filtered using custom cutoffs. For 
Ishikawa cells, cell filtering criteria were unique reads between 8500 and 35,000, unique genes 
between 2700 and 6000, and percent mitochondrial reads less than 7%. For T-47D cells, cell 
filtering criteria were unique reads between 7500 and 40,000, unique genes between 1500 and 
6000, and percent mitochondrial reads less than 20%. Genes are filtered to have a mean greater 
than 0.01 across all timepoints. 

 
scRNA-seq analysis: classification of trajectory and noise levels 

Computational analysis of trajectory and noise levels were conducted using R (Team, 
2013). Trajectory classification was done using a Wilcoxon test (Bauer, 1972) to find genes 
whose single cell distributions significantly change at different timepoints compared to the 0hr 
timepoint. Genes that change significantly by 2 hours are classified as either “Early Up” or 
“Early Down”. Genes with changes seen at 4 or 8 hours are classified as “Late”. It is important to 
note that genes were called differential without a fold change cutoff. The statistical power of 
scRNA-seq allowed for the identification of differentially expressed genes with smaller fold 
changes, but appreciable absolute changes; however, due to technical limitations of scRNA-seq 
our results may be affected by technical variation or drop out of lower expressed genes. To select 
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control genes with similar mean distributions to those genes that are regulated by E2, we used a 
stratified sampling approach to select control genes that are not significantly regulated. Genes 
classified into Early and Late Up categories were analyzed by EnrichR (Xie et al., 2021) using 
the MSigDB Hallmark 2020 gene annotations.  

Our noise metric is defined as the residuals from a generalized additive model (GAM) 
regression fitted to the CV vs mean for all genes. Regression was performed on log2(CV + 1) vs 
mean curve using the gam function from the mgcv R package with formula y ~ s(x, bs = "cs") 
(Wood, 2006). Residuals were then transformed back to the original scale. Noise levels were 
determined using the GAM-adjusted CV. We chose the GAM method as it removed most of the 
mean-noise relationship (Figure S6B), as desired, compared to SCTransform standardized 
variance and residual variance as shown in Figure S5E and F. Overall, we found that genes were 
binned as High noise more consistently across the three methods (average fraction overlap of 
0.82) than Medium (0.67) or Low noise (0.58); however, less than 1% of genes were classified as 
High noise by one method and Low noise by another. For this comparison of noise metrics, we 
used the HVFInfo function with selection.method as “vst” or “sctransform” in Seurat (Satija et 
al., 2015). To account for the different ranges in noise at different mean levels, genes were 
binned by mean and then into 3 groups of noise levels by quantile. The top 20% and bottom 20% 
of genes in each quantile were labeled as “High” and “Low” noise, respectively.  

 
Feature importance analysis 

Promoters were defined as 500bp regions centered on the transcriptional start site, as 
annotated in the RefSeq database (Pruitt et al., 2013). Enhancers were called using H3K27ac 
HiChIP data and H3K27ac ChIP-seq peaks. Enhancers were defined as H3K27ac peaks within 
HiChIP anchors that loop to the promoter. Integrated signal for each promoter and enhancer was 
collected from all datasets using samtools view -c (Li et al., 2009). Z-scores were calculated 
across all genes for input to feature ranking algorithms. An enhancer score was calculated to 
account for signal at multiple enhancers, using the formula 

������� � 1	
�

�

 

where n represents the number of enhancers associated with a gene and s represents the Z-score 
of integrated genomic signal at each enhancer.  
 Number of enhancers was defined as the number of H3K27ac peaks that loop to the 
promoter, as determined by HiChIP. Number of ERBS was calculated as the number of 
enhancers that overlapped with ER ChIP-seq peaks. Feature ranking was performed using the 
Boruta package in R (Kursa and Rudnicki, 2010b) with default parameters and 100 maximum 
iterations. Gene length was calculated from RefSeq transcript annotations (Pruitt et al., 2013). 
An example decision tree was determined using the rpart function with parameters 
minbucket=50 and cp=0.007 (Breiman et al., 2017). Average enhancer score and promoter signal 
was calculated using “confirmed” variables from Boruta analysis. The average of Z-score signal 
for confirmed variables was taken for all variables associated with either the promoter or 
enhancer, not including number of enhancers, number of ERBS, or gene length. 

 
Generation of stable dCas9-VP16(10x) cell lines 

Ishikawa cells were plated in 6-well plates at 60% confluency. Cells were transfected 
with Addgene plasmid 48227 (a gift from Rudolf Jaenisch) (Cheng et al., 2013) containing 
dCas9-VP16(10x) with a P2A linker and neomycin resistance gene. Fugene HD (Promega) was 
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used for transfection at a 3:1 reagent:DNA ratio. dCas9-VP16(10x) plasmid was linearized with 
restriction enzyme AflII (New England Biolabs R0520S). Successful integration of the dCas9-
VP16(10x) plasmid was selected for using G418 (Thermo Scientific) at a concentration of 800 
µg/mL for approximately 2 weeks. Successful expression of the dCas9 plasmid was verified 
using qPCR for dCas9 as well as qPCR for successful activation of a control gene, IL1RN 
(Figure S4G). Cells were then maintained at a lower concentration of 400 µg/ml G418. 

 
gRNA design and transfection 

gRNAs were designed using the Benchling gRNA design tool (Benchling, 2020). 4 
gRNAs were designed per targeted region. gRNAs were cloned into plasmids as previously 
described (Carleton et al., 2017). gRNA sequence and adjacent PAM are listed in Table S1. Prior 
to transfection, Ishikawa cells were plated in 48-well plates at 80,000 cells/well. 24 hours after 
plating, gRNAs were transfected into cell using Fugene HD (Promega) at a manufacturer 
suggested 3:1 reagent:DNA ratio. gRNA transfection was selected for using 1 µg/mL puromycin. 
8-hour E2 time courses were started roughly 24 hours after addition of puromycin.  

 
RNA isolation and qPCR gene expression analysis 

Cells were lysed with Buffer RLT Plus (Qiagen) containing 1% beta-mercaptoethanol 
(Sigma). RNA was purified using the ZR-96-well Quick-RNA kit (Zymo Research). Gene 
expression was measured using qPCR with reagents from the Power SYBR Green RNA-to-Ct 1-
step kit (Applied Biosystems), 50ng RNA per reaction, and 40 cycles on a CFX Connect light 
cycler (BioRad). qPCR primers are listed in Table S2. Relative expression was calculated using 
the ΔΔCt method with CTCF as a reference gene and cells where the same dCas9 fusion is 
targeted to the IL1RN promoter as the controls. Best fit lines were determined using the loess 
function in R (Cleveland et al., 2017) and formula y ~ x. Half maximal values were calculated 
using the maximum at any timepoint. The first time point at which the loess regression reaches a 
half maximal value is recorded as the time to half maximal. Differentials of the loess regression 
were also calculated using R to examine how the slope of each trajectory changes over time. 
Slope analysis was binned into “targeted” and “control” groups to analyze the general effect of 
dCas9 manipulation at regulatory regions of the respective gene. 
 
Bulk RNA-seq experiments and analysis 
 Cells were treated with 10nM E2 for 0 (vehicle treated), 2, 4, and 8 hours. Following 
treatments, cells were lysed with buffer RLT Plus (Qiagen) containing 1% beta-mercaptoethanol 
(Sigma-Aldrich). RNA was extracted and purified using a Quick RNA Mini Prep kit (Zymo 
Research). NEBNext Ultra II Directional RNA Library Prep kit with poly(A) mRNA isolation 
was used to construct RNA-seq libraries according to the manufacturer's instructions (NEB). 
Sequencing reads were aligned to hg19 build of the human genome using HISAT2 (Kim et al., 
2019). SAMtools (Li et al., 2009) was used to convert SAM files to BAM files. Genes were 
defined by the University of California Santa Cruz (UCSC) Known Genes (Kent et al., 2002) and 
reads that mapped to known genes were assigned with featureCounts (Liao et al., 2014). Read 
counts were normalized and analyzed for differential expression via DESeq2 (Love et al., 2014). 
Genes that were differentially expressed between the 0-hour and 2-hour timepoints were defined 
as Early, while all other differentially expressed genes were defined as Late.  
 
Co-expression analysis 
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 Spearman correlation values were calculated using the cor function in R. Pairs were 
defined either by looping data, or for a set of genes, as all possible combinations of genes in a 
list. Control pairings for genes that were looped together were generated by randomly shuffling 
the pairings. Control genes in the time course correlation analysis refer to the pairs within the set 
of timing control genes (defined above) where stratified sampling was used to replicate the same 
mean distribution as regulated genes. 
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Figure Legends 
 
Figure 1. Several genomic features associate with gene expression levels. (A, left) Boruta 
feature ranking of genomic features shows importance of a feature for predicting mean levels. 
(A, right) Average signal intensity for each genomic dataset, grouped by mean expression levels, 
is shown.  Datasets shown in bold were performed in the absence of ER activation. (B-E) 
Distributions of the top 4 most important ranked features in the absence of ER activation, 
separated by mean expression levels, show higher signal for “High” expression groups. X-axis 
represents Z-scores and error bars show the mean ± 95% confidence intervals. (F) Mean 
enhancer score signal for all Boruta confirmed features vs. mean promoter signal across all 
confirmed features is shown where error bars show the mean ± 95% confidence intervals. Axes 
do not represent the full range. 
 
Figure 2. SIN3A and multiple ER bound sites are the strongest predictors of 
transcriptional response timing. (A-B) Z-scores for each gene across 4 timepoints are shown 
within different gene expression trajectories in (A) Ishikawa and (B) T-47D cells. (C, left) Based 
on Boruta ranking, the top 25 most important features are shown for classifying gene trajectories. 
(C, right) Heatmap displays the average signal by trajectory for each predictor. Datasets shown 
in bold were performed in the absence of ER activation. (D-H) Distribution of signal (Z-score) of 
the most important features for predicting temporal trajectories is shown. (I) Decision tree shows 
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the hierarchy of classification for predicting gene expression trajectories. The top 4 layers are 
shown. 
 
Figure 3. Functional manipulation of enhancer activity alters TACSTD2 E2 response 
timing. (A) ChIP-seq, ATAC-seq, and HiChIP genome browser tracks in Ishikawa cells show 
targeted regulatory regions surrounding TACSTD2. (B-C) Expression trajectory of TACSTD2 is 
displayed after E2 induction in Ishikawa cells following SID(4x)-dCas9-KRAB inhibition (B) or 
dCas9-VP16(10x) activation (C) targeted to regulatory regions. Error bars represent SEM (n=2) 
and expression is relative to the 0-hour timepoint in the control, which is from cells with IL1RN 
promoter targeting. Dotted lines show the time at half maximum for a given trajectory. (D-E) Bar 
plot shows time to half maximal expression for each targeted regulatory region. Error bars 
represent SEM and p-values (one-sided t-test) are reported above each bar. (F-G) Aggregate 
differential of loess regressions from B and C for all regulatory regions targeted (grey) by 
SID(4x)-dCas9-KRAB (F) or dCas9-VP16(10x) (G) compared to control (black). Shaded region 
represents 95% confidence interval.  
 
Figure 4. Features associated with noise levels indicate a balance between active promoters 
and active enhancers. (A, left) Boruta feature rankings shows features predictive of noise levels 
at the 0-hour timepoint. (A, right) Average signal intensity is shown by noise group for top 
ranked features. Datasets shown in bold were performed in the absence of ER activation. (B-D) 
Distribution of signal for top ranked noise-predicting features in the absence of ER activation are 
shown with Z-scores on the x-axis. (E) Mean enhancer signal score for all Boruta confirmed 
features vs. mean promoter signal across all confirmed features for each noise level exhibits an 
inverse relationship. Error bars show 95% confidence intervals and axes do not represent the full 
range; full distribution shown in Figure S6A. (F-G) Distribution of enhancer counts per gene, 
separated by noise level, are shown for (F) Ishikawa and (G) T-47D cells. 
 
Figure 5. Importance comparison shows that mean and trajectory are regulated by distinct 
genomic features. (A) Heatmap shows importance scores from each analysis type, normalized 
by column, and scaled by row.  Datasets shown in bold were performed in the absence of ER 
activation. (B) PCA plot based on importance scores shows the relationship of importance scores 
for mean levels, noise, and trajectory. Percentages denote percent of variance explained by each 
principal component. (C) Bar plot shows the percentage of genes for each trajectory that are 
classified into each noise classification. Numbers on bars refer to counts of genes. 
 
Figure 6. Co-expression levels track with looping, trajectory, and levels of noise. (A-B) Pairs 
of genes with promoters that loop to one another are significantly more correlated across cells at 
the 0-hour timepoint than randomly selected gene pairs for Ishikawa (A) and T-47D (B). (C-D) 
Pairs of genes with a shared enhancer are more correlated than randomly paired genes for 
Ishikawa (C) and T-47D (D). (E-F) Distribution of pairwise Spearman correlation for genes 
within different trajectories is shown for Ishikawa (E) and T-47D (F). (G-H) Range of pairwise 
correlations for high noise levels is greater than the range for pairs of low noise genes in 
Ishikawa (G) and T-47D (H). (left panel) Distribution of Spearman pairwise correlations for 
genes with high and low noise. (right panel) Spearman correlations were grouped into quantiles 
and bars show proportion at each quantile that are pairs of low or high noise genes. Significance 
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values for all subpanels are as follows (based on Bonferroni corrected Wilcoxon tests): (* p < 
0.05; ** p < 1x10-5; *** p < 1x10-10; **** p < 1x10-15). 
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