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Abstract

Cis-regulatory elements control transcription levels, temporal dynamics, and cell-cell
variation or transcriptional noise. However, the combination of regulatory features that control
these different attributes is not fully understood. Here, we used single cell RNA-seq during an
estrogen treatment time course and machine learning to identify predictors of expression timing
and noise. We find that genes with multiple active enhancers exhibit faster temporal responses.
We verified this finding by showing that manipulation of enhancer activity changes the temporal
response of estrogen target genes. Analysis of transcriptional noise uncovered a relationship
between promoter and enhancer activity, with active promoters associated with low noise and
active enhancers linked to high noise. Finally, we observed that co-expression across single cells
IS an emergent property associated with chromatin looping, timing, and noise. Overall, our
results indicate a fundamental tradeoff between a gene’s ability to quickly respond to incoming
signals and maintain low variation across cells.

I ntroduction

Cis-Regulatory elements (CRES) control the precise spatiotemporal expression of genes
across the genome. In addition to a gene’s promoter, many enhancers collaborate to control a
single gene’s expression in mammalian cells (ENCODE, 2012; Kundaje et al., 2015; Zhang et
al., 2020). External chemical signals often induce changes in cell phenotypes by altering
transcription, requiring coordinated gene expression programs. Signal transduction can lead to
transcription factor (TF) binding changes and epigenetic modifications at CREs (MacKenzie et
al., 2013). For cells to appropriately respond to stimuli, CREs must guide the amount of
transcript produced (MacKenzie et al., 2013), the timing of transcriptional changes (Kolch et al.,
2015; WEei et al., 2016), and the amount of transcriptional variation or noise (Kolch et al., 2015;
Raj and Van Oudenaarden, 2008; Raser and O'Shea, 2005). While there has been extensive
research on the role that CREs play in transcription levels, less is understood about the properties
of CREs that control gene expression timing and noise.

Temporal regulation of gene expression is an essential attribute of transcriptional control
for cellular processes such as cell fate transitions (Basma et al., 2009; Chamberlain et al., 2008;
Konstantinides et al., 2022) and responses to signals (Behar and Hoffmann, 2010; Krakauer et
al., 2002; Uribe et al., 2021). Specific genes, often termed immediate-early genes, are rapidly
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activated in response to a signal, while other genes change expression more gradually (Sheng
and Greenberg, 1990; Uhlitz et al., 2017; Uribe et al., 2021). Genes that show coordinated
trajectories are often functionally related, driving diverse phenotypes at different timescales
(Gandhi et al., 2011; Krakauer et al., 2002; Schnoes et al., 2008; Szustakowski et al., 2007).
Previous studies have identified several mechanisms that regulate transcriptional timing. One
influential factor is the state of a gene’s promoter. For example, pre-loading of RNA polymerase
Il (RNAPII) at the promoter is indicative of earlier gene expression responses (Tullai et al.,
2007). Additional promoter features associated with early responding genes include TATA
motifs at the promoter, a greater number of TF binding motifs, and increased chromatin
accessibility (Murai et al., 2020; Tullai et al., 2007). Enhancers are also crucial for gene
expression timing. Inhibition or deletion of specific enhancers can prolong the time needed for a
gene to reach maximal expression without altering final expression levels (Juan and Ruddle,
2003; Simeonov et al., 2017). Stretches of potent enhancers, called super-enhancers, regulate
some immediate-early genes (Hah et al., 2015). In contrast, enhancers marked by repressive
chromatin marks, termed latent enhancers, exhibit slower activation and are associated with late-
responding genes (Ostuni et al., 2013). Overall, relatively little is known about which genomic
features in a gene’s cis-regulatory repertoire are important for influencing stimulus-dependent
temporal gene expression responses.

In addition to regulating gene expression timing and levels, CREs control the amount of
transcriptional noise. Transcriptional noise is a combination of intrinsic stochasticity and
extrinsic variability that cause transcript variation across a population of isogenic cells (Elowitz
et al., 2002; Fraser et al., 2021b; Kundaje et al., 2015). Cells must regulate transcriptional
variation, as both high and low variation have functional consequences. High variation can have
benefits, as cells may be more adaptable to changing environments (Pedraza et al., 2018;
Wollman, 2018) and more likely to undergo cell fate transitions (Desai et al., 2021; Suderman et
al., 2017). Noise may additionally confer the ability of a cell population to produce a diverse
output to a single incoming signal (Azpeitia et al., 2020). However, noise can be associated with
negative consequences, such as worse cancer outcomes (Han et al., 2016), cancer therapy
resistance (Qin et al., 2020; Shaffer et al., 2017), and the ability of cancer cells to metastasize
(Fidler, 1978; Nguyen et al., 2016). Both promoters and enhancers can regulate intrinsic noise
kinetics and sensitivity to extrinsic noise sources (Larsson et al., 2019). For example,
nucleosome positioning and histone modifications at the promoter are important noise regulators
(Choi and Kim, 2009; Dadiani et al., 2013; Fraser et al., 2021b; Nicolas et al., 2018; Wu et al.,
2017), with active histone marks at promoters often associated with low noise (Urban and
Johnston, 2018). Additionally, a greater number of transcription factors binding at a promoter
may be a basis for greater amounts of noise (Parab et al., 2022). The role of enhancers in
controlling mammalian expression noise is less clear. Thermodynamic modeling approaches
suggest that multiple enhancers should buffer noise (Hnisz et al., 2017), while experimental
evidence shows that super-enhancers are generally associated with noisier expression (Fraser et
al., 2021b; Wibisana et al., 2022). A remaining challenge is understanding the effects of multiple
enhancers in combination with a promoter on expression noise.

To investigate the regulatory control of timing and noise in depth, we focused on the
transcriptional response to estrogens. Estrogen Receptor @ (ER) is a nuclear hormone receptor
activated by estrogens, including endogenously produced 17p-estradiol (E2). In the presence of
E2, ER becomes an active TF and regulates the expression of hundreds of genes (Bjornstrom and
Sjoberg, 2005). ER is a clinically relevant TF, a potent oncogenic driver for endometrial and
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breast cancer (Rodriguez et al., 2019a; Stanford et al., 1986), and a well-studied model TF. Upon
activation, ER both upregulates and downregulates genes at different timescales (Frasor et al.,
2003; Liberzon et al., 2015). Following an estrogen induction, ER activates successive sets of
functionally unique genes, as seen in genes related to vascularization, signaling, proliferation,
and cell cycle (Jagannathan and Robinson-Rechavi, 2011; Schnoes et al., 2008). ER has also
been shown to regulate transcriptional noise. Live cell imaging of ER target genes GREB1
(Fritzsch et al., 2018) and TFF1 (Rodriguez et al., 2019b) show that ER impacts transcriptional
noise by modulating transcription kinetics. The temporal, heterogeneous complexity of the ER
transcriptional program makes it an ideal model system for studying how CRESs regulate
transcriptional timing and noise in response to an external stimulus.

To better understand the genomic underpinnings of transcriptional levels, timing, and
noise, we analyzed the transcriptional response to E2 using a time course of single cell RNA-seq
(scRNA-seq) in two cell types (human breast and endometrial cancer cells). Feature ranking
approaches, using genomic data, revealed important determinants that control these
transcriptional attributes. A strong enhancer repertoire was associated with earlier changes in
gene expression, which was confirmed using functional perturbation by dCas9-based synthetic
transcription factors. Promoter features also regulate timing, such as transcriptional repressor
SIN3A being found at the promoters of “Late” genes. We uncovered a balance between
enhancers and promoters in regulating expression noise, where strong enhancers drive higher
noise and strong promoters are associated with low expression variance. The role of enhancers in
timing and noise reveals a tradeoff between expression noise and the ability to respond quickly
to incoming signals.

Results
Machine lear ning approach accurately predicts genomic deter minants of expression levels

To uncover features of gene regulation that control expression levels, timing, and noise,
pooled scRNA-seq was conducted following 0-, 2-, 4-, and 8-hour E2 treatments in two cell
lines: Ishikawa (human endometrial adenocarcinoma) and T-47D (human breast carcinoma) (QC
metrics prior to filtering cells shown in Figure S1A and B). After filtering very low expressed
genes based on mean expression, we observed 12,756 and 11,395 genes across all time points in
Ishikawa and T-47D cells, respectively. We first set out to identify determinants of mean
expression levels by focusing on the 0-hour timepoint (no E2 treatment). Genome-wide data,
mostly on protein-DNA interactions, from publicly available sources (ENCODE, 2012; Shu et
al., 2016; Zhang et al., 2016) and experiments conducted for this study (Table S3) were
quantified at promoter and enhancer regions. Due to variations in enhancer number and strength
across genes, an aggregate enhancer score was used to capture the combined action of multiple
enhancers (see Methods) (Figure S1C). Genomic features were ranked by importance for
classifying low (bottom 20% of genes), medium (middle 60%), and high (top 20% of genes)
expression levels using the Boruta algorithm for feature selection (Kursa and Rudnicki, 2010a),
which has been previously used to uncover determinants of expression noise in drosophila
(Sigalova et al., 2020). For feature ranking, we grouped genes from both cell types to find mutual
predictors, with the expectation that there are common underlying mechanisms for transcription
control.
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Elements of the pre-initiation complex and H3K27ac at the promoter ranked as the most
important predictors for transcript levels (Figure 1A left). These features had stronger promoter
signals at higher expressed genes (Figure 1B-E), in agreement with previous literature (Schier
and Taatjes, 2020; Wang et al., 2008). Important factors at promoters and enhancers showed a
general trend of increased signal for highly expressed genes (Figure 1A, right). Our dataset is
strongly biased toward activating transcription factors and histone modifications found at active
regulatory regions. Plotting the average promoter intensity compared to the average enhancer
score across all confirmed datasets verifies that strong promoters and active enhancers are
associated with higher gene expression levels (Figure 1F). Overall, the Boruta approach was
successful at identifying known predictors of transcript levels.

Analysis of temporal trajectoriesindicates featuresthat control estrogen response timing

We next analyzed genomic predictors of response timing using the SSRNA-seq data
following 0-, 2-, 4- and 8-hours of estrogen treatment. Using dimensionality-reduction UMAP
plots, the temporal progression of the E2 response in single cells can be observed, although cells
are not fully separated by timepoint (Figure S1D and E). The clustering of cells suggest that the
transcriptional response does not follow a tight temporal pattern and that variation in the E2
response exists between cells. In addition, T-47D cells exhibit distinct clusters prior to E2
treatment that do not appear to be cell cycle related based on TOP2A expression (Figure S1F).
Based on a Wilcoxon rank-sum test (Bauer, 1972), there were between 491 and 1146
differentially expressed genes for each cell type between any E2 treatment timepoint and the O-
hour control (Figure S2A). scRNA-seq summed counts showed high concordance with
previously published bulk RNA-seq data in the same cell lines (Figure S2B and C) (Gertz et al.,
2013). Compared to bulk RNA-seq, there are more differentially expressed genes with high
expression (Figure S2B and C) and lower fold changes (Figure S2D and E), likely due to the
increased statistical power of sScRNA-seq for calling differential expression of highly expressed
genes. However, there was still high overlap between differentially expressed genes at the
matching 0-hour vs. 8-hour comparison. Of genes that occur in both single cell and bulk datasets
48.1% and 73.6% of 8-hour bulk RNA-seq genes overlap with 8-hour sScCRNA-seq genes (p
<2.2x10™°, odds ratio = 6.11; and p < 2.2x10™*®, odds ratio=12.61; fisher’s exact test in Ishikawa
and T-47D, respectively). In addition to the comparison with previously published bulk RNA-seq
from 0- and 8-hour E2 treatment, we performed bulk RNA-seq using the same time course as the
scRNA-seq experiment. We observed highly significant overlaps between expression trajectories
in both cell lines (Figure S2F). scRNA-seq can therefore be a valuable tool to capture subtle
changes in gene expression following E2 treatment.

Based on the timepoint at which a gene is differentially regulated, genes were classified
into temporal response trajectories for up- and down-regulated genes. One class of genes rapidly
changes expression in response to E2 (termed Early genes), while another class changes more
gradually and takes longer to reach a maximum response (termed Late genes). A representative
set of Control genes was also randomly selected using stratified sampling to mirror mean levels
found in differential genes. Early responding genes have a significant initial response to E2 by 2
hours, then return toward baseline for both up- and down-regulation, consistent with previous
reports of pulse-like expression in immediate-early genes (lyer et al., 1999) (Figure 2A and B).
In contrast, genes classified as Late show a slow and steady response over time (Figure 2A and
B). We found that both Early Up and Late Up genes were significantly enriched for the
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previously described hallmarks of estrogen response early and late (Figure S3A-D). As we have
reported previously (Gertz et al., 2012; Gertz et al., 2013), the transcriptional response to E2 is

highly cell type-specific. However, genes with Up trajectories are more conserved between cell
types than genes with Down trajectories (Figure S3E) (p-value=0.013; t-test).

The Boruta algorithm was used to identify predictors of temporal trajectories. SIN3A
signal at the promoter was most predictive of gene expression trajectory and is associated with
Late Up genes (Figure 2C and D). MAX, which is known to repress genes through recruitment of
SIN3A (Baudino and Cleveland, 2001), was also classified as important and enriched at
promoters of Late Up genes (Figure 2G). The number of ER binding sites (ERBS) that loop to
the promoter and the ER signal at enhancers were the next most important features (Figure 2C).
These two features are enriched in Early Up genes (Figure 2E and F). A higher number of total
enhancers is enriched for genes that respond Early (Figure S3F); however, specific proteins (e.g.,
FOXAL) (Figure 2H) are more balanced between Early Up and Early Down genes than other
factors (e.g., ER) that show preferential binding near Early Up genes. Together, these results
suggest that the number of enhancers plays a prominent role in the temporal response of genes,
but transcription factors at these sites, such as ER, help control the direction and timing of gene
expression changes. An example of an optimal decision tree was computed to examine a
potential hierarchy of factors determining a gene’s temporal response (Figure 21). This decision
tree shows how SIN3A is the primary separator of genes into the Late Up trajectory, which may
take precedence over ER signal. This analysis was run on the combined Ishikawa and T-47D
data. When we perform the same analysis separately on each cell line, we find that the
importance scores are highly correlated (r = 0.69; Figure S3G), indicating that shared
mechanisms control timing across cell types. When analyzing promoter and enhancer activity
separately, we found that promoter signal is highly correlated between cell types regardless of
whether or not a gene exhibited the same response to E2 (r = 0.74 vs. 0.7). However, enhancer
signal is less correlated between cell types and lower when a gene’s trajectory is not conserved
between cell types (r = 0.39 vs. 0.3), indicating that enhancer features play a larger role in cell
type-specific gene regulation by estrogen. Overall, Boruta analysis of temporal trajectories
uncovers unique factors that may regulate transcription response timing and shows the
association of multiple ER bound enhancers with a rapid up-regulation in response to E2.

One potential confounding factor of the trajectory analysis is the impact of mMRNA half-
life, since the scCRNA-seq measurements represent poly-adenylated mRNAs and not simply
nascent transcripts. To evaluate how mRNA turnover could play a role in trajectory, we
compared previously published mRNA half-life measurements (Agarwal and Kelley, 2022)
across E2 regulated genes (Figure S3H). We found that Early Down genes exhibited significantly
shorter mRNA half-lives than other genes (p < 2.2x10*®, Kolmogorov-Smirnov test; average of
0.55 standard deviations below control genes). This finding suggests that fast mRNA turnover is
important for quick down-regulation in response to estrogen treatment. To a lesser extent, we see
that Early Up genes are also characterized by shorter half-lives (p = 8.x10™2, Kolmogorov-
Smirnov test; average of 0.29 standard deviations below control genes). This feature may help to
explain the pattern of Early Up genes rapidly increasing by 2 hours, but leveling off during the
rest of the 8-hour E2 treatment.

Functional perturbation of CREs alterstemporal responses


https://doi.org/10.1101/2023.03.14.532457
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.14.532457; this version posted February 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

To test the functional relationship between CREs and transcriptional response timing,
dCas9-based activators and repressors were used to modulate the genomic activity of regulatory
regions in Ishikawa cells, as T-47D cells exhibit low transfection efficiencies. Gene expression
responses were then measured during a time course of E2 treatment using quantitative PCR. A
SID(4x)-dCas9-KRAB construct was used for repression (Carleton et al., 2017). This construct
can directly recruit SIN3A, a good predictor of Late gene expression responses. It also recruits
Histone deacetylases (HDACs) (Urrutia, 2003), corresponding to the low H3K27ac seen at Late
Up genes. For activation, dCas9-VP16(10x) was used. We have previously shown that dCas9-
VP16(10x) modulates expression from enhancers and induces acetylation at targeted regions
(Ginley-Hidinger et al., 2019). dCas9-VP16(10x) recruits many activating cofactors, including
members of the pre-initiation complex and p300, which are associated with Early genes.

TACSTD2 is an E2 regulated gene that is a prognostic indicator for endometrial cancer
disease-free survival (Bignotti et al., 2012), is overexpressed in some breast cancers (Shvartsur
and Bonavida, 2014), and exhibits an Early Up trajectory. Targeting the enhancers of TACSTD2,
marked by H3K27ac and ER binding (Figure 3A) with SID(4X)-dCas9-KRAB resulted in a
slower, more gradual response to E2. The time for expression to reach maximal observed levels
was increased when targeting 2 out of 3 individual enhancers (Figure 3B). When targeting
enhancer +4.7kb and enhancer -15.2kb, longer activation times were observed compared to non-
targeting controls based on time to half maximal expression (Figure 3D). Enhancer +4.7kb and
enhancer -15.2kb exhibited slower activation rates, but reached similar activation levels at 8
hours compared to controls, indicating that these enhancers can regulate the timing of a response
without affecting overall levels. Additionally, the slope of gene expression over time showed
generally slower initial activation when TACSTD2 regulatory regions were inhibited compared to
the control, followed by more similar rates at later timepoints (Figure 3F). Synthetic activation of
the same TACSTD2-linked CREs led to a more rapid response when targeting most individual
enhancers and the combination of all enhancers (Figure 3C), as evidenced by decreased time to
half maximal expression (Figure 3E). Again, we see that enhancer -15.2kb changes expression
timing without affecting overall transcript abundance. Analysis of the slopes revealed a generally
increased initial slope with respect to the control when TACSTD2 regulatory regions were
targeted (Figure 3G). These results imply that decreasing enhancer activity can reduce initial
activation rates, while activating enhancers can potentiate quicker responses to E2.

When targeting five putative enhancers as well as the promoter of TGFA, an Early Up
gene, with SID(4X)-dCas9-KRAB, we again observed a more gradual expression response to E2
(Figure S4A). The most substantial effects on time to half maximal expression were observed
when targeting enhancer -43kb, enhancer -62kb, or all enhancers simultaneously (Figure S4C).
On aggregate, inhibition of TGFA regulatory regions showed slower activation rates between
early timepoints, followed by increased rates from 6 to 8 hours relative to the control trajectory
(Figure S4E). These results are consistent with our TACSTD2 findings and indicate that
decreasing enhancer activity slows the transcriptional response. To speed up a Late gene, dCas9-
VP16(10x) was used to activate enhancers and the promoter of PEG10. We observed an overall
faster response when targeting these regulatory elements, although baseline levels were increased
in all cases, which resulted in more variability in the timing analysis (Figure S4B and D). On
aggregate, we see that activation of PEG10 enhancers led to earlier responses to E2, which later
converge with control rates (Figure S4F). Overall, at these three genes, the activity of enhancers
controls the E2 response trajectory.
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An enhancer -promoter dichotomy contr ols gene expression noise

Genes were separated into three levels of variation to find determinants of expression
noise at the 0-hour timepoint. In sScRNA-seq, low gene expression levels often have high noise
due to the dropout effects of capturing RNAs from the limited amount of RNA in a single cell
and technical variation in SCRNA-seq is related to mean levels (Brennecke et al., 2013). To
examine mean-independent noise, we used an adjusted coefficient of variation (CV), which is
calculated as the residuals of a generalized additive model (GAM) where CV is fit to the mean
(Figure S5A, see Methods). To remove any leftover mean effects, genes were labeled as high or
low noise based on whether they were in the top 20% or bottom 20% of adjusted CV for ten
different mean bins from the 0-hour timepoint of both cell types (Figure S5B).

The strongest predictors of noise levels were SIN3A and JUN at the promoter, both
associated with low noise (Figure 4A, B, and D). Generally, a strong promoter signal was related
to low noise across features, with some exceptions, such as p300 (Figure 4A, right panel). Most
enhancer features were associated with high noise, with ER and FOXA1 at enhancers being the
most predictive (Figure 4A). Another feature scored as highly important was tri-methylation at
histone H3 lysine 4 (H3K4me3), which is strongly associated with low amounts of noise (Figure
4C), supporting a previously reported correlation between H3K4me3 breadth and transcriptional
consistency (Benayoun et al., 2014). The above analysis was performed on the combined
Ishikawa and T-47D data; however, the importance scores of features when run separately on the
cell types were correlated (r = 0.58; Figure S5C), indicating that common features control
transcriptional noise.

These results motivated the broader evaluation of how noise relates to promoter and
enhancer activity. Analysis of the average promoter intensity across all confirmed datasets and
the average enhancer score revealed an inverse relationship between promoters and enhancers
(Figures 4E and S6A). Genes with high noise levels had high enhancer scores and low promoter
signals. Conversely, genes with low noise levels had low enhancer scores and high promoter
signals. To confirm this relationship in a third cell type, we analyzed publicly available sScCRNA-
seq and genomic data from LNCaP cells, a prostate cancer cell line. The same association was
observed between enhancer-driven gene regulation and higher noise (Figure S5D). Consistent
with these findings, more enhancers connected to a gene associates with greater noise (Figure 4F
and G). These results indicate that enhancer-driven transcription regulation is less consistent
across individual cells than promoter-driven transcription regulation.

Shared featur es of expression levels, timing, and noise

Expression levels, noise, and timing analysis uncovered different importance rankings for
genomic features. Importance scores fell roughly into five common patterns across our three
analysis types (Figure 5A). The largest three patterns consisted of features whose importance
scores were highly enriched for a single analysis. Two smaller patterns were composed of
features important for both mean and noise or both trajectory and noise. In general, the
importance scores from the Boruta algorithm are more similar between noise and mean or noise
and trajectory compared to mean and trajectory, as seen from the first two PCA dimensions
calculated from the feature importance matrix (Figure 5B) and the correlation between
importance scores (Figure S6D-F). The relationship between noise and our other analyses
suggests that noise may be an intermediary between baseline levels and temporal regulation and
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that mean levels do not strongly influence response trajectory. Generally, we see that most
features specifically associated with mean levels are found at promoters, while noise and
trajectory utilize promoter and enhancer features more evenly (Figure 5A). Enhancer features
important for predicting mean levels are also likely to predict noise. Together, these results
indicate that enhancers are more critical for noise and trajectory and that many genomic signals
preferentially predict either levels, noise, or trajectory.

Since Boruta importance scores do not capture directionality, we examined the group
with the maximum signal for each feature (Figure S6C). Promoter features are generally
associated with high mean levels and low noise. Enhancer features are also associated with
increased mean levels, but contrary to promoters, they show an association with high noise
levels. Enhancer scores are almost always the highest for Early Up trajectories. As high enhancer
scores are associated with Early Up trajectories and high noise, we performed a gene level
comparison of noise at the 0-hour timepoint and trajectory classification. We found that genes
that respond quickly to E2 treatment are more likely to exhibit high noise at the 0-hour timepoint
(Figure 5C). Our results suggest that active enhancers drive high noise and rapid up-regulation in
response to E2, while promoters consistently drive low noise and high mean expression.

Co-expression of genesisassociated with looping, timing, and noise levels

scRNA-seq offers a unique advantage in studying the co-regulation of genes on a cell-by-
cell basis and the possible mechanisms that underlie co-regulation. Using the H3K27ac HiChIP
data, we found that looping can affect co-expression in several ways. First, we found that genes
whose promoters loop together correlate significantly more than groups of randomly paired
control genes at the 0-hour timepoint (Figure 6A and B). Genes whose promoters both loop to a
shared enhancer are significantly more correlated across single cells (Figure 6C and D). These
results indicate that the 3D genome structure may be involved or associated with gene co-
expression across single cells.

We next evaluated co-expression during the E2 treatment time course. Co-expression was
measured using pairwise Spearman correlation in single cells. In Ishikawa cells, both Early Up
and Early Down genes show increasing pairwise co-expression over time (Figure 6E). Genes that
respond late exhibited less change in correlation, with Late Up genes increasing correlation
slightly by 8 hours and Late Down genes slightly decreasing in correlation. In T-47D cells, we
see the most significant increase in co-correlation at 2 hours for Early Up and Early Down genes
(Figure 6F). Late Up and Late Down genes show slight increases in correlation during the time
course.

The levels of noise also change the probability of two genes being correlated. Perhaps
expected, genes with high noise levels also show a broader distribution in their pairwise
correlations, resulting in genes with high noise being more likely to have extremely correlated or
anti-correlated expression with each other than low noise genes (Figure 6G and H). These results
indicate that 3D interactions, control of temporal trajectory, and noise regulation can impact gene
co-regulation.

Discussion
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To investigate the genomic underpinnings of the temporal transcriptional response to
estrogen, we conducted scRNA-seq at several timepoints in two human cell lines. ScRNA-seq
was able to capture more subtle changes in gene expression of highly expressed genes compared
to bulk RNA-seq due to the increased statistical power. Using a feature ranking approach, we
identified several features associated with E2 response timing, including more ER bound
enhancers regulating “Early Up” genes and SIN3A signal at the promoter of “Late Up” genes. In
general, multiple enhancers are more predictive of “Early” gene trajectories. Functional
evaluation of enhancers revealed that multiple enhancers regulate timing at each gene tested as
activation and repression of several enhancers causes changes in a gene’s temporal response to
estrogen. From these studies, we conclude that an active enhancer repertoire is important for
rapid gene responses to estrogen. Active enhancers may present chromatin that is more open to
ER binding. Alternatively, other TFs already present at enhancers could stabilize the binding of
ER, permitting ER to activate gene expression immediately. Contrastingly, SIN3A and MAX at
the promoter, known to repress gene expression together (Baudino and Cleveland, 2001), slow a
gene’s response to E2, even when a gene is associated with strong ER bound enhancers.
Activation of gene expression may first require removing repressive signals at the promoter,
explaining the more gradual responses. A similar mechanism has been described in an enhancer
context, where inactive enhancers must first be activated by transcription factors before
activation of gene expression can occur, causing more gradual gene expression changes (Ostuni
et al., 2013). While transcriptional responses to estrogen (Gertz et al., 2012) as well as
underlying gene regulatory events (Gertz et al., 2013) are highly cell type-specific, we found that
the genomic features associated with the transcriptional response are shared between cell types,
indicating that common mechanisms drive how genes respond to estrogen stimulation.

It is important to note that we analyzed total poly-adenylated RNA in this study. Since
MRNA degradation can happen on different time scales across genes (Tani et al., 2012), some
genes may be misclassified in their transcriptional response to estrogen. In fact, we found that
Early Down genes had shorter mRNA half-lives in previously published datasets. This
observation is consistent with quickly down-regulated genes requiring fast mRNA turnover to be
observed from poly-adenylated RNA, since overall transcript levels would need to be
significantly reduced in a short time period. The confounding effect of mRNA stability on down-
regulated genes may partially explain why we did not find features that consistently associate
with Early/Late Down genes. The lack of strong association between the genomic features we
studied and down-regulated genes could also be related to a focus on features related to gene
activation and a stronger connection between ER and gene activation as opposed to repression
(Carleton et al., 2017).

One unexpected and exciting finding from our analysis is that enhancer and promoter
activities relate to expression noise in opposing manners. Active promoters are associated with
low noise levels, whereas multiple active enhancers are associated with high noise levels. In
concordance with this observation, synthetic activation of promoters drives lower noise levels at
several genes (Fraser et al., 2021a). Additionally, activation of multiple enhancers causes high
noise at the NF-xB locus (Wibisana et al., 2022). Our results support a unified model where a
balance between enhancers and promoters controls noise. Both intrinsic and extrinsic noise could
potentially explain the observed noise distributions (Ham et al., 2021). If intrinsic noise is the
driving factor, we expect promoters to cause high-frequency, near-constant transcription levels
and enhancers to cause infrequent, high-amplitude bursts of expression (Raj and Van
Oudenaarden, 2008). Noise caused by CREs could also be due to extrinsic noise. Promoters may
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lead to low noise, as fluctuations in upstream factors may be insignificant compared to activation
by an ensemble of transcription factors bound to the promoter. In contrast, enhancers may drive
higher noise levels by increasing sensitivity to upstream factors, which is consistent with our
observation that enhancers drive rapid temporal responses to estrogen.

For a gene to respond quickly to a signal, it must be sensitized to incoming signals, which
may inherently drive higher levels of noise. A noise-robustness tradeoff has been proposed
previously when observing changes in gene expression over developmental time in drosophila
(Sigalova et al., 2020) and in a mathematical framework that showed variation is necessary for a
gene’s responsiveness (Boe et al., 2022). However, a regulatory mechanism has not been found.
Our results point to multiple enhancers being a primary genomic feature associated with both
high expression noise and rapid response timing. Additionally, we found that a strong promoter
is likely to cause more robust gene expression but limited responsiveness. While we identified
these patterns across the full data set, a small set of individual genes can respond quickly to a
signal without high cell-cell variation (Figure 5C) and the question remains as to how these
genes maintain low noise and fast response times. We also found that genes that are quickly
down-regulated by estrogen are more likely to exhibit high noise than genes that are quickly up-
regulated by estrogen. This pattern could be due to genes that are primarily enhancer driven
having higher noise and being more susceptible to down regulation, potentially through enhancer
rewiring because of ER activity and competition for factors that are critical for enhancer activity.
Shorter mMRNA half-lives could also contribute to higher noise of Early Down genes.

Co-expression analysis of gene pairs showed that co-expression properties depend on
looping, timing, and noise. We found that genes with shared enhancers and looped promoters
correlate more in individual cells, genes with different trajectories correlate differently over time,
and genes with high noise levels are more likely to be strongly correlated or anticorrelated.
While co-expression correlation effects are modest overall and it is unclear what levels of co-
expression are biologically meaningful, these observations could have implications for gene
regulatory networks (GRNS) in single cells, as co-expression often underlies regulatory
networks. Dynamic adjustment of regulatory networks may have critical functional outcomes for
a cell population (Borriello et al., 2020). For example, GRNs that confer resistance to
therapeutics may occur at distinct timepoints following treatment (Zhang et al., 2019). Our
results indicate that genes with high noise may lead to a broader range of implemented
regulatory networks across single cells, enhancing cellular heterogeneity. Further studies into
functional GRNs are warranted to determine how noise and timing affect single cell phenotypes
through the co-expression of many genes. Overall, our study shows that enhancers and promoters
can play distinct roles in the timing and variation of a transcriptional response.

M ethods

Cell culture

T-47D and Ishikawa cells were cultured in RPMI 1640 medium (Gibco) with 10% fetal
bovine serum (Gibco) and 1% penicillin—streptomycin (Gibco). LNCaP cells were cultured in
RPMI media with 10% FBS supplemented. Cells were incubated at 37°C with 5% CO,. 5 days
before estrogen inductions, cells were transferred to hormone-depleted media consisting of
phenol red-free RPMI (Gibco) with 10% charcoal-dextran stripped fetal bovine serum (Sigma-
Aldrich) and 1% penicillin—-streptomycin (Gibco).
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ChiP-seq

After 5 days in hormone-depleted media, cells were plated in 15cm dishes at
approximately 60% confluency 1 day before estrogen induction. Cells were treated with vehicle
(DMSO) or E2 at a final concentration of 10nM for either 1 hour for transcription factor ChiP-
seqs, or 8 hours for histone marker ChiP-seqs. ChlIP and library preparation was performed as
previously described (Reddy et al., 2009). Antibodies used for this study were MAX (Sant Cruz
sc-8011), LSD1 (abcam ab 17721), TAF1 (sc-735), c-MYC (Santa Cruz sc-40), H3K4me3 (Cell
Signaling 9751S), H3K4mel (Cell Signaling 5326S), SIN3A (produced as previously described)
(Hassig et al., 1997), RARA (Santa Cruz sc-515796) and JUN (BD Biosciences 558036).
Libraries were sequenced using either an Illumina HiSeq 2500 or Illumina NovaSeq 6000 as
single- or paired-end 50 bp reads, then aligned to hgl19 using bowtie with parameters -m 1 —t —
best -q -S -1 32 -e 80 -n 2 (Langmead et al., 2009). Signal intensity was extracted from bam files
using samtools view with parameter -c (Li et al., 2009). In the cases where peaks were called,
peak calling was done using Macs2 with the default g-value cutoff of 0.05 and mfold ratio
between 15 and 100 (Zhang et al., 2008).

H3K27ac HiChlP

HiChIP experiments were performed as previously described (Mumbach et al., 2016)
using an antibody that recognizes H3K27ac (Abcam, ab4729). Ishikawa cells were treated with
either 10 nM E2 for 1 hour or DMSO as a vehicle control. HiChIP in Ishikawa cells was
conducted using restriction enzyme Dpnll (New England Biolabs). Crosslinked chromatin was
sonicated using an EpiShear probe-in sonicator (Active Motif) with three cycles of 30 seconds at
an amplitude of 40% with 30 seconds rest between cycles. HiChlIP libraries were sequenced on
NovaSeq 6000 as paired end 50 base pair reads to an average depth of 300—400 million read-
pairs per sample.

Experiments in T-47D and LNCaP cells were conducted using restriction enzyme Mbol
(New England Biolabs). Crosslinked chromatin was sonicated using Covaris E220 with the
settings of fill level=10, duty cycle=5, PIP=140, cycles per burst=200, time=4 mins. HiChIP
libraries were sequenced on HiSeq 2500 as paired end 75 base pair reads to ~50 million read
pairs per sample.

Reads were aligned to human hg19 reference genome using HiC-Pro (Servant et al.,
2015). Hichipper (Lareau and Aryee, 2018) was used to perform restriction site bias-aware
modeling of the output from HiC-Pro and to call interaction loops. In Ishikawa cells, DMSO and
E2 treated HiChIP loops were combined to identify all possible putative enhancers. In all
datasets, loops with less than 3 reads or FDR >= .05 were filtered out.

PRO-seq

PRO-seq libraries were generated as described in Mahat et al., 2016 (Mahat et al., 2016).
Briefly, Ishikawa and T-47D cells were grown in hormone-depleted RPMI for five days, then
2x10° cells were plated into two 10 cm dishes per condition with RPMI lacking phenol red
supplemented with 10% charcoal/dextran-stripped FBS and penicillin. Cells were treated with
vehicle (DMSO) or 10 nM E2 for 45 minutes, then permeabilized for five minutes with
permeabilization buffer [10 mM Tris-HCI, pH 7.4; 300 mM sucrose; 10 mM KCI; 5 mM MgCI2;
1 mM EGTA,; 0.05% Tween-20; 0.1% NP40 substitute; 0.5 mM DTT, protease inhibitor cocktail
ml(Roche); and SUPERaseln RNase Inhibitor (Ambion)]. The nuclear run-on was performed by
adding permeabilized cells to run-on mixture [final composition was 5 mM Tris, pH 8.0; 25 mM
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MgCI2; 0.5 mM DTT; 150 mM KCI; 200 uM rATP; 200 uM rGTP; 20 uM biotin-11-rCTP
(Perkins Elmer); 20 uM biotin-11-rUTP (Perkins Elmer); 1 U/uL SUPERase In RNase Inhibitor
(Ambion); 0.5% Sarkosyl], then incubating at 37°C for 5 minutes. RNA was extracted with
Trizol LS (Ambion), fragmented with 0.2 N NaOH for 8 minutes on ice, then neutralized with
0.5 M Tris, pH 6.8, followed by buffer exchange with a P-30 column (Bio-Rad). Biotinylated
RNAs were enriched with Dynabeads M280 Streptavidin (Invitrogen), then RNA was extracted
with Trizol (Ambion), followed by 3" adapter ligation using T4 RNA ligase (NEB). Biotinylated
RNAs were enriched for a second time, followed by 5' cap repair with RppH (NEB) and 5’
hydroxyl repair with PNK (NEB). The 5’ adapter was ligated with T4 RNA ligase (NEB),
followed by a third biotinylated RNA enrichment. Reverse transcription was performed with the
RP1 primer. Samples were PCR amplified for 13 cycles, then cleaned up with Agencourt
AMPure XP beads (Beckman Coulter). Libraries were sequenced on an Illumina HiSeq 2500,
generating a 50nt read. Reads were processed using cutadapt (Martin, 2011) with parameters -a
TGGAATTCTCGGGTGCCAAGG --cut 7 --length 42 -m 21. Reverse complement sequences
were generated using fastx_reverse_complement from the FASTX toolkit (v 0.0.13) (Hannon,
2010). Reads were then aligned to hg19 with bowtie2 (Langmead and Salzberg, 2012) in end-to-
end mode, and non-uniquely aligned reads were discarded.

scRNA-seq

Cells were treated with 10nM E2 for 0 (vehicle treated), 2, 4, and 8 hours. To mitigate
technical batch effects, cells were labeled via MULTI-seq as previously described (McGinnis et
al., 2019). Cells from different timepoints were mixed and then prepared according to the 10x
Genomics sample prep user guide (2017). Cells were separated into single cell emulsions using
the 10x Genomics Chromium Controller with a targeted recovery of 10,000 cells. Sequencing
libraries were prepared using the 10X Genomics Next GEM Single Cell 3' Gene Expression
Library prep v3.1. Sequencing was performed on an Illumina NovaSeq 6000 with 150bp read
length. Sequencing output was processed from reads to counts using the 10x Genomics Cell
Ranger v3.1.0 pipeline. MULTI-seq calls were processed using the demultiplex R package
(McGinnis et al., 2019) and mapped back to the E2 timepoints. Counts were log normalized
using the Seurat v3 R package (Stuart et al., 2019), then filtered using custom cutoffs. For
Ishikawa cells, cell filtering criteria were unique reads between 8500 and 35,000, unique genes
between 2700 and 6000, and percent mitochondrial reads less than 7%. For T-47D cells, cell
filtering criteria were unique reads between 7500 and 40,000, unique genes between 1500 and
6000, and percent mitochondrial reads less than 20%. Genes are filtered to have a mean greater
than 0.01 across all timepoints.

scRNA-seq analysis: classification of trajectory and noise levels

Computational analysis of trajectory and noise levels were conducted using R (Team,
2013). Trajectory classification was done using a Wilcoxon test (Bauer, 1972) to find genes
whose single cell distributions significantly change at different timepoints compared to the Ohr
timepoint. Genes that change significantly by 2 hours are classified as either “Early Up” or
“Early Down”. Genes with changes seen at 4 or 8 hours are classified as “Late”. It is important to
note that genes were called differential without a fold change cutoff. The statistical power of
SCRNA-seq allowed for the identification of differentially expressed genes with smaller fold
changes, but appreciable absolute changes; however, due to technical limitations of SSRNA-seq
our results may be affected by technical variation or drop out of lower expressed genes. To select
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control genes with similar mean distributions to those genes that are regulated by E2, we used a
stratified sampling approach to select control genes that are not significantly regulated. Genes
classified into Early and Late Up categories were analyzed by EnrichR (Xie et al., 2021) using
the MSigDB Hallmark 2020 gene annotations.

Our noise metric is defined as the residuals from a generalized additive model (GAM)
regression fitted to the CV vs mean for all genes. Regression was performed on log2(CV + 1) vs
mean curve using the gam function from the mgcv R package with formulay ~ s(x, bs = "cs")
(Wood, 2006). Residuals were then transformed back to the original scale. Noise levels were
determined using the GAM-adjusted CV. We chose the GAM method as it removed most of the
mean-noise relationship (Figure S6B), as desired, compared to SCTransform standardized
variance and residual variance as shown in Figure S5E and F. Overall, we found that genes were
binned as High noise more consistently across the three methods (average fraction overlap of
0.82) than Medium (0.67) or Low noise (0.58); however, less than 1% of genes were classified as
High noise by one method and Low noise by another. For this comparison of noise metrics, we
used the HVFInfo function with selection.method as “vst” or *“sctransform” in Seurat (Satija et
al., 2015). To account for the different ranges in noise at different mean levels, genes were
binned by mean and then into 3 groups of noise levels by quantile. The top 20% and bottom 20%
of genes in each quantile were labeled as “High” and “Low” noise, respectively.

Featureimportance analysis

Promoters were defined as 500bp regions centered on the transcriptional start site, as
annotated in the RefSeq database (Pruitt et al., 2013). Enhancers were called using H3K27ac
HiChIP data and H3K27ac ChlIP-seq peaks. Enhancers were defined as H3K27ac peaks within
HiChIP anchors that loop to the promoter. Integrated signal for each promoter and enhancer was
collected from all datasets using samtools view -c (Li et al., 2009). Z-scores were calculated
across all genes for input to feature ranking algorithms. An enhancer score was calculated to
account for signal at multiple enhancers, using the formula

z": log,(s +1)

1
where n represents the number of enhancers associated with a gene and s represents the Z-score
of integrated genomic signal at each enhancer.

Number of enhancers was defined as the number of H3K27ac peaks that loop to the
promoter, as determined by HiChIP. Number of ERBS was calculated as the number of
enhancers that overlapped with ER ChIP-seq peaks. Feature ranking was performed using the
Boruta package in R (Kursa and Rudnicki, 2010b) with default parameters and 100 maximum
iterations. Gene length was calculated from RefSeq transcript annotations (Pruitt et al., 2013).
An example decision tree was determined using the rpart function with parameters
minbucket=50 and cp=0.007 (Breiman et al., 2017). Average enhancer score and promoter signal
was calculated using “confirmed” variables from Boruta analysis. The average of Z-score signal
for confirmed variables was taken for all variables associated with either the promoter or
enhancer, not including number of enhancers, number of ERBS, or gene length.

Generation of stable dCas9-VP16(10x) cell lines

Ishikawa cells were plated in 6-well plates at 60% confluency. Cells were transfected
with Addgene plasmid 48227 (a gift from Rudolf Jaenisch) (Cheng et al., 2013) containing
dCas9-VP16(10x) with a P2A linker and neomycin resistance gene. Fugene HD (Promega) was
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used for transfection at a 3:1 reagent:DNA ratio. dCas9-VP16(10x) plasmid was linearized with
restriction enzyme Aflll (New England Biolabs R0520S). Successful integration of the dCas9-
VP16(10x) plasmid was selected for using G418 (Thermo Scientific) at a concentration of 800
ug/mL for approximately 2 weeks. Successful expression of the dCas9 plasmid was verified
using gPCR for dCas9 as well as gPCR for successful activation of a control gene, IL1IRN
(Figure S4G). Cells were then maintained at a lower concentration of 400 pg/ml G418.

gRNA design and transfection

gRNAs were designed using the Benchling gRNA design tool (Benchling, 2020). 4
gRNAs were designed per targeted region. gRNAs were cloned into plasmids as previously
described (Carleton et al., 2017). gRNA sequence and adjacent PAM are listed in Table S1. Prior
to transfection, Ishikawa cells were plated in 48-well plates at 80,000 cells/well. 24 hours after
plating, gRNAs were transfected into cell using Fugene HD (Promega) at a manufacturer
suggested 3:1 reagent:DNA ratio. gRNA transfection was selected for using 1 pg/mL puromycin.
8-hour E2 time courses were started roughly 24 hours after addition of puromycin.

RNA isolation and gPCR gene expression analysis

Cells were lysed with Buffer RLT Plus (Qiagen) containing 1% beta-mercaptoethanol
(Sigma). RNA was purified using the ZR-96-well Quick-RNA kit (Zymo Research). Gene
expression was measured using gPCR with reagents from the Power SYBR Green RNA-to-Ct 1-
step kit (Applied Biosystems), 50ng RNA per reaction, and 40 cycles on a CFX Connect light
cycler (BioRad). gPCR primers are listed in Table S2. Relative expression was calculated using
the AACt method with CTCF as a reference gene and cells where the same dCas9 fusion is
targeted to the IL1RN promoter as the controls. Best fit lines were determined using the loess
function in R (Cleveland et al., 2017) and formula y ~ x. Half maximal values were calculated
using the maximum at any timepoint. The first time point at which the loess regression reaches a
half maximal value is recorded as the time to half maximal. Differentials of the loess regression
were also calculated using R to examine how the slope of each trajectory changes over time.
Slope analysis was binned into “targeted” and “control” groups to analyze the general effect of
dCas9 manipulation at regulatory regions of the respective gene.

Bulk RNA-seq experiments and analysis

Cells were treated with 10nM E2 for 0 (vehicle treated), 2, 4, and 8 hours. Following
treatments, cells were lysed with buffer RLT Plus (Qiagen) containing 1% beta-mercaptoethanol
(Sigma-Aldrich). RNA was extracted and purified using a Quick RNA Mini Prep kit (Zymo
Research). NEBNext Ultra 1l Directional RNA Library Prep kit with poly(A) mRNA isolation
was used to construct RNA-seq libraries according to the manufacturer's instructions (NEB).
Sequencing reads were aligned to hgl19 build of the human genome using HISAT2 (Kim et al.,
2019). SAMtools (Li et al., 2009) was used to convert SAM files to BAM files. Genes were
defined by the University of California Santa Cruz (UCSC) Known Genes (Kent et al., 2002) and
reads that mapped to known genes were assigned with featureCounts (Liao et al., 2014). Read
counts were normalized and analyzed for differential expression via DESeq2 (Love et al., 2014).
Genes that were differentially expressed between the 0-hour and 2-hour timepoints were defined
as Early, while all other differentially expressed genes were defined as Late.

Co-expression analysis
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Spearman correlation values were calculated using the cor function in R. Pairs were
defined either by looping data, or for a set of genes, as all possible combinations of genes in a
list. Control pairings for genes that were looped together were generated by randomly shuffling
the pairings. Control genes in the time course correlation analysis refer to the pairs within the set
of timing control genes (defined above) where stratified sampling was used to replicate the same
mean distribution as regulated genes.
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Figure Legends

Figure 1. Several genomic featur es associate with gene expression levels. (A, left) Boruta
feature ranking of genomic features shows importance of a feature for predicting mean levels.
(A, right) Average signal intensity for each genomic dataset, grouped by mean expression levels,
is shown. Datasets shown in bold were performed in the absence of ER activation. (B-E)
Distributions of the top 4 most important ranked features in the absence of ER activation,
separated by mean expression levels, show higher signal for “High” expression groups. X-axis
represents Z-scores and error bars show the mean + 95% confidence intervals. (F) Mean
enhancer score signal for all Boruta confirmed features vs. mean promoter signal across all
confirmed features is shown where error bars show the mean + 95% confidence intervals. Axes
do not represent the full range.

Figure 2. SIN3A and multiple ER bound sites are the strongest predictor s of
transcriptional response timing. (A-B) Z-scores for each gene across 4 timepoints are shown
within different gene expression trajectories in (A) Ishikawa and (B) T-47D cells. (C, left) Based
on Boruta ranking, the top 25 most important features are shown for classifying gene trajectories.
(C, right) Heatmap displays the average signal by trajectory for each predictor. Datasets shown
in bold were performed in the absence of ER activation. (D-H) Distribution of signal (Z-score) of
the most important features for predicting temporal trajectories is shown. (1) Decision tree shows
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the hierarchy of classification for predicting gene expression trajectories. The top 4 layers are
shown.

Figure 3. Functional manipulation of enhancer activity alters TACSTD2 E2 response
timing. (A) ChiP-seq, ATAC-seq, and HiChIP genome browser tracks in Ishikawa cells show
targeted regulatory regions surrounding TACSTD2. (B-C) Expression trajectory of TACSTD2 is
displayed after E2 induction in Ishikawa cells following SID(4x)-dCas9-KRAB inhibition (B) or
dCas9-VP16(10x) activation (C) targeted to regulatory regions. Error bars represent SEM (n=2)
and expression is relative to the 0-hour timepoint in the control, which is from cells with IL1RN
promoter targeting. Dotted lines show the time at half maximum for a given trajectory. (D-E) Bar
plot shows time to half maximal expression for each targeted regulatory region. Error bars
represent SEM and p-values (one-sided t-test) are reported above each bar. (F-G) Aggregate
differential of loess regressions from B and C for all regulatory regions targeted (grey) by
SID(4x)-dCas9-KRAB (F) or dCas9-VP16(10x) (G) compared to control (black). Shaded region
represents 95% confidence interval.

Figure 4. Features associated with noise levelsindicate a balance between active promoters
and active enhancers. (A, left) Boruta feature rankings shows features predictive of noise levels
at the 0-hour timepoint. (A, right) Average signal intensity is shown by noise group for top
ranked features. Datasets shown in bold were performed in the absence of ER activation. (B-D)
Distribution of signal for top ranked noise-predicting features in the absence of ER activation are
shown with Z-scores on the x-axis. (E) Mean enhancer signal score for all Boruta confirmed
features vs. mean promoter signal across all confirmed features for each noise level exhibits an
inverse relationship. Error bars show 95% confidence intervals and axes do not represent the full
range; full distribution shown in Figure S6A. (F-G) Distribution of enhancer counts per gene,
separated by noise level, are shown for (F) Ishikawa and (G) T-47D cells.

Figure 5. Importance comparison shows that mean and trajectory areregulated by distinct
genomic features. (A) Heatmap shows importance scores from each analysis type, normalized
by column, and scaled by row. Datasets shown in bold were performed in the absence of ER
activation. (B) PCA plot based on importance scores shows the relationship of importance scores
for mean levels, noise, and trajectory. Percentages denote percent of variance explained by each
principal component. (C) Bar plot shows the percentage of genes for each trajectory that are
classified into each noise classification. Numbers on bars refer to counts of genes.

Figure 6. Co-expression levelstrack with looping, trajectory, and levels of noise. (A-B) Pairs
of genes with promoters that loop to one another are significantly more correlated across cells at
the 0-hour timepoint than randomly selected gene pairs for Ishikawa (A) and T-47D (B). (C-D)
Pairs of genes with a shared enhancer are more correlated than randomly paired genes for
Ishikawa (C) and T-47D (D). (E-F) Distribution of pairwise Spearman correlation for genes
within different trajectories is shown for Ishikawa (E) and T-47D (F). (G-H) Range of pairwise
correlations for high noise levels is greater than the range for pairs of low noise genes in
Ishikawa (G) and T-47D (H). (left panel) Distribution of Spearman pairwise correlations for
genes with high and low noise. (right panel) Spearman correlations were grouped into quantiles
and bars show proportion at each quantile that are pairs of low or high noise genes. Significance
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values for all subpanels are as follows (based on Bonferroni corrected Wilcoxon tests): (* p <
0.05; ** p < 1x10-5; *** p < 1x10-10; **** p < 1x10-15).
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