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Abstract

Spatially resolved transcriptomics (SRT) enable the comprehensive characterization of transcriptomic
profiles in the context of tissue microenvironments. Unveiling spatial transcriptional heterogeneity
needs to effectively incorporate spatial information accounting for the substantial spatial correlation of
expression measurements. Here, we develop a computational method, SpaSRL (spatially aware self-
representation learning), which flexibly enhances and decodes spatial transcriptional signals to
simultaneously achieve spatial domain detection and spatial functional genes identification. This novel
tunable spatially aware strategy of SpaSRL not only balances spatial and transcriptional coherence for
the two tasks, but also can transfer spatial correlation constraint between them based on a unified model.
Additionally, this joint analysis by SpaSRL deciphers accurate and fine-grained tissue structures and
ensures the effective extraction of biologically informative genes underlying spatial architecture. We
verified the superiority of SpaSRL on spatial domain detection, spatial functional genes identification
and data denoising using multiple SRT datasets obtained by different platforms and tissue sections. Our
results illustrate SpaSRL’s utility in flexible integration of spatial information and novel discovery of

biological insights from spatial transcriptomic datasets.
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Introduction

Recent advances in spatially resolved transcriptomics (SRT) have enabled high-throughput
sequencing of mRNA coupled with spatial information in multicellular organisms, which can resolve
cellular localizations to unveil the organizational landscape of complex tissues [1]. The SRT
sequencing-based techniques, such as Spatial Transcriptomics (ST) [2], 10x Visium, Slide-seqV2 [3],
can measure the expression level of tens of thousands of genes in thousands of tissue locations (or spots),
which enables the comprehensive study of spatial transcriptional landscape from tissue architecture
heterogeneity and the corresponding functional genes. However, SRT measurements are often sparse
and noisy due to various technical limitations, e.g., transcript capture rate or spatial resolution, which
pose great challenges to decipher the spatially functional regions and genes [4]. Apart from dimension
reduction, an effective usage of the locational information contained in SRT data can also mitigate data
noise or bias, improving the pattern recognition in SRT studies, since neighboring locations on tissue
often share cell microenvironments and display similar gene expression levels in spatial transcriptomics
[5].

To resolve tissue structure, spatial domain detection is an important research topic, which aims to
cluster spots with similar gene expression and spatial continuity within each cluster (or spatial domain).
For this purpose, several currently presented spatial clustering approaches, e.g., BayesSpace [6], Hidden
Markov Random Field (HMRF) [7], SEDR [8], STAGATE [9] and SpaGCN [10], additionally constrain
the models with spatial information to facilitate the identification of spatial domains with spatial
smoothness. Their outcomes display more spatially continuity than those from clustering methods
previously developed for single-cell RNA-sequencing (scRNA-seq) studies that only utilize expression
measurements, e.g., Seurat [11], SCANPY [12]. However, these methods often take spatial neighbor
prior as a hard constraint to ensure spatial continuity in spatial domains, but seldom provide a flexible
solution to balance spatial coherence and expression variability within neighborhoods.

In addition, most existing methods substantially perform dimension reduction before clustering
spots and the common approach is principal component analysis (PCA) that is adopted to preprocess
SRT data by e.g., Seurat, SCANPY, BayesSpace, SEDR and SpaGCN. PCA or other linear dimension
reduction techniques can not only mitigate data noise but also extract the potential functional genes from
co-expression or functional association perspective [13]. But this kind of usage of dimension reduction
for SRT studies does not ensure the inferred components (or meta genes) relevant to the spatial map on
tissue, thus may reducing their effectiveness or biological interpretations. Whereas, some recent works
have made efforts to deal with this issue. For example, SpatialPCA [5] incorporates spatial information
to improve locational neighborhood similarity in the constructed PC space. DR-SC [14] performs
simultaneous clustering and dimension reduction for better biological associations between the detected
clusters and (meta) genes. However, it is still challenging to unify the characterization of locational and

gene patterns accounting for spatial coherence and biological interpretations in SRT studies.
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To this end, we present spatially aware self-representation learning (SpaSRL), a novel method that
achieves spatial domain detection and dimension reduction in a unified framework while flexibly
incorporating spatial information. Specifically, SpaSRL enhances and decodes the shared expression
between spots for simultaneously optimizing the low-dimensional spatial components (i.e., spatial meta
genes) and spot-spot relations through a joint learning model that can transfer spatial information
constraint from each other. SpaSRL can improve the performance of each task and fill the gap between
the identification of spatial domains and functional (meta) genes accounting for biological and spatial
coherence on tissue. Thus, SpaSRL not only deciphers fine-grained spatial domains and extracts spatial
interpretable functional genes underlying spatial domains, but also corrects the low-quality gene
expression from borrowing information within spatial clusters, which flexibly balances spatial
coherence and expression variability.

We demonstrate the superiority of SpaSRL to identify accurate spatial domains and functional
(meta) genes on datasets sequenced by different technologies. We illustrate that SpaSRL can flexibly
exert spatial information on the identification of spatial domains and functional genes as complementary
to the current usage of spatial information. Applied to breast cancer slices, SpaSRL deciphers intratumor
heterogeneity and finds more novel cancer associated genes, which are validated by the survival analysis
of independent clinical data. Applied to brain slices, SpaSRL reveals the tissue structures and the

corresponding functional genes for interpreting tissue functions.

Methods
Overview of SpaSRL

SpaSRL first enhances the shared expression among spots by incorporating spatial information into
gene expression (Figure 1A). SpaSRL borrows the shared information from spatially neighboring spots
to adjust gene expression in each spot (i.e., original expression matrix X° € RM*N -
enhanced expression data X € RM*N, M and N respectively denote the number of genes and spots),
which can correct the low-quality expression measurements and enrich local signals. The parameter «
is set to flexibly control the spatial information constraint on gene expression measurements.

SpaSRL then decodes the spatially enhanced biological signals based on a novel self-representation
learning model (Figure 1B). In the model, SpaSRL introduces an aggregated weight matrix Z € RN*N
and a projection matrix P (i.e., P € RM d « M, d is the number of meta genes) to reconstruct
expression data as the linear combinations of expression measurements of similar locations in the
original and low-dimensional feature spaces (i.e., X = PX, X = XZ and PX = PXZ). The aggregated
weight matrix Z measures the contribution of other spots to each spot, which reflects the transcriptional

and neighborhood similarity structure of spots. To achieve the robust projection matrix P, the matrix PT

should satisfy the constraint of restoring the original expression data (i.e., PTPX = X). By minimizing
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the reconstruction errors, SpaSRL iteratively updates Z and P by fixing the other to obtain the optimal
solutions.

The optimal Z and P can be used for multiple downstream analytical tasks (Figure 1C). The
optimal Z, denoted as the spot-spot similarity matrix, enables SpaSRL to (1) detect spatial domains
interoperating with Leiden [15] or Louvain [16] methods, and serves to (2) denoise expression profiles
(i.e., XZ) to improve gene spatial expression patterns for individual gene analysis, e.g., spatially variable
or differentially expressed genes identification. The optimal P, as the spatial component loading matrix,
stores potential meta genes fitting in with the spatial neighboring structure, whereby enabling SpaSRL
to (3) extract the spatial functional gene sets relevant to different spatial domains (see Methods).

The primary advantage of SpaSRL is the joint solution of Z and P with spatial information
constraint, which can transfer the spatially enriched biological signals between samples (spots) and
genes, resulting in the robust identification of spot clusters and spatial functional (meta) genes with
refined spatial patterns and favorable biological associations. Additionally, SpaSRL provides a unique
spatially aware strategy that allows tunable usage of spatial information, which not only can, to a great
extent, correct for dropouts or noises, but also can control the impact of spatial neighborhood similarity
on spatial domains and functional meta genes by tuning parameter @ manually or according to the
obtained outcomes. SpaSRL method, altogether with the landmark-based strategy provided for large-
scale datasets, is computationally optimized. Furthermore, we distribute SpaSRL as a user-friendly

Python module based on the widely used AnnData data structure.

Constructing spatially aware self-representation learning model

Enhancing the shared expression between spots: We incorporate spatial information into gene
expression to enhance the shared expression between spots, which can correct the low-quality gene
expression (e.g., dropout) in each spot by borrowing information from its surrounding neighborhood.
Using a weight matrix S € RV*N | the original expression matrix X° is adjusted as the enhanced

expression data X specifically as follows:

X = X0+ ax0s.s. =20 po—0vi 1)
a O] N » Vii , V1 (
i=oDiJ'

where the similarity matrix D is obtained by calculating the cosine distances between k-nearest spatial
neighbor spots on top 15 principal components (i.e., D = exp(2 — cosine_dist(U)), U € R*>*¥). The
default number of neighbors, i.e., £, is set to 10 for 10x Visium datasets and 30 for Silde-seqV2 datasets
in this work. The tunable parameter a can be flexibly set, which controls the extent to aggregating
expression across surrounding spots for generating the enhanced expression data X. When the value is

set to 1, the spot itself and spatial neighbors contribute equally to the enhanced data.
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Decoding the shared expression between spots: We build a feature extraction embedded self-

representation learning model to reconstruct data in original and low-dimensional latent spaces, which

decodes the enhanced expression to measure the contribution of other spots to each spot, enabling the

optimalization of low-dimensional spatial components and spot-spot relations. The main procedure can

be stated as follows.

»  Data reconstruction of the enhanced data: Suppose there is an aggregated weight matrix Z €
RN*N (i.e., spot-spot similarity), SpaSRL reconstructs the enhanced gene expression X € RM*N

by aggregating the shared gene expression across spots with the Frobenius norm:

minl|X - XZ|I3, Z; = 0, Vi )

. Data reconstruction of the low-dimensional representation: To mitigate data dropouts and extract
robust spatial components (or meta genes), SpaSRL leverages a projection matrix P to generate the
low-dimensional representation (i.e., PX) and further to restore the enhanced data (i.e., PTPX =
X). In consideration of the consistency of spot-spot similarity in both original and low-dimensional
spaces, the aggregated weight matrix Z also needs to satisfy the reconstruction of the low-
dimensional representation. Note that, [, ;-norm should be used to replace /-norm and further to
improve the ability to simultaneously learn dimension reduction and the relationship between
samples due to the existence of constraint terms (i.e., PTPX = X).

min||PX — PXZ||51, Zi = 0,P"PX = X, Vi (3)

Clearly, the main objective function can be bluntly written as the combination of the above terms
in Eq.(4), by which we can solve the optimal Z as the spot-spot similarity and the optimal P as the
spatial components.

min [1X = XZI12 + 2, IPX = PXZllo1 + 21121l
PTPX =X
T T (4)
s.t. 31'Z2=1",Z22>20
Z;=0,3,j))eq
where 1 represents an all-one vector for normalization. {2 is the complement of £2 which is a set of

connections of samples (spots) in an adjacency graph. If x? and xj0 are not connected in the adjacency

graph, then we have (i,j) € Q. The adjacency graph is determined by K-nearest neighbor (KNN)
algorithm with Euclidean distances of all samples. Parameter K may be chosen freely and there are two
tunable parameters A; and 4, to balance the three terms in Eq. (4). Both parameters can be determined
according to data properties or settled empirically. We discussed the sensitivity of SpaSRL to these
parameters in Supplementary Figure 1 and proved that the clustering performance of SpaSRL is robust
in a large range of K, A; and 4,.

Note that, SpaSRL is a variant of Low-Rank Representation learning (or self-representation

learning), whose standard penalty term should be the nuclear-norm (i.e., ||Z||,). The nuclear-norm can
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constrain the matrix Z to have a better cluster structure [17], but relies on eigenvalue decomposition
operator in the solving process, thus will greatly increasing the running time of SpaSRL. To optimize
the computational efficiency, we use the F-norm instead due to the existing relations between the two
norms (i.e., ||Z||r < ||Z]].). Additionally, to discuss the necessities of each component in loss function,
the ablation experiment is performed on the benchmark datasets (Supplementary Figure 2). The ablation
experiment indicates that each component of the loss function is necessary and further confirms the

effectiveness of the loss function design.

Solving spatially aware self-representation learning model

The spatially aware self-representation learning model (i.e., Eq. (4)) presents as a linear-equality
constrained problem, which can be solved by the alternating direction method of multipliers (ADMM)
[18]. Thus, Eq. (4) can be equivalently transformed to:

min ||X — XZ||Z + 4, ||PX — PXZl,1 + 2, |1/1l5

Lﬁ(Z)=0,P
PTPX =X (5)
s.it. §17z =17
J=12Z

where Lg(Z) = 0 corresponds to the third constraint in Eq. (4). Then, the augmented Lagrangian
function of Eq. (5) is:
LW g + 4 IPX — PXZ|l5q + IX — XZIIF + (Y3, PTPX — X) + (V5,17 — 17Z)

Y.(Z,P,]) = H
g +HY3,Z =) + E(IIPTPX = XIIF + 111" = 2"ZIE + 12 = J1IE)

(6)

where y denotes a penalty parameter larger than 0. ||-|| represents the Frobenius norm. Y;, Y, and Y5
are the corresponding Lagrangian multipliers in Eq. (6). Thus, the above problem becomes
unconstrained, and according to ADMM algorithm, it can be minimized in turn to update the variables
Z, ], P with the other variables fixed.

Specifically, supposing that after k times of updates with Z¥, J¥ and P¥, the next update at iteration
k + 1 can be written as:

1) Solving the optimal matrix J of Eq. (5) with all other matrices fixed

k
. U 2
Jert = argmin Wl + (8 24 =)+ (124 =)
k K 2 (7
= argmin A, ||/]| +M— Zk+Yi—]
g] 2 F 2 Mk .

2) Solving the optimal matrix Z of Eq. (5) with all other matrices fixed
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M||PEX = PEXZ||,  + X — XZIIF + (17 = 17Z) + (¥, Z — Jk+1)

Zk*1 = argmin k
U 2
L5(2)=0 B (11T = 177112 _ k1
n +5- (117 = 1721 + 1z - 7<)
L ||PEX - PRXZ|| | + IX — XZ|3 (®)
= argmin k vE||? k|
=0 +=—(|l17 - 172+ 2| +||z-J+=;
2 u u
F F
3) Solving the optimal matrix P of Eq. (5) with all other matrices fixed
k
P**1 = argmin A4||PX — PXZ**||, + (Y, PTPX — X) + “7 IPTPX — X||7
P ’
) (9)

k
argmin 1, |[PX — PXZ¥+1||” + “7
P

Y,
PTPX — X +—
u

F

The optimal solutions of Z and P are obtained by iteratively solving the subproblems 1)- 3) until
convergence. For better clarity, the corresponding pseudocode of main solving process is summarized

in Algorithm 1 in Supplementary Note S1.

Landmark-based spatially aware self-representation learning for large-scale datasets

When dealing with large-scale datasets (e.g., tens of thousands of samples [spots] or more),
SpaSRL will consume a lot of times and storage to build the similarity matrix between all samples or
spots (i.e., Z € RV*N). To improve the capacity of SpaSRL on large-scale datasets, we propose a
landmark-based strategy to facilitate the widespread application of SpaSRL on different SRT platforms.

The key idea of landmark-based strategy is to select a small number of samples that should be
representatives of the underlying sample manifold and then construct a landmark-by-sample matrix (i.e.,
V € RI*N I, & N, L is the size of landmark sample set) to approximate the original sample-by-sample
matrix (i.e., Z € RV*N). Since the number of landmarks is much smaller than the total number of
samples, this approximation can significantly reduce memory and time occupation. SpaSRL uses K-
means method to select these landmarks, which are the samples nearest to the real cluster center. This
landmark-based approximation strategy is inspired by a previous work [19], which can theoretically
ensure the effectiveness for large-scale datasets.

r‘rjl’ipn X = X, VIIF + 4IPX = PX Vi1 + A1V ]Ig
S e a0
Vij=0,i€L(ij)€Q

where X; € RM*L is the expression matrix of landmark samples. £ is the landmark samples set.

Pseudocode of the landmark-based spatially aware self-representation learning is summarized in
Algorithm 2 of Supplementary Note S1. This strategy is recommended to deal with datasets with more
than 10,000 samples (e.g., Slide-seqV2 datasets). We discussed the sensitivity of SpaSRL to the number
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of selected landmark samples using a Slide-seqV2 dataset (contain 39,496 spots) and show that the
domains identified by SpaSRL is robust in Supplementary Figure 1.

Data collection and general preprocessing

There are 17 datasets from 2 different SRT platforms of diverse resolutions in this paper including
14 10x Visium brain datasets, 2 10x Visium breast cancer datasets, and 1 Slide-seqV2 cerebellum data.
We firstly selected highly variable genes (HVGs) by using scanpy.pp.highly variable genes() from
SCANPY Python package [12]. We used the top 3,000 HVGs for 10x Visium datasets and Slide-seqV2
datasets. Then, we performed log-transformation on the expression profiles via scanpy.pp.loglp(), and

the transformed data subsequently served as the input of SpaSRL.

Spatial domain identification and visualization

SpaSRL uses the spot-spot similarity matrix Z to identify spatial domains by Louvain [16] or
Leiden [15] algorithms, which are respectively implemented as scanpy.tl.louvain() or scanpy.tl.leiden().
For large-scale dataset, the landmark-sample similarity matrix V is learned and SpaSRL first uses
scanpy.pp.pca(), scanpy.pp.neighbors() and then performs spatial domains detection by Louvain or
Leiden. The parameter ‘resolution’ in the functions is adjusted to match the number of annotated
structures provided by the original authors or manually defined with prior (anatomical) knowledge. In
our practice, we use Louvain for 10x Visium datasets and Leiden for large-scale datasets (i.e., with >
10,000 spots) to identify spatial clusters.

SpaSRL adopts UMAP (Uniform Manifold Approximation and Projection) for spot embedding
visualization based on the spot-spot similarity matrix Z. When based on the landmark-sample similarity
matrix V for large-scale dataset, the algorithm first uses scanpy.pp.pca(), scanpy.pp.neighbors() and then

performs scanpy.tl.umap() for visualization.

Gene expression denoising
SpaSRL uses the captured spot-spot similarity matrix Z to denoise the gene expression profiles (i.e.,
XZ). For large-scale dataset, SpaSRL uses the captured landmark-sample similarity matrix Z and the

expression matrix X; of landmark samples to perform data denoising (i.e., X, V).

Spatial functional genes identification

SpaSRL ranks the weight of each gene on each spatial component in descending order by using
matrix P. Then, top 500 weighted genes on the spatial components are selected, and the intersection was
taken with the differentially expressed genes (i.e., log fold change [LFC > 1]) in each spatial domain

from denoised data as specific functional genes of each spatial domain. The differentially expressed
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genes of each spatial domain are identified via FindAllMarkers() in Seurat R package.

The genes with the top weight from spatial components always show good co-expression properties
or functional associations, which can provide better biological interpretations than individual
differentially expressed genes. Therefore, we regard the intersection between the top weighted genes
and the differentially expressed genes as spatial functional genes, which can elucidate more biologically

meaningful and domain-specific features underlying tissue structure.

Performance evaluation

We describe below the metrics used in this work to evaluate the performance of SpaSRL in two
aspects: (1) spatial domain detection, (2) spatial functional genes identification. Details of the
benchmarking approaches are provided in Supplementary Note S1.

Accuracy and spatial coherence of spatial domains: 1) If ground truth annotations are available
(e.g., from original publications), adjusted Rand index (ARI) [20] and cluster purity (i.e., Eq. (11)) [6]
are used to quantify the accuracy of spatial domain. 2) Local inverse Simpson’s Index (LISI) [21] and
Moran’s I statistics [22] are used to quantify the spatial coherence of domains. The LISI value for every
sample is computed by using compute lisi() in lisi R package. The function parameter ‘perplexity’ is
set to 10 for 10x Visium datasets and 30 for Slide-seqV2 datasets. The Moran’s [ statistics for every
spatial domain are computed to measure the spatial autocorrelation via moranl() in Rfast2 R package.
For computing the Moran’s I value of each spatial domain, we set the feature vector of the samples
belonging to this domain to 1 and other samples to 0, and the weight uses the inverse of Euclidean

distance on 2D spatial coordinates of spots.
) 1
cluster purity = NhEEH r;leaoxlh Ngq| (11)

where H is the set of clusters set or spatial domains and Q is the set of reference groups. Cluster purity
is an external evaluation measures of clustering results and measures the extent to which a cluster
contains the entities from only one partition. Cluster purity is specifically used to evaluate the clustering
performance on spatially resolved transcriptomics (SRT) datasets with rough annotations (e.g., BC and
IDC breast cancer slices) [6].

Spatial continuity and expression specificity of functional genes: The Moran’s I is used to evaluate
the spatial autocorrelation of gene expression before and after denoising. We evaluate gene expression

specificity before and after denoising by comparing the LFC values of top marker genes for each domain.

Survival analysis
We evaluate the prognostic significance of a gene using bulk expression profiling data with patient
survival information in breast cancer study. We obtain Breast Cancer International Consortium

(METABRIC) breast cancer cohort 1 dataset (n = 997 patients) in RTNsurvival R package [23]. Then,
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we stratify the subjects into high and low groups by using the feature median value (i.e., gene
expression), and perform Kaplan Meier (KM) analysis between the two groups to compare the survival

difference.

Functional/cancer hallmark enrichment analysis
The R package clusterProfiler [24] is used for functional/cancer hallmark enrichment analysis of

the discovered functional genes.

Results
Benchmark the performance of SpaSRL on revealing tissue structures and tumor heterogeneity

We quantitively evaluated the ability of SpaSRL to identify spatial domains using 14 10x Visium
arrays, including 12 human dorsolateral prefrontal cortex (DLPFC) slices and 2 breast cancer slices. We
took the manual annotation of DLPFC slices provided by the original authors [25] as ground truth and
quantified the similarity between identified clusters and the manual labels using adjusted Rand index
(ARI). We benchmarked SpaSRL against existing spatial (i.e., BayesSpace [6], Giotto [7], SEDR [8],
SpaGCN [10], stLearn [26], STAGATE [9] and Vesalius [27]) and non-spatial (i.e., non-negative matrix
factorization [NMF] [28], self-representation [17], variational autoencoder [VAE] [29], Leiden
implemented in SCANPY [12] and Louvain implemented in Seurat [11]) clustering methods. Overall,
SpaSRL achieved the highest mean ARI (mean ARI = 0.54) and substantially outperformed the
competing methods (Wilcox signed rank test, P < 107, Figure 2A). Moreover, SpaSRL had obvious
advantage in time efficiency over most of the involved methods (Wilcox signed rank test, P < 107>,
Figure 2B). The results also show that spatial clustering methods generally perform better than non-
spatial methods (Wilcoxon signed-rank test, P < 10™%, Figure 2A), indicating that the usage of spatial
information can improve the identification of spatial domains.

In addition, we assessed these methods for detecting tumor heterogeneity across different breast
cancer slices (i.e., 10x Visium Human Breast Cancer Block A Section 1 [BC] and Invasive Ductal
Carcinoma [IDC]). We took the histopathological annotations [6, 8] as reference while more clusters
reflecting potential transcriptional heterogeneity can be revealed by computational methods (Figure 2C
and Supplementary Figure 3). We also benchmarked these spatial and non-spatial clustering approaches
by computing cluster purity. Among these methods, SpaSRL achieved the highest cluster purity (purity
=0.82 in BC and purity = 0.87 in IDC) and detected more biologically homogenous structure than other
involved methods (Figures 3B, 4A, C and Supplementary Figure 4). Moreover, the spatial domains
identified by SpaSRL exhibited better spatial coherence than the outcomes from stLearn, SpaGCN and
all the non-spatial clustering methods (i.e., Leiden, Louvain, NMF, VAE and self-representation) as they
identified many scattered noisy subclusters (Supplementary Figures 5-6). Other spatial clustering

methods also have good spatial continuity in spatial domains, but some (e.g., Giotto and Vesalius)
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undetected the refined boundaries of certain domains, thus reducing their clustering performance.
Additionally, we verified the universality of SpaSRL in quantitative or qualitative ways based on
whether data annotation is provided (e.g., Slide-seqV2 [30], Seq-Scope [31], 4i and MIBI-TOF [32])
(Supplementary Figures 7-9). These benchmark tests demonstrated the superiority of SpaSRL at

identifying spatial functional domains accounting for spatial coherence and biological difference.

SpaSRL introduces a tunable strategy to achieve the flexible usage of spatial information

Next, we further clarified the competitive advantage of SpaSRL on integrating expression
measurements and spatial information to improve the identification of spatial domains and meta genes
with coherent expression and biological interpretation. Most current methods for SRT data directly
constrain the models with spot spatial information, which facilitate the identification of expression
patterns with spatial coherence but are more likely to overwhelm expression difference (Figure 2C and
Supplementary Figure 3). To address this issue, SpaSRL provides a novel tunable spatially aware
strategy to take account of transcriptional and spatial similarity by enhancing and decoding the shared
information across spots (see Methods). In enhancing process, the tunable parameter alpha («), which
controls the shared expression between each spot and its surrounding neighbors, is used to adjust
expression values in each spot (Figure 1A). Intuitively, when alpha is larger, the more shared
information from spatial neighborhoods were aggregated in the enhancing process; while, during
decoding process, spatially local similarity can occupy more in characterizing tissue structure and
extracting spatial meta genes. Through such stepwise schema, SpaSRL transfers spatial correlation
constraint between spots and genes, together with the flexible setting of alpha value, enabling the
detection of spatial domains and functional (meta) genes with both spatial coherence and expression
variability.

Here, we evaluated the effectiveness of our spatially aware strategy and validated the applicable
range of alpha using BC slice. We varied alpha from 0 to 2 with increments of 0.5 to generate a series
of enhanced profiles for evaluating the performance of identifying the functional meta genes and the
spatial clustering (Figure 3). We computed the (1) cluster purity for evaluating accuracy of spatial
domains (Figure 3A); and (2) Moran’s I statistics and Local Inverse Simpson’s Index (LISI) for
measuring spatial coherence of spatial domains and functional meta genes (Figures 3C, 3D and
Supplementary Figure 10). Based on these metrics, we found that SpaSRL identified spatial domains
and functional meta genes with increasing spatial coherence as the alpha value became larger (Figures
3B-D and Supplementary Figure 10). However, the clustering purity exhibited a trend from rising to
decline (alpha = 1.0 with the highest purity = 0.82, Figure 3A), indicating the varying consistency with
histopathological annotation where the subtle biological differences might be missed if excessive spatial
smoothing was implemented. The similar results can also be seen with the high-resolution Slide-seq V2

dataset (Supplementary Figure 11). Thus, these results show that how to effectively use spatial
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information in SRT model is critical to the rationale of clustering outcomes and gene-expression spatial
distributions. By flexibly setting the alpha value, SpaSRL has great potential to reveal the biologically

meaningful spatial regions and functional meta genes, adapting to more SRT technologies.

SpaSRL provides more biological insights into intratumor heterogeneity on breast cancer

We had demonstrated SpaSRL can effectively dissect intratumor heterogeneity in BC as
complementary to histopathological annotation (Figure 2C). In fact, SpaSRL can identify domain-
specific functional genes (see Methods) and enhance the spatial expression patterns of individual genes,
thus providing more insights to explore the molecular mechanisms underlying tumor heterogeneity.

In total, we obtained 357 spatial functional genes for all the identified domains (see methods)
(Supplementary Figure 12). These spatial functional genes show high transcriptional specificity across
spatial clusters and reveal distinct tumor microenvironments in the annotated cancer regions (Figure
4A). Then, performing cancer hallmark enrichment analysis (see Methods), we found that these spatial
functional genes involved in different cancer-related biological processes, suggesting the potential
cancer progression (i.e., surrounding tumor — tumor — invasive) in BC slice from the overall hallmark
activation perspective (Figure 4B). These results indicated that SpaSRL could discover spatial
functional genes with biological correspondence to heterogeneous tumor states.

Additionally, we validated the effectiveness of SpaSRL on denoising expression profiles to
enhance or recover gene spatial expression patterns. After SpaSRL denoising, some spatial functional
gene expressions (e.g., IGHG2, IGHC3, JCHAIN, TTLL12, GFRA1 and S100P) appeared more spatially
smoothed and with greater domain specificity on spots in situ (Figure 4C). The overall comparison of
gene log fold change (LFC) and Moran’s 1 values quantifies the significant improvement of spatial
expression coherence and biological specificity across domains brought by SpaSRL denoising
(Wilcoxon signed-rank test P < 10716 for LFC and P < 10713 for Moran’s I, Figure 4D). We found
261 novel spatial functional genes in addition to the 96 genes that were ever identified in the original
data under the same criteria (see Methods), indicating SpaSRL of potential to reveal new biological
discoveries of disease. To further investigate this issue, we used two spatial domains (i.e., domain 0 in
surrounding tumor region and domain 1 in invasive tumor region, Figure 2C) to display the LFCs of
these spatial functional genes before and after denoising (Supplementary Figure 13), and observed the
obvious enhancement of gene spatial expression for individual domains. Among the spatial functional
genes for domain 1, 20 (out of 44) were validated to be the potential prognostic risk factors for breast
cancer (Supplementary Table 1). These prognostic-related genes contained the originally and newly
discovered genes. For example, T7LL12 is an originally identified gene and ever reported to be
positively correlated with poor prognosis in breast cancer [33] (Figure 4E). S100P is a new-found gene
and proved as involved in the aggressive properties of breast cancer cells [34], which is upregulated in

breast cancer and associated with poor prognosis (Figure 4E). These findings indicate that SpaSRL can
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distinguish intratumor heterogeneous regions but also can provide the comprehensive biological insights

into the underlying heterogeneity by combing data denoising and spatial functional genes identification.

SpaSRL identifies fine-grained mouse brain structures in 10x Visium datasets

We then applied SpaSRL to 10x Visium mouse brain sagittal sections (i.e., anterior and posterior
samples) for comprehensive characterization of the fine-structured tissue architecture and region-
specific functional genes. We took the hematoxylin and eosin (H&E) images of each dataset and the
corresponding anatomical diagrams obtained from Allen Brain Atlas (ABA) as reference, and compared
the anatomical regions with computationally generated domains by SpaSRL and other competing
methods.

For the anterior slice, SpaSRL distinguished the domains largely consistent with the ABA and H&E
references, including the layered cortical structures of five cerebral cortex (CTX) domains (i.e., domain
1,2,5, 6 and 7) and fiber tract (i.e., domain 3), and a subtle region of the lateral ventricle (VL) section
(i.e., domain 13). While other benchmarking methods failed to localize the fine structures or identified
fewer sections (Figure SA and Supplementary Figure 14). Additionally, BayesSpace can also identify
the layered domains (i.e., CTX and fiber tract), but SpaSRL’s separation showed better transcriptional
specificity on the layer known marker genes (from outer to inner layers: Ptgds, Rasgrf2, Stxla, Myl4,
Nptx1 and Plpl) (Figure 5B and Supplementary Figure 15). For the VL section, SpaSRL also detects its
specific functional meta gene (Figure 5C), where the top weighed genes are Enpp2 and Ttr (Figure 5D),
two marker genes of choroid plexus epithelial cell type which is enriched in VL region [35]. Thus,
SpaSRL can detect the fine-grained brain structures and identify the biologically informative genes that
underlie the corresponding spatial domains.

For the posterior slice, only SpaSRL recognized the dentate gyrus (DG) (i.e., domain 14), and cornu
ammonis (CA) (i.e., domain 12) sections of the hippocampus region, just as the H&E stained shape on
original image and ABA reference (Figure SE and Supplementary Figure 16). On the slice, the domain
14 contains two separated regions that can be clearly highlighted by the SpaSRL obtained meta gene
(Figure 5F) and two DG marker genes (i.e., Prox] [36] and Clqi2 [37]). Moreover, SpaSRL greatly
improved the marker gene spatial expression and specificity on the denoised profiles (Figure 5G). We
then extracted the spatial functional genes of this domain and performed functional enrichment analysis
(see Methods) (Supplementary Figure 17). We found these spatial functional genes were enriched in
many biological functions related to hippocampus DG region, e.g., neurogenesis, generation of neurons
and nervous system development [38] (Figure SH). These results indicate that SpaSRL not only can
detect subtle spatial biological signals but also can effectively decode spatial expression patterns from
spot and gene perspectives with correspondent associations and biological interpretations. The
effectiveness of SpaSRL at identifying fine-grained tissue structures and enhancing the spatial

expression of functional (meta) genes enables the potential applications on high-resolution SRT
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platforms with high dropout rates.

SpaSRL reveals spatial expression landscape in Slide-seqV2 cerebellum dataset

We next verified that SpaSRL can obtain spatial domains at finer-grained level or even
distinguishing individual cell types based on a mouse cerebellum Slide-seqV2 dataset. Here we
leveraged the anatomical diagrams and cell-type related marker gene sets (from Allen brain atlas and
Cable et al.’s previous work [39]) for cluster annotation and comparison analysis. SpaSRL identified
16 clusters in total, which not only accurately correspond to the cerebellum anatomical structures or cell
types, but also have better spatial coherence than clusters obtained by SpaGCN (other methods not
involved due to model limitations) (Figure 6A, B and Supplementary Figures 18-20).

More notably, SpaSRL succeeded to figure out the finer-grained layered organization (from the
outer layer of Bergmann cells to the inner of oligodendrocytes) of cerebellum (Figures 6A-C). Based
on the locally enhanced expression X, we calculated the LFCs of the marker genes from RCTD [32] to
quantify the clustering performance of each method and high average LFC value obviously indicates
high biological specificity between the identified clusters. As expected, these computationally obtained
clusters appeared to be more biologically meaningful than random separations (Figure 6D, Wilcoxon
signed-rank test, P < 1073%). While there are still significant differences between the involved methods.
SpaSRL performed substantially better to distinguish these structures or cell types (Figure 6D),
especially to separate the colocalized Purkinje and Bergmann cells [39] with significantly higher
transcriptional specificity (Wilcoxon signed-rank test, P < 1073). As for Louvain, the clusters (granule
excluded) were less biologically coherent (Wilcoxon signed-rank test, P < 10~2%) with high FC scores
in only a few markers. These results suggest that SpaSRL could better unveil the organizational
landscape of complex tissues in higher resolution spatial dataset.

Additionally, we used the spatial functional genes of these layered structures to further explore
their biological differences (see methods) (Supplementary Figure 21). The heatmap of the top spatial
functional genes illustrates the transcriptional similarities between these cell types (Figure 6E) where
Bergmann and Purkinje cells share some marker genes due to their spatial colocalization (Figure 6A).
While, we further made functional enrichment analysis, and found the identified spatial functional genes
were involved in different biological processes which can clearly distinguish all these structures (Figure
6F). For example, Purkinje and granule cells are involved in sending nerve signals in cerebellar cortex
[40], while some synaptic signaling related biological functions (i.e., synaptic signaling and trans-
synaptic signaling) are enriched for both cell types. Oligodendrocytes are the myelinating cells of the
central nervous system [41], and the processes of myelination and ensheathment of neurons are enriched
using the identified oligodendrocytes related genes. In summary, for higher resolution spatial data,
SpaSRL can reveal spatial expression landscape and can effectively detect functional gene sets to

explain the biological spatial heterogeneity of tissue architecture.
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Discussion

Spatial mRNA measurements provide new perspectives to define biological heterogeneities of
tissues and diseases under spatial context. The fundamental issue of deciphering tissue heterogeneity is
to accurately capture the relationship between spots and the functional genes with spatial coherence and
co-expression. However, the current methods still focus on the individual task and there is a great
challenge to join the two tasks into a unified model while flexibly incorporating spatial information. In
this work, SpaSRL, was designed as such a scalable framework that accounts for these requirements.
SpaSRL provides a computationally efficient tool to obtain the spot-spot relations and the functional
genes with flexibly spatial correlation constraint, which are then used for accurate downstream analysis,
including spatial domain detection, spatial functional genes/meta genes identification and data denoising.
The superiority of SpaSRL not only is reflected on the accurate identification of spatial domains and
functional genes on multiple datasets of various technologies, i.e., 10x Visium, Slide-seqV2, but also
can control the usage of spatial information to impact the identification of spatial domain and functional
genes. In particular, the application on breast slices and brain slices demonstrated that SpaSRL reveals
the tissue structures and the corresponding spatial functional genes for interpreting tissue heterogeneity,
suggesting that SpaSRL is more suitable for deciphering complex spatial expression landscape in SRT
study.

The effective usage of spatial information is key to the superiority of SpaSRL in SRT study.
Specifically, SpaSRL first uses spatial information to enhance the shared information between
neighboring spots. Then, SpaSRL builds a novel self-representation model to decode the shared
expression between spots from the enhanced data of the low-dimensional space and the original space.
The stepwise approaches of SpaSRL take spatial information as a soft constraint to impact the spatial
coherence of the spatial domain and functional meta genes, and to mitigate SRT data noise or bias.
Additionally, the novel self-representation learning model achieves dimension reduction and spatial
domain detection into a unified model, which makes that the spatially aware strategy of SpaSRL
transfers spatial correlation constraint between two tasks. Thus, compared to the current methods,
SpaSRL not only flexibly controls the usage of spatial information but also improves the identification
of biologically informative spatial domain and functional genes by leveraging spatial information.

Although SpaSRL provides the joint analysis of the spatial domain detection and the functional
genes identification, SpaSRL still performs the individual gene analysis and cannot track which
functional gene network module contributes to each spatial domain, which is a limitation of SpaSRL
for application to the in-depth analysis of biological interpretations. Certainly, most methods are
compromised to use a separate manner: first to detect spatial domain and subsequently to infer gene
networks (or vice versa). However, the splitting solution may cause untraceable biological variabilities,

even leading to biased outcomes. Therefore, further study of the joint analysis of domains and gene
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networks under spatial context is warranted.

Data availability
The human dorsolateral prefrontal cortex (DLPFC) datasets are available in the spatialLIBD package
(http://spatial.libd.org/spatial LIBD). The Mouse Brain Sagittal, Invasive Ductal Carcinoma and Human

Breast Cancer datasets are available at 10x Genomics website

(https://www.10xgenomics.com/resources/datasets). The Slide-seqV2 data is available at

https://singlecell.broadinstitute.org/single_cell/study/SCP815.

Code availability

Python source code of SpaSRL, under the open-source BSD 3-Clause license, is available at
https://github.com/zccqq/SpaSRL. The documentation website provides the installation guide, tutorials,
and API references, which is available at https://spasrl.readthedocs.io/. SpaSRL is also published as a

Python package named ‘spasrl’ on Python Package Index (PyPI) at https:/pypi.org/project/spasrl/ and

can be directly installed via the pip installer.
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KEY POINTS

1. SpaSRL is a spatially aware self-representation learning method that unify the identification of spatial
domains and functional (meta-) genes, relying on a joint model to optimally transfer spatial correlation
constraint between the two tasks.

2. SpaSRL provides a novel tunable strategy to achieve the flexible integration of spatial information
via an enhancing-decoding schema as complementary to the current usage of spatial information.

3. SpaSRL is a user-friendly and computationally efficient Python tool that can be scalable for diverse

SRT platforms.
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Figure 1 Schematic overview of SpaSRL enhancing-decoding (A&B) processes and potential
applications of SpaSRL in downstream SRT analysis (C). (A) Spatial expression enhancement from
aggregating expression information from neighborhood spots. SpaSRL incorporates spatial information
into gene expression to enhance the shared expression between spots by flexibly aggregating the
weighed gene expression from their k spatial neighbors (e.g., X® = X). S denotes the weight of
expression similarity between each spot and its k neighbors. a controls the contribution of spatial
similarity to the enhanced expression measurements. (B) Spatial expression decoding via the feature
extraction embedded self-representation learning model. The input data (i.e., X) is the enhanced gene
expression matrix from (A). SpaSRL uses a robust projection matrix (i.e., P) to generate the low-
dimensional representation (i.e., X —» PX, PTPX = X). Based on the original and low-dimensional data,
SpaSRL performs data reconstructions via an aggregated weight matrix Z based on self-representation
learning algorithm (i.e., X = XZ and PX = PXZ). SpaSRL iteratively learns the projection matrix (i.e.,
P) and spot-spot similarity matrix (i.e., Z) by minimizing the sum of reconstruction losses (see Methods).
When SpaSRL reaches convergence, the two optimal matrices are achieved for further downstream
analyses. (C) Biological applications for SpaSRL including spatial domain identification, functional
genes/meta genes identification and data denoising. The spot-spot similarity matrix can be applied to
detect spatial domains and data denoising. The projection matrix can be employed to identify functional
genes/meta genes to improve biological insights into tissue heterogeneity.
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Figure 2 Comparative performance of SpaSRL to existing spatial and non-spatial methods on
spatial domain identification. Summary of clustering performance on 12 manually annotated
spatial LIBD datasets in terms of ARI values (A) and time consumption (B). Each point denotes the
measured performance on one dataset. The center line in (A) indicates the mean ARI value of each
method on all datasets. The methods in (A) are ordered by decreasing mean ARI values. The height of
bar in (B) indicates the mean running time of each method on all datasets. The methods in (B) are
ordered by increasing mean running time. (C) The comparison of spatial domain identification on BC
(n =3,798 spots) slice. The histopathological annotation is obtained from original work [8] and used to
color each spot in spatial coordinates without the H&E-stained image. Spatial domains identified by
SpaSRL and competing methods on BC slice are distinguished by colors without strict correspondence.
The cluster purity is used to compare the similarity between identified outcomes and the reference
annotation.
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Figure 3 The illustrative analysis of flexible usage of spatial information on spatial domains and
meta genes achieved by SpaSRL using the BC slice. (A) Spatial domains generated by SpaSRL under
a variety of alpha settings. The identified spatial domains are distinguished using different colors and
are shown on the spatial coordinates. The cluster purity is used to compare the similarity between the
identified spatial domains and the ground truth annotations. (B) The spatial distribution of representative
functional meta genes (focused on the bottom two spatial domains) identified by SpaSRL under a variety
of alpha settings. Moran’s I measures the spatial autocorrelation of these functional meta genes. (C)
Spatial coherence measurements of the identified domains from (A). (D) Spatial coherence
measurements of the top 50 functional meta genes using Moran’s I statistics.
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Figure 4 SpaSRL provides more biological insights into intratumor heterogeneity in BC sample.
(A) The heatmap of original expression profiles of top 5 functional genes for each spatial domain
identified by SpaSRL in Figure 2C. Each row of the heatmap indicates a gene and each column indicates
a spot. The spots are labeled by histopathological annotations and SpaSRL assignments using column
side colors. (B) The cancer hallmark enrichment of 357 functional genes in the Invasive, Tumor and
Surrounding tumor regions. (C) Spatial expression of selected domain marker genes before (above) and
after (below) data denoising. (D) The change of gene differential expression and spatial autocorrelation
patterns before and after data denoising. FC: fold change of gene expression. (E) Survival analysis of
the originally identified marker gene (i.e., T7LL2) and the newly identified marker gene (i.e., S100P).
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Figure 5 SpaSRL identifies tissue structures and functional genes/meta genes in mouse brain
sagittal anterior (n = 3,696 spots) (A-D) and posterior (n = 3,353 spots) (E-H) slices. The
corresponding anatomical definitions obtained from the Allen Mouse Brain Atlas (First image in A and
E) are shown as references. The identified spatial domains by all the involved approaches are illustrated
on the spatial coordinates and distinguished using different colors without anatomical correspondence.
Fine anatomical regions, for example CTX, fiber tract, VL sections in (A) and DG, CA sections in (E)
are marked by red circles on reference images and computational results (if any exists). (B) The original
expression heatmap of known marker genes separates the CTX and fiber tract layers identified by
SpaSRL. SpaSRL CTX layers (from outer to inner) contain domains 6, 2, 7, 5 and 1; fiber tract is the
domain 3. (C) The representative functional meta gene identified by SpaSRL to characterize VL section.
(D) The original spatial expression of the top two weighted functional genes in the representative
functional meta gene from (C). (F) The representative meta gene identified by SpaSRL to characterize
two separated DG sections. (G) Spatial expression of the two marker genes of DG sections before and
after denoising. (H) The GO enrichment of the representative meta genes from (C). The size indicates
the number of functional genes enriched in each GO term and the color indicates the statistical
significance (adjusted by false discovery rate [FDR]) of enrichment in each GO term. The terms are
grouped by GO subontology. BP, Biological Process; CC, Cellular Component; MF, Molecular Function.
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Figure 6 SpaSRL reveals spatial expression landscape in Slide-seq cerebellum data (n = 39,496).
(A) Each bead on the spatial coordinates is colored by the cluster assignments of SpaSRL and SpaGCN.
(B) The regional structure diagrams from Allen brain atlas and Cable et al.’s previous work [39] are
used to directly compare and illustrate clustering results. (C) Individual loadings of four layers of
cerebellum identified by SpaSRL. (D) Boxplots of expression fold change (FC) of marker gene sets for
the selected four cluster assignments identified by SpaSRL and other methods. The black dot in boxes
represents average 1og2(FC) of all involved markers. Dashed line indicates the log2(FC) value of 1.
Difference of log2(FC) distributions between SpaSRL and other methods are quantified by Wilcoxon
signed-rank test, and the significance is shown if the FDR-adjusted P-value is lower than 0.05. **: p-
value < 0.01, ***: p-value < 0.001, ***: p-value < 0.0001. (E) The original expression heatmap of the
top 10 functional genes for the four clusters in (C) identified by SpaSRL. (F) The bubble plot of GO BP
enrichment results of all the functional genes for each cluster in (C). The dot size indicates the number
of functional genes enriched in each GO term and the color indicates the FDR-adjusted significance of
enrichment in each GO term.
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