

1

2

3

4 Inhibition of type III secretion system induced leukotriene B₄ production by *Yersinia pestis*:

5 A mechanism for early immune evasion

6 Amanda Brady¹, Amanda R. Pulsifer^{1,##a}, Sarah L. Price¹, Katelyn R. Sheneman¹, Krishna Rao Maddipati², Sobha R.

7 Bodduluri¹, Jianmin Pan^{3##b}, Shesh N. Rai^{4##b}, Bodduluri Haribabu¹, Silvia M. Uriarte⁵ and Matthew B. Lawrenz^{1,6*}

8

9

10

11 ¹Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United
12 States of America

13 ²Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, Michigan, United States of America

14 ³Biostatistics and Bioinformatics Facility, Brown Cancer Center, University of Louisville, Louisville, Kentucky, United
15 States of America

16 ⁴Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United
17 States of America

18 ⁵Department of Oral Immunology & Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of
19 America

20 ⁶Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of
21 America

22 ^{#a} Current Address: StemCell Technologies, Vancouver, Canada

23 ^{#b} Current Address: College of Medicine, University of Cincinnati, Cincinnati, United States

24

25 * Corresponding author

26 E-mail: matt.lawrenz@louisville.edu

33 Abstract

34 Subverting the host immune response to inhibit inflammation is a key virulence factor of *Yersinia pestis*. The
35 inflammatory cascade is tightly controlled via the sequential action of lipid and protein mediators of inflammation.
36 Because delayed inflammation is essential for *Y. pestis* to cause lethal infection, defining the mechanisms used by *Y.*
37 *pestis* to manipulate the inflammatory cascade is necessary to understand this pathogen's virulence. While previous
38 studies have established that *Y. pestis* actively inhibits the expression of host proteins that mediate inflammation, there
39 is currently a gap in our understanding of inflammatory lipid mediator response during plague. Here we use *in vivo*
40 lipidomics to define the synthesis of lipid mediators of inflammation within the lungs during pneumonic plague.
41 Interestingly, while we observed an early cyclooxygenase response during pneumonic plague, there was a significant
42 delay in the synthesis of leukotriene B4 (LTB₄), a pro-inflammatory lipid chemoattractant and activator of immune cells.
43 Furthermore, *in vitro* studies with primary leukocytes from mice and humans further revealed that *Y. pestis* actively
44 inhibited the synthesis of LTB₄. Finally, using *Y. pestis* mutants in the Ysc type 3 secretion system (T3SS) and *Yersinia*
45 outer protein (Yop) effectors, we demonstrate that leukocytes recognize the T3SS to initiate the synthesis of LTB₄
46 rapidly. However, the Yop effectors secreted through the same system effectively inhibit this host response. Together,
47 these data demonstrate that *Y. pestis* actively inhibits the synthesis of LTB₄, an inflammatory lipid, required for rapid
48 recruitment of leukocytes to the site of infection.

49 Author Summary

50 *Yersinia pestis*, the bacteria that causes plague, targets the host's innate immune response to inhibit inflammation.
51 Because the generation of this non-inflammatory environment is required for infection, we are interested in
52 mechanisms used by *Y. pestis* to block inflammation. Lipid mediators are potent signaling molecules that regulate
53 multiple host immune responses, including inflammation. While there have been studies on how *Y. pestis* blocks the
54 proteins that mediate inflammation, there is a gap in our understanding of the inflammatory lipid mediator response
55 during plague. Here we show that *Y. pestis* inhibits the production of one of these critical lipid mediators, leukotriene B4,
56 by host immune cells. Furthermore, we identify both the signals that induce LTB₄ production by leukocytes and the
57 mechanisms used by *Y. pestis* to inhibit this process. Together, these data represent the first comprehensive analysis of

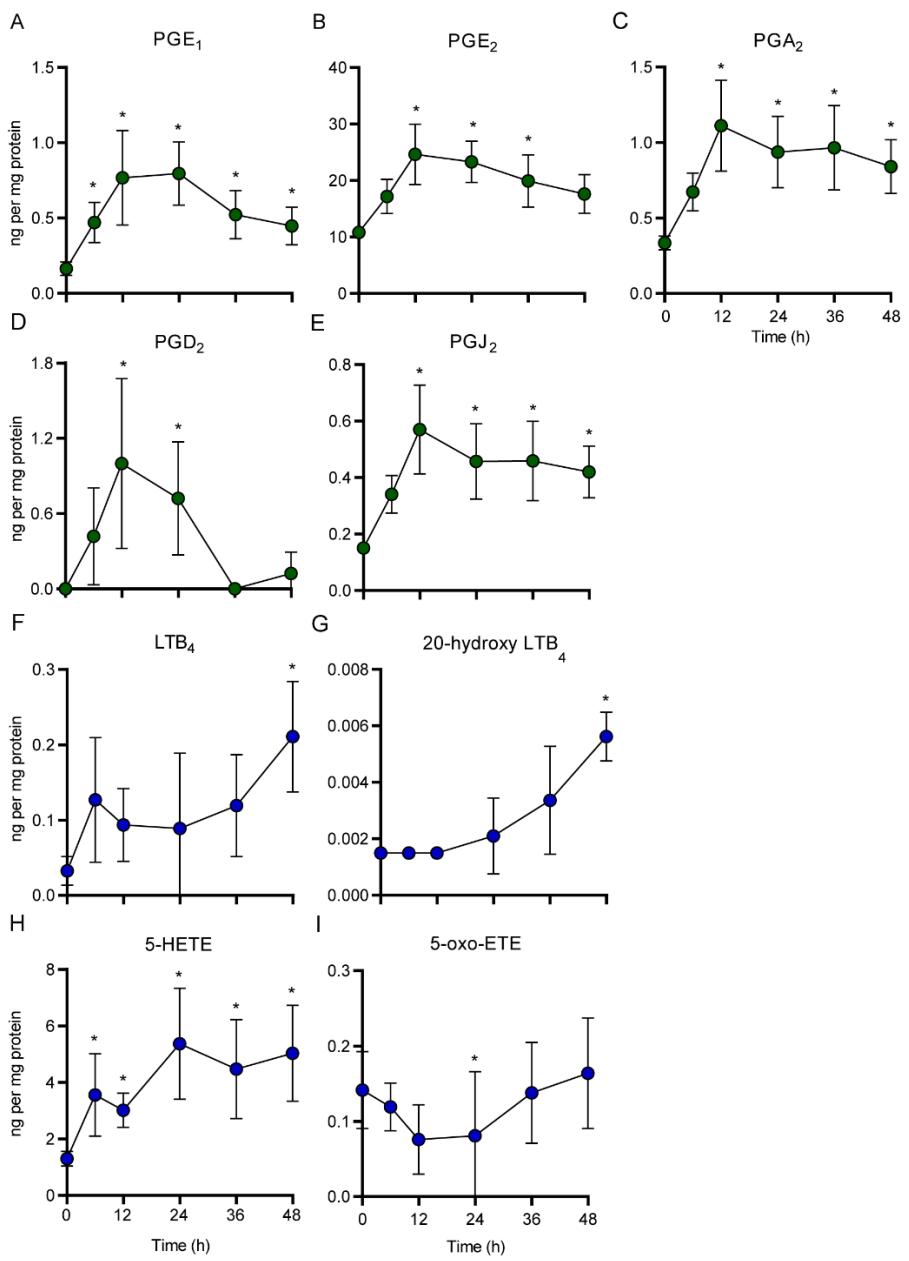
58 inflammatory lipids produced during plague and improve our current understanding of how *Y. pestis* manipulates the
59 host immune response to generate a permissive non-inflammatory environment required for bacterial colonization.

60 Introduction

61 *Yersinia pestis*, a gram-negative facultative intracellular bacterium, is the causative agent of the human disease known
62 as plague. Although typically characterized as a disease of our past, in the aftermath of the 3rd plague pandemic, *Y. pestis*
63 became endemic in rodent populations in several countries worldwide, increasing the potential for spillover into human
64 populations through contact with infected animals and fleas (1-3). Human plague manifests in three forms: bubonic,
65 septicemic, or pneumonic plague. Bubonic plague resulting from flea transmission arises when bacteria colonize and
66 replicate within lymph nodes. Septicemic plague results when *Y. pestis* gains access to the bloodstream, either directly
67 from a flea bite or via dissemination from an infected lymph node, and results in uncontrolled bacterial replication and
68 sepsis. Finally, secondary pneumonic plague, wherein *Y. pestis* disseminates to the lungs via the blood, results in
69 pneumonia that can promote direct person-to-person transmission via aerosols. While treatable with antibiotics, if left
70 untreated, all forms of plague are associated with high mortality rates, and the probability of successful treatment
71 decreases the longer initiation of treatment is delayed post-exposure (3-6). Regardless of the route of infection, one of
72 the key virulence determinants for *Y. pestis* to colonize the host is the Ysc type 3 secretion system (T3SS) encoded on the
73 pCD1 plasmid (5, 7). This secretion system allows direct translocation of bacterial effector proteins, called Yops, into
74 host cells (5, 8, 9). The Yop effectors target specific host factors to disrupt normal host cell signaling pathways and
75 functions (10-15). Because the T3SS and Yops are required for mammalian but not flea infection, the expression of the
76 genes encoding these virulence factors are differentially expressed within these two hosts (5, 8, 16, 17). The primary
77 signal leading to T3SS and Yop expression is a shift in temperature from that of the flea vector (<28°C) to that of the
78 mammalian host (>30°C). During mammalian infection, *Y. pestis* primarily targets neutrophils and macrophages for T3SS-
79 mediated injection of the Yop effectors (18-20). The outcomes of Yop injection into these cells include inhibition of
80 phagocytosis as well as inflammatory cytokine and chemokine release required to recruit circulating neutrophils to
81 infection sites (21-24). Importantly, previous work suggests that inhibition of neutrophil influx and establishing a non-
82 inflammatory environment is crucial for *Y. pestis* virulence (25, 26). Therefore, defining the molecular mechanisms used

83 by *Y. pestis* to subvert the host immune response is fundamental to understanding the pathogenesis of this organism.
84 Moreover, defining the host mechanisms targeted by *Y. pestis* to inhibit inflammation can also provide novel insights
85 into how the host responds to bacterial pathogens to control infection.
86 A cascade of events tightly regulates inflammation to ensure rapid responses to control infection and effective
87 resolution after clearance of pathogens to limit tissue damage (27, 28). This inflammatory cascade is initiated by
88 synthesizing potent lipid mediators and is sustained and amplified by the subsequent production of protein mediators
89 (29, 30). Polyunsaturated fatty acid (PUFAs) derived lipid mediators are a family of lipids that critically enhance innate
90 and adaptive immune inflammatory responses (28, 31). Of these, the eicosanoids, including the leukotrienes and the
91 prostaglandins, are widely recognized for their role in influencing the inflammatory cascade during infection (29, 30).
92 Leukotriene B4 (LTB₄) is rapidly synthesized from arachidonic acid upon activation of 5-lipoxygenase (5-LOX), 5-LOX
93 activating protein (FLAP), and LTA₄ hydrolase (32). Previous work has established that LTB₄ is essential for rapidly
94 initiating the inflammatory cascade via engagement with the high affinity BLT1 receptor on resident effector leukocytes
95 (29, 30, 33-36). BLT1 engagement promotes chemotaxis and stimulates effector cells to express and release pro-
96 inflammatory cytokines that lead to chemokine production (37). These chemokines promote the recruitment of
97 circulating leukocytes to the infected tissue (30). Importantly, because of its critical role in initiating the inflammatory
98 cascade, disruption in the timely production of LTB₄ can slow the subsequent downstream release of cytokines and
99 chemokines and the ability of the host to mount a rapid inflammatory response required to control infection.

100 Despite active proliferation of *Y. pestis* within the lungs in the mouse model, previous studies have reported an
101 absence of pro-inflammatory cytokines, chemokines, and neutrophil influx for the first 36 hours of primary pneumonic
102 plague (11-15). This phenotype dramatically differs from pulmonary infection with attenuated mutants of *Y. pestis*
103 lacking the T3SS or Yop effector proteins or by other pulmonary pathogens, such as *Klebsiella pneumoniae*, which induce
104 significant inflammation within 24 hours of bacterial exposure (11-15). Surprisingly, despite the importance of lipid
105 mediators in initiating and defining the inflammatory cascade in response to infection, the role of inflammatory lipids
106 during plague has yet to be defined. In this study, we provide the first lipidomic profile of host inflammatory lipids during
107 the initial 48 h of pneumonic plague and demonstrate a dysregulation in the production of LTB₄ by *Y. pestis*. We further
108 show that while leukocytes can quickly initiate the synthesis of LTB₄ in response to the *Y. pestis* T3SS, the bacterium


109 effectively inhibits the synthesis of this critical lipid mediator via the action of multiple Yop effectors secreted via the
110 same T3SS. Together these data demonstrate active inhibition of LTB₄ production by *Y. pestis*, providing new insights
111 into the interactions between *Y. pestis* and host innate immune cells. Further, these data suggest that modulation in the
112 production of host inflammatory lipids is an additional virulence mechanism used by *Y. pestis* to inhibit the rapid
113 recruitment of immune cells needed to control infection.

114 **Results**

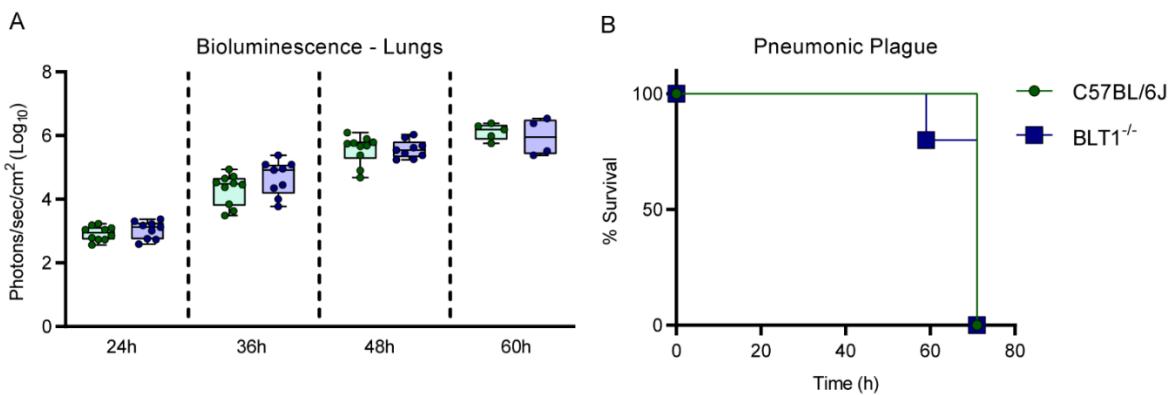
115 **LTB₄ synthesis is blunted during pneumonic plague**

116 Despite the critical role lipid mediators play in the induction of inflammation within the host, the synthesis profile of
117 lipid mediators during pneumonic plague has yet to be defined. Therefore, to establish the kinetics of lipid mediator
118 production during pneumonic plague, C57BL/6J mice were intranasally infected with fully virulent *Y. pestis*, and lungs
119 were collected at 6, 12, 24, 36, and 48 h post-infection. Total lipids were extracted from homogenized tissues with
120 methanol, and 143 host inflammatory lipids were quantified by LC-MS and compared to naïve lungs (38). We observed
121 significant changes in the synthesis of 63 lipids during infection, including lipids generally considered to be pro-
122 inflammatory (18 lipids), anti-inflammatory (41 lipids), or pro-resolving (4 lipids) (S1 Table, S1 Fig., S3 Fig). However, it is
123 important to note that categorizing inflammatory lipids is not simple, and many can have both pro- and anti-
124 inflammatory properties depending on the lipid concentrations and the cell types that interact with the lipid (39, 40).
125 Interestingly, we observed significant differences in the synthesis of the eicosanoids produced via the cyclooxygenase
126 and lipoxygenase pathways (Fig. 1). While the synthesis of several of the cyclooxygenase-dependent prostaglandins
127 increased by 6 h post-infection and remained elevated for 24-48 h (Fig. 1A-E), synthesis of LTB₄ was not significantly
128 elevated until 48 h post-infection (Fig. 1F). This directly correlated with the absence of significant amounts of the LTB₄
129 degraded byproduct 20-hydroxy LTB₄ at the same timepoints (Fig. 1G). However, we observed a significant increase in 5-
130 HETE as early as 6 h post-infection (Fig. 1H), which can result if 5-LOX does not complete the synthesis of arachidonic
131 acid to LTA₄ (LTA₄ is the precursor of LTB₄) (41, 42). Interestingly, we did not observe significant synthesis of 5-oxo-ETE
132 (Fig. 1I), which is derived from 5-HETE, indicating that oxidation of 5-HETE by 5-hydroxyeicosanoid dehydrogenase (5-
133 HEDH) was not occurring within the infected tissues. Together these data suggest that while the cyclooxygenase

134 pathway is induced rapidly during *Y. pestis* infection, LTB₄ synthesis is specifically blunted during pneumonic plague. As
135 LTB₄ is a potent mediator in inflammation (33), we sought further to investigate LTB₄ in the context of *Y. pestis* infection.

136

137 **Fig. 1. LTB₄ synthesis is blunted during pneumonic plague.** C57Bl/6J mice were infected with 10 x the LD₅₀ of *Y. pestis*
138 KIM5 and lungs were harvested at 6, 12, 24, 36, and 48 h post-infection (n=5). Lipids were isolated from homogenized
139 tissues, quantified by LC-MS, and compared to concentrations from uninfected lungs (T=0). Green symbols =
140 cyclooxygenase pathway; Blue symbols = lipoxygenase pathway. Median \pm the range were compared by LIMMA -
141 Moderated t-test; * $=p\leq 0.001$.


142 **BLT1^{-/-} mice are not more susceptible to pneumonic plague than C57BL/6J mice**

143 LTB₄ is recognized by the high-affinity G-protein coupled receptor BLT1, which is expressed primarily by innate and
144 adaptive immune cells (36, 43). LTB₄-BLT1 engagement leads to host inflammatory immune responses such as cytokine
145 release, chemotaxis, phagocytosis, and reactive oxygen species (ROS) production that contribute to the clearance of
146 pathogens (33, 44). Mice deficient in the expression of BLT1 cannot effectively respond to LTB₄ signaling and are more
147 susceptible to infections by bacteria and fungi (37, 45, 46). Because we did not observe LTB₄ synthesis during the early
148 stages of pneumonic plague, we hypothesized that BLT1^{-/-} mice would not be more susceptible to *Y. pestis* infection. To
149 test this hypothesis, we intranasally infected BLT1^{-/-} mice with a fully virulent *Y. pestis* strain that carries a luciferase
150 bioreporter that allows us to monitor bacterial proliferation and dissemination, in real-time, in live animals via optical
151 imaging (47). Over the first 60 h of infection, we observed no difference in bioluminescent signal in the lungs of BLT1^{-/-}
152 mice compared to wild type C57BL/6J mice, indicating that the bacteria did not replicate faster in BLT1^{-/-} mice (Fig. 2A).
153 BLT1^{-/-} mice also did not succumb to infection any quicker than the C57BL/6J controls (Fig. 2B). These data demonstrate
154 that the loss of LTB₄-BLT1 signaling in BLT1^{-/-} mice has no impact on the infectivity of *Y. pestis*, and further supports our
155 lipidomics data that LTB₄ synthesis and signaling is disrupted during pneumonic plague.

156

157

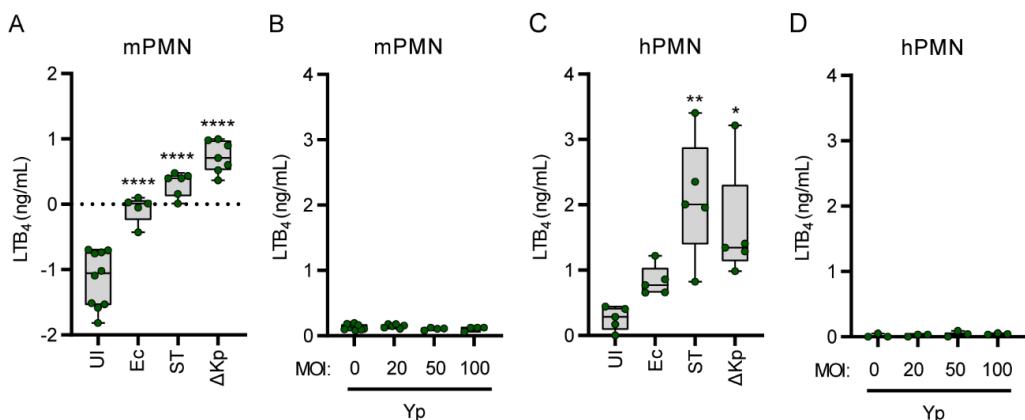
158

159

160 **Fig 2. BLT1^{-/-} mice are not more susceptible to pneumonic plague than C57BL/6J mice.** C57BL/6J and BLT1^{-/-} mice (n=10) were infected intranasally with 10x the LD₅₀ of a bioluminescent strain of *Y. pestis* (*Y. pestis* CO92 LUX_{PcysZK}) and monitored for proliferation by optical imaging and the development of moribund disease. (A) Bacterial proliferation in the lungs as a function of bioluminescence. (B) Survival curves of infected mice.

161

162

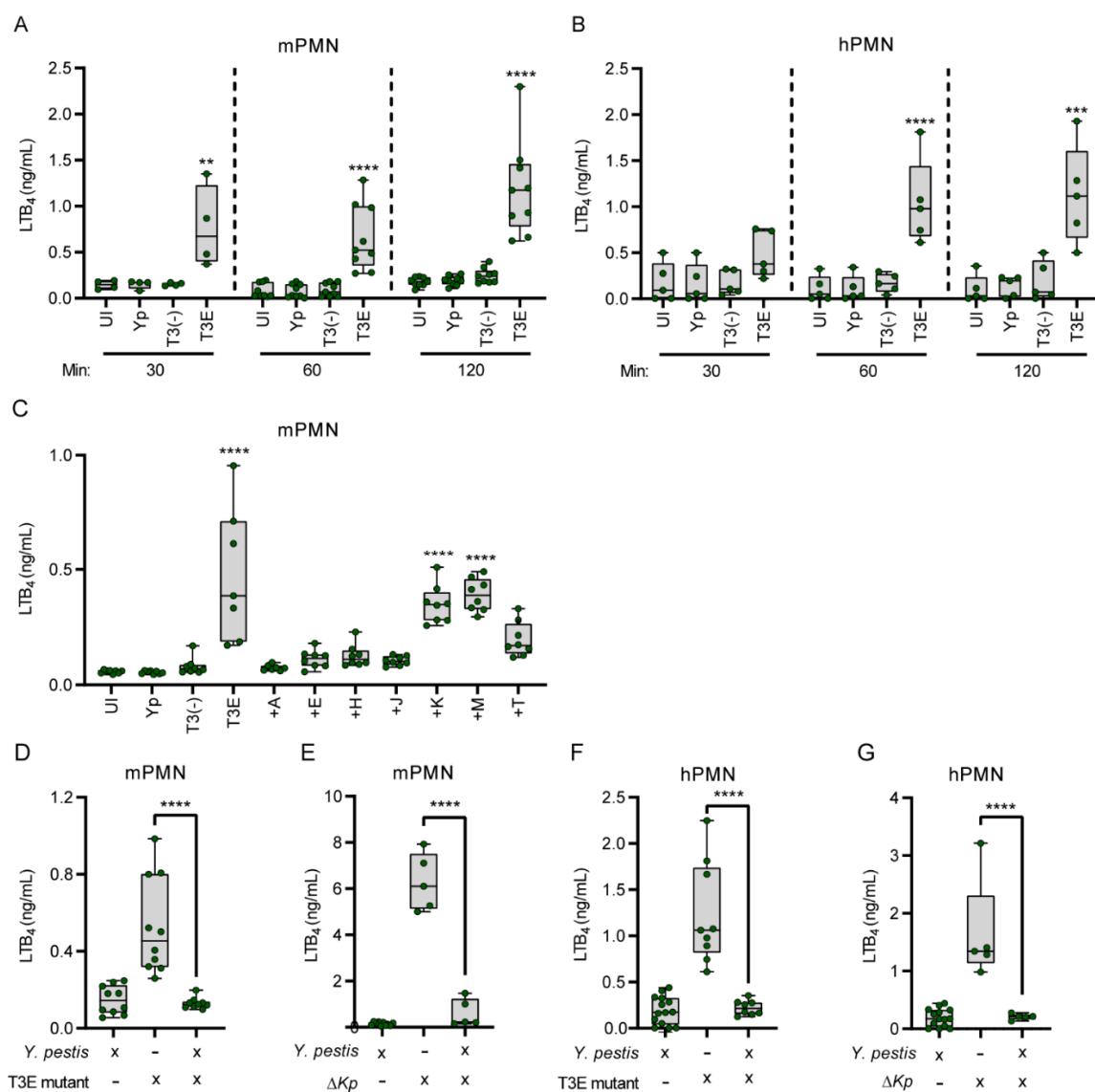

163

164

165 **Neutrophils do not synthesize LTB₄ in response to *Y. pestis***

166 LTB₄ is primarily produced by leukocytes such as mast cells, neutrophils, and macrophages (33). During pneumonic
167 plague, *Y. pestis* initially interacts with alveolar macrophages, but by 12 h post-infection, the bacteria interact primarily
168 with neutrophils (19). Moreover, we previously demonstrated that *Y. pestis* inhibits LTB₄ synthesis by human neutrophils
169 (48). Therefore, we sought to determine if murine neutrophils produce LTB₄ in response to interactions with *Y. pestis*.
170 Bone marrow-derived neutrophils from C57BL/6J mice were infected with different gram-negative bacteria, and the
171 synthesis of LTB₄ was measured by ELISA. When stimulated with *E. coli*, *S. enterica* Typhimurium, or a strain of *K.*
172 *pneumoniae* unable to synthesize its capsule, LTB₄ synthesis was significantly induced within 1 h of infection (Fig. 3A; p≤
173 0.0001). However, infection with *Y. pestis* did not elicit LTB₄ synthesis, even when the MOI was increased to 100 bacteria
174 per neutrophil (Fig. 3B). Similar phenotypes were observed during infection of human peripheral blood neutrophils,
175 recapitulating our previous findings (Fig. 3C-D and (48)). Cell permeability and cytotoxicity were measured after infection
176 to determine if the lack of LTB₄ synthesis was due to *Y. pestis*-induced cell death. No significant cell permeability or
177 cytotoxicity increases were observed during *Y. pestis* infections at an MOI of 20 (Fig. S1A-B). While slightly elevated
178 permeability was observed at an MOI of 100 (Fig. S1C; 9% vs. 28%), overall cytotoxicity was lower in *Y. pestis* infected
179 neutrophils than uninfected neutrophils (Fig. S1D; 4% vs. 12%). Similarly, *Y. pestis* did not induce elevated permeability
180 or cytotoxicity in human neutrophils (Fig. S1E-F). These data demonstrate that neutrophils do not synthesize LTB₄ in
181 response to *Y. pestis*, and this phenotype is unique to this pathogen but not due to *Y. pestis* induced cell death.
182

183


184

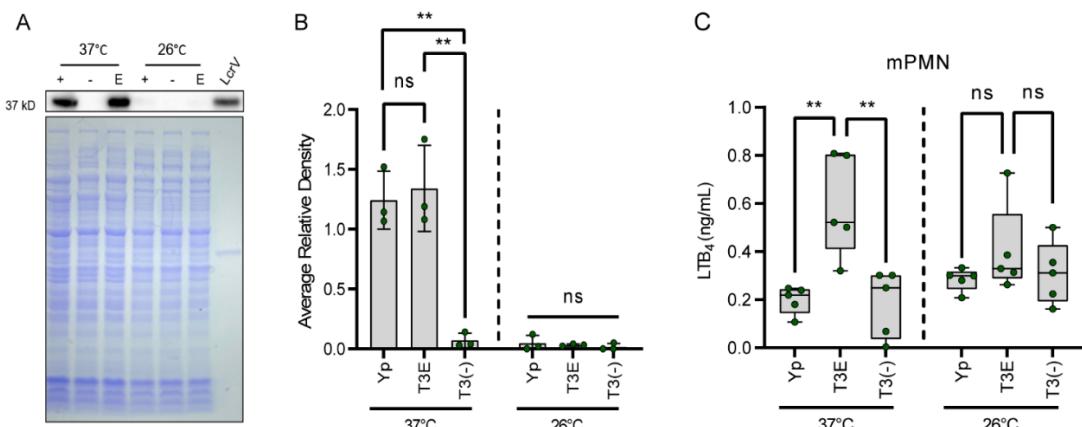
185 **Fig 3. Neutrophils do not synthesize LTB₄ in response to *Y. pestis*.** (A-B) Murine or (C-D) human neutrophils were
186 infected with *E. coli* DH5 α (Ec), *S. enterica* Typhimurium LT2 (ST), or *K. pneumoniae* manC (Δ Kp) at an MOI of 20, or with
187 *Y. pestis* KIM1001 at increasing MOIs. LTB₄ was measured from supernatants 1h post infection by ELISA. Each symbol
188 represents independent biological replicates. UI=Uninfected. One-way ANOVA with Dunnett's *post hoc* test. * = p≤0.05,
189 ** = p≤0.01, **** = p≤0.0001.

190

191 ***Y. pestis* induces LTB₄ synthesis in the absence of the Yop effectors**

192 Seven Yop effector proteins are secreted into neutrophils via the T3SS (21-24), and we have previously shown Yop
193 effector-mediated inhibition of LTB₄ synthesis in human neutrophils at an MOI of 100 (48). However, Yop inhibition of
194 LTB₄ synthesis by murine neutrophils has not been previously shown and we wanted to independently confirm that the
195 Yop effectors are sufficient to inhibit LTB₄ synthesis at a lower MOI. Toward this goal, human and murine neutrophils
196 were infected at an MOI of 20 with a *Y. pestis* mutant strain that expresses the T3SS but lacks all seven Yop effectors (*Y.*
197 *pestis* T3E)(49). In contrast to *Y. pestis* infected cells, we observed a significant increase in LTB₄ synthesis in response to
198 the *Y. pestis* T3E strain, indicating that the Yop effectors are inhibiting synthesis (Fig 4A-B; $p \leq 0.0001$). To further
199 determine which Yop effectors are required to inhibit LTB₄ synthesis, neutrophils were infected with *Y. pestis* strains that
200 expressed only one Yop effector (49). LTB₄ synthesis was significantly decreased if *Y. pestis* expressed YpkA, YopE, YopH,
201 or YopJ, and an intermediate phenotype was observed during infection with a strain expressing YopT (Fig. 4C). To
202 demonstrate further that the Yop effectors were able to inhibit LTB₄ synthesis actively, neutrophils were simultaneously
203 infected with *Y. pestis* and the *Y. pestis* T3E mutant or with *Y. pestis* and a *K. pneumoniae* capsule mutant. Impressively,
204 *Y. pestis* effectively abrogated LTB₄ synthesis by neutrophils from both species stimulated by either *Y. pestis* T3E or *K.*
205 *pneumoniae* (Fig. 4D-G). Together these data confirm that *Y. pestis* is not simply evading immune recognition but is
206 actively inhibiting LTB₄ synthesis via the activity of multiple Yop effectors.

207


208 **Fig 4. *Y. pestis* induces LTB₄ synthesis in the absence of the Yop effectors.** (A) Murine or (B) human neutrophils were
 209 infected with *Y. pestis* KIM1001 (Yp) or mutants that either lacked the Yop effector proteins (T3E) or the Yop effector
 210 proteins and the T3SS [T3(-)] (MOI of 20). LTB₄ was measured from supernatants by ELISA at the indicated time points.
 211 (C) Murine neutrophils were infected with Yp, T3E, T3(-), or *Y. pestis* KIM1001 strains expressing only one Yop effector:
 212 +A = YpkA; +E = YopE; +H = YopH; +J = YopJ; +K = YopK; +M = YopM; or +T = YopT (MOI of 20). (D-E) Murine or (F-G)
 213 human neutrophils were co-infected with (D, F) Yp and T3E mutant or (E, G) with Yp and *K. pneumoniae* manC (ΔKp)
 214 (MOI of 20). LTB₄ was measured from supernatants 1h post infection by ELISA. Each symbol represents independent
 215 biological replicates. UI=Uninfected. One-way ANOVA with Dunnett's *post hoc* test. * = p≤0.05, ** = p≤0.01, *** =
 216 p≤0.001, **** = p≤0.0001.

217 **Neutrophils synthesize LTB₄ in response to the *Y. pestis* T3SS in the absence of**
218 **the Yop effectors**

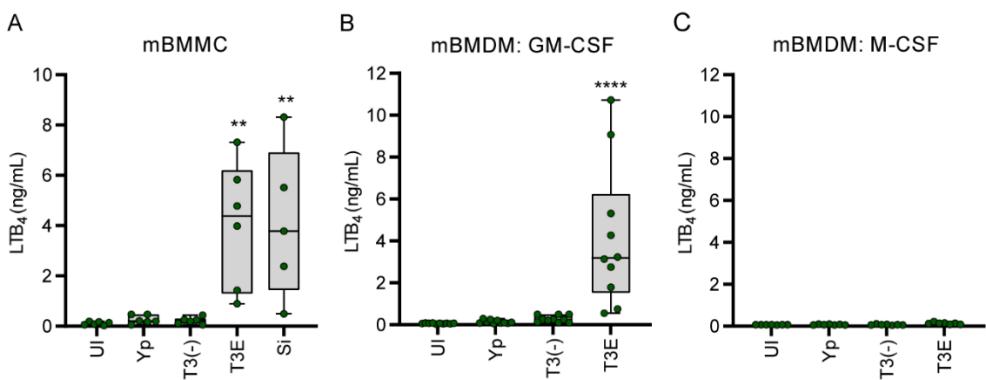
219 The T3SS is a pathogen-associated molecular pattern (PAMP) that is recognized by innate immune cells (7, 50, 51). To
220 ascertain the role of T3SS in LTB₄ synthesis by neutrophils during interactions with the *Y. pestis* T3E strain, we infected
221 human and murine neutrophils with a *Y. pestis* strain lacking the pCD1 plasmid encoding the Ysc T3SS [*Y. pestis* T3⁽⁻⁾]. We
222 did not observe any increase in LTB₄ synthesis by neutrophils during interactions with *Y. pestis* T3⁽⁻⁾ compared to *Y.*
223 *pestis*, even after 2 h of infection (Fig 4 A-B). Importantly, infection with the *Y. pestis* T3⁽⁻⁾ strain did not result in
224 increased neutrophil cell permeability or cytotoxicity (S1 Fig.). To independently test that the T3SS is required to induce
225 LTB₄ synthesis, *Y. pestis* was grown under conditions that alter the expression of the T3SS prior to infection of
226 neutrophils (5, 8, 16). Measuring expression of the LcrV protein as a proxy for overall T3SS expression confirmed
227 decreased T3SS expression in cultures grown at 26°C compared to 37°C (Fig. 5A-B). As predicted by our pCD1 mutant
228 data, LTB₄ synthesis was not observed in *Y. pestis* strains grown at 26°C (Fig. 5C). Together, these data indicate that
229 neutrophils recognize the *Y. pestis* T3SS as a PAMP that leads to the induction of LTB₄ synthesis, but only in the absence
230 of the Yop effectors.

231

232

233

234 **Fig 5. Neutrophils synthesize LTB₄ in response to the *Y. pestis* T3SS in the absence of the Yop effectors. (A)**
235 Representative Western blot and coomassie images of *Y. pestis* KIM1001 lysates harvested from cultures grown at 37°C
236 or 26 °C. (+) = Yp, (-) = T3(-); E = T3E; LcrV = 0.2 ug recombinant LcrV protein. (B) Average relative densities of LcrV from
237 western blot images. (C) LTB₄ measurement from supernatants of murine neutrophils infected for 1 h with *Y. pestis*
238 KIM1001 (Yp) or mutants that either lacked the Yop effector proteins (T3E) or the Yop effector proteins and the T3SS
239 [T3(-)] grown at 37°C or 26 °C (MOI of 20). Each symbol represents biological replicates. UI=Uninfected. One-way ANOVA
240 with Tukey's *post hoc* test. ns = not significant, ** = p≤0.01.


241

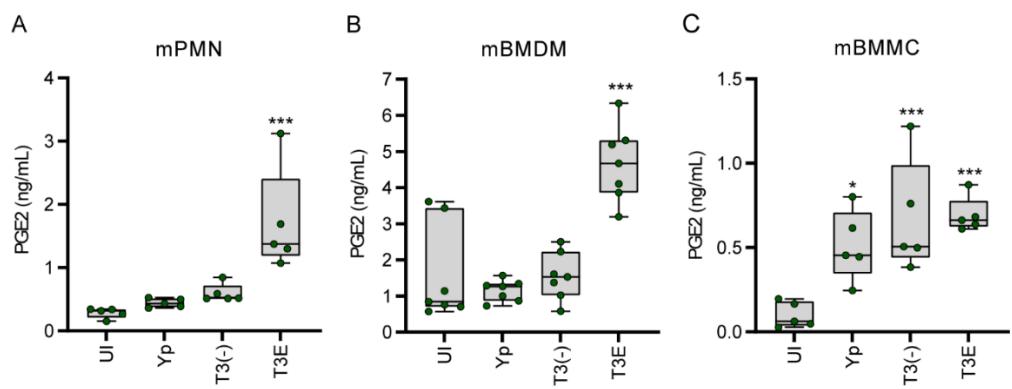
242 ***Y. pestis* inhibition of LTB₄ synthesis is conserved during interactions with other**
243 **leukocytes**

244 In addition to neutrophils, two other lung resident leukocytes that can produce LTB₄ are mast cells and, to a lesser
245 degree, macrophages (31). To determine if *Y. pestis* inhibits LTB₄ synthesis by these two cell types, bone marrow-derived
246 mast cells and macrophages were isolated from C57Bl/6J mice and infected with *Y. pestis*, *Y. pestis* T3E, or *Y. pestis* T3⁽⁻⁾.
247 As in neutrophils, we observed no synthesis of LTB₄ by mast cells, even after 2 h of interacting with *Y. pestis* (Fig. 6A).
248 However, LTB₄ synthesis was significantly elevated in the absence of the Yop proteins (Fig. 6A, T3E; p≤0.01), reaching
249 levels similar to that of mast cells stimulated with crystalline silica, a potent inducer of LTB₄ synthesis in mast cells (52,
250 53). LTB₄ synthesis by mast cells was similarly dependent on the presence of the T3SS, as the *Y. pestis* T3⁽⁻⁾ strain did not
251 induce LTB₄ synthesis (Fig. 6A). For macrophages, previous reports indicate that macrophage polarization influences the
252 ability of macrophages to produce LTB₄, with M1-polarized macrophages better able to synthesize LTB₄ in response to
253 bacterial ligands than M2-polarized cells (54). Therefore, we measured LTB₄ synthesis of both M1- and M2-polarized
254 macrophages. Again, we observed no significant synthesis of LTB₄ by either macrophage population during interactions
255 with *Y. pestis*, even after 4 h post-infection (Fig. 6A-B). However, significant synthesis of LTB₄ was observed in M1-
256 polarized macrophages in response to the *Y. pestis* T3E strain, which was dependent on the presence of the T3SS (Fig.
257 6B; p≤ 0.0001). As suggested by previous reports (55), we did not observe LTB₄ synthesis by M2-polarized macrophages
258 during interactions with any of the *Y. pestis* strains tested (Fig. 6C). Together, these data indicate that, as neutrophils,
259 mast cells, and M1-polarized macrophages can quickly synthesize LTB₄ in response to the *Y. pestis* T3SS, but the activity
260 of the Yop effectors inhibits this response.

261

262

263


264 **Fig 6. Lack of LTB₄ response to *Y. pestis* is conserved in other leukocytes.** (A) Murine BMMCs were infected with *Y.*
265 *pestis* KIM1001 (Yp), mutants that either lacked the Yop effector proteins (T3E), the Yop effector proteins and the T3SS
266 [T3(-)], or treated with silica crystals (Si). LTB₄ was measured from supernatants by ELISA at 2 h post infection. Murine
267 BMDMs differentiated towards (B) M1 or (C) M2 phenotypes were infected with Yp, T3E, or T3(-). LTB₄ was measured
268 from supernatants by ELISA at 4 h post infection (MOI of 20). Each symbol represents independent biological replicates.
269 UI=Uninfected. One-way ANOVA with Dunnett's *post hoc* test. ** = p≤0.01, **** = p≤0.0001.

270

271 **Synthesis of PGE₂ by neutrophils and macrophages, but not mast cells, is**
272 **inhibited by *Y. pestis***

273 Unlike LTB₄, the cyclooxygenase pathway appears to be induced during pneumonic plague (Fig. 1), suggesting that *Y.*
274 *pestis* is unable to inhibit prostaglandin synthesis by leukocytes. Therefore, using PGE₂ as a representative prostaglandin,
275 we next examined the ability of murine neutrophils, macrophages, and mast cells to produce prostaglandins in response
276 to *Y. pestis*. Like LTB₄, neutrophils, and M1-polarized macrophages produce PGE₂ in response to the T3SS, but synthesis
277 is inhibited by secretion of the Yop effectors (Fig. 7A-B; p≤0.0001). However, mast cells appeared to produce equivalent
278 amounts of PGE₂ in response to all three strains of *Y. pestis*, indicating that *Y. pestis* is not able to inhibit PGE₂ synthesis
279 in mast cells (Fig. 7C; p≤0.05). These data suggest that signals leading to cyclooxygenase activity in mast cells differ from
280 those in other leukocytes and that mast cells may be a primary source of PGE₂ and other prostaglandins in response to *Y.*
281 *pestis* infection of the lungs.

282

283

284 **Fig 7. *Y. pestis* inhibits synthesis of PGE₂ in neutrophils and macrophages but not mast cells.** (A) Murine neutrophils, (B)
285 M1-differentiated BMDMs, or (C) BMMCs were infected with *Y. pestis* KIM1001 (Yp) or mutants that either lacked the
286 Yop effector proteins (T3E) or the Yop effector proteins and the T3SS [T3(-)]. PGE₂ was measured from supernatants by
287 ELISA at 1 h, 4 h, and 2 h post-infection, respectively. Each symbol represents independent biological replicates.
288 UI=Uninfected. One-way ANOVA with Dunnett's *post hoc* test. * = p≤0.05, *** = p≤0.001.

289

290 **Discussion**

291 A hallmark manifestation of plague is the absence of inflammation during the early stages of infection, which is critical

292 to *Y. pestis* virulence (10, 17, 26, 51). While *Y. pestis* has been shown to actively dampen the host immune response,

293 there is a gap in our understanding of the role of lipid mediators of inflammation during plague. This study sought to

294 define the host inflammatory lipid mediator response during pneumonic plague and expands our current understanding

295 of how *Y. pestis* manipulates the immune system. During the earliest stages of infection, the host appears unable to

296 initiate a timely LTB₄ response. Because LTB₄ is a potent chemoattractant crucial for rapid inflammation (29, 30, 56), this

297 delay in LTB₄ synthesis during plague likely has a significant impact on the ability of the host to mount a robust

298 inflammatory response needed to inhibit *Y. pestis* colonization. First, in the absence of LTB₄, sentinel leukocytes will not

299 undergo autocrine signaling via LTB₄-BLT1. Because LTB₄-BLT1 engagement activates antimicrobial programs in

300 leukocytes (29, 30, 45, 57-59), the absence of autocrine signaling diminishes the ability of sentinel leukocytes directly

301 interacting with *Y. pestis* to mount an effective antimicrobial response to kill the bacteria. LTB₄ synthesis is also

302 regulated by BLT1 signaling, and autocrine signaling is required to amplify the production of LTB₄ needed to rapidly

303 recruit additional tissue-resident immune cells to the site of infection (29, 30, 58, 60, 61). Therefore, the normal feed-

304 forward amplification of LTB₄ synthesis, which is key for a rapid response to a bacterial infection, will also be inhibited by

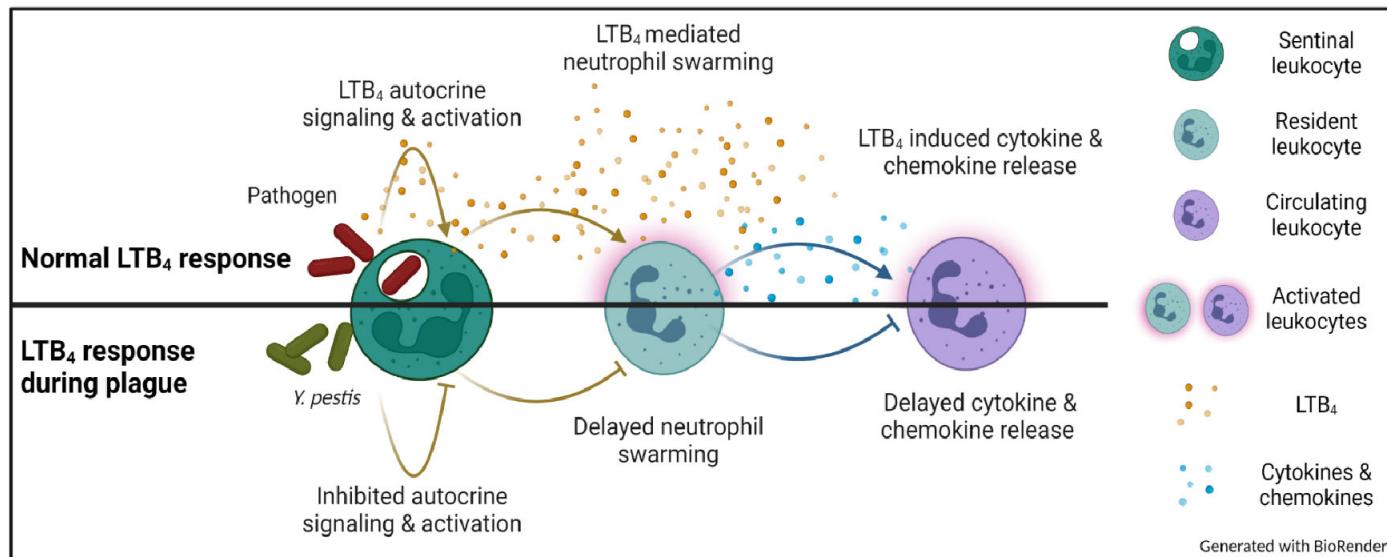
305 *Y. pestis*. Second, because LTB₄ is required for neutrophil swarming (60, 62, 63), *Y. pestis* will also inhibit this key

306 inflammatory mechanism (64). Neutrophil swarming is required to contain bacteria at initial sites of infection (65, 66).

307 Thus, while individual neutrophils may migrate towards sites of *Y. pestis* infection, effective neutrophil swarming of large

308 populations of neutrophils will be diminished. Finally, LTB₄ is a diffusible molecule that can induce the inflammatory

309 cascade in bystander cells (30, 67). Thus, while *Y. pestis* can inhibit cytokine and chemokine expression by cells with


310 which it directly interacts (11, 15), inhibition of LTB₄ synthesis likely also delays subsequent release of molecules by cells

311 that do not directly interact with the bacteria. Together with the bacterium's other immune evasion mechanisms,

312 inhibition of LTB₄ synthesis is likely another significant contributor to the generation of the non-inflammatory

313 environment associated with the early stages of pneumonic plague (10, 11, 15). Incorporating these new LTB₄ data with

314 published findings from other laboratories (10, 11, 15), we have updated our working model of *Y. pestis* inhibition of
315 inflammation during pneumonic plague (Fig. 8).

316

317 **Fig 8. Working model for inhibition of the inflammatory cascade during plague.**

318

319 These data also revealed that the T3SS translocon apparatus triggers LTB₄ synthesis by leukocytes. Because our
320 previous work with human samples indicated that neutrophils synthesize LTB₄ in response to *Y. pestis* in the absence of
321 the T3SS (48), we were initially surprised that we did not observe LTB₄ synthesis by murine neutrophils to the *Y. pestis*
322 T3⁽⁻⁾ strain. However, when we infected human neutrophils with lower MOIs, we observed that they also did not
323 synthesize LTB₄ in the absence of the T3SS (Fig. 4B, S2 Fig.). Under these infection conditions, neutrophils from both
324 species only produced LTB₄ in response to *Y. pestis* expressing the T3SS but none of the Yop effectors. These data
325 support that the T3SS is a PAMP produced by *Y. pestis* that is not only recognized by macrophages (68) but also by
326 neutrophils, which to our knowledge represents the first example of the *Y. pestis* T3SS serving as a PAMP in neutrophils.
327 In macrophages, components of the T3SS are recognized by members of the nod-like receptor (NLR) family, leading to
328 inflammasome activation (69-72), suggesting that inflammasome activation by the T3SS may trigger not only IL-1 β /IL-18
329 secretion and pyroptosis but also LTB₄ synthesis. However, whether inflammasome activation is required for the *Y.*
330 *pestis* T3SS-mediated LTB₄ synthesis remains unclear, as LTB₄ synthesis is not always dependent on inflammasome
331 activation (52, 73, 74). Interestingly, infection of neutrophils with a strain of *Y. pestis* that only expresses YopM, an
332 effector that specifically inhibits the caspase-1 inflammasome (75), did not inhibit LTB₄ synthesis (Fig. 4C and (48)),
333 suggesting that LTB₄ synthesis in response to the T3SS is not dependent on caspase-1 in neutrophils. Future studies using
334 neutrophils from mice defective in specific NLRs and caspases will allow us to definitively determine if inflammasome
335 activation is required for LTB₄ synthesis in neutrophils in response to the *Y. pestis* T3SS. Moreover, because the enzymes
336 that lead to LTB₄ synthesis are well defined (32, 76), we can use *Y. pestis* mutants expressing different Yop effectors to
337 specifically define the molecular mechanisms leading to activation of these enzymes, providing a clearer understanding
338 of the signaling pathway(s) triggering LTB₄ synthesis in the context of T3SS recognition. The lack of LTB₄ synthesis in
339 response to the *Y. pestis* T3⁽⁻⁾ strain also differed from what we observed for other gram-negative bacteria we tested
340 (Fig. 4D-G), indicating that *Y. pestis* may also mask other potential gram-negative PAMPs that would typically be
341 recognized by neutrophils. These data argue that *Y. pestis* has evolved both active (via the Yop effectors) and passive
342 mechanisms to evade immune recognition and induction of LTB₄ synthesis. Finally, it is worth noting that unlike human
343 neutrophils, murine neutrophils did not appear to synthesize LTB₄ during infections with the T3(-) strain at high MOIs (S2
344 Fig.). Differences in neutrophil responses between the two species have been well documented (77-81) but these

345 observations merit further investigation into LTB₄ responses by human neutrophils using higher MOIs to determine if
346 human neutrophils are able to recognize other PAMPs during *Y. pestis* infection.

347 Finally, while we focused primarily on LTB₄ in this study, our global lipidomics approach also revealed synthesis profiles
348 for a variety of other inflammatory lipids that merit future considerations. The rapid cyclooxygenase response raises
349 questions about whether prostaglandins are protective or detrimental during pneumonic plague. Historically,
350 prostaglandins were thought to promote inflammation, but these mediators appear more nuanced under closer scrutiny
351 and can just as likely inhibit inflammation as well as participate in normal development physiology without eliciting
352 inflammation (39, 40, 82). All prostaglandins we observed as being significantly elevated during the non-inflammatory
353 stage of pneumonic plague (PGA₂, PGD₂, PGE₂, and PGJ₂) have been shown to inhibit inflammation in various models,
354 especially as synthesis levels increase (39, 40, 83-85). More specifically, PGE₂ was shown to inhibit NADPH oxidase
355 activity during infection with *Klebsiella pneumoniae*, which suppressed bacterial killing (86). PGE₂ has also been shown
356 to directly counteract the proinflammatory activities of LTB₄ (87, 88). The phagocytic index of LTB₄-stimulated rat
357 alveolar macrophages (AMs) is reduced when co-stimulated with PGE₂ (88). Moreover, AMs treated with PGE₂ show a
358 40% reduction in LTB₄ synthesis when stimulated with an ionophore known to induce a strong LTB₄ response (87). This
359 inhibition of LTB₄ by PGE₂ is suspected to be via an increase in second messenger cAMP that activates protein kinase A
360 (PKA), which has been shown to inhibit LTB₄ synthesis (87, 89). Together, these data suggest that the elevated levels of
361 prostaglandin synthesis observed during pneumonic plague may also contribute to the blunted LTB₄ response we
362 observed during pneumonic plague. Interestingly, our in vitro data indicate that *Y. pestis* also inhibits prostaglandin
363 synthesis by macrophages and neutrophils but not mast cells, suggesting that mast cells may be the primary source of
364 prostaglandins during pneumonic plague. Surprisingly, while mast cells are important sentinel leukocytes in the lung and
365 dermis, their contributions during plague and responses to *Y. pestis* have not been previously explored. Our discovery
366 that mast cells respond differently to *Y. pestis* than other leukocytes support that we need more studies into the role of
367 these cells during plague.

368 In conclusion, we have defined the kinetics of the inflammatory lipid mediator response during pneumonic plague,
369 which revealed a blunted LTB₄ response during the early stages of infection. Furthermore, we have shown that *Y. pestis*
370 actively manipulates lipid synthesis by leukocytes via the activity of Yop effectors to generate a beneficial inflammatory

371 outcome to the pathogen. These discoveries warrant further research into the role of lipids, and subsequent
372 manipulation of their synthesis by *Y. pestis*, to fully understand the molecular mechanisms *Y. pestis* has evolved to
373 manipulate the mammalian immune response.

374 **Material and Methods**

375 **Bacterial strains**

376 Bacterial strains used in these studies are listed in S2 Table. For mouse infections, *Y. pestis* was grown at 26 °C for 6-8
377 h, diluted to an optical density (OD) (600 nm) of 0.05 in Bacto brain heart infusion (BHI) broth (BD Biosciences, Cat. No.
378 237500) with 2.5 mM CaCl₂ and then grown at 37 °C with aeration for 16 to 18 h (90). For cell culture infections, *Y. pestis*
379 was cultured with BHI broth for 15 to 18 h at 26°C in aeration. Cultures were then diluted 1:10 in fresh warmed BHI
380 broth containing 20 mM MgCl₂ and 20 mM Na-oxalate and cultured at 37°C for 3 h with aeration to induce expression of
381 the T3SS. Bacterial concentrations were determined using a spectrophotometer and diluted to desired concentrations in
382 1 × Dulbecco's phosphate-buffered saline (DPBS) for mouse infections or fresh medium for *in vitro* studies.
383 Concentrations of bacterial inoculums for mouse studies were confirmed by serial dilution and enumeration on agar
384 plates.

385 **Mouse infections**

386 All animal work was reviewed and approved by the University of Louisville IACUC prior to initiation of studies and
387 performed twice to ensure reproducibility. Infected mice were monitored for the development of moribund disease
388 symptoms twice daily and humanely euthanize when they met previously approved end point criteria. C67BL/6J or BLT1^{-/-}
389 mice (91)(6-8 weeks) were anesthetized with ketamine/xylazine and administered 20 µL bacteria suspended in 1×
390 DPBS to the left nare as previously described (47, 90). For lipidomic measurements, mice were humanely euthanized by
391 CO₂ asphyxiation at 6, 12, 24, 36, or 48 h and lungs were harvested. Lungs were transferred to a 2 mL tube pre-filled
392 with 2.8 mm ceramic beads (VWR, Cat. No. 10158-612), flash frozen on dry ice, and stored at -80°C until preparation for
393 lipidomic analysis. For BLT1^{-/-} studies, mice were infected with a strain of *Y. pestis* carrying a bioluminescent bioreporter

394 to monitor bacterial proliferation and dissemination by optical imaging using an IVIS Spectrum In Vivo Imaging System
395 (Caliper) as previously described (47).

396 **Lipid extraction and quantification by LC-MS**

397 To prepare the samples for lipidomic analysis, first lungs were thawed with 1.5 mL of ice cold 1 X DPBS +HALT protease
398 and phosphatase inhibitor cocktail for 3 minutes. Lungs were then homogenized with Bead Ruptor 4 (OMNI) at speed 5
399 (5 m/s) for 3 cycles of 30 seconds with 1-minute pauses in which the lungs were placed on ice. Tissue debris was then
400 centrifuged for 10 min at 1,500 x g at 4°C. The supernatant (~1.5 mL) was then transferred to a fresh eppendorf tube.
401 From this, 250 µL of supernatant were combined with 750 µL of 100% methanol + 0.1% BHT (final concentration of 75%)
402 and incubated at 4°C for 24 h to inactivate *Y. pestis* and extract lipids. After confirmation of successful inactivation of *Y.*
403 *pestis*, lipids were extracted and quantified by the Wayne State University Lipidomics Facility as previously described (38).
404 Briefly, samples were applied to conditioned C18 reverse phase cartridges, washed with water followed by hexane and
405 dried under vacuum at the end of each wash. Cartridges were then eluted with 1 mL methanol containing 0.1% formic
406 acid. The eluate was dried under a gentle stream of nitrogen. The residue was redissolved in 30 µL methanol that was
407 diluted with 30 µL of 10 mM aqueous ammonium acetate and readied for LC-MS analysis. The extracted samples were
408 analyzed for the fatty acyl lipidome using standardized methods as described earlier (92, 93).

409 **Cell isolation and cultivation**

410 Use of human neutrophils was approved by the University of Louisville Institutional Review Board (IRB) guidelines
411 (approval no. 96.0191). Human neutrophils were isolated from the peripheral blood of healthy, medication-free donors,
412 as described previously (94). Neutrophil isolations yielded ≥95% purity and were used within 1 h of isolation. Murine
413 neutrophils were isolated from bone marrow of 7–12-week-old mice using an Anti-Ly-6G MicroBeads kit (Miltenyi
414 Biotec; Cat. No. 130-120-337) per the manufacturer's instructions. Neutrophil isolations yielded ≥95% purity and were
415 used within 1 h of isolation. Macrophages were differentiated from murine bone marrow in DMEM supplemented with
416 30% L929 conditioned media, 1 mM Na-pyruvate, and 10% FBS for 6 days. Macrophages were either polarized with 10
417 ng/mL of GM-CSF (Kingfisher Biotech; Cat. No. RP0407M) or with 10 ng/mL of M-CSF (Kingfisher Biotech; Cat. No.
418 RP0462M) throughout the differentiation. The medium was replaced on days 1 and 3. Murine mast cells were isolated

419 and differentiated from bone marrow as previously described (95). Briefly, isolated bone marrow cells were
420 resuspended in BMMC culture medium [DMEM containing 10% FCS, penicillin (100 units/mL), streptomycin (100
421 mg/mL), 2 mmol/L L-glutamine, and 50 mmol/L β -mercaptoethanol] supplemented with recombinant mouse stem cell
422 factor (SCF) (12.5 ng/mL; R&D Systems, Cat. No. 455-MC) and recombinant mouse IL-3 (10 ng/mL; R&D Systems, Cat. No.
423 403-ML). Cells were plated at a density of 1×10^6 cells/mL in a T-75 cm² flask. Nonadherent cells were transferred after
424 48 hours into fresh flasks without disturbing the adherent (fibroblast) cells. Mast cells were visible after 4 weeks of
425 culture and propagated further or plated for experiments in DMEM without antibiotics.

426 **Leukocyte infections**

427 Human neutrophils (1×10^6) were resuspended in Kreb's buffer (w/ Ca²⁺ & Mg) then adhered to 24-well plates that
428 were coated with pooled human serum for 30 min prior to infection (wells were washed twice with 1 x DPBS prior to
429 plating the cells). Murine neutrophils (1×10^6) were resuspended in RPMI + 5% FBS then adhered to 24-well plates that
430 were coated with FBS for 30 min prior to infection (wells were washed twice with 1 x DPBS prior to plating the cells).
431 Neutrophils were infected at a multiplicity of infection (MOI) of 20, 50, or 100 and incubated for 1 h in a 37°C CO₂ cell
432 culture incubator. Co-infections were performed at a final MOI of 20 (10 for each strain). 1 h post-infection,
433 supernatants were collected, centrifuged for 1 min at 6,000 x g's, and supernatants devoid of cells were transferred to a
434 fresh eppendorf tube. Samples were stored at -80°C until ELISA analysis. Macrophages (2×10^6) were adhered to 24-well
435 plates in DMEM + 10% FBS 1 day prior to infection. Macrophages were infected at an MOI of 20. At 4 h post infection,
436 supernatants were collected, centrifuged for 1 min at 6,000 x g's, and supernatants devoid of cells were transferred to a
437 fresh eppendorf tube. Samples were stored at -80°C until ELISA analysis. Mast cells (2.5×10^5) were adhered to 24-well
438 plates in DMEM only for 1 h prior to infection. Mast cells were infected at an MOI of 20 or treated with crystalline silica
439 (100 mg/cm²). At 2 h post infection supernatants were collected, centrifuged for 1 min at 6,000 x g's, and supernatants
440 devoid of cells were transferred to a fresh eppendorf tube. Samples were stored at -80°C until ELISA analysis.

441 **Measurement of LTB₄ and PGE₂ by enzyme-linked immunosorbent assay**

442 Supernatants of neutrophils, macrophages, and mast cells were collected and measured for LTB₄ or PGE₂ by enzyme-
443 linked immunosorbent assay (ELISA) per manufacturer's instructions (Cayman Chemicals; Cat. No. 520111 and Cat. No.
444 514012, respectively).

445 **Cell viability assays**

446 To determine leukocyte permeability, cells were incubated with 90% trypan blue for 5 min and trypan blue exclusion
447 was measured using SD100 counting chambers (VWR; Cat. No. MSPP-CHT4SD100) and a cell counter (Nexcelom
448 Cellometer Auto T4). To determine leukocyte cytotoxicity, lactate dehydrogenase (LDH) was measured from leukocyte
449 supernatants using CytoTox 96 Non-Radioactive Cytotoxicity kit (Promega; Cat. No. g1780) per manufacturer's
450 instructions.

451 **Measurement of LcrV by western blot**

452 Bacterial strains were cultured with BHI broth for 15 to 18 h at 26°C in aeration. Cultures were then diluted 1:10 in
453 fresh warmed BHI broth containing 20 mM MgCl₂ and 20 mM Na-oxalate and cultured at 37°C or 26°C for 3 h. 1 OD₆₀₀ of
454 bacterial pellets were collected and resuspended in SDS-PAGE loading buffer, boiled for 10 min, and 0.1 OD₆₀₀ was
455 separated on a 10% SDS-PAGE gel. As a positive control, 0.2 g of recombinant LcrV protein (BEI resources; Cat. No. NR-
456 32875) was used. Samples were immunoblotted with polyclonal anti-LcrV antibody (BEI Resources; Cat. No. NR-31022)
457 diluted to 1:4,000. Anti-goat IgG HRP secondary antibody was diluted to 1:5,000 (Bio-Techne; Cat. No. HAF017).
458 Densitometry was performed using ImageJ software to compare LcrV bands between samples (96).

459 **Statistics**

460 Human neutrophils were harvested from both male and female donors and infections were performed on different
461 days. Murine experiments were performed on both male and female mice and were performed on different days.
462 Where appropriate, one-way analysis of variance (ANOVA) with Dunnett's or Tukey's post-test, or T-test with Mann-
463 Whitney's post-test, as indicated in individual figure legends, were used for statistical analysis, and performed using
464 Prism 8 (GraphPad). For the LC-MS data, a LIMMA - Moderated t-test was performed using a modified version of our
465 previously published protocol using R packages (97-99). Briefly, raw data were transformed by taking logarithmic base 2

466 followed by quantile normalization. Missing values were then ascribed using a singular value decomposition method.
467 Lipids missing > 40% of the values were excluded from subsequent analysis. Finally, differentially abundant lipids
468 ($p < 0.05$) were further filtered by fold-change (FC) criteria ($1 < \log_2 \text{FC} < 1$) and multiple comparisons testing with a false
469 discovery rate.

470 Acknowledgements

471 The authors would like to acknowledge Dr. Jon Goguen for generously sharing the *Yersinia pestis* KIM1001 strains.

472 References

- 473 1. Frith J. The history of plague – Part 1. The three great pandemics. *History*. 2012;20(2).
- 474 2. Bertherat E. Plague around the world, 2010–2015. *World Health Organization*. 2016;8(91):89-104.
- 475 3. Gage KL, Kosoy MY. Natural history of plague: Perspectives from more than a century of research. *Annu Rev Entomol*.
476 2005;50:505-28.
- 477 4. Nelson CA, Meaney-Delman D, Fleck-Derderian S, Cooley KM, Yu PA, Mead PS. Antimicrobial treatment and prophylaxis of
478 plague: Recommendations for naturally acquired infections and bioterrorism response. *Morbidity and Mortality Weekly Report*.
479 2021;70(3).
- 480 5. Perry RD, Fetherston JD. *Yersinia pestis*—Etiologic agent of plague. *Clinical Microbiology Reviews*. 1997;10(1):35-66.
- 481 6. Eisen RJ, Dennis DT, Gage KL. The role of early-phase transmission in the spread of *Yersinia pestis*. *J Med Entomol*.
482 2015;52(6):1183-92.
- 483 7. Coburn B, Sekirov I, Finlay BB. Type III secretion systems and disease. *Clin Microbiol Rev*. 2007;20(4):535-49.
- 484 8. Dewoody RS, Merritt PM, Marketon MM. Regulation of the *Yersinia* type III secretion system: Traffic control. *Front Cell Infect
485 Microbiol*. 2013;3:4.
- 486 9. Straley SC, Skrzypek E, Plano GV, Bliska JB. Yops of *Yersinia* spp. pathogenic for humans. *Infection and Immunity*. 1993;61(8).
- 487 10. Bosio CF, Jarrett CO, Gardner D, Hinnebusch BJ. Kinetics of innate immune response to *Yersinia pestis* after intradermal infection
488 in a mouse model. *Infect Immun*. 2012;80(11):4034-45.
- 489 11. Lathem WW, Crosby SD, Miller VL, Goldman WE. Progression of primary pneumonic plague A mouse model of infection,
490 pathology, and bacterial transcriptional activity. *PNAS*. 2005;102(49):17786-91.
- 491 12. Banerjee SK, Crane SD, Pechous RD. A dual role for the plasminogen activator protease during the preinflammatory phase of
492 primary pneumonic plague. *J Infect Dis*. 2020;222(3):407-16.
- 493 13. Cantwell AM, Bubeck SS, Dube PH. YopH inhibits early pro-inflammatory cytokine responses during plague pneumonia. *BMC
494 Immunology*. 2010;11(29).
- 495 14. Peters KN, Dhariwala MO, Hughes Hanks JM, Brown CR, Anderson DM. Early apoptosis of macrophages modulated by injection
496 of *Yersinia pestis* YopK promotes progression of primary pneumonic plague. *PLoS Pathog*. 2013;9(4):e1003324.
- 497 15. Bubeck SS, Cantwell AM, Dube PH. Delayed inflammatory response to primary pneumonic plague occurs in both outbred and
498 inbred mice. *Infect Immun*. 2007;75(2):697-705.
- 499 16. Plano GV, Schesser K. The *Yersinia pestis* type III secretion system: Expression, assembly and role in the evasion of host
500 defenses. *Immunol Res*. 2013;57(1-3):237-45.
- 501 17. Demeure C, Dussurget O, Fiol GM, Le Guern AS, Savin C, Pizarro-Cerda J. *Yersinia pestis* and plague: An updated view on
502 evolution, virulence determinants, immune subversion, vaccination and diagnostics. *Microbes Infect*. 2019.
- 503 18. Marketon MM, DePaolo RW, DeBord KL, Jabri B, Schneewind O. Plague bacteria target immune cells during infection. *Science*.
504 2005;309(5741):1739-41.
- 505 19. Pechous RD, Sivaraman V, Price PA, Stasulli NM, Goldman WE. Early host cell targets of *Yersinia pestis* during primary
506 pneumonic plague. *PLoS Pathog*. 2013;9(10):e1003679.
- 507 20. Rolan HG, Durand EA, Mecsas J. Identifying *Yersinia* YopH-targeted signal transduction pathways that impair neutrophil
508 responses during in vivo murine infection. *Cell Host Microbe*. 2013;14(3):306-17.
- 509 21. Dudte SC, Hinnebusch BJ, Shannon JG. Characterization of *Yersinia pestis* interactions with human neutrophils *In vitro*. *Front Cell
510 Infect Microbiol*. 2017;7:358.

511 22. Spinner JL, Cundiff JA, Kobayashi SD. *Yersinia pestis* type III secretion system-dependent inhibition of human polymorphonuclear
512 leukocyte function. *Infect Immun.* 2008;76(8):3754-60.

513 23. Spinner JL, Hasenkrug AM, Shannon JG, Kobayashi SD, Hinnebusch BJ. Role of the *Yersinia* YopJ protein in suppressing
514 interleukin-8 secretion by human polymorphonuclear leukocytes. *Microbes Infect.* 2016;18(1):21-9.

515 24. Spinner JL, Seo KS, O'Loughlin JL, Cundiff JA, Minnich SA, Bohach GA, et al. Neutrophils are resistant to *Yersinia* YopJ/P-induced
516 apoptosis and are protected from ROS-mediated cell death by the type III secretion system. *PLoS One.* 2010;5(2):e9279.

517 25. Olson RM, Dhariwala MO, Mitchell WJ, Anderson DM. *Yersinia pestis* exploits early activation of MyD88 for growth in the lungs
518 during pneumonic plague. *Infection and Immunity.* 2019;87(4).

519 26. Vagima Y, Zauberman A, Levy Y, Gur D, Tidhar A, Aftalion M, et al. Circumventing *Y. pestis* virulence by early recruitment of
520 neutrophils to the lungs during pneumonic plague. *PLoS Pathog.* 2015;11(5):e1004893.

521 27. Bennett M, Gilroy DW. Lipid mediators in inflammation. *Microbiol Spectr.* 2016;4(6).

522 28. de Paula Rogerio A, Sorgi CA, Sadikot R, Carlo T. The role of lipids mediators in inflammation and resolution. *Biomed Res Int.*
523 2015;2015:605959.

524 29. Afonso PV, Janka-Junttila M, Lee YJ, McCann CP, Oliver CM, Aamer KA, et al. LTB₄ is a signal-relay molecule during neutrophil
525 chemotaxis. *Dev Cell.* 2012;22(5):1079-91.

526 30. Sadik CD, Luster AD. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. *J Leukoc Biol.*
527 2012;91(2):207-15.

528 31. Peters-Golden M, Henderson WR. Leukotrienes. *The New England Journal of Medicine.* 2007;357.

529 32. Wan M, Tang X, Stsiapanava A, Haeggstrom JZ. Biosynthesis of leukotriene B₄. *Semin Immunol.* 2017;33:3-15.

530 33. Crooks SW, Stockley RA. Leukotriene B4. *The International Journal of Biochemistry and Cell Biology.* 1998;30:173-8.

531 34. Woo CH, You HJ, Cho SH, Eom YW, Chun JS, Yoo YJ, et al. Leukotriene B₄ stimulates Rac-ERK cascade to generate reactive oxygen
532 species that mediates chemotaxis. *J Biol Chem.* 2002;277(10):8572-8.

533 35. Gaudreau R, Le Gouill C, Metaoui S, Lemire S, Stankovaa J, Rola-Pleszczynski M. Signalling through the leukotriene B₄ receptor
534 involves both α_i and α_{16} , but not α_q or α_{11} G-protein subunits. *Biochem Journal.* 1998;355.

535 36. Yokomizo T. Two distinct leukotriene B₄ receptors, BLT1 and BLT2. *J Biochem.* 2015;157(2):65-71.

536 37. He R, Chen Y, Cai Q. The role of the LTB4-BLT1 axis in health and disease. *Pharmacol Res.* 2020;158:104857.

537 38. Maddipati KR, Zhou SL. Stability and analysis of eicosanoids and docosanoids in tissue culture media. *Prostaglandins Other Lipid
538 Mediat.* 2011;94(1-2):59-72.

539 39. Scher JU, Pillinger MH. The anti-inflammatory effects of prostaglandins. *Journal of Investigative Medicine.* 2009;57(6).

540 40. Schmid T, Brune B. Prostanoids and resolution of inflammation - Beyond the lipid-mediator class switch. *Front Immunol.*
541 2021;12:714042.

542 41. Powell WS, Rokach J. Biochemistry, biology and chemistry of the 5-lipoxygenase product 5-oxo-ETE. *Prog Lipid Res.* 2005;44(2-
543 3):154-83.

544 42. Radmark O, Samuelsson B. 5-Lipoxygenase: Mechanisms of regulation. *J Lipid Res.* 2009;50 Suppl(Suppl):S40-5.

545 43. Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis.
546 *Nature.* 1997;387.

547 44. Chaplin DD. Overview of the immune response. *J Allergy Clin Immunol.* 2010;125(2 Suppl 2):S3-23.

548 45. Secatto A, Soares EM, Locachevic GA, Assis PA, Paula-Silva FW, Serezani CH, et al. The leukotriene B₄/BLT₁ axis is a key
549 determinant in susceptibility and resistance to histoplasmosis. *PLoS One.* 2014;9(1):e85083.

550 46. Zhang Y, Olson RM, Brown CR. Macrophage LTB₄ drives efficient phagocytosis of *Borrelia burgdorferi* via BLT1 or BLT2. *J Lipid
551 Res.* 2017;58(3):494-503.

552 47. Sun Y, Connor MG, Pennington JM, Lawrenz MB. Development of bioluminescent bioreporters for *in vitro* and *in vivo* tracking of
553 *Yersinia pestis*. *PLoS One.* 2012;7(10):e47123.

554 48. Pulsifer AR, Vashishta A, Reeves SA, Wolfe JK, Palace SG, Proulx MK, et al. Redundant and cooperative roles for *Yersinia pestis*
555 yop effectors in the inhibition of human neutrophil exocytic responses revealed by gain-of-function approach. *Infection and
556 Immunity.* 2020;88(3):1-16.

557 49. Palace SG, Proulx MK, Szabady RL, Goguen JD. Gain-of-function analysis reveals important virulence roles for the *Yersinia pestis*
558 type III secretion system effectors YopJ, YopT, and YpkA. *Infection and Immunity.* 2018;86(9):1-11.

559 50. Auerbuch V, Golenbock DT, Isberg RR. Innate immune recognition of *Yersinia pseudotuberculosis* type III secretion. *PLoS Pathog.*
560 2009;5(12):e1000686.

561 51. Chung LK, Bliska JB. *Yersinia* versus host immunity: How a pathogen evades or triggers a protective response. *Curr Opin
562 Microbiol.* 2016;29:56-62.

563 52. Hegde B, Bodduluri SR, Satpathy SR, Algh sham RS, Jala VR, Uriarte SM, et al. Inflammasome-independent leukotriene B₄
564 production drives crystalline silica-induced sterile inflammation. *J Immunol.* 2018;200(10):3556-67.

565 53. Satpathy SR, Jala VR, Bodduluri SR, Krishnan E, Hegde B, Hoyle GW, et al. Crystalline silica-induced leukotriene B₄-dependent
566 inflammation promotes lung tumour growth. *Nat Commun.* 2015;6:7064.

567 54. Sorgi CA, Rose S, Court N, Carlos D, Paula-Silva FW, Assis PA, et al. GM-CSF priming drives bone marrow-derived macrophages to
568 a pro-inflammatory pattern and downmodulates PGE₂ in response to TLR2 ligands. *PLoS One*. 2012;7(7):e40523.

569 55. Lacey DC, Achuthan A, Fleetwood AJ, Dinh H, Roiniotis J, Scholz GM, et al. Defining GM-CSF- and macrophage-CSF-dependent
570 macrophage responses by *in vitro* models. *J Immunol*. 2012;188(11):5752-65.

571 56. Serezani CH, Divangahi M, Peters-Golden M. Leukotrienes in innate immunity: Still underappreciated after all these years? *J*
572 *Immunol*. 2023;210(3):221-7.

573 57. Peters-Golden M, Canetti C, Mancuso P, Coffey MJ. Leukotrienes: Underappreciated mediators of innate immune responses. *J*
574 *Immunol*. 2005;174(2):589-94.

575 58. Subramanian BC, Moissoglu K, Parent CA. The LTB₄-BLT1 axis regulates the polarized trafficking of chemoattractant GPCRs
576 during neutrophil chemotaxis. *J Cell Sci*. 2018;131(18).

577 59. Kwak DW, Park D, Kim JH. Leukotriene B₄ receptors are necessary for the stimulation of NLRP3 inflammasome and IL-1beta
578 synthesis in neutrophil-dominant asthmatic airway inflammation. *Biomedicines*. 2021;9(5).

579 60. Lammermann T, Afonso PV, Angermann BR, Wang JM, Kastenmuller W, Parent CA, et al. Neutrophil swarms require LTB₄ and
580 integrins at sites of cell death *in vivo*. *Nature*. 2013;498(7454):371-5.

581 61. McDonald PP, McColl SR, Braquet P, Borgeat P. Autocrine enhancement of leukotriene synthesis by endogenous leukotriene B₄
582 and platelet-activating factor in human neutrophils. *British Journal of Pharmacology*. 1994;111(3).

583 62. Irimia D. Neutrophil swarms are more than the accumulation of cells. *Microbiol Insights*. 2020;13:1178636120978272.

584 63. Poplimont H, Georgantzoglou A, Boulch M, Walker HA, Coombs C, Papaleonidopoulou F, et al. Neutrophil swarming in damaged
585 tissue is orchestrated by connexins and cooperative calcium alarm signals. *Curr Biol*. 2020;30(14):2761-76 e7.

586 64. Shannon JG, Hasenkrug AM, Dorward DW, Nair V, Carmody AB, Hinnebusch BJ. *Yersinia pestis* subverts the dermal neutrophil
587 response in a mouse model of bubonic plague. *mBio*. 2013;4(5):e00170-13.

588 65. Kienle K, Glaser KM, Eickhoff S, Mihlan M, Knopper K, Reategui E, et al. Neutrophils self-limit swarming to contain bacterial
589 growth *in vivo*. *Science*. 2021;372(6548).

590 66. Kienle K, Lammermann T. Neutrophil swarming: An essential process of the neutrophil tissue response. *Immunol Rev*.
591 2016;273(1):76-93.

592 67. Chou RC, Kim ND, Sadik CD, Seung E, Lan Y, Byrne MH, et al. Lipid-cytokine-chemokine cascade drives neutrophil recruitment in
593 a murine model of inflammatory arthritis. *Immunity*. 2010;33(2):266-78.

594 68. Bliska JB, Wang X, Viboud GI, Brodsky IE. Modulation of innate immune responses by *Yersinia* type III secretion system
595 translocators and effectors. *Cell Microbiol*. 2013;15(10):1622-31.

596 69. Brodsky IE, Palm NW, Sadanand S, Ryndak MB, Sutterwala FS, Flavell RA, et al. A *Yersinia* effector protein promotes virulence by
597 preventing inflammasome recognition of the type III secretion system. *Cell Host Microbe*. 2010;7(5):376-87.

598 70. Chung LK, Park YH, Zheng Y, Brodsky IE, Hearing P, Kastner DL, et al. The *Yersinia* virulence factor YopM hijacks host kinases to
599 inhibit type III effector-triggered activation of the pyrin inflammasome. *Cell Host Microbe*. 2016;20(3):296-306.

600 71. Zwack EE, Snyder AG, Wynosky-Dolfi MA, Ruthel G, Philip NH, Marketon MM, et al. Inflammasome activation in response to the
601 *Yersinia* type III secretion system requires hyperinjection of translocon proteins YopB and YopD. *mBio*. 2015;6(1):e02095-14.

602 72. Malik HS, Bliska JB. The pyrin inflammasome and the *Yersinia* effector interaction. *Immunol Rev*. 2020;297(1):96-107.

603 73. von Moltke J, Trinidad NJ, Moayeri M, Kintzer AF, Wang SB, van Rooijen N, et al. Rapid induction of inflammatory lipid mediators
604 by the inflammasome *in vivo*. *Nature*. 2012;490(7418):107-11.

605 74. Zoccal KF, Sorgi CA, Hori JI, Paula-Silva FW, Arantes EC, Serezani CH, et al. Opposing roles of LTB₄ and PGE₂ in regulating the
606 inflammasome-dependent scorpion venom-induced mortality. *Nat Commun*. 2016;7:10760.

607 75. Ratner D, Orning MP, Proulx MK, Wang D, Gavrilin MA, Wevers MD, et al. The *Yersinia pestis* effector YopM inhibits pyrin
608 inflammasome activation. *PLoS Pathog*. 2016;12(12):e1006035.

609 76. Yokomizo T, Izumi T, Shimizu T. Leukotriene B₄: Metabolism and signal transduction. *Arch Biochem Biophys*. 2001;385(2):231-
610 41.

611 77. Eruslanov EB, Singhal S, Albelda SM. Mouse versus human neutrophils in cancer: A major knowledge gap. *Trends Cancer*.
612 2017;3(2):149-60.

613 78. Mestas J, Hughes CC. Of mice and not men: Differences between mouse and human immunology. *J Immunol*. 2004;172(5):2731-
614 8.

615 79. Shay T, Jovic V, Zuk O, Rothamel K, Puyraimond-Zemmour D, Feng T, et al. Conservation and divergence in the transcriptional
616 programs of the human and mouse immune systems. *Proc Natl Acad Sci U S A*. 2013;110(8):2946-51.

617 80. Zheng Y, Sefik E, Astle J, Karatepe K, Oz HH, Solis AG, et al. Human neutrophil development and functionality are enabled in a
618 humanized mouse model. *Proc Natl Acad Sci U S A*. 2022;119(43):e2121077119.

619 81. Zschaler J, Schlorke D, Arnhold J. Differences in innate immune response between man and mouse. *Critical Reviews in*
620 *Immunology*. 2014.

621 82. Maddipati KR. Non-inflammatory Physiology of "Inflammatory" Mediators - Unlamination, a New Paradigm. *Front Immunol*.
622 2020;11:580117.

623 83. Murakami Y, Akahoshi T, Hayashi I, Endo H, Hashimoto A, Kono S, et al. Inhibition of monosodium urate monohydrate crystal-
624 induced acute inflammation by retrovirally transfected prostaglandin D synthase. *Arthritis Rheum.* 2003;48(10):2931-41.

625 84. Storer PD, Xu J, Chavis JA, Drew PD. Cyclopentenone prostaglandins PGA₂ and 15-deoxy- $\Delta^{12,14}$ PGJ₂ suppress activation of murine
626 microglia and astrocytes: implications for multiple sclerosis. *J Neurosci Res.* 2005;80(1):66-74.

627 85. Loynes CA, Lee JA, Robertson AL, Steel MJ, Ellett F, Feng Y, et al. PGE₂ production at sites of tissue injury promotes an anti-
628 inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo. *Science Advances.* 2018;4.

629 86. Serezani CH, Chung J, Ballinger MN, Moore BB, Aronoff DM, Peters-Golden M. Prostaglandin E₂ suppresses bacterial killing in
630 alveolar macrophages by inhibiting NADPH oxidase. *Am J Respir Cell Mol Biol.* 2007;37(5):562-70.

631 87. Aronoff DM, Canetti C, Serezani CH, Luo M, Peters-Golden M. Cutting edge: Macrophage inhibition by cyclic AMP (cAMP):
632 Differential roles of protein kinase A and exchange protein directly activated by cAMP-1. *J Immunol.* 2005;174(2):595-9.

633 88. Lee SP, Serezani CH, Medeiros AI, Ballinger MN, Peters-Golden M. Crosstalk between prostaglandin E₂ and leukotriene B₄
634 regulates phagocytosis in alveolar macrophages via combinatorial effects on cyclic AMP. *J Immunol.* 2009;182(1):530-7.

635 89. Luo M, Jones SM, Phare SM, Coffey MJ, Peters-Golden M, Brock TG. Protein kinase A inhibits leukotriene synthesis by
636 phosphorylation of 5-lipoxygenase on serine 523. *J Biol Chem.* 2004;279(40):41512-20.

637 90. Price SL, Vadyvaloo V, DeMarco JK, Brady A, Gray PA, Kehl-Fie TE, et al. Yersiniabactin contributes to overcoming zinc restriction
638 during *Yersinia pestis* infection of mammalian and insect hosts. *Proc Natl Acad Sci U S A.* 2021;118(44).

639 91. Haribabu B, Verghese MW, Steeber DA, Sellars DD, Bock CB, Snyderman R. Targeted disruption of the leukotriene B₄ receptor in
640 mice reveals its role in inflammation and platelet-activating factor-induced anaphylaxis. *J Exp Med.* 2000;192(3).

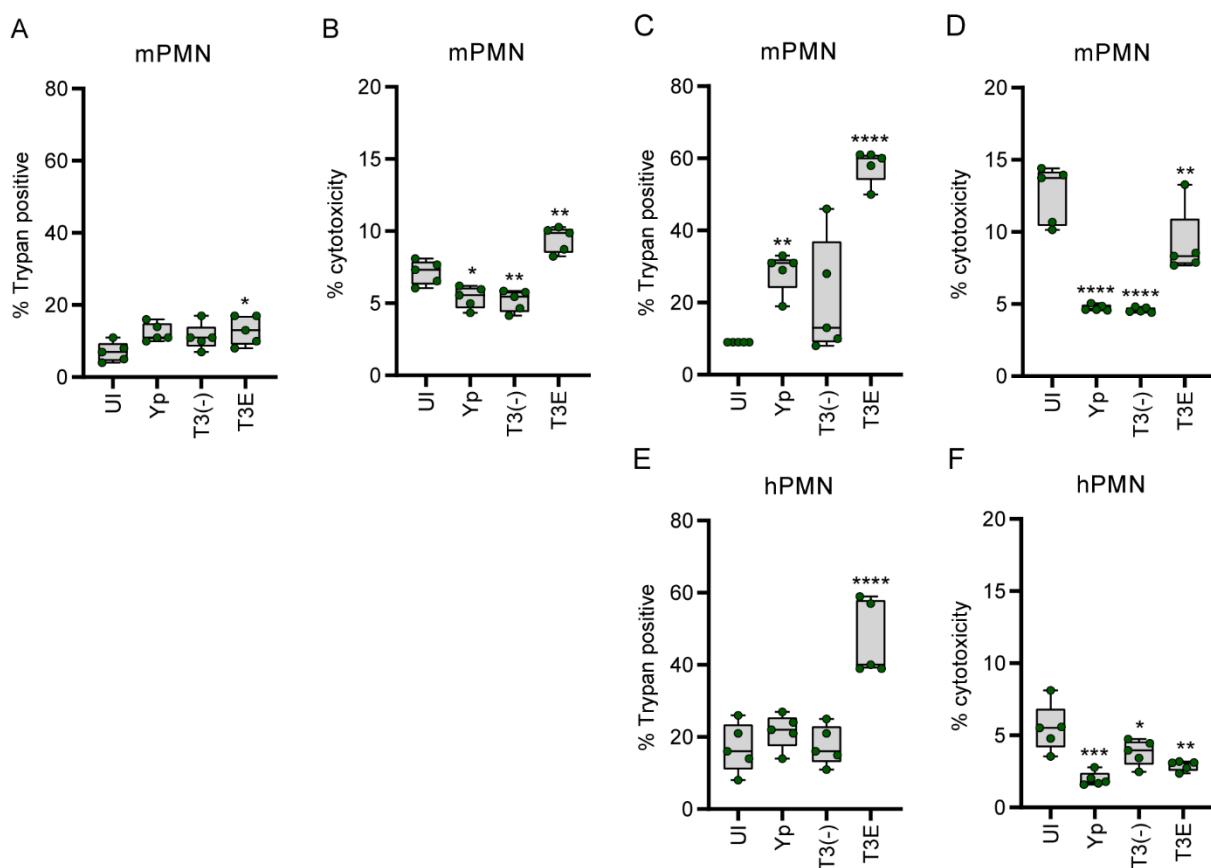
641 92. Maddipati KR, Romero R, Chaiworapongsa T, Chaemsathong P, Zhou SL, Xu Z, et al. Lipidomic analysis of patients with microbial
642 invasion of the amniotic cavity reveals up-regulation of leukotriene B4. *FASEB J.* 2016;30(10):3296-307.

643 93. Maddipati KR, Romero R, Chaiworapongsa T, Chaemsathong P, Zhou SL, Xu Z, et al. Clinical chorioamnionitis at term: the
644 amniotic fluid fatty acyl lipidome. *J Lipid Res.* 2016;57(10):1906-16.

645 94. Haslett C, Guthrie LA, Kopaniak MM, Johnston Jr. RB, Henson PM. Modulation of multiple neutrophil functions by preparative
646 methods or trace concentrations of bacterial lipopolysaccharide. *Am J Pathol.* 1985;119.

647 95. Bodduluri SR, Mathis S, Maturu P, Krishnan E, Satpathy SR, Chilton PM, et al. Mast cell-dependent CD8⁺ T-cell recruitment
648 mediates immune surveillance of intestinal tumors in Apc^{Min/+} mice. *Cancer Immunol Res.* 2018;6(3):332-47.

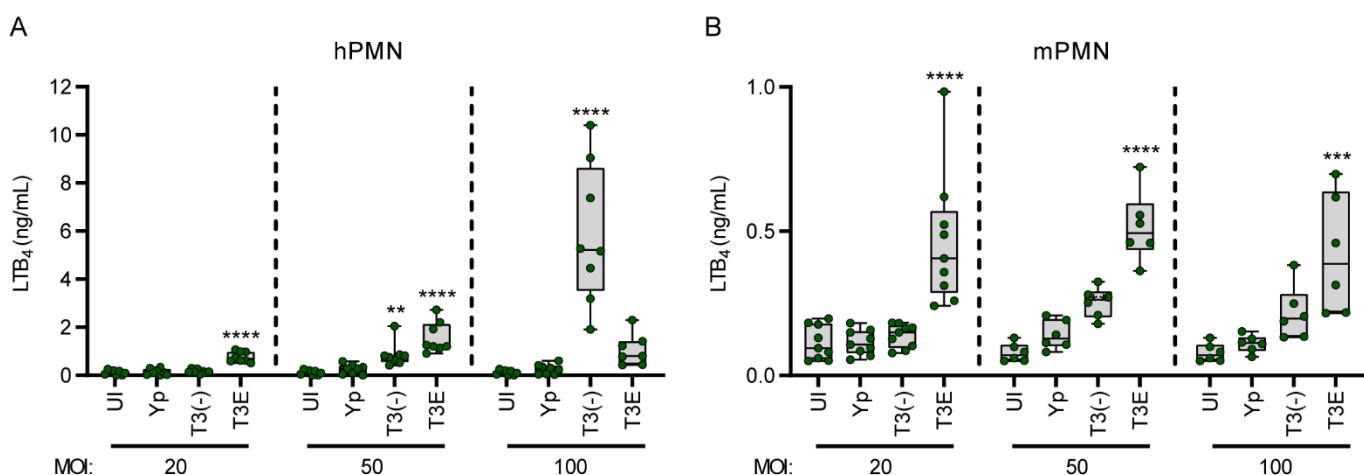
649 96. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An open-source platform for biological-image
650 analysis. *Nat Methods.* 2012;9(7):676-82.

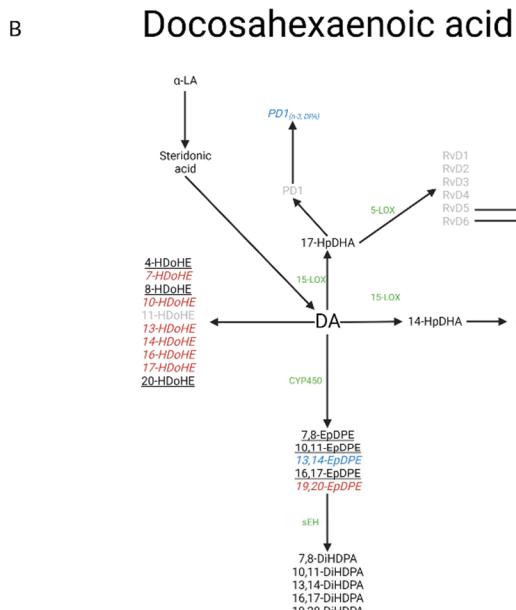
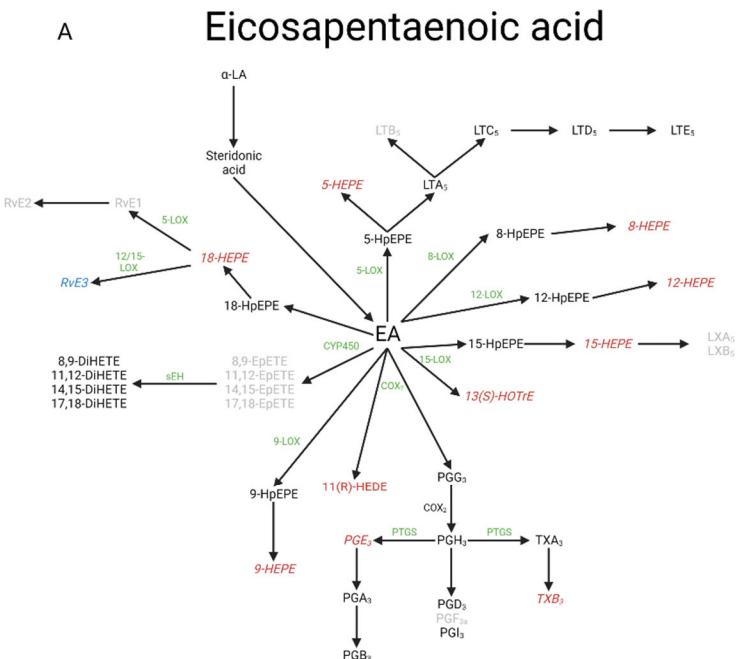

651 97. Jin J, Wahlang B, Thapa M, Head KZ, Hardesty JE, Srivastava S, et al. Proteomics and metabolic phenotyping define principal
652 roles for the aryl hydrocarbon receptor in mouse liver. *Acta Pharm Sin B.* 2021;11(12):3806-19.

653 98. Srivastava S, Merchant M, Rai A, Rai SN. Standardizing proteomics workflow for liquid chromatography-mass spectrometry:
654 Technical and statistical considerations. *J Proteomics Bioinform.* 2019;12(3):48-55.

655 99. Srivastava S, Merchant M, McClain CJ, Rai A, Chaturvedi KK, Angadi UB, et al. Advanced multivariable statistical analysis
656 interactive tool for handling missing data and confounding covariates for label-free LC-MS proteomics experiments. *Current
657 Bioinformatics.* 2023;18(2).

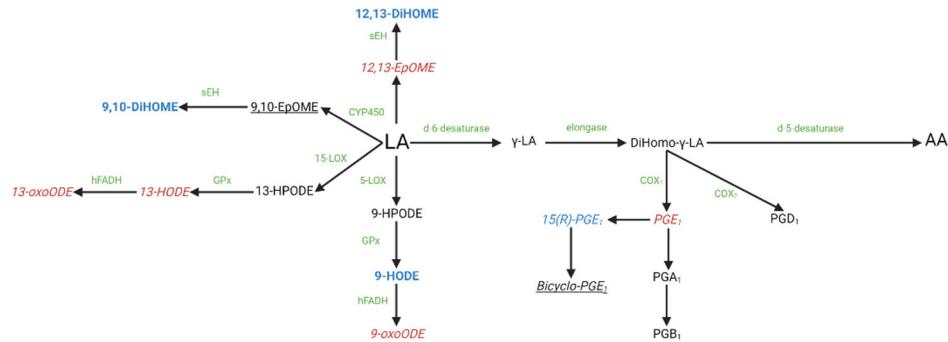
659


Supporting Information

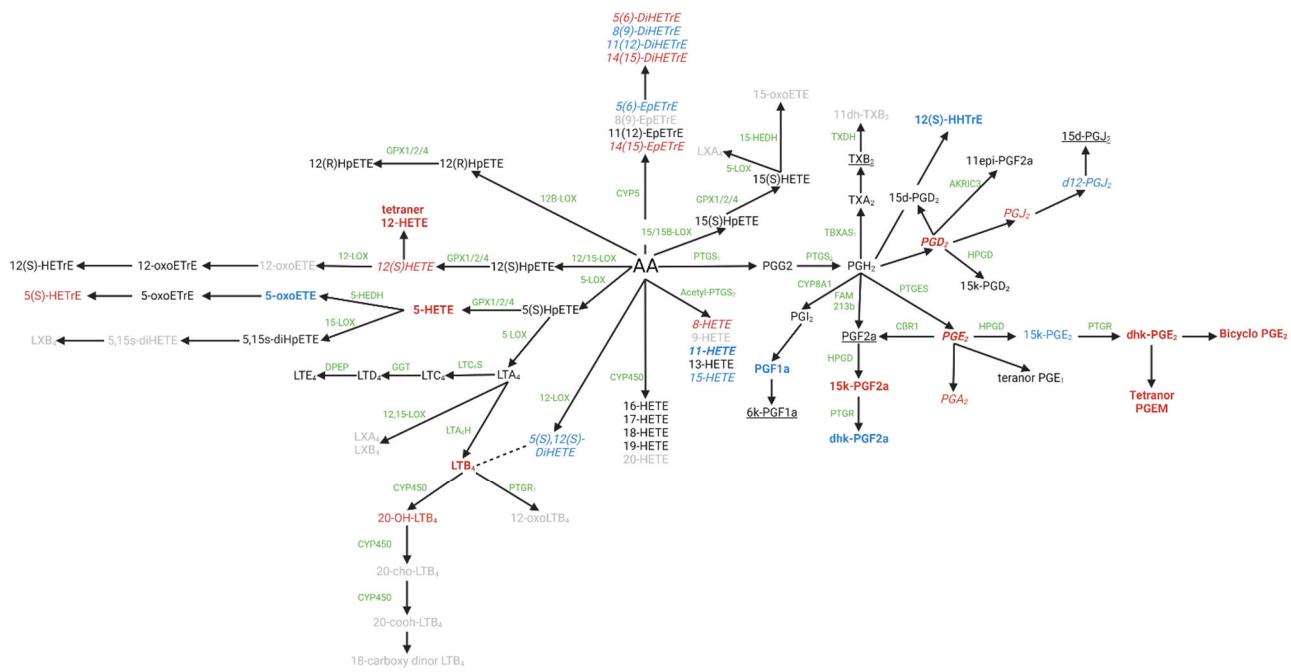


660

661 **S1 Fig. Absence of LTB₄ response to *Y. pestis* is not due to cell death.** (A-D) Murine or (E-F) human neutrophils (~95%
 662 purity) were infected with *Y. pestis* KIM1001 at (A-B) an MOI of 20 or (C-F) an MOI of 100 for 1 h. (A, C, E) Cell
 663 permeability as a function of trypan exclusion. (B, D, F) Cytotoxicity as a function of LDH release. UI=Uninfected. (A-F)
 664 One-way ANOVA with Dunnett's *post hoc* test. * = p≤0.05, ** = p≤0.01.

665



666 **S2 Fig. Differential recognition of T3⁽⁻⁾ *Y. pestis* between human and mice neutrophils. (A) Human or (B) murine**
 667 neutrophils (~95% purity) were infected with *Y. pestis* KIM1001 or mutants that either lacked effector proteins (T3E) or
 668 lacked effector proteins and the T3SS (T3(-)) at increasing multiplicities of infections (MOIs). LTB₄ was measured from
 669 supernatants by ELISA 1 h post infection. Each symbol represents independent biological replicates. UI=Uninfected. (A-B)
 670 One-way ANOVA with Dunnett's *post hoc* test. ** = p≤0.01, *** = p≤0.001, **** = p≤0.001.


672

c Linoleic acid

673

Arachidonic acid

674

Generated with BioRender

675 **S3 Fig. Synthesis pathways of eicosanoids.** (A) Eicosapentaenoic acid, (B) docosahexaenoic acid, (C) linoleic acid, and (D)
676 arachidonic acid pathways and the products measured in LC-MS. Black – Not screened; Red – significant increase
677 compared to uninfected in at least one time point; Blue – significant decrease compared to uninfected in at least one
678 time point; Grey – below the limit of detection; Green – enzyme responsible for lipid conversion (no enzyme indicates a

679 non-enzymatic conversion via redox); Underlined – no change; Dotted line – epimers. Of the significant hits: Bold-pro-
680 inflammatory; Italicized- anti-inflammatory/pro-resolving.

681 **S1 Table. Changes in inflammatory lipids during first 48h of pneumonic plague.** C57Bl/6J mice were infected with 10X
682 the LD₅₀ of *Y. pestis* KIM5 and lungs were harvested at 6, 12, 24, 36, and 48 h post-infection (n=5). Total lipids were
683 isolated from homogenized lungs and 143 lipids were quantified by LC-MS. Significant changes in lipid concentrations
684 were observed in at least one time point for 63 lipids.

685 **S2 Table. Bacterial Strains used in this study.**

Descriptive name	Genotype	Strain #	Source
<i>Y. pestis</i> KIM5	Pgm+ Lcr+ Pst+; pMT1+, pCD1Ap	X17	(1)
<i>Y. pestis</i> CO92 LUX _{pcysZK}	pCD1+, pgm+, pMT+, pst+, Lux _{pcysZK}	MBLYP043	(2)
<i>Y. pestis</i> KIM1001 T3+	pCD1+ pgm- pMT1+ pPCP1+pML001+	JG598	(3)
<i>Y. pestis</i> KIM1001 T3-	pCD1- pgm- pMT1+ pPCP1+ pML001+	JG597	(3)
<i>Y. pestis</i> KIM1001 ΔT3E	pCD1+ pgm- pCD1+ (yopH ^{Δ3-467} yopE ^{Δ40-197} yopK ^{Δ4-181} yopM ^{Δ3-408} ypkA ^{Δ3-731} yopJ ^{Δ4-288} yopT ^{Δ3-320}), pgm-, pMT1+, pPCP1+pML001+	JG715	(3)
<i>Y. pestis</i> KIM1001 +A	ΔT3SE::ypkA +pML001+	JG684	(3)
<i>Y. pestis</i> KIM1001 +E	ΔT3SE::yopE +pML001+	JG681	(3)
<i>Y. pestis</i> KIM1001 +H	ΔT3SE::yopH +pML001+	JG680	(3)
<i>Y. pestis</i> KIM1001 +J	ΔT3SE::yopJ +pML001+	JG686	This work
<i>Y. pestis</i> KIM1001 +K	ΔT3SE::yopK +pML001+	JG682	(3)
<i>Y. pestis</i> KIM1001 +M	ΔT3SE::yopM +pML001+	JG683	(3)
<i>Y. pestis</i> KIM1001 +T	ΔT3SE::yopT +pML001+	JG685	(3)
<i>E. coli</i> DH5α	pGEN222::mCherry	LOU123	This work
<i>S. enterica</i> Typhimurium pGENLux	ATCC 14028s	LOU120	This work
<i>K. pneumoniae</i> Δcapsule	KPPR1S ΔmanC	LOU171	This work

686

687 **References for supplemental**

688 1. Gong S, Bearden SW, Geoffroy VA, Fetherston JD, Perry RD. Characterization of the *Yersinia pestis* Yfu ABC inorganic iron
689 transport system. *Infect Immun.* 2001;69(5):2829-37.

690 2. Pulsifer AR, Vashishta A, Reeves SA, Wolfe JK, Palace SG, Proulx MK, et al. Redundant and Cooperative Roles for *Yersinia pestis*
691 Yop Effectors in the Inhibition of Human Neutrophil Exocytic Responses Revealed by Gain-of-Function Approach. *Infection and*
692 *Immunity.* 2020;88(3):1-16.

693 3. Palace SG, Proulx MK, Szabady RL, Goguen JD. Gain-of-Function Analysis Reveals Important Virulence Roles for the *Yersinia pestis*
694 Type III Secretion System Effectors YopJ, YopT, and YpkA. *Infection and Immunity.* 2018;86(9):1-11.

695