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Abstract

In vitro models of Mycobacterium tuberculosis (Mtb) infection are a valuable tool to examine
host-pathogen interactions and screen drugs. With the development of more complex in vitro
models, there is a need for tools to help analyze and integrate data from these models. We
introduce an agent-based model (ABM) representation of the interactions between immune cells
and bacteria in an in vitro setting. This in silico model was used to independently simulate both
traditional and spheroid cell culture models by changing the movement rules and initial spatial
layout of the cells. These two setups were calibrated to published experimental data in a paired
manner, by using the same parameters in both simulations. Within the calibrated set,
heterogeneous outputs are seen for outputs of interest including bacterial count and T cell
infiltration into the macrophage core of the spheroid. The simulations are also able to predict
many outputs with high time resolution, including spatial structure. The structure of a single
spheroid can be followed across the time course of the simulation, allowing the relationship
between cell localization and immune activation to be explored. Uncertainty analyses are
performed for both model setups using latin hypercube sampling and partial rank correlation
coefficients to allow for easier comparison, which can provide insight into ideal use cases for the
independent setups. Future model iterations can be guided by the limitations of the current
model, specifically which parts of the output space were harder to reach. This ABM can be used
to represent more in vitro Mtb infection models due to its flexible structure, providing a powerful

analysis tool that can be used in tandem with experiments.

Author Summary (150-200 words non tech)

Tuberculosis is an infectious disease that causes over 1.4 million deaths every year. During
infection, immune cells surround the bacteria forming structures called granulomas in the lungs.
New laboratory models generate spheroids that aim to recreate these structures to help

understand infection and find new ways to treat tuberculosis. Computational modeling is used to
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compare these newer spheroid models to traditional models, which don’t recreate the structure
of the cell clusters. After calibration to data from laboratory experiments to ensure that the
computational model can represent both systems, the structures were characterized over time.
The traditional and spheroid model were also compared by looking at how model inputs impact
outputs, allowing users to figure out when one model should be used over the other. This
computational tool can be used to help integrate data from different laboratory models, generate

hypothesis to be tested in laboratory models, and predict pathways to be targeted by drugs.

1. Introduction

Tuberculosis (TB) continues to be a global public health crisis, responsible for 1.4 million
deaths in 2021 alone.(1) TB is caused by the bacteria Mycobacterium tuberculosis (Mtb).
Generally, Mtb is introduced to its host upon inhalation of contaminated respiratory droplets,
allowing direct entry into the lungs. Bacteria are deposited in the well-ventilated lower lobes of
the lung, where alveolar macrophages phagocytose them.(2) Mtb is subsequently able to
survive and replicate within the endosomes of these macrophages.(3) As the infection
progresses, infected macrophages release chemokines and cytokines which recruit other
immune cells (e.g. monocytes, T cells, B cells, NK cells, dendritic cells, and neutrophils) to form
a granuloma. A granuloma is generally comprised of a core of infected macrophages,
surrounded by monocytes, epithelioid macrophages, foamy macrophages, neutrophils,
multinucleated giant cells, and finally a lymphocytic cuff with an outer fibrous capsule.(4) The
timing and spatial organization of key host-pathogen interactions within these granuloma
structures, and how these interactions contribute to bacterial survival or elimination, remains
incompletely understood. This is in part due to the complexity of the granuloma structure itself,
which makes it difficult to understand, measure, and/or predict host-pathogen interactions and

their impact on infection progression.
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78 Many systems have been used to explore granulomas in TB; each having its own
79  benefits and limitations. While much has been revealed about the structure of granulomas from
80  work in humans, clinical studies are invasive or indirect and are often lacking in time points
81  required to evaluate granuloma dynamics. Additionally, TB granulomas in humans can only
82  really be studied at later stages when the infection has been established and diagnosed.(5)
83  Animal studies such as non-human primate (NHP), rabbit, and mouse models are very useful
84  and allow more control and direct observation of infection and granuloma formation than in
85  humans. Mouse models benefit from wide availability of commercial immunological reagents,
86  genetic tools, and transgenic and knock-out strains, but most mouse strains struggle to recreate
87  the structure of granulomas seen in humans.(6,7) Rabbit and guinea pigs are able to form
88  necrotic and non-necrotic mature granulomas. (6,7) These models have been limited in the past
89 by availability of immunological reagents, but recently more commercially available
90 immunological reagents like antibodies against rabbit analytes have been developed.(6—-9) NHP
91 models most closely recreate human pathology, with heterogenous clinical outcomes and
92  granuloma structures.(10,11) But NHP models are expensive, time-intensive, and limited by the
93 availability of animal facilities.(6,7) It is difficult to do certain genetic manipulations, collect data
94  at many time points, and control the exact cellular and environmental makeup of the system in
95 these in vivo models. Complementary to these in vivo models, there has been recent work
96 developing more complex in vitro cellular cultures to both dissect biological mechanisms and
97 test new therapies (reviewed in Elkington et al.(12)). In vitro models can be particularly helpful
98  because the system is tractable, and all cellular components of the system can be controlled. In
99  vitro models are also cheaper and higher throughput than the equivalent in vivo models. In vitro
100  systems can be mechanistically perturbed and dynamically sampled in ways that are extremely
101  difficult in in vivo models.
102 Elkington et al. suggest certain criteria for an ideal in vitro model including the use of

103 human cells and virulent Mtb; allowing incorporation of fibroblast, epithelial cells, and
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104  physiological extracellular matrix; being modular to allow many different biological questions to
105 be answered; and, ideally, being 3-dimensional (3D).(12) However, increasing complexity isn’t
106  necessary in all cases and can make models lower-throughput and more expensive. Ideally, in
107  vitro models could be tailored to the biological question at hand, but still be able to be compared
108  across platforms. In vitro models could then be optimized to include only the necessary

109  components, allowing maintenance of inexpensive, high-throughput models. Results from many
110  disparate systems could still be synthesized to form robust conclusions.

111 We recently developed an in vitro biomimetic 3D spheroid granuloma model.(13) Briefly,
112 patient-derived alveolar macrophages are infected with BCG, and magnetic nanospheres used
113 to levitate the cells. Autologous adaptive immune cells isolated from peripheral blood

114 mononuclear cells (PBMCs) were added at 48 hours into the 6 day culture. When comparing
115  this granuloma model to a corresponding traditional monolayer culture, we found the spheroid
116  model was better able to control bacteria. Differences in bacterial count between these models
117  can be quantified and are due to the different model setups, but how the spatial aspects impact
118 immune response is unclear. These two systems provide a good test case to evaluate the

119  possibility of translating between different in vitro systems, and identify the key mechanisms at
120  work in the different systems.

121 This data not only motivates a need to understand the mechanistic differences between
122  these two models, but also highlights a need to more broadly look at the complexity and

123 spatiality of in vitro models. As we move towards more complex in vitro models, organoids,

124  complex cell mixtures etc., it is important that we 1) understand and quantify the impact of the
125  structural organization of the cultures, and 2) develop tools that are able to analyze these more
126  complex systems, and 3) develop tools that can enable us to compare and translate between
127  systems. Computational models are well-suited to address all of these tasks.

128 Computational models are inexpensive compared to in vitro or in vivo models, quick to

129  run, highly manipulatable, able to integrate data from many sources, and can easily be adapted
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130  to reflect new data.(12,14) Beyond this, computational models can be used to perform

131  perturbations (e.g. virtual knockouts) that would be extremely difficult in a wet lab setting.

132  Computational models work especially well in combination with in vitro work, where hypotheses
133 can be generated computationally and tested experimentally in an iterative fashion.(12)

134  Mechanistic models specifically use individual interactions between cells and molecules to

135  predict emergent tissue-level outcomes (e.g. granuloma dynamics). Because individual cellular
136  and molecular interactions are based on current biological understanding, we can use the

137  emergent behavior of our simulations to test hypotheses about the driving mechanisms for

138 tissue-level outcomes. Beyond hypothesis testing, mechanistic models also act to integrate

139  existing knowledge into a single framework to help understand their collective impact. One type
140  of mechanistic model, agent-based models (ABMs), are stochastic spatiotemporal models that
141  are particularly suited to look at emergent spatial behavior. Stochasticity is ideal because it

142 captures some of the heterogenous host response to TB.(15,16) Spatiality is required as we aim
143 to represent and contrast both traditional and 3D models.

144 Mechanistic modeling has been applied to TB since 1962, and ABMs in particular have
145  been used in the context of TB since 2004.(17—19) ABMs of granuloma formation in the non-
146  human primate (NHP) lung have been iterated many times to look at the impacts of TNF-a(20—
147  22), Mtb metabolism(23), macrophage (M®) polarization(24), and more(25-30). In this work, we
148  apply these established agent-based approaches to in vitro systems. This means that all

149  components included in the experimental system can be accounted for, the experimental

150  system can be more easily observed and perturbed, and we can use one simulation framework
151 with different initializations to represent, and translate between, many in vitro models. In this
152 work we use one computational agent-based modeling framework to recreate the results from
153  both 3D spheroid and the corresponding traditional culture in vitro models(13). Our

154  computational model generates high time-resolution data for cellular outputs, along with spatial

155 data. This spatial data is processed in multiple ways, allowing us to dissect the evolution of a
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156  single granuloma and explore the heterogeneity of the host response within different spatial
157  organizations. Finally, we use uncertainty analysis to look at the similarities and differences

158  between the spheroid and traditional setups.

159

160 2. Methods

161

162 2.1. Experimental Methods
163

164  The data we use for calibration is derived from a biomimetic 3D spheroid model of a granuloma
165 and the corresponding traditional culture. Briefly, HIV negative patients with high suspicion of
166  TB were recruited. Bronchoscopies were performed by qualified clinicians and nursing staff
167  according to international guidelines (31) to obtain bronchoalveolar lavage fluid samples.

168  Immediately after bronchoscopy, peripheral blood was collected by venipuncture into two 9mL
169  sodium heparinized (NaHep) vacutainers. Alveolar macrophages were isolated from

170  bronchoalveolar fluid, and PBMCs were isolated from peripheral blood using the Ficoll-Paque
171  isolation method described previously (13). Alveolar macrophages were cultured at a density of
172 4x10° cells per well in a 24-well low-adherence culture plate and infected with Mycobacterium
173 bovis Bacille Calmette-Guerin (BCG) at a multiplicity of infection (MOI) of 1 for 4 hours.

174  Afterwards, extracellular bacteria were removed by supplementing media with an antimycotic
175  antibiotic (penicillin/streptomycin/amphotericin B) for 1 hour, followed by successive washes.
176  The 3D spheroids were made by treating alveolar macrophages with biocompatible NanoShuttle
177  (n3D Biosciences Inc., Greiner Bio-One) and levitating them using the magnetic levitating drive.
178  After 48 hours, 6x10° autologous CD3+ T cells are added per well. The traditional culture is

179 made using the same cells and the same ratios, but without NanoShuttle treatment and

180  subsequent magnetic levitation.
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181 Granuloma structures were mechanically disrupted by gentle pipetting after 6 days of

182  culture. Cell count and cell viability were determined using the trypan blue exclusion method
183  after adherent cells were removed. CFU counts were determined by lysing mechanically

184  disrupted cells and plating serial dilutions on Middlebrook 7H11 agar plates (BD Biosciences).
185  After 21 days of growth, the colonies were manually counted. 3D spheroids were also fixed,
186 embedded in tissue-freezing medium OCT (Tissue-Tek; USA), and cryosectioned. A section
187  from the middle of the structure was stained with antibodies for CD3+ and CD206+ cells and
188  imaged using a Carl Zeiss LSM 880 Airyscan with Fast Airyscan Module confocal microscope
189  (Plan-Apochromat x63/1.40 oil DIC UV-VIS-IR M27 lens objective). The image of the traditional
190  cell culture was acquired with light microscopy at 40x magnification. For full methods please
191  reference Kotze et al. 2021.

192

193 2.2. Model Structure

194  Our model simulates the interactions between macrophages, CD4+ T cells, CD8+ T cells,

195  bacteria, and two simplified cytokines within an in vitro environment. The simulation is

196  constructed as a hybrid multiscale model with a cellular level agent-based model hybridized to a
197  partial differential equation model of diffusion for the two cytokines (TNFa-like and IFNy-like).

198  These will be referred to as TNFa and IFNy moving forward. The environment is composed of
199  grid cubes that each represent a 20um x 20pm x 20um volume, which is the approximate size of
200  our largest agent type, the macrophage.(32) The environment has two overlying grids, one

201  single occupancy grid for immune cells and one multioccupancy for the smaller bacteria. The
202  simulation has 4 types of agents: macrophages, CD4+ T cells, CD8+ T cells, and bacteria.

203  Macrophages can be subdivided into uninfected and infected classes. Agent behaviors are

204  performed with a time step of 6 minutes, the approximate time for a monocyte to move 20 ym,

205  orone grid cube. (33—-36) The simulation is run for a total of 6 days, to reflect the duration of the
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in vitro experiments. An overview of agent behaviors is shown in Figure 1 and further detail is
given below. These methods are in part drawn from work modeling NHP granulomas in silico,
specifically GranSim and subsequent developments.(18,19)
a b
C f
d g
e

Figure 1: An overview of rules for the simulated agents. a) Bacteria grow and divide. b) Immune
cells secrete cytokines dependent on activation or infectious state, move probabilistically up a
TNF-a gradient, age, and die. c) Macrophages (M®) can phagocytose bacteria becoming
infected. d) M® activation is represented by a two-step process. NF-kB can be activated by
TNF-a, bacteria, or direct contact with an activated CD4+ T cell. STAT1 is activated by IFN-y

secreted by activated T cells. e) Infected M® either fight infection killing internal bacteria and
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219  returning to uninfected state, or when a certain threshold of bacteria is reached will burst

220  releasing internal bacteria into the environment. f) TB-Specific CD4+ T cells activate by

221 interacting with a M® that has interacted with a bacterium. After activation, CD4+ T cells can
222  proliferate. g) TB-Specific CD8+ T cells activate by interacting with a M® that has interacted
223 with a bacterium and is STAT1 activated. After activation, CD8+ T cells can proliferate and kill

224  infected macrophages along with the internal bacteria. Created with BioRender.com.

225 2.2.1. Diffusing molecules

226  There are 2 diffusing molecules included representing the simplified TNF-a and IFN-y. These
227  are contributed to by the secreting agents, and diffuse in the simulation space. Diffusion is

228  performed similarly to that in Weathered et al. using a 3D alternating-direction explicit numerical
229  method.(37) As this method is unconditionally numerically stable, a larger dt than is predicted by
230  the conditional stability criterion can be used while maintaining accuracy.(38) After finding dt
231  suggested by the conditional stability criterion and the diffusion parameters a multiplier of 4 was
232 incorporated into the alternating-direction explicit method to reduce simulation time, while

233 maintaining accuracy, as recommended by Cilfone et al.(38) The PDE is run with a smaller time
234  step than the ABM, ranging from 2 to 14 diffusion iterations per agent time step depending on
235  the diffusion parameters. IFN-y and TNF-a are diffused separately with separate diffusion

236  coefficients and decay rates. The rate of diffusion is slowed within granulomas by

237  granulomaFractionOfDiffusion.

238

239 2.2.2. Agents

240  Immune cells

241  Macrophages, infected macrophages, CD4+ and CD8+ T cells are all classified as types of

242 immune cells. This parent class of agents share common behaviors, including movement and

243 aging. Movement is determined by gravity limited or 3D rules. Cells moving in 3D are able to

10


https://doi.org/10.1101/2023.03.13.532338
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.13.532338; this version posted March 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

244 move in any direction. With gravity limited rules, cells will fall in the z dimension if no immune
245  cell is below them and can only move up in the z direction if on top of another immune cell.
246  Given these movement rules, the cells will chemotax probabilistically toward the highest

247  concentration of TNF-a when the summed TNF-a in the Moore neighborhood is above

248  TNFthresholdForimmuneCellMovement. This chemotaxis algorithm is based off of that in

249  Weathered et al..(37) Immune cells also age according to individualized lifespans. A resting
250 lifespan and activated lifespan are selected for each cell from a populationLifespan * (1+/-

251  lifeSpanVariance). These lifespans are then converted to aging rates, which change according
252  to the activation status of the cell. The resting aging rate is 1 hour aged per hour, while the
253  activated aging rate is calculated as resting lifespan divided by activated lifespan. At

254 initialization a cell will be given a random starting age from zero to the resting lifespan. Then a
255  cell’s current age gets incremented by the aging rate each time step. When a cell reaches its
256  maximum age, it will die and be removed from the simulation.

257

258  Macrophages

259  Beyond the immune cell rules described above, macrophages will attempt to phagocytose and
260 activate every time step. Each macrophage attempts to phagocytose by picking a bacterium in
261  its Moore neighborhood at random. If this bacterium is extracellular, it will be phagocytosed with
262  a phagocytosis probability dependent on activation state (basePhagocytosisProbability,

263  activePhagocytosisProbability). Successful phagocytosis turns a macrophage into an infected
264  macrophage. Macrophages that have phagocytosed bacteria also get classified as having

265 interacted with bacteria, meaning antigenic peptides can be displayed on the cell surface. Each
266  macrophage also checks for activation. Activation is represented by a simplified two step

267  signaling process, requiring STAT1 and NF-kB activation.(39) Each of these two pathways can
268  be activated, if they are not already activated. STAT1 is activated if local IFN-y is greater than

269  IFNthresholdForStat1Activation. NF-kB can be activated in 3 ways: TNF-a greater than

11


https://doi.org/10.1101/2023.03.13.532338
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.13.532338; this version posted March 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

270  TNFthresholdForNFkBActivation, nearby extracellular bacteria greater than

271 bacThresholdForNFkBActivation, or direct interaction with an activated CD4+ T cell. These

272 represent TNF-a interaction with TNFR, activation of TLR, and CD40-CD40L interactions,

273  respectively.(40) All three of these NF-kB activation methods will be checked in a random order.
274  NF-kB and STAT1 activations last for set durations after the signal was initially received

275  (nfkbSpan and stat1Span). These durations have variances, nfkbVariance and stat1Variance, to
276  introduce heterogeneity into the population. After the macrophage-specific length of activated
277  time, the pathway will deactivate and be checked again immediately, to allow longer activation if
278  the activation signals persist. If both pathways are activated at the same time, then the

279  macrophage becomes fully activated. Activation changes a macrophage’s movement

280  probability, phagocytosis probability, and aging rate. Activated macrophages also secrete TNF-a
281  at arate of ActivatedMacrophage TNFSecretion molecules per second.

282

283  Infected Macrophages

284  Infected macrophages can fight the infection at each time step. An internal bacterium is selected
285  randomly and will be killed with a probability that is dependent on the macrophage’s activation
286  state (baseKillingProbability, activeKillingProbability). If all the bacteria within an infected

287  macrophage are killed, then the infected macrophage reverts to a healthy macrophage. Infected
288  macrophages can be activated through the same pathways as healthy macrophages. When

289  fully activated, the phagocytosis and killing probabilities change to values for activated

290  macrophages. Infected macrophages secrete TNF-a when activated, but also constitutively

291  secrete TNF-a at a baseline level of InfectedMacrophage TNFSecretion molecules per second
292 when not activated. Infected macrophages don’'t move but can continue to phagocytose bacteria
293  if the number of internalized bacteria is below phagocytosisThreshold. This occurs similarly to
294  the initial phagocytosis, with a random bacterium selected from the infected macrophage’s

295  Moore neighborhood that will be taken up with some probability if it is extracellular. Once the

12
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296  number of internal bacteria is above cellularDysfunctionThreshold the macrophage is

297  considered chronically infected.(19) Chronically infected macrophages can no longer be fully
298  activated or kill internal bacteria. If the number of bacteria within an infected macrophage

299  reaches a bursting threshold the macrophage will burst and release the internal bacteria into the
300 environment. This threshold has been experimentally determined to be 20-40 internal bacteria in
301  in vitro systems.(41) A burst limit was randomly selected for each infected macrophage from a
302  uniform distribution from 20 to 40 internal bacterial. When a macrophage dies of old age the
303  bacteria are similarly released into the environment.

304

305 CD4+ T cells

306 CDA4+ cells can be TB specific or non-TB specific. TB specific CD4+ T cells can also become
307  activated. Activation of TB specific CD4+ T cells occurs with a probability of

308  CD4ActivationProbability if a random macrophage in its Moore neighborhood has interacted
309  with bacteria. This is equivalent to antigen presentation on MHC Il. (40) Activation increases
310 movement probability and aging rate. Activated CD4+ T cells secrete both TNF-a at

311 ActivatedCD4TNFSecretion molecules per second and IFN-y at ActivatedCD4IFNSecretion

312  molecules per second.(42) Active CD4+ T cells can also divide with a doubling time of

313  cd4PopulationDoubling Time until the maximum number of generations

314  (maximumCD4Generations) is reached. Individual variance is introduced to doubling time.

315 Deactivation occurs with a given probability CD4DeactivationProbability per time step.

316

317 CD8+ T cells

318  Justlike CD4+ T cells, CD8+ T cells can be subdivided into TB specific and non-TB specific. TB
319  specific CD8+ T cells can be activated. If a randomly selected macrophage within the T cell’s
320  Moore neighborhood is STAT1 activated and has interacted with bacteria, then the T cell will

321  probabilistically activate (CD8ActivationProbability). STAT1 activation is a proxy for interaction

13
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322  between CD4+ T cell and macrophage which increases expression of molecules on the surface
323  of the APC(B7 and 4-1BBL) that provide co-stimulation to naive CD8+ T cells.(40,43) If

324  activated, a CD8+ T cell will secrete both TNF-a (ActivatedCD8TNFSecretion) and IFN-y

325  (ActivatedCD8IFNSecretion). Activation also increases movement probability and aging rate.
326  Activated CD8+ T cells will also divide with a doubling time of cd8Population_DoublingTime until
327  the maximum generation (maximumCD8Generations) is reached. Activated CD8+ T cells have
328 the ability to kill infected macrophages (equivalent to cells presenting peptides in MHC 1). A

329  random infected macrophage is selected for the Moore neighborhood, and the infected

330  macrophage and all internal bacteria are killed with a probability CD8KillProbability. CD8+ T
331 cells deactivate probabilistically (CD8DeactivationProbability).

332

333  Bacteria

334  Bacteria grow and divide. Bacteria have biomass that gets added to every tick. The rate of

335  growth depends on whether they are intracellular or extracellular. Growth rate is calculated from
336 doubling time (mtbinternalDoublingTime, mtbExternalDoublingTime), and includes some

337 individual variance from the population mean. If the biomass threshold of 2 is reached, then the
338  bacteria divide into two with the biomass distributed among them unevenly(44). Simulated

339  bacteria represent BCG, as BCG was used in the in vitro models. Behaviors/parameters draw
340  from both BCG and TB literature.

341

342 2.2.3. Initial Conditions

343  The differences between the spheroid and traditional simulations include the movement rules
344  and the initial spatial distribution of cells. Our initial conditions reflect those used in the in vitro
345  system.(13)

346

347  Spheroid
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348  In the experimental protocols, 400,000 macrophages are infected with MOI 1 and then

349 levitated.(13) At day 2, 600,000 CD3+ cells are added in a dropwise manner directly to the
350 spheroid. Due to computational limitations associated with the 3D simulation of a full-sized
351  spheroid, we simulate a spheroid of 1/10% the size. We generate a sphere of 40,000 mixed
352  healthy and infected macrophages. Given the experimental MOI of 1, we use a Poisson

353  distribution to estimate percentage of cells with various number of phagocytosed bacteria(45).

354  The fraction of macrophages that have phagocytosed n bacteria is given by %{W .

355  Macrophages with zero to six internalized bacteria are initialized, giving 39,997 initial bacteria.

356  This sphere is centered on an 80x80x80 grid representing 1.6 mm x 1.6 mmx 1.6 mm volume.

cellCount * 3

with the initial density of

. g . . 3
357  The radius of the initialized sphere is calculated as \/MsphereEfﬁciency,

358 the cells determined by sphereEfficiency. At day 2, 60,000 CD4+ and CD8+ T cells are added in
359  a cuff around the macrophages. Proportions of CD4+ T cells (fractionCD4), CD8+ T cells

360 (CD8Fraction), and TB specific T cells (fractionTBSpecific, tbSpecificCD8Fraction) are

361 estimated from literature. (46—49) Subsets of the immune cells are allowed to be preactivated
362 (activatedMacrophageProportion, activated TBSpecificCD4Fraction,

363  activatedTBSpecificCD8Fraction) as the alveolar macrophages and PBMCs were taken from
364 patients with active TB. Activated TB specific T cells are given a random starting generation and
365  starting point in the division cycle as the process of proliferation could have already started.

366

367  Traditional culture

368 The experimental conditions are the same as the spheroid without the inclusion of the magnetic
369 levitation beads. As with the spheroid, a simulation 1/10" the size of the experiment. This is

370  simulated by adding 40,000 infected and uninfected macrophages distributed evenly through
371  the environment. After these macrophages are added they fall to the bottom of the plate due to

372  the gravity-limited movement discussed in section 2.2.2.1. Since the cells would all be at the
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373  bottom of the plate, the dimensions were adjusted to 216x216x11, or 4.32mmx4.32mmx0.22
374  mm. The ratio of cells to the surface area of the plate is kept constant between the experimental
375 system and the simulation. Additionally, the volume of simulation, and therefore initial cellular
376  density, is minimally different between the spheroid and traditional models. The percentage of
377  cells with various number of phagocytosed bacteria is calculated in the same manner as the
378  spheroid model. On day 2, 60,000 CD4+ and CD8+ T cells are distributed evenly throughout the
379  environment before falling.

380

381 2.2.4. Simulation

382  This model is built using Repast Simphony 2.8, an open source software used to build ABMs in
383  Java.(50) Simulations were run on the Purdue Brown Cluster and on XSEDE resources.(51)
384  Python and MATLAB were used for data analysis and visualization.

385

386 2.3. Calibration

387  Calibration is performed by doing an initial parameter sweep and then iterating around specific
388  parameter sets. These iterations are used to find a variety of parameter sets that fit into the

389  experimental data range while iterating into harder to reach parts of the output space.

390 Experimental data ranges used for calibration include:

391 e Spheroid bacterial fold change from 4 hpi to day 6
392 o Traditional bacterial fold change from 4 hpi to day 6
393 e Spheroid cell viability at day 6

394 o Traditional cell viability at day 6

395 e Spheroid cell count at day 6

396 e Traditional cell count at day 6

16


https://doi.org/10.1101/2023.03.13.532338
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.13.532338; this version posted March 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

397  Atotal of 50 parameters are varied in the model (Table 1). Initial ranges are determined from
398 relevant literature (in silico, in vivo, in vitro) or left broad. Latin hypercube sampling (LHS) was
399  used to sample 1,000 parameter sets from initial ranges with a centered design (Table 1).

400 These parameter sets are run in both the traditional and spheroid simulation with 7 replicates as
401 abroad initial sweep. Top runs are defined as those with the highest traditional CFU, as this
402  part of the output space had few runs in the initial sweep. The top five runs that met the

403  bacterial fold changes for traditional and spheroid are iterated. Iterations are performed by

404  narrowing the parameter range to 20% of the initial range centered around the initial point (each
405  of the top five runs). One hundred samples in this new range are generated using LHS and are
406  runin triplicate. The number of replicates and runs are reduced due to computational costs.

407  Runs that passed all 6 criteria (bacterial fold changes, cell viability, and cell count at day 6 for
408 traditional and spheroid cultures) are iterated until there was less than a 10% increase in

409  traditional culture CFU. The iterating range is then narrowed to 10% of the initial range, and
410 iterated until again there is a less than 10% increase in traditional culture CFU. The calibrated
411  setis generated by selecting runs that fits all 6 criteria from all of the simulations. Thus, our

412  approach allows us to enrich areas that fell within experimental ranges while directing the

413  traditional CFU higher in order to fill out the whole experimental range.

414  Table 1: Parameters that are varied during calibration. Initial ranges are either determined by
415 literature, estimated through preliminary simulations (e), or broadened to the full mathematically

416  possible range (f). The set of calibrated parameter sets can be found in the provided data.

Parameter Initial Range | Units Refs
Bacteria

mtbinternalDoublingTime 23,69 Hours (53)
mtbExternalDoublingTime 23,69 Hours (53)
Macrophages
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activatedMacrophageProportion 0,0.1 Per tick e
baseKillingProbability 0.0001,0.02 | Per tick e
activeKillingProbability 0.002,0.3 Per tick e
basePhagocytosisProbability 0,1 Per tick f
activePhagocytosisProbability 0,1 Per tick f
phagocytosisThreshold 8,12 Internal bacteria (22)
cellularDysfunctionThreshold 8,12 Internal bacteria (22)
nfkbSpan 0.16,166 Hours (24)
TNFthresholdForNFkBActivation 40,500 Molecules e
bacThresholdForNFkBActivation 20,150 External bacteria (22)
stat1Span 0.16,166 Hours (24)
IFNthresholdForStat1Activation 40,500 Molecules e
ActivatedMacrophage TNFSecretion 0,40 Molecules/second (42)
InfectedMacrophage TNFSecretion 0,40 Molecules/second (42)
macrophagePopulation_MaxLifespan 20,100 Days (22)
macrophagePopulation_MaxActivatedLif | 7,13 Days (22)
espan
baseMovementProbabilityMacro 0.5,1 Per tick (33—
36)
activatedMovementProbabilityMacro 0,0.5 Per tick e
CD4+ T cells
fractionCD4 0.5,0.65 CD4+ T cells/ CD3+ T (46,47
cells )
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fractionTBSpecific 0.0001,0.06 | TB specific CD4+ T cells/ | (48,49
Total CD4+ T cells )
activatedTBSpecificCD4Fraction 0,01 Initial activated TB e

specific CD4 T cells/ Total

TB specific CD4 T cells

CD4ActivationProbability 0,1 Per tick f
CD4DeactivationProbability 0,1 Per tick f
ActivatedCD4TNFSecretion 0,40 Molecules/second (42)
ActivatedCD4IFNSecretion 0,40 Molecules/second (42)
cd4PopulationDoublingTime 6,16 Hours (54,55
)
maximumCD4Generations 3,10 Generations (54,56
,57)
cd4Population _MaxLifespan 34,340 Days (58—
cd8Population_MaxLifespan 60)
cd4Population_ActivatedLifespan 254 Days (22,54
cd8Population_MaxActivatedLifespan )
baseMovementProbabilityCD4 0,1 Per tick f

baseMovementProbabilityCD8

activatedMovementProbabilityCD4 0,1 Per tick f

activatedMovementProbabilityCD8

CD8+ T cells

CD8Fraction 0.3,0.35 CD8+ T cells/ CD3+ T (46)

cells
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tbSpecificCD8Fraction 0.0001,0.06 | TB specific CD8+ T cells/ | (48,49

Total CD8+ T cells )
activatedTBSpecificCD8Fraction 0,01 Initial activated TB e

specific CD8 T cells/ Total

TB specific CD8 T cells
CD8ActivationProbability 0,1 Per tick f
CD8DeactivationProbability 0,1 Per tick f
ActivatedCD8TNFSecretion 0,40 Molecules/second (42)
ActivatedCD8IFNSecretion 0,40 Molecules/second (42)
cd8PopulationDoublingTime 3,13 Hours (55)
maximumCD8Generations 7,20 Generations (56,57

61)
CD8KillProbability 0.012,0.12 | Per tick (22)
Diffusion
TNFthresholdForimmuneCellMovement | 1,500 Molecules e
TNFDiffusionCoefficient 0.1,1 107-7 cm”2/s (24)
TNFDegradationRatePerSecond 0.96,10 1/s e
IFNDiffusionCoefficient 0.1,1 107-7 cm”2/s (24)
IFNDegradationRatePerSecond 0.96,10 1/s e
granulomaFractionOfDiffusion 0,1 - f
spherekEfficiency 0.65,0.9 - e
417
418 2.4. Uncertainty analysis
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419  LHS and partial rank correlation coefficients (LHS-PRCC) are used to perform an uncertainty
420  analysis.(52) LHS-PRCC has been used in similar systems to characterize monotonic

421  relationships between inputs and outputs.(52) One thousand samples are selected from the
422 initial range using LHS and run with 7 replicates. These replicates are averaged before PRCCs
423  are calculated at day 2 before the T cells are added and day 6. A significance level of 0.01 is
424  used with a Bonferroni correction for the number of tests run. The relationship between the 50
425  varied parameters and 9 outputs of interest (totalMtbCount, mtbKilledByActivatedMacCount,
426  mtbKilledByRestingMacCount, mtbKilledByCD8Count, activatedCD4Count, totalActivatedCD8s,
427  activatedMacroCount, totalStat1MacroCount, totalNfkbMacroCount) are analyzed.

428

429 2.5. Matching Unpaired Runs

430 To be able to explore output spaces that are not accessible using the paired simulations

431 described above, we also analyze matched simulations. Unpaired spheroid and traditional

432  simulations are matched by selecting runs with similar (but not identical) initial condition

433 parameters: CD8Fraction, fractionCD4, fractionTBSpecific, and tbSpecificCD8Fraction. To

434  identify matched simulations, the spheroid runs are looped through for each traditional run, and
435  a cost function was calculated. This function sums squared errors divided by maximum value for
436  these 4 controlled parameters (CD8Fraction, fractionCD4, fractionTBSpecific, and

437  tbSpecificCD8Fraction). The spheroid run with the lowest cost is selected to be matched to the
438  unpaired traditional run.

439

440 3. Results

21
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443  Figure 2: Paired simulations are calibrated to data from in vitro cultures. Spheroid and

444  ftraditional simulations are run with the same parameters, only varying the initial spatial layout of
445  cells and the movement rules. Comparison of experimental data to calibrated simulation data for
446  a) CFU fold change from 4 hpi to 6 days, b) cell viability at day 6, and c) cell count at day 6. d)
447  Bacterial count dynamics for calibrated spheroid and traditional simulations over the 6 day time
448  course show heterogeneous behaviors. Spheroid and traditional simulations are visualized at
449  day 6 for comparison to in vitro images. f) A slice of the in vitro spheroid culture on day 6.

450  (Adapted with permission from Kotze et al. 2021) g) A slice through the center of a spheroid

451  simulation. h) Full spheroid simulation. i) A brightfield image of the in vitro traditional culture on

452  (day 6). j) Traditional simulation viewed top down. k) Traditional simulation viewed from side. ***

453  p<ie-3

454 3.1. Results from multiple systems can be reproduced with one in silico

455 framework.

456 We first test whether or not the multiscale model can recreate the experimental data for

457  bacterial fold change, cell count, and cell viability at day 6. Using the calibration method

458  described above, parameter sets are identified whose output fit criteria for both spheroid and
459 traditional data. (Figure 2a-c) These simulations give CFU fold change outputs that span most
460  of the experimental range, except for the highest experimentally measured CFUs in the

461  traditional cultures. Together this suggests we are able to recreate experimental data from

462  multiple in vitro systems using the same sets of parameters (Appendix Figure 1) and the same
463  model structure.

464 After calibrating to both experimental systems, representative calibrated runs are

465  visualized to compare with experimental images as a qualitative validation. Simulated spheroids
466  (Fig. 2g,h) qualitatively match experimental microscopy (Fig. 2f), having a layered structure with

467  macrophages on the inside and T cells in a cuff around the edge. The whole spheroid is situated
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468  in the middle of the simulated space with a very dense center with some cells less densely

469  around the outside. The layered structure of the spheroid can be contrasted with the more well-
470  mixed and dense traditional simulation (Fig. 2j,k) and experiments (Fig. 2i). These cells are

471 localized at the bottom of the simulation space, due to the gravity-limiting spatial rules. These
472  visualizations also highlight the versatility of the computational model, allowing the same base
473  set of rules to recreate multiple in vitro culture systems. In summary, this quantitative calibration
474  and qualitative validation indicates that our simulation-predicted spatial organization aligns well
475  with experimental data.

476 Beyond recreating existing experimental data, our computational model can also predict
477  high time resolution outcomes. Bacterial time courses show the heterogeneity of behaviors

478  possible given both the initial conditions and the experimental range at day 6. (Fig 2d) This

479  heterogeneity can give us insight into potential system dynamics and generate new testable
480  hypotheses. Predictions can then be tested by designing experiments to distinguish among

481  predicted behaviors by identifying time points and outputs of interest with the simulation. For
482  example, macrophage activation (Fig 2e) could be compared with M1 activation markers in vitro
483  at day 2.5 to differentiate between the two groups of spheroid simulations with different

484  predicted timings of macrophage activation.

485 Taken together, these results indicate that that our computational framework can

486  reproduce both bulk and spatial data from multiple experimental systems. Additionally, high
487  time- and space-resolution predictions can be made about cell counts and interactions.

488

489

490

491

492

493
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Figure 3: a) The spatial development of a single granuloma over 6 days. The radial distribution
of b) macrophages, CD4+ T cells, and CD8+ T cells; ¢) base and activated T cells; d) NF-kB

and STAT1 activated macrophages; €) base and activated macrophages.

3.2. Our computational framework predicts high time resolution spatial data,
including the evolution of a single spheroid over time.

In in vitro and in vivo experiments, a granuloma must be destroyed to produce IHC or
other data, meaning each time point corresponds to a different granuloma. In contrast, in silico
models allow us to look at the evolution of spatial phenomenon in situ, meaning a single
granuloma can be followed from creation to the end of the experiment.

These spatial dynamics can be analyzed both visually and quantitatively. Visually, an

initial sphere of mixed infected and uninfected macrophages is seen at day 1 with a cuff of T
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506 cells being added at day 2 (Fig 3a). Macrophage activation starts at the interface of the

507  macrophages and T cells and moves towards the center as time progresses. This activation
508 corresponds to some T cell infiltration into the macrophage core. In this specific run, more CD8+
509 T cell activation leads to more infiltration by this population. Quantitatively, we can look at the
510 radial density of cells and cell subpopulations to see similar trends (Fig 3b-e). Radial density
511  graphs were generated by calculating the distances of the cells to the center of the spheroid,
512  generating a histogram for the cells of interest by dividing them into preset bins, and then

513  normalizing by the total volume in each bin which corresponds to the volume of a spherical

514  shell. The simulation starts with uniformly distributed macrophages, before a cuff of uniformly
515  distributed CD4+ and CD8+ T cells is added (Fig 3b). As time progresses the T cells spread out
516  and begin to infiltrate the macrophage core, especially CD8+ T cells in this representative

517  simulation. In our simulation, these T cells only contribute to the immune response when they
518 are activated, so T cells are subdivided into resting and activated (Fig 3c). Activated T cells are
519  more localized towards the center of the granuloma. This makes sense as interacting with a
520  macrophage presenting antigenic peptides is required for T cell activation, and bacteria and
521  macrophages that have interacted with bacteria are going to be localized to the core. These
522  activated T cells provide one of the signals required for macrophage activation, STAT1 via IFN-
523  y. The distribution of this signal can be overlaid with the other required signal, NF-kB, giving
524  insight into how macrophage activation propagates from the outside in (Fig 3d). The distribution
525  of fully activated macrophages (Fig 3e) closely follow the STAT1 signal, suggesting in this

526  model T cells are the limiting step of activation. The widespread NF-kB activation suggests it is
527  not the limiting step, especially as macrophages are NF-kB activated from day 1 forward. This is
528 likely due to TNF-a secretion from the intermixed infected macrophages.

529 Taken together, this illustrates how we can use our models to quantify key host-

530 pathogen interactions in space and time in a single granuloma.
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532  Figure 4: Example simulations with a) extensive and b) limited T cell infiltration into the
533  macrophage core. A slice through the center of the granuloma is shown at day 6. ¢) Mean and
534  standard deviation radial density of macrophages and T cells. Runs are sorted by mean T cell

535 distance minus one standard deviation.

536 3.3. Adistribution of outcomes, including T cell infiltration, is seen among
537 spheroid simulations.
538 Given that T cell signaling is important for macrophage activation, T cell infiltration

539  becomes an output of interest. Visually, we noted the variation in T cell infiltration of the

540  spheroids between parameter sets (Fig. 4a,b). Calibrated runs can show almost no infiltration
541  (Fig. 4a) to almost homogeneous mixing of macrophages and T cells (Fig. 4b). To evaluate the
542  heterogeneity across all of our simulations, the mean and standard deviation of radial density is
543  calculated for macrophages and T cells for each simulation. This gives a mean position when
544  correcting for the uneven volumes of the radial spheres. These measures for T cells and

545  macrophages range from having nearly complete overlap to almost complete separation (Fig
546  4c). Over half of the simulations have macrophages with means around 10. However, many

547  simulations also have higher macrophage means closer to the T cell means, suggesting more
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548  intermixing between T cells and macrophages among these runs. Little infiltration was seen in
549  the in vitro model at day 6,(13) which aligns with some but not all of our simulated runs. Either
550 the small sample size of the experimental study doesn’t account for full heterogeneity or this
551 information can be used to further narrow the parameter space moving forward.

552 One way to look at the infiltration of T cells is to look at the difference between the T cell
553  mean and macrophage mean. The higher the value the more separation between the cell types
554  and, therefore, more structure. Spearman’s rank correlation coefficients were calculated

555  between this distance measure of separation and outputs of interest at day 6 with a = 0.01. Our
556  model suggests this measure of separation is not significantly correlated to total bacterial count
557  (p=0.091292, p = 0.068859). However, this model is only looking at runs that were calibrated
558  to experimental data, which has a small range of bacterial count for the spheroid simulations. If
559 increasing T cell separation was an isolated change it's possible that this relationship would be
560 seen.

561 Although the bacterial counts in the spheroid simulations are all within a small range, the
562  bacterial counts in the corresponding traditional simulations vary more. The Spearman’s rank
563  correlation coefficient between our separation measure and the traditional total bacterial count
564  shows a significant positive correlation (p = 0.561759, p < 0.000001). The parameter sets that
565  show more separation in the spheroid have higher bacterial load in the traditional cultures. So,
566  this would suggest that those parameter sets rely on a lot of structure to be able to control

567 bacteria, because when those parameters are used to simulate the traditional well-mixed

568  conditions, the bacteria are not as well controlled. On the other hand, those parameter sets that
569 don’'t have a lot of separation, do equally well in controlling bacteria in both the spheroid and
570  traditional. Parameter sets with less separation resemble the traditional organization, so similar
571 results are expected. So, bimodal results are seen, where there’s two different ways that the

572  model can control the bacteria — one is structure dependent and the other is not.
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573 Other correlations seen between separation measure and outputs of the spheroid model
574  include activatedMacroCount (p = 0.307164, p < 0.000001), activatedinfectedMacroCount (p =
575 0.419979, p < 0.000001), totalStat1MacroCount (p = 0.307557, p < 0.000001), and

576  totalActivatedCD8s (p =0.171726, p = 0.000580). Increasing separation correlates to more

577  STAT1 and total macrophage activation, including activation of the infected macrophage

578  population. CD8+ T cell activation is also positively correlated with separation. Due to the

579  distribution of separation, we are able to look at the impact of spatial layout of cells on many
580 outputs.

581 Taken together, these results illustrate that our simulations can produce a wide range of
582  outcomes that are consistent with the experimental data; and how these simulations can be
583  used to explore how granuloma structure impacts bacterial control and activation.

584
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585

586  Figure 5: Impact of input parameters on simulation outputs at day 2 before the T cells are

587 added and day 6. Correlation coefficients for spheroid and traditional simulations are shown in
588  the same heatmap with the traditional in the lower left hand corner and the spheroid in the upper
589  right. Insignificant correlations are shown in white, while positive and negative correlation are
590 shown with red and blue, respectively. Significance was determined with a =0.01 and a

591 Bonferroni correction.
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592 3.4. Comparisons between the models using uncertainty analysis can help identify
593 ideal use cases.
594 LHS-PRCC is performed on the initial large LHS sweep to quantify how uncertainty in

595 the parameters impacts uncertainty in the outputs of both the spheroid and traditional

596  simulations. At day 2 before the T cells have been added to the simulation, the spheroid and
597  traditional simulations show similar responses to changes in parameters. Total bacterial count is
598 inversely correlated with the doubling time of the internalized bacteria and the killing ability of
599 the resting macrophages. All of the bacteria at the beginning of the simulation are internal due
600 to a washing step after the infection of the macrophages. Lower doubling times of these bacteria
601 lead to more generations and more bacteria. Poorer killing ability of the resting macrophages
602 leads to more bacteria.

603 Before the addition of T cells, resting macrophages are responsible for all of the

604  Dbacterial killing. Cytotoxic CD8+ T cells have yet to be added to the culture, and T cells are

605  required to fully activate macrophages. So, mtbKilledByRestingMacCount accounts for all of the
606 killing and closely aligns with the totalBacterialCount. Base killing probability is positively

607  correlated with mtbKillingByRestingMacCount, as better killing ability leads to more killed

608  bacteria.

609 Total NF-kB activated macrophages is the only other output showing significant

610  correlations with parameters before day 2. NF-kB signal can come from TNF-a or bacteria and
611 s required for total activation. Total NF-kB activated macrophages are correlated to nfkbSpan,
612  baseKillingProbability, InfectedMacrophage TNFSecretion, and

613  macrophagePopulation _MaxLifespan. nfkbSpan is the length of time that NF-kB stays active
614  after receiving the initial signal, so the longer this time period is the more NF-kB activated

615  macrophages there are. When baseKillingProbability is lower, fewer bacteria are killed, and

616  more bacteria and infected macrophages are available to activate NF-kB. Higher TNF-a
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617  secretion from infected macrophages also leads to more activation. Lastly, longer macrophage
618 lifespans mean more macrophages are alive to be activated.

619 After the T cells are added, the total bacteria count is more dependent on CD4+ T cell
620  parameters. The internal doubling time and base killing probability are both still negatively

621  correlated with total bacteria count. The rest of the significantly correlated parameters are

622  associated with CD4+ T cells and STAT1 activation. Fewer TB specific CD4+ T cells, less CD4+
623 T cell activation, and more CD4+ deactivation all reduce the amount of activated CD4+ T cells
624  indirectly leading to more bacteria. Higher threshold for STAT1 activation by IFN-y, higher

625  degradation rate for IFN-y, and less CD4+ T cell IFN-y secretion all lead to less macrophage
626  STAT1 activation. Again, this will indirectly lead to more bacteria. With the inclusion of adaptive
627  immune cells, the responses of the two set ups also diverge more. For bacterial counts the only
628  difference is due to external bacteria. Lower external doubling time leads to more bacteria only
629 in the traditional simulation, as the population of external bacteria is so small in the spheroid
630  simulation.

631 Macrophage activation is mostly dependent on CD4+ T cell parameters in both models.
632  However, increased macrophage activation in the traditional simulation is also correlated with
633  increased macrophage lifespans and decreased CD4+ T cell doubling time. This suggests that
634  macrophage death might be limiting the population size in traditional runs. Also, a higher CD4+
635 T cell population will lead to more macrophage activation.

636 CD8+ T cell activation is correlated with parameters related to CD4+ T cells, CD8+ T
637  cells, and IFN-y. Differences between the two models include negative correlations between the
638  probability of deactivation/population doubling time and total CD8+ T cell activation. Less

639  deactivation or more proliferation should lead to higher activated populations.

640 The only parameter-output relationship seen just in the spheroid simulation is a positive
641  correlation between the baseKillingProbability and total NF-kB activated macrophages. This is

642  the opposite of the relationship seen at day 2. One hypothesis for this relationship is that more
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643  Kkilling initially leads to less macrophage activation and subsequent death. This is supported by
644  positive correlations between macrophage lifespans and this output.

645 Despite these differences, the two models have many similar responses to changing
646  parameters. For example, the total activated CD4+ T cells show the same relationships for both
647  the spheroid and traditional simulations with regards to all parameters. The significantly

648  correlated parameters are all related to CD4+ T cells: fraction of TB specific cells, activation
649  probability, deactivation probability, and doubling time.

650 Altogether, these results show that similar parameters are driving dynamics in the

651  spheroid and traditional models before day 2, but the influential parameters diverge after the
652  addition of T cells. These correlations can be used to select what in vitro model is needed when
653  designing experiments, as main drivers of outputs can be identified. For example, the traditional
654  simulation has a correlation between macrophage lifespans and macrophage activation that is
655 not seen in the spheroid. This relationship suggests that macrophage lifespans influence

656  macrophage activation in the traditional culture, so a spheroid might be more appropriate if the
657  biological question under investigation relates to drivers of macrophage activation.

658

659

660  Figure 6: a) Traditional simulations that fell above the paired range and matched spheroid
661  simulations. b) Significantly different parameters between the set of high traditional simulations

662  and matched spheroid simulations.
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663 3.5. Limitations in representing both systems can guide future model iterations.
664 The analysis done thus far is based on paired calibration. Pairing the simulations makes
665  the assumption that everything except for the initialization and movement is the same between
666  the spheroid and traditional simulations. While this assumption allows us to recreate a majority
667  of the experimental range, the highest traditional CFU counts are unable to be recreated with
668  paired runs. Traditional runs with high levels of bacteria falling in this range are seen, but the
669  corresponding spheroid simulation did not meet calibration criteria. This suggests that in order
670 to reproduce these high traditional CFU results, some parameters (i.e. biological mechanisms)
671  may need to be different between the spheroid and traditional simulations. To investigate this
672  possibility, we evaluate unpaired simulations that are allowed to have different parameter values
673  between traditional and spheroid simulations, but that are matched as closely as possible for
674 initial conditions that are expected to be the same.

675 Traditional runs are matched with spheroid runs that meet calibration criteria and have
676  similar initial conditions as defined in the methods. After these runs are matched, the

677  parameters of the spheroid and traditional simulations are compared. Nine parameters are

678  found to be significantly different (Figure 6). Some of these parameter differences can lead to
679 less bacteria in the spheroid directly or indirectly by increasing activation. The matched spheroid
680  runs had higher internal doubling time of the bacteria meaning the bacteria grow more slowly
681  and a higher resting macrophage killing rate leading to more bacterial killing. Therefore, the

682  matched spheroid runs have less bacteria than the traditional runs directly due to less growth
683  and more killing. The matched spheroid runs also have parameter differences that lead to more
684  macrophage activation. Lower IFNthresholdForStat1Activation in spheroid runs would give more
685  STAT1 activation of macrophages causing more overall macrophage activation. Lower

686  CD4DeactivationProbability in spheroid runs would prolong CD4+ T cell activation giving these

687  cells more opportunities to activate macrophages. Lastly, lower
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688  TNFDegradationRatePerSecond in spheroid runs maintains higher concentrations of TNF-a,
689 leading to more NF-kB activation of macrophages.

690 The role of the other parameters is less clear. Lower activatedTBSpecificCD4Fraction,
691 lower ActivatedCD8TNFSecretion, and higher TNFthresholdForNFkBActivation would all

692  suggest lower macrophage activation in the spheroid. Lower baseMovementProbabilityCD4

693  could delay activation of TB specific T cells or could lead to less spatial interference by non-TB
694  specific T cells in spheroids. As these simulations are matched after the fact, some of these

695  differences are potentially spurious. However, these differences can guide future computational
696  and experimental studies by highlighting hypothesized functional differences between traditional

697  and spheroid cultures.

698
699 4. Discussion
700 In silico models have been used previously to represent multiple in vitro systems for other

701  diseases. In 2006, Grant et al. used cellular automata to represent the growth of epithelial cells
702  in 4 conditions: 3D embedded, suspension, surface, and collagen overlay cultures.(62) They
703  were able to recreate the complex structure associated with each condition with a set of axioms
704  governing the interactions of cells, matrix, and cell-free space. The difference between a 2D and
705 3D culture system has also been modeled to explore viral dynamics and drug toxicity. A network
706  model of tumor cell infection by oncolytic viruses was simulated in a 2D monolayer and 3D

707  environment.(63) This model suggested that traditional mean field models overestimate how
708  effective therapy would be. Beyond this, infection in a 3D environment was shown to have a
709  smaller chance of tumor eradication, emphasizing the need for ideal virus characteristics: fast
710  replication and slow tumor cell killing. A virtual cell based assay was extended from 2D cultures
711  to 3D spheroids to predict drug toxicity.(64) This model was found to represent 3D in vitro

712 models well, which show higher drug toxicity than 2D monolayers.
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713 In all instances, space is explicitly modeled to gain insight into the system behavior in
714  different configurations. The spatial configurations alter dynamics of the system and can change
715  important predictive outcomes, such as drug response. Similar to these prior works, we explicitly
716  include space to model two different environmental setups. We show that spatial organization
717  alone can change the dynamics of the system and primary outcome, bacterial count. Moving
718  forward, we can use our simulations to predict which model outcomes are likely to be affected
719 by spatial organization and therefore guide experimental decisions.

720 Note, we are using a single in silico framework to represent separate traditional and 3D
721  cell cultures. A separate problem, representing one in vivo or in vitro system with both a 2D and
722 3D computational model, has also been addressed.(65,66) Models of in vivo granulomas and in
723 vitro spheroids suggest that 2D representations of 3D systems (i.e. slice through center of

724 structure) have similar results and save computational time.(65,66)

725 Granulomas are spatial organized structures, with a core of macrophages and a cuff
726  including CD4+ and CD8+ T cells.(67) The center of the granuloma is a more pro-inflammatory
727  environment, while the cuff has more anti-inflammatory cytokines.(68,69) Higher frequencies of
728  pro-inflammatory cytokines or lymphocytes are correlated with lower bacterial burden, but it is
729  suggested that a balance of pro- and anti-inflammation is necessary to limit both bacterial

730  growth and pathology.(69—71) While we don’t explicitly include anti-inflammatory pathways in
731  this preliminary model, our model does show pro-inflammatory signals localized to the core.
732 Specifically, macrophage activation is limited by the interactions between IFN-y and

733 macrophages which begins at the periphery of the core and moves inwards. This looks similar
734 to the pattern of p-STAT1 seen in peripheral regions in immunohistochemistry of NHP

735  granulomas.(72) Previous computational modeling also suggests the importance of IFN-y

736  producing T cells and interactions between macrophages and T cells for bacterial control.(73) It

737  emphasizes the importance of spatial organization as interactions between CD11c+
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738  macrophages and T cells are limited due to the cellular distributions within granulomas and the
739  recruitment of non-specific T cells.

740 While the structure of our model is artificially constructed rather than emerging from

741  immune interactions, the similar spatial patterns for cells and activation is encouraging. Further
742  comparison could be accomplished by applying our methods for analyzing the distribution of cell
743  types and signals within granulomas to in vitro and in vivo data in the future.

744 The evolution of a single granuloma can be followed over time in other systems. Sequential
745  imaging with [18F] fluorodeoxyglucose positron emission tomography and computed

746  tomography has been used to follow disease progression in NHP and track response to TB

747  treatment in humans.(74—76) This imaging gives information at the lesion-tissue scale.

748  Florescent in vivo microscopy of zebrafish embryos has given insight into the cellular level

749  dynamics.(77) Imaging after infection of zebrafish embryos with Mycobacterium marinum allows
750  tracking of infected macrophages providing information about early granuloma formation and
751  dissemination. Recently, a method to study zebrafish granulomas ex vivo called Myco-GEM was
752  created that allows continuous lightsheet imaging for upwards of 8 hours.(78) With tagging of
753  cytokines, specific cells, or bacteria the inflammatory state of the granuloma, granuloma

754  dynamics, cell movement, and bacterial load can be longitudinally examined.

755 Our model similarly provides dynamic information at the cellular scale. Beyond this, we can
756  gather information about bulk cell counts, cell activation status, and cytokine concentrations
757  without perturbing the observed system. Thus, our computational model can complement in
758  vitro experimental systems, by providing both high-resolution spatiotemporal information and
759  bulk information about host-pathogen interactions within individual granuloma structures.

760  Simulations with virtual perturbations on knockouts can then quickly be run to examine how

761  these interactions contribute to bacterial survival or elimination.

762 TB is a very heterogenous disease. There are many different clinical outcomes: bacterial

763  clearance, asymptomatic latent infection, and active infection.(71,79) These host level outcomes
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764  are dependent on a population of granulomas, which can be very heterogenous even within the
765  same lung.(76,80)Granulomas have many different structures which can lead to bacterial

766  dissemination, control, or clearance.(71,79) Our in vitro models are more controlled with an

767  established structure and proportion of cell types. Smaller sample numbers still showed a large
768  range of bacterial control, which can be recreated in silico. We also see heterogeneity in T cell
769 localization in silico. While this is not seen as much in vitro, there is some variability in vivo.
770  Early granulomas have T cells dispersed throughout, while well-developed ones are more

771  structured with a ring of T cells.(81) Being able to reproduce a diversity of granuloma

772  organizations will allow us to explore how different microenvironments contribute to granuloma
773  trajectory and treatment response.

774 LHS-PRCC has been used to look at correlations between inputs and outputs in simulations
775  of in vivo NHP granulomas. While our time points don’t line up with the longer in vivo

776  simulations, we can compare parameter influences before and after adaptive immunity has

777  been added. In the first iteration of the NHP granuloma simulation, there are similarities to our
778  model.(19) This model from literature shows a strong positive correlation between intracellular
779  growth rate and total extracellular bacteria during early infection.(19) As infection progresses
780  extracellular bacteria in the simulated NHP granulomas becomes negatively correlated with T
781  cell parameters, namely recruitment, movement, and activation of macrophages.(19)

782 In these simulations of in vivo granulomas all bacteria start extracellularly, while all bacteria
783  start intracellularly in our in vitro model. Our primary output of interest then becomes

784  intracellular bacteria, which shows a similar relationship with the intracellular growth rate before
785  the addition of the adaptive immune system. Some comparisons between this in vivo simulation
786  and our in vitro simulation are limited because in vivo mechanisms are missing in vitro, like

787  cellular recruitment. But we see an increased importance of T cell parameters on our output of
788 interest after adaptive immunity is initiated as in this literature model. In our short term

789  ‘artificially’ assembled spheroids, we see similar parameter influences to in vivo granulomas.
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790  Therefore, some comparisons can be made not only between our two in vitro models, but also
791  in vivo simulations, to be able to rationally identify good use cases for various in vitro systems.
792 Our model is not without limitations. The only PBMC derived CD3+ T cells simulated are
793  CD4+ and CD8+ T cells. Some subsets of T cells (e.g. regulatory and yd) are excluded from the
794  model for the purpose of simplification. Simplifications are also made to the macrophage

795  activation pathway. The model only incorporates M1 macrophage polarization/activation

796  represented as a 2-step pathway, and M2 macrophage polarization is not included.

797  Additionally, our model has been calibrated to be used with cells from patients with presumed
798  active TB. The exact same cells derived from an uninfected patient or a patient with latent TB
799  might behave differently, and the model would need to be recalibrated to different data. These
800  assumptions can be reassessed as we iterate this model to use it in answering new biological
801  questions.

802 While our model is able to represent a majority of the characteristics that could be

803  incorporated into a complex in vitro Mtb model, it still diverges from the idealized model in a
804  couple ways. No explicit environment impact on the cells in the simulation is included. It's known
805 that plastic and glass plates differ from in vivo environments, and as such extracellular matrix
806  (ECM) components like collagen have been incorporated into in vitro models. ECM can also
807  change the lifespan and movement of the cells and sequester chemokines. We plan to

808  incorporate ECM in future iterations. While primary human cells were represented, the bacteria
809  represented within this model is BCG, a model organism for Mtb, rather than Mitb itself. BCG
810  was used for preliminary analysis as it can be used outside of a BSL3 laboratory. Switching
811  between BCG and Mtb could be done by adjusting parameter values, but more detailed

812  pathways would need to be added if specific virulent strains were of interest.

813 5. Conclusion
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814 In summary, we show a novel application of ABMs to in vitro TB infection culture

815  systems. In doing so, we introduce a framework to potentially integrate results from and

816  compare multiple in vitro models.
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