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27 Abstract 

28 In vitro models of Mycobacterium tuberculosis (Mtb) infection are a valuable tool to examine 

29 host-pathogen interactions and screen drugs. With the development of more complex in vitro 

30 models, there is a need for tools to help analyze and integrate data from these models. We 

31 introduce an agent-based model (ABM) representation of the interactions between immune cells 

32 and bacteria in an in vitro setting. This in silico model was used to independently simulate both 

33 traditional and spheroid cell culture models by changing the movement rules and initial spatial 

34 layout of the cells. These two setups were calibrated to published experimental data in a paired 

35 manner, by using the same parameters in both simulations. Within the calibrated set, 

36 heterogeneous outputs are seen for outputs of interest including bacterial count and T cell 

37 infiltration into the macrophage core of the spheroid. The simulations are also able to predict 

38 many outputs with high time resolution, including spatial structure. The structure of a single 

39 spheroid can be followed across the time course of the simulation, allowing the relationship 

40 between cell localization and immune activation to be explored. Uncertainty analyses are 

41 performed for both model setups using latin hypercube sampling and partial rank correlation 

42 coefficients to allow for easier comparison, which can provide insight into ideal use cases for the 

43 independent setups. Future model iterations can be guided by the limitations of the current 

44 model, specifically which parts of the output space were harder to reach. This ABM can be used 

45 to represent more in vitro Mtb infection models due to its flexible structure, providing a powerful 

46 analysis tool that can be used in tandem with experiments.

47

48 Author Summary (150-200 words non tech)

49 Tuberculosis is an infectious disease that causes over 1.4 million deaths every year. During 

50 infection, immune cells surround the bacteria forming structures called granulomas in the lungs. 

51 New laboratory models generate spheroids that aim to recreate these structures to help 

52 understand infection and find new ways to treat tuberculosis. Computational modeling is used to 
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53 compare these newer spheroid models to traditional models, which don’t recreate the structure 

54 of the cell clusters. After calibration to data from laboratory experiments to ensure that the 

55 computational model can represent both systems, the structures were characterized over time. 

56 The traditional and spheroid model were also compared by looking at how model inputs impact 

57 outputs, allowing users to figure out when one model should be used over the other. This 

58 computational tool can be used to help integrate data from different laboratory models, generate 

59 hypothesis to be tested in laboratory models, and predict pathways to be targeted by drugs.

60

61 1. Introduction

62 Tuberculosis (TB) continues to be a global public health crisis, responsible for 1.4 million 

63 deaths in 2021 alone.(1) TB is caused by the bacteria Mycobacterium tuberculosis (Mtb). 

64 Generally, Mtb is introduced to its host upon inhalation of contaminated respiratory droplets, 

65 allowing direct entry into the lungs. Bacteria are deposited in the well-ventilated lower lobes of 

66 the lung, where alveolar macrophages phagocytose them.(2) Mtb is subsequently able to 

67 survive and replicate within the endosomes of these macrophages.(3) As the infection 

68 progresses, infected macrophages release chemokines and cytokines which recruit other 

69 immune cells (e.g. monocytes, T cells, B cells, NK cells, dendritic cells, and neutrophils) to form 

70 a granuloma. A granuloma is generally comprised of a core of infected macrophages, 

71 surrounded by monocytes, epithelioid macrophages, foamy macrophages, neutrophils, 

72 multinucleated giant cells, and finally a lymphocytic cuff with an outer fibrous capsule.(4) The 

73 timing and spatial organization of key host-pathogen interactions within these granuloma 

74 structures, and how these interactions contribute to bacterial survival or elimination, remains 

75 incompletely understood. This is in part due to the complexity of the granuloma structure itself, 

76 which makes it difficult to understand, measure, and/or predict host-pathogen interactions and 

77 their impact on infection progression.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2023. ; https://doi.org/10.1101/2023.03.13.532338doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.13.532338
http://creativecommons.org/licenses/by/4.0/


4

78 Many systems have been used to explore granulomas in TB; each having its own 

79 benefits and limitations. While much has been revealed about the structure of granulomas from 

80 work in humans, clinical studies are invasive or indirect and are often lacking in time points 

81 required to evaluate granuloma dynamics. Additionally, TB granulomas in humans can only 

82 really be studied at later stages when the infection has been established and diagnosed.(5) 

83 Animal studies such as non-human primate (NHP), rabbit, and mouse models are very useful 

84 and allow more control and direct observation of infection and granuloma formation than in 

85 humans. Mouse models benefit from wide availability of commercial immunological reagents, 

86 genetic tools, and transgenic and knock-out strains, but most mouse strains struggle to recreate 

87 the structure of granulomas seen in humans.(6,7) Rabbit and guinea pigs are able to form 

88 necrotic and non-necrotic mature granulomas. (6,7) These models have been limited in the past 

89 by availability of immunological reagents, but recently more commercially available 

90 immunological reagents like antibodies against rabbit analytes have been developed.(6–9) NHP 

91 models most closely recreate human pathology, with heterogenous clinical outcomes and 

92 granuloma structures.(10,11)  But NHP models are expensive, time-intensive, and limited by the 

93 availability of animal facilities.(6,7) It is difficult to do certain genetic manipulations, collect data 

94 at many time points, and control the exact cellular and environmental makeup of the system in 

95 these in vivo models. Complementary to these in vivo models, there has been recent work 

96 developing more complex in vitro cellular cultures to both dissect biological mechanisms and 

97 test new therapies (reviewed in Elkington et al.(12)). In vitro models can be particularly helpful 

98 because the system is tractable, and all cellular components of the system can be controlled. In 

99 vitro models are also cheaper and higher throughput than the equivalent in vivo models. In vitro 

100 systems can be mechanistically perturbed and dynamically sampled in ways that are extremely 

101 difficult in in vivo models.

102 Elkington et al. suggest certain criteria for an ideal in vitro model including the use of 

103 human cells and virulent Mtb; allowing incorporation of fibroblast, epithelial cells, and 
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104 physiological extracellular matrix; being modular to allow many different biological questions to 

105 be answered; and, ideally, being 3-dimensional (3D).(12) However, increasing complexity isn’t 

106 necessary in all cases and can make models lower-throughput and more expensive. Ideally, in 

107 vitro models could be tailored to the biological question at hand, but still be able to be compared 

108 across platforms. In vitro models could then be optimized to include only the necessary 

109 components, allowing maintenance of inexpensive, high-throughput models. Results from many 

110 disparate systems could still be synthesized to form robust conclusions.  

111 We recently developed an in vitro biomimetic 3D spheroid granuloma model.(13) Briefly, 

112 patient-derived alveolar macrophages are infected with BCG, and magnetic nanospheres used 

113 to levitate the cells. Autologous adaptive immune cells isolated from peripheral blood 

114 mononuclear cells (PBMCs) were added at 48 hours into the 6 day culture. When comparing 

115 this granuloma model to a corresponding traditional monolayer culture, we found the spheroid 

116 model was better able to control bacteria. Differences in bacterial count between these models 

117 can be quantified and are due to the different model setups, but how the spatial aspects impact 

118 immune response is unclear. These two systems provide a good test case to evaluate the 

119 possibility of translating between different in vitro systems, and identify the key mechanisms at 

120 work in the different systems. 

121  This data not only motivates a need to understand the mechanistic differences between 

122 these two models, but also highlights a need to more broadly look at the complexity and 

123 spatiality of in vitro models. As we move towards more complex in vitro models, organoids, 

124 complex cell mixtures etc., it is important that we 1) understand and quantify the impact of the 

125 structural organization of the cultures, and 2) develop tools that are able to analyze these more 

126 complex systems, and 3) develop tools that can enable us to compare and translate between 

127 systems. Computational models are well-suited to address all of these tasks.

128 Computational models are inexpensive compared to in vitro or in vivo models, quick to 

129 run, highly manipulatable, able to integrate data from many sources, and can easily be adapted 
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130 to reflect new data.(12,14) Beyond this, computational models can be used to perform 

131 perturbations (e.g. virtual knockouts) that would be extremely difficult in a wet lab setting. 

132 Computational models work especially well in combination with in vitro work, where hypotheses 

133 can be generated computationally and tested experimentally in an iterative fashion.(12) 

134 Mechanistic models specifically use individual interactions between cells and molecules to 

135 predict emergent tissue-level outcomes (e.g. granuloma dynamics). Because individual cellular 

136 and molecular interactions are based on current biological understanding, we can use the 

137 emergent behavior of our simulations to test hypotheses about the driving mechanisms for 

138 tissue-level outcomes. Beyond hypothesis testing, mechanistic models also act to integrate 

139 existing knowledge into a single framework to help understand their collective impact. One type 

140 of mechanistic model, agent-based models (ABMs), are stochastic spatiotemporal models that 

141 are particularly suited to look at emergent spatial behavior. Stochasticity is ideal because it 

142 captures some of the heterogenous host response to TB.(15,16) Spatiality is required as we aim 

143 to represent and contrast both traditional and 3D models. 

144 Mechanistic modeling has been applied to TB since 1962, and ABMs in particular have 

145 been used in the context of TB since 2004.(17–19) ABMs of granuloma formation in the non-

146 human primate (NHP) lung have been iterated many times to look at the impacts of TNF-α(20–

147 22), Mtb metabolism(23), macrophage (MΦ) polarization(24), and more(25–30). In this work, we 

148 apply these established agent-based approaches to in vitro systems. This means that all 

149 components included in the experimental system can be accounted for, the experimental 

150 system can be more easily observed and perturbed, and we can use one simulation framework 

151 with different initializations to represent, and translate between, many in vitro models. In this 

152 work we use one computational agent-based modeling framework to recreate the results from 

153 both 3D spheroid and the corresponding traditional culture in vitro models(13). Our 

154 computational model generates high time-resolution data for cellular outputs, along with spatial 

155 data. This spatial data is processed in multiple ways, allowing us to dissect the evolution of a 
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156 single granuloma and explore the heterogeneity of the host response within different spatial 

157 organizations. Finally, we use uncertainty analysis to look at the similarities and differences 

158 between the spheroid and traditional setups. 

159

160 2. Methods

161

162 2.1. Experimental Methods

163

164 The data we use for calibration is derived from a biomimetic 3D spheroid model of a granuloma 

165 and the corresponding traditional culture. Briefly, HIV negative patients with high suspicion of 

166 TB were recruited. Bronchoscopies were performed by qualified clinicians and nursing staff 

167 according to international guidelines (31) to obtain bronchoalveolar lavage fluid samples. 

168 Immediately after bronchoscopy, peripheral blood was collected by venipuncture into two 9mL 

169 sodium heparinized (NaHep) vacutainers. Alveolar macrophages were isolated from 

170 bronchoalveolar fluid, and PBMCs were isolated from peripheral blood using the Ficoll-Paque 

171 isolation method described previously (13). Alveolar macrophages were cultured at a density of 

172 4x105 cells per well in a 24-well low-adherence culture plate and infected with Mycobacterium 

173 bovis Bacille Calmette-Guerin (BCG) at a multiplicity of infection (MOI) of 1 for 4 hours. 

174 Afterwards, extracellular bacteria were removed by supplementing media with an antimycotic 

175 antibiotic (penicillin/streptomycin/amphotericin B) for 1 hour, followed by successive washes. 

176 The 3D spheroids were made by treating alveolar macrophages with biocompatible NanoShuttle 

177 (n3D Biosciences Inc., Greiner Bio-One) and levitating them using the magnetic levitating drive. 

178 After 48 hours, 6x105 autologous CD3+ T cells are added per well. The traditional culture is 

179 made using the same cells and the same ratios, but without NanoShuttle treatment and 

180 subsequent magnetic levitation.
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181 Granuloma structures were mechanically disrupted by gentle pipetting after 6 days of 

182 culture. Cell count and cell viability were determined using the trypan blue exclusion method 

183 after adherent cells were removed. CFU counts were determined by lysing mechanically 

184 disrupted cells and plating serial dilutions on Middlebrook 7H11 agar plates (BD Biosciences). 

185 After 21 days of growth, the colonies were manually counted. 3D spheroids were also fixed, 

186 embedded in tissue-freezing medium OCT (Tissue-Tek; USA), and cryosectioned. A section 

187 from the middle of the structure was stained with antibodies for CD3+ and CD206+ cells and 

188 imaged using a Carl Zeiss LSM 880 Airyscan with Fast Airyscan Module confocal microscope 

189 (Plan-Apochromat x63/1.40 oil DIC UV-VIS-IR M27 lens objective). The image of the traditional 

190 cell culture was acquired with light microscopy at 40x magnification. For full methods please 

191 reference Kotze et al. 2021. 

192

193 2.2. Model Structure 

194 Our model simulates the interactions between macrophages, CD4+ T cells, CD8+ T cells, 

195 bacteria, and two simplified cytokines within an in vitro environment. The simulation is 

196 constructed as a hybrid multiscale model with a cellular level agent-based model hybridized to a 

197 partial differential equation model of diffusion for the two cytokines (TNF-like and IFN-like). 

198 These will be referred to as TNFα and IFNγ moving forward. The environment is composed of 

199 grid cubes that each represent a 20μm x 20μm x 20μm volume, which is the approximate size of 

200 our largest agent type, the macrophage.(32) The environment has two overlying grids, one 

201 single occupancy grid for immune cells and one multioccupancy for the smaller bacteria. The 

202 simulation has 4 types of agents: macrophages, CD4+ T cells, CD8+ T cells, and bacteria. 

203 Macrophages can be subdivided into uninfected and infected classes. Agent behaviors are 

204 performed with a time step of 6 minutes, the approximate time for a monocyte to move 20 μm, 

205 or one grid cube. (33–36) The simulation is run for a total of 6 days, to reflect the duration of the 
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206 in vitro experiments. An overview of agent behaviors is shown in Figure 1 and further detail is 

207 given below. These methods are in part drawn from work modeling NHP granulomas in silico, 

208 specifically GranSim and subsequent developments.(18,19)

209

210

211

212

213 Figure 1: An overview of rules for the simulated agents. a) Bacteria grow and divide. b) Immune 

214 cells secrete cytokines dependent on activation or infectious state, move probabilistically up a 

215 TNF-α gradient, age, and die. c) Macrophages (MΦ) can phagocytose bacteria becoming 

216 infected. d) MΦ activation is represented by a two-step process. NF-κB can be activated by 

217 TNF-α, bacteria, or direct contact with an activated CD4+ T cell. STAT1 is activated by IFN-γ 

218 secreted by activated T cells. e) Infected ΜΦ either fight infection killing internal bacteria and 

a b 

c 

d 

f 

e 

g
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219 returning to uninfected state, or when a certain threshold of bacteria is reached will burst 

220 releasing internal bacteria into the environment. f) TB-Specific CD4+ T cells activate by 

221 interacting with a ΜΦ that has interacted with a bacterium. After activation, CD4+ T cells can 

222 proliferate. g) TB-Specific CD8+ T cells activate by interacting with a ΜΦ that has interacted 

223 with a bacterium and is STAT1 activated. After activation, CD8+ T cells can proliferate and kill 

224 infected macrophages along with the internal bacteria. Created with BioRender.com.

225 2.2.1. Diffusing molecules

226 There are 2 diffusing molecules included representing the simplified TNF-α and IFN-γ. These 

227 are contributed to by the secreting agents, and diffuse in the simulation space. Diffusion is 

228 performed similarly to that in Weathered et al. using a 3D alternating-direction explicit numerical 

229 method.(37) As this method is unconditionally numerically stable, a larger dt than is predicted by 

230 the conditional stability criterion can be used while maintaining accuracy.(38) After finding dt 

231 suggested by the conditional stability criterion and the diffusion parameters a multiplier of 4 was 

232 incorporated into the alternating-direction explicit method to reduce simulation time, while 

233 maintaining accuracy, as recommended by Cilfone et al.(38) The PDE is run with a smaller time 

234 step than the ABM, ranging from 2 to 14 diffusion iterations per agent time step depending on 

235 the diffusion parameters. IFN-γ and TNF-α are diffused separately with separate diffusion 

236 coefficients and decay rates. The rate of diffusion is slowed within granulomas by 

237 granulomaFractionOfDiffusion. 

238

239 2.2.2. Agents

240 Immune cells

241 Macrophages, infected macrophages, CD4+ and CD8+ T cells are all classified as types of 

242 immune cells. This parent class of agents share common behaviors, including movement and 

243 aging. Movement is determined by gravity limited or 3D rules. Cells moving in 3D are able to 
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244 move in any direction. With gravity limited rules, cells will fall in the z dimension if no immune 

245 cell is below them and can only move up in the z direction if on top of another immune cell. 

246 Given these movement rules, the cells will chemotax probabilistically toward the highest 

247 concentration of TNF-α when the summed TNF-α in the Moore neighborhood is above 

248 TNFthresholdForImmuneCellMovement. This chemotaxis algorithm is based off of that in 

249 Weathered et al..(37) Immune cells also age according to individualized lifespans. A resting 

250 lifespan and activated lifespan are selected for each cell from a populationLifespan * (1+/- 

251 lifeSpanVariance). These lifespans are then converted to aging rates, which change according 

252 to the activation status of the cell. The resting aging rate is 1 hour aged per hour, while the 

253 activated aging rate is calculated as resting lifespan divided by activated lifespan. At 

254 initialization a cell will be given a random starting age from zero to the resting lifespan. Then a 

255 cell’s current age gets incremented by the aging rate each time step. When a cell reaches its 

256 maximum age, it will die and be removed from the simulation.

257

258 Macrophages 

259 Beyond the immune cell rules described above, macrophages will attempt to phagocytose and 

260 activate every time step. Each macrophage attempts to phagocytose by picking a bacterium in 

261 its Moore neighborhood at random. If this bacterium is extracellular, it will be phagocytosed with 

262 a phagocytosis probability dependent on activation state (basePhagocytosisProbability, 

263 activePhagocytosisProbability). Successful phagocytosis turns a macrophage into an infected 

264 macrophage. Macrophages that have phagocytosed bacteria also get classified as having 

265 interacted with bacteria, meaning antigenic peptides can be displayed on the cell surface. Each 

266 macrophage also checks for activation. Activation is represented by a simplified two step 

267 signaling process, requiring STAT1 and NF-κB activation.(39) Each of these two pathways can 

268 be activated, if they are not already activated. STAT1 is activated if local IFN-γ is greater than 

269 IFNthresholdForStat1Activation. NF-κB can be activated in 3 ways: TNF-α greater than 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2023. ; https://doi.org/10.1101/2023.03.13.532338doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.13.532338
http://creativecommons.org/licenses/by/4.0/


12

270 TNFthresholdForNFkBActivation, nearby extracellular bacteria greater than 

271 bacThresholdForNFkBActivation, or direct interaction with an activated CD4+ T cell. These 

272 represent TNF-α interaction with TNFR, activation of TLR, and CD40-CD40L interactions, 

273 respectively.(40) All three of these NF-κB activation methods will be checked in a random order. 

274 NF-κB and STAT1 activations last for set durations after the signal was initially received 

275 (nfkbSpan and stat1Span). These durations have variances, nfkbVariance and stat1Variance, to 

276 introduce heterogeneity into the population. After the macrophage-specific length of activated 

277 time, the pathway will deactivate and be checked again immediately, to allow longer activation if 

278 the activation signals persist. If both pathways are activated at the same time, then the 

279 macrophage becomes fully activated. Activation changes a macrophage’s movement 

280 probability, phagocytosis probability, and aging rate. Activated macrophages also secrete TNF-α 

281 at a rate of ActivatedMacrophageTNFSecretion molecules per second.

282

283 Infected Macrophages

284 Infected macrophages can fight the infection at each time step. An internal bacterium is selected 

285 randomly and will be killed with a probability that is dependent on the macrophage’s activation 

286 state (baseKillingProbability, activeKillingProbability). If all the bacteria within an infected 

287 macrophage are killed, then the infected macrophage reverts to a healthy macrophage. Infected 

288 macrophages can be activated through the same pathways as healthy macrophages. When 

289 fully activated, the phagocytosis and killing probabilities change to values for activated 

290 macrophages. Infected macrophages secrete TNF-α when activated, but also constitutively 

291 secrete TNF-α at a baseline level of InfectedMacrophageTNFSecretion molecules per second 

292 when not activated. Infected macrophages don’t move but can continue to phagocytose bacteria 

293 if the number of internalized bacteria is below phagocytosisThreshold. This occurs similarly to 

294 the initial phagocytosis, with a random bacterium selected from the infected macrophage’s 

295 Moore neighborhood that will be taken up with some probability if it is extracellular. Once the 
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296 number of internal bacteria is above cellularDysfunctionThreshold the macrophage is 

297 considered chronically infected.(19) Chronically infected macrophages can no longer be fully 

298 activated or kill internal bacteria. If the number of bacteria within an infected macrophage 

299 reaches a bursting threshold the macrophage will burst and release the internal bacteria into the 

300 environment. This threshold has been experimentally determined to be 20-40 internal bacteria in 

301 in vitro systems.(41) A burst limit was randomly selected for each infected macrophage from a 

302 uniform distribution from 20 to 40 internal bacterial. When a macrophage dies of old age the 

303 bacteria are similarly released into the environment.

304

305 CD4+ T cells

306 CD4+ cells can be TB specific or non-TB specific. TB specific CD4+ T cells can also become 

307 activated. Activation of TB specific CD4+ T cells occurs with a probability of 

308 CD4ActivationProbability if a random macrophage in its Moore neighborhood has interacted 

309 with bacteria. This is equivalent to antigen presentation on MHC II. (40) Activation increases 

310 movement probability and aging rate. Activated CD4+ T cells secrete both TNF-α at 

311 ActivatedCD4TNFSecretion molecules per second and IFN-γ at ActivatedCD4IFNSecretion 

312 molecules per second.(42) Active CD4+ T cells can also divide with a doubling time of 

313 cd4PopulationDoublingTime until the maximum number of generations 

314 (maximumCD4Generations) is reached. Individual variance is introduced to doubling time. 

315 Deactivation occurs with a given probability CD4DeactivationProbability per time step.

316

317 CD8+ T cells

318 Just like CD4+ T cells, CD8+ T cells can be subdivided into TB specific and non-TB specific. TB 

319 specific CD8+ T cells can be activated. If a randomly selected macrophage within the T cell’s 

320 Moore neighborhood is STAT1 activated and has interacted with bacteria, then the T cell will 

321 probabilistically activate (CD8ActivationProbability). STAT1 activation is a proxy for interaction 
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322 between CD4+ T cell and macrophage which increases expression of molecules on the surface 

323 of the APC(B7 and 4-1BBL) that provide co-stimulation to naïve CD8+ T cells.(40,43) If 

324 activated, a CD8+ T cell will secrete both TNF-α (ActivatedCD8TNFSecretion) and IFN-γ 

325 (ActivatedCD8IFNSecretion). Activation also increases movement probability and aging rate. 

326 Activated CD8+ T cells will also divide with a doubling time of cd8Population_DoublingTime until 

327 the maximum generation (maximumCD8Generations) is reached. Activated CD8+ T cells have 

328 the ability to kill infected macrophages (equivalent to cells presenting peptides in MHC I). A 

329 random infected macrophage is selected for the Moore neighborhood, and the infected 

330 macrophage and all internal bacteria are killed with a probability CD8KillProbability. CD8+ T 

331 cells deactivate probabilistically (CD8DeactivationProbability).

332

333 Bacteria

334 Bacteria grow and divide. Bacteria have biomass that gets added to every tick. The rate of 

335 growth depends on whether they are intracellular or extracellular. Growth rate is calculated from 

336 doubling time (mtbInternalDoublingTime, mtbExternalDoublingTime), and includes some 

337 individual variance from the population mean. If the biomass threshold of 2 is reached, then the 

338 bacteria divide into two with the biomass distributed among them unevenly(44). Simulated 

339 bacteria represent BCG, as BCG was used in the in vitro models. Behaviors/parameters draw 

340 from both BCG and TB literature.

341

342 2.2.3. Initial Conditions

343 The differences between the spheroid and traditional simulations include the movement rules 

344 and the initial spatial distribution of cells. Our initial conditions reflect those used in the in vitro 

345 system.(13)

346  

347 Spheroid
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348 In the experimental protocols, 400,000 macrophages are infected with MOI 1 and then 

349 levitated.(13) At day 2, 600,000 CD3+ cells are added in a dropwise manner directly to the 

350 spheroid. Due to computational limitations associated with the 3D simulation of a full-sized 

351 spheroid, we simulate a spheroid of 1/10th the size. We generate a sphere of 40,000 mixed 

352 healthy and infected macrophages. Given the experimental MOI of 1, we use a Poisson 

353 distribution to estimate percentage of cells with various number of phagocytosed bacteria(45). 

354 The fraction of macrophages that have phagocytosed n bacteria is given by 𝑀𝑂𝐼𝑛𝑒―𝑀𝑂𝐼

𝑛!
 . 

355 Macrophages with zero to six internalized bacteria are initialized, giving 39,997 initial bacteria. 

356 This sphere is centered on an 80x80x80 grid representing 1.6 mm x 1.6 mmx 1.6 mm volume. 

357 The radius of the initialized sphere is calculated as 3 𝑐𝑒𝑙𝑙𝐶𝑜𝑢𝑛𝑡 ∗ 3
4 𝜋 𝑠𝑝ℎ𝑒𝑟𝑒𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦, with the initial density of 

358 the cells determined by sphereEfficiency. At day 2, 60,000 CD4+ and CD8+ T cells are added in 

359 a cuff around the macrophages. Proportions of CD4+ T cells (fractionCD4), CD8+ T cells 

360 (CD8Fraction), and TB specific T cells (fractionTBSpecific, tbSpecificCD8Fraction) are 

361 estimated from literature. (46–49) Subsets of the immune cells are allowed to be preactivated 

362 (activatedMacrophageProportion, activatedTBSpecificCD4Fraction, 

363 activatedTBSpecificCD8Fraction) as the alveolar macrophages and PBMCs were taken from 

364 patients with active TB. Activated TB specific T cells are given a random starting generation and 

365 starting point in the division cycle as the process of proliferation could have already started. 

366

367 Traditional culture

368 The experimental conditions are the same as the spheroid without the inclusion of the magnetic 

369 levitation beads. As with the spheroid, a simulation 1/10th the size of the experiment. This is 

370 simulated by adding 40,000 infected and uninfected macrophages distributed evenly through 

371 the environment. After these macrophages are added they fall to the bottom of the plate due to 

372 the gravity-limited movement discussed in section 2.2.2.1. Since the cells would all be at the 
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373 bottom of the plate, the dimensions were adjusted to 216x216x11, or 4.32mmx4.32mmx0.22 

374 mm. The ratio of cells to the surface area of the plate is kept constant between the experimental 

375 system and the simulation. Additionally, the volume of simulation, and therefore initial cellular 

376 density, is minimally different between the spheroid and traditional models. The percentage of 

377 cells with various number of phagocytosed bacteria is calculated in the same manner as the 

378 spheroid model. On day 2, 60,000 CD4+ and CD8+ T cells are distributed evenly throughout the 

379 environment before falling. 

380

381 2.2.4. Simulation

382 This model is built using Repast Simphony 2.8, an open source software used to build ABMs in 

383 Java.(50) Simulations were run on the Purdue Brown Cluster and on XSEDE resources.(51) 

384 Python and MATLAB were used for data analysis and visualization.

385

386 2.3. Calibration

387 Calibration is performed by doing an initial parameter sweep and then iterating around specific 

388 parameter sets. These iterations are used to find a variety of parameter sets that fit into the 

389 experimental data range while iterating into harder to reach parts of the output space. 

390 Experimental data ranges used for calibration include:

391  Spheroid bacterial fold change from 4 hpi to day 6

392  Traditional bacterial fold change from 4 hpi to day 6

393  Spheroid cell viability at day 6 

394  Traditional cell viability at day 6

395  Spheroid cell count at day 6

396  Traditional cell count at day 6
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397 A total of 50 parameters are varied in the model (Table 1). Initial ranges are determined from 

398 relevant literature (in silico, in vivo, in vitro) or left broad. Latin hypercube sampling (LHS) was 

399 used to sample 1,000 parameter sets from initial ranges with a centered design (Table 1). 

400 These parameter sets are run in both the traditional and spheroid simulation with 7 replicates as 

401 a broad initial sweep. Top runs are defined as those with the highest traditional CFU, as this 

402 part of the output space had few runs in the initial sweep. The top five runs that met the 

403 bacterial fold changes for traditional and spheroid are iterated. Iterations are performed by 

404 narrowing the parameter range to 20% of the initial range centered around the initial point (each 

405 of the top five runs). One hundred samples in this new range are generated using LHS and are 

406 run in triplicate. The number of replicates and runs are reduced due to computational costs. 

407 Runs that passed all 6 criteria (bacterial fold changes, cell viability, and cell count at day 6 for 

408 traditional and spheroid cultures) are iterated until there was less than a 10% increase in 

409 traditional culture CFU. The iterating range is then narrowed to 10% of the initial range, and 

410 iterated until again there is a less than 10% increase in traditional culture CFU. The calibrated 

411 set is generated by selecting runs that fits all 6 criteria from all of the simulations. Thus, our 

412 approach allows us to enrich areas that fell within experimental ranges while directing the 

413 traditional CFU higher in order to fill out the whole experimental range.

414 Table 1: Parameters that are varied during calibration. Initial ranges are either determined by 

415 literature, estimated through preliminary simulations (e), or broadened to the full mathematically 

416 possible range (f). The set of calibrated parameter sets can be found in the provided data.

Parameter Initial Range Units Refs

Bacteria

mtbInternalDoublingTime 23,69 Hours (53)

mtbExternalDoublingTime 23,69 Hours (53)

Macrophages
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activatedMacrophageProportion 0,0.1 Per tick e

baseKillingProbability 0.0001,0.02 Per tick e

activeKillingProbability 0.002,0.3 Per tick e

basePhagocytosisProbability 0,1 Per tick f

activePhagocytosisProbability 0,1 Per tick f

phagocytosisThreshold 8,12 Internal bacteria (22)

cellularDysfunctionThreshold 8,12 Internal bacteria (22)

nfkbSpan 0.16,166 Hours (24)

TNFthresholdForNFkBActivation 40,500 Molecules e

bacThresholdForNFkBActivation 20,150 External bacteria (22)

stat1Span 0.16,166 Hours (24)

IFNthresholdForStat1Activation 40,500 Molecules e

ActivatedMacrophageTNFSecretion 0,40 Molecules/second (42)

InfectedMacrophageTNFSecretion 0,40 Molecules/second (42)

macrophagePopulation_MaxLifespan 20,100 Days (22)

macrophagePopulation_MaxActivatedLif

espan

7,13 Days (22)

baseMovementProbabilityMacro 0.5,1 Per tick (33–

36)

activatedMovementProbabilityMacro 0,0.5 Per tick e

CD4+ T cells

fractionCD4 0.5,0.65 CD4+ T cells/ CD3+ T 

cells

(46,47

)
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fractionTBSpecific 0.0001,0.06 TB specific CD4+ T cells/ 

Total CD4+ T cells

(48,49

)

activatedTBSpecificCD4Fraction 0,0.1 Initial activated TB 

specific CD4 T cells/ Total 

TB specific CD4 T cells

e

CD4ActivationProbability 0,1 Per tick f

CD4DeactivationProbability 0,1 Per tick f

ActivatedCD4TNFSecretion 0,40 Molecules/second (42)

ActivatedCD4IFNSecretion 0,40 Molecules/second (42)

cd4PopulationDoublingTime 6,16 Hours (54,55

)

maximumCD4Generations 3,10 Generations (54,56

,57)

cd4Population_MaxLifespan

cd8Population_MaxLifespan

34,340 Days (58–

60)

cd4Population_ActivatedLifespan

cd8Population_MaxActivatedLifespan

2.5,4 Days (22,54

)

baseMovementProbabilityCD4

baseMovementProbabilityCD8

0,1 Per tick f

activatedMovementProbabilityCD4

activatedMovementProbabilityCD8

0,1 Per tick f

CD8+ T cells

CD8Fraction 0.3,0.35 CD8+ T cells/ CD3+ T 

cells

(46)
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tbSpecificCD8Fraction 0.0001,0.06 TB specific CD8+ T cells/ 

Total CD8+ T cells

(48,49

)

activatedTBSpecificCD8Fraction 0,0.1 Initial activated TB 

specific CD8 T cells/ Total 

TB specific CD8 T cells

e

CD8ActivationProbability 0,1 Per tick f

CD8DeactivationProbability 0,1 Per tick f

ActivatedCD8TNFSecretion 0,40 Molecules/second (42)

ActivatedCD8IFNSecretion 0,40 Molecules/second (42)

cd8PopulationDoublingTime 3,13 Hours (55)

maximumCD8Generations 7,20 Generations (56,57

,61)

CD8KillProbability 0.012,0.12 Per tick (22)

Diffusion

TNFthresholdForImmuneCellMovement 1,500 Molecules e

TNFDiffusionCoefficient 0.1,1 10^-7 cm^2/s (24)

TNFDegradationRatePerSecond 0.96,10 1/s e

IFNDiffusionCoefficient 0.1,1 10^-7 cm^2/s (24)

IFNDegradationRatePerSecond 0.96,10 1/s e

granulomaFractionOfDiffusion 0,1 - f

sphereEfficiency 0.65,0.9 - e

417

418 2.4. Uncertainty analysis 
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419 LHS and partial rank correlation coefficients (LHS-PRCC) are used to perform an uncertainty 

420 analysis.(52) LHS-PRCC has been used in similar systems to characterize monotonic 

421 relationships between inputs and outputs.(52) One thousand samples are selected from the 

422 initial range using LHS and run with 7 replicates. These replicates are averaged before PRCCs 

423 are calculated at day 2 before the T cells are added and day 6. A significance level of 0.01 is 

424 used with a Bonferroni correction for the number of tests run. The relationship between the 50 

425 varied parameters and 9 outputs of interest (totalMtbCount, mtbKilledByActivatedMacCount, 

426 mtbKilledByRestingMacCount, mtbKilledByCD8Count, activatedCD4Count, totalActivatedCD8s, 

427 activatedMacroCount, totalStat1MacroCount, totalNfkbMacroCount) are analyzed.

428

429 2.5. Matching Unpaired Runs

430 To be able to explore output spaces that are not accessible using the paired simulations 

431 described above, we also analyze matched simulations. Unpaired spheroid and traditional 

432 simulations are matched by selecting runs with similar (but not identical) initial condition 

433 parameters: CD8Fraction, fractionCD4, fractionTBSpecific, and tbSpecificCD8Fraction. To 

434 identify matched simulations, the spheroid runs are looped through for each traditional run, and 

435 a cost function was calculated. This function sums squared errors divided by maximum value for 

436 these 4 controlled parameters (CD8Fraction, fractionCD4, fractionTBSpecific, and 

437 tbSpecificCD8Fraction). The spheroid run with the lowest cost is selected to be matched to the 

438 unpaired traditional run.

439

440 3. Results
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443 Figure 2: Paired simulations are calibrated to data from in vitro cultures. Spheroid and 

444 traditional simulations are run with the same parameters, only varying the initial spatial layout of 

445 cells and the movement rules. Comparison of experimental data to calibrated simulation data for 

446 a) CFU fold change from 4 hpi to 6 days, b) cell viability at day 6, and c) cell count at day 6. d) 

447 Bacterial count dynamics for calibrated spheroid and traditional simulations over the 6 day time 

448 course show heterogeneous behaviors. Spheroid and traditional simulations are visualized at 

449 day 6 for comparison to in vitro images. f) A slice of the in vitro spheroid culture on day 6. 

450 (Adapted with permission from Kotze et al. 2021) g) A slice through the center of a spheroid 

451 simulation. h) Full spheroid simulation. i) A brightfield image of the in vitro traditional culture on 

452 (day 6). j) Traditional simulation viewed top down. k) Traditional simulation viewed from side. *** 

453 p1e-3

454 3.1. Results from multiple systems can be reproduced with one in silico 

455 framework.

456 We first test whether or not the multiscale model can recreate the experimental data for 

457 bacterial fold change, cell count, and cell viability at day 6. Using the calibration method 

458 described above, parameter sets are identified whose output fit criteria for both spheroid and 

459 traditional data. (Figure 2a-c) These simulations give CFU fold change outputs that span most 

460 of the experimental range, except for the highest experimentally measured CFUs in the 

461 traditional cultures. Together this suggests we are able to recreate experimental data from 

462 multiple in vitro systems using the same sets of parameters (Appendix Figure 1) and the same 

463 model structure.

464 After calibrating to both experimental systems, representative calibrated runs are 

465 visualized to compare with experimental images as a qualitative validation. Simulated spheroids 

466 (Fig. 2g,h) qualitatively match experimental microscopy (Fig. 2f), having a layered structure with 

467 macrophages on the inside and T cells in a cuff around the edge. The whole spheroid is situated 
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468 in the middle of the simulated space with a very dense center with some cells less densely 

469 around the outside. The layered structure of the spheroid can be contrasted with the more well-

470 mixed and dense traditional simulation (Fig. 2j,k) and experiments (Fig. 2i). These cells are 

471 localized at the bottom of the simulation space, due to the gravity-limiting spatial rules. These 

472 visualizations also highlight the versatility of the computational model, allowing the same base 

473 set of rules to recreate multiple in vitro culture systems. In summary, this quantitative calibration 

474 and qualitative validation indicates that our simulation-predicted spatial organization aligns well 

475 with experimental data. 

476 Beyond recreating existing experimental data, our computational model can also predict 

477 high time resolution outcomes. Bacterial time courses show the heterogeneity of behaviors 

478 possible given both the initial conditions and the experimental range at day 6. (Fig 2d) This 

479 heterogeneity can give us insight into potential system dynamics and generate new testable 

480 hypotheses. Predictions can then be tested by designing experiments to distinguish among 

481 predicted behaviors by identifying time points and outputs of interest with the simulation. For 

482 example, macrophage activation (Fig 2e) could be compared with M1 activation markers in vitro 

483 at day 2.5 to differentiate between the two groups of spheroid simulations with different 

484 predicted timings of macrophage activation.

485 Taken together, these results indicate that that our computational framework can 

486 reproduce both bulk and spatial data from multiple experimental systems. Additionally, high 

487 time- and space-resolution predictions can be made about cell counts and interactions.

488

489   

490

491

492

493
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494

495 Figure 3: a) The spatial development of a single granuloma over 6 days. The radial distribution 

496 of b) macrophages, CD4+ T cells, and CD8+ T cells; c) base and activated T cells; d) NF-κB 

497 and STAT1 activated macrophages; e) base and activated macrophages.

498 3.2. Our computational framework predicts high time resolution spatial data, 

499 including the evolution of a single spheroid over time.

500 In in vitro and in vivo experiments, a granuloma must be destroyed to produce IHC or 

501 other data, meaning each time point corresponds to a different granuloma. In contrast, in silico 

502 models allow us to look at the evolution of spatial phenomenon in situ, meaning a single 

503 granuloma can be followed from creation to the end of the experiment.

504 These spatial dynamics can be analyzed both visually and quantitatively. Visually, an 

505 initial sphere of mixed infected and uninfected macrophages is seen at day 1 with a cuff of T 

a Day 2 Day 3 Day 4 Day 6

b

Day 5Day 1

d

c

e
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506 cells being added at day 2 (Fig 3a). Macrophage activation starts at the interface of the 

507 macrophages and T cells and moves towards the center as time progresses. This activation 

508 corresponds to some T cell infiltration into the macrophage core. In this specific run, more CD8+ 

509 T cell activation leads to more infiltration by this population. Quantitatively, we can look at the 

510 radial density of cells and cell subpopulations to see similar trends (Fig 3b-e). Radial density 

511 graphs were generated by calculating the distances of the cells to the center of the spheroid, 

512 generating a histogram for the cells of interest by dividing them into preset bins, and then 

513 normalizing by the total volume in each bin which corresponds to the volume of a spherical 

514 shell. The simulation starts with uniformly distributed macrophages, before a cuff of uniformly 

515 distributed CD4+ and CD8+ T cells is added (Fig 3b). As time progresses the T cells spread out 

516 and begin to infiltrate the macrophage core, especially CD8+ T cells in this representative 

517 simulation. In our simulation, these T cells only contribute to the immune response when they 

518 are activated, so T cells are subdivided into resting and activated (Fig 3c). Activated T cells are 

519 more localized towards the center of the granuloma. This makes sense as interacting with a 

520 macrophage presenting antigenic peptides is required for T cell activation, and bacteria and 

521 macrophages that have interacted with bacteria are going to be localized to the core. These 

522 activated T cells provide one of the signals required for macrophage activation, STAT1 via IFN-

523 γ. The distribution of this signal can be overlaid with the other required signal, NF-κB, giving 

524 insight into how macrophage activation propagates from the outside in (Fig 3d). The distribution 

525 of fully activated macrophages (Fig 3e) closely follow the STAT1 signal, suggesting in this 

526 model T cells are the limiting step of activation. The widespread NF-κB activation suggests it is 

527 not the limiting step, especially as macrophages are NF-κB activated from day 1 forward. This is 

528 likely due to TNF-α secretion from the intermixed infected macrophages. 

529 Taken together, this illustrates how we can use our models to quantify key host-

530 pathogen interactions in space and time in a single granuloma.
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531

532 Figure 4: Example simulations with a) extensive and b) limited T cell infiltration into the 

533 macrophage core. A slice through the center of the granuloma is shown at day 6. c) Mean and 

534 standard deviation radial density of macrophages and T cells. Runs are sorted by mean T cell 

535 distance minus one standard deviation.

536 3.3. A distribution of outcomes, including T cell infiltration, is seen among 

537 spheroid simulations.

538 Given that T cell signaling is important for macrophage activation, T cell infiltration 

539 becomes an output of interest. Visually, we noted the variation in T cell infiltration of the 

540 spheroids between parameter sets (Fig. 4a,b). Calibrated runs can show almost no infiltration 

541 (Fig. 4a) to almost homogeneous mixing of macrophages and T cells (Fig. 4b). To evaluate the 

542 heterogeneity across all of our simulations, the mean and standard deviation of radial density is 

543 calculated for macrophages and T cells for each simulation. This gives a mean position when 

544 correcting for the uneven volumes of the radial spheres. These measures for T cells and 

545 macrophages range from having nearly complete overlap to almost complete separation (Fig 

546 4c). Over half of the simulations have macrophages with means around 10. However, many 

547 simulations also have higher macrophage means closer to the T cell means, suggesting more 
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548 intermixing between T cells and macrophages among these runs. Little infiltration was seen in 

549 the in vitro model at day 6,(13) which aligns with some but not all of our simulated runs. Either 

550 the small sample size of the experimental study doesn’t account for full heterogeneity or this 

551 information can be used to further narrow the parameter space moving forward.

552 One way to look at the infiltration of T cells is to look at the difference between the T cell 

553 mean and macrophage mean. The higher the value the more separation between the cell types 

554 and, therefore, more structure. Spearman’s rank correlation coefficients were calculated 

555 between this distance measure of separation and outputs of interest at day 6 with α = 0.01. Our 

556 model suggests this measure of separation is not significantly correlated to total bacterial count 

557 (ρ = 0.091292, p = 0.068859). However, this model is only looking at runs that were calibrated 

558 to experimental data, which has a small range of bacterial count for the spheroid simulations. If 

559 increasing T cell separation was an isolated change it’s possible that this relationship would be 

560 seen. 

561 Although the bacterial counts in the spheroid simulations are all within a small range, the 

562 bacterial counts in the corresponding traditional simulations vary more. The Spearman’s rank 

563 correlation coefficient between our separation measure and the traditional total bacterial count 

564 shows a significant positive correlation (ρ = 0.561759, p < 0.000001). The parameter sets that 

565 show more separation in the spheroid have higher bacterial load in the traditional cultures. So, 

566 this would suggest that those parameter sets rely on a lot of structure to be able to control 

567 bacteria, because when those parameters are used to simulate the traditional well-mixed 

568 conditions, the bacteria are not as well controlled. On the other hand, those parameter sets that 

569 don’t have a lot of separation, do equally well in controlling bacteria in both the spheroid and 

570 traditional. Parameter sets with less separation resemble the traditional organization, so similar 

571 results are expected. So, bimodal results are seen, where there’s two different ways that the 

572 model can control the bacteria – one is structure dependent and the other is not. 
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573 Other correlations seen between separation measure and outputs of the spheroid model 

574 include activatedMacroCount (ρ = 0.307164, p < 0.000001), activatedInfectedMacroCount (ρ = 

575 0.419979, p < 0.000001), totalStat1MacroCount (ρ = 0.307557, p < 0.000001), and 

576 totalActivatedCD8s (ρ =0.171726, p = 0.000580). Increasing separation correlates to more 

577 STAT1 and total macrophage activation, including activation of the infected macrophage 

578 population. CD8+ T cell activation is also positively correlated with separation. Due to the 

579 distribution of separation, we are able to look at the impact of spatial layout of cells on many 

580 outputs.

581 Taken together, these results illustrate that our simulations can produce a wide range of 

582 outcomes that are consistent with the experimental data; and how these simulations can be 

583 used to explore how granuloma structure impacts bacterial control and activation.

584
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585

586 Figure 5: Impact of input parameters on simulation outputs at day 2 before the T cells are 

587 added and day 6. Correlation coefficients for spheroid and traditional simulations are shown in 

588 the same heatmap with the traditional in the lower left hand corner and the spheroid in the upper 

589 right. Insignificant correlations are shown in white, while positive and negative correlation are 

590 shown with red and blue, respectively. Significance was determined with α =0.01 and a 

591 Bonferroni correction.
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592 3.4. Comparisons between the models using uncertainty analysis can help identify 

593 ideal use cases.

594  LHS-PRCC is performed on the initial large LHS sweep to quantify how uncertainty in 

595 the parameters impacts uncertainty in the outputs of both the spheroid and traditional 

596 simulations. At day 2 before the T cells have been added to the simulation, the spheroid and 

597 traditional simulations show similar responses to changes in parameters. Total bacterial count is 

598 inversely correlated with the doubling time of the internalized bacteria and the killing ability of 

599 the resting macrophages. All of the bacteria at the beginning of the simulation are internal due 

600 to a washing step after the infection of the macrophages. Lower doubling times of these bacteria 

601 lead to more generations and more bacteria. Poorer killing ability of the resting macrophages 

602 leads to more bacteria.  

603  Before the addition of T cells, resting macrophages are responsible for all of the 

604 bacterial killing. Cytotoxic CD8+ T cells have yet to be added to the culture, and T cells are 

605 required to fully activate macrophages. So, mtbKilledByRestingMacCount accounts for all of the 

606 killing and closely aligns with the totalBacterialCount. Base killing probability is positively 

607 correlated with mtbKillingByRestingMacCount, as better killing ability leads to more killed 

608 bacteria.

609 Total NF-κB activated macrophages is the only other output showing significant 

610 correlations with parameters before day 2. NF-κΒ signal can come from TNF-α or bacteria and 

611 is required for total activation. Total NF-κB activated macrophages are correlated to nfkbSpan, 

612 baseKillingProbability, InfectedMacrophageTNFSecretion, and 

613 macrophagePopulation_MaxLifespan. nfkbSpan is the length of time that NF-κB stays active 

614 after receiving the initial signal, so the longer this time period is the more NF-κB activated 

615 macrophages there are. When baseKillingProbability is lower, fewer bacteria are killed, and 

616 more bacteria and infected macrophages are available to activate NF-κB. Higher TNF-α 
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617 secretion from infected macrophages also leads to more activation. Lastly, longer macrophage 

618 lifespans mean more macrophages are alive to be activated. 

619 After the T cells are added, the total bacteria count is more dependent on CD4+ T cell 

620 parameters. The internal doubling time and base killing probability are both still negatively 

621 correlated with total bacteria count. The rest of the significantly correlated parameters are 

622 associated with CD4+ T cells and STAT1 activation. Fewer TB specific CD4+ T cells, less CD4+ 

623 T cell activation, and more CD4+ deactivation all reduce the amount of activated CD4+ T cells 

624 indirectly leading to more bacteria. Higher threshold for STAT1 activation by IFN-γ, higher 

625 degradation rate for IFN-γ, and less CD4+ T cell IFN-γ secretion all lead to less macrophage 

626 STAT1 activation. Again, this will indirectly lead to more bacteria. With the inclusion of adaptive 

627 immune cells, the responses of the two set ups also diverge more. For bacterial counts the only 

628 difference is due to external bacteria. Lower external doubling time leads to more bacteria only 

629 in the traditional simulation, as the population of external bacteria is so small in the spheroid 

630 simulation. 

631 Macrophage activation is mostly dependent on CD4+ T cell parameters in both models.

632 However, increased macrophage activation in the traditional simulation is also correlated with 

633 increased macrophage lifespans and decreased CD4+ T cell doubling time. This suggests that 

634 macrophage death might be limiting the population size in traditional runs. Also, a higher CD4+ 

635 T cell population will lead to more macrophage activation.

636 CD8+ T cell activation is correlated with parameters related to CD4+ T cells, CD8+ T 

637 cells, and IFN-γ. Differences between the two models include negative correlations between the 

638 probability of deactivation/population doubling time and total CD8+ T cell activation. Less 

639 deactivation or more proliferation should lead to higher activated populations.

640 The only parameter-output relationship seen just in the spheroid simulation is a positive 

641 correlation between the baseKillingProbability and total NF-kB activated macrophages. This is 

642 the opposite of the relationship seen at day 2. One hypothesis for this relationship is that more 
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643 killing initially leads to less macrophage activation and subsequent death. This is supported by 

644 positive correlations between macrophage lifespans and this output.

645 Despite these differences, the two models have many similar responses to changing 

646 parameters. For example, the total activated CD4+ T cells show the same relationships for both 

647 the spheroid and traditional simulations with regards to all parameters. The significantly 

648 correlated parameters are all related to CD4+ T cells: fraction of TB specific cells, activation 

649 probability, deactivation probability, and doubling time.

650 Altogether, these results show that similar parameters are driving dynamics in the 

651 spheroid and traditional models before day 2, but the influential parameters diverge after the 

652 addition of T cells. These correlations can be used to select what in vitro model is needed when 

653 designing experiments, as main drivers of outputs can be identified. For example, the traditional 

654 simulation has a correlation between macrophage lifespans and macrophage activation that is 

655 not seen in the spheroid. This relationship suggests that macrophage lifespans influence 

656 macrophage activation in the traditional culture, so a spheroid might be more appropriate if the 

657 biological question under investigation relates to drivers of macrophage activation. 

658

659

660 Figure 6: a) Traditional simulations that fell above the paired range and matched spheroid 

661 simulations. b) Significantly different parameters between the set of high traditional simulations 

662 and matched spheroid simulations. 

a b
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663 3.5. Limitations in representing both systems can guide future model iterations.

664 The analysis done thus far is based on paired calibration. Pairing the simulations makes 

665 the assumption that everything except for the initialization and movement is the same between 

666 the spheroid and traditional simulations. While this assumption allows us to recreate a majority 

667 of the experimental range, the highest traditional CFU counts are unable to be recreated with 

668 paired runs. Traditional runs with high levels of bacteria falling in this range are seen, but the 

669 corresponding spheroid simulation did not meet calibration criteria. This suggests that in order 

670 to reproduce these high traditional CFU results, some parameters (i.e. biological mechanisms) 

671 may need to be different between the spheroid and traditional simulations. To investigate this 

672 possibility, we evaluate unpaired simulations that are allowed to have different parameter values 

673 between traditional and spheroid simulations, but that are matched as closely as possible for 

674 initial conditions that are expected to be the same.

675 Traditional runs are matched with spheroid runs that meet calibration criteria and have 

676 similar initial conditions as defined in the methods. After these runs are matched, the 

677 parameters of the spheroid and traditional simulations are compared. Nine parameters are 

678 found to be significantly different (Figure 6). Some of these parameter differences can lead to 

679 less bacteria in the spheroid directly or indirectly by increasing activation. The matched spheroid 

680 runs had higher internal doubling time of the bacteria meaning the bacteria grow more slowly 

681 and a higher resting macrophage killing rate leading to more bacterial killing. Therefore, the 

682 matched spheroid runs have less bacteria than the traditional runs directly due to less growth 

683 and more killing. The matched spheroid runs also have parameter differences that lead to more 

684 macrophage activation. Lower IFNthresholdForStat1Activation in spheroid runs would give more 

685 STAT1 activation of macrophages causing more overall macrophage activation. Lower 

686 CD4DeactivationProbability in spheroid runs would prolong CD4+ T cell activation giving these 

687 cells more opportunities to activate macrophages. Lastly, lower 
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688 TNFDegradationRatePerSecond in spheroid runs maintains higher concentrations of TNF-α, 

689 leading to more NF-κB activation of macrophages.

690 The role of the other parameters is less clear. Lower activatedTBSpecificCD4Fraction, 

691 lower ActivatedCD8TNFSecretion, and higher TNFthresholdForNFkBActivation would all 

692 suggest lower macrophage activation in the spheroid. Lower baseMovementProbabilityCD4 

693 could delay activation of TB specific T cells or could lead to less spatial interference by non-TB 

694 specific T cells in spheroids. As these simulations are matched after the fact, some of these 

695 differences are potentially spurious. However, these differences can guide future computational 

696 and experimental studies by highlighting hypothesized functional differences between traditional 

697 and spheroid cultures.

698

699 4. Discussion

700 In silico models have been used previously to represent multiple in vitro systems for other 

701 diseases. In 2006, Grant et al. used cellular automata to represent the growth of epithelial cells 

702 in 4 conditions: 3D embedded, suspension, surface, and collagen overlay cultures.(62) They 

703 were able to recreate the complex structure associated with each condition with a set of axioms 

704 governing the interactions of cells, matrix, and cell-free space. The difference between a 2D and 

705 3D culture system has also been modeled to explore viral dynamics and drug toxicity. A network 

706 model of tumor cell infection by oncolytic viruses was simulated in a 2D monolayer and 3D 

707 environment.(63)  This model suggested that traditional mean field models overestimate how 

708 effective therapy would be. Beyond this, infection in a 3D environment was shown to have a 

709 smaller chance of tumor eradication, emphasizing the need for ideal virus characteristics: fast 

710 replication and slow tumor cell killing. A virtual cell based assay was extended from 2D cultures 

711 to 3D spheroids to predict drug toxicity.(64) This model was found to represent 3D in vitro 

712 models well, which show higher drug toxicity than 2D monolayers.
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713 In all instances, space is explicitly modeled to gain insight into the system behavior in 

714 different configurations. The spatial configurations alter dynamics of the system and can change 

715 important predictive outcomes, such as drug response. Similar to these prior works, we explicitly 

716 include space to model two different environmental setups. We show that spatial organization 

717 alone can change the dynamics of the system and primary outcome, bacterial count. Moving 

718 forward, we can use our simulations to predict which model outcomes are likely to be affected 

719 by spatial organization and therefore guide experimental decisions.

720 Note, we are using a single in silico framework to represent separate traditional and 3D 

721 cell cultures. A separate problem, representing one in vivo or in vitro system with both a 2D and 

722 3D computational model, has also been addressed.(65,66) Models of in vivo granulomas and in 

723 vitro spheroids suggest that 2D representations of 3D systems (i.e. slice through center of 

724 structure) have similar results and save computational time.(65,66) 

725 Granulomas are spatial organized structures, with a core of macrophages and a cuff 

726 including CD4+ and CD8+ T cells.(67) The center of the granuloma is a more pro-inflammatory 

727 environment, while the cuff has more anti-inflammatory cytokines.(68,69) Higher frequencies of 

728 pro-inflammatory cytokines or lymphocytes are correlated with lower bacterial burden, but it is 

729 suggested that a balance of pro- and anti-inflammation is necessary to limit both bacterial 

730 growth and pathology.(69–71) While we don’t explicitly include anti-inflammatory pathways in 

731 this preliminary model, our model does show pro-inflammatory signals localized to the core. 

732 Specifically, macrophage activation is limited by the interactions between IFN-γ and 

733 macrophages which begins at the periphery of the core and moves inwards. This looks similar 

734 to the pattern of p-STAT1 seen in peripheral regions in immunohistochemistry of NHP 

735 granulomas.(72) Previous computational modeling also suggests the importance of IFN-γ 

736 producing T cells and interactions between macrophages and T cells for bacterial control.(73) It 

737 emphasizes the importance of spatial organization as interactions between CD11c+ 
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738 macrophages and T cells are limited due to the cellular distributions within granulomas and the 

739 recruitment of non-specific T cells.

740 While the structure of our model is artificially constructed rather than emerging from 

741 immune interactions, the similar spatial patterns for cells and activation is encouraging. Further 

742 comparison could be accomplished by applying our methods for analyzing the distribution of cell 

743 types and signals within granulomas to in vitro and in vivo data in the future. 

744 The evolution of a single granuloma can be followed over time in other systems. Sequential 

745 imaging with [18F] fluorodeoxyglucose positron emission tomography and computed 

746 tomography has been used to follow disease progression in NHP and track response to TB 

747 treatment in humans.(74–76) This imaging gives information at the lesion-tissue scale. 

748 Florescent in vivo microscopy of zebrafish embryos has given insight into the cellular level 

749 dynamics.(77) Imaging after infection of zebrafish embryos with Mycobacterium marinum allows 

750 tracking of infected macrophages providing information about early granuloma formation and 

751 dissemination. Recently, a method to study zebrafish granulomas ex vivo called Myco-GEM was 

752 created that allows continuous lightsheet imaging for upwards of 8 hours.(78) With tagging of 

753 cytokines, specific cells, or bacteria the inflammatory state of the granuloma, granuloma 

754 dynamics, cell movement, and bacterial load can be longitudinally examined.

755 Our model similarly provides dynamic information at the cellular scale. Beyond this, we can 

756 gather information about bulk cell counts, cell activation status, and cytokine concentrations 

757 without perturbing the observed system. Thus, our computational model can complement in 

758 vitro experimental systems, by providing both high-resolution spatiotemporal information and 

759 bulk information about host-pathogen interactions within individual granuloma structures. 

760 Simulations with virtual perturbations on knockouts can then quickly be run to examine how 

761 these interactions contribute to bacterial survival or elimination.

762 TB is a very heterogenous disease. There are many different clinical outcomes: bacterial 

763 clearance, asymptomatic latent infection, and active infection.(71,79) These host level outcomes 
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764 are dependent on a population of granulomas, which can be very heterogenous even within the 

765 same lung.(76,80)Granulomas have many different structures which can lead to bacterial 

766 dissemination, control, or clearance.(71,79) Our in vitro models are more controlled with an 

767 established structure and proportion of cell types. Smaller sample numbers still showed a large 

768 range of bacterial control, which can be recreated in silico. We also see heterogeneity in T cell 

769 localization in silico. While this is not seen as much in vitro, there is some variability in vivo. 

770 Early granulomas have T cells dispersed throughout, while well-developed ones are more 

771 structured with a ring of T cells.(81) Being able to reproduce a diversity of granuloma 

772 organizations will allow us to explore how different microenvironments contribute to granuloma 

773 trajectory and treatment response.

774 LHS-PRCC has been used to look at correlations between inputs and outputs in simulations 

775 of in vivo NHP granulomas. While our time points don’t line up with the longer in vivo 

776 simulations, we can compare parameter influences before and after adaptive immunity has 

777 been added. In the first iteration of the NHP granuloma simulation, there are similarities to our 

778 model.(19) This model from literature shows a strong positive correlation between intracellular 

779 growth rate and total extracellular bacteria during early infection.(19) As infection progresses 

780 extracellular bacteria in the simulated NHP granulomas becomes negatively correlated with T 

781 cell parameters, namely recruitment, movement, and activation of macrophages.(19) 

782 In these simulations of in vivo granulomas all bacteria start extracellularly, while all bacteria 

783 start intracellularly in our in vitro model.  Our primary output of interest then becomes 

784 intracellular bacteria, which shows a similar relationship with the intracellular growth rate before 

785 the addition of the adaptive immune system. Some comparisons between this in vivo simulation 

786 and our in vitro simulation are limited because in vivo mechanisms are missing in vitro, like 

787 cellular recruitment. But we see an increased importance of T cell parameters on our output of 

788 interest after adaptive immunity is initiated as in this literature model. In our short term 

789 ‘artificially’ assembled spheroids, we see similar parameter influences to in vivo granulomas. 
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790 Therefore, some comparisons can be made not only between our two in vitro models, but also 

791 in vivo simulations, to be able to rationally identify good use cases for various in vitro systems. 

792 Our model is not without limitations. The only PBMC derived CD3+ T cells simulated are 

793 CD4+ and CD8+ T cells. Some subsets of T cells (e.g. regulatory and γδ) are excluded from the 

794 model for the purpose of simplification. Simplifications are also made to the macrophage 

795 activation pathway. The model only incorporates M1 macrophage polarization/activation 

796 represented as a 2-step pathway, and M2 macrophage polarization is not included. 

797 Additionally, our model has been calibrated to be used with cells from patients with presumed 

798 active TB. The exact same cells derived from an uninfected patient or a patient with latent TB 

799 might behave differently, and the model would need to be recalibrated to different data. These 

800 assumptions can be reassessed as we iterate this model to use it in answering new biological 

801 questions.

802 While our model is able to represent a majority of the characteristics that could be 

803 incorporated into a complex in vitro Mtb model, it still diverges from the idealized model in a 

804 couple ways. No explicit environment impact on the cells in the simulation is included. It’s known 

805 that plastic and glass plates differ from in vivo environments, and as such extracellular matrix 

806 (ECM) components like collagen have been incorporated into in vitro models. ECM can also 

807 change the lifespan and movement of the cells and sequester chemokines. We plan to 

808 incorporate ECM in future iterations. While primary human cells were represented, the bacteria 

809 represented within this model is BCG, a model organism for Mtb, rather than Mtb itself. BCG 

810 was used for preliminary analysis as it can be used outside of a BSL3 laboratory. Switching 

811 between BCG and Mtb could be done by adjusting parameter values, but more detailed 

812 pathways would need to be added if specific virulent strains were of interest.

813 5. Conclusion
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814 In summary, we show a novel application of ABMs to in vitro TB infection culture 

815 systems. In doing so, we introduce a framework to potentially integrate results from and 

816 compare multiple in vitro models. 
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