

1 **A malaria parasite phospholipase facilitates efficient asexual blood stage**
2 **egress**

3 Abhinay Ramaprasad¹, Paul-Christian Burda^{2,3,4}, Konstantinos Koussis¹,
4 James A Thomas⁵, Emma Pietsch^{2,3,4}, Enrica Calvani⁶, Steven A Howell⁷, James I
5 MacRae⁶, Ambrosius P. Snijders⁷, Tim-Wolf Gilberger^{2,3,4}, Michael J Blackman^{1,5*}

6 ¹Malaria Biochemistry Laboratory, The Francis Crick Institute, London, UK, ²Centre
7 for Structural Systems Biology, 22607 Hamburg, Germany, ³Bernhard Nocht Institute
8 for Tropical Medicine, 20359 Hamburg, Germany, ⁴University of Hamburg, 20146
9 Hamburg, Germany, ⁵Faculty of Infectious and Tropical Diseases, London School of
10 Hygiene & Tropical Medicine, London, UK, ⁶Metabolomics Science Technology
11 Platform, The Francis Crick Institute, London, United Kingdom, ⁷Proteomics Science
12 Technology Platform, The Francis Crick Institute, London, UK.

13

14 *Correspondence: mike.blackman@crick.ac.uk

15

16 Key words: malaria, *Plasmodium falciparum*, blood stage growth, egress,
17 lecithin:cholesterol acyltransferase, phospholipids, lipidomics, proteomics

18

19

20

21

22

23

24

25 **Abstract**

26 Malaria parasite release (egress) from host red blood cells involves parasite-
27 mediated membrane poration and rupture, thought to involve membrane-lytic effector
28 molecules such as perforin-like proteins and/or phospholipases. With the aim of
29 identifying these effectors, we disrupted the expression of two *Plasmodium*
30 *falciparum* perforin-like proteins simultaneously and showed that they have no
31 essential roles during blood stage egress. Proteomic profiling of parasite proteins
32 discharged into the parasitophorous vacuole (PV) just prior to egress detected the
33 presence in the PV of a lecithin:cholesterol acyltransferase (LCAT;
34 PF3D7_0629300). Conditional ablation of LCAT resulted in abnormal egress and a
35 reduced replication rate. Lipidomic profiles showed drastic changes in several
36 phosphatidylserine and acylphosphatidylglycerol species during egress. We thus
37 show that, in addition to its previously demonstrated role in liver stage merozoite
38 egress, LCAT is required to facilitate efficient egress in asexual blood stage malaria
39 parasites.

40 **Author Summary**

41 Malaria kills over half a million people every year worldwide. It is caused by a single-
42 celled parasite called *Plasmodium falciparum* that grows and multiplies within a
43 bounding vacuole, inside red blood cells of the infected individuals. Following each
44 round of multiplication, the infected cell is ruptured in a process known as egress to
45 release a new generation of parasites. Egress is required for the disease to progress
46 and is orchestrated by the parasite. The parasite sends out various molecules to
47 puncture and destroy the membranes of the vacuole and the red blood cell.
48 However, little is known about these molecules. In this work, we set out to identify

49 these molecules by using genetic and proteomics approaches. We screened the
50 molecules the parasite sends out during egress and identified a parasite enzyme
51 called LCAT present in the vacuole. Our experiments found that mutant parasites
52 that were unable to make LCAT clumped together and could not escape the infected
53 cell properly. As a result, we saw a reduction in the rate at which these parasites
54 spread through the red blood cells. Taken together, our findings suggest that *P.*
55 *falciparum* needs LCAT to efficiently break out of red blood cells.

56 **Introduction**

57 During the asexual blood stages (ABS) of their life cycle, malaria parasites grow and
58 replicate asexually within a parasitophorous vacuole (PV) in host red blood cells
59 (RBCs). At the end of each cycle of intraerythrocytic development, invasive
60 merozoites are released from the host cell in a coordinated lytic process known as
61 egress, to invade fresh RBCs. Egress involves a rapid sequence of events resulting
62 in the rupture of the two bounding membranes, the PV membrane (PVM) and the
63 RBC membrane (RBCM). Minutes before egress, the PV rounds up without swelling
64 in a calcium-dependent process (Glushakova et al., 2018), followed by PVM leakage
65 and rupture, then subsequent poration and rupture of the RBCM (Abkarian et al.,
66 2011; Glushakova et al., 2018; Glushakova et al., 2010; Glushakova et al., 2005;
67 Hale et al., 2017; Wickham et al., 2003). Egress is initiated by activation of a cGMP-
68 dependent protein kinase (PKG) (Collins et al., 2013b) in coordination with a
69 calcium-dependent protein kinase called CDPK5 (Absalon et al., 2018) by triggering
70 the discharge of specialised parasite secretory organelles called micronemes and
71 exonemes. A subtilisin-like parasite protease (SUB1) is released from the exonemes
72 into the PV lumen where it initiates a proteolytic cascade by cleaving and activating

73 several effector molecules including members of the papain-like SERA protein family
74 and several components of the merozoite surface (Das et al., 2015; Koussis et al.,
75 2009; Ruecker et al., 2012; Silmon de Monerri et al., 2011; Yeoh et al., 2007).
76 Activated SERA6 precisely cleaves β -spectrin in the RBC cytoskeleton to bring about
77 the final step of RBCM rupture (Thomas et al., 2018). Despite these many insights,
78 the molecular basis for the events that precede RBCM rupture, PVM rupture and
79 RBCM poration, remains unknown. Membrane-lytic effector molecules such as
80 perforin-like proteins (PLPs) and phospholipases likely bring about these membrane-
81 degradative events. Previous evidence (Collins et al., 2017) showing that RBCM
82 poration occurs immediately following PVM rupture has led us to postulate that the
83 same effector molecules may mediate both events. These effectors may either be
84 released from secretory organelles just prior to egress or are constitutively resident
85 within the PV waiting to be activated by the SUB1-initiated proteolytic cascade.

86 Pore-forming proteins of the membrane attack complex component/perforin
87 (MACPF) superfamily disrupt membranes by inserting their characteristic MACPF
88 domain into the target phospholipid bilayer to form a transmembrane channel (Dal
89 Peraro and van der Goot, 2016). Five *Plasmodium* proteins possessing MACPF
90 domains, annotated as perforin-like proteins (PPLPs), are expressed significantly in
91 the sexual gametocyte stages that transmit the parasite to the mosquito vector, as
92 well as in the mosquito ookinete and sporozoite stages; however, the PPLPs are
93 transcribed only at low levels in ABS (PlasmoDB v46, (Kaiser et al., 2004)).
94 Consistent with this, in previous genetic analyses in which each of the five PPLP
95 genes was individually disrupted, the genes were shown to be dispensable for ABS
96 growth but were instead implicated in other parasite life cycle transitions (Guerra and
97 Carruthers, 2017). PPLP1 is required for sporozoite egress from transient vacuoles

98 formed by the parasite in host hepatocytes (Ishino et al., 2005; Risco-Castillo et al.,
99 2015; Yang et al., 2017), while PPLP2 is required for gametocyte egress (Deligianni
100 et al., 2013; Wirth et al., 2014). Despite these findings, other studies have shown
101 that PPLP1 and PPLP2 are detectable in ABS parasites (Garg et al., 2013; Wirth et
102 al., 2014) and biochemical and small molecule inhibitor evidence suggested a
103 possible role for both PPLPs in membrane poration during merozoite egress (Garg et
104 al., 2013; Garg et al., 2020). One plausible explanation for this apparent discrepancy
105 is that PPLP1 and PPLP2 perform redundant functions in ABS, in which case
106 disruption of any one gene might be functionally complemented by the other.
107 However, this possibility has not been examined.

108 Phospholipases (PLs) mediate membrane lysis through hydrolytic cleavage of either
109 of the acyl chains (phospholipases A1, A2 and B) or phosphodiester bonds in the
110 glycerol backbone (phospholipases C and D) of membrane phospholipids.
111 Phospholipases often aid exit of intracellular bacteria from the cellular vacuole
112 (Hybiske and Stephens, 2008), and can also cleave fatty acids from phospholipids to
113 alter membrane curvature through localised phospholipid asymmetry (Zimmerberg
114 and Kozlov, 2006), raising the possibility of similar roles during the extensive
115 morphological changes associated with malarial egress. A systematic functional
116 analysis of 20 out of 27 putative phospholipases in the human malaria parasite,
117 *Plasmodium falciparum* suggested a high degree of functional redundancy, with only
118 five being found to possibly be essential in ABS (Burda et al., 2021a). Of those
119 phospholipases deemed dispensable in ABS, a secreted phospholipase with a
120 lecithin:cholesterol acyltransferase (LCAT)-like domain has previously been shown
121 to disrupt membranes during mosquito and liver stages of the parasite in the rodent
122 malarial species *P. berghei* (Bhanot et al. 2005; Burda et al. 2015). LCAT was found

123 to be expressed on the surface of sporozoites, and LCAT-null sporozoites had a
124 reduced capacity to egress from oocysts and migrate through host hepatocytes.
125 LCAT localizes to the PV and PVM following invasion of hepatocytes and LCAT-null
126 parasites were defective in liver stage schizont egress due to impaired PVM rupture
127 that prevents or delays merozoite release. Whether LCAT plays any role in
128 *Plasmodium* blood stage egress remains unclear.

129 Here, we first rule out any essential requirement for PPLP1 and PPLP2 in ABS
130 egress. We then profile the repertoire of proteins that are discharged from the
131 micronemes and exosomes at egress to examine whether they include any
132 previously unidentified effector molecule(s) potentially involved in PVM rupture and
133 RBC poration. Our resulting work allows us to demonstrate that LCAT plays a
134 previously unrecognised role in facilitating efficient egress.

135 **Results**

136 **Perforin-like proteins are dispensable for ABS egress**

137 While genetic ablation of PPLP1 and PPLP2 individually has previously been shown
138 to have no effect on parasite proliferation (Wirth *et al.*, 2014; Yang *et al.*, 2017), the
139 question remained as to whether the proteins could function together to mediate
140 membrane poration during egress. To examine this, we attempted to generate a
141 parasite line in which both PPLP1 (PF3D7_0408700) and PPLP2 (PF3D7_1216700)
142 were simultaneously disrupted. To do this, we set about floxing the MACPF-
143 encoding domains of both genes in the DiCre-expressing *P. falciparum* line B11
144 ([Figure 1A and Supplementary Figure S1A](#)), so that rapamycin (RAP)-mediated
145 activation of the DiCre could be used to simultaneously excise functionally critical
146 regions of both genes. Due to an error in repair plasmid design for *pplp1*, we

147 inadvertently introduced a frameshift mutation and disrupted the gene when floxing
148 its MACPF domain. The resultant PPLP1-null *P. falciparum* line (D1) displayed
149 normal growth ([Supplementary Figure S1B](#)) as expected, and so was used as the
150 background for subsequent floxing of *pp/p2*. RAP treatment of the final modified
151 parasite line (called PPLP1:loxNint/PPLP2:loxPint) led to efficient excision of both
152 genetic loci within a single erythrocytic cycle ([Figure 1B](#)). As shown in ([Figure 1C](#),
153 [D](#)), the resulting PPLP1/PPLP2-null mutant parasites displayed normal proliferation
154 rates with no discernible effect on parasite development. Importantly, the
155 PPLP1/PPLP2-null schizonts also underwent typical RBC poration just prior to
156 egress ([Supplementary Movie S1](#)). It was concluded unambiguously that neither
157 PPLP1 nor PPLP2 alone or in combination have an essential role in membrane
158 poration or RBC rupture during ABS egress.

159

160 **Differential proteomics of SUB1-null schizonts identifies proteins discharged
161 into the PV at egress**

162 Minutes before merozoite egress, malaria parasites discharge the contents of
163 micronemes and exonemes onto the merozoite surface or into the PV lumen, where
164 some of the discharged proteins perform specific tasks to bring about egress.
165 Discharge of the exoneme protease SUB1 is required to mediate both PVM and
166 RBCM rupture (Thomas *et al.*, 2018). As a consequence, SUB1-null parasites arrest
167 in a state in which microneme and exoneme discharge has occurred normally, but
168 the PVM and RBCM remain intact, resulting in the discharged organelle contents
169 remaining trapped within an intact PV. This is in contrast to treatment of schizonts
170 with the PKG inhibitor 4-[7-[(dimethylamino)methyl]-2-(4-fluorophenyl)imidazo[1,2-
171 α]pyridine-3-yl]pyrimidin-2 amine (compound 2, C2); this leads to a similar

172 morphological phenotype, with merozoites trapped within an intact PVM and RBCM,
173 but in this case microneme/exoneme discharge is blocked ([Figure 2A](#)). We reasoned
174 that these contrasting phenotypes provided an opportunity to selectively identify the
175 repertoire of microneme and exoneme proteins that are discharged into the PV at
176 egress. Of particular interest, we reasoned that this group of discharged proteins
177 might include amongst them previously unidentified effector molecule(s) involved in
178 PVM rupture and RBC poration.

179 To selectively identify these ‘trapped’ components, we allowed SUB1-null schizonts
180 to mature in the presence of C2, then washed away the C2 for 20 minutes to allow
181 organelle discharge before finally releasing the PV contents using saponin lysis,
182 which disrupts both the RBCM and PVM but not the parasite plasma membrane.

183 Successful microneme discharge upon washing away C2 was confirmed by
184 observing relocalisation of the micronemal protein AMA1 to the periphery of
185 merozoites ([Figure 2B](#)). We then compared the proteomic profiles of the saponin
186 lysates of C2-washed (-C2) and C2-arrested (+C2) parasites to identify those
187 exonemal/micronemal proteins discharged into the PV within the 20-minute window.

188 A total of 503 parasite proteins were identified, including several established
189 constitutively PV-resident proteins like the SERA family of papain-like proteins (Miller
190 et al., 2002; Ruecker *et al.*, 2012) and protein phosphatase UIS2 (Khosh-Naucke et
191 al., 2018), and proteins exported to the RBC cytosol including secreted rhoptry
192 proteins and the PHIST family of exported proteins ([Supplementary Table S2](#)). The
193 remaining proteins were known parasite cytosolic or nuclear proteins including
194 ribosomal and proteasomal proteins, probably representing contaminants from the
195 parasite fraction. Levels of all these proteins were largely equivalent between the
196 +C2 and -C2 schizonts, as expected for constitutively-expressed PV proteins. A total

197 of only 12 proteins were found to be significantly more abundant in -C2 saponin
198 extracts ($p < 0.05$, more than 2-fold change; see [Figure 2B](#)). These included the
199 exoneme protease plasmepsin X (PMX) (Nasamu et al., 2017; Pino et al., 2017)
200 which was enriched 4-fold, as well as four membrane proteins that are discharged
201 from micronemes during schizont rupture: EBA-140, EBA-181, GAMA and MTRAP
202 (4-fold to 24-fold enrichment). The enrichment of several bona fide
203 microneme/exoneme proteins in the -C2 samples indicated that our strategy was
204 successful, but no candidates with established membranolytic activity was identified
205 amongst the enriched (organelle-derived) population. However, a lecithin:cholesterol
206 acyltransferase (LCAT) previously implicated in liver stage merozoite egress in the
207 rodent malaria parasite *Plasmodium berghei* (Burda et al., 2015), was detected in all
208 the samples ([Supplementary Table S2](#)) indicating that this is constitutively resident in
209 the PV. We chose this protein for further investigation.

210

211 **Conditional genetic ablation of LCAT reduces blood stage proliferation**
212 Previous transcriptomic analyses indicate that peak expression of LCAT
213 (PF3D7_0629300) during ABS occurs during schizont development (Lopez-Barragan
214 et al., 2011). To confirm the localisation of LCAT in ABS *P. falciparum* parasites, we
215 appended a C-terminal GFP-tag to the endogenous gene using the selection-linked
216 integration (SLI) system (Birnbaum et al., 2017) ([Figures 3A and Supplementary](#)
217 [Figure S2A and B](#)). Live fluorescence microscopy of LCAT-GFP schizonts revealed
218 that the fluorescent signal localized to focal structures within the parasite and around
219 developing merozoites, pointing towards a localization to secretory organelles and
220 the PV ([Figure 3A](#)). A similar localization was observed by immunofluorescence
221 analysis (IFA) of fixed parasites expressing LCAT fused to spaghetti monster-Myc

222 (smMyc) tag (Viswanathan et al., 2015) ([Supplementary Figure S2C, D and E](#)). IFA
223 using rabbit polyclonal antibodies raised against LCAT similarly confirmed its
224 localization to secretory organelles and to the PV (indicated by partial co-localization
225 with the PV protein SERA5) ([Figure 3B](#)).
226 To conditionally ablate the *lcat* gene, we designed a DiCre-mediated gene disruption
227 strategy that introduces a translational frameshift, truncating the gene to render it
228 non-functional ([Figure 4A and Supplementary Figure S3](#)). For this, we floxed a short
229 200 bp segment upstream of the putative catalytic domain in the *lcat* gene
230 (PF3D7_0629300) by introducing two closely-opposed loxPint modules, producing a
231 modified inducible LCAT knockout line called LCAT:2loxPint. DiCre-mediated
232 excision of the floxed region was predicted to result in a frameshift mutation that
233 introduces multiple stop codons in the downstream sequence encoding the LCAT
234 catalytic domain. RAP-treatment of two clonal LCAT:2loxPint lines (B10 and F10)
235 resulted in efficient excision of the floxed sequence ([Figure 4B](#)) and loss of LCAT
236 expression as confirmed by western blotting and IFA ([Figure 4C and D](#)).
237 The RAP-treated LCAT-null clonal lines displayed a reduced proliferation rate (~66%
238 reduction over 3 erythrocytic cycles) compared to mock-treated controls ([Figure 4E](#)).
239 Longer-term viability of the LCAT-null parasites over ~5 erythrocytic cycles as
240 assessed by plaque assay (Thomas et al., 2016) reflected this, with a 25-34%
241 reduction in the number of plaques formed following RAP-treatment, as well as a
242 significant reduction in the average area of these plaques ([Figure 4F](#)). It was
243 concluded that LCAT is important for ABS parasite replication *in vitro*.
244
245 **Loss of LCAT causes inefficient egress**

246 To explore in more detail the growth defect in LCAT-null parasites, we monitored
247 their development over the course of a single erythrocytic cycle. As shown in Figure
248 5A, this revealed no obvious impact on intracellular growth or morphology that might
249 explain the proliferation defect (Figure 5A). We then visualised the behaviour of
250 RAP- and mock-treated LCAT:2loxPint schizonts as they underwent egress using
251 time-lapse video microscopy. The mock-treated schizonts underwent the typical
252 morphological changes associated with egress, including PVM swelling and rounding
253 up, followed by PVM rupture within seconds, and finally RBCM rupture and
254 merozoite release. In contrast, LCAT-null schizonts showed clear delays between
255 these sequential events, with reduced merozoite release upon RBCM rupture, the
256 remaining merozoites often appearing clumped together (Figure 5B-D,
257 [Supplementary Movie S2](#)).

258 To determine whether the egress phenotype contributes to the lower replication rates
259 in the LCAT-null parasites, fold changes in parasitaemia during egress and invasion
260 were compared in RAP- and mock-treated cultures (Figure 5E). In standard static
261 cultures, RAP-treated parasites showed a two-fold reduction in parasitaemia
262 increase compared to control cultures. This defect was rescued when the experiment
263 was performed under shaking conditions, suggesting that the clumped LCAT-null
264 merozoites can be released and dispersed efficiently under conditions of shear
265 stress. These results also indicated that LCAT-null parasites do not have an intrinsic
266 invasion defect. Taken together, our results show that LCAT-null parasites display a
267 reduced replication rate that can be solely ascribed to inefficient egress from the host
268 RBC.

269 To determine whether the abnormal egress phenotype of LCAT-null parasites was
270 due to a defect in membrane poration, we visualized RBCM poration using

271 fluorescent phalloidin, a cyclic peptide that binds to the short F-actin filaments within
272 the RBC cytoskeleton upon poration. To facilitate visualisation of this, the
273 experiments were performed in the additional presence of the cysteine protease
274 inhibitor E64 which blocks RBCM rupture but allows PVM rupture and RBCM
275 poration (Glushakova *et al.*, 2010; Thomas *et al.*, 2018). This showed that RBCM
276 poration during egress was only subtly affected in the LCAT-null parasites ([Figure 5F](#)
277 and [G](#) and [Supplementary Movie S3](#)). We further confirmed this subtle phenotype by
278 quantifying porated parasitized RBCs in larger populations using flow cytometry
279 ([Figure 5H](#)). We concluded that the egress defect could not be entirely due to a
280 defect in RBCM poration.

281

282 **Phosphatidylserine and acylphosphatidylglycerol levels change during egress
283 of LCAT-null parasites**

284 Given the predicted role of LCAT as a catalytically active phospholipase, we
285 reasoned that the LCAT-null phenotype likely resulted from a defect in parasite
286 phospholipid modification prior to and/or during egress. To seek insights into this, we
287 studied the phospholipid composition of LCAT-null mutants, comparing lipid profiles
288 of RAP- and mock-treated LCAT:2loxPint schizonts just prior to egress.

289 Analysis by quantitative liquid chromatography-coupled mass spectrometry (LC-
290 MS/MS) detected a total of 111 lipid species and found the lipid profiles of both
291 schizont samples to be remarkably similar ([Supplementary Figure S4A](#)). This
292 indicates that loss of LCAT does not have any detectable impact on the phospholipid
293 composition during parasite development up to mature schizont stage.

294 Next, we profiled the phospholipid content of these schizonts before and immediately
295 following egress to examine phospholipid-level changes occurring during egress

296 (Figure 6A). For this, we first extracted lipids from synchronous, C2-arrested schizont
297 populations of both RAP- and mock-treated parasites (time point before egress, BE).
298 We then released the egress arrest by washing away the C2 and allowed the
299 schizonts to undergo egress for 45 minutes in a small volume of culture media. The
300 entire sample, confirmed by microscopy (Figure 6B) to comprise predominantly free
301 merozoites, ruptured RBC and PV membranes, and the few residual schizonts that
302 did not undergo egress, was subjected to lipid extraction (time point after egress,
303 AE). Pairwise comparisons between the BE and AE samples within LCAT-null and
304 wild type control parasites showed significant changes in abundance of several
305 species belonging to three lipid classes- phosphatidylserine (PS),
306 phosphatidylethanolamine (PE) and acylphosphatidylglycerol (acylPG) (Figure 6C
307 and Supplementary Figure S4B). 9 out of 11 PS species detected were significantly
308 enriched (1.5-2 fold) upon egress of the LCAT-null parasites but not during egress of
309 wild type controls (Figure 6C and Supplementary Figure S5A). Similar enrichment
310 was observed in some PE species in LCAT-null parasites while wild type egress
311 inversely produced a significant decrease in several PE species. We also observed a
312 striking decrease in all acylPG species (1.5 to 2-fold change) during egress of both
313 LCAT-null and wild type schizonts which suggests that this decrease is normally
314 associated with egress and is independent of LCAT activity (Figure 6C and
315 Supplementary Figure S5B).

316

317 **Discussion**

318

319 In the minutes leading to ABS parasite egress, the PV is the site of intense
320 proteolytic and membranolytic activity. Secretory vesicles are discharged, the PV

321 rounds up, and the PVM and RBCM are ruptured and porated respectively before
322 final RBCM rupture. PVM rupture and RBCM poration are brought about by
323 unidentified effector molecules that act within a very short time frame, and we
324 speculate that both events may be mediated by the same effector molecule(s). To
325 gain a better understanding of these events during egress, we here studied i) the
326 role of two perforin-like proteins (PPLP1 and PPLP2); ii) a PV-resident
327 phospholipase (LCAT); and iii) changes in protein and phospholipid content that
328 occur during egress.

329 PPLP1 and PPLP2 have established roles in sporozoite egress from transient
330 vacuoles (Risco-Castillo *et al.*, 2015) and gametocyte egress from RBCs (Wirth *et*
331 *al.*, 2014) respectively. The potential role of these proteins in ABS egress, however,
332 has been a matter of debate. Both proteins were shown to be detectable in *P.*
333 *falciparum* asexual stages with suggested overlapping roles during blood stage
334 egress (Garg *et al.*, 2013) In contrast, in other studies, neither PLP was detected in
335 ABS of rodent malaria parasites and individual null mutants exhibited normal blood
336 stage growth (Deligianni *et al.*, 2013; Ishino *et al.*, 2005; Kaiser *et al.*, 2004; Risco-
337 Castillo *et al.*, 2015; Wirth *et al.*, 2014; Yang *et al.*, 2017). However, individual gene
338 knockouts do not rule out the possibility that the PLPs might play compensatory
339 roles, a notion supported by the finding that small molecule PLP inhibitors have anti-
340 parasite activity and block egress (Garg *et al.*, 2020). We tested this hypothesis with
341 a PPLP1/PPLP2 double knockout mutant. The PPLP1/PPLP2-null mutants exhibited
342 normal growth rates, membrane poration and egress, confirming their combined
343 dispensability in ABS growth. Our results contradict the findings of (Garg *et al.*, 2020)
344 and may suggest that the chemical inhibitors used in their study have off-target
345 activity that is responsible for the observed egress block. Collectively, the evidence

346 from all functional studies (including this study) of *Plasmodium* PLPs strongly
347 suggests that these molecules have no important role in ABS parasite egress.
348 The malaria parasite secretes proteins into the PV through specialized apical
349 organelles to perform functions that are vital for egress and invasion as well as
350 modifying the nascent PV after invasion. It is becoming increasingly evident that
351 subpopulations of these vesicles are discharged in a controlled way at specific times
352 to perform specific functions (Absalon *et al.*, 2018; Ebrahimzadeh *et al.*, 2019). Our
353 highly selective proteomics approach, comparing PV-extracts of SUB1-null and
354 control parasites treated with an inhibitor of organelle discharge (C2), identified
355 known microneme and exoneme proteins that are secreted into the PV within a short
356 timeframe before egress. These include well-established micronemal proteins that
357 are discharged onto the merozoite apical tip (MTRAP; (Baum *et al.*, 2006)) or
358 merozoite surface (GAMA, EBA-140 and EBA-181; (Arumugam *et al.*, 2011;
359 Gilberger *et al.*, 2003; Hinds *et al.*, 2009; Thompson *et al.*, 2001)) during egress.
360 Surprisingly no differences between the parasite extracts were observed in the levels
361 of another micronemal *ebl* protein, EBA-175 (Reed *et al.*, 2000), whereas the bona
362 fide exoneme protease plasmepsin X (PMX) that proteolytically processes SUB1
363 was enriched in the C2-arrested extracts (Nasamu *et al.*, 2017; Pino *et al.*, 2017). In
364 addition to this, we also found a putative nuclear export mediator factor (NEMF;
365 PF3D7_1202600) enriched 2.5-fold that could potentially be studied further. This
366 gene is continually expressed in ABS with peak transcription during schizont stages
367 and is considered essential (Zhang *et al.*, 2018). Our approach is by no means
368 exhaustive and our workflow may have failed to capture low-abundance proteins.
369 Our data, whilst not revealing new effector molecules, still essentially captured the

370 PV proteome during egress and showed the presence of the known phospholipase
371 LCAT in all our PV protein extracts, leading us to study this molecule further.
372 The role of LCAT has been previously examined in *Toxoplasma gondii* tachyzoites
373 and *P. berghei* sporozoite and liver stages. LCAT orthologs in these organisms were
374 found to be diversely localized depending on the parasite life stage. TgLCAT
375 localizes to the plasma membrane in extracellular parasites and is secreted into the
376 PV lumen late into the intracellular replication cycle via dense granule-like organelles
377 (Pszenny et al., 2016; Schultz and Carruthers, 2018). Similarly, in *P. berghei*,
378 PbLCAT is expressed on the surface of sporozoites (Bhanot et al., 2005) but after
379 hepatocyte invasion mainly localizes to the PV and the PVM in addition to vesicular
380 structures within the parasite cytoplasm (Burda et al., 2015). Loss of LCAT
381 expression results in delayed egress of *T. gondii* tachyzoites from the host cell
382 (Pszenny et al., 2016; Schultz and Carruthers, 2018), *P. berghei* sporozoites from
383 oocysts, and *P. berghei* merozoites from liver-stage schizonts (Burda et al., 2015).
384 Here we have shown that LCAT localization and its facilitative role during egress
385 observed elsewhere can now be extended to *P. falciparum* ABS schizonts too. We
386 localised LCAT both to punctate signals within the cytoplasm (likely secretory
387 organelles) as well as the PV lumen. Ablation of LCAT expression results in a
388 reduced replication rate, caused by a defective egress phenotype in which RBCM
389 poration is only mildly affected, RBCM rupture appears to progress normally, but
390 merozoite dispersal is inefficient. We can infer from this that the PVM ruptures at
391 least partially since the PV protein SERA6 is required to access the internal face of
392 the RBCM for it to rupture. Partial or complete PVM rupture is also strongly
393 supported by the fact that the egress defect can be overcome by mechanical shear
394 stress, presumably helping to disperse the merozoites. In contrast, shear forces

395 failed to rescue the egress defect in SUB1-null or SERA6-null schizonts where an
396 intact RBCM and/or PVM was present (Thomas *et al.*, 2018). Inefficient egress in
397 LCAT-null liver stage schizonts was attributed to a defect in PVM disruption, albeit
398 partial as a proportion of LCAT-null parasites were still able to disrupt the PVM
399 (Burda *et al.*, 2015). Our observations here indicate that inefficient egress in LCAT-
400 null ABS schizonts cannot be attributed to a defect in PVM rupture.
401 Our results also contrast with the lack of phenotype observed in previous loss-of-
402 function analyses in *P. berghei* and *P. falciparum* blood stages (Burda *et al.*, 2021b;
403 Burda *et al.*, 2015). This is perhaps not surprising for *P. berghei* ABS as the *in vivo*
404 environment (akin to mechanical shaking) likely ensures efficient dispersal of the
405 LCAT-null merozoites. The ~15% decrease in growth rate observed after
406 conventional knockout of *P. falciparum* LCAT (as opposed to the ~66% reduction we
407 observed in our conditional knockout line) could be a result of parasite adaptation to
408 in long-term culture. With the inducible DiCre system, we were able to clearly discern
409 the LCAT-null phenotype by studying the mutants immediately after ablating LCAT
410 expression, within the same erythrocytic cycle.
411 *P. berghei* LCAT has been shown to hydrolyse PC to produce lysoPC in vitro (at
412 rates significantly lower than human LCAT) (Bhanot *et al.*, 2005) which suggests that
413 LCAT could lyse membranes either by direct hydrolysis of PC in the membrane or by
414 producing lysoPC species which themselves are membranolytic (Bhanot *et al.*, 2005;
415 Pszenny *et al.*, 2016). However, our extensive lipidomics analysis of LCAT-null
416 schizonts showed no significant changes in PC or lysoPC levels either before or
417 following egress. The nearly identical phospholipid profiles of LCAT-null and wildtype
418 schizonts prior to egress either suggests that LCAT remains inactive before egress
419 or that LCAT activity likely results in very small changes in phospholipid levels that

420 cannot be discerned by our approach. By contrast, egress of both LCAT-null and
421 wildtype schizonts was accompanied by distinct changes in phospholipid content.
422 The accumulation of phosphatidylserine during LCAT-null schizont egress is
423 intriguing. Phosphatidylserine is found significantly enriched in RBC-derived vesicles
424 (RMVs) that are released from infected RBCs (Gulati et al., 2015). Release of RMVs
425 peak during schizogony shortly before egress but do not occur during egress (Mantel
426 et al., 2013). Therefore, it is plausible that inefficient egress of LCAT-null schizonts
427 extend the period when RMVs are released thereby increasing PS content to a
428 higher degree compared to wildtype schizonts. Unfortunately, our lipidomics efforts
429 failed to provide any further insights into the exact role of LCAT in facilitating efficient
430 egress.

431 The consistent depletion of acyl-phosphatidylglycerol (acyl-PG) over the course of
432 ABS egress (irrespective of the presence or absence of LCAT) is intriguing. Acyl-PG
433 (also known as semilysobisphosphatidic acid, its stereoisomeric counterpart) is an
434 unusual glycerophospholipid with three acyl chains, one ester-bonded to the glycerol
435 head group and the other two to the glycerol 3-phosphate backbone. The detected
436 acyl-PG species possessed either palmitate (16:0) or stearate (18:0) at the head
437 group while the other two acyl chains were combinations of saturated and
438 unsaturated fatty acids. Acyl-PG was initially identified as a major phospholipid class
439 in bacteria (Dalebroux et al., 2014; Yague et al., 1997) but has also been found
440 enriched in Golgi membranes in rodents (Moreau et al., 2019) and is thought to play
441 a role in membrane rupture and assembly during vaccinia virus assembly (Chlanda
442 et al., 2009; Cluett and Machamer, 1996). Acyl-PG has been suggested to play a
443 role in vesicle budding and fusion as its small polar head and three acyl chains gives
444 the molecule a conical shape which can induce membrane curvature (Cluett et al.,

445 1997; Zimmerberg and Kozlov, 2006). Phospholipases are known to interconvert
446 cone-shaped PLs like acyl-PG and inverted cone shaped PLs (lysoPLs) to modulate
447 membrane curvature during endocytosis (Brown *et al.*, 2003). In *Plasmodium*, acyl-
448 PG levels have been shown previously to peak in late schizonts (Gulati *et al.*, 2015).
449 Our results suggest that acyl-PG could be continuously delivered to the expanding
450 PVM to maintain its curvature, then during egress a phospholipase degrades acyl-
451 PG thereby causing the PVM to rupture. An alternative or additional hypothesis is
452 that acyl-PG could be a major constituent of endocytic vesicles that deliver
453 proteolytic enzymes to the PV prior to egress and their fusion to the PPM or PVM is
454 facilitated by removal of acyl-PG by a phospholipase. We were unable to pursue
455 these hypotheses further, in part because antibodies against acyl-PG suitable for
456 localisation studies are unavailable and the molecular players in acyl-PG metabolism
457 in general are also largely unknown. Recently, the phospholipase PfPATPL1 was
458 found to play a role in gametocyte egress, with PfPATPL1-null parasites showing
459 defects in rounding up and vesicular transport of proteins to the parasite periphery
460 (Singh *et al.*, 2019). While it is not known whether acyl-PG is deacylated by
461 phospholipases, it is tempting to speculate that this phospholipid species plays an
462 important role during egress.

463 How the PVM is ruptured during egress is a key question towards understanding the
464 molecular mechanisms that bring about ABS egress. Whilst our diverse efforts here
465 failed to answer this, we have eliminated PPLPs as prospective effectors,
466 established a previously unknown role for the phospholipase LCAT and identified
467 acyl-PG as an important phospholipid in asexual blood stage egress.

468

469 **Methods**

470 *Plasmid construction*

471 Modification plasmids to produce the five modified *P. falciparum* lines used in this
472 study were constructed as follows.

473 The LCAT:GFP and LCAT:smMyc lines were made by tagging the endogenous *P.*
474 *falciparum lcat* gene with GFP or smMyc using the selection-linked integration (SLI)
475 method (Birnbaum *et al.*, 2017). A GFP-tagging construct pSLI-PF3D7_0629300-
476 GFP was generated by amplifying the C-terminal 900 bp of the *lcat* gene
477 (PF3D7_0629300) using primers PF3D7_0629300-TAG-fw/ PF3D7_0629300-TAG-
478 rev and cloning into pSLI-TGD (Birnbaum *et al.*, 2017) using NotI/MluI.

479 Similarly, a smMyc-tagging construct pSLI-PF3D7_0629300-SM-Myc was generated
480 by amplifying the smMyc sequence from pCAG-smFP Myc (Addgene plasmid
481 #59757, gift from Loren Looger) (Viswanathan *et al.*, 2015) using primer smMyc-
482 fw/smMyc-rev and cloned into pSLI-PF3D7_0629300-GFP using MluI/Sall thereby
483 replacing the GFP coding sequence with smMyc.

484 The conditional knockout lines were produced by modifying the endogenous target
485 loci in the DiCre-expressing *P. falciparum* B11 line using Cas9-mediated genome
486 editing (Ghorbal *et al.*, 2014). A two-plasmid system was used where a targeting
487 plasmid delivers Cas9 and guide RNA to target loci while a repair plasmid delivers
488 the repair template for homology-directed repair of the Cas9-nicked locus.

489 The conditional double knockout PPLP1:loxNint/PPLP2:loxPint line was produced by
490 sequentially floxing the endogenous *pplp1* (PF3D7_0408700) and *pplp2*
491 (PF3D7_1216700) loci. Two RNA targeting sequences
492 (TTTTAAAGCATTCTAAATT for PPLP1 and TTTTTCTAGATATTCACCAA for
493 PPLP2) were inserted into the pDC2 Cas9/gRNA/hDHFR (human dihydrofolate
494 reductase)/yFCU (yeast cytosine deaminase/uridyl phosphoribosyl transferase)-

495 containing plasmid as described previously (Knuepfer et al., 2017) to generate two
496 different targeting plasmids (pCas9_pplp1_gRNA01 and pCas9_pplp2_gRNA01
497 respectively). For the repair plasmid pREP-PPLP1 for eight-exon *pplp1*, a
498 recodonised segment of the coding region between second and sixth intron gene
499 (628-2,577 bp; 99-587 aa) flanked by loxN-containing *sera2* introns (Jones et al.,
500 2016) and ~400-500 bp homology arms was synthesized commercially (GeneArt ,
501 Thermo Fisher Scientific) as a 2,361 bp long synthetic DNA fragment. Similarly, for
502 pREP-PPLP2, the recodonised version of the *pplp2*'s MACPF domain (1,127-2,640
503 bp; 375-812 aa) flanked by loxPint modules (Jones et al., 2016) and ~500 bp
504 homology arms was synthesized commercially as a 2,497 bp long synthetic DNA
505 fragment. Two different pairs of *lox* sites, the canonical loxP (core sequence-
506 GCATACAT) and its variant loxN (core sequence - GTATACTT), were used for
507 floxing to prevent cross-recombination events between both loci (Koussis et al.,
508 2020). The repair plasmids were linearised overnight with Pvul and SacI prior to
509 transfection.

510 The conditional frameshift-based knockout line LCAT:2loxPint, was produced by
511 floxing a 200 bp region (973-1172bp) upstream of the 1,053 bp long catalytic domain
512 that encodes an alpha/beta hydrolase fold with two catalytic GXSXG lipase motifs
513 and a HX₄D acyltransferase motif in the *lcat* gene (PF3D7_0629300). Two RNA
514 targeting sequences (TAATAATAGAGATGAAATT and
515 ATAGAGATGAAATTTGGTA) were inserted into the pDC2 Cas9/gRNA/hDHFR-
516 containing plasmid to generate two different targeting plasmids
517 (pCas9_lcat_gRNA01 and pCas9_lcat_gRNA02 respectively). For the repair plasmid
518 pREP-LCAT, a 1,354 bp long synthetic DNA fragment containing a recodonised
519 segment of the 200 bp flanked by 177 bp long loxPint modules and 400 bp homology

520 arms was synthesized commercially. The repair plasmid was linearised with SphI
521 overnight prior to transfection.
522 CloneAmp HiFi PCR Premix (TakaraBio) and Phusion High-Fidelity DNA polymerase
523 (New England BioLabs) were used for PCR reactions for all plasmid constructions.
524 All plasmid sequences were confirmed by Sanger sequencing. For sequences of
525 oligonucleotides and other synthetic DNA used in this study, please refer to
526 [Supplementary File 1](#).

527

528 *Parasite culture maintenance, synchronisation and transfection*
529 The DiCre-expressing *P. falciparum* B11 line (Perrin et al., 2018) was maintained at
530 37° C in human RBCs in RPMI 1640 containing Albumax II (Thermo Fisher
531 Scientific) supplemented with 2 mM L-glutamine. Synchronisation of parasite
532 cultures were done as described previously (Harris et al., 2005) by isolating mature
533 schizonts by centrifugation over 70% (v/v) isotonic Percoll (GE Healthcare, Life
534 Sciences) cushions, letting them rupture and invade fresh erythrocytes for 2 hours at
535 100rpm, followed by removal of residual schizonts by another Percoll separation and
536 sorbitol treatment to finally obtain a highly synchronised preparation of newly
537 invaded ring-stage parasites. To obtain the GDPD:HA:loxPint line, transfections were
538 performed by introducing DNA into $\sim 10^8$ Percoll-enriched schizonts by
539 electroporation using an Amaxa 4D Nucleofector X (Lonza), using program FP158
540 as previously described (Moon et al., 2013). For Cas9-based genetic modifications,
541 20 μ g of targeting plasmid and 60 μ g of linearised repair template were
542 electroporated. Drug selection with 2.5 nM WR99210 was applied 24 h post-
543 transfection for 4 days with successfully transfected parasites arising at 14-16 days.
544 For sequential genetic modification, the PPLP1:loxPint line was treated with 1 \square μ M 5-

545 fluorocytosine (5-FC) provided as clinical grade Ancotil® (MEDA) for one week
546 before transfection with pCas9_pplp2_gRNA01 + pREP-PPLP2.
547 Clonal transgenic lines were obtained by serial limiting dilution in flat-bottomed 96-
548 well plates (Thomas *et al.*, 2016) followed by propagating wells that contain single
549 plaques. Successful integration was confirmed by running diagnostic PCR either
550 directly on culture using BloodDirect Phusion PCR premix or from extracted genomic
551 DNA (DNAeasy Blood and Tissue kit, Qiagen) with CloneAmp HiFi PCR Premix
552 (TakaraBio).
553 The *P. falciparum* 3D7 line was maintained at 37°C in an atmosphere of 1% O₂, 5%
554 CO₂, and 94% N₂ and cultured using RPMI complete medium containing 0.5%
555 Albumax according to standard procedures (Trager and Jensen, 1976). For
556 generation of stable integrant cell lines LCAT:GFP and LCAT:smMyc, mature 3D7
557 schizonts were electroporated with 50 µg of plasmid DNA using a Lonza
558 Nucleofector II device (Moon *et al.*, 2013). and selected in medium supplemented
559 with 3 nM WR99210 (Jacobus Pharmaceuticals). WR99210-resistant parasites were
560 subsequently treated with 400 µg/mL Neomycin/G418 (Sigma) to select for
561 integrants carrying the desired genomic modification as described previously
562 (Birnbaum *et al.*, 2017). Successful integration was confirmed by diagnostic PCR
563 using FIREpol DNA polymerase (Solis BioDyne).
564 To obtain LCAT-null parasites, DiCre-mediated excision of the target locus was
565 induced by rapamycin treatment (100 nM RAP for 3 h or 10 nM overnight) of
566 synchronous early ring-stage parasites (2–3 h post-invasion) as previously described
567 (Collins *et al.*, 2013a). Mock treated parasites were used as wild type controls.
568
569 *Western blot and immunofluorescence assays*

570

571 To detect LCAT protein expression in LCAT:2loxPint line, rabbit polyclonal
572 antibodies were raised against two peptide sequences within the N-terminal region of
573 the *P. falciparum* LCAT protein; SIFLRNPYKITL GKSEK (32-48 aa) and
574 FSEEEDSIVRRDTEKK (56-71 aa). For western blotting, proteins were extracted
575 from C2-stalled mature schizonts directly into SDS buffer, resolved by SDS
576 polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose
577 membrane (Supported nitrocellulose membrane, Bio-Rad). Membranes were
578 blocked with 5% bovine serum albumin (BSA) in PBS-T (0.05% Tween 20) and
579 subsequently probed with the rabbit anti-LCAT sera (1:1,000 dilution), followed by
580 horseradish peroxidase-conjugated goat anti-rabbit antibody (BioRad, 1:3,000).
581 Immobilon Western Chemiluminescent HRP Substrate (Millipore) was used
582 according to the manufacturer's instructions, and blots were visualized and
583 documented using a ChemiDoc Imager (Bio-Rad) with Image Lab software (Bio-
584 Rad). Rabbit antibodies against SERA6 (Ruecker *et al.*, 2012) was used at 1:1,000
585 as loading control.
586 For immunofluorescence assays of LCAT:2loxPint parasites, thin films of parasite
587 cultures containing C2-arrested mature schizonts were air-dried, fixed in 4% (w/v)
588 formaldehyde for 30 minutes (Agar Scientific Ltd.), permeabilized for 10 minutes in
589 0.1% (w/v) Triton x100 and blocked overnight in 3% (w/v) bovine serum albumin in
590 PBS. Slides were probed with rabbit anti-LCAT sera (1:1,000 dilution), human anti-
591 MSP1 mAb X509 (1:1,000 dilution) (Blackman *et al.*, 1991) and either mouse anti-
592 AMA1-reduced (Collins *et al.*, 2009) or mouse anti-SERA5 (Collins *et al.*, 2017)
593 (1:1,000 dilution). Primary antibodies were detected by probing with AlexaFluor 488-
594 conjugated anti-rabbit, AlexaFluor 647-conjugated anti-human and AlexaFluor 594-

595 conjugated anti-mouse (Invitrogen, 1:1,000) antibodies. Slides were then stained
596 with 1ug/mL DAPI, mounted in Citifluor (Citifluor Ltd., Canterbury, U.K.).
597 For imaging LCAT:smMyc parasites, a circular space on a coverslip was surrounded
598 with a Dako pen and coated with 10 μ l 0.5 mg/ml Concanavalin A (ConA, in H₂O,
599 Sigma) in a humid chamber for 15 min at 37°C. 500 μ l of Compound 2 (C2, 1 μ M)
600 arrested LCAT:smMyc schizont cultures were centrifuged and washed once in PBS
601 to remove media components. ConA was washed away (3x H₂O, 3x PBS) from
602 coverslips and 50 μ l of parasite cultures were applied to the coverslips and
603 incubated at 37°C for 15 min in a humid chamber. Unbound cells were washed away
604 with PBS and bound cells were fixed with 2% PFA / 0.0065% glutaraldehyde in PBS
605 for 20 min at RT. Until this point, all solutions contained 1 μ M C2 to prevent schizont
606 egress. Cells were washed 3x with PBS and permeabilized with 0.2% Triton X-100 in
607 PBS for 10 min at RT. Cells were then blocked for 10 minutes with 3% BSA/PBS
608 followed by an incubation with 30 μ l of primary antibody rabbit anti-Myc (1:1.000,
609 Cell Signalling Technology, #2272) in 3% BSA/PBS in a humid chamber for 1 hour at
610 RT. After washing cells 3x with PBS, cells were incubated in a humid chamber for 1
611 hour at RT with 30 μ l of secondary antibody donkey anti-rabbit AlexaFluor488
612 (1:1.000, Invitrogen) in 3% BSA/PBS additionally containing 1 μ g/ml DAPI for
613 visualization of nuclei. After washing cells 3x with PBS, slides were mounted with
614 Dako mounting solution, sealed and stored at 4°C protected from light until analysis.
615

616 *Fluorescence and time-lapse microscopy*

617 For live cell microscopy of LCAT:GFP parasites, parasites were incubated with 1
618 μ g/mL DAPI in culture medium for 15 minutes at 37° C to stain nuclei before
619 microscopic analysis. Parasites were imaged on a Leica D6B fluorescence

620 microscope, equipped with a Leica DFC9000 GT camera and a Leica Plan
621 Apochromat 100x/1.4 oil objective. Viewing chambers for live microscopy were
622 constructed by adhering 22 x 64 mm borosilicate glass coverslips (VWR
623 International) to microscope slides, as described previously (Collins *et al.*, 2013a).
624 Mature Percoll-enriched schizonts were incubated for ≥ 4 h at 37°C in Albumax-
625 supplemented RPMI medium supplemented with 1 μ M C2. Subsequently,
626 $\sim 5 \times 10^7$ schizonts were rapidly washed twice in 1 ml of gassed complete medium
627 pre-warmed to 37°C and lacking C2, pelleting at 1,800 $\times g$ for 1 min. The cells were
628 suspended in 60 μ l of the same medium and introduced into a pre-warmed viewing
629 chamber which was then immediately placed on a temperature-controlled
630 microscope stage held at 37°C on a Nikon Eclipse Ni-E wide-field microscope fitted
631 with a Nikon N Plan Apo λ 100x/1.45NA oil immersion objective and a Hamamatsu
632 C11440 digital camera and documented via the NIS Elements software (Nikon).
633 Images were acquired at 5- to 10-s intervals over a total of 30-40 min then
634 processed and exported as TIFFs using Fiji (Schneider *et al.*, 2012). For
635 simultaneous capture of egress of RAP- and mock-treated schizonts in the same
636 chamber, one of the lines were stained with 1 μ g/uL Hoechst in C2-supplemented
637 media at 37°C for 5 minutes and washed twice with 1 mL C2-supplemented media
638 before adding to an equal amount of unstained line and proceeding as before. RAP-
639 and mock-treated lines were stained alternatively for each video. For visualising
640 RBCM poration, schizonts were washed and then suspended in 60 μ L media with
641 E64 (50 μ M final concentration) and AlexaFluor 488 phalloidin (Invitrogen; diluted
642 1:50 from 200 unit ml^{-1} stock in PBS) and proceeded as before for imaging. For flow
643 cytometry-based quantification of porated RBCs, egress-arrested schizonts were
644 stained with Hoechst in C2-supplemented media at 37°C for 5 minutes and washed

645 once with 1 mL C2-supplemented media. Hoechst-stained schizonts were washed
646 and then resuspended in either 200uL media with E64 and AlexaFluor 488 phalloidin
647 and allowed to egress for half hour at 37°C in tubes. As a negative control, another
648 aliquot of the schizonts were incubated in the presence of C2 instead of E64.
649 Samples before and after incubation (t = 0 and t = 30min) were analysed by flow
650 cytometry on a BD FACSVerse using BD FACSuite software. For every sample,
651 10,000 - 30,000 events were recorded and filtered with appropriate forward and side
652 scatter parameters. Hoechst-positive (infected RBCs) were gated using a 448/45
653 detector configuration and of this, AlexaFluor 488 phalloidin-positive RBCs were
654 counted using a 527/32 detector configuration. All data were analysed using FlowJo
655 software.

656

657 *Growth and replication assays*

658 Growth assays were performed to assess parasite growth across 3-4 erythrocytic
659 replication cycles. Synchronous cultures of ring-stage parasites at 0.1%
660 parasitaemia and 2% haematocrit were maintained in triplicates in 12 well plates. 50
661 µL from each well was sampled at 0, 2, 4 and 6 days post-RAP treatment, fixed with
662 50 µL of 0.2% glutaraldehyde in PBS and stored at 4° C for flow cytometry
663 quantification. Fixed parasites were stained with SYBR Green (Thermo Fisher
664 Scientific, 1:10,000 dilution) for 20 min at 37° C and analysed by flow cytometry on a
665 BD FACSVerse using BD FACSuite software. For every sample, parasitaemia was
666 estimated by recording 10,000 events and filtering with appropriate forward and side
667 scatter parameters and gating for SYBR Green stain-positive (infected RBCs) and
668 negative RBCs using a 527/32 detector configuration. All data were analysed using

669 FlowJo software. Growth stage progression was monitored by microscopic
670 examination at selected timepoints using Giemsa-stained thin blood films.
671 Plaque growth assays were performed by dispensing around 20 parasites per well in
672 flat-bottomed microplates at a haematocrit of 0.75%, as described (Thomas *et al.*,
673 2016). Plates were imaged using a high resolution flat-bed scanner 14–16 days after
674 setting up the assays. Plaques were counted by visual examination of the images
675 and plaque size quantified using the Lasso tool in Adobe Photoshop CS6.
676 To assess invasion rates, highly synchronous mature schizonts were added to fresh
677 erythrocytes (2% haematocrit) and let to invade for four hours at both static and
678 mechanical shaking (100 rpm) conditions (four replicates in each condition). Cultures
679 were sampled before and after the 4 h invasion and fixed as before for quantification.

680

681 *Proteomic analysis*

682 To assess the changes in PV proteome upon micronemal/exonemal release,
683 synchronous SUB1HA3:loxP parasites (Thomas *et al.*, 2018) at ~32 hpi were treated
684 with 1 μ M C2 overnight. To trigger micronemal/exonemal release, schizonts were
685 washed with RPMI w/o Albumax and incubated in RPMI w/o Albumax for 20 min at
686 37° C. C2-treated and C2-washed schizonts were lysed in ice cold 0.15% saponin
687 (with the addition of C2 for the +C2 samples). The saponin fractions were filtered
688 using Ultrafree-MC 0.22 μ m GV Durapore (Milipore) filters spun at 13,000 rpm for 1
689 min. Multiple aliquots of the saponin fractions were snap frozen on dry ice/ethanol.
690 Proteins were denatured by adding 20 μ l of 4x Laemmli buffer with 10 mM DTT
691 freshly added and heating at 95° C for 5 min. Denatured proteins were run on a
692 BioRad TGX 4-15 % Tris-Glycine gel and then proceeded with in-gel digestion.

693 Reduced and alkylated proteins were in-gel digested with 100ng trypsin (modified
694 sequencing grade, Promega) overnight at 37° C. Supernatants were dried in a
695 vacuum centrifuge and resuspended in 0.1% TriFluoroAcetic acid (TFA).
696 On an Ultimate 3000 nanoRSLC HPLC (Thermo Scientific) 1-10ul of acidified protein
697 digest was loaded onto a 20mm x 75um Pepmap C18 trap column (Thermo
698 Scientific) prior to elution via a 50cm x 75um EasySpray C18 column into a Lumos
699 Tribrid Orbitrap mass spectrometer (Thermo Scientific). A 90' binary gradient of 6%-
700 40%B over 63' was used prior to washing and re-equilibration (A= 2%ACN, 0.1%
701 formic acid; B= 80%ACN, 0.1% formic acid).
702 The Orbitrap was operated in 'TopS' Data Dependent Acquisition mode with
703 precursor ion spectra acquired at 120k resolution in the Orbitrap detector and
704 MS/MS spectra at 32% HCD collision energy in the ion trap. Automatic Gain
705 Control was set to Auto for MS1 and MS2. Maximum injection times were set to
706 'Standard' (MS1) and 'Dynamic' (MS2). Dynamic exclusion was set to 20s.
707 Raw files were processed using Maxquant (maxquant.org) and Perseus
708 (maxquant.net/perseus) with recent downloads of the Plasmodium falciparum 3D7
709 (www.plasmodb.org) and the Uniprot Homo sapiens reference proteome, together
710 with the Maxquant common contaminants databases. A decoy database of reversed
711 sequences was used to filter false positives at protein and peptide FDR of 1%. T-
712 tests were performed with a permutation-based FDR of 5% to cater for multiple
713 hypothesis testing.
714
715 *Lipidomic analysis*
716 To assess the changes in phospholipid content due to absence of LCAT, total
717 phospholipids from LCAT-null and wildtype schizonts were extracted and lipid

718 species were determined and quantified by LC-MS/MS. Schizonts were isolated
719 using Percoll cushions from RAP- and mock-treated LCAT:2loxPint parasitized
720 cultures (100ml, 0.5% haematocrit, 35-40% parasitaemia) grown for 45 hours post
721 treatment and allowed to mature for 4 hours at 37° C in the presence of egress-
722 blocking C2 (1 μ M) in order to achieve a high level of homogeneity in the samples.
723 Egress-blocked schizonts were washed twice with RPMI media w/o Albumax II (with
724 C2 at 1 μ M) and subject to lipid extraction. Lipid extraction for each sample was
725 performed by adding 400 μ L of 1×10^8 parasites, either as intact schizonts or
726 egressed suspensions, to each of three tubes (technical replicates) that contained
727 600 μ L methanol and 200 μ L chloroform. Experiments were carried out in triplicate.
728 To assess the changes in phospholipid content upon egress, egress-blocked LCAT-
729 null (+RAP) and wildtype (-RAP) schizonts (in RPMI media without Albumax II with
730 C2 at 1 μ M) were divided into 12 aliquots and kept at 37° C. Of these, 6 aliquots
731 were washed with prewarmed RPMI media w/o Albumax and incubated in 200 μ L
732 prewarmed RPMI media w/o Albumax at 37° C for 45 min for them to egress. Total
733 phospholipids were extracted from the six egress-blocked samples (+C2) and from
734 the six independently egressed samples (-C2) by adding 200 μ L of approximately $1 \times$
735 10^{10} parasites, either as intact schizonts or egressed suspensions, to 600 μ L
736 methanol and 200 μ L chloroform. Samples were sonicated for 8 minutes at 4° C and
737 incubated at 4° C for 1 hour. 400 μ L of ice-cold water was added (thus obtaining the
738 3:3:1 water:methanol:chloroform ratio) to the samples, mixed well and centrifuged at
739 max speed for 5 min at 4° C for biphasic partitioning. The lower apolar phase was
740 added to fresh tubes. The upper aqueous layer was removed and lipids were
741 extracted once more by adding 200 μ L of chloroform, vortexing and centrifuging as
742 before. The apolar phases from both extractions were pooled (400 μ L) and dried

743 under nitrogen stream and resuspended in butanol/methanol (1:1,v/v) containing 5
744 µM ammonium formate.

745 The LC-MS method was adapted from (Greenwood et al., 2019). Cellular lipids were
746 separated by injecting 10 µL aliquots onto a column: 2.1 × 100 mm, 1.8 µm C18
747 Zorbax Eclipse plus column (Agilent) using an Dionex UltiMate 3000 LC system
748 (Thermo Scientific). A 20 min elution gradient of 45% to 100% Solvent B was used,
749 followed by a 5 min wash of 100% Solvent B and 3 min re-equilibration, where
750 Solvent B was water:acetonitrile:isopropanol, 5:20:75 (v/v/v) with 10 mM ammonium
751 formate (Optima HPLC grade, Fisher Chemical) and Solvent A was 10 mM
752 ammonium formate in water (Optima HPLC grade, Fisher Chemical). Other
753 parameters were as follows: flow rate 600 µL /min; column temperature 60° C;
754 autosampler temperature 10° C. MS was performed with positive/negative polarity
755 switching using an Q Exactive Orbitrap (Thermo Scientific) with a HESI II probe. MS
756 parameters were as follows: spray voltage 3.5 kV and 2.5 kV for positive and
757 negative modes, respectively; probe temperature 275° C; sheath and auxiliary gases
758 were 55 and 15 arbitrary units, respectively; full scan range: 150 to 2000 m/z with
759 settings of auto gain control (AGC) target and resolution as Balanced and High (3 ×
760 10^6 and 70,000), respectively. Data was recorded using Xcalibur 3.0.63 software
761 (Thermo Scientific). Mass calibration was performed for both ESI polarities before
762 analysis using the standard Thermo Scientific Calmix solution. To enhance
763 calibration stability, lock-mass correction was also applied to each analytical run
764 using ubiquitous low-mass contaminants. To confirm the identification of significant
765 features, pooled quality control samples were ran in data-dependent top-N (ddMS2-
766 topN) mode, acquisition parameters as follows: resolution of 17,500, auto gain
767 control target under 2×10^5 , isolation window of m/z 0.4 and stepped collision

768 energy 10, 20 and 30 in HCD (high-energy collisional dissociation) mode. Data
769 analysis was performed using Free Style 1.5 (ThermoScientific), Progenesis
770 (Nonlinear Dynamics) and LipidMatch (Koelmel et al., 2017).

771

772 ***Statistical analysis***

773 All statistical analysis and data visualization was performed in R v4.0.2 (R Core
774 Team (2021)). Unless stated otherwise, Student's t-test were used to compare group
775 means and where necessary Bonferroni adjustment for multiple comparisons was
776 applied to the p-value of statistical significance. All statistical analysis is available as
777 R code in <https://github.com/a2g1n/LCATxcute>.

778

779 **Author contributions**

780 Conceptualization: AR, PCB, KK, TWG and MJB. Investigation and Methodology:
781 AR, PCB, KK, JAT, EP, EC, SAH, JIM, APS, TWG and MJB. Data curation and
782 Formal analysis: AR, PCB, EC and SAH. Visualization and Writing – original draft:
783 AR. Writing- review & editing: AR, PCB, TWG and MJB. Funding acquisition and
784 Supervision: TWG and MJB.

785

786 **Acknowledgement**

787 AR was funded by a Marie Skłodowska Curie Individual Fellowship (Project number
788 751865). The work was also supported by funding to MJB from the Wellcome Trust
789 (20318/A/20/Z) and the Francis Crick Institute (<https://www.crick.ac.uk/>) which
790 receives its core funding from Cancer Research UK (CC2129), the UK Medical
791 Research Council (CC2129), and the Wellcome Trust (CC2129). For the purpose of
792 Open Access, the author has applied a CC BY public copyright licence to any Author

793 Accepted Manuscript version arising from this submission. The work was further
794 supported by Wellcome ISSF2 funding to the London School of Hygiene and
795 Tropical Medicine. PCB acknowledges funding by the German Research Foundation
796 (DFG project number 414222880). Images were acquired on microscopes of the
797 CSSB imaging facility.

798

799 **Figure legends**

800 **Figure 1** *P. falciparum* PPLP1 and PPLP2 are dispensable for asexual blood
801 stage egress. **A)** Strategy used for simultaneous conditional disruption of both
802 PPLP1 and PPLP2 in the parasite line PPLP1:loxNint/PPLP2:loxPint. The MACPF
803 domains of both PLPs (yellow and purple) are floxed by introducing loxN- and loxP-
804 containing introns (loxPints) respectively. Site of targeted Cas9-mediated double-
805 stranded DNA break (marked “gRNA”), left and right homology arms for homology-
806 directed repair (5’ and 3’) and diagnostic PCR primers (half-arrows 1 to 8) are
807 indicated. RAP-induced dimerization of N- and C-terminal subunits of the Cre
808 enzyme enables Cre-mediated excision of the floxed regions rendering both the
809 genes non-functional. **B)** Diagnostic PCR using primers 1-4 and 5-8 (representative
810 of 3 independent experiments) confirms efficient excision at both loci sampled at 12
811 hours post-RAP (+RAP) or -mock treatment (-RAP) of ring stages. **C)** Replication of
812 mock- (solid line) and RAP-treated (dashed line) parasites from two clonal lines of
813 PPLP1:loxNint/PPLP2:loxPint, C1 and C2, over three erythrocytic cycles (error bars,
814 \pm SD, triplicate RAP treatments with different blood sources). There is no significant
815 difference in replication rates. **D)** Light microscopic images of Giemsa-stained
816 PPLP1:loxNint/PPLP2:loxPint parasites following mock- or RAP-treatment at ring

817 stage in cycle 0 (representative of 2 independent experiments). PPLP1/PPLP2-null
818 parasites exhibit normal parasite development. Scale bar, 5 μ m.

819

820 **Figure 2. Proteomic identification of organelle proteins discharged during**
821 **egress. A)** Schematic of experimental design to identify components of micronemes
822 and exonemes released prior to egress. SUB1-null schizonts were incubated in C2
823 (+C2) to prevent discharge of microneme and exoneme proteins (marked in red).
824 Upon washing off C2 (-C2), micronemes and exonemes release their contents into
825 the PV and are retained there in SUB1-null schizonts. Comparisons of the proteomic
826 profiles of saponin extracts of the C2-arrested and C2-washed SUB1-null schizonts
827 is expected to show differences in the abundance of microneme and exoneme
828 proteins. **B)** Immunofluorescence assay showing AMA1 localization (green). In the
829 presence of C2, AMA1 is restricted to the micronemes at the apical ends of the
830 merozoites. In contrast, upon C2 removal, AMA1 translocates onto the merozoite cell
831 surface. Parasite surface marker MSP1 (red), DAPI-stained nuclei (blue) and DIC,
832 differential interference contrast are also shown. Scale bar, 5 μ m. **C)** Volcano plot
833 showing enrichment of 12 proteins (red) in the C2-washed schizonts compared to
834 C2-arrested SUB1-null schizonts (values averaged from biological triplicates).

835

836 **Figure 3. LCAT localises to secretory vesicles and the PV in blood stage**
837 **schizonts. A)** Live-cell microscopy of late schizonts expressing endogenously
838 tagged LCAT-GFP (green). Nuclei were stained with DAPI (blue). DIC, differential
839 interference contrast. Scale bar, 5 μ m. **B)** IFA using anti-LCAT polyclonal antibodies
840 showing that LCAT partially colocalises with the PV protein SERA5. Scale bar, 5 μ m.

841

842 **Figure 4. Genetic ablation of LCAT expression reduces blood stage**

843 **proliferation. A)** Strategy used for conditional disruption of LCAT in parasite line
844 LCAT:2loxPint. A 200bp region upstream of the predicted LCAT domain (green) is
845 floxed by introducing two loxPint modules. Predicted secretory signal peptide (SP),
846 site of targeted Cas9-mediated double-stranded DNA break (marked “gRNA”), left
847 and right homology arms for homology-directed repair (5' and 3'), recodonized
848 sequence (yellow) and diagnostic PCR primers (half arrows 1-4) are indicated. RAP-
849 induced DiCre-mediated excision results in frameshift that renders the gene non-
850 functional (grey lines). **B)** Diagnostic PCR 12 h following mock- or RAP-treatment of
851 ring-stage LCAT:2loxPint (representative of 3 independent experiments) confirms
852 efficient gene excision. Expected amplicon sizes are indicated. **C)** Western blots
853 (representative of 3 independent experiments) showing successful RAP-induced
854 ablation of LCAT expression in LCAT:2loxPint parasites sampled at 48 h post
855 invasion. SERA6 was probed as loading control. **D)** IFA of RAP-treated (+RAP) and
856 mock-treated (-RAP) mature LCAT:2loxPint schizonts showing that expression of
857 LCAT is lost following RAP treatment. Scale bar, 5 μ m. **E)** RAP-treatment results in
858 reduced replication rate in two clonal lines, F10 and B10, of LCAT:2loxPint parasites.
859 Data shown are averages from triplicate biological replicates using different blood
860 sources (error bars, \pm SD). **F)** RAP-treatment results in reduction in both number
861 and area of clonal plaques formed over five erythrocytic cycles (10 days of growth) in
862 LCAT:2loxPint clonal lines (individual points represent each plaque, density plot
863 shows distribution of these points and boxplot provides median summary statistics).
864

865 **Figure 5. LCAT is required for efficient asexual blood stage egress. A)** Light
866 microscopic images of Giemsa-stained LCAT:2loxPint parasites following mock- or

867 RAP-treatment at ring stages (representative of 2 independent experiments). LCAT-
868 null parasites exhibit normal parasite development. Inset shows confirmation of
869 normal growth by measuring DNA content of egress-arrested schizonts using flow
870 cytometry. Scale bar, 5 μ m. **B)** LCAT-null parasites (+RAP) show delayed onset of
871 egress and inefficient dispersal of merozoites compared to mock-treated controls.
872 This was defined as an abnormal egress event. Scale bar, 5 μ m. **C)** DAPI-staining of
873 egressed RAP-treated (+RAP) and mock-treated (-RAP) mature LCAT:2loxPint
874 parasites show persistence of clumped merozoites that are products of abnormal
875 egress in LCAT-null parasites. Scale bar, 10 μ m. **D)** LCAT-null schizonts show a
876 higher number of abnormal egress events compared to mock-treated schizonts
877 (paired Student's t-test). Each paired datapoint represents a 30-40 min video of
878 RAP- and mock-treated LCAT:2loxPint schizonts (one group randomly stained with
879 Hoechst DNA stain in each video) undergoing egress (from a total of 7 independent
880 experiments). Size of each datapoint represents the total number of egress events
881 (abnormal + normal) counted in the video. **E)** Fold change in parasitaemia after 4 h
882 invasion of mock- (-RAP) and RAP-treated (+RAP) LCAT:2loxPint schizonts under
883 shaking and static conditions. Static cultures show a significantly lower fold change
884 in parasitaemia in RAP-treated parasites compared to mock-treated controls, while
885 show no significant difference between the groups was observed in shaking cultures
886 (error bars, \pm SD, four replicate RAP treatments with different blood sources;
887 individual points represent each replicate). **F)** Poration of the RBCM occurred in both
888 mock- (RAP-) and RAP-treated (+RAP; stained blue with Hoechst DNA stain)
889 LCAT:2loxPint schizonts as visualized using phalloidin (green) in the presence of
890 E64 that inhibits the final step of RBCM rupture. Scale bar, 10 μ m. **G)** A subtle
891 decrease in the rate of RBCM poration (paired Student's t-test) was observed in

892 RAP-treated schizonts compared to mock-treated schizonts. Each paired datapoint
893 represents a 30-40 min video of RAP- and mock-treated LCAT:2loxPint schizonts
894 (one group randomly stained with Hoechst DNA stain in each video) undergoing
895 egress in the presence of E64 (from a total of 3 independent experiments). Size of
896 each datapoint represents the total number of schizonts counted in the video. **H)**
897 Flow cytometry analysis showed emergence of porated parasitized RBCs (iRBCs)
898 that emit higher fluorescence intensity from phalloidin following 30 min of egress in
899 the presence of E64. A slight but consistent decrease in proportion of porated
900 (iRBCs) was observed in RAP-treated compared to mock-treated schizonts.

901

902 **Figure 6. Lipidomic profiling of LCAT-null parasites reveals changes in**
903 **phosphatidylserine and acylphosphatidylglycerol levels upon egress. A)**
904 Phospholipid content of RAP-treated (+RAP) and mock-treated (-RAP)
905 LCAT:2loxPint parasites were assessed in egress-stalled schizonts (+C2) and after
906 washing away C2, allowing egress to ensue for 45 min (-C2). -C2 suspensions
907 contained free merozoites, remnants of ruptured PVM (black) and RBCM (red), a few
908 un-egressed schizonts and in addition to this, merozoite clumps in the +RAP cultures
909 due to inefficient egress. **B)** IFA confirming status of egress in +C2 and -C2 samples.
910 The images show intact schizonts in +C2 samples and egressed merozoites (and
911 merozoite clumps in the case of LCAT-null parasites) in -C2 samples. Inset,
912 successful ablation of LCAT (green) expression in RAP-treated parasites. Nuclei
913 were stained with DAPI (blue). Scale bar, 10 μ m. **C)** Levels of
914 acylphosphatidylglycerol (acylPG) decrease upon egress of both +RAP and -RAP
915 parasites. An increase in several phosphatidylserine species is observed upon

916 egress of LCAT-null parasites (comparisons were done across 6 independent egress
917 experiments).

918

919 **Supplementary Figure 1. A)** Diagnostic PCR showing correct integration of the
920 modification plasmids into the PPLP1 and PPLP2 loci in
921 PPLP1:loxNint/PPLP2:loxPint parasites. Primers used are denoted in Figure 1A. **B)**
922 Replication of PLP1:loxPint clonal line prior to second modification. The modified
923 parasites show a normal replication rate across two cycles (error bars, \pm SD,
924 triplicate RAP treatments with different blood sources).

925

926 **Supplementary Figure S2. A)** Strategy for SLI-based endogenous tagging of the
927 *lcat* gene with GFP. Primers used for integration PCR are indicated with half arrows.
928 T2A, skip peptide; Neo-R, neomycin-resistance gene; hDHFR, human dihydrofolate
929 reductase; lollipop, stop codons; arrows, promoters. **B)** Diagnostic PCR showing
930 correct integration of the modification plasmid into the LCAT locus in the LCAT:GFP
931 parasites. KI, knock in cell line; WT, wild type parental line. **C)** Strategy for SLI-based
932 endogenous tagging of *lcat* gene with smMyc. Primers used for integration PCR are
933 indicated with half arrows. **D)** Diagnostic PCR showing correct integration of the
934 modification plasmid into the LCAT locus in the LCAT:smMyc line. **E)** IFA of
935 LCAT:smMyc mature schizonts using anti-myc (green) antibodies. DAPI-stained
936 nuclei are shown in blue. DIC, differential interference contrast. Scale bar, 5 μ m.

937

938 **Supplementary Figure S3. A)** Diagnostic PCR showing correct integration of the
939 modification plasmid into the LCAT locus in LCAT:2loxPint line. Primers used are
940 indicated in Figure 4A.

941

942 **Supplementary Figure S4. A)** Lipidomic analysis of LCAT:2loxPint egress-stalled
943 schizonts following mock- or RAP-treatment at ring stages. The bubble plot shows
944 the fold change in levels of various lipid species in LCAT-null schizonts compared to
945 controls (3 independent biological replicates). No significant change in phospholipid
946 levels were detected between the samples. **B)** Bubble plot shows the fold change in
947 levels of various lipid species before and after egress of RAP-treated (+RAP) and
948 mock-treated (-RAP) LCAT:2loxPint parasites (6 independent biological replicates).

949

950 **Supplementary Figure S5.** Relative peak intensities and \log_2 fold change (depicted
951 as dot plots) of the significantly altered **A)** phosphatidylserine and **B)**
952 acylphosphatidylglycerol species upon egress of mock- or RAP-treated
953 LCAT:2loxPint schizonts. B) comparison between choline-starved GDPD:loxPint:HA
954 (B4) and PfGDPD-null (clone G1) parasites.

955

956 **Supplementary Table S1. Sequences of oligonucleotides and other synthetic
957 DNA used in this study.**

958

959 **Supplementary Table S2. Label-free quantitation of proteins detected in SUB1-
960 null schizonts in the presence or absence of C2.**

961

962 **Supplementary Table S3. Raw peak intensities of various lipid species
963 measured in LCAT:2loxPint egress-stalled schizonts following mock- or RAP-
964 treatment at ring stages.**

965

966 **Supplementary Table S4. Raw peak intensities of various lipid species**
967 **measured before and after egress in RAP-treated (+RAP) and mock-treated (-**
968 **RAP) LCAT:2loxPint parasites.**

969

970 **Supplementary movie S1. Composite time-lapse video showing RAP- and**
971 **mock-treated (blue; stained with DAPI) PPLP1:loxNint/PPLP2:loxPint parasites**
972 **undergoing normal RBCM poration and egress as visualized with fluorescent**
973 **phalloidin (green) that gains access and binds to the RBC cytoskeleton upon**
974 **RBCM poration.**

975

976 **Supplementary movie S2. Composite time-lapse video showing different fates**
977 **of RAP- (blue; stained with Hoechst) and mock-treated LCAT:2loxPint**
978 **parasites.** More number of abnormal egress events (marked with red circles; normal
979 egress events in green) were observed in RAP-treated LCAT:2loxPint parasites
980 compared to mock-treated parasites.

981

982 **Supplementary movie S3. Composite time-lapse video showing normal RBCM**
983 **poration in both RAP- (blue; stained with Hoechst) and mock-treated**
984 **LCAT:2loxPint parasites as visualized with fluorescent phalloidin (green).**

985

986 **References**

987 Abkarian, M., Massiera, G., Berry, L., Roques, M., and Braun-Breton, C. (2011). A novel
988 mechanism for egress of malarial parasites from red blood cells. *Blood* 117, 4118-4124.
989 10.1182/blood-2010-08-299883.

990 Absalon, S., Blomqvist, K., Rudlaff, R.M., DeLano, T.J., Pollastri, M.P., and Dvorin, J.D.
991 (2018). Calcium-Dependent Protein Kinase 5 Is Required for Release of Egress-Specific
992 Organelles in *Plasmodium falciparum*. *mBio* 9. 10.1128/mBio.00130-18.

993 Arumugam, T.U., Takeo, S., Yamasaki, T., Thonkukiatkul, A., Miura, K., Otsuki, H., Zhou,
994 H., Long, C.A., Sattabongkot, J., Thompson, J., et al. (2011). Discovery of GAMA, a

995 Plasmodium falciparum merozoite micronemal protein, as a novel blood-stage vaccine
996 candidate antigen. *Infect Immun* 79, 4523-4532. 10.1128/IAI.05412-11.
997 Baum, J., Richard, D., Healer, J., Rug, M., Krnajski, Z., Gilberger, T.W., Green, J.L., Holder,
998 A.A., and Cowman, A.F. (2006). A conserved molecular motor drives cell invasion and
999 gliding motility across malaria life cycle stages and other apicomplexan parasites. *J Biol
1000 Chem* 281, 5197-5208. 10.1074/jbc.M509807200.
1001 Bhanot, P., Schauer, K., Coppens, I., and Nussenzweig, V. (2005). A surface phospholipase
1002 is involved in the migration of plasmodium sporozoites through cells. *J Biol Chem* 280,
1003 6752-6760. 10.1074/jbc.M411465200.
1004 Birnbaum, J., Flemming, S., Reichard, N., Soares, A.B., Mesen-Ramirez, P., Jonscher, E.,
1005 Bergmann, B., and Spielmann, T. (2017). A genetic system to study Plasmodium falciparum
1006 protein function. *Nat Methods* 14, 450-456. 10.1038/nmeth.4223.
1007 Blackman, M.J., Whittle, H., and Holder, A.A. (1991). Processing of the Plasmodium
1008 falciparum major merozoite surface protein-1: identification of a 33-kilodalton secondary
1009 processing product which is shed prior to erythrocyte invasion. *Mol Biochem Parasitol* 49,
1010 35-44. 10.1016/0166-6851(91)90128-s.
1011 Brown, W.J., Chambers, K., and Doody, A. (2003). Phospholipase A2 (PLA2) enzymes in
1012 membrane trafficking: mediators of membrane shape and function. *Traffic* 4, 214-221.
1013 10.1034/j.1600-0854.2003.00078.x.
1014 Burda, P.-C., Ramaprasad, A., Pietsch, E., Bielfeld, S., Söhnchen, C., Wilcke, L., Strauss, J.,
1015 Schwudke, D., Sait, A., Collinson, L., et al. (2021a). Global analysis of putative
1016 phospholipases in the malaria parasite Plasmodium falciparum reveals critical factors for
1017 parasite proliferation. *bioRxiv*.
1018 Burda, P.-C., Ramaprasad, A., Pietsch, E., Bielfeld, S., Söhnchen, C., Wilcke, L., Strauss, J.,
1019 Schwudke, D., Sait, A., Collinson, L.M., et al. (2021b). Global analysis of putative
1020 phospholipases in the malaria parasite Plasmodium falciparum
1021 reveals critical factors for parasite proliferation. *bioRxiv*, 2021.2006.2028.450158.
1022 10.1101/2021.06.28.450158.
1023 Burda, P.C., Roelli, M.A., Schaffner, M., Khan, S.M., Janse, C.J., and Heussler, V.T. (2015).
1024 A Plasmodium phospholipase is involved in disruption of the liver stage parasitophorous
1025 vacuole membrane. *PLoS Pathog* 11, e1004760. 10.1371/journal.ppat.1004760.
1026 Chlanda, P., Carbalal, M.A., Cyrklaff, M., Griffiths, G., and Krijnse-Locker, J. (2009).
1027 Membrane rupture generates single open membrane sheets during vaccinia virus assembly.
1028 *Cell Host Microbe* 6, 81-90. 10.1016/j.chom.2009.05.021.
1029 Cluett, E.B., Kuismanen, E., and Machamer, C.E. (1997). Heterogeneous distribution of the
1030 unusual phospholipid semilysobisphosphatidic acid through the Golgi complex. *Mol Biol
1031 Cell* 8, 2233-2240. 10.1091/mbc.8.11.2233.
1032 Cluett, E.B., and Machamer, C.E. (1996). The envelope of vaccinia virus reveals an unusual
1033 phospholipid in Golgi complex membranes. *J Cell Sci* 109 (Pt 8), 2121-2131.
1034 Collins, C.R., Das, S., Wong, E.H., Andenmatten, N., Stallmach, R., Hackett, F., Herman,
1035 J.P., Muller, S., Meissner, M., and Blackman, M.J. (2013a). Robust inducible Cre
1036 recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient
1037 gene deletion within a single asexual erythrocytic growth cycle. *Mol Microbiol* 88, 687-701.
1038 10.1111/mmi.12206.
1039 Collins, C.R., Hackett, F., Atid, J., Tan, M.S.Y., and Blackman, M.J. (2017). The
1040 Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of
1041 malaria parasite egress from host erythrocytes. *PLoS Pathog* 13, e1006453.
1042 10.1371/journal.ppat.1006453.
1043 Collins, C.R., Hackett, F., Strath, M., Penzo, M., Withers-Martinez, C., Baker, D.A., and
1044 Blackman, M.J. (2013b). Malaria parasite cGMP-dependent protein kinase regulates blood

1045 stage merozoite secretory organelle discharge and egress. *PLoS Pathog* 9, e1003344.
1046 10.1371/journal.ppat.1003344.

1047 Collins, C.R., Withers-Martinez, C., Hackett, F., and Blackman, M.J. (2009). An inhibitory
1048 antibody blocks interactions between components of the malarial invasion machinery. *PLoS*
1049 *Pathog* 5, e1000273. 10.1371/journal.ppat.1000273.

1050 Dal Peraro, M., and van der Goot, F.G. (2016). Pore-forming toxins: ancient, but never really
1051 out of fashion. *Nat Rev Microbiol* 14, 77-92. 10.1038/nrmicro.2015.3.

1052 Dalebroux, Z.D., Matamouros, S., Whittington, D., Bishop, R.E., and Miller, S.I. (2014).
1053 PhoPQ regulates acidic glycerophospholipid content of the *Salmonella Typhimurium* outer
1054 membrane. *Proc Natl Acad Sci U S A* 111, 1963-1968. 10.1073/pnas.1316901111.

1055 Das, S., Hertrich, N., Perrin, A.J., Withers-Martinez, C., Collins, C.R., Jones, M.L.,
1056 Watermeyer, J.M., Fobes, E.T., Martin, S.R., Saibil, H.R., et al. (2015). Processing of
1057 *Plasmodium falciparum* Merozoite Surface Protein MSP1 Activates a Spectrin-Binding
1058 Function Enabling Parasite Egress from RBCs. *Cell Host Microbe* 18, 433-444.
1059 10.1016/j.chom.2015.09.007.

1060 Deligianni, E., Morgan, R.N., Bertuccini, L., Wirth, C.C., Silmon de Monerri, N.C., Spanos,
1061 L., Blackman, M.J., Louis, C., Pradel, G., and Siden-Kiamos, I. (2013). A perforin-like
1062 protein mediates disruption of the erythrocyte membrane during egress of *Plasmodium*
1063 *berghei* male gametocytes. *Cell Microbiol* 15, 1438-1455. 10.1111/cmi.12131.

1064 Ebrahimzadeh, Z., Mukherjee, A., Crochetiere, M.E., Sergerie, A., Amiar, S., Thompson,
1065 L.A., Gagnon, D., Gaumond, D., Stahelin, R.V., Dacks, J.B., and Richard, D. (2019). A pan-
1066 apicomplexan phosphoinositide-binding protein acts in malarial microneme exocytosis.
1067 *EMBO Rep* 20. 10.15252/embr.201847102.

1068 Garg, S., Agarwal, S., Kumar, S., Yazdani, S.S., Chitnis, C.E., and Singh, S. (2013).
1069 Calcium-dependent permeabilization of erythrocytes by a perforin-like protein during egress
1070 of malaria parasites. *Nat Commun* 4, 1736. 10.1038/ncomms2725.

1071 Garg, S., Shivappagowdar, A., Hada, R.S., Ayana, R., Bathula, C., Sen, S., Kalia, I., Pati, S.,
1072 Singh, A.P., and Singh, S. (2020). Plasmodium Perforin-Like Protein Pores on the Host Cell
1073 Membrane Contribute in Its Multistage Growth and Erythrocyte Senescence. *Front Cell*
1074 *Infect Microbiol* 10, 121. 10.3389/fcimb.2020.00121.

1075 Ghorbal, M., Gorman, M., Macpherson, C.R., Martins, R.M., Scherf, A., and Lopez-Rubio,
1076 J.J. (2014). Genome editing in the human malaria parasite *Plasmodium falciparum* using the
1077 CRISPR-Cas9 system. *Nat Biotechnol* 32, 819-821. 10.1038/nbt.2925.

1078 Gilberger, T.W., Thompson, J.K., Reed, M.B., Good, R.T., and Cowman, A.F. (2003). The
1079 cytoplasmic domain of the *Plasmodium falciparum* ligand EBA-175 is essential for invasion
1080 but not protein trafficking. *J Cell Biol* 162, 317-327. 10.1083/jcb.200301046.

1081 Glushakova, S., Beck, J.R., Garten, M., Busse, B.L., Nasamu, A.S., Tenkova-Heuser, T.,
1082 Heuser, J., Goldberg, D.E., and Zimmerberg, J. (2018). Rounding precedes rupture and
1083 breakdown of vacuolar membranes minutes before malaria parasite egress from erythrocytes.
1084 *Cell Microbiol* 20, e12868. 10.1111/cmi.12868.

1085 Glushakova, S., Humphrey, G., Leikina, E., Balaban, A., Miller, J., and Zimmerberg, J.
1086 (2010). New stages in the program of malaria parasite egress imaged in normal and sickle
1087 erythrocytes. *Curr Biol* 20, 1117-1121. 10.1016/j.cub.2010.04.051.

1088 Glushakova, S., Yin, D., Li, T., and Zimmerberg, J. (2005). Membrane transformation during
1089 malaria parasite release from human red blood cells. *Curr Biol* 15, 1645-1650.
1090 10.1016/j.cub.2005.07.067.

1091 Greenwood, D.J., Dos Santos, M.S., Huang, S., Russell, M.R.G., Collinson, L.M., MacRae,
1092 J.I., West, A., Jiang, H., and Gutierrez, M.G. (2019). Subcellular antibiotic visualization
1093 reveals a dynamic drug reservoir in infected macrophages. *Science* 364, 1279-1282.
1094 10.1126/science.aat9689.

1095 Guerra, A.J., and Carruthers, V.B. (2017). Structural Features of Apicomplexan Pore-
1096 Forming Proteins and Their Roles in Parasite Cell Traversal and Egress. *Toxins (Basel)* 9.
1097 10.3390/toxins9090265.

1098 Gulati, S., Ekland, E.H., Ruggles, K.V., Chan, R.B., Jayabalasingham, B., Zhou, B., Mantel,
1099 P.Y., Lee, M.C., Spottiswoode, N., Coburn-Flynn, O., et al. (2015). Profiling the Essential
1100 Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium
1101 falciparum. *Cell Host Microbe* 18, 371-381. 10.1016/j.chom.2015.08.003.

1102 Hale, V.L., Watermeyer, J.M., Hackett, F., Vizcay-Barrena, G., van Ooij, C., Thomas, J.A.,
1103 Spink, M.C., Harkiolaki, M., Duke, E., Fleck, R.A., et al. (2017). Parasitophorous vacuole
1104 poration precedes its rupture and rapid host erythrocyte cytoskeleton collapse in Plasmodium
1105 falciparum egress. *Proc Natl Acad Sci U S A* 114, 3439-3444. 10.1073/pnas.1619441114.

1106 Harris, P.K., Yeoh, S., Dluzewski, A.R., O'Donnell, R.A., Withers-Martinez, C., Hackett, F.,
1107 Bannister, L.H., Mitchell, G.H., and Blackman, M.J. (2005). Molecular identification of a
1108 malaria merozoite surface sheddase. *PLoS Pathog* 1, 241-251. 10.1371/journal.ppat.0010029.

1109 Hinds, L., Green, J.L., Knuepfer, E., Grainger, M., and Holder, A.A. (2009). Novel putative
1110 glycosylphosphatidylinositol-anchored micronemal antigen of Plasmodium falciparum that
1111 binds to erythrocytes. *Eukaryot Cell* 8, 1869-1879. 10.1128/EC.00218-09.

1112 Hybske, K., and Stephens, R.S. (2008). Exit strategies of intracellular pathogens. *Nat Rev
1113 Microbiol* 6, 99-110. 10.1038/nrmicro1821.

1114 Ishino, T., Chinzei, Y., and Yuda, M. (2005). A Plasmodium sporozoite protein with a
1115 membrane attack complex domain is required for breaching the liver sinusoidal cell layer
1116 prior to hepatocyte infection. *Cell Microbiol* 7, 199-208. 10.1111/j.1462-5822.2004.00447.x.

1117 Jones, M.L., Das, S., Belda, H., Collins, C.R., Blackman, M.J., and Treeck, M. (2016). A
1118 versatile strategy for rapid conditional genome engineering using loxP sites in a small
1119 synthetic intron in Plasmodium falciparum. *Sci Rep* 6, 21800. 10.1038/srep21800.

1120 Kaiser, K., Camargo, N., Coppens, I., Morrisey, J.M., Vaidya, A.B., and Kappe, S.H. (2004).
1121 A member of a conserved Plasmodium protein family with membrane-attack
1122 complex/perforin (MACPF)-like domains localizes to the micronemes of sporozoites. *Mol
1123 Biochem Parasitol* 133, 15-26. 10.1016/j.molbiopara.2003.08.009.

1124 Khosh-Naucke, M., Becker, J., Mesen-Ramirez, P., Kiani, P., Birnbaum, J., Frohlke, U.,
1125 Jonscher, E., Schluter, H., and Spielmann, T. (2018). Identification of novel parasitophorous
1126 vacuole proteins in P. falciparum parasites using BioID. *Int J Med Microbiol* 308, 13-24.
1127 10.1016/j.ijmm.2017.07.007.

1128 Knuepfer, E., Napiorkowska, M., van Ooij, C., and Holder, A.A. (2017). Generating
1129 conditional gene knockouts in Plasmodium - a toolkit to produce stable DiCre recombinase-
1130 expressing parasite lines using CRISPR/Cas9. *Sci Rep* 7, 3881. 10.1038/s41598-017-03984-
1131 3.

1132 Koelmel, J.P., Kroeger, N.M., Ulmer, C.Z., Bowden, J.A., Patterson, R.E., Cochran, J.A.,
1133 Beecher, C.W.W., Garrett, T.J., and Yost, R.A. (2017). LipidMatch: an automated workflow
1134 for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry
1135 data. *BMC Bioinformatics* 18, 331. 10.1186/s12859-017-1744-3.

1136 Koussis, K., Withers-Martinez, C., Baker, D.A., and Blackman, M.J. (2020). Simultaneous
1137 multiple allelic replacement in the malaria parasite enables dissection of PKG function. *Life
1138 Sci Alliance* 3. 10.26508/lsa.201900626.

1139 Koussis, K., Withers-Martinez, C., Yeoh, S., Child, M., Hackett, F., Knuepfer, E., Juliano, L.,
1140 Woehlbier, U., Bujard, H., and Blackman, M.J. (2009). A multifunctional serine protease
1141 primes the malaria parasite for red blood cell invasion. *EMBO J* 28, 725-735.
1142 10.1038/emboj.2009.22.

1143 Lopez-Barragan, M.J., Lemieux, J., Quinones, M., Williamson, K.C., Molina-Cruz, A., Cui,
1144 K., Barillas-Mury, C., Zhao, K., and Su, X.Z. (2011). Directional gene expression and

1145 antisense transcripts in sexual and asexual stages of *Plasmodium falciparum*. *BMC Genomics*
1146 12, 587. 10.1186/1471-2164-12-587.

1147 Mantel, P.Y., Hoang, A.N., Goldowitz, I., Potashnikova, D., Hamza, B., Vorobjev, I., Ghiran,
1148 I., Toner, M., Irimia, D., Ivanov, A.R., et al. (2013). Malaria-infected erythrocyte-derived
1149 microvesicles mediate cellular communication within the parasite population and with the
1150 host immune system. *Cell Host Microbe* 13, 521-534. 10.1016/j.chom.2013.04.009.

1151 Miller, S.K., Good, R.T., Drew, D.R., Delorenzi, M., Sanders, P.R., Hodder, A.N., Speed,
1152 T.P., Cowman, A.F., de Koning-Ward, T.F., and Crabb, B.S. (2002). A subset of *Plasmodium*
1153 falciparum SERA genes are expressed and appear to play an important role in the
1154 erythrocytic cycle. *J Biol Chem* 277, 47524-47532. 10.1074/jbc.M206974200.

1155 Moon, R.W., Hall, J., Rangkuti, F., Ho, Y.S., Almond, N., Mitchell, G.H., Pain, A., Holder,
1156 A.A., and Blackman, M.J. (2013). Adaptation of the genetically tractable malaria pathogen
1157 *Plasmodium knowlesi* to continuous culture in human erythrocytes. *Proc Natl Acad Sci U S*
1158 A 110, 531-536. 10.1073/pnas.1216457110.

1159 Moreau, D., Vacca, F., Vossio, S., Scott, C., Colaco, A., Paz Montoya, J., Ferguson, C.,
1160 Damme, M., Moniatte, M., Parton, R.G., et al. (2019). Drug-induced increase in
1161 lysobisphosphatidic acid reduces the cholesterol overload in Niemann-Pick type C cells and
1162 mice. *EMBO Rep* 20, e47055. 10.15252/embr.201847055.

1163 Nasamu, A.S., Glushakova, S., Russo, I., Vaupel, B., Oksman, A., Kim, A.S., Fremont, D.H.,
1164 Tolia, N., Beck, J.R., Meyers, M.J., et al. (2017). Plasmepsins IX and X are essential and
1165 druggable mediators of malaria parasite egress and invasion. *Science* 358, 518-522.
1166 10.1126/science.aan1478.

1167 Perrin, A.J., Collins, C.R., Russell, M.R.G., Collinson, L.M., Baker, D.A., and Blackman,
1168 M.J. (2018). The Actinomyosin Motor Drives Malaria Parasite Red Blood Cell Invasion but
1169 Not Egress. *mBio* 9. 10.1128/mBio.00905-18.

1170 Pino, P., Caldelari, R., Mukherjee, B., Vahokoski, J., Klages, N., Maco, B., Collins, C.R.,
1171 Blackman, M.J., Kursula, I., Heussler, V., et al. (2017). A multistage antimalarial targets the
1172 plasmepsins IX and X essential for invasion and egress. *Science* 358, 522-528.
1173 10.1126/science.aaf8675.

1174 Pszenny, V., Ehrenman, K., Romano, J.D., Kennard, A., Schultz, A., Roos, D.S., Grigg,
1175 M.E., Carruthers, V.B., and Coppens, I. (2016). A Lipolytic Lecithin:Cholesterol
1176 Acyltransferase Secreted by *Toxoplasma* Facilitates Parasite Replication and Egress. *J Biol*
1177 *Chem* 291, 3725-3746. 10.1074/jbc.M115.671974.

1178 Reed, M.B., Caruana, S.R., Batchelor, A.H., Thompson, J.K., Crabb, B.S., and Cowman,
1179 A.F. (2000). Targeted disruption of an erythrocyte binding antigen in *Plasmodium falciparum*
1180 is associated with a switch toward a sialic acid-independent pathway of invasion. *Proc Natl*
1181 *Acad Sci U S A* 97, 7509-7514. 10.1073/pnas.97.13.7509.

1182 Risco-Castillo, V., Topcu, S., Marinach, C., Manzoni, G., Bigorgne, A.E., Briquet, S.,
1183 Baudin, X., Lebrun, M., Dubremetz, J.F., and Silvie, O. (2015). Malaria Sporozoites Traverse
1184 Host Cells within Transient Vacuoles. *Cell Host Microbe* 18, 593-603.
1185 10.1016/j.chom.2015.10.006.

1186 Ruecker, A., Shea, M., Hackett, F., Suarez, C., Hirst, E.M., Milutinovic, K., Withers-
1187 Martinez, C., and Blackman, M.J. (2012). Proteolytic activation of the essential
1188 parasitophorous vacuole cysteine protease SERA6 accompanies malaria parasite egress from
1189 its host erythrocyte. *J Biol Chem* 287, 37949-37963. 10.1074/jbc.M112.400820.

1190 Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years
1191 of image analysis. *Nat Methods* 9, 671-675. 10.1038/nmeth.2089.

1192 Schultz, A.J., and Carruthers, V.B. (2018). *Toxoplasma gondii* LCAT Primarily Contributes
1193 to Tachyzoite Egress. *mSphere* 3. 10.1128/mSphereDirect.00073-18.

1194 Silmon de Monerri, N.C., Flynn, H.R., Campos, M.G., Hackett, F., Koussis, K., Withers-
1195 Martinez, C., Skehel, J.M., and Blackman, M.J. (2011). Global identification of multiple
1196 substrates for *Plasmodium falciparum* SUB1, an essential malarial processing protease. *Infect*
1197 *Immun* 79, 1086-1097. 10.1128/IAI.00902-10.

1198 Singh, P., Alaganan, A., More, K.R., Lorthiois, A., Thiberge, S., Gorgette, O., Guillotte
1199 Blisnick, M., Guglielmini, J., Aguilera, S.S., Touqui, L., et al. (2019). Role of a patatin-like
1200 phospholipase in *Plasmodium falciparum* gametogenesis and malaria transmission. *Proc Natl*
1201 *Acad Sci U S A* 116, 17498-17508. 10.1073/pnas.1900266116.

1202 Thomas, J.A., Collins, C.R., Das, S., Hackett, F., Graindorge, A., Bell, D., Deu, E., and
1203 Blackman, M.J. (2016). Development and Application of a Simple Plaque Assay for the
1204 Human Malaria Parasite *Plasmodium falciparum*. *PLoS One* 11, e0157873.
1205 10.1371/journal.pone.0157873.

1206 Thomas, J.A., Tan, M.S.Y., Bisson, C., Borg, A., Umrekar, T.R., Hackett, F., Hale, V.L.,
1207 Vizcay-Barrena, G., Fleck, R.A., Snijders, A.P., et al. (2018). A protease cascade regulates
1208 release of the human malaria parasite *Plasmodium falciparum* from host red blood cells. *Nat*
1209 *Microbiol* 3, 447-455. 10.1038/s41564-018-0111-0.

1210 Thompson, J.K., Triglia, T., Reed, M.B., and Cowman, A.F. (2001). A novel ligand from
1211 *Plasmodium falciparum* that binds to a sialic acid-containing receptor on the surface of
1212 human erythrocytes. *Mol Microbiol* 41, 47-58. 10.1046/j.1365-2958.2001.02484.x.

1213 Trager, W., and Jensen, J.B. (1976). Human malaria parasites in continuous culture. *Science*
1214 193, 673-675. 10.1126/science.781840.

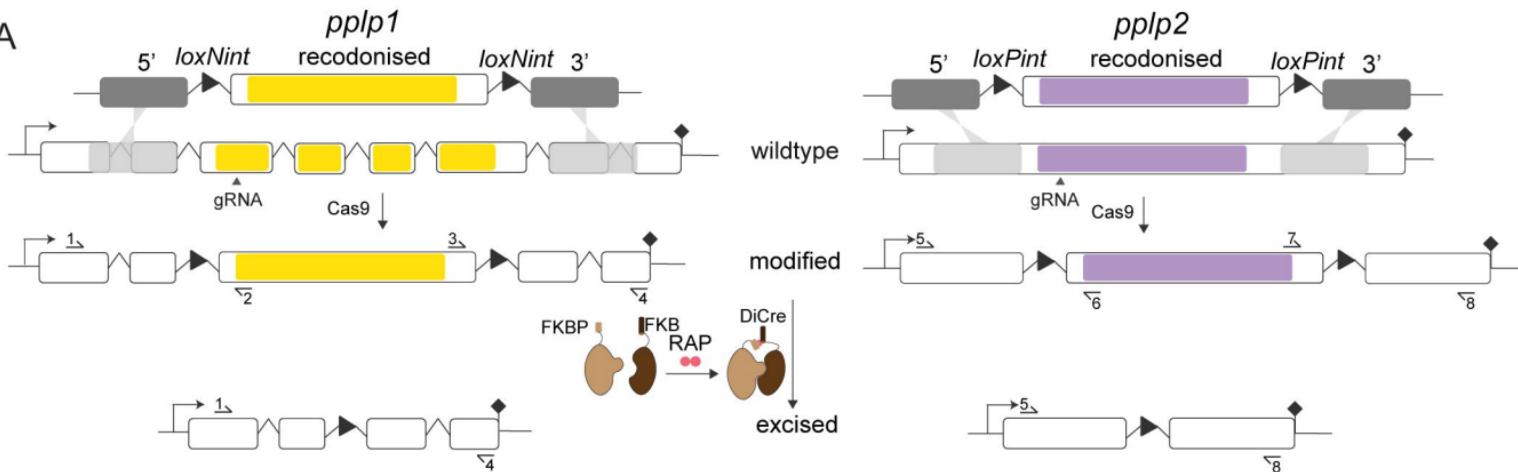
1215 Viswanathan, S., Williams, M.E., Bloss, E.B., Stasevich, T.J., Speer, C.M., Nern, A.,
1216 Pfeiffer, B.D., Hooks, B.M., Li, W.P., English, B.P., et al. (2015). High-performance probes
1217 for light and electron microscopy. *Nat Methods* 12, 568-576. 10.1038/nmeth.3365.

1218 Wickham, M.E., Culvenor, J.G., and Cowman, A.F. (2003). Selective inhibition of a two-step
1219 egress of malaria parasites from the host erythrocyte. *J Biol Chem* 278, 37658-37663.
1220 10.1074/jbc.M305252200.

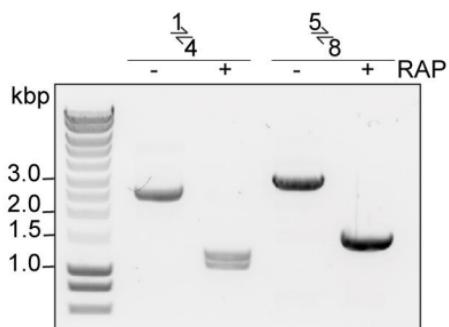
1221 Wirth, C.C., Glushakova, S., Scheuermayer, M., Repnik, U., Garg, S., Schaack, D.,
1222 Kachman, M.M., Weissbach, T., Zimmerberg, J., Dandekar, T., et al. (2014). Perforin-like
1223 protein PPLP2 permeabilizes the red blood cell membrane during egress of *Plasmodium*
1224 *falciparum* gametocytes. *Cell Microbiol* 16, 709-733. 10.1111/cmi.12288.

1225 Yague, G., Segovia, M., and Valero-Guillen, P.L. (1997). Acyl phosphatidylglycerol: a major
1226 phospholipid of *Corynebacterium amycolatum*. *FEMS Microbiol Lett* 151, 125-130.
1227 10.1111/j.1574-6968.1997.tb12559.x.

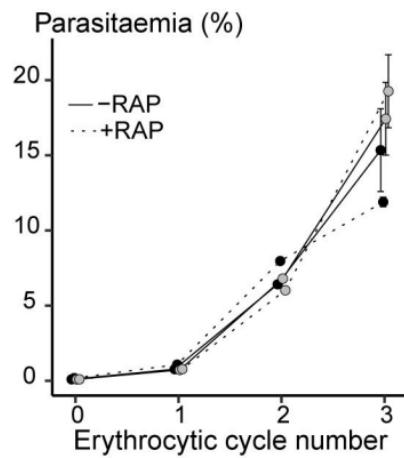
1228 Yang, A.S.P., O'Neill, M.T., Jennison, C., Lopaticki, S., Allison, C.C., Armistead, J.S.,
1229 Erickson, S.M., Rogers, K.L., Elliston, A.M., Whisstock, J.C., et al. (2017). Cell Traversal
1230 Activity Is Important for *Plasmodium falciparum* Liver Infection in Humanized Mice. *Cell*
1231 *Rep* 18, 3105-3116. 10.1016/j.celrep.2017.03.017.

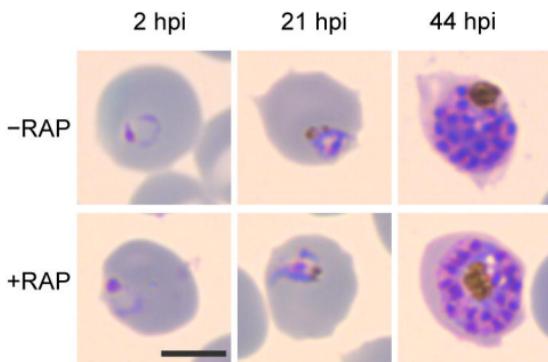

1232 Yeoh, S., O'Donnell, R.A., Koussis, K., Dluzewski, A.R., Ansell, K.H., Osborne, S.A.,
1233 Hackett, F., Withers-Martinez, C., Mitchell, G.H., Bannister, L.H., et al. (2007). Subcellular
1234 discharge of a serine protease mediates release of invasive malaria parasites from host
1235 erythrocytes. *Cell* 131, 1072-1083. 10.1016/j.cell.2007.10.049.

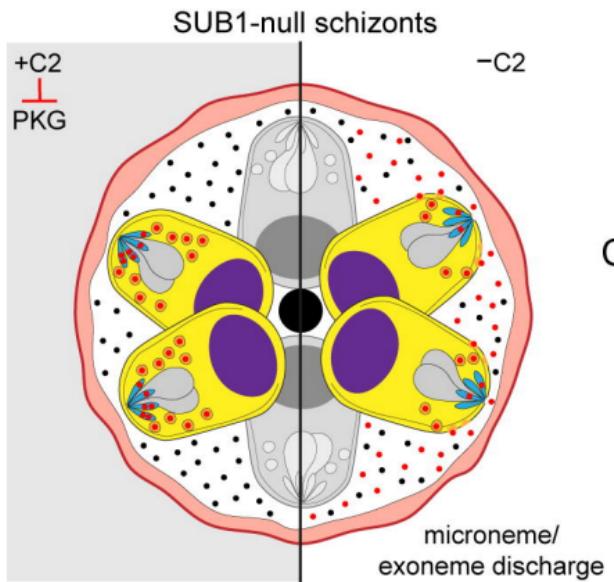
1236 Zhang, M., Wang, C., Otto, T.D., Oberstaller, J., Liao, X., Adapa, S.R., Udenze, K., Bronner,
1237 I.F., Casandra, D., Mayho, M., et al. (2018). Uncovering the essential genes of the human
1238 malaria parasite *Plasmodium falciparum* by saturation mutagenesis. *Science* 360,
1239 10.1126/science.aap7847.

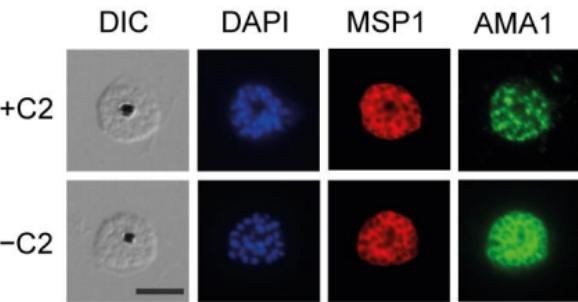

1240 Zimmerberg, J., and Kozlov, M.M. (2006). How proteins produce cellular membrane
1241 curvature. *Nat Rev Mol Cell Biol* 7, 9-19. 10.1038/nrm1784.

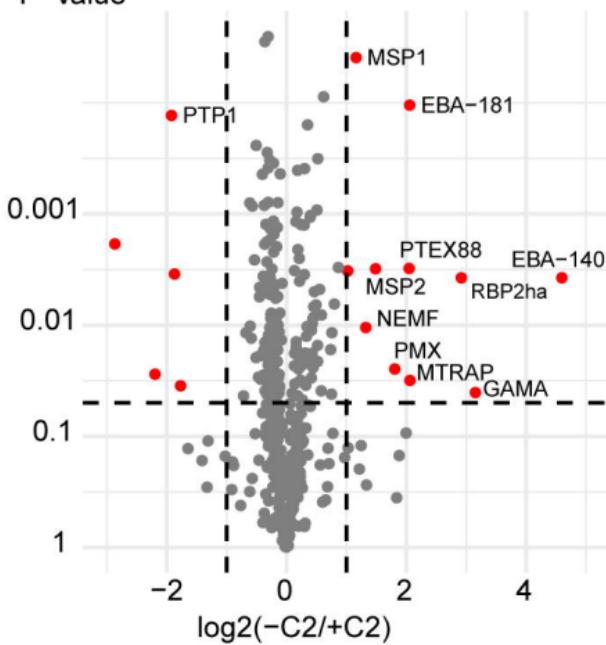
1242

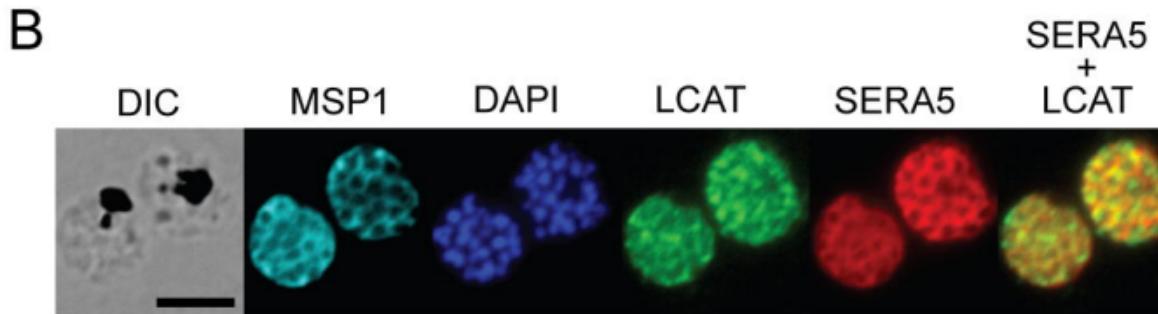
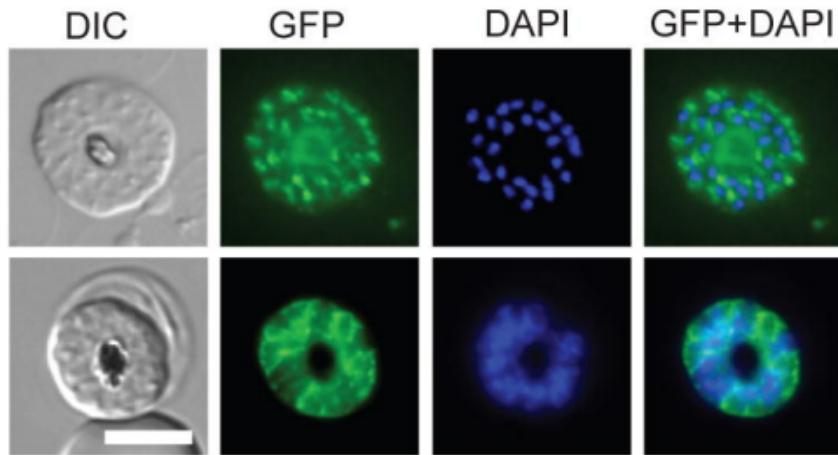

A


B

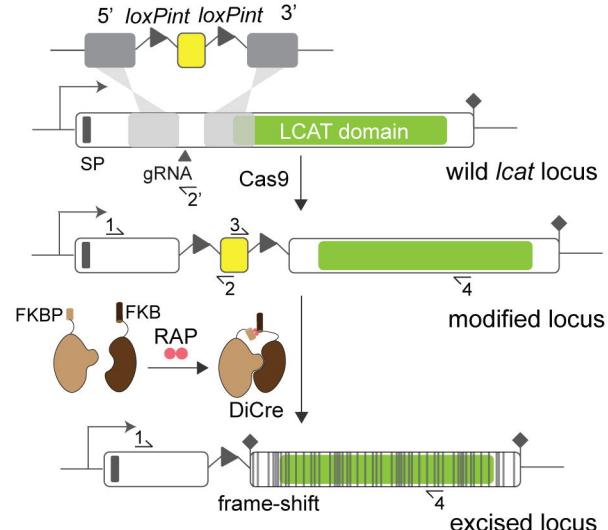

C


D

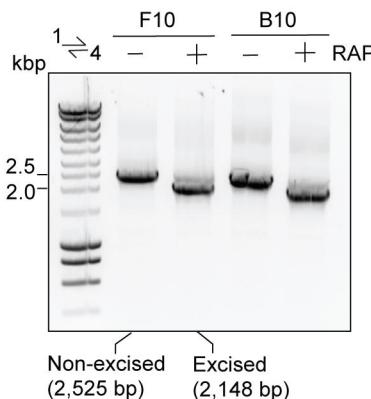

A

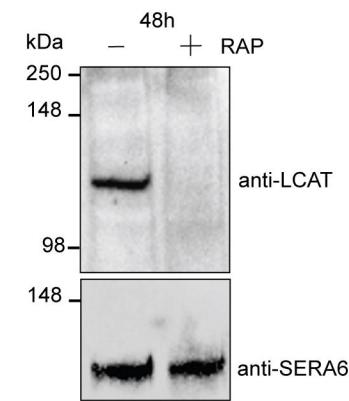



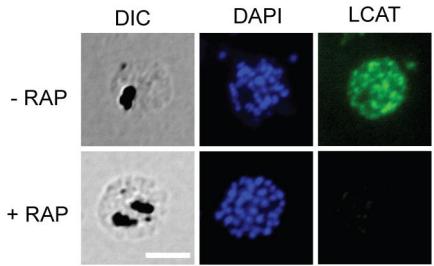
B

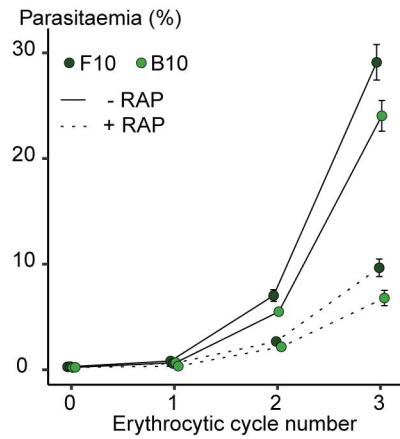


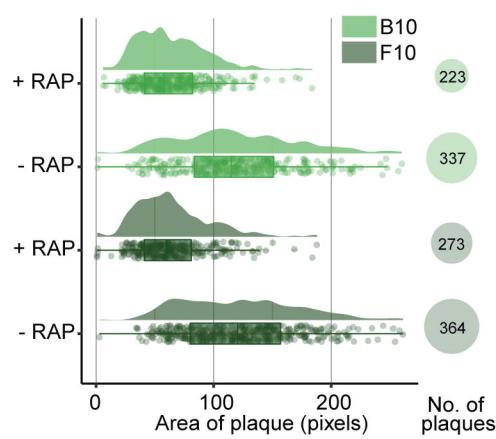
C

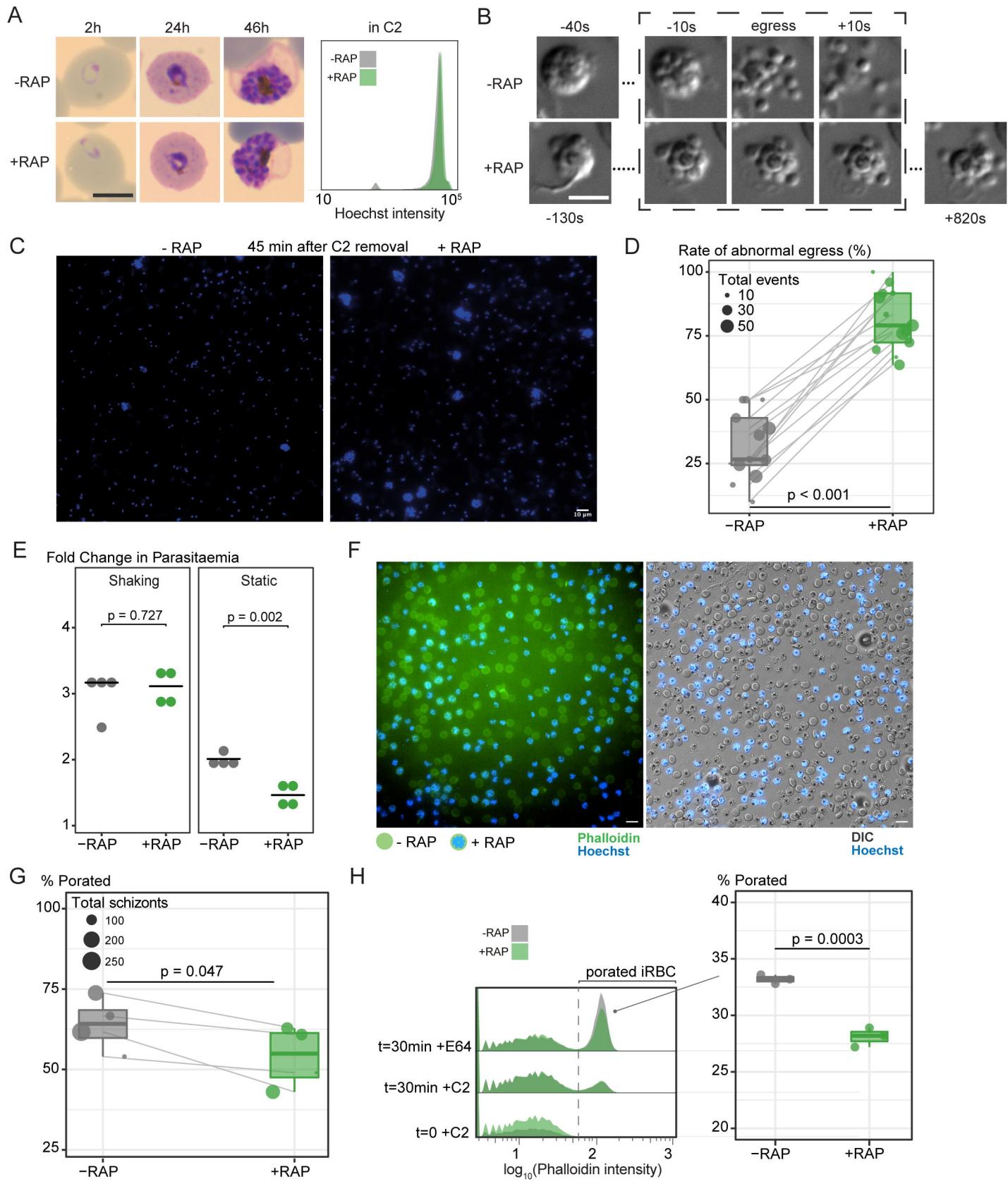



A

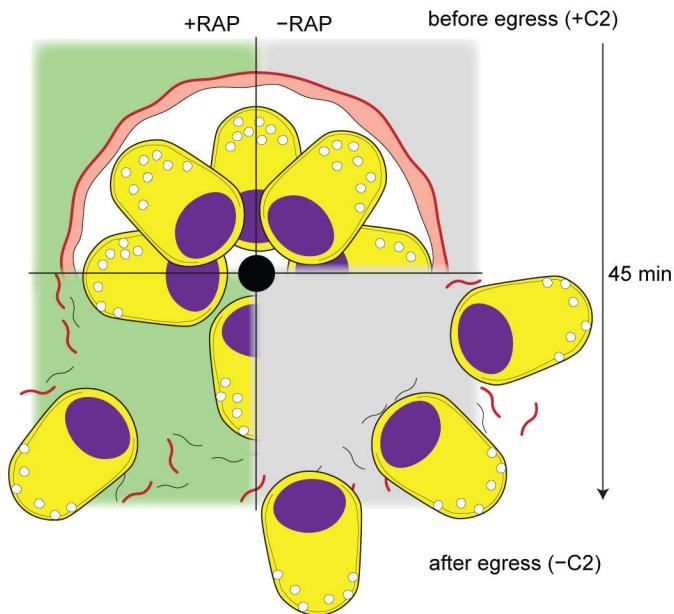

B


C

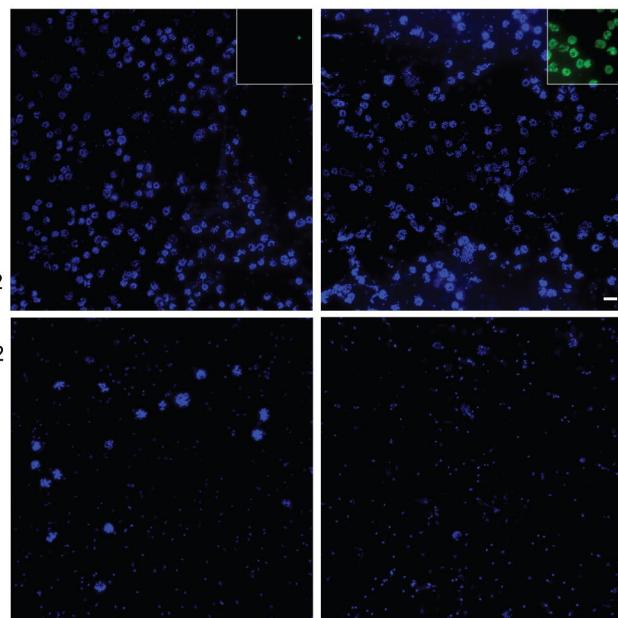

D

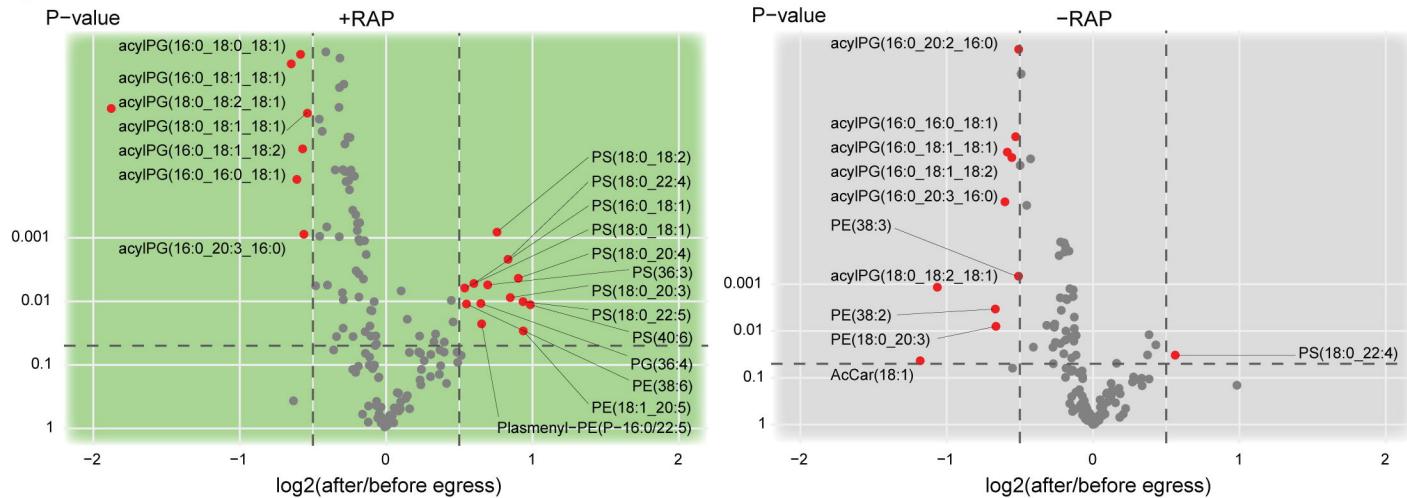


E



F




A

B

C

