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Abstract 47 

Background 48 

Domestication is a complex, multi-stage and species-specific process that results in organisms 49 

living close to humans. In the arboviral vector Aedes aegypti adaptation to living in proximity with 50 

anthropogenic environments has been recognized as a major evolutionary shift, separating a 51 

generalist form, Aedes aegypti formosus (Aaf), from the domestic form Aedes aegypti aegypti 52 

(Aaa), which tends to deposit eggs artificial containers and bite humans for a blood meal. These 53 

behaviors enhance the mosquito vectorial capacity. The extent to which domestication has impacted 54 

the Ae. aegypti genome has not been thoroughly investigated yet.   55 

 56 

Results 57 

Taking advantage of two forms' distinct and historically documented geographic distributions, we 58 

analyzed the genomes of 634 worldwide Ae. aegypti mosquitoes. Using more than 300 million high-59 

confidence SNPs, we found a unique origin for all out-of-Africa Ae. aegypti mosquitoes, with no 60 

evidence of admixture events in Africa, apart from Kenya. A group of genes were under positive 61 

selection only in out-of-Africa mosquitoes and 236 genes had nonsynonymous mutations, occurring 62 

at statistically different frequencies in Aaa and Aaf mosquitoes.  63 

 64 

Conclusion 65 

We identified a clear signal of genetic differentiation between Aaa and Aaf, circumscribed to a 66 

catalogue of candidate genes. These “Aaa molecular signature” genes extend beyond 67 

chemosensory genes to genes linked to neuronal and hormonal functions. This suggests that the 68 

behavioral shift to domestication may rely on the fine regulation of metabolic and neuronal 69 

functions, more than the role of a few significant genes. Our results also provide the foundation to 70 

investigate new targets for the control of Ae. aegypti populations. 71 

 72 
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 76 

Background 77 

The complex and multistage process that brings animals to live in proximity with 78 

anthropogenic environments has had a tremendous impact on both animals and human evolution 79 

since the Neolithic time when humans started to breed animals as food or commodity sources, 80 

protection, transportation, and company (1). For animals such as sheep, goats, cattle, chinchilla, 81 

American minks and shrimp domestication has been a human-driven process (2). For other species, 82 

domestication has been a self-selective natural process, which has resulted in an inherited attraction 83 

and adaptation to anthropogenic environments (2). A recognized consequence of domestication is 84 

exposure to zoonotic diseases because the domesticated animal may act as a reservoir or an 85 

amplifier of pathogens mainly acquired through interaction with wildlife (3).  86 

The primary vector of arboviruses worldwide, the mosquito Aedes aegypti, exists as two 87 

different subspecies: the generalist Aedes aegypti formosus (Aaf) and the domesticated Aedes 88 

aegypti aegypti (Aaa). The distinction between the two subspecies has epidemiological relevance 89 

because Aaa tends to have a higher vectorial capacity than Aaf mosquitoes due to its behavior 90 

patterns of domestication, such as aptitude to oviposit in clean water of artificial containers and 91 

preference to blood feed on humans, and its higher vector competence for arboviruses (4–6). The 92 

two subspecies are distinguished at the phenotypic level, with Aaf a darker body color than Aaa 93 

(7,8). However, body color is not a binary phenotype, resulting in uncertainty (8,9).  94 

Aedes aegypti is native of Africa and diverged from its closest relative, Aedes mascarensis, 95 

between 4 to 15 million years ago (MYA) (10). Nowadays, Ae. aegypti can be found throughout the 96 

tropical and subtropical regions of the world, but its geographic populations are not homogenous 97 

in terms of domesticated behaviors. Out-of-Africa populations, which originated through the 98 
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transatlantic slave trade from African populations, preferentially bite humans and lay eggs in 99 

freshwater of human-made containers (11). African populations tend to be generalist. While it is 100 

debatable when and which are the ecological drivers that caused this shift (6,12,13), genetic data 101 

based on microsatellite markers and exome sequencing have revealed a clear genetic differentiation 102 

between the two morphological subspecies, supporting a single sub-speciation event that probably 103 

occurred in West Africa, with the absence of gene flow between out-of-Africa domesticated and 104 

African generalist mosquitoes for at least 500 years (6,10,13–17). However, in a few African locations 105 

such as Kenya, Angola and urban sites of West Africa, Ae. aegypti mosquitoes that preferentially 106 

bite humans are sampled, suggesting recent reintroductions from out-of-Africa mosquitoes leading 107 

to admixture, persistence of descendants from the ancestral Aaa population of West Africa or 108 

incipient and independent domestication events (6,12,16,18).  109 

It has long been speculated that domestication has strong genomic bases in Ae. aegypti 110 

because this species appears to have a high genetic diversity on a micro-geographic scale, and it is 111 

known to be fast evolving (16,19–21). However, the extent of the molecular differentiation in the 112 

genomes of the two subspecies in relation to biological functions associated with the behavioral 113 

switch to domestication have not been extensively investigated yet. Most efforts have been focused 114 

on identifying specific genes linked to hallmarks of domestication such as host-seeking behavior or 115 

insecticide resistance, the latter being a side effect of recurrent insecticidal interventions to control 116 

mosquito populations (22–24), based on the differential expression across Ae. aegypti populations 117 

(25–28) and/or the presence of nonsynonymous variants within a few target loci, including genes 118 

encoding for detoxification enzymes (e.g., P450s) (23), neurotransmitter receptors (e.g., Ir8) (29), 119 

the para sodium channel gene (e.g., kdr mutations) (23,30,31), and odorant receptors (e.g., AeOR4) 120 

(6). 121 

Here, we present a comprehensive screening of genomic features in Ae. aegypti associated 122 

with adaptations to microgeographic and expected/recorded domesticated behaviors after its 123 

subspeciation event from the comparative analysis of the genomes of 123 out-of-Africa and 511 124 
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African mosquitoes. Among these genomes, we identified more than 300 million high-confidence 125 

SNPs, which we used to assess population structure and test for signatures of molecular evolution. 126 

Our analyses led to circumscribing the genetic basis of domestication to a catalogue of candidates, 127 

which are strongly differentiated between Aaa and Aaf mosquitoes.  128 

 129 

Results 130 

300 million high confidence SNPs detected across 634 worldwide Ae. aegypti genomes  131 

We analyzed the complete genome of 694 Aedes spp. mosquitoes, including 4 Ae. 132 

mascarensis and 21 Ae. albopictus samples. After removing datasets with low-quality mapping or 133 

molecular identification as either Ae. albopictus or Aedes simpsoni, we obtained a final dataset of 134 

634 Ae. aegypti genomes divided into two major geographical groups: African samples and out-of-135 

Africa samples (Table 1, Fig. 1). Based on the presence or absence of the Nix gene, 192 and 395 136 

mosquitoes were classified as males and females, respectively. Since the DNA of sperms can be 137 

stored in female spermatheca, the remaining 47 individuals with partial coverage (2-44%) of the 138 

Nix gene were considered females. 139 

We identified a total of 322,552,899 high-confidence SNPs across the 634 Ae. aegypti 140 

genomes by using two variant callers to recalibrate of our initial predicted SNPs dataset (~207 141 

million) and ~485 thousand SNPs from ten published datasets (see Methods). We found no 142 

statistical difference in the number of SNPs between males and females (t-test=2.75, p>0.05), while 143 

SNPs number correlated with the length of chromosomes (length of chromosome 2: 2473 Mbs, 144 

44.88% of total number of SNPs; length of chromosome 3: 409 Mbs, 37.71% of total number of 145 

SNPs and length of chromosome 1: 310 Mbs, 26.40 % of total number of SNPs, rank coefficient 146 

correlation > 0.87, p<0.005). SNP distribution does not fit a model of “random distribution” across 147 

the chromosomes (chi-square test, p>0.1), but SNP density is highest at the telomere and decreases 148 

towards the centromere in all three chromosomes. Due to the highly repetitive nature of the Ae. 149 
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aegypti genome (32), we distinguished between SNPs located in repetitive (R-SNPs) and non-150 

repetitive (NR-SNPs) sequences. As expected, the number of biallelic and multiallelic R-SNPs (223 151 

million) is higher in comparison to NR-SNPs (91 million), with no significant differences found in 152 

these trends for African and out-of-Africa populations (t-test=1.3, p>0.05). NR-SNPs are mostly 153 

located in intergenic regions (48%) and introns (43%), and to a lesser extent within exons (9%); 154 

whereas R-SNPs are equally distributed across introns and intergenic regions. Further analyses in 155 

this study are focused on the NR-SNPs dataset. 156 

Among tested genomes, we identified 95 close relatives that represent >50% of individuals 157 

from six African populations, including Thiès (THI), Bundibugyo (BDB), Kichwamba (KIC), 158 

Virhembe (VIR), Bénoué (BEN), and Rabai (RAB), leaving a dataset of 539 Ae. aegypti genomes 159 

for which we performed a Principal Component Analysis (PCA). We recovered four well defined 160 

clusters representing three metapopulations from Africa (Western, Central-Eastern, and Eastern 161 

regions), and one from non-African populations, but we did not identify any cluster with mosquitoes 162 

that were previously described as “domesticated” in Rabai (6). A second PCA including all 634 163 

mosquitoes showed RAB-related individuals are those with a closer affiliation to out-of-Africa 164 

mosquitoes (Fig. 1B). These results highlight that “domesticated” Rabai mosquitoes are inbred. 165 

Based on these results, we included all individuals from RAB, subdividing them into the 166 

“domesticated” (RABd) or “feral” (RABs) group, resulting in a final dataset of 554 Ae. 167 

aegypti genomes. 168 

 169 

High genetic diversity and rare variants are more common in African populations   170 

Among the 554 Ae. aegypti genomes, we detected 314,365,358 high-confidence SNPs; 81% 171 

are biallelic and 19% multiallelic. The average number of variants (R-SNPs, NR-SNPs) per 172 

population (46±16 million) represents 3.60% of the total variation detected in the genome, with a 173 

difference between African (3.99%) and out-of-Africa (2.02%) populations (Table 1). This can be 174 
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explained by the presence of almost two-fold more variants in African (51.91±13.72 million) than 175 

in out-of-Africa (25.84±1.90 million) populations (unpaired Wilcoxon signed rank test, 176 

p=0.000196), as previously observed (13, 18). Within African populations, the Western (SEN, BFA, 177 

GHA) and Eastern (KEN) regions have a similar number of variants (56.51±11.69 and 56.06±11.94 178 

million, respectively), which is higher than that detected in Central populations (51.16±11.19 179 

million). Conversely, out-of-Africa populations not only have less variants (25.84±1.90 million), 180 

but also less variance in the number of variants across them. 181 

Mean nucleotide diversity (π) and Tajima's D (D) estimates were calculated with a non-182 

overlapping sliding window of 10kb across chromosomes and populations to identify demographic 183 

changes. On average, π is found to be higher in African (0.67±0.33) than out-of-Africa (0.34±0.09) 184 

populations. Also, populations from Central and West Africa have more genome intervals with 185 

negative Tajima’s D values on each chromosome, which are more concentrated towards the 186 

telomeres (63% of all sliding windows). Both estimates indicate that high genetic diversity and rare 187 

variants are more common across African populations, suggesting novel mutations due to 188 

population expansions. Conversely, NGY, RABd and out-of-Africa populations have more genome 189 

intervals with positive Tajima's D values, along with a reduced number of rare variants and 190 

nucleotide diversity (lower π values), suggesting a pervasive effect of bottlenecks or inbreeding due 191 

to one or repeated population contractions. These results and trends are robust to estimates with 192 

different sliding window sizes. 193 

 194 

Unique origin for out-of-Africa mosquitoes and no evidence of incipient domestication or 195 

current admixture events between African and out-of-Africa populations beyond Kenya 196 

Using a set of 1,530,512 biallelic SNPs that are shared across 80% of the 554 genomes, with 197 

no linkage disequilibrium and a minor allele frequency (MAF) of 0.01, we performed admixture 198 

analyses (K=3-13) (Fig. 1C) and compared pairwise fixation indexes (Fst) as a measurement of 199 

population genetic divergence and evaluating the presence of local introgression. Additionally, we 200 
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identified phylogenetic relationships among ‘individuals’ and ‘populations’ with two independent 201 

maximum likelihood (ML) trees that were reconstructed using exomic biallelic SNPs and Ae. 202 

albopictus as an outgroup (Fig. 2). Admixture analysis identified five well-defined clusters, 203 

representing one group from out-of-Africa populations and four African metapopulations from the 204 

Western (clusters 2), Western/Central (cluster 5), Central (cluster 3) and Eastern (cluster 4) regions 205 

(Fig. 1C). Furthermore, genetic separation is observed between populations west (Uganda, Western 206 

Kenya) and east (Eastern Kenya) of the Rift Valley. The human-feeding mosquitoes of the 207 

Senegalese NGY and THI populations (within cluster 2) and RABd (within cluster 9) formed 208 

distinct clusters. In the ML-phylogeny of individuals, RABd was found to form a single well-209 

supported branch with JED mosquitoes (bootstrap=70%), as previously observed (10). This finding 210 

is supported by the lowest genetic divergence found between RABd and JED (Fst_RABd-211 

JED=0.147±0.01) in comparison to the divergence found against other out-of-Africa (Fst_RABd-212 

Aaa=0.179±0.091, range=0.156-0.214) and African populations (Fst_RABd-Aaf=0.183±0.013, 213 

range=0.148-0.231).  214 

The ML-phylogeny for individuals (Fig. 2A) also identified a single well-defined branch 215 

including THI and NGY mosquitoes with all out-of-Africa populations (bootstrap <50%). The 216 

branch length of the nodes grouping THI and NGY is larger (7.27±0.66) than that grouping non-217 

African mosquitoes altogether (4.45±1.24). Both THI and NGY show higher divergence with out-218 

of-Africa populations (Fst_THI-Aaa: 0.127±0.12, range 0.113-0.175; Fst_NGY-Aaa: 0.104±0.12, range: 219 

0.128-0.16), in comparison to the divergence found against other African populations (Fst_THI-Aaf : 220 

0.048±0.025, range 0.004–0.02 and Fst_NGY-Aaf: 0.055±0.021, range 0-0.081). Additionally, Fst 221 

values estimated for THI and NGY with respect to mosquitoes from America, Asia and Oceania, 222 

which were colonized in a subsequent manner (11), showed a consistent high variance, whereas 223 

within genetic divergence in both THI and NHY populations was low (NGY: FIS=0.015, THI: 224 

FIS=0.013), with only one THI and two NGY mosquitoes grouping with Central Africa populations. 225 

Apart from NGY and THI, we observed grouping of mosquitoes within Africa in sampled 226 
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populations from West and East Africa, with extensive intermixing (i.e., interleaving branches) in 227 

Central Africa, and no distinct separation among mosquitoes sampled in urban or rural/forestry 228 

sites, suggesting frequent gene flow in mosquitoes from these habitats. Results obtained from the 229 

ML-phylogeny for individuals were further confirmed by both the ML-populations phylogeny 230 

based on allele frequencies (33) and the F3 statistic, which tested genetic admixture among African 231 

populations and between African and out-of-Africa populations (34). THI, NGY and all out-of-232 

Africa populations were found to form a single well-supported branch in the ML-populations 233 

phylogeny (bootstrap= 78%) (Fig. 2C). The phylogenetic relationship of both THI and NGY with 234 

out-of-Africa populations is not the product of admixture events, given that the F3 test was rejected 235 

in all cases (Z-cores values > -3.0). The same result was obtained when extending the F3 statistics 236 

to other African populations. On the contrary, there is evidence of admixture among African 237 

populations from geographically close regions, independently of their urban or forest location. The 238 

ML-populations phylogeny also showed that the amount of genetic drift is higher across out-of-239 

African populations, in agreement with our findings of low genetic diversity and positive values of 240 

Tajima’s D.  241 

 242 

Signatures of local genetic adaptation is detected in out-of-Africa mosquitoes 243 

Admixture and phylogenetic analyses confirmed the genetic separation between African 244 

mosquitoes and domesticated out-of-Africa samples and highlighted RABd, NGY and THI as the 245 

African samples most closely related to Aaa mosquitoes. To further identify patterns of molecular 246 

differentiation among our samples, we screened for outlier SNPs using the program PCAdapt (35). 247 

Among the 10,030 outliers detected, the majority were located within intronic (45%) and intergenic 248 

(26%) regions, while 27% mapped to protein-coding exons of 2,266 genes. In agreement with 249 

results from our phylogenetic analyses, apart from THI, NGY and RABd, all African populations 250 

grouped together and were separated from out-of-Africa mosquitoes (Fig. 3). The first three 251 

principal components (PCs) accounted for 95% of the data (one sample t-test for PCs, p<0.001; 252 
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pairwise t-test for populations, p<0.001). PC1 captured 6,041 outliers distributed across 1639 genes 253 

that support local adaptations for THI, NGY, RABd, RABs and out-of-Africa populations; PC2 and 254 

PC3 included 3,559 outliers in 986 genes highlighting local adaptations in NGY and eight Kenyan 255 

populations. The remaining PCs explain 5% of the data and identified 429 outliers across 233 genes 256 

indicating local adaptations in out-of-Africa populations.  257 

The hallmark of domestication in Ae. aegypti is higher attraction to humans than animals, a 258 

phenotype that was used to classify Aaa and Aaf mosquitoes, prior to the discovery of Aaf 259 

mosquitoes preferentially blood-feeding on humans in Cape Verde and Senegal, and is regulated 260 

by chemosensory receptors (6,26,36). Among the 198 Ae. aegypti chemosensory genes, 32 had 261 

outliers. Relative to other functional categories, most genes with outliers were associated with 262 

functions such as protease activity (35 genes out of 292 genes), detoxification (29 genes out of 198 263 

genes), immunity (62 out of 391 genes) or biosynthetic and metabolic processes, signaling and 264 

receptor activities, metal ion homeostasis and (GTPase) binding activities. All genes harboring 265 

outliers showed high genetic differentiation (sites average Fst≥0.09) and deviation from neutrality 266 

(Tajima’s D: one sample t-test, m=0, p<0.001), suggesting signals of selection. Additionally, 267 

outliers in 306 genes resulted in nonsynonymous mutations, which occurred at a significantly 268 

different allele frequency in African and out-of-African mosquitoes in 236 genes, including the 269 

odorant receptor (OR) genes OR91 and OR86, the ionotropic receptors (Ir) Ir41g, 7g and 8a; the 270 

gustatory receptor (GR) 9; immunity genes as Toll5A, the gram-negative binding protein (GNBP) 271 

A2, the clip-domain serine proteases CLIPE12, and CLIPE8, and several genes with unknown 272 

functions (i.e. AAEL025393, AAEL001559, AAEL020878, AAEL022804, AAEL022666, 273 

AAEL019451, AAEL012825, AAEL012783, AAEL012268, AAEL010998, AAEL008698) (Fig. 274 

4).   275 

 276 

Genes associated with diverse neuronal functions are positively selected in out-of-Africa 277 

mosquitoes.  278 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.13.532092doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.13.532092
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

We further estimated selective constraints by calculating the ratio of non-synonymous (Ka) 279 

to synonymous (Ks) substitutions (dN/dS ratio) for the 13,503 Ae. aegypti genes that mapped SNPs 280 

in their protein-coding exons. We found 12,991 genes evolving under negative selection, which are 281 

mostly shared across all tested populations, with none of the five clusters identified offering an 282 

unambiguous distinction between Aaf and Aaa mosquitoes. By contrast, we found that most local 283 

adaptation across Aaa populations seems to be driven by 1,033 genes (from 9 clusters) out of the 284 

5,242 genes that were found evolving under positive selection. We consider this set of 1,033 genes 285 

as “Aaa molecular signature” because they clearly differentiate African from out-of-Africa 286 

populations (Fig. 5).  The “Aaa molecular signature” genes were distributed across the three 287 

chromosomes, encompassing the regions from 128.3 to 287.7 Mb and 284.5 and 344.8 Mb on 288 

chromosome 2, which harbor Quantitative Trait Loci (QTLs) previously linked to higher vector 289 

competence for Zika virus in mosquitoes from Guadeloupe vs Gabon (5). Chemosensory and 290 

immunity genes were the most represented ones among the “Aaa molecular signature” genes (Fig. 291 

5). We detected several olfactory-associated genes evolving under positive selection across several 292 

out-of-Africa populations, including Gr1 in JED and BNK; Gr34 in JED and SAS; Gr20 in SAM, 293 

TAP, SAS, and BNK; Obpjj7a in JED, SAS, and BNK; Obp14 in JED; Or13 in JED and SAS; 294 

Or44 in TAP and SAS; Or45 in JED, SAS and BNK; and Or4 in TAP and JED. Across tested 295 

mosquitoes from Asia and/or America, signals of positive selection were found to be mostly local, 296 

with concordant results from the PCA-outlier analysis in Gr1, Gr8, Gr20a, Ir7g, CLIB1 and 297 

GPXH2; the cytochrome P450 CYP6Z7, which has been frequently associated with resistance to 298 

pyrethroids (37–39), showed pervasive positive selection, showed pervasive positive selection in 299 

remarkable contrast to most negatively selected P450 genes, further underscoring its physiological 300 

role and the significance of these results. 301 

 Among the  “Aaa molecular signature” genes is notable the presence of genes associated 302 

with neuronal and hormonal functions such as the N-methyl-D-aspartate (NMDA) receptor 303 

(AAEL008587), which belongs to the family of ionotropic glutamate receptors playing a major 304 
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signaling role in the central nervous system and in neuromuscular junctions (40); the capa gene 305 

(AAEL005444) belongs to the PK/PBAN family of neuropeptides, which in Drosophila 306 

melanogaster encodes for pyrokinin-1 and periviscerokinins (41), and has been shown to regulate 307 

diverse physiological functions ranging from feeding behavior (42) to the regulation of water 308 

balance (43); tomosyn (AAEL006948), a motoneuron receptor that influences homeostatic synaptic 309 

plasticity (44); the synaptic vesicle protein synaptotagmin (AAEL001167) (45), and several G-310 

protein coupled receptors (GPRs), a category of proteins enriched among Anopheles gambiae brain 311 

peptides (46). 312 

 313 

Endogenous Viral Elements contribute to differentiate out-of-Africa and African mosquitoes 314 

Recent experimental evidence expands the immunity toolkit of Ae. aegypti to nonretroviral 315 

endogenous viral elements (nrEVEs), which interplay with the piwi-interacting (pi) RNA pathway 316 

to control cognate viral infections (47,48). The genome of Ae. aegypti harbors 252 nrEVEs (hereafter 317 

reference nrEVEs), > 50% of which are at least 4 MYA being shared with Ae. mascarensis (47,49). 318 

Reference nrEVEs coexist with 64 “new” nrEVEs, which are exclusively detected in wild 319 

mosquitoes, and their distribution significantly differed in African and out-of-Africa mosquitoes. 320 

A total of 5 new nrEVEs (Guato_2, CFAV_EVE-4, CFAV_EVE_1, CFAV-EVE-5, Aedes aegypti 321 

toti_like-7) are unique of out-of-Africa mosquitoes and, overall, new nrEVEs have a higher 322 

nucleotide identity to cognate viruses than reference nrEVEs. With the exception of three 323 

integrations from the Liao Ning virus belonging to the Seadornavirus genus (Reoviridae family), 324 

which includes emerging pathogens (50), all new nrEVEs are from limited number of ISVs. We 325 

also observed frequent rearrangement events following integration, especially for nrEVEs with 326 

similarity to flaviviruses that map in piRNA clusters, supporting the conclusion that nrEVEs 327 

contribute to the genetic flexibility of Ae. aegypti piRNA clusters.  328 

 329 

 330 
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DISCUSSION 331 

Domestication is a complex, multifactorial and species-specific process traditionally 332 

associated with vertebrates, among animals. Still, domestication events have also occurred in a few 333 

invertebrates such as shrimps (Panaeus spp.), the silk moth Bombyx mori and Ae. aegypti (1,51,52). 334 

In the case of Ae. aegypti, it took only a few hundred years for the species to become globally 335 

invasive and human specialist (11,12). Aedes aegypti domestication process has resulted in changes 336 

on different aspects of its bionomics (e.g. vector competence, reproductive behavior and host 337 

feeding preferences) and, by consequence of human interventions, in insecticide tolerance in just a 338 

few thousand years (6,12,24). 339 

This work represents the most comprehensive effort to date to identify genomic variants 340 

and footprints of genomic selection tracing the evolutionary divergence and behavioral switch of 341 

Ae. aegypti populations to domestication. To revisit this matter with unprecedented phylogenetic 342 

resolution, we used the high-quality reference assembly AagL5 (32) and the genomes of 511 African 343 

and 123 out-of-Africa mosquitoes that were sampled and sequenced from 14 countries across four 344 

continents. From >300 million high-confidence SNPs detected throughout the whole Ae. aegypti 345 

genome, we found protein-coding variants that can significantly differentiate Aaa from Aaf 346 

mosquitoes. We call this group of genes “Aaa molecular signature” genes. A total of 236 “Aaa 347 

molecular signature” genes harbor nonsynonymous mutations that occur at statistically different 348 

frequencies between Aaa and Aaf mosquitoes. Thus, they could be used to distinguish the two Ae. 349 

aegypti subspecies molecularly. In the following, we discuss the population structure context under 350 

which these “Aaa molecular signature” genes were identified, highlighting their association with 351 

expected (olfaction) and novel functional hallmarks of domesticated behaviors in Ae. aegypti. 352 

Our genetic structure and phylogenetic analyses performed over 1.5 million biallelic and 353 

non-redundant SNPs, led us to confirm a major genetic divergence between African and out-of-354 

Africa populations, with the former being clearly genetically structured into Western, 355 

Western/Central, Central and Eastern metapopulations. These results are strongly supported by the 356 
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pairwise-Fst genetic distances obtained across all populations, with the unique exception of RABd. 357 

We consistently found that RABd formed a cluster, which separated from other African populations 358 

and was phylogenetically more closely related to, and shared the lowest genetic divergence with, 359 

JED, in comparison to all other tested populations. Empirical observations of closer relatedness 360 

between Aaa populations and behaviorally divergent ‘‘domestic’’ and ‘‘forest’’ mosquitoes of 361 

Rabai have been reported previously, with contradicting hypotheses concerning the origin of such 362 

‘domesticated behavior’ (6,10,16,53,54). The findings of our study provide compelling evidence for 363 

a “back to Africa” event, indicating a recent reintroduction from Saudi Arabia into Kenya of Aaa 364 

mosquitoes, which remained localized as indicated by extensive inbreeding.  365 

Our admixture and PCA analyses also provide strong support for the separated genomic 366 

clustering of the human-feeding mosquitoes sampled from the Senegalese NGY and THI 367 

populations (6). Results from ML-phylogenies further showed that NGY and THI are closely related 368 

to out-of-Africa mosquitoes. Importantly, not only the branch grouping both THI and NGY with 369 

out-of-Africa populations is basal to all African population, but it also supports a high genetic 370 

divergence between NGY/THI and out-of-Africa populations when compared to other African 371 

populations, which is consistently confirmed by all pairwise-Fst distances. We also demonstrate 372 

that the close phylogenetic relationship of both THI and NGY with Aaa populations is not the 373 

product of admixture events, given that the F3 test was rejected in all cases. F3 results discarding 374 

admixture with out-of-Africa populations extend to all tested African mosquitoes. Altogether, these 375 

findings are consistent with inferring that NGY and THI derive from an ancestral domesticated 376 

population, rather than representing recent re-introductions and/or admixture events between 377 

African and out-of-Africa mosquitoes (9,11,13–15,18,55).  378 

The genome-wide SNP divergence between African and out-of-Africa populations, which 379 

agrees with previous studies (6,13,16,18), is further endorsed by the differential clustering of nrEVEs 380 

between the two subspecies, with 5 nrEVEs being exclusive of out-of-Africa populations. These 381 

Aaa-specific nrEVEs belong to a group of 64 novel, and PCR-validated, nrEVEs that we strongly 382 
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suggest being the outcome of recent integration events given their higher nucleotide identity to 383 

cognate viruses. The population structure that we found, meaning a unique origin for all out-of-384 

Africa domesticated mosquitoes with NGY and THI representing ancestral domesticated 385 

mosquitoes and no current admixture between African and out-of-Africa mosquitoes or new 386 

introductions of Aaa into Africa, except for RABd, was the basis to continue in the identification 387 

of genomic variants and footprints of genomic selection between out-of-Africa domesticated and 388 

generalist African mosquitoes. To test whether or not switches to long enduring domesticated 389 

behaviors in Aedes aegypti have a strong and multi-loci genomic basis, we joined two well-known 390 

approaches: first, we identified genomic variants more strongly associated in all populations of the 391 

two subspecies than expected only by genetic drift; second, we identified all those positively 392 

selected protein-coding variants that can unambiguously differentiate patterns of adaptation in 393 

African versus out-of-African populations. We found that the genetic divergence between Aaa and 394 

Aaf is highest in a group of genes from the prediction of both approaches, that we call “Aaa 395 

molecular signature” genes. Given that results from these estimations are sensitive to the number 396 

of populations that are tested and their grouping, we performed our analyses on all populations and 397 

statistically validated population divergence prior to calling outlier SNPs. While some “Aaa 398 

molecular signature” genes may reflect local adaptation independently of domestication, in gene 399 

families associated with functional redundancy, local adaptation signals may still be domestication 400 

signals.   401 

Our candidate “Aaa molecular signature” genes include olfactory genes, which mediates 402 

sensing of volatiles, a function used by Ae. aegypti females to locate both a host for blood feeding 403 

and a breeding site for oviposition (58,59). Olfaction is governed by multi-gene families and has a 404 

highly redundant organization in Ae. aegypti, with multiple receptors in the same neuron and 405 

individual variability, which is different from the canonical organization “one receptor-one neuron-406 

one glomerulus” observed in Drosophila melanogaster (58). This level of redundancy increases the 407 

breath and the flexibility of volatile perception, and it may be linked to local adaptation at the 408 
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genomic level. Despite this redundant organization, a few candidate receptors have been identified 409 

as having a major role because of their either ubiquitous co-receptor function (i.e., Orco, Ir8a, 410 

Ir25a, and Ir76b) or prevalent sensing of human-relevant compounds, such as sulcatone by Or4, 411 

CO2 by Gr3, and lactic acid by Ir8a (26,60-63). We identified pervasive negative selection in Orco 412 

and Gr3, underscoring their physiological role. Consistent with the hypothesis that functional 413 

redundancy may entail local adaptation, we detected strong genomic signals of local adaptation 414 

across several olfactory-associated genes such as Gr1 in RABd and all out of Africa; Gr20 in 415 

Kenyan populations (MBK, ARA, GND, KYB, KWA, SHH, and RABd, RABs) and NGY; Or26 416 

in THI, NGY, RABd, RABs; Or44 in TAP and SAS; Or45 in JED, SAS and BNK; Or86 in RABd 417 

and out of Africa; Or4 in TAP and JED; Gr8 and Gr20a in Kenyan populations (MBK, ARA, GND, 418 

KYB, KWA, SHH, and RABd, RABs) and NGY; Ir7g in THI, NGY, both RAB, and out of Africa 419 

populations. Or4 is particularly significant as different Or4 alleles are known to circulate across 420 

Ae. aegypti populations, with levels of Or4 expression being strongly predictive of preferential 421 

attraction to humans (26). Here, we circumscribed our analyses to coding sequences, thus we are 422 

possibly missing variants that could regulate Or4 expression. Such analyses would require 423 

complementary transcriptomic data assessing gene expression and extensive functional validation, 424 

which are beyond the scope of our current work. In the co-receptor Ir8a, which is expressed 425 

specifically in antennal neurons and is required for perception of lactic acid, a component of human 426 

sweat (60), we identified nonsynonymous mutations occurring at significantly different frequency 427 

in Aaa and Aaf mosquitoes. In NGY and THI, which are African mosquitoes that behave like Aaa 428 

in their preference for humans (6), these mutations appear at frequencies which are intermediate 429 

between those detected in Aaa and Aaf mosquitoes, underscoring their significance and pointing to 430 

functionally assessable targets for future endeavor.   431 

As expected, our list of “Aaa molecular signature” genes include additional genes 432 

belonging to major gene families such as detoxification, immunity, and proteases, which have been 433 

shown to impact host seeking behavior, vector competence and overall response to external stimuli 434 
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(6,32,64,65). Notable examples include Toll5A, which interacts specifically with Spaetzle1C resulting 435 

in regulation of immunity and, primarily, fatty acid metabolism (66,67), as well as several clip-436 

domain serine proteases, which are upregulated following Ae. aegypti infection with different 437 

pathogens (68,69). Although >50% of “Aaa molecular signature” genes lack a functional annotation, 438 

also notable is the presence of genes associated with broad hormonal and neuronal functions such 439 

as the NMDA receptor, the capa gene, tomosyn and synaptotagmin (41–43,45), suggesting that the 440 

behavioral shift to domestication may rely on the fine regulation of metabolic and neuronal 441 

functions, more than the role of a few major genes. In support to this hypothesis, domestication in 442 

rabbits, which occurred rapidly in the past 1500 years, resulted in a shift in primarily SNPs nearby 443 

genes associated with brain and neuronal development (1,70). Additionally, a mutation affecting the 444 

thyroid-stimulating hormone receptor, which controls photoperiodic diapause and reproduction, is 445 

widespread but not fixed in domestic chickens (71,72), and candidate domestication genes in the 446 

silkworm (Bombyx) include genes involved in energy metabolism, reproduction and silk gland 447 

activity (69).  448 

Altogether, our findings robustly suggest that domesticated behaviors in Ae. aegypti have 449 

evolved by shifts in allele frequencies and codon selection at many loci, owing to diverse selective 450 

pressures caused by local adaptations to microgeographic and anthropogenic changes worldwide. 451 

In particular, selection on olfactory genes and their related nonsynonymous variants, which are 452 

expected to be relevant for generating the behavioral switch in Ae. aegypti to domestication, are 453 

found to be strongly influenced by genetic background and population history. The genetic diversity 454 

richness of the generalist African populations found in both repetitive and non-repetitive regions 455 

throughout the whole genome strongly suggests that retention of ancestral polymorphisms is likely 456 

the main genetic source for the evolution of complex evolutionary dynamics in the domesticated 457 

behaviors of Ae. aegypti. The absence of introgression between the Aaa and Aaf populations 458 

analyzed here, and the 2-fold reduction of SNPs, nucleotide diversity, rare variants, and high genetic 459 

drift that we found across out-of-Africa populations strongly endorse this hypothesis, although 460 
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other genomic events, recent retention of polymorphisms due to local introgressions and convergent 461 

evolution on certain loci are not to be discarded (e.g., (73)). Retention of ancestral allelic variants 462 

based on microsatellite markers was suspected to occur in Ae. aegypti (13,18,20), but was only 463 

reported in other human-feeding mosquitoes recently, such as Anopheles gambiae (74–77), Culex 464 

nigripalpus (78), and Cx. quinquefasciatus (79). Particularly notable is the presence of alternative 465 

allelic variants at low frequency (i.e., “standing variation”) in the same protein-coding genes that 466 

we found to be evolving under nearly neutral or weak (positive/negative) selection across most 467 

African populations (Fig. 5c), which may be maintained for longer periods of time beyond neutral 468 

expectations (80). This is the first large-scale observation of selection over preexisting standing 469 

variation in Ae. aegypti, a phenomenon that has been also reported in Daphnia (79) and a few other 470 

organisms (82–85). By selecting from a rich stock of ancestral and weakly evolving standing variants 471 

from African populations, we observe that some of the “Aaa molecular signature” genes such as 472 

the odorant receptor gene AAEL000616 found within modules linked to active periods or sleep-473 

like states (86), the chymotrypsin JHA15 (AAEL001703) found to be highly expressed before a 474 

blood meal (87), and the immune-related recognition gene AAEL019958 found to be exclusively 475 

expressed in ovaries of female mosquitoes (88), and several chemosensory genes have switched to 476 

directional selection in several out-of-Africa populations, where the fast emergence of novel 477 

adaptations can be easily promoted by the redundant organization of olfaction to cope with novel 478 

geographical and anthropogenic evolutionary pressures.  479 

Relative to recent efforts in other human feeding mosquitoes, our work provides a unique 480 

resource for the study of population genetic structure and genome selection on a microgeographic 481 

scale for one of the fastest evolving arbovirus vectors worldwide. We also pinpoint to further 482 

candidate genes involved in neuronal functions as targets of genetic manipulation and neurogenetic 483 

approaches recently developed for mosquitoes (58,89–92). 484 

 485 

 486 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.13.532092doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.13.532092
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Methods 487 

Mosquito samples 488 

We studied the whole genome sequence of 694 Aedes spp. mosquitoes. This sample size included 489 

previously published WGS data of Ae. aegypti, Ae. mascarensis and Aedes albopictus (6,10,47,93) 490 

and WGS data of 97 Aedes spp. mosquitoes that we processed from Burkina Faso, Ethiopia, Brazil, 491 

Saudi Arabia, Russia, Cameroon and New Caledonia. With the exception of New Caledonia from 492 

where we received eggs through the ‘Infravec2’ project (https://infravec2.eu/), from all other sites 493 

we received adult mosquitoes preserved in ethanol 70%; these mosquitoes had been sampled either 494 

as larvae from tires, backhoe buckets and various surrounding larval habitats or as adults through 495 

‘BG-sentinel’ traps. Mosquitoes from Cameroon are from a colony established from eggs collected 496 

in Bénoué; females were sampled at the 12th generation after colony establishment. Genomic DNA 497 

was extracted from individual mosquitoes using the Wizard Genomic DNA Purification Kit, 498 

according to the manufacturer’s protocol, at the University of Pavia for all specimens, apart from 499 

mosquitoes from Brazil, which were processed in loco. Genomic DNA was sent to Macrogen for 500 

individual DNA library preparation with TruSeq DNA PCR-free reagents and sequencing to a 501 

minimum of 20X coverage (24X on average) in paired-end 150 bp reads with the Illumina HiSeq 502 

X Ten platform. FASTQ files of all WGS datasets were subjected to quality control by using 503 

FASTQC v0.11.9 (94). Sequencing data were deposited to the NCBI SRA under the accession 504 

BioProject ID: PRJNA943178. 505 

 506 

Alignment to the reference genomes  507 

Raw reads of each of the 694 WGS datasets were trimmed using Trimmomatic v0.39 (95), then the 508 

21 Ae. albopictus WGS data were aligned to the Ae. albopictus Foshan FPA genome assembly (96), 509 

the remaining WGS data were aligned to the current Ae. aegypti reference genome assembly, 510 

AaegL5 (32); both assemblies were downloaded from VectorBase (https://vectorbase.org/). The 511 

BWA MEM algorithm v0.7.17.r1188 was used for all alignments (97). For each sample, genome 512 

mapping statistics were calculated with Qualimap v2.0 (98) and alignment quality statistics were 513 
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obtained with bamtools (99). For WGS data mapped to the Ae. aegypti genome, gene coverage was 514 

calculated for the 14,677 genes reported in AaegL5 with the program mosdepth v0.2.9 (100). For a 515 

total of 35 samples, less than 50% of the reads aligned to AagL5. To clarify this result, we 516 

reconstructed the sequences of the ribosomal Internal Transcribed Spacer 1 and 2 (ITS1 and ITS2) 517 

of these 35 sampled by using the LT_finder script of the ViR pipeline (49) and the 5.8S rRNA 518 

sequence of Ae. aegypti (accession M95126, region coordinates 574-755 in AagL5) as reference. 519 

The reconstructed ITS1-ITS2 sequences were then blasted, with blastn, against the ‘nt database’ of 520 

NCBI with default parameters through the BLAST webserver (https://blast.ncbi.nlm.nih.gov/) to 521 

confirm species identity. All samples from Russia and Ethiopia showed the highest identity to ITS 522 

sequences of Ae. albopictus (identity>97.24%, 100% query coverage, and E-value of 0) or Ae. 523 

simpsoni (identity>97.66%, 100% query coverage, and E-value of 0), respectively. WGS data from 524 

9 additional mosquitoes had low (≤2 reads) and/or partial coverage (≤45%) to AaegL5, but their 525 

ITS1-ITS2 reconstructed sequence did not yield results when searched against the ‘nt database’ of 526 

NCBI, suggesting either uncharacterized species or sequencing quality issues. To avoid biases in 527 

the analysis, these WGS datasets were excluded resulting in final dataset of 634 mosquito genomes 528 

from 39 populations, for which ≥96% of reads mapped to AagL5. In these WGS samples, 95% of 529 

the 14,677 Ae. aegypti genes were covered with ≥5 reads; the remaining 5% of genes, which were 530 

covered with ≤4 reads, mapped in contigs that have not been assigned to any chromosome yet.  531 

 532 

Females were identified among these 634 mosquitoes by the complete absence of coverage on Nix 533 

(AAEL022912); males are expected to have coverage over the protein coding region of Nix (≥1 534 

read) (101), which was estimated with Samtools v1.4 (102). In presence of coverage over Nix, we 535 

also verified coverage of the myo-sex gene (AAEL021838) to further support the sex association to 536 

males. To verify amplification of the Nix gene from sperms stored in female spermathecae, we 537 

sampled males, virgin females and females collected after copulation. DNA of each of these 538 

samples was extracted with the Wizard Genomic DNA Purification Kit (Promega) following 539 
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manufacturer recommendation. DNA was amplified with a nested PCR using in the first PCR 540 

primers Nix_aeg_PCR-F: 5’-ACGGAAGAGCGAATTGCACA and Nix_aeg_PCR-R: 5’-541 

GTCAAACCGTCTGAGCGTCT and in the second reaction primers Nix_aeg_nPCR-F: 5’-542 

AGCGTGCTTCAGAATAATTACGG and Nix_aeg_nPCR-R: 5’-543 

GTTTTGATGCGGTGAGTGCC. PCR reactions were assembled using the DreamTaq Green PCR 544 

Master Mix (Thermo Scientific) following manufacturer’s instructions. 1 uL of DNA extract was 545 

added to reach a final volume of 25 uL. PCR reactions were performed in a thermal cycler 546 

(Eppendorf™ Mastercycler Nexus Gradient) with, after an initial denaturation for 3 minutes, 35 547 

cycles at 95°C for 30 s, 52.4°C or 53.3°C for 30 s for the first or second PCR, respectively, and an 548 

extension of 25 s at 72°C, followed by a final extension for 10 minutes at 72°C. PCR products were 549 

visualized using a Bio-Rad Gel Doc TM EZ Imager following electrophoresis  in a 2% (w/v) 550 

agarose gel. 551 

 552 

Recalibration of alignments and variant discovery 553 

The 634 WGS data mapped to the Ae. aegypti genome (AagL5 assembly) were further processed 554 

following the best practices recommendations from the Genome Analysis Toolkit (GATK) 555 

(103,104). First, the program Picard v2.23.0 (Broad Institute, 2019; 556 

https://broadinstitute.github.io/picard/) was used to sort aligned reads and mask optical duplicates. 557 

Then, local realignments were performed with the GATK package v3.81.08 (105) over regions 558 

mainly characterized by indels (insertions and deletions) and read mate coordinates of realigned 559 

reads were recalculated with the Picard program. Finally, the Base Quality Score Recalibration 560 

(BQSR) was calculated for each alignment with the GATK package. To improve alignment during 561 

the recalibration step, we provided to GATK a set of known indels and Single Nucleotide 562 

Polymorphisms (SNPs). This set of variants was built with two different approaches: 1) known 563 

SNPs from literature and 2) de novo SNPs estimates for our sequenced mosquitoes through 564 

bioinformatic analyses. Both procedures are described next.  565 
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 566 

SNPs collected from literature 567 

An initial collection of 485,431 SNPs was obtained in a variant calling format (vcf) file from nine 568 

published studies (23,106–113). From this collection, 112,969 SNPs (23.27%) have experimental 569 

support such as high-throughput genotyping chip ‘Axiom_aegypti1’ (106–110), while the remaining 570 

372,462 SNPs (76.73%) were estimated only through bioinformatic analyses  (23,111–113). The 571 

genomic coordinates of all nine SNPs datasets were re-mapped from the Ae. aegypti assembly 572 

AaegL3 to the AaegL5 version through the lift over strategy by the VectorBase website. A SNP 573 

dataset originated from exome analysis (13) was also added to our study. For this dataset, we 574 

performed a local lift over with the Flo pipeline to re-map all genomic coordinates from the AaegL1 575 

to the AaegL5 assembly (114). We used the UCSC chain files (113), the gnometools package (114), 576 

and the pblat-cluster v36x2 (117,118) to accelerate the sequence search mapping across genome 577 

assembly versions. Finally, we used Crossmap (119) to perform the genomic conversion of 578 

coordinates for the set of known SNPs over AaegL5. Overall, after merging sites and removing 579 

overlapped redundant variants, from these 10 SNP datasets a total of 304,428 SNPs were mapped 580 

across 10,185 Ae. aegypti genes and 278 contigs annotated in AaegL5. 581 

 582 

De novo SNP discovery 583 

Two variant callers, GATK v3.8.1.0 (105) and Freebayes v1.3.1 584 

(https://github.com/freebayes/freebayes)  were applied to identify SNPs from each of the 634 WGS 585 

samples mapped to AagL5 to improve SNP prediction because both variant calling tools have a 586 

high false discovery rate (FDR) when compared to a true set of known SNPs (120–122) and both 587 

tools are known for scoring best at one, rather than in all, quality parameter measurements (120,123). 588 

We further implemented a strict filtering protocol for each set of identified variants to complement 589 

the power prediction of both variant calling tools and increase specificity and sensitivity. First, 590 

variant caller predictions were performed with GATK and Freebayes for each sample, separately. 591 
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Then, raw SNPs and indels calculated from Freebayes were extracted and filtered with: 1) a 592 

minimum deep coverage of 5 reads (DP≥5); 2) a minimum mapping quality of 20 (MQ≥20); 3) a 593 

minimum base quality of 20 (QUAL≥20) and 4) a minimum allele frequency ≥ 1% (maf≥0.01), as 594 

calculated with BCFtools (102). Filtering of the GATK called variants was implemented with the 595 

GATK protocol for SNPS: QUAL < 30.0, QD (QualByDepth)  < 2.0, FS  (FisherStrand) > 60.0, MQ 596 

(RMSMappingQuality)  < 40.0, SOR (StrandOddsRatio)  > 3.0, MQRankSum  597 

(MappingQualityRankSumTest) < -12.5, ReadPosRankSum < -8.0; for INDELs: QUAL < 30.0, 598 

QD < 2.0, FS > 200.0, ReadPosRankSum < -20.0). All SNPs with a close proximity of 10 base pairs 599 

to an indel and with a strong strand bias (p<0.001) were removed with BCFtools. Finally, we 600 

merged all sites and removed all overlapped redundant variants from the known and de novo 601 

approaches, which generated a final high-quality collection of 82,686,298 indels and 207,724,254 602 

SNPs that we used in the recalibration step, as described above.  603 

 604 

A refined variant caller prediction was performed only with the GATK protocol for all recalibrated 605 

alignments in each of the 39 populations, separately. Raw SNPs and indels were extracted and 606 

filtered with the same filtering parameters using GATK, as described previously. After this last 607 

filtering process, a total of 314,365,358 SNPs were obtained as the core dataset of our analyses, 608 

while indels were not considered in further analyses.  609 

 610 

Pairwise relatedness of individuals in Ae. aegypti populations 611 

We evaluated the degree of relatedness among the 634 individuals within each of the 39 populations 612 

and removed closely related individuals (i.e., full siblings) to avoid any bias. To this end, we first 613 

removed all SNPs detected over repetitive regions of the Ae. aegypti genome by using the genomic 614 

coordinates reported by (32); and then we extracted all biallelic SNPs present in at least 90% of 615 

individuals within each population. Next, highly linked loci were eliminated using the function 616 

snpgdsLDpruning (ld.threshold=0.01) of the SNPRelated R package (124), and the corresponding 617 
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matrix of ‘relatedness coefficients’ (k) was generated with the Identity-by-Descent (IBD) 618 

measurement based on maximum likelihood estimation (MLE) by using the function 619 

snpgdsIBDMLE included in the same R package. Highly genetically related individuals were 620 

classified and filtered in each population using two conservative cutoffs for African and out-of-621 

Africa populations, as previously suggested by (6): first cousin and closer relationships (k≤0.05) 622 

for African populations and siblings (k≤0.20) for out-of-Africa populations. We repeated this 623 

analysis by using a dataset of 1,000,000 randomly sampled SNPs across the whole genome per 624 

population, and manually compared both approaches by identifying the individuals, as well as the 625 

total number of individuals to be removed. Through this process, we removed 95 individuals, 626 

leaving a dataset of 539 individuals. Among these 95 related individuals, 15 corresponded to the 627 

previously called ‘domesticated’ mosquitoes of the Rabai population (6). To confirm the relatedness 628 

groups estimated with our protocol, an analysis on the covariance of genotypes was performed with 629 

the pca function of the plink v2.0 package. Based on this analysis, all domestic individuals from 630 

Rabai were reintroduced to our dataset, resulting in final set of 554 Ae. aegypti genomes for further 631 

analyses. 632 

 633 

Distribution of SNPs and genetic diversity along the Ae. aegypti genome 634 

Unless otherwise stated for all further analyses, we used Ae. aegypti genomic coordinates as 635 

reported in AaegL5 (32). We mapped the entire set of 314,365,358 filtered biallelic and multiallelic 636 

Ae. aegypti SNPs to compare the distribution of SNPs across each centromeric region and 637 

chromosome arms (1q, 1p, 2q, 2p, 3q, 3p) and used a paired t-test to find significant difference 638 

between and among chromosome arms in African and out-of-Africa populations. We further 639 

estimated the total number of SNPs counts in chromosomes (hereafter ‘chromosomal SNPs’) or 640 

contigs (hereafter ‘unassigned SNPs’), and, in each of these regions, we counted SNPs in exons, 641 

protein coding regions (CoDing Sequences, CDS) and untranslated (5’- UTR and 3’-UTR) regions 642 

and further split SNPs based on whether they occurred in repetitive (R-SNPs) or non-repetitive 643 
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regions (NR-SNPs) by using the  function SelectVariants, options intervals/excludeIntervals, in  644 

GATK. R-SNPs counts are listed for Transposable Elements (TE), low complexity sequences and 645 

unclassified repeats. 646 

 647 

Focusing on NR-SNPs, we measured genetic variance in terms of SNP density, genetic diversity 648 

(π) and Tajima’s D using the VCFtools package (125). A genome-wide scan with different non-649 

overlapping sliding windows (10kb, 50 kb, 100 kb, 250 kb, and 500 kb) was performed to calculate 650 

both basic statistical descriptors for genetic variation. Finally, we identified the presence of ‘SNP 651 

singletons’ (i.e., a SNP present in one single individual of a population) with the VCFtools package 652 

(options singletons and positions) and estimated their counts and distribution across populations 653 

using a custom R script. 654 

 655 

Population Genetics Analyses 656 

Chromosomal biallelic SNPs that were found in at least 80% of all individuals were extracted and 657 

further filtered out using plink v2.0, to avoid sampling genotyping errors (126), if highly linked 658 

(option indep-pairwise: window size=50, step size=10, and R2=0.1), having a MAF<0.01 or 659 

showing a significant deviation from Hardy-Weinberg equilibrium (HWE) (p<0.001). This 660 

procedure led to a total of 1,530,512 SNPs that were used to assess the genetic relationships across 661 

populations using the pca function of the plink v2.0 package, for admixture analysis using the 662 

ADMIXTURE software v1.3.0 (127), and to estimate FST population scores using VCFtools (125). 663 

As described in (128), we ran ADMIXTURE on all individuals and varied the number of genetic 664 

clusters (K) from 1 to 39 to identity the number of clusters that minimizes the cross-validation error. 665 

We performed the PCA and admixture analyses on different genomic scales (i.e., WG, R, NR and 666 

exon regions) to test for differences in the distribution of genetic variation across the mosquito 667 

genome that might potentially induce distinct effects on the populations structure. For exon regions, 668 

1,000 bootstrap replicates for every dataset with a cluster (k) value from 2 to 39 were carried out to 669 
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further support the identification of the optimal cluster number. A matrix of all-vs-all pairwise 670 

comparisons of the FST population scores was built using VCFtools and a custom PERL script to 671 

estimate the genetic divergence across populations. All populations were then grouped according 672 

to a complete hierarchical clustering by using an euclidean distance and 1,000 bootstrap replicates 673 

with the pvclust R package (129). 674 

 675 

We further investigated the phylogenetic relationships among the 554 Ae. aegypti genomes by 676 

building a ML phylogenetic tree with all SNPs from exons of protein-coding genes that were present 677 

in 100% of individuals across all populations (named here as “core-exome SNPs); we define this 678 

phylogeny as “tree of individuals”. This set of SNPs was transformed into a phylip format with the 679 

vcf2phylip program (https://github.com/edgardomortiz/vcf2phylip/blob/master/vcf2phylip.py) and 680 

the corresponding phylogeny was reconstructed with a GTR+CAT substitution model (-m 681 

ASC_GTRCAT) that includes an ascertainment bias correction for SNPs (ass-corr=lewis); the 682 

statistical robustness of the phylogeny was assessed with 1,000 bootstrap replicates using RaxML 683 

v8.2.12 . Using the same set of SNPs, we also derived a ML phylogenetic tree based on SNP 684 

frequencies estimated within each population; we define this phylogeny as “population tree”. This 685 

tree was built with the TreeMix program after 1,000 bootstrap resampling of the dataset (33). For 686 

both phylogenetic trees, Ae. albopictus was used as an outgroup. The F3 statistics implemented in 687 

the TreeMix program (program threepop), which measures the covariance of the differences in 688 

allele frequencies among three populations, was used to test the genetic admixture of THI and NGY 689 

populations with respect to out-of-Africa populations. The association test of these populations is 690 

depicted in a tree topology of the type (A,B;C), where C is either THI or NGY, and A and B 691 

represent all possible combinations of the out-of-Africa populations. Genetic admixture was 692 

established based on z-scores as a test statistic and a conservative threshold (z-score≤-3.0). 693 

Similarly, we performed the same type of analysis to all-vs-all African populations, particularly 694 
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focused in recent populations that have shown human seeking behavior THI, NGY, OGD, KUM 695 

(6,130). 696 

 697 

Outlier analysis and local adaptation in populations of Ae. aegypti 698 

We screened for SNPs showing unusual patterns of genetic variation along the Ae. aegypti genome, 699 

with the hypothesis that they contribute to the genetic differentiation among populations. To this 700 

end, we used the “outlier method” implemented in the PCAdapt R package v4.3.3 (35), which 701 

calculates a PCA from SNP data to search for loci that are atypically related to the population 702 

structure by decomposing the ‘total’ genetic variation into ‘axes’ of genetic variation (K) called 703 

“principal components” (PCs). PCAdapt further calculates the correlations between SNPs and a 704 

specific number (K) of retained PCs, so that SNPs showing an excessive relation with the population 705 

structure are defined as outliers and suggested to be candidates for local adaptation. We performed 706 

this analysis using the 1,530,512 biallelic chromosomal SNPs that were detected in at least 80% of 707 

individuals across all populations; this analysis was performed separately for each chromosome. 708 

Importantly, we did not impose any population clustering, but estimated the ‘optimal K axis’ 709 

running PCAdapt with an excess of  K=20 and assigning the ‘optimal K’ based on three different 710 

approaches: 1) the Cattell’s rule, which keeps PCs that correspond to eigenvalues to the left of the 711 

lower straight line in the screeplot (131); 2) the Tracy-Widow test (p-value<0.05), which was applied 712 

to the eigenvalues by using the program twstats from the EIGENSOFT v 8.0.0 (34,132); and 3) a 713 

pairwise comparison of PCs. This analysis led to the optimal K of 6. SNPs significantly correlated 714 

to these 6 PCs were identified through the Mahalanobis distance method as implemented in 715 

PCAdapt R (35) and the false discovery rate (FDR) of the p-values was calculated using the qvalue 716 

R package v2.18.0 (133). Outlier SNPs were extracted with the get.pc function of PCAdapt with an 717 

expected 5% of false positives (FDR, α=0.05), and their potential structural and/or functional effect 718 

was established implementing three tools: the SnpEff v4.3t program (131), the VariantAnnotation R 719 
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package (135), and the ‘annotate’ function from bcftools using an in-house R script from a 720 

customized AaegL5 genome annotation file (see below).   721 

 722 

To have an unbiased estimate of local adaptation, we established a statistical framework to associate 723 

the PC-specific outliers to a population. Briefly, we used the PC scores generated for each mosquito 724 

from the covariance matrix of the PCA, and then analyzed their distribution across populations on 725 

each of the 6 PCs, separately, as implemented in previous studies (136,137). A PC score represents 726 

not only the PCA projections of a single genome, but also an independent measure of variation in 727 

the form of values that are different from zero. We used these PC scores to identify members of a 728 

population with patterns of high variance to support their local genetic differentiation. We defined 729 

a population to be locally differentiated when the distribution of the PC scores significantly departs 730 

from zero. This significance was tested by evaluating whether PC scores from a population are 731 

significantly different from zero on the corresponding PC (one sample t-test, m=0), and also if they 732 

are significantly different from other populations (pairwise t-test). Final candidates were obtained 733 

after manually comparing those populations with significant PC scores. To support estimates of 734 

local genetic adaptation, we used two additional parameters of genetic diversity: FST and Tajima’s 735 

D, which were calculated using VCFTools. The FST value of each outlier SNP was used as a 736 

measurement of the “intensity” of genetic differentiation and Tajima’s D was estimated in genes 737 

with outlier SNPs to identify whether such genetic variation is different from neutrality (-0.5 < D 738 

<1.0). 739 

 740 

To identify a set of genes that shows a strong signal of genetic differentiation between Aaa and Aaf, 741 

we first identified with a custom PERL program all genes associated with outlier SNPs and 742 

quantified their occurrence across genomic regions and effects (i.e., synonymous and non-743 

synonymous mutations). Next, allele frequencies of all non-synonymous SNPs were obtained for 744 

each gene across all populations. To evaluate significant differences between Aaa and Aaf 745 
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populations in this filtered set of genes, we created 4 groups of populations based on the genetic 746 

diversity and divergence patterns we observed in our data: 1) THI and NGY, 2) RABs and RABd, 747 

3) the rest of African populations, and 4) all out of Africa populations. Despite the genetic 748 

difference between these groups, our null hypothesis is to find genes significantly differentiated 749 

between Aaa and Aaf (Ho), this will be rejected (p>0.05) for cases in which no major differences 750 

can be detected using an ANOVA test. 751 

 752 

A GO enrichment analysis across the three major GO categories (Biological Processes, Molecular 753 

Functions, and Cellular Components) was performed to identify functional groups that were 754 

enriched in this set of genes. Briefly, we used a custom genome database for Ae. aegypti with GO 755 

annotations (in-house org.Aaegypti.eg.db R package, see below) and the clusterProfiler R package 756 

v4.2.2 (138) to calculate the GO enrichment. P-values (p≤0.05) were corrected for multiple tests 757 

using the Benjamini-Hochberg procedure, and redundancy of enriched GO terms on each major 758 

GO classification was removed with the function simplify, both implemented in clusterProfiler (135). 759 

The custom org.Aaegypti.eg.db R package was built based on a collection of GO annotations 760 

retrieved from VectorBase version 59 (139) and a bioinformatic approach using BLAST (NCBI 761 

Diptera non-redundant (nr) database v5) and InterProScan v5 (140) scanning different protein 762 

domain databases: Pfam v33.1 (141), ProSiteProfiles v20.2 (142), SUPERFMILY v2.0 (143), and 763 

TIGRFAM v15.0 (144). Outlier SNPs were also mapped against a target set of 1132 genes, including 764 

198 detoxification genes, 198 chemosensory genes (OR, IR and GR receptors), 391 immunity 765 

genes, 292 proteases, and 53 genes associated to multiple functions  (32,64,65). 766 

 767 

Assessing Ka/Ks ratio 768 

We estimated the ratio of non-synonymous (Ka) to synonymous (Ks) substitutions (also known as 769 

dN/dS ratio) across 13,503 of the 14,677 Ae. aegypti protein coding genes, and identified genes as 770 

evolving neutrally or nearly neutral with a conservative threshold of 0.95≥Ka/Ks≤1.05, or under 771 
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negative selection when Ka/Ks<0.95 (and 0.80≥Ka/Ks<0.95 for weak negative selection), or under 772 

positive selection when Ka/Ks>1.05 (and 1.05>Ka/Ks≤1.2 for weak positive selection) (57). A total 773 

of 1,174 genes were not analyzed due to either the absence of SNPs and/or the presence of multiples 774 

indels affecting the positions of codons. To do this, we first extracted codons associated to SNPs 775 

and classified into non-degenerate (L0) sites, 2-fold (L2) degenerated sites, and 4-fold (L4) 776 

degenerated sites. Next, transition (Ts) and transversion (Tv) changes were identified for each 777 

codon by comparing the alternative and reference alleles and obtaining the number of Ts at L0 (A0), 778 

L2 (A2), and L4 (A2) degenerated sites, as well as the number of Tv at L0 (B0), L2 (B2), and L4 779 

(B2) degenerated sites. The rates of Ka and Ks site substitution were calculated using the improved 780 

Kimura-2 parameters (K2P) Li’s method (145,146). 781 

 782 

We also estimated the ratio of Ka/Ks by gene in each population using the PAML package v4.10.6 783 

(147). For this analysis, we derived 539,298 gene nucleotide alignments with the vcf2fasta package 784 

(https://github.com/santiagosnchez/vcf2fasta) from protein coding genes with at least 1 SNP in each 785 

population. Then, each alignment was translated into amino acids sequences with transeq from the 786 

EMBOSS package v6.6.0.0 (148), and their corresponding codon alignments were created with the 787 

pal2nal.pl program v14 (149). A total of 162 protein coding genes were removed from this analysis 788 

due to the presence of multiples indels affecting the positions of codons, resulting in a final dataset 789 

of 539,136 codon alignments. A ML phylogenetic tree was reconstructed for each codon alignment 790 

with FastTree v2.1 (150) and the GTR+GAMMA model. The one-ratio model (M0) was used to 791 

calculate the ka/ks ratio average for the whole gene over all branches in the phylogeny with the 792 

codeml program from the PAML package (147). The Ka/Ks ratio of a gene was the average Ka/Ks 793 

ratios calculated within the gene. PAML detected 2.5-fold times more sites under selection than the 794 

improved K2P Li’s method. However, ~37% of the Ka/Ks ratios detected with PAML exhibit 795 

standard deviations >10, suggesting either a high divergence among individuals within a population 796 

or an overestimation of the Ka/Ks ratio per gene. The latter is more probable because the PAML-797 
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based Ka/Ks ratio method ignores SNPs segregating within a population and transient SNPs within 798 

divergent populations (151–153). Based on these results, we further analyzed and discussed only the 799 

Ka/Ks ratios estimated with the improved K2P Li’s method. 800 

 801 

Analysis of Ae. aegypti nrEVEs 802 

The frequency of each of the 252 nrEVEs annotated in AaegL5 was established in each of the 803 

analyzed populations using the SVD pipeline (46,48,154). The same procedure was used to verify the 804 

occurrence of Ae. aegypti nrEVEs in 4 WGS dataset from Ae. mascarensis (10).  805 

The Vy-PER (155 and ViR (48) pipelines were used to search for novel viral integrations using a 806 

viral database assembled in October 2020, which encompasses a total of 1778 taxids and 3677 807 

nucleotide sequences of both DNA and RNA viruses. To build the viral database, viral taxids were 808 

extracted from NCBI virus (https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/) according to three 809 

different criteria: (i) main known arboviral genera; (ii) ISVs identified from a search of NCBI 810 

PubMed publications between 2015 and 2020 using the keyword 'insect specific viruses'; (iii) 811 

viruses having Diptera as host. Nucleotide sequences for the accessions corresponding to the 812 

selected taxids were retrieved using the NCBI E-utility tool. After removing duplicates, sequences 813 

were clustered at 97% identity using CD-HIT (156). Sequences were BLAST searched against a 814 

database of conserved eukaryotic and bacterial ribosomal sequences developed for SortmeRNA 815 

(157) and of Diptera ribosomal sequences extracted from (158). Entire sequences or parts of 816 

sequences matching ribosomal DNA were removed or masked, respectively. Homopolymers and 817 

repeats were identified using a custom script and masked with Ns.  The presence of novel nrEVEs 818 

was further tested in all WGS data used for SNP discovery using the ViR_LTFinder script (48) to 819 

confirm their widespread distribution in African vs out-of-Africa samples. A subset of 26 out of the 820 

64 novel nrEVEs were molecularly validated by PCR and Sanger sequencing in the mosquito DNA 821 

samples that had been used for WGS using primers designed on the bioinformatic predictions 822 

generated by ViR. PCRs were performed in 50 mL of volume containing 25 mL of 2X DreamTaq 823 
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Green PCR Master Mix (ThermoFisher), 2.5 mL of 10 mM forward and reverse primers, 1 mL of 824 

DNA diluted 1:10 and sterile water to volume. Reactions without template served as negative 825 

controls. PCR products were visualized through electrophoresis on 2% agarose gels stained with 826 

ethidium bromide. Since multiple bands were often observed, bands of expected size were cut from 827 

the gels and purified using the GeneJET PCR Purification Kit (Thermo Scientific), following the 828 

manufacturer’s protocol. Purified PCR products were sent for Sanger sequencing to Macrogen 829 

Europe (Netherlands) to confirm nrEVE sequence. 830 

This version of the Manuscript has not supplementary material. 831 
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 1207 

Figure legends 1208 

 1209 

Fig. 1 Worldwide population structure of African and out-of-Africa samples of Aedes aegypti. 1210 

(A) Map of worldwide collection sites of Aedes aegypti populations used in this study. Sites are 1211 

color-coded by region, indicating the sampled regions and the number of their position according 1212 

to Table 1. (B) A Principal Component Analyses (PCA) generated with a panel of 1.5 million of 1213 

non-redundant and biallelic SNPs from the initial dataset of 634 samples. Each dot represents an 1214 

individual being color-coded by country (filled circles) and continent (different symbols). Samples 1215 

from RAB (Kenya) are distinguished as RABd (black solid outlined circles) and RABs (black 1216 

dotted outlined circles), whereas samples from NGY (Senegal) are divided by showing a strong 1217 

affinity to Out-of-Africa (blue solid outlined circles) or Western African populations (blue dotted 1218 

outlined circles). (C) ADMIXTURE analyses of population structure for all sampled populations 1219 

with k=13. On the Y-axis, each vertical bar represents the probability (Q-values from 0 to 1) of 1220 

assignment of a single individual to each genetic cluster, and each population is separated by a 1221 

vertical white line and colored according to the legend at the bottom. Individuals with mixed 1222 

ancestry are denoted by bars with different colors. On the X-axis, country names and numbers are 1223 

reported according to the abbreviation described in Table 1. African populations were ordered based 1224 

on their geographical location (Western, Central, and Eastern), and Out of Africa by their 1225 

corresponding continent. Based on their primary ancestry assignments, African populations are 1226 

grouped in four genetic clusters: Western (THI and NGY, cluster 2), Western-Central (cluster 5), 1227 

Central (cluster 3), and Eastern (cluster 4) Africa. 1228 

 1229 
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Fig. 2. Evolutionary relationships among 554 Ae. aegypti genomes from 39 worldwide 1230 

populations. (A) A maximum likelihood (ML) tree for individuals including 554 mosquitoes, after 1231 

1,000 bootstraps resampling of the dataset. RABd is colored in purple and bold font. THI and NGY 1232 

mosquitoes are colored in black and bold font. Bootstraps support for each relationship, as well as 1233 

the geographical region of sampling for each individual, are color-coded accordingly to their 1234 

symbology. Filled black circles at the base of each individual name are denoting Africa individuals, 1235 

while open dark circles represent out-of-Africa mosquitoes. (B) Divergence among populations 1236 

based on weighted Fst-based genetic distances, according to the Weir and Cockerham approach. 1237 

The heatmap is showing a complete hierarchical clustering of Fst values from pairwise comparisons 1238 

across all populations, by using a euclidean distance and 1,000 bootstrap replicates. On both axes, 1239 

population names are shown according to the abbreviation listed on Table 1, with populations 1240 

clustered and colored by country (Y-axis) and geographical region (X-axis). The diagonal in the 1241 

matrix represents the comparison with the same population (zero difference, in black), while the 1242 

degree of divergence for each comparison is shown according to the color symbology at the right 1243 

bottom. (C) A ML tree for populations reconstructed using the same SNPs dataset of tree of 1244 

individuals but estimating SNPs allele frequencies after 1,000 bootstraps resampling of the dataset. 1245 

Ae. albopictus was used in both ML-trees as an outgroup, and branch lengths in both ML-tress are 1246 

proportional to the amount of genetic divergence that has occurred. 1247 

 1248 

 1249 

Fig. 3. Genomic signatures of local adaptation. (A) Distribution of the PC scores estimated from 1250 

outlier SNPs across the three chromosomes of Ae. aegypti. On each chromosome panel, the PC 1251 

scores for each population (on the X-axis) are shown for PC1, PC2, and PC3 (on the Y-axis). Each 1252 

PC highlights different genomic variants associated to local adaptation in Aaa populations relative 1253 

to their Aaf counterparts. Each boxplot depicts the variation of the data in a population, indicating 1254 

the first quantile, mean, third quantile, and the lower and upper whiskers as minimum and maximum 1255 
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variation of the data population, respectively. PC scores equal to zero are denoted with a horizontal 1256 

dotted red line. Population names are reported according to their abbreviation in Table 1. (B) 1257 

Distribution of 2,266 protein-coding genes across the Ae. aegypti genome that are harboring at least 1258 

one of the genomic variants detected in (A). The 2,266 genes estimated as locally adapted were 1259 

plotted for each PC and panel chromosome (1 in left; 2 in central; 3 in right). Chromosomes are 1260 

depicted as horizontal bars, with locally adapted genes denoted as vertical lines, the frequency of 1261 

outlier SNPs that each gene harbor is represented by a color gradient according to the symbology. 1262 

Approximate genomic positions for each chromosome are shown at the bottom.  1263 

 1264 

 1265 

Fig. 4. Molecular markers differentiating Aaa and Aaf mosquitoes. Box plots depicting the 1266 

alleles frequencies (on the Y-axis) of nonsynonymous mutations depicted as resulting amino acid 1267 

change (on X-axis) within selected “Aaa molecular signature” genes. Populations are divided and 1268 

color-coded in four groups, one for all out-of-Africa mosquitoes and three groups for African 1269 

mosquitoes: Western Senegal (THI-NGY), RABd, Africa (others). (A) Examples of genes with 1270 

known function in chemosensation (Or91, Or86, Ir41, Ir7g, Ir8, Gr9) and immunity (Toll5A, 1271 

GNBPA2; CLIP12, CLIP8) are shown in separate panels. (B) Examples of genes with unknown 1272 

functions (AAEL025393, AAEL001559, AAEL020878, AAEL022804, AAEL022666, 1273 

AAEL019451, AAEL012825, AAEL012783, AAEL012268, AAEL010998, AAEL008698). The 1274 

red dotted line shows the middle value (0.50) of the allele frequency in which all values are 1275 

distributed.  1276 

 1277 

 1278 

Fig. 5. Identification of protein-coding selection and “Aaa molecular signature” from >13,500 1279 

genes in Ae. aegypti. The heatmaps in the top panels show the clustering of genes under positive 1280 

(A) or negative (B) selection in at least one population. Ka/Ks ratio values of A and B were 1281 
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transformed in a binary matrix based on the Ka/Ks thresholds (see below) defining the presence or 1282 

absence of selection acting on genes (on the Y-axis) across Aaf and Aaa populations (on the X-1283 

axis), separately.  (A) When Ka is much greater than Ks (i.e., Ka/Ks >>1) (56), we found 5,242 1284 

genes as evolving under positive selection, i.e., their variants are likely beneficial and being 1285 

promoted. (B) When Ka is much less than Ks (i.e., Ka/Ks << 1) (56), then 12,991 genes were 1286 

estimated as evolving under negative selection, i.e., their variants are likely deleterious and being 1287 

eliminated. (C) The central circle of this polar plot shows the distribution of 419 genes evolving 1288 

under positive selection (in red-color scale) in at least one population as selected from a catalogue 1289 

of 1,132 genes belonging to one of the six major functional categories considered relevant for 1290 

domestication in Ae. aegypti. All 40 populations analyzed, 32 from Africa and 8 from out-of-Africa, 1291 

are located over the Y-axis, while the 419 genes are located over the X-axis. The outer circle shows 1292 

the cumulative frequency (in bars) of each gene selected positively across the 40 populations, 1293 

according to the functional category it belongs to as in the legend. 1294 

 1295 

 1296 

 1297 
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Table 1. (should be added to page 5, line 121) 1299 

 List of the Aedes aegypti populations analyzed, including the number of sequenced genomes (Nr. 1300 

samples), the total number of SNPs identified (Nr. SNPs), the percentage of variation across the 1301 

genome and the number of singletons. 1302 

 1303 

 1304 
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