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Abstract

Personalized immunotherapy holds the promise of revolutionizing cancer prevention and

treatment. However, selecting HLA-bound peptide targets that are specific to patient tumors has

been challenging due to alack of patient-specific antigen presentation models. Here, we present

epiNB, awhite-box, positive-example-only, semi-supervised method based on Naive Bayes

formulation, with information content-based feature selection, to achieve accurate modeling using
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Mass Spectrometry data eluted from mono-allelic cell lines and patient-derived cell lines. In
addition to achieving state-of-the-art accuracy, epiNB yields novel insights into the structural
properties, such as interactions of peptide positions, that appear important for modeling
personalized, tumor-specific antigen presentation. epiNB uses substantially |ess parameters than
neural networks, does not require hyperparameter tweaking and can efficiently train and run on
our web portal (https://epinbweb.streamlit.app/) or a regular PC/laptop, making it easily
applicable in translational settings.

Introduction

After decades of devel opment, immunotherapy is now at the frontier of cancer therapy and has
been demonstrated to be beneficial to clinical outcomes in many cancer types [1-8]. The capacity
to redirect T-cells against tumors has raised alarge degree of interest in identifying patient-
specific peptides that can be targeted therapeutically. Human leukocyte antigen (HLA) molecules
are cell surface proteins that present peptides derived from intracellular proteinsto T cells,
triggering immune recognition and activation. HLA Class | (HLA-1) molecules present peptides
to CD8+ cytotoxic T cells, which can redirect their killing activity towards tumor cells through
recognition of specific tumor-associated HLA-I/peptide complexes. HLA-I molecules typically
bind and present peptides with alength range of 8 to 13 amino acids, and collectively display
thousands of peptides (the “immunopeptidome”) that represent a snapshot of the current
trandated cellular proteome (i.e., the callection of all proteinsin the cell). HLA binder prediction
isimportant in broad areas, such as cancer vaccine designs [1], adopted cell therapy [2], vird
infection [3], autoimmune diseases [4], and organ transplantation [5]. Identifying relevant tumor-
specific peptide targets in individual cancer patientsis a challenging problem, due to significant
genetic, epigenetic and immunological heterogeneity across individual patients, and across

celllular populations within each patient.

Advances in next-generation sequencing now alow for typing of personalized HLA haplotypes
and for detection of somatic mutations, thus enabling prediction of personalized tumor-specific
antigens (TSAs) for usein personalized immunotherapy. Despite the application of large neural
networks such as NetMHCpan, predicting TSAs from genomic mutations remain challenging for
cancer patients carrying rare HLA alleles, or having altered antigen processing and presentation
processes. In comparison, Mass spectrometry (M S)-based profiling of tumor-derived, eluted
peptides alows directly observation of personalized immunopeptidome [6]. However, the MS-

based assays usually yield only hundreds to thousands of peptides, a small subset of presented
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peptides, making it difficult to directly detect TSAS, or train machine-learning-based models.
Thus, the field urgently calls for new methods that can make accurate predictions based on small

size data.

The classical immunopeptidome consists of peptides collectively presented by up to six aleles
per patient (i.e., two aleles each of HLA-A, -B, and -C). Peptide-HLA complexesfrom cells are
experimentally captured by monaoclonal antibodies (mAbs) to be sequenced. Because allele-
specific mAbs are relativley rare, most immunopeptidome studies utilize the pan-HLA-ABC-
specific mAb W6/32, which will immunoprecipitate all HLA-I/peptide complexes and thus
provide a mixture of peptides eluted from all 6 alleles. To train allele-specific model, the peptide
pool must be accurately deconvolved [7], which in itself a challenge when the correspondence of
peptides and the aleles are not precisely known [8]. A recent study analyzed peptides eluted from
monoallelic cell lines expressing 95 individual HLA-I aleles, providing an invaluable dataset of
pure, allele-specific peptides, leading to significantly improved training and performance of
HLA-I/peptide binding prediction algorithms[6].

Cancer cells can evade immune surveillance by interfering with the antigen processing and
presentation machinery [9]. Known examples include copy number loss of NLRCS5, ageneto
activate the expression of several components of the antigen presentation process, and
overexpression of HSP9O0, which prevent certain proteins from being processed. There defects are
prior to the pHLA binding event and cannot be easily identified using conventional

approaches. Hence, training patient specific models on eluded peptides is a more effective way to

identify druggabl e neoantigens.

In addition, the problem is characterized by alack of negative examples[10], as presented
peptides are relatively rare (<1%) and experimental assays often report just binders. Because most
machine learning models require negative examples (i.e., non-binders) to train, studies predicting
neoantigens generate random, non-specific peptides (either fully random, or stripped from
wildtype protein sequences) as negative examples. In addtion, datasets obtained from real
applications are extremely imbalanced (<1% positives), leading to a stress test for machine

learning techniques.

For antigen presentation, two major classes of methods are widely explored. Allele-specific
methods train models on peptides obtained from binding assay or mass spectrometry, while pan-
HLA methods aim to find links between HLA sequences and binding peptides and extrapol ate

them to understudied HLASs. The former approach frames the problem as a classic classification
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problem, with many kinds of methods being explored, such as expert-system-style scoring
systems, decision trees, and eventually an ensemble of them [11]. Recent studies have shown that
neural networks (NetMHC-4.0 [12] and HLAthena[6]) generally perform well. The pan-allele
methods employ larger models to “translate” between HLA sequences and binding peptides [13—
15]. Existing solutions using deep neural networks require large training set and specia hardware
(GPU), making them less accessible [11,15]. In addition, patient privacy regulations can further
restrict uploading of patient data through the web portals of some methods. Moreover, these
methods tend to model diversity in the binding step but do not account for endogenous processing
and presentation steps (with MHCHurry [13] being an exception), which make them insufficient
for personalized applications.

In this study, we developed epiNB, a Naive-Bayes-based, semi-supervised, positive-example-only
classification method that predicts personalized TSAs from eluded peptide libraries. For feature
selection, epiNB employs an unsupervised, mutual-i nformation-based approach and aweakly
supervised approach, benchmarked against a Siamese network (Figure 1) [16]. It uses a semi-
supervised pseudo-labeling approach to deconvolve eluted peptidesto HLA alleles. Our study
revealed the importance of having both single and pairwise amino acid (AA) featuresin achieving
the specificity. As control, we compared epiNB against avariety of state-of-the-art methods of
unique breakthroughs in data collection and/or modeling on single-allelic and patient-derived data
(Table 1; Briefly summarized in Results). We show that epiNB achieves comparable or
favorable performance, despite of using simpler models. EpiNB is available as a Python package
(https://github.com/K Chen-lab/epiNB) and an online portal (https.//epinbweb.streamlit.app/;

Supplementary Figure 1).
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Figure 1. Overview of the epiNB model

(a) Biological, clinical, and computational challenges in predicting personalized immunotherapy

target peptides.

(b) Clinical applications of MHC-I presented peptide prediction methods.
(c-f) Workflow of EpiNB algorithm, which (c) takes positive data (known presented peptides) and prior
prior distribution of AAs (equivalent to negative data randomly generated from the distribution) as
input and (d) use the frequencies of AAs at each position, as well as combination of positions selected
using their mutual information, to (e) make predictions for candidate neoantigens. The method can be
used to rank candidate neoantigens, make multi-class classification of HLA origin of a peptide (i.e.,
deconvolve eluted peptides from patient), and thus retrained on patient specific data to make
personalized predictions. As a white-box model, the basis of choosing a peptide, i.e., motifs and iMotifs
(interactive motifs) is given, so that clinicians and researchers make more informed judgements.
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Results

A personalized semi-supervised positive-example-only peptide
classification model

The core of epiNB is a Naive Bayes classifier modified for positive-example-only learning
(Figure 1c-e, Methods). In brief, epiNB takes a set of known binders to perform feature selection
on the set using mutual information of a combination of peptide positions (Supplementary
Figure 2a). The binders then serve as the training set to train the model to derive P(feature|—)
for both single positions (referred to as “motifs’)] and interactions of positions (referred to
interactive motifs “iMotifs’). The combinations reflect the intrinsic dependency between two
peptide residues within an HLA-specific peptide population. For most alleles, the anchor residues
(P2 and PO; we number the first 5 amino acids 1, 2, 3, 4, 5, and the last four 7, 8, 9, 0; O isalso
commonly noted as Q) exhibit low dependency on other residues, indicating their dominant roles
in defining the HLA binding (Supplementary Figure 2a). Interestingly, the signal of
combination of P2 and PO is the strongest in pan-allele, supporting the importance of having these
two positionsin determining the HLA binding specificity across alleles. Most machine learning
methods require both positive and negative examplesto learn, and the common practice in this
field isto draw random samples from the prior distribution or human peptidome. However, the
Naive Bayes formulation allows epiNB to directly use the prior distribution of amino acids (AAS)
as P(feature|—) and avoid variances induced by sampling. Using the Bayesian rule, epiNB can
then calculate P(+|peptide). EpiNB includes no hyperparameters to tweak, except for adummy
prior P(+), the unconditional probability of observing a binder, which, however, only serves as a
scaling factor and has no effect on the ordering of candidate peptides (M ethods). The model is
trained on peptides eluted from cell lines that only have one HLA alele (cf. six aleles of HLA-
A/BI/CI[6], which comprehensively assess the whole antigen presentation process, compared with

binding panels, which only consider the binding step (Figure 1a).

The result of epiNB can be used to rank potential binders, and to classify the HLA allele a peptide
belongs to (Figure 1f), both useful in personalized binding peptide prediction, where afew eluted
peptides are made available from the patient but can correspond to any of the six aléees of the
patient. Blindly training a machine learning model on such a problem is usually suboptimal,
because the binders of the six aleles can be vastly different, causing problems for modelsto draw
areliable classification boundary. To this end, we first use the classification utility of epiNB to
assign the peptides to alleles and add the peptides to the training data to refine the model. The
final model can be used to make predictions.
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Although expert systems have |ost ground to machine learning techniques given the booming
amount of data, oncologists and immunologists still hold precious knowledge about peptide
binding. As an open-box model, epiNB can readily tell the motifsit relies on in deriving the

results, which allows practitioners to inspect the rules and make informed decisions.

EpiNB accurately predicts presented peptides of HLA alleles

To benchmark the performance of epiNB and other methods, we constructed alarge-scal e test
using The Immune Epitope Database (IEDB) (Figure 2a) with atotal of 1.7M positive peptides
across 95 HLA aleles. The experimentally verified binders are used as positive examples
(binders) and negative examples (decoys) are generated from the human proteome. Considering
that finding binders from candidate peptides are essentially a needle-in-a-haystack problem, we
set theratio of positive and negative examplesto 1:99. Following the convention of similar
studies [6,13,15], we used both precisions at 40% recall and AUROC as the metric. However, we
strongly recommend the precision at 40%, asit is more indicative of the actual performancein
vaccine design (M ethods and Supplementary Note 1), and iswidely used in recent studies
[6,13].

For comparison (Table 1), we included a variety of state-of-the-art methods of unique
breakthroughs in data collection and/or modeling. Four allele-specific models were included.
Anthem [11] explored ensembl e to optimize the performance of existing data. HL Athena [6]
piloted generating a clean training dataset with cell lineswith asingle HLA allele and used a
neural network model for prediction. MixMHCPred [7] automatically deconvolve unlabeled
peptidome to generate a large training dataset with position weight matrices for prediction.
NetMHC-4.0isaclassic tool that serves as a baseline. We also included two state-of-the-art pan-
alelic models. TransMut [15] explored the application of the transformer model in peptide
binding prediction and provided self-attention scores as away to interpret the results. MHCHurry
[13] deconvolved the process of antigen processing and peptide binding to more accurately model
the process of antigen presentation. In addition to the (1) experimentally verified bindersin IEDB,
in the following sections we aso compared the methods on (2) eluted peptides from patient-
derived cell lines'mouse models, and experimentally verified (3) NSCLC neoantigen and (4)

HPV neoantigens, we illustrate that in addition to achieving state-of-the-art accuracy on binder
prediction, epiNB also deconvolves peptides from multiple HLA allotypes without manual tuning,

leading to accurate modeling of patient data for clinical applications.
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Figure 2. Benchmarking on IEDB dataset

(a) Workflow of benchmarking.

(b-c) precision at 40% recall (b) and area under receiver operating curve (AUROC) (c). Higher is better.
(d) The proportion of winners over all 95 alleles. More is better.

(e) The gain of precision at 40% recall over HLAthena, a neural network method trained on the same
dataset. Higher is better.

(f) Sample prediction report for A2501. Proba: probability, log proba: log binding probability, log odds:
log likelihood of binding minus that of non-binding. The following part of the table shows the AA
combinations, and the log odds for it.
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Table 1: Compared methods

Method Model Data interpretability

epiNB Specific | MS motifs and interactive motifs

TransMut [15] (2022) Pan MS+BA Self-attention scores (from

transformer)

Anthem [11] (2021) Specific | MS+BA Black box (ensemble)

MHCHurry [13] (2020) | Pan MS+BA with deconvolution of | Black box (Two NNsfor
processing and binding processing and binding)

HLAthena [6](2019) Specific | MS Black-box (NN)

MixMHCPred Specific | MSwith deconvolution of 1% order motifs (from position

[71(2022) HLA alleles weight matrices)

NetMHC-4.0 [12] Specific | BA Black box (NN)

(2016)

EpiNB achieved better precision at 40% recall than other methods (Figure 2b and
Supplementary Figure 3a) on the IEDB datasets with 100 to 10,000 known positive peptides per
each of the 95 allele. On nearly 80% of the aleles, epiNB performed better than all other methods
(Figure 2c). The AUROC isless discriminatory, with epiNB showing adlightly lower score than
HLAthena (Figure 2d and Supplementary Figur e 3b). However, individual ROC and Precision-
recall plotsindicate that epiNB is better in practical scenarios (Supplementary Figure 4 and
Supplementary Note 1). To investigate the effect of training data size, we compared the
performance difference between epiNB and HLAthena (which are trained on the same dataset)
over different training data sizes (Figure 2€). EpiNB shows favorable performance across all

sizes of training data and especially more gain with smaller training sets.

To fully utilize the interpretability/transparency of the model, we provide various utilities to show
binding insights. EpiNB can generate a“ prediction report” with the log odds for each position
and combinations (Figur e 2f) to explain the ground of its classification. The entries with high
odds (positive and large absolute values) are positive evidence for binding, and the low odds
(negative values) are negative evidence. These insights can then be paired with prior knowledge
of clinicians and the motif knowledge acquired from inspecting the training process

(Supplementary Figure 5; morein next subsection), to help clinicians make informed decisions.

Combinatorial feature selection casts insights into peptide binding
Being one of the most direct ways to inspect the peptides, (1% order) binding motifs of binders
have long been studied and well-characterized [6]. Even with predictions made by black-box

models, oncologists and immunol ogists prefer double-checking the motifs. Here, we show that
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motifs are not always sufficient and focus on the iMotifs found by epiNB, which are nearly as
intuitive as motifs but include richer information.
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Figure 3. EpiNB improves interpretability of peptide binding predictions

nd
a. Word cloud of observed frequency of iMotifs of the 2 and last position of the peptides. Larger font
size correspond to more occurrences.

b. Word cloud of theoretical frequencies of pairs of iMotifs of the an and last position of the peptides,
assuming no interaction between the two positions. The logo plot underneath shows the marginal
probability of AAs at each position.

¢-d. The iMotifs that occur more (c, “surplus”) or less (d, “deficient”) frequently than it would have
been assuming no interaction between positions.

e-f. The top two surplus (e) and deficient (f) iMotifs and the observed frequency of them showing up in
the eluted peptides from each allele (only top 20 are shown).

g. Logo plots for A2501 and A2601, where the total height of a position is log(20) - entropy(position),
and the height of each individual amino acid is proportion to its frequency the position.

h. Word clouds for A2501 and A2601 at selected iMotifs.



https://doi.org/10.1101/2023.03.12.532264
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.12.532264; this version posted March 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

As an example, we show that iMotif with the largest mutual information, P20 (i.e., P2 and P0), in
Figure 3. (Supplementary Figur e 5b shows other pan-allelic combinations and Supplementary
Figure 5c¢ shows an example of allele-specific combinations.) A high mutual information content
indicates that the distribution of the motif would be drastically different from the theoretical
distribution assuming independence of the two positions. Thus, we used word cloud to illustrate
the abundance of pairs of AAsin the actual and theoretical distribution (Figure 3a,b; see
Supplementary Figure 6a,b for heatmaps and tables conveying the same information), and show
the difference between the two distributionsin Figure 3c, where PA, VR, LV, and EA show large
surplus than they would have been, and VL, TL, and ER show large deficiency. We then check if
these combinations are indeed indicative of the alleles. Indeed, we find that about half of peptides
from B5601, B5502, B5501, and B5401 feature the PA motif (Figure 3e). B5601, B5502, B5501,
and B5401 share nearly identical sequencesin peptide binding pockets B and F (Supplementary
Figure 6¢; Sequence alignment for B: 9,24,45,63,66,67; F: 74,77,95,97,114,116, 123). The Tyr9,
11e66, and Tyr67 in the binding pocket will preferentially select Pro as the P2 anchor residue to fit
its hydrophobic side chain to the hydrophobic cleft formed by Tyr67 and 11e66. The F pocket in
these allelesis considered as neutrally charged as only 74 is Asp, therefore showing no selection
on Arg or Lys [17], The VR motif, though less prominent than PA, is also highly specific to a
group of aleles, such as A3401, where the F pocket is highly negative contributed by Asp74,
Asp77, Aspll6, and highly selective for Arginine. (Figure 3f).

These insights are an integral part of epiNB, which can be easily retrieved after training. To
further illustrate their value, we show the 1% order motifs (Figur e 3g) and selected combinations
(figure 3h) for HLA-A2501 and HLA-A2601, which are considered to be in a superfamily [6].
Indeed, the logo plots show very few differences between these two alleles. However, the pan-
alelic feature P12 started to reveal some differences, such as“SV” for A2501 and “ET” for
A2601, and the allele-specific features P37 and P79 carry even more distinct patterns. These
combinations may have similar roots in the protein structure of the HLA complex as P20. It
further illustrates that iMotifs carry important information about peptide binding that can be used
to interpret the predictions.

We benchmarked the mutual information against a weakly-supervised approach, Siamese
network [16], to investigate interactions between peptide positions (Supplementary Figure 7a).
Siamese network is adeep learning approach to create alow dimensional embedding (M ethods
and Supplementary Figure 7c) that is especially suitable for applications on complex inputs that
are not suitable for traditional dimensional reduction approaches like PCA. For interpretability,
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we explicitly included in the network the combinatorial features and record their weights
(importance) in generating the embedding (Supplementary Figure 7b,d). The result is consistent
with the mutual information based approach, reaffirming that the chosen combinatorial features
are important characteristics of the peptides. The embedding can also be used to deconvolving
patient-derived peptides to specific HLA alleles.

EpiNB achieves state-of-the-art performance on patient-derived data

We then benchmarked all methods on six datasets derived from cancer patient samplesincluding
four pancreatic xenograft samples and two lung cancer surgery samples, each having 300 to 600
known presented peptides. Datain each sample were split into two equal sized training and

testing sets, and the testing sets was further amended by 99x more negative examples (Figure 4a).
For patient data, we took a pseudo-labeling semi-supervised learning approach. Specifically, for
each patient, we deconvolved eluted peptides (that may be from any one of six given HLA alleles)
and assign them to a specific HLA to augment training data and retrain the model
(Supplementary Figure 8a). The validity of the deconvolution was verified by the performance
of alele classification (Supplementary Figur e 8b). This approach created patient specific
models that integrates the cancer specific defects information underlying the eluted peptides.

The results (Figure 4b,c) show that epiNB has state-of -the-art performancein AUROC and
precision. It performs better on a majority of patients than other alele-specific methods (Figure
4d) and shows comparabl e performance as pan-allelic methods. Further, we identified interesting
examples such as TI1P235, a pancreatic cancer xenograft model, with five distinct HLA alleles
(HLA-A is homozygous). Although epiNB is not always the best performer on these alleles when
benchmarked on IEDB, its performance on this dataset is outstanding (Figur e 4€). Our further
experiment (Supplementary Figure 8b,c) shows that the performance would be on par with
other methods without the semi-supervised training step, which clearly illustrates the benefits of
this strategy. These results demonstrate our semi-supervised method could address the real
patient-generating data.

To assess the performance of methods on experimentally determined neoantigens, Chu et al. [15]
curated two datasets including 232 experimentally verified non-small-cell lung cancer (NSCLC)
neoantigens with corresponding HLA alleles and another 278 from HPV 16 proteins E6 and E7.
Because the dataset contains only positive examples, we show recall scores at the calibrated

thresholds for 40% precision (Supplementary Table 1 shows alist of thresholds and precisions
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calibrated on the IEDB datasets). Results on both datasets show a clear edge of epiNB in

recognizing neocantigens (Figur e 4f).
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Figure 4. Benchmarking on patient datasets
(a) Workflow of benchmarking on real data

IEDB).
(f) Recall on HPV and NSCLC neoantigen data.

(b-c) precision at 40% recall (b) and area under receiver operational curve (AUROC) (c). Higher is better.
(d) The proportion of winners over all 95 alleles. More is better.
(e) Performance of all methods on TIP235 (left) and its individual alleles (right, as benchmarked with

(g) Running time of all methods on the HPV dataset (278 peptides).
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We measured the running time of al methods using the HPV dataset (278 peptides) on a machine
equipped with aRyzen 5 3600 CPU (6 cores@3.6-4.2GHz), a GTX 3080 GPU, and sufficient
(48GB) memory for all methodsto run without swapping. EpiNB, using only 6ms, is the fastest
method, while HLAthena, the slowest, takes over 10 minutes. The speed would be more crucial
for sweeping scans of possible mutations, easily scaling the problem up to hundreds of thousands
of peptides. It is worth noting that the training process of epiNB is also inexpensive. It takes only
1.5 secondsto train all seven models for the alleles shown in the HPV dataset.

Discussion

Personalized peptide prediction provides an important foundation for the development of
immunotherapies for anumber of human diseases, necessitating accurate and interpretable
modeling of HLA-I-mediated antigen presentation. Advancesin machine learning and
computational power underlined over-parametrized models, introducing the trade-off of
performance and interpretability. However, white-box models still play important roles,
especially when training datais limited. Here, we illustrate that a Naive Bayes based model
tailored for MHC-1 peptide presentation achieves top performance on patient data, neoantigens
and oncovirus protein peptides, while keeping the interpretability of a white-box model. The
method emphasizes afast and easy training process without tweaking any hyperparameters,
making it especially suitable for cliniciansto train or finetune on patient data, which are usually

behind the barrier of multiple convoluted privacy policies and laws.

The iMotifsidentified by the model will help clinicians inspect the selected peptides, and
researchers further understand the antigen presentation process. Biologically, the dependencies
between peptide positions presented in the data can be caused by two processes--antigen
presentation and evolution of the peptide sequence. As circumstantial evidence, our experiment
with biology-based smoothing using the substitution probability from BLOSUM62 performed
worse than simple Laplacian (additive/pseudo-counts) smoothing. The reason may be that
BLOSUMG62 matrix demonstrates the evolution aspect of the amino acid, but not antigen
presentation. Thus, we conjecture that the dependency is an intrinsic property of antigen
presentation, including pHLA binding. More structural evidence is needed to explain these

dependencies.

Although pan-allelic methods enable extrapolation of well-characterized HLA alelesto the
unknown ones and have the theoretical potential to perform better on the known ones by utilizing

more training data, our comparison suggests that they generally do not perform better than allele-
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specific methods. The usage of datafrom monoallelic cell line also contributed to the high
accuracy. Thus, to design a patient-specific cancer vaccine that is of high stake, it may still be
beneficial to perform peptide elution and use an allele-specific model to perform the prediction.
The pan-allelic methods, on the other hand, can be used in gaining insights into the binding

process and interpreting the results.

The recent adaptation of Transformer as a pan-allelic prediction backend makes it possible to
interpret the model by using the attention scores [15], which reveals the most important positions
for binding, and the amino acids that tend to bind at those positions. However, the iMotifs
identified and used by epiNB, presumably captured by the subsequent neural network layers,
would be elusive to interpret. EpiNB provides a more definitive explanation for binding for

clinicians reference.

The variance (or inter-quantile distance) in performances of each method over HLA alelesand
patients is also worth noting. Detailed numbers suggest that each method has a clear edge in some
cases that may not be purely random fluctuation. This may give an edge to ensemble models.

Further studies may want to inspect these cases, which may help develop a more omnibus model.

In summary, we introduced a white-box model with state-of-the-art accuracy, emphasizing
interpretability, and specifically having an edge on small samples. Thetool can be used to extract

insights for peptide binding and make predictions to facilitate personalized cancer vaccine design.

Methods

Feature selection based on mutual information

Thefull set of features F consists of three parts. Thefirst two parts are shared among al HLA
aleles. Firstly, there are nine single-position features, named 1, 2, 3, 4, and 5 for thefirst five
positions, and 7, 8, 9, and O for the last four positions. This naming strategy does not change by
the length of peptides. (Note that for 8-mers, position 5 and 7 will be the same.) We then
calculate the mutual information of each pair of positions I(f;; f;) = H(f) + H(f;) — H(f:. f;)
on all training peptides from all aleles and keep the top ten combinations with the highest mutual
information, namely pan-allelic features. For each alele, we aso use the bindersfor it to
recalculate the allele-specific mutual information, and also keep the top ten combinations, namely
allele-specific features. If afeatureis already in the pan-allelic features, the 11", etc. will be
added until ten distinct ones are selected. In total, there will always be 29 features.
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Feature selection based on Siamese Network

We implemented afeedforward network S. During training, the network S takes one sample a
(anchar), a positive samples p from the same class (HLA alele or patient) as the anchor, and a
negative sample from another class n, and find their embeddings S(a), S(p), S(n), respectively. It
then minimizes the triplet loss max(||S(a) — S(p)|I? — [IS(a) — SM)||? + a, 0).

In the input layer, amino acids and their combinations are encoded as intergers 1~20 and 1~400
and further transformed into one-hot vector of length 20 or 400. The weight of the first layer is

extracted to indicate the importance of the features.

Peptide classification with positive-example-only learning
To alow for training without negative examples, we created a model based on Naive Bayes

formulation. By Bayesian law, the probability of a peptide being abinder is

p(H)p(peptide| +)
p(peptide)
where p(+) isthe prior probability of any peptide being abinder, p(peptide) isthe probability

p(+|peptide) =

of observing the given peptide, and p(peptide| +) isthe probability of observing the given
peptide in binders. The Naive Bayes approach assumes that p(peptide| +) can be expressed as a
product of aseries of features [[s<r p(f| +), which are assumed to be mutually independent and

bear equal weights. Under such an assumption, we have

o P per p(f1 )
p(+|peptide) = 20

where p(f| +) can be estimated from training data. Here, we used the dataset generated in the
HL Athena study [6], one of the cleanest datasets, which is generated from cell lines with single
HLA dleles. Similarly,

p(S) rerp(f1 )
p(peptide)

p(—|peptide) =

Because we do not have negative examples, the p(feature| —) are estimated from natural
frequencies of AAsinstead. p(+), p(—),andp(peptide) are hard to determine, but by noticing
that p(+|peptide) + p(—|peptide) = 1, we can further deduce
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p(H) Irerp(f1+)
P(H) Hrer p(f1 1) + p(D [perp(f1 -)

p(+|peptide) =

Mrer P14 1
p(=) p(=) [rerp(f1 -)
1

P(+) p(fI+)

It is apparent that WI|| only affect the value, but not the ordering of peptides, which is solely

p(fI-)
p(f1+)

[rerp(f14H)
[rerp(1-)

on alogarithmic scale for better precision and speed. Due to numerical issues, it is usually helpful

determined by the odds ratio The actual calculation for p( ) H feF is performed

to set % to alarge number to avoid alarge number of peptides receiving probability 1 and

indistinguishable in the ordering step. In the experiments, 10° — 1 was used (i.e., p(+) = 1075).
In generdl, the odds ratio is | ess affected by numerical issues and is the recommended score to

order the peptides.

Semi-supervised personalized prediction

To deconvolve the mixture of peptides from multiple HLA aleles, we evaluate the probability of
each peptide being a binder of each of the HLA alotypes of the patient and assign to it the top
two predictions. These peptides are then added to the public datato form alarger training set, and
retrain the models. When an HLA allotype of the patient does not have sufficient public datato
train amodel, we alternatively assign it to peptides that do not have a high probability for any
other alotypes of the patient.

Benchmarks

To construct the single-allelic testing dataset, we used all experimentally verified binders from
IEDB as positive examples. We then randomly sample the human proteome in IEDB to create
negative examples. For the dataset to be redlistic, for each positive example, 99 negative
examples are generated. Peptides that coincide with positive examples are removed. Substitutions

are made to maintain the 1:99 ratio of positive and negative examples.

We also collected eluted peptides from 37 patient-derived xenograft or cell line samples. To test
the performance of semi-supervised classification, we split the peptides from each patient into

two halves as training as testing data in the abovementioned way, at a 1:99 ratio.
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The non-small-cell lung cancer (NSCLC) neoantigen and HPV peptides dataset are directly from
Chu et al. The NSCLC dataset includes 232 experimentally verified neoantigens. Each antigen is
labeled with the corresponding HLA allele. The HPV dataset includes 278 from HPV 16 proteins
E6 and E7.

Metrics
Two widely accepted metrics are used in the assessments. Precision at 40% recall isthe precision
TP

P \when the threshold is chasen to make the recall = 40%. AUROC is the area under
TP+FP TP+FN

the receiver operating curve, the parametric curve of TPR P _ and FPR ———,
TP+FN FP+TN

On highly unbalanced datasets, precision at 40% recall is usually more indicative.

Supplementary Materials

Supplementary Note 1: Comparison of metrics

AUROC and precision at certain recall are both widely used metrics. However, the latter is more
informative when the dataset is highly unbalanced, and the goal isto find a few positive examples.
The definition of the three (as TPR isrecall) are asfollows.

- TP
» Precision =

p
TPR = Recall = “FP+TN TP + FP

T
TP+ FN’ FPR
A relationship among these values can be deduced when the ratio of positive and negative

examples are known.

TPR

p(=)
L FPR+TPR

Precision =

TPR (recall) and precision are more relevant to our task—select afew peptides that are likely to
be binders. Here, recall indicates how many true binders we can recover, and precision tells how
many decoys we have to include as a cost. FPR, on the other hand, tells the ratio of false positives
and the number of decoys. It is not of immediate interest and can be misleading because avery
small portion of many decoys can be disastrous. For example, when FPR=5% and TPR=90%, if
p(—):p(+) = 100: 1, the precision will only be 15%, not 100% - 5% = 95%. At this accuracy, a
cancer vaccine would be technically impractical and financially prohibitive. This again indicates
that avery large portion (FPR = 0.05~1.0) of the ROC has no practical value.
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Using our result as an example, on HLA-A3001 (Supplementary Figure 3), epiNB achieves
higher accuracy than HLAthenain almost all practically useful cases (precision > 0.2 and recall <
0.9). However, the AUROC of HLAthena (0.9830) is slightly higher than epiNB (0.9810). Since
TPR is another name for recall, we can find the FPR at 0.9% FPR, which is clearly smaller than
0.1. This means that the small (and arguably useless for its low precision) portion (recall > 0.9) in
the precision-recall curve actually decides > 90% of the AUROC.

In conclusion, we believe that precision at 40% recall isamore useful metric than AUROC for

cancer vaccine design.

Supplementary Table 1: Thresholds for EpiNB at 99:1 Negative-Positive

ratio

Precision (median on al IEDB datasets) | Threshold for log odds
90% 29.0
80% 23.0
70% 19.0
60% 15.0
50% 115
40% 75
30% 3.0
20% -3.0
10% -12.0

*The threshold may not be reliable for precision > 50%. Performance are significantly different

on different alleles.
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