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Abstract 
Personalized immunotherapy holds the promise of revolutionizing cancer prevention and 

treatment. However, selecting HLA-bound peptide targets that are specific to patient tumors has 

been challenging due to a lack of patient-specific antigen presentation models. Here, we present 

epiNB, a white-box, positive-example-only, semi-supervised method based on Naïve Bayes 

formulation, with information content-based feature selection, to achieve accurate modeling using 
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Mass Spectrometry data eluted from mono-allelic cell lines and patient-derived cell lines. In 

addition to achieving state-of-the-art accuracy, epiNB yields novel insights into the structural 

properties, such as interactions of peptide positions, that appear important for modeling 

personalized, tumor-specific antigen presentation. epiNB uses substantially less parameters than 

neural networks, does not require hyperparameter tweaking and can efficiently train and run on 

our web portal (https://epinbweb.streamlit.app/) or a regular PC/laptop, making it easily 

applicable in translational settings. 

Introduction 
After decades of development, immunotherapy is now at the frontier of cancer therapy and has 

been demonstrated to be beneficial to clinical outcomes in many cancer types [1–8]. The capacity 

to redirect T-cells against tumors has raised a large degree of interest in identifying patient-

specific peptides that can be targeted therapeutically. Human leukocyte antigen (HLA) molecules 

are cell surface proteins that present peptides derived from intracellular proteins to T cells, 

triggering immune recognition and activation. HLA Class I (HLA-I) molecules present peptides 

to CD8+ cytotoxic T cells, which can redirect their killing activity towards tumor cells through 

recognition of specific tumor-associated HLA-I/peptide complexes. HLA-I molecules typically 

bind and present peptides with a length range of 8 to 13 amino acids, and collectively display 

thousands of peptides (the “immunopeptidome”) that represent a snapshot of the current 

translated cellular proteome (i.e., the collection of all proteins in the cell). HLA binder prediction 

is important in broad areas, such as cancer vaccine designs [1], adopted cell therapy [2], viral 

infection [3], autoimmune diseases [4], and organ transplantation [5]. Identifying relevant tumor-

specific peptide targets in individual cancer patients is a challenging problem, due to significant 

genetic, epigenetic and immunological heterogeneity across individual patients, and across 

celllular populations within each patient.  

Advances in next-generation sequencing now allow for typing of personalized HLA haplotypes 

and for detection of somatic mutations, thus enabling prediction of personalized tumor-specific 

antigens (TSAs) for use in personalized immunotherapy. Despite the application of large neural 

networks such as NetMHCpan, predicting TSAs from genomic mutations remain challenging for 

cancer patients carrying rare HLA alleles, or having altered antigen processing and presentation 

processes. In comparison, Mass spectrometry (MS)-based profiling of tumor-derived, eluted 

peptides allows directly observation of personalized immunopeptidome [6]. However, the MS-

based assays usually yield only hundreds to thousands of peptides, a small subset of presented 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.12.532264doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.12.532264
http://creativecommons.org/licenses/by/4.0/


peptides, making it difficult to directly detect TSAs, or train machine-learning-based models.  

Thus, the field urgently calls for new methods that can make accurate predictions based on small 

size data.   

The classical immunopeptidome consists of peptides collectively presented by up to six alleles 

per patient (i.e., two alleles each of HLA-A, -B, and -C). Peptide-HLA complexes from cells are 

experimentally captured by monoclonal antibodies (mAbs) to be sequenced. Because allele-

specific mAbs are relativley rare, most immunopeptidome studies utilize the pan-HLA-ABC-

specific mAb W6/32, which will immunoprecipitate all HLA-I/peptide complexes and thus 

provide a mixture of peptides eluted from all 6 alleles. To train allele-specific model, the peptide 

pool must be accurately deconvolved [7], which in itself a challenge when the correspondence of 

peptides and the alleles are not precisely known [8]. A recent study analyzed peptides eluted from 

monoallelic cell lines expressing 95 individual HLA-I alleles, providing an invaluable dataset of 

pure, allele-specific peptides, leading to significantly improved training and performance of 

HLA-I/peptide binding prediction algorithms [6].  

Cancer cells can evade immune surveillance by interfering with the antigen processing and 

presentation machinery [9]. Known examples include copy number loss of NLRC5, a gene to 

activate the expression of several components of the antigen presentation process, and 

overexpression of HSP90, which prevent certain proteins from being processed. There defects are 

prior to the pHLA binding event and cannot be easily identified using conventional 

approaches. Hence, training patient specific models on eluded peptides is a more effective way to 

identify druggable neoantigens. 

In addition, the problem is characterized by a lack of negative examples [10], as presented 

peptides are relatively rare (<1%) and experimental assays often report just binders. Because most 

machine learning models require negative examples (i.e., non-binders) to train,  studies predicting 

neoantigens generate random, non-specific peptides (either fully random, or stripped from 

wildtype protein sequences) as negative examples. In addtion, datasets obtained from real 

applications are extremely imbalanced (<1% positives), leading to a stress test for machine 

learning techniques. 

For antigen presentation, two major classes of methods are widely explored. Allele-specific 

methods train models on peptides obtained from binding assay or mass spectrometry, while pan-

HLA methods aim to find links between HLA sequences and binding peptides and extrapolate 

them to understudied HLAs. The former approach frames the problem as a classic classification 
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problem, with many kinds of methods being explored, such as expert-system-style scoring 

systems, decision trees, and eventually an ensemble of them [11]. Recent studies have shown that 

neural networks (NetMHC-4.0 [12] and HLAthena [6]) generally perform well. The pan-allele 

methods employ larger models to “translate” between HLA sequences and binding peptides [13–

15]. Existing solutions using deep neural networks require large training set and special hardware 

(GPU), making them less accessible [11,15]. In addition, patient privacy regulations can further 

restrict uploading of patient data through the web portals of some methods. Moreover, these 

methods tend to model diversity in the binding step but do not account for endogenous processing 

and presentation steps (with MHCFlurry [13] being an exception), which make them insufficient 

for personalized applications. 

In this study, we developed epiNB, a Naïve-Bayes-based, semi-supervised, positive-example-only 

classification method that predicts personalized TSAs from eluded peptide libraries. For feature 

selection, epiNB employs an unsupervised, mutual-information-based approach and a weakly 

supervised approach, benchmarked against a Siamese network (Figure 1) [16]. It uses a semi-

supervised pseudo-labeling approach to deconvolve eluted peptides to HLA alleles. Our study 

revealed the importance of having both single and pairwise amino acid (AA) features in achieving 

the specificity. As control, we compared epiNB against a variety of state-of-the-art methods of 

unique breakthroughs in data collection and/or modeling on single-allelic and patient-derived data 

(Table 1; Briefly summarized in Results).  We show that epiNB achieves comparable or 

favorable performance, despite of using simpler models. EpiNB is available as a Python package 

(https://github.com/KChen-lab/epiNB) and an online portal (https://epinbweb.streamlit.app/; 

Supplementary Figure 1). 
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Figure 1. Overview of the epiNB model 

(a) Biological, clinical, and computational challenges in predicting personalized immunotherapy 

target peptides. 

(b) Clinical applications of MHC-I presented peptide prediction methods. 

(c-f) Workflow of EpiNB algorithm, which (c) takes positive data (known presented peptides) and prior 

prior distribution of AAs (equivalent to negative data randomly generated from the distribution) as 

input and (d) use the frequencies of AAs at each position, as well as combination of positions selected 

using their mutual information, to (e) make predictions for candidate neoantigens. The method can be 

used to rank candidate neoantigens, make multi-class classification of HLA origin of a peptide (i.e., 

deconvolve eluted peptides from patient), and thus retrained on patient specific data to make 

personalized predictions. As a white-box model, the basis of choosing a peptide, i.e., motifs and iMotifs 

(interactive motifs) is given, so that clinicians and researchers make more informed judgements. 
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Results 

A personalized semi-supervised positive-example-only peptide 

classification model 

The core of epiNB is a Naïve Bayes classifier modified for positive-example-only learning 

(Figure 1c-e, Methods). In brief, epiNB takes a set of known binders to perform feature selection 

on the set using mutual information of a combination of peptide positions (Supplementary 

Figure 2a). The binders then serve as the training set to train the model to derive ���������|
� 

for both single positions (referred to as “motifs”)] and interactions of positions (referred to 

interactive motifs “iMotifs”). The combinations reflect the intrinsic dependency between two 

peptide residues within an HLA-specific peptide population. For most alleles, the anchor residues 

(P2 and P0; we number the first 5 amino acids 1, 2, 3, 4, 5, and the last four 7, 8, 9, 0; 0 is also 

commonly noted as Ω) exhibit low dependency on other residues, indicating their dominant roles 

in defining the HLA binding (Supplementary Figure 2a). Interestingly, the signal of 

combination of P2 and P0 is the strongest in pan-allele, supporting the importance of having these 

two positions in determining the HLA binding specificity across alleles. Most machine learning 

methods require both positive and negative examples to learn, and the common practice in this 

field is to draw random samples from the prior distribution or human peptidome. However, the 

Naïve Bayes formulation allows epiNB to directly use the prior distribution of amino acids (AAs) 

as ���������|
� and avoid variances induced by sampling. Using the Bayesian rule, epiNB can 

then calculate ���|
�
�����. EpiNB includes no hyperparameters to tweak, except for a dummy 

prior ����, the unconditional probability of observing a binder, which, however, only serves as a 

scaling factor and has no effect on the ordering of candidate peptides (Methods). The model is 

trained on peptides eluted from cell lines that only have one HLA allele (cf. six alleles of HLA-

A/B/C[6], which comprehensively assess the whole antigen presentation process, compared with 

binding panels, which only consider the binding step (Figure 1a). 

The result of epiNB can be used to rank potential binders, and to classify the HLA allele a peptide 

belongs to (Figure 1f), both useful in personalized binding peptide prediction, where a few eluted 

peptides are made available from the patient but can correspond to any of the six alleles of the 

patient. Blindly training a machine learning model on such a problem is usually suboptimal, 

because the binders of the six alleles can be vastly different, causing problems for models to draw 

a reliable classification boundary. To this end, we first use the classification utility of epiNB to 

assign the peptides to alleles and add the peptides to the training data to refine the model. The 

final model can be used to make predictions. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.12.532264doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.12.532264
http://creativecommons.org/licenses/by/4.0/


Although expert systems have lost ground to machine learning techniques given the booming 

amount of data, oncologists and immunologists still hold precious knowledge about peptide 

binding. As an open-box model, epiNB can readily tell the motifs it relies on in deriving the 

results, which allows practitioners to inspect the rules and make informed decisions.   

EpiNB accurately predicts presented peptides of HLA alleles 

To benchmark the performance of epiNB and other methods, we constructed a large-scale test 

using The Immune Epitope Database (IEDB) (Figure 2a) with a total of 1.7M positive peptides 

across 95 HLA alleles. The experimentally verified binders are used as positive examples 

(binders) and negative examples (decoys) are generated from the human proteome. Considering 

that finding binders from candidate peptides are essentially a needle-in-a-haystack problem, we 

set the ratio of positive and negative examples to 1:99. Following the convention of similar 

studies [6,13,15], we used both precisions at 40% recall and AUROC as the metric. However, we 

strongly recommend the precision at 40%, as it is more indicative of the actual performance in 

vaccine design (Methods and Supplementary Note 1), and is widely used in recent studies 

[6,13]. 

For comparison (Table 1), we included a variety of state-of-the-art methods of unique 

breakthroughs in data collection and/or modeling. Four allele-specific models were included. 

Anthem [11] explored ensemble to optimize the performance of existing data. HLAthena [6] 

piloted generating a clean training dataset with cell lines with a single HLA allele and used a 

neural network model for prediction. MixMHCPred [7] automatically deconvolve unlabeled 

peptidome to generate a large training dataset with position weight matrices for prediction. 

NetMHC-4.0 is a classic tool that serves as a baseline. We also included two state-of-the-art pan-

allelic models. TransMut [15] explored the application of the transformer model in peptide 

binding prediction and provided self-attention scores as a way to interpret the results. MHCFlurry 

[13] deconvolved the process of antigen processing and peptide binding to more accurately model 

the process of antigen presentation. In addition to the (1) experimentally verified binders in IEDB, 

in the following sections we also compared the methods on (2) eluted peptides from patient-

derived cell lines/mouse models, and experimentally verified (3) NSCLC neoantigen and (4) 

HPV neoantigens, we illustrate that in addition to achieving state-of-the-art accuracy on binder 

prediction, epiNB also deconvolves peptides from multiple HLA allotypes without manual tuning, 

leading to accurate modeling of patient data for clinical applications.  
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Figure 2. Benchmarking on IEDB dataset 

(a) Workflow of benchmarking.  

(b-c) precision at 40% recall (b) and area under receiver operating curve (AUROC) (c). Higher is better. 

(d) The proportion of winners over all 95 alleles. More is better. 

(e) The gain of precision at 40% recall over HLAthena, a neural network method trained on the same 

dataset. Higher is better. 

(f) Sample prediction report for A2501. Proba: probability, log proba: log binding probability, log odds: 

log likelihood of binding minus that of non-binding. The following part of the table shows the AA 

combinations, and the log odds for it. 
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Table 1: Compared methods 

Method Model Data interpretability 
epiNB Specific MS motifs and interactive motifs 
TransMut [15] (2022) Pan MS+BA Self-attention scores (from 

transformer) 
Anthem [11] (2021) Specific MS+BA Black box (ensemble) 
MHCFlurry [13] (2020) Pan MS+BA with deconvolution of 

processing and binding 
Black box (Two NNs for 
processing and binding) 

HLAthena [6](2019) Specific MS Black-box (NN) 
MixMHCPred 
[7](2022) 

Specific MS with deconvolution of 
HLA alleles 

1st order motifs (from position 
weight matrices) 

NetMHC-4.0 [12] 
(2016) 

Specific BA Black box (NN) 

 

EpiNB achieved better precision at 40% recall than other methods (Figure 2b and 

Supplementary Figure 3a) on the IEDB datasets with 100 to 10,000 known positive peptides per 

each of the 95 allele. On nearly 80% of the alleles, epiNB performed better than all other methods 

(Figure 2c). The AUROC is less discriminatory, with epiNB showing a slightly lower score than 

HLAthena (Figure 2d and Supplementary Figure 3b). However, individual ROC and Precision-

recall plots indicate that epiNB is better in practical scenarios (Supplementary Figure 4 and 

Supplementary Note 1). To investigate the effect of training data size, we compared the 

performance difference between epiNB and HLAthena (which are trained on the same dataset) 

over different training data sizes (Figure 2e). EpiNB shows favorable performance across all 

sizes of training data and especially more gain with smaller training sets. 

To fully utilize the interpretability/transparency of the model, we provide various utilities to show 

binding insights. EpiNB can generate a “prediction report” with the log odds for each position 

and combinations (Figure 2f) to explain the ground of its classification. The entries with high 

odds (positive and large absolute values) are positive evidence for binding, and the low odds 

(negative values) are negative evidence. These insights can then be paired with prior knowledge 

of clinicians and the motif knowledge acquired from inspecting the training process 

(Supplementary Figure 5; more in next subsection), to help clinicians make informed decisions. 

Combinatorial feature selection casts insights into peptide binding 

Being one of the most direct ways to inspect the peptides, (1st order) binding motifs of binders 

have long been studied and well-characterized [6]. Even with predictions made by black-box 

models, oncologists and immunologists prefer double-checking the motifs. Here, we show that 
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motifs are not always sufficient and focus on the iMotifs found by epiNB, which are nearly as 

intuitive as motifs but include richer information. 

 

Figure 3. EpiNB improves interpretability of peptide binding predictions 
a. Word cloud of observed frequency of iMotifs of the 2

nd

 and last position of the peptides. Larger font 

size correspond to more occurrences. 
b. Word cloud of theoretical frequencies of pairs of iMotifs of the 2

nd

 and last position of the peptides, 

assuming no interaction between the two positions. The logo plot underneath shows the marginal 

probability of AAs at each position. 
c-d. The iMotifs that occur more (c, “surplus”) or less (d, “deficient”) frequently than it would have 

been assuming no interaction between positions. 
e-f. The top two surplus (e) and deficient (f) iMotifs and the observed frequency of them showing up in 

the eluted peptides from each allele (only top 20 are shown).  
g. Logo plots for A2501 and A2601, where the total height of a position is log(20) - entropy(position), 

and the height of each individual amino acid is proportion to its frequency the position. 
h. Word clouds for A2501 and A2601 at selected iMotifs. 
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As an example, we show that iMotif with the largest mutual information, P20 (i.e., P2 and P0), in 

Figure 3. (Supplementary Figure 5b shows other pan-allelic combinations and Supplementary 

Figure 5c shows an example of allele-specific combinations.) A high mutual information content 

indicates that the distribution of the motif would be drastically different from the theoretical 

distribution assuming independence of the two positions. Thus, we used word cloud to illustrate 

the abundance of pairs of AAs in the actual and theoretical distribution (Figure 3a,b; see 

Supplementary Figure 6a,b for heatmaps and tables conveying the same information), and show 

the difference between the two distributions in Figure 3c, where PA, VR, LV, and EA show large 

surplus than they would have been, and VL, TL, and ER show large deficiency. We then check if 

these combinations are indeed indicative of the alleles. Indeed, we find that about half of peptides 

from B5601, B5502, B5501, and B5401 feature the PA motif (Figure 3e). B5601, B5502, B5501, 

and B5401 share nearly identical sequences in peptide binding pockets B and F (Supplementary 

Figure 6c; Sequence alignment for B: 9,24,45,63,66,67; F: 74,77,95,97,114,116, 123). The Tyr9, 

Ile66, and Tyr67 in the binding pocket will preferentially select Pro as the P2 anchor residue to fit 

its hydrophobic side chain to the hydrophobic cleft formed by Tyr67 and Ile66. The F pocket in 

these alleles is considered as neutrally charged as only 74 is Asp, therefore showing no selection 

on Arg or Lys [17], The VR motif, though less prominent than PA, is also highly specific to a 

group of alleles, such as A3401, where the F pocket is highly negative contributed by Asp74, 

Asp77, Asp116, and highly selective for Arginine. (Figure 3f).  

These insights are an integral part of epiNB, which can be easily retrieved after training. To 

further illustrate their value, we show the 1st order motifs (Figure 3g) and selected combinations 

(figure 3h) for HLA-A2501 and HLA-A2601, which are considered to be in a superfamily [6]. 

Indeed, the logo plots show very few differences between these two alleles. However, the pan-

allelic feature P12 started to reveal some differences, such as “SV” for A2501 and “ET” for 

A2601, and the allele-specific features P37 and P79 carry even more distinct patterns. These 

combinations may have similar roots in the protein structure of the HLA complex as P20. It 

further illustrates that iMotifs carry important information about peptide binding that can be used 

to interpret the predictions. 

We benchmarked the mutual information against a weakly-supervised approach, Siamese 

network [16], to investigate interactions between peptide positions (Supplementary Figure 7a). 

Siamese network is a deep learning approach to create a low dimensional embedding (Methods 

and Supplementary Figure 7c) that is especially suitable for applications on complex inputs that 

are not suitable for traditional dimensional reduction approaches like PCA. For interpretability, 
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we explicitly included in the network the combinatorial features and record their weights 

(importance) in generating the embedding (Supplementary Figure 7b,d). The result is consistent 

with the mutual information based approach, reaffirming that the chosen combinatorial features 

are important characteristics of the peptides. The embedding can also be used to deconvolving 

patient-derived peptides to specific HLA alleles.  

EpiNB achieves state-of-the-art performance on patient-derived data 

We then benchmarked all methods on six datasets derived from cancer patient samples including 

four pancreatic xenograft samples and two lung cancer surgery samples, each having 300 to 600 

known presented peptides. Data in each sample were split into two equal sized training and 

testing sets, and the testing sets was further amended by 99x more negative examples (Figure 4a). 

For patient data, we took a pseudo-labeling semi-supervised learning approach. Specifically, for 

each patient, we deconvolved eluted peptides (that may be from any one of six given HLA alleles) 

and assign them to a specific HLA to augment training data and retrain the model 

(Supplementary Figure 8a). The validity of the deconvolution was verified by the performance 

of allele classification (Supplementary Figure 8b). This approach created patient specific 

models that integrates the cancer specific defects information underlying the eluted peptides. 

The results (Figure 4b,c) show that epiNB has state-of-the-art performance in AUROC and 

precision. It performs better on a majority of patients than other allele-specific methods (Figure 

4d) and shows comparable performance as pan-allelic methods. Further, we identified interesting 

examples such as TIP235, a pancreatic cancer xenograft model, with five distinct HLA alleles 

(HLA-A is homozygous). Although epiNB is not always the best performer on these alleles when 

benchmarked on IEDB, its performance on this dataset is outstanding (Figure 4e). Our further 

experiment (Supplementary Figure 8b,c) shows that the performance would be on par with 

other methods without the semi-supervised training step, which clearly illustrates the benefits of 

this strategy. These results demonstrate our semi-supervised method could address the real 

patient-generating data. 

To assess the performance of methods on experimentally determined neoantigens, Chu et al. [15] 

curated two datasets including 232 experimentally verified non-small-cell lung cancer (NSCLC) 

neoantigens with corresponding HLA alleles and another 278 from HPV16 proteins E6 and E7. 

Because the dataset contains only positive examples, we show recall scores at the calibrated 

thresholds for 40% precision (Supplementary Table 1 shows a list of thresholds and precisions 
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calibrated on the IEDB datasets). Results on both datasets show a clear edge of epiNB in 

recognizing neoantigens (Figure 4f). 

 

Figure 4. Benchmarking on patient datasets 
(a) Workflow of benchmarking on real data 
(b-c) precision at 40% recall (b) and area under receiver operational curve (AUROC) (c). Higher is better. 
(d) The proportion of winners over all 95 alleles. More is better. 
(e) Performance of all methods on TIP235 (left) and its individual alleles (right, as benchmarked with 

IEDB). 
(f) Recall on HPV and NSCLC neoantigen data. 
(g) Running time of all methods on the HPV dataset (278 peptides). 
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We measured the running time of all methods using the HPV dataset (278 peptides) on a machine 

equipped with a Ryzen 5 3600 CPU (6 cores@3.6-4.2GHz), a GTX 3080 GPU, and sufficient 

(48GB) memory for all methods to run without swapping. EpiNB, using only 6ms, is the fastest 

method, while HLAthena, the slowest, takes over 10 minutes. The speed would be more crucial 

for sweeping scans of possible mutations, easily scaling the problem up to hundreds of thousands 

of peptides. It is worth noting that the training process of epiNB is also inexpensive. It takes only 

1.5 seconds to train all seven models for the alleles shown in the HPV dataset. 

Discussion 
Personalized peptide prediction provides an important foundation for the development of 

immunotherapies for a number of human diseases, necessitating accurate and interpretable 

modeling of HLA-I-mediated antigen presentation. Advances in machine learning and 

computational power underlined over-parametrized models, introducing the trade-off of 

performance and interpretability. However, white-box models still play important roles, 

especially when training data is limited. Here, we illustrate that a Naïve Bayes based model 

tailored for MHC-I peptide presentation achieves top performance on patient data, neoantigens 

and oncovirus protein peptides, while keeping the interpretability of a white-box model. The 

method emphasizes a fast and easy training process without tweaking any hyperparameters, 

making it especially suitable for clinicians to train or finetune on patient data, which are usually 

behind the barrier of multiple convoluted privacy policies and laws.  

The iMotifs identified by the model will help clinicians inspect the selected peptides, and 

researchers further understand the antigen presentation process. Biologically, the dependencies 

between peptide positions presented in the data can be caused by two processes--antigen 

presentation and evolution of the peptide sequence. As circumstantial evidence, our experiment 

with biology-based smoothing using the substitution probability from BLOSUM62 performed 

worse than simple Laplacian (additive/pseudo-counts) smoothing. The reason may be that 

BLOSUM62 matrix demonstrates the evolution aspect of the amino acid, but not antigen 

presentation. Thus, we conjecture that the dependency is an intrinsic property of antigen 

presentation, including pHLA binding. More structural evidence is needed to explain these 

dependencies.  

Although pan-allelic methods enable extrapolation of well-characterized HLA alleles to the 

unknown ones and have the theoretical potential to perform better on the known ones by utilizing 

more training data, our comparison suggests that they generally do not perform better than allele-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.12.532264doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.12.532264
http://creativecommons.org/licenses/by/4.0/


specific methods. The usage of data from monoallelic cell line also contributed to the high 

accuracy. Thus, to design a patient-specific cancer vaccine that is of high stake, it may still be 

beneficial to perform peptide elution and use an allele-specific model to perform the prediction. 

The pan-allelic methods, on the other hand, can be used in gaining insights into the binding 

process and interpreting the results. 

The recent adaptation of Transformer as a pan-allelic prediction backend makes it possible to 

interpret the model by using the attention scores [15], which reveals the most important positions 

for binding, and the amino acids that tend to bind at those positions. However, the iMotifs 

identified and used by epiNB, presumably captured by the subsequent neural network layers, 

would be elusive to interpret. EpiNB provides a more definitive explanation for binding for 

clinicians’ reference. 

The variance (or inter-quantile distance) in performances of each method over HLA alleles and 

patients is also worth noting. Detailed numbers suggest that each method has a clear edge in some 

cases that may not be purely random fluctuation. This may give an edge to ensemble models. 

Further studies may want to inspect these cases, which may help develop a more omnibus model. 

In summary, we introduced a white-box model with state-of-the-art accuracy, emphasizing 

interpretability, and specifically having an edge on small samples. The tool can be used to extract 

insights for peptide binding and make predictions to facilitate personalized cancer vaccine design. 

Methods 

Feature selection based on mutual information 

The full set of features � consists of three parts. The first two parts are shared among all HLA 

alleles. Firstly, there are nine single-position features, named 1, 2, 3, 4, and 5 for the first five 

positions, and 7, 8, 9, and 0 for the last four positions. This naming strategy does not change by 

the length of peptides. (Note that for 8-mers, position 5 and 7 will be the same.) We then 

calculate the mutual information of each pair of positions ���� ; ��� � ����� � ����� 
 ���� , ��� 

on all training peptides from all alleles and keep the top ten combinations with the highest mutual 

information, namely pan-allelic features. For each allele, we also use the binders for it to 

recalculate the allele-specific mutual information, and also keep the top ten combinations, namely 

allele-specific features. If a feature is already in the pan-allelic features, the 11th, etc. will be 

added until ten distinct ones are selected. In total, there will always be 29 features. 
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Feature selection based on Siamese Network  

We implemented a feedforward network �. During training, the network � takes one sample � 

(anchor), a positive samples 
 from the same class (HLA allele or patient) as the anchor, and a 

negative sample from another class �, and find their embeddings ����, ��
�, ����, respectively. It 

then minimizes the triplet loss max������ 
 ��
��� 
 ����� 
 ������ � �, 0�. 

In the input layer, amino acids and their combinations are encoded as intergers 1~20 and 1~400 

and further transformed into one-hot vector of length 20 or 400. The weight of the first layer is 

extracted to indicate the importance of the features. 

Peptide classification with positive-example-only learning 

To allow for training without negative examples, we created a model based on Naïve Bayes 

formulation. By Bayesian law, the probability of a peptide being a binder is 


��|
�
����� �

���
�
�
����| ��


�
�
�����
, 

where 
��� is the prior probability of any peptide being a binder, 
�
�
����� is the probability 

of observing the given peptide, and 
�
�
����| �� is the probability of observing the given 

peptide in binders. The Naïve Bayes approach assumes that 
�
�
����| �� can be expressed as a 

product of a series of features ∏ 
��| ����� , which are assumed to be mutually independent and 

bear equal weights. Under such an assumption, we have 


��|
�
����� �

��� ∏ 
��| ����� 


���
 

where 
��| �� can be estimated from training data. Here, we used the dataset generated in the 

HLAthena study [6], one of the cleanest datasets, which is generated from cell lines with single 

HLA alleles. Similarly, 


�
|
�
����� �

�
� ∏ 
��| 
����


�
�
�����
 

Because we do not have negative examples, the 
��������| 
� are estimated from natural 

frequencies of AAs instead. 
���, 
�
�,and
�
�
����� are hard to determine, but by noticing 

that 
��|
�
����� � 
�
|
�
����� � 1, we can further deduce  
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��| �����

, 

It is apparent that 
�	
�

�	��
 will only affect the value, but not the ordering of peptides, which is solely 

determined by the odds ratio 
∏ �	�|�����

∏ �	�|
����
. The actual calculation for 

�	
�

�	��
∏ �	�|
�

�	�|�����  is performed 

on a logarithmic scale for better precision and speed. Due to numerical issues, it is usually helpful 

to set 
�	
�

�	��
 to a large number to avoid a large number of peptides receiving probability 1 and 

indistinguishable in the ordering step. In the experiments, 10� 
 1 was used (i.e., 
��� � 10
�). 

In general, the odds ratio is less affected by numerical issues and is the recommended score to 

order the peptides. 

Semi-supervised personalized prediction 

To deconvolve the mixture of peptides from multiple HLA alleles, we evaluate the probability of 

each peptide being a binder of each of the HLA allotypes of the patient and assign to it the top 

two predictions. These peptides are then added to the public data to form a larger training set, and 

retrain the models. When an HLA allotype of the patient does not have sufficient public data to 

train a model, we alternatively assign it to peptides that do not have a high probability for any 

other allotypes of the patient. 

Benchmarks 

To construct the single-allelic testing dataset, we used all experimentally verified binders from 

IEDB as positive examples. We then randomly sample the human proteome in IEDB to create 

negative examples. For the dataset to be realistic, for each positive example, 99 negative 

examples are generated. Peptides that coincide with positive examples are removed. Substitutions 

are made to maintain the 1:99 ratio of positive and negative examples. 

We also collected eluted peptides from 37 patient-derived xenograft or cell line samples. To test 

the performance of semi-supervised classification, we split the peptides from each patient into 

two halves as training as testing data in the abovementioned way, at a 1:99 ratio. 
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The non-small-cell lung cancer (NSCLC)  neoantigen and HPV peptides dataset are directly from 

Chu et al. The NSCLC dataset includes 232 experimentally verified neoantigens. Each antigen is 

labeled with the corresponding HLA allele. The HPV dataset includes 278 from HPV16 proteins 

E6 and E7. 

Metrics 

Two widely accepted metrics are used in the assessments. Precision at 40% recall is the precision 
��

�����
 when the threshold is chosen to make the recall 

��

�����
� 40%. AUROC is the area under 

the receiver operating curve, the parametric curve of TPR 
��

�����
 and FPR 

��

�����
. 

On highly unbalanced datasets, precision at 40% recall is usually more indicative. 

Supplementary Materials 

Supplementary Note 1: Comparison of metrics 

AUROC and precision at certain recall are both widely used metrics. However, the latter is more 

informative when the dataset is highly unbalanced, and the goal is to find a few positive examples. 

The definition of the three (as TPR is recall) are as follows. 

&�' � '�(�)) �
&�

&� � �*
;  ��' �

��
�� � &*

;  ���(�+�,� �
&�

&� � ��
 

A relationship among these values can be deduced when the ratio of positive and negative 

examples are known. 

���(�+�,� �
&�'


�
�

��� ��' � &�'

 

TPR (recall) and precision are more relevant to our task—select a few peptides that are likely to 

be binders. Here, recall indicates how many true binders we can recover, and precision tells how 

many decoys we have to include as a cost. FPR, on the other hand, tells the ratio of false positives 

and the number of decoys. It is not of immediate interest and can be misleading because a very 

small portion of many decoys can be disastrous. For example, when FPR=5% and TPR=90%, if 


�
�: 
��� � 100: 1, the precision will only be 15%, not 100% - 5% = 95%. At this accuracy, a 

cancer vaccine would be technically impractical and financially prohibitive. This again indicates 

that a very large portion (FPR = 0.05~1.0) of the ROC has no practical value. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.12.532264doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.12.532264
http://creativecommons.org/licenses/by/4.0/


Using our result as an example, on HLA-A3001 (Supplementary Figure 3), epiNB achieves 

higher accuracy than HLAthena in almost all practically useful cases (precision > 0.2 and recall < 

0.9). However, the AUROC of HLAthena (0.9830) is slightly higher than epiNB (0.9810). Since 

TPR is another name for recall, we can find the FPR at 0.9% FPR, which is clearly smaller than 

0.1. This means that the small (and arguably useless for its low precision) portion (recall > 0.9) in 

the precision-recall curve actually decides > 90% of the AUROC. 

In conclusion, we believe that precision at 40% recall is a more useful metric than AUROC for 

cancer vaccine design. 

 

Supplementary Table 1: Thresholds for EpiNB at 99:1 Negative-Positive 

ratio 

Precision (median on all IEDB datasets) Threshold for log odds 

90% 29.0 

80% 23.0 

70% 19.0 

60% 15.0 

50% 11.5 

40% 7.5 

30% 3.0 

20% -3.0 

10% -12.0 

*The threshold may not be reliable for precision > 50%. Performance are significantly different 

on different alleles.  
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