
1

A computational framework for
characterizing normative development of

structural brain connectivity in the perinatal stage
Yihan Wu1, Ali Gholipour1, Lana Vasung2, and Davood Karimi1

1 Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
2 Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA

Abstract

Quantitative assessment of the brain’s structural connectivity in the perinatal stage is useful for studying normal and abnormal
neurodevelopment. However, estimation of the structural connectome from diffusion MRI data involves a series of complex and
ill-posed computations. For the perinatal period, this analysis is further challenged by the rapid brain development and difficulties
of imaging subjects at this stage. These factors, along with high inter-subject variability, have made it difficult to chart the
normative development of the structural connectome. Hence, there is a lack of baseline trends in connectivity metrics that can be
used as reliable references for assessing normal and abnormal brain development at this critical stage. In this paper we propose
a computational framework, based on spatio-temporal atlases, for determining such baselines. We apply the framework on data
from 169 subjects between 33 and 45 postmenstrual weeks. We show that this framework can unveil clear and strong trends in the
development of structural connectivity in the perinatal stage. Some of our interesting findings include that connection weighting
based on neurite density produces more consistent trends and that the trends in global efficiency, local efficiency, and characteristic
path length are more consistent than in other metrics.

Index Terms: structural brain connectivity, neonatal brain, diffusion MRI.

Fig. 1. The proposed computational pipeline for computing age-specific structural connectomes.
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I. INTRODUCTION

The human brain undergoes significant and rapid develop-
ments in perinatal period (the several weeks just before and
after birth) [1], [2]. It can be argued that this stage is the most
dynamic and the most critical period in brain development
[3], [4]. During this period, processes such as neurogenesis,
neural migration, synapse formation, and axonal growth work
in synchrony to form the brain microstructure and to lay the
foundations of structural and functional brain networks [5],
[6]. Interruption of normal brain development in this period
can result in lifelong neurodevelopmental and psychiatric
disorders [2], [7]. Quantitative assessment of brain’s structural
connectivity at this stage can enhance our understanding
of the development of cognitive and behavioral capabilities
and improve the diagnosis, management, and treatment of
neurological disorders [8], [9].

Diffusion-weighted magnetic resonance imaging (dMRI)
has played an increasingly prominent role in studying the
development of brain micro-structure, macro-structure, and
structural connectivity in the fetal and neonatal periods [10],
[3]. Unlike histological studies that are invasive and very ex-
pensive, dMRI enables assessment of the entire brain in utero
in 3D, and it allows studying larger populations at much lower
cost. Quantification assessment of brain’s structural connectiv-
ity with dMRI is one of its most exciting applications [11], [8].
Building on a local estimation of fiber orientation distribution,
tractography techniques are used to trace virtual streamlines
connecting different brain regions. These streamlines, often
weighted by some measure of tissue micro-structure integrity,
determine the strength of connections between a predefined
set of brain regions/nodes. This “connectome” can be regarded
as a mathematical graph and graph-theoretic measures can be
computed to characterize it quantitatively [12], [13]. Although
dMRI-based brain connectivity analysis suffers from important
challenges, constant technical advancements have improved
its accuracy and reproducibility [14], [15]. Moreover, our
understanding of the potentials and limitations of this method
have greatly improved and we can more reliably interpret the
quantitative results offered by this method [16], [17]. As a
result, quantitative structural brain connectivity analysis with
dMRI has been extensively used to study brain development,
maturation, aging, and degeneration (e.g., [18], [19]).

The great majority of these technical and scientific de-
velopments have been focused on the brains of children,
adolescents, and adults. Mainly due to the challenges of
perinatal imaging and a lack of reliable quantitative analysis
tools and resources, comparatively far less research has been
devoted to studying the structural connectivity at this early
stage. Furthermore, because of methodological variations in
computing the structural connectome, inherent limitations of
dMRI, and high inter-subject variability, it has been difficult to
establish normative references for longitudinal and population
studies. This represents a critical gap in knowledge as it is
well known that adult-like topological structures and a highly
structured brain connectome develop very early in life [20],
[21]. Hence, there is an urgent need for methods and resources
to enable accurate and reproducible quantitative assessment

of structural brain connectivity in the perinatal stage. Such
methods and tools can significantly enhance our understanding
of brain development at this stage and enable us to probe
the neurodevelopmental processes that shape the structure and
function of the brain for the rest of life.

In this paper, we propose a new methodology for analyzing
normal development of brain’s structural connectivity in the
perinatal stage. Our approach is based on accurate spatial
alignment and averaging of data from cohorts of subjects with
the same age. To ensure accurate alignment of white mater
structures across subjects, we will perform the registrations
based on diffusion tensor and fiber orientation distribution.
The proposed approach reduces the impacts of the inter-
subject variability and low data quality, both of which can be
substantial in this period. Hence, it enables highlighting the
main developments in the structural connectivity that occur
due to brain maturation. We expect that this approach should
produce normative structural connectivity metrics that can be
used as references for reliable assessment and comparison of
normal and abnormal brain development at this critical stage.
We apply the new method on a large cohort of subjects scanned
between 33 and 45 postmenstrual weeks and analyze several
important metrics of structural brain connectivity.

II. METHODS

A. Data

We used the MRI data from the developing Human Connec-
tome Project [22]. We considered postmenstrual ages (PMAs)
between 33 and 45 weeks. For PMA of 35 weeks, for example,
we used subjects scanned between 34.5 and 35.5 postmenstrual
weeks. For PMAs around 38 weeks, dHCP contained many
more subjects than needed for our analysis. Our recent work
and works of other researchers have shown very little or no
gain when more than 15 subjects are used in each age group
[23], [24]. Therefore, we used at most 15 subjects for each
PMA. For the earliest age of 33 weeks only seven subjects
were available, but that was still sufficient for building detailed
high-quality atlases. The dMRI scans for each subject included
20 non-diffusion-weighted measurements and 280 diffusion-
weighted measurements at three b-values of 400 (n=64), 1000
(n=88), and 2600 (n=128).

B. Computational pipeline

Figure 1 shows the data processing pipeline for computing
population-averaged age-specific connectomes. The pipeline
has two main branches. One branch uses fiber orientation
distribution (FOD)-based registration to compute a tractogram
for each age. The other branch uses diffusion tensor-based
registration to compute maps of micro-structural biomarkers.
The FOD-based alignment could have been used to also
compute atlases of micro-structural biomarkers. However, we
found that a diffusion tensor-based registration that accounted
for local alignment of white matter tracts resulted in more
accurate results. Different steps of the pipeline are described
below. Note that this pipeline is applied separately for each
age group to compute a structural connectome for each age
between 33 and 45.
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1) Data pre-processing: The dMRI data were first denoised
using a PCA method [25], followed by B1 field inhomogeneity
correction. Subsequently, all dMRI and anatomical data (i.e.,
T2 images and tissue segmentations) were resampled to an
isotropic resolution of 1mm.

2) Computing age-specific FOD templates and trac-
tograms: We used the multi-tissue constrained spherical de-
convolution method [26] for FOD estimation. This method
is based on deconvolving the dMRI signal with signature
response functions from white matter, gray matter, and cere-
brospinal fluid. As suggested in [24], [27], we first estimated
these response functions separately for each subject in an age
group and then created an average response function. The
average response function was used to estimate the FOD for
each subject in the age group. A white matter FOD template
was then estimated using symmetric diffeomorphic registration
[28] of the white matter FOD maps of all subjects in the age
group. The deformations computed based on the FODs were
also used to deform the T2 images and tissue segmentation
maps. Voxel-wise averaging and majority voting were used to
estimate, respectively, a T2 template and a tissue segmentation
template. Anatomically-constrained tractography [29] with a
probabilistic streamline tracing method [30] was then applied
using the FOD and tissue segmentation templates. Maximum
angle between successive steps was set to 30 degrees and
an FOD amplitude cut-off threshold of 0.01 was used as the
stopping criterion. A total of five million valid streamlines
were generated by seeding the entire brain.

3) Computing age-specific templates of tissue micro-
structure biomarkers: Proper weighting of edges in the struc-
tural connectome is an open problem. Although it is possible
to compute edge weight/strength values based on tractography
data alone, leveraging biomarkers of tissue micro-structure
integrity is becoming more popular [15], [31]. In this work,
we used biomarkers derived from the diffusion tensor and the
Neurite Orientation Dispersion and Density Imaging (NODDI)
models [32]. Specifically, for each subject in the age group we
computed the fractional anisotropy (FA) using diffusion tensor
fitting, and we computed the Orientation Dispersion Index
(ODI) and the Neurite Density Index (NDI) from the NODDI
model. We used the deep learning model proposed in [23]
for computing the NODDI parameters. We then computed a
template for these biomarkers using nonlinear diffusion tensor-
based alignment [33]. These templates were then registered
to the T2 template map for the same age group using affine
registration. Note that the T2 and FOD templates were co-
registered by design, as shown in Figure 1. Hence, after being
registered to the T2 template, these biomarker templates could
be used for weighting streamlines generated from the FOD
template.

4) Computing the structural connectome and connectivity
metrics: To define connectome nodes, we used the Edinburgh
Neonatal Atlas (ENA50) [34]. This atlas includes a parcel-
lation of the neonatal brain gray matter into 100 regions.
We registered this parcellation to our computed atas using
deformable registration of the T2 image from the ENA50
atlas to the T2 atlas estimated by our pipeline for each age
group. Using the gray matter parcellations as graph nodes and

streamlines as edges, we computed structural connectomes.
We used the SIFT2 algorithm to compute cross-sectional area
multipliers to ensure the streamline densities reflect the density
of the underlying white matter fibers. Additionally, we used the
micro-structural biomarkers FA, NDI, and 1-ODI for connec-
tion weighting. The negative for ODI is standard practice and
it is because ODI is a measure of fiber “dispersion”, whereas
we would like to give a higher weight to higher microstructure
“integrity”.

We computed six widely used structural connectivity mea-
sures: measures of network integration including characteristic
path length (CPL) and global efficiency (GE), measures of net-
work segregation including local efficiency (LE) and clustering
coefficient (CC), small-worldness index (SW), and rich club
coefficient (RC).

III. RESULTS AND DISCUSSION

Figure 2 shows example FA and FOD atlases and trac-
tograms. Overall, the results generated by our computational
framework displayed displayed very high quality and detail.
Table I shows the Spearman’s rank correlation coefficient of
the six connectivity measures as functions of PMA, presented
separately for the four different connection weighting schemes
explored in this work. This coefficient quantifies the closeness
of the relationship between two variables to a monotonic
function; it is close to -1 or 1 if the relationship is highly
monotonic.

Fig. 2. From left to right: example FA atlas, FOD atlas, and tractograms
generated by our computational pipeline for 35 weeks (top) and 44 weeks
(bottom).

An important and encouraging observation is the very strong
relationship between the network connectivity measures and
PMA, manifested by many Spearman coefficients that are very
close to 1 or -1. The values shown in Table I are substantially
higher than the values reported in prior studies that have
analyzed the structural connectivity of individual subjects in
this age range [35]. This shows the remarkable efficacy of the
computational framework proposed in this paper to chart the
normative development of structural brain connectivity in the
perinatal stage.
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TABLE I
SPEARMAN’S RANK CORRELATION COEFFICIENT OF DIFFERENT
NETWORK CONNECTIVITY MEASURES AS FUNCTIONS OF PMA.

EACH ROW PRESENTS THE COEFFICIENTS FOR A DIFFERENT
CONNECTION WEIGHTING SCHEME.

GE LE CC CPL SW RC
FA 0.99 0.97 0.09 -0.99 -0.64 -0.15
SIFT2 0.73 0.45 -0.87 -0.73 -0.83 0.41
1-ODI 0.19 0.10 -0.01 -0.21 0.36 0.16
NDI 0.98 0.97 0.97 -0.96 0.29 -0.92

Overall, the results show that GE, LE, and CPL have
stronger monotonic relationships with PMA than the other
three network measures. Furthermore, connection weighting
based on NDI displays more consistent and stronger rela-
tionship with PMA. For all network measures considered
here except SW, weighting of the connections based on NDI
resulted in the highest (or very close to the highest) Spearman
coefficient. Note that ODI and NDI are meant to provide more
meaningful descriptors of the tissue micro-structure than FA,
which is merely the degree of anisotropy of the best-fitted
diffusion tensor. While ODI is related to the degree of disper-
sion of the neurites, NDI assesses the density of the neurites
as the ratio of the diffusion signal contributed by the intra-
neurite compartment to that of the extra-neurite compartment.
Although FA is a more commonly used measure, in part due to
the lower data acquisition requirements of the diffusion tensor
model compared with NODDI, our results show that weighting
of the connections based on NDI produces the strongest and
most consistent trends. Figure 3 shows the plots of the network
measures as functions of PMA for the connectome that uses
NDI-based edge weighting.

Our observed trends in the structural connectivity metrics
are interesting and conform with prior knowledge (e.g., [36],
[37]). For example, they show a significant increase in net-
work integration (in terms of GE and CPL), which indicates
increased ability of the brain to integrate information from
distant regions of the brain regions, and improved efficiency
of communication between those regions. They also show a
rapid increase in network segregation (in terms of LE and
CC), which indicates the emergence of interconnected clusters
of brain regions and increased ability of the brain to support
information processing by such clusters.

IV. CONCLUSIONS

This work has proposed a computational framework for
studying the development of brain’s structural connectome in
the perinatal stage. The new framework is based on accurate
alignment of white matter structures across cohorts of sub-
jects using tensor- and FOD-based registration. This enables
reducing the inter-subject variability and reconstructing the
developmental trajectories of the normal brain. Our results
show that the proposed framework can unveil strong relation-
ships between several critical measures of brain connectivity
and PMA. Connectome edge weighting based on NDI was
especially effective in uncovering strong and consistent trends
in the structural connectivity measures. The developmental
trends that have been reconstructed in this work can be used as

Fig. 3. Plots of different structural connectivity measures versus PMA for
the connectome edge weighting based on NDI.

reference baselines for comparing and contrasting normal and
abnormal brain development in future works. Future works
may also extend the proposed framework to analyzing brain
connectivity in longitudinal and population studies.

V. ACKNOWLEDGMENTS

This study was supported in part by the National Institutes
of Health (NIH) under grants R01EB031849, R01NS106030,
and R01EB032366; and in part by the Office of the Director
of the NIH under grant S10OD0250111.

The dHCP dataset is provided by the developing Hu-
man Connectome Project, KCL-Imperial-Oxford Consortium
funded by the European Research Council under the European
Union Seventh Framework Programme (FP/2007-2013)/ERC
Grant Agreement no. [319456]. We thank the families who
supported this trial.

VI. COMPLIANCE WITH ETHICAL STANDARDS

This research was conducted retrospectively using open
access human data. MR images were acquired as a part of the
dHCP which was approved by the National Research Ethics
Committee and informed written consent given by the parents
of all participants.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2023. ; https://doi.org/10.1101/2023.03.10.532142doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532142
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

REFERENCES

[1] John C Silbereis, Sirisha Pochareddy, Ying Zhu, Mingfeng Li, and
Nenad Sestan, “The cellular and molecular landscapes of the developing
human central nervous system,” Neuron, vol. 89, no. 2, pp. 248–268,
2016.
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