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ABSTRACT 

Background 

Research has begun to explore the effects of parental genetic nurturing on offspring 

outcomes using polygenic scores (PGSs). However, there are concerns regarding potential 

biases due to confounding when mediating parental phenotypes are included.  

Methods 

Depression, educational attainment and height PGSs were generated for 2680 biological 

parent-offspring trios using genome-wide association study (GWAS) meta-analysis summary 

statistics in a large population study: Generation Scotland. Regression and pathway models 

were estimated incorporating PGSs for both parents and offspring to explore direct 

(offspring PGS) and genetic nurturing (parental PGS) effects on psychological distress, 

educational attainment and height. Genetic nurturing via parental phenotypes were 

incorporated into the models. To explore sources of bias we conducted simulation analyses 

of 10,000 trios using combinations of PGS predictive accuracy and accounted variance.  

Results 

Models incorporating both offspring and parental PGSs suggested positive parental genetic 

nurturing effects on offspring educational attainment, but not psychological distress or 

height. In contrast, models additionally incorporating parental phenotypic information 

suggested positive parent phenotype mediated genetic nurturing effects were at play for all 

phenotypes explored as well as negative residual genetic nurturing effects for height. 10,000 

parent-offspring trio effects (without genetic nurturing effects) were simulated. Simulations 

demonstrated that models incorporating parent and offspring PGSs resulted in genetic 

nurturing effects that were unbiased. However, adding parental phenotypes as mediating 

variables results in biased positive estimates of parent phenotype mediated genetic 

nurturing effects and negative estimates of residual genetic nurturing effects. Biased effects 

increased in magnitude as PGS accuracy and accounted variance decreased. These biases 

were only eliminated when PGSs were simulated to capture the entirety of trait genetic 

variance.  

Conclusion 

Results suggest that in the absence of PGSs that capture all genetic variance, parental 

phenotypes act as colliders in the same way as heritable environments. Relatively simple 

models combining parental and offspring PGSs can be used to detect genetic nurturing 

effects in complex traits. However, our findings suggest alternative methods should be 

utilised when aiming to identify mediating phenotypes and potentially modifiable parental 

nurturing effects. 

INTRODUCTION 
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The standard quantitative genetic model partitions phenotypes into genetic and 

environmental effects (Falconer & Mackay 1996). However, evidence of gene environment 

correlations (rGE) i.e. where an individual’s genotype for a trait is also correlated with 

environmental influences, highlight that these effects may not be independent of one 

another (Gage et al, 2016). One way that genes and environments become correlated is 

through parental genetic nurturing effects. Parents can have a direct genetic effect by 

passing on half of their genome to form the offspring’s own genome, and a genetic 

nurturing effect by shaping the offspring’s rearing environment (Kong et al, 2018) (Figure 1).  

 
Figure 1. Direct genetic and genetic nurturing effects. Figure and legend adapted from 

Kong and colleagues (2018). TP and TM denote, respectively, the alleles transmitted from 

the father and mother. NTP and NTM denote the paternal and maternal alleles that are not 

transmitted. The paths show that the transmitted alleles can influence the phenotype of 

the offspring, XO, through a direct path. The paths also show that both transmitted and 

non-transmitted alleles can influence the parent phenotypes, YP and YM, through which a 

genetic nurturing effect on the offspring phenotype, XO, is observed. Whilst X is an 

individual trait of interest, Y may include a range of phenotypes that is not completely 

known. 

 

Recently, the use and accuracy of polygenic scores (PGSs), derived from a weighted additive 

sum of trait associated alleles, has increased substantially over the last decade. Methods 

employing PGSs have suggested genetic nurturing effects in educational attainment by 

showing that scores were twice as predictive within non-adopted individuals in comparison 

to adopted individuals (Cheesman et al, 2020) as well as adoptive parental PGSs showing 

significant associations with adopted offspring education outcomes (Domingue & Fletcher, 

2020).  

Studies exploring trio PGSs, whereby direct genetic effects are controlled for by using 

offspring PGSs, provide evidence for potential genetic nurturing effects in educational 

attainment (Morris et al, 2020). Moreover, the use of phased family data has allowed for 

the partition and calculation of PGSs for alleles transmitted and not transmitted from parent 

to offspring (Kong et al, 2008). Findings using the non-transmitted PGSs demonstrate that 

genetic nurturing effects are present, albeit much smaller than direct genetic effects (Bates 

et al, 2018; Kong et al, 2018).  

The estimation of genetic nurturing effects may provide a translational advantage by 
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identifying parental behaviours or environmental factors that influence offspring 

phenotypes. This information has the potential to provide actionable findings or 

preventative treatment or policy. This has resulted in a steady accumulation of studies 

utilising PGSs within mediation analyses to explore particular environmental factors through 

which genetic effects may influence a given trait or disorder (Avinun, 2019; Avinun & Hariri, 

2019; Shao et al, 2021; Stephan et al, 2020; Warrier & Baron-Cohen, 2019).  

However, limitations associated with PGS predictive validity (i.e. accuracy of allele effect 

sizes and low numbers of associated genetic variants) are still present and have resulted in 

scores capturing only a fraction of the phenotypic variance for complex human traits 

(Dudbridge, 2013; Mostafavi et al, 2020). This, coupled with the lack of independence 

between genetic and environmental factors poses a challenge for statistical modelling of 

environment mediated PGS-trait associations (Akimova et al, 2020; Pingault et al, 2019), 

suggesting the need to revise the validity of these mediation analyses utilising PGSs.  

This methodological challenge is particularly apparent when exploring parent phenotypes 

and parental genetic nurturing effects, as parent and offspring phenotypes are inevitably 

influenced by direct parental genetic effects. Consequently, the seemingly environmental 

variable (i.e. parent phenotype) is both heritable and genetically correlated with the 

offspring phenotype.  

We sought to demonstrate the methodological challenges introduced with the addition of 

parental phenotypes in statistical models exploring parental genetic nurturing effects. We 

conducted simulations without genetic nurturing effects to highlight sources of genetic 

confounding and other potential biases that impact estimates of genetic nurturing utilising 

PGSs and parental phenotypes. 

Here we focused on three different complex phenotypes: educational attainment, 

psychological distress and height. These phenotypes differ substantially in heritability 

estimates and PGS predictive validity. We utilised up to 2680 biological parent-offspring 

trios within the Generation Scotland sample. We used regression and pathway models to 

explore parental direct (offspring PGSs) and genetic nurturing effects (parental PGSs) on 

offspring phenotypes using trio PGSs to understand where misleading results can arise from 

mediation analysis. 

METHODOLOGY 

PARTICIPANTS 

Participants were from Generation Scotland: The Scottish Family Health Study (GS), a family- 

and population-based study that recruited individuals from 2006 until 2011 (Smith et al, 

2013). Currently GS has genetic, environmental and phenotypic data on over 20,000 

individuals aged 18-99. To explore genetic nurturing effects from both parents to offspring, 

the study sample was limited to individuals with both biological parents genotyped (trios) 

resulting in 2680 parent-offspring trios. This sample includes 1596 singleton offspring, with 

the remaining offspring having at least one sibling within the sample. These sibling effects 

were controlled for by either including them as random effects into mixed linear models, 

where possible, or by including only one sibling in the analysis sample. The analysis samples 

were limited to trios with available phenotypic data on educational attainment (EA), 

psychological distress and height.  
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PHENOTYPES 

Educational Attainment  

EA has relatively high heritability estimates of ~66% (de Zeeuw et al, 2016; Schwabe et al, 

2017) which is likely to yield greater statistical power in comparison to psychological 

distress. Furthermore, significant genetic nurturing associations with EA have been found 

within the literature (Bates et al, 2018; Cheesman et al, 2020; Kong et al, 2018; Morris et al, 

2020). EA was available as a 1-10 point ordinal scale with higher values representing greater 

years of education.  

Psychological Distress 

Psychological distress is a moderately heritable trait, with twin and family study estimates 

ranging from 20-44% (Rijsdijk et al, 2003). The traits was assessed using the General Health 

Questionnaire (GHQ-28), a screening tool used to identify non-psychotic psychiatric 

disorders (Sterling, 2011). The GHQ-28 is well-validated and provides assessments of 

somatic symptoms, anxiety and insomnia, social dysfunction and severe depression 

(Goldberg & Hillier, 1979; Koeter, 1992). Each subsection is assessed using 7 behavioural 

items with a 4-point Likert scale (0-4) exploring the frequencies of experience: “not at all”, 

“no more than usual”, “rather more than usual”, “much more than usual”. This results in a 

minimum score of 0 and maximum score of 84. 

Height 

Similar to EA, height was explored as this is a trait with high heritability, with estimates 

showing approximately 85% of variation to be attributable to genetic differences 

(Silventoinen et al, 2003). Height has also yielded relatively well powered GWAS (Yengo et 

al, 2018) resulting in PGSs with substantial predictive validity  i.e. accounting for a greater 

proportion of phenotypic variance in comparison to depression and educational attainment 

PGSs (Cesarini & Visscher, 2017). Height was measured in centimetres (cm). 

Sample sizes for trios with available phenotypic data were 2,361, 2,315; 2,280; and 2,648 for 

EA, psychological distress, depression, and height, respectively. Information on sample 

demographics for each phenotype as well as information on age and sex distribution in the 

whole GS and trio samples are available in (Table S1). 

GENOTYPES 

Genetic data, single nucleotide polymorphisms (SNPs) were obtained from blood samples 

collected using standard operating procedures and genotyped using the 

IlluminaHumanOmniExpressExome-8v1.0 BeadChip and Infinium chemistry capturing 

700,000 genome-wide SNPs and 250,000 exome SNPs (Kerr 2013). Quality control (QC) of 

genotyped SNPs consisted of the exclusion of SNPs with missingness > 2% and a Hardy 

Weinberg Equilibrium (HWE) p-value of ≤M1M×M10
−6

. SNPs with minor allele frequency (MAF) 

<0.01 and individuals with >3% missing genotypes were excluded from analyses. After QC 

procedures 561,125 SNPs were included in analyses. 
 

POLYGENIC SCORES (PGSs) 
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EA, depression, and height PGSs for GS participants were created using allelic weight 

information from separate large GWAS meta-analyses (Table 2). To avoid over-fitting, GS 

participants were removed from these GWAS meta-analyses. The publicly accessible version 

of the EA GWAS was utilised (23&Me data within the GWAS meta-analyses were removed).  

Table 2. Generation Scotland Polygenic Score Training Data 

Polygenic Score 

(PGS) 

GWAS GWAS Sample Size Phenotype 

Depression (Howard et al, 

2019) 

807,533 Psychological 

Distress / 

Depression 

Educational 

Attainment 

(Lee et al, 2018) 750,403 Educational 

Attainment 

Height (Yengo et al, 2018) 698,529 Height 
 

Note. GWAS, Genome-wide Association Study 

PRSice2 (Choi et al, 2020) with the default clumping (LD r2 < 0.1 across a 250 kb window) 

algorithm was used to compute the PGSs. To avoid biases that may arise in the clumping of 

SNPs from family-based data (GS data), an external reference panel (1000G linkage 

disequilibrium (LD) reference panel) was utilised. 

Multiple PGSs were created using SNPs with varying trait association p-value thresholds 

(ranging from p <  5x10
-8

 to p <1). Identifying a single threshold that (a) results in PGSs that 

are not overfit to GS data and (b) is optimal for each phenotype is extremely difficult, 

especially as the traits being explored are substantially different to one another. To 

circumvent these potential limitations a principal components analysis was conducted on 

the different sets of PGSs for each phenotype separately and the first principal 

component/eigenvector (PC of PGSs) values were extracted. This method has been shown 

to produce scores that are not overfit and have increased predictive ability (Coombes et al, 

2020).  

The PC of PGSs were highly correlated with all different sets of PGSs, and each PGS 

uniformly loaded onto the PC (Table S2). PGS (including PC of PGSs)-phenotype associations 

were explored (Table S3) and the PC of PGSs values were found to be significantly 

associated with the relevant phenotype. The PC of PGSs was utilised as the trait PGS, from 

here onwards, this will be referred to as the PGS.  

STATISTICAL ANALYSES 

Generation Scotland Analyses 

All statistical analyses were conducted in R (Team, 2020). Pearson’s correlation tests were 

conducted to explore trio PGS and phenotype correlations (S4). PGSs were standardised to 

have a mean of 0, and standard deviation of 1 and all variables were then pre-corrected for 

covariates; the first 20 genetic PCs of offspring and parents (to control for population 

stratification and cryptic relatedness), offspring and parental age and offspring sex. The 

residualised variables were used in subsequent regression and pathway models.  
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Regression Analyses 

Mixed effect multiple regression analyses were conducted (function ‘lmer’, package 

‘lmerTest’) within R. Four separate models were explored and compared for the different 

phenotypes (Table 3): 

Table 3. Regression Model Equations 

Model Equation 

I ������ ~ ���	 
 ���
��
��� 
 	������ ������ 

II ������ ~ ���	 
 ���	 
 ���	 
 ���
��
��� 
 	������ ������ 

III ������ ~ ���	 
 ������ 
 ������ 
 ���
��
��� 
 	������ ������ 

IV ������ ~ ���	 
 ���	 
 ���	 
 ������ 
 ������ 
 ���
��
��� 
 	������ ������ 
 

Note. Pheno, Phenotype; PGS, polygenic score; m/p/o, maternal, paternal, offspring respectively. 

 

Model I aimed to capture direct genetic effects, i.e. the risk-associated effect of the 

offspring’s own genome (oPGS) on its phenotype. In contrast, model II aimed to capture 

both direct and parental genetic nurturing effects. If model II has a statistically better fit 

than model I, then any additional accounted variance can be attributed to parental genetic 

nurturing effects. Models III and IV aimed to provide additional insight using parental 

phenotypes as well as provide a comparison for the subsequent pathway models outlined 

below.   

Offspring phenotypes (oPheno); EA, psychological distress, and height were included as 

dependent variables. Trio EA, depression and height PGSs (oPGS, mPGS, pPGS) and parental 

phenotypes (mPheno, pPheno) were included as predictors. Sibling effects were modelled as 

varying intercepts (random effects) for each sibling group to account for other sources of 

correlation between sibling phenotypes and avoid pseudoreplication. Sibling groups were 

identified as trio offspring who had the same parents.  

Likelihood ratio tests were explored (r function ‘anova’) to compare the model fit of the four 

different models for each phenotype. Results include false discovery rate (FDR) adjustments 

for multiple testing (function ‘p.adjust’, q-value threshold <0.05) arising from the model 

comparisons (Table S6). The regression models were also explored using singleton, male and 

female offspring samples separately (Table S5).  

Pathway Analyses 

Pathway analyses were conducted to explore the parental genetic and phenotypic effects on 

offspring traits. A key utility of pathway analyses is that the effect and proportion of 

variance captured by specific paths can be estimated. Figure 2 presents a visualisation of 

the difference between multiple regression and pathway models.  
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Figure 2. Visualisation of Multiple Regression and Pathway Models. PGS, polygenic score. 

Left, shows associations between the independent variables (offspring and parental PGSs 

and parental phenotypes) and the dependent variable (offspring phenotype). Right, 

shows associations between independent variables with the dependent variable whilst 

also capturing associations (mediation) between the independent variables forming 

pathways. 

 

Pathway analyses were conducted using the software package Lavaan (Rosseel, 2012; 2018). 

Two pathway models with varying levels of complexity, labelled; simple and extended, were 

explored (Figure 3). Similar to the regression analyses, offspring EA, psychological distress 

and height (oPheno) as well as trio EA, depression and height PGSs (oPGS, mPGS, pPGS) 

were included as predictors within the simple pathway analyses. The extended model builds 

upon this by further including parental phenotypes (mPheno, pPheno). Associations within 

the simple and extended pathway models are outlined in Table 4. The coefficients of 

associations between parental PGSs and offspring PGSs are fixed to 0.5, as parents and 

offspring are expected to share ~50% of their genome. Pathway models were also 

conducted where all path coefficients were freely estimated, using singleton offspring (to 

eliminate sibling effects), only female and male offspring as well as for maternal and 

paternal duos separately (Table S7). 

 

Figure 3. Simple and Extended Pathway Models. PGSs, polygenic scores; m, maternal; p, paternal; 

o, offspring.  Left, Simple Model. Right, Extended Model. Associations between parental PGSs and 

offspring PGSs are fixed to 0.5 as parents and offspring share ~50% of their genome. Paths 0.5*a 

represent direct genetic effects of parental PGSs on offspring phenotype. Paths b and c represent 

genetic nurturing effects of parental PGSs on offspring phenotype. Paths d*f and e*g represent 

the effect of parental PGS on offspring phenotype mediated by the parental phenotypes. 

Coloured pathways represent genetic nurturing effects. 

 

Table 4. Pathway Model Equations 
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Pathway Equation 

a ������ ~ ���	 

b ������ ~ ���	 

c ������ ~ ���	 

d ������ ~ ���	 

e ������ ~ ���	 

f ������ ~ ������ 

g ������ ~ ������ 

h ���	 ~ ���	 

i ���	 ~ ���	 
 

Abbreviations. Pheno, Phenotype; PGS, polygenic score; m/p/o, maternal, paternal, 

offspring respectively. 

  

Simulation Analyses 

Simulations were conducted to explore how results of the pathway models outlined above 

differ when using PGSs with varying levels of predictive ability. 10,000 trio members with 

respective genetic, phenotypic and PGS variables were simulated. These simulations did not 

include any genetic nurturing effects. 

Simulated phenotypic variables had a variance of 1. Additive genetic variance was computed 

as the heritability multiplied by the phenotypic variance. Genetic variance was represented 

as two separate entities; tagged genetic variance, aiming to capture variance attributable to 

genotyped variants, and non-tagged genetic variance, aiming to capture variance 

attributable to non-genotyped variants. All remaining variance was attributed to 

environmental variance.  

The parental genetic variables were constructed as the sum of tagged and non-tagged 

genetic counterparts. Tagged genetic variable values were simulated from a normal 

distribution with a mean of zero, and variance equal to the tagged genetic variance. Non-

tagged genetic variable values were simulated from a normal distribution with a mean of 

zero, and variance equal to the non-tagged genetic variance.  

Similarly, the offspring genetic variables were constructed as the sum of tagged and non-

tagged genetic counterparts. Offspring tagged and non-tagged genetic variables were 

simulated as the average of the summed respective tagged and non-tagged maternal and 

paternal genetic variables, with the addition of a respective tagged and non-tagged 

segregation variable aiming to capture variability that occurs from random segregation of 

genes observed during meiosis (Yanowitz, 2010). The tagged and non-tagged segregation 

variable values were simulated from a normal distribution with a mean of zero, and variance 

equal to half the tagged and non-tagged genetic variance, respectively.  

Separate environmental variables were constructed for each member of the trio. These 

variables were simulated from a normal distribution with a mean of zero, and a variance 

equal to the environmental variance. 

The phenotypic variables for each member of the trio were then constructed as the sum of 

the respective trio member’s genetic and environmental variable values. PGS variables were 

derived from the trio member's respective tagged genetic component. Different scenarios, 
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with 15 replications each were conducted with a range of plausible trait heritabilities (0.3, 

0.6, 0.9) and proportion of tagged genetic variances (0.2, 0.6, 1) for the findings to have 

broad applicability to the study of a wide variety of traits/complex trait architectures.  

RESULTS 

Generation Scotland Results 

Offspring PGSs are correlated ~0.5 with parental PGSs. Furthermore, weak significant 

associations for educational attainment (EA) and height PGS correlations are observed 

between the parents, consistent with evidence suggesting the presence of assortative 

mating (Conley et al, 2016; Hugh-Jones et al, 2016). Similarly, strong evidence of 

correlations between all trio members’ phenotypes was observed (Table S4). 

The results of the four different regression models exploring direct and genetic nurturing 

effects are listed in Table S5. Log-likelihood comparisons of models I and II sought to identify 

genetic nurturing effects captured by parental PGSs. Results suggest that model II (including 

parental PGSs) accounts for greater variance and is significantly better than model I for EA 

only (Table 5). For all model comparison results see Table S6). 

Notable results include negative and highly significant � coefficient estimates for parental 

height PGSs when included in models alongside parental height phenotypes (model IV). 

Interestingly, these estimates are positive and non-significant when included in models 

without parental phenotypes (model II).  

Table 5. Regression Model I and II Log-Likelihood Comparisons 

Phenotype Model logLik 

Chisq 

(χ2) Df P-Value 

FDR  

P-Value 

Psychological 

Distress 

I -7969.203 

II -7968.833 0.740 2.000 0.691 1.000 

Educational 

Attainment 

I -4036.847 
        

II -4030.877 11.939 2.000 0.003 0.006 

Height 
I -7985.51 

        

II -7981.57 7.87 2.00 0.02 0.04 

Abbreviations. logLik; Log Likelihood; Chisq, Chi Squared Value; Df, degrees of freedom; FDR, 

False Discovery Rate. 

 

Path � coefficient estimates, standard errors and p-values from the simple and extended 

pathway analyses are presented in Figure 4.  
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A  

B  

C  

Figure 4. Simple and Extended Pathway Models Results. Left, simple; right, extended pathway 

models. Paths between parent PGSs and offspring phenotypes via offspring PGSs represent direct 

genetic effects of parental PGSs on offspring phenotype. The  coefficients paths between parent 

PGSs and offspring PGSs are fixed to 0.5. Paths b and c represent genetic nurturing effects of 

parental PGSs on offspring phenotype. Paths d*f and e*g represent the effect of parental PGS on 

offspring phenotype mediated by the parental phenotypes. Panels A, B, C present path  

coefficients and standard errors for educational attainment, psychological distress and height, 

respectively. Grey paths represent associations that are not statistically significant (p>0.05). 

 

The simple model results for EA suggest clear evidence of both paternal and maternal 

genetic nurturing effects on offspring educational attainment (paths b and c, =0.117, 

P<0.001, =0.095, P<0.001 respectively) which support and build upon the findings of the 

regression model comparisons. Paths representing the association between the trio PGSs 

and their respective phenotypes in the extended model, are quite different to each other, 
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with the parental PGS and parental phenotypic associations being almost ~2 fold greater 

than the offspring PGS and offspring phenotypic association (paths a, d and e; �=0.192, 

P<0.001; �=0.237, P<0.001; �=0.285, P<0.001, respectively). Furthermore, the inclusion of 

parental phenotypes within the extended model seem to result in a decrease in paternal 

genetic nurturing effect (path b, from �=0.117, P<0.001 to �=0.074, P<0.001) and the 

maternal genetic nurturing effect becoming redundant (path c) i.e. non-significant. 

The simple and extended models show no evidence of genetic nurturing effects (panel A, 

paths b and c) on psychological distress. Notably, the extended model paths d (�=0.453, 

P<0.05) and e (�=0.992, P<0.001), exploring parental depression PGS and parental 

psychological distress associations, seem to be quite different, with maternal associations 

being ~2 fold greater than paternal associations.  

In contrast, associations between parental and offspring psychological distress from 

extended models (paths f and g, �=0.077, P<0.05 and �=0.113, P<0.001) suggests parental 

genetic nurturing effects mediated by parental psychological distress are at play. In fact, this 

pattern of mediated parental genetic nurturing effects are/were observed for all 

phenotypes.  

The simple pathway model results suggest a small positive maternal genetic nurturing effect 

on offspring height (�=0.417, P<0.05). Extended model results show the parental genetic 

nurturing effect (paths b and c) become negative and highly significant (�=-1.344, P<0.001; 

�= -1.217, P<0.001), which is contradictory to the results from the simple model.  

Patterns of results, and estimates are similar when all coefficients are freely estimated, as 

well as when samples are limited to singletons, female offspring, male offspring, maternal 

duos and paternal duos (Table S7). 

Simulation Results 

Regression and pathway analyses were conducted using simulated trio data. Each analysis 

was repeated 15 times. As no genetic nurturing effects were simulated, it is expected that 

paths b, c, f and g of the pathway models will be approximately 0 and non-significant when 

PGSs are adequately capturing genetic variance (Figure 3).  

Figure 5 presents � coefficient boxplots of paternal genetic nurturing paths highlighted in 

Figure 3. This figure shows that when the PGSs are perfect measures of the genetic 

variance, i.e. tags the entirety of trait genetic variance, the estimated paternal genetic 

nurturing (paths b and f) coefficients are close to 0. In all other scenarios, extended model 

estimates for path b are always negative and estimates for f are always positive. These 

effects are exacerbated as trait heritability increases and variance captured by PGSs 

decreases. Results from regression models, and maternal genetic nurturing paths show 

similar � coefficient estimate patterns (Figure S1-3). 
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Figure 5. Paternal Genetic Nurturing Effects. Boxplots represent � coefficients from 

15 replication analyses. Colours present simulated polygenic scores (PGS) capturing 

varying levels of trait genetic variance. X-axis presents varying levels of simulated 

trait heritability; y- axis presents the beta coefficients of genetic nurturing effects. 

The left and middle plots present boxplots representing � coefficient estimates of 

path b; the association between offspring phenotype and paternal PGS from the 

simple and extended pathway models respectively. The right plot presents boxplots 

representing � coefficient estimates of path f from the extended pathway model; 

the association between offspring phenotype and paternal phenotype. 

  

DISCUSSION 

The present study utilises polygenic scores (PGSs) informed by large international GWAS 

consortia and 2680 Generation Scotland trios. Regression and pathway models using 

available GS data found contradicting results. Models with only trio PGSs (regression models 

II and simple pathway models) showed evidence of genetic nurturing effects for educational 

attainment (EA) only. However, the addition of parental phenotypes into models (regression 

models IV and extended pathway models) showed parental phenotype mediated genetic 

nurturing effects for all phenotypes explored. Moreover, highly significant and negative 

residual parental genetic nurturing effects (i.e. not mediated by parental phenotypes) were 

observed for height.  

Analyses of simulated genetic nurturing models showed that utilising PGSs that did not 

capture the total genetic variance, whilst including both parental PGSs and parental 

phenotypes as predictors, resulted in biased estimates of nurturing effects. Parental 

phenotypes were always positively associated with the offspring phenotypes (paths f and g), 

resulting in what seemed to be significant mediated parental genetic nurturing effects, 

despite expectations of null associations (as genetic nurturing effects were not simulated). 

Significant associations will arise between parental phenotypes and offspring phenotypes 

due to shared genetic variance that is not adequately accounted for by the PGSs within the 

models; leading to the potentially erroneous interpretation of significant mediated parental 

genetic nurturing effects. Biased estimates were also observed for the residual parental 

genetic nurturing effects. These estimates were negative, again despite expectations of null 

associations. Results further highlight that these upward and downward biases were 

exacerbated, as PGSs became poorer measures of genetic variance and trait heritability 
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increased. These biases were only eliminated when PGSs were simulated to capture the 

entirety of trait genetic variance. Thus, in the absence of PGSs that capture all of the genetic 

variance, parental phenotypes act as colliders in the same way as heritable environments  

(Akimova et al, 2020).  

Results using simulated data highlight the confounded effects in the models including 

parental phenotypes that are not necessarily captured by observable data. Confounded 

effects can explain the discrepancy observed between simple and extended model results 

using GS data. In fact, GS height extended model results were highly comparable to the 

pattern of results using simulated data, which may result from the lack of/negligible genetic 

nurturing effects as suggested by the GS height simple model results. In contrast, results 

from analyses using GS EA and psychological distress being dissimilar to that observed from 

analyses using simulated data, may suggest genuine genetic nurturing effects at play.  

The extended pathway models using GS data, also included discrepancies observed in the 

association effect sizes between respective trio PGS and phenotype associations. Maternal 

PGS-phenotype associations were much larger than that observed for fathers when 

exploring psychological distress, suggesting potential sex interaction effects, which may 

require further investigation. Similarly, parental PGS-phenotype associations were larger 

than observed offspring PGS-phenotype associations for EA. This may be attributable to the 

fact that genetic nurturing effects play a significant role in EA, and the absence of 

grandparent PGSs within the models may result in parental PGS-phenotype associations 

encompassing additional genetic nurturing effects. These effects were accounted for within 

offspring PGS-phenotype associations, as parent data is included in the models.  

Overall, results suggest that the regression and simple pathway models exploring offspring 

PGS (direct genetic effects) and additional parental PGS (genetic nurturing effects) 

associations with offspring phenotypes, pose a straightforward and unbiased method to 

explore genetic nurturing effects.  

Log-likelihood comparisons of regression models (I and II) and simple pathway model results 

also suggested evidence of parental genetic nurturing effects for EA, but not other explored 

phenotypes. The EA regression model with all trio member’s PGS included accounted for 

greater variance and showed a significantly better fit in comparison to the model using only 

the offspring PGS. This supports much of the findings from the literature suggesting genetic 

nurturing effects are detectable using current EA PGSs (Bates et al, 2018; Kong et al, 2018).  

Whilst these findings highlight future research directions, the biased results using simulated 

data clearly show that the extended models are confounded. It is evident that without 

essentially perfect PGSs, accurate quantification of genetic nurturing effects from extended 

models is not possible. 

Future work can include the adaptation of these models to utilise data on different traits 

between parents and offspring e.g. parent EA PGS and offspring depression PGS to explore 

genetic nurturing effects of parental EA on offspring depression. It is important to keep in 

mind differences in GWAS power, and thus, discrepant predictive validity of these PGSs may 

result in further biases. Ideally, additional simulation analyses should be conducted to 

explore the impact of differences in parent and offspring PGS power on results.  
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As with all research designs, some limitations should be considered when interpreting the 

results presented. Here trio data associations were simulated using random sampling from 

pre-defined variances, as opposed to simulating individual genotypes. Whilst this was 

adequate in highlighting the biases that may arise within parental genetic nurturing models 

proposed; it is a simplistic representation of the effects shared between biological parent-

offspring trios. For example, genetic nurturing effects may be at play via both parental 

transmitted and non-transmitted alleles. Thus, potential differences in how biases may arise 

within these specific paths were not observed. Moreover, inaccurate effect sizes obtained 

from GWAS summary statistics may also contribute to noise in PGSs, which is another level 

of complexity not modelled here. Additionally, it is important to note that shared 

environmental effects were not modelled in analyses here, however, may also drive 

significant associations and confound effects within the extended models. Identifying and 

modelling all relevant environmental effects is likely not possible, and thus, these model 

results may always be biased to some extent. 

Another limitation not formally explored is the impact of assortative mating within these 

models. In fact, evidence of assortative mating has been observed for many complex 

behavioural traits, including phenotypes explored within this study (Hugh-Jones et al, 2016; 

Mathews & Reus, 2001; Stulp et al, 2017). Strong evidence of assortative mating, yet limited 

evidence of genetic nurturing effects for height has been shown within the literature (Stulp 

et al, 2017). Here, unbiased results of GS height analyses showed no evidence of genetic 

nurturing, which suggests that any potential bias arising from assortative mating effects are 

likely to be very small.  

This study demonstrates that pathway models are a simple and useful method to explore 

and quantify genetic nurturing effects using offspring phenotypic and trio PGS data. 

However, it is important to be aware of biases which arise when including parental 

phenotype mediated genetic nurturing paths. The improvement of PGSs will likely fall short 

for the level required for clear interpretation of these models. These results suggest 

alternative methods should be utilised when exploring factors through which genetic 

nurturing effects may be at play. 

DATA & CODE AVAILABILITY 

Data is available to researchers upon application to http://generationscotland.org. Code is 

available from https://github.com/melisachuong/rGE_Depression . 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.10.532118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532118
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

REFERENCES 

Akimova, E. T., Breen, R., Brazel, D. M. & Mills, M. C. (2020) Heritable environments: Bias due to 

conditioning on a collider in models with polygenic scores. 

Avinun, R. (2019) Educational Attainment Polygenic Score is Associated with Depressive Symptoms 

via Socioeconomic Status: A Gene-Environment-Trait Correlation. 

Avinun, R. & Hariri, A. R. (2019) A polygenic score for body mass index is associated with depressive 

symptoms via early life stress: Evidence for gene-environment correlation. Journal of Psychiatric 

Research. 

Bates, T. C., Maher, B. S., Medland, S. E., McAloney, K., Wright, M. J., Hansell, N. K., Kendler, K. S., 

Martin, N. G. & Gillespie, N. A. (2018) The Nature of Nurture: Using a Virtual-Parent Design to Test 

Parenting Effects on Children's Educational Attainment in Genotyped Families. Twin Res Hum Genet, 

21(2), 73-83. 

Cesarini, D. & Visscher, P. M. (2017) Genetics and educational attainment. npj Science of Learning. 

Cheesman, R., Hunjan, A., Coleman, J. R. I., Ahmadzadeh, Y., Plomin, R., McAdams, T. A., Eley, T. C. & 

Breen, G. (2020) Comparison of Adopted and Nonadopted Individuals Reveals Gene–Environment 

Interplay for Education in the UK Biobank. Psychological Science. 

Choi, S. W., Mak, T. S. H. & O’Reilly, P. F. (2020) Tutorial: a guide to performing polygenic risk score 

analyses. Nature Research. 

Conley, D., Laidley, T. M., Boardman, J. D. & Domingue, B. W. (2016) Changing Polygenic Penetrance 

on Phenotypes in the 20th Century Among Adults in the US Population. Scientific Reports, 6. 

Coombes, B. J., Ploner, A., Bergen, S. E. & Biernacka, J. M. (2020) A principal component approach to 

improve association testing with polygenic risk scores. Genet Epidemiol, 44(7), 676-686. 

de Zeeuw, E. L., van Beijsterveldt, C. E. M., Glasner, T. J., de Geus, E. J. C. & Boomsma, D. I. (2016) 

Arithmetic, reading and writing performance has a strong genetic component: A study in primary 

school children. Learning and Individual Differences. 

Domingue, B. W. & Fletcher, J. (2020) Separating Measured Genetic and Environmental Effects: 

Evidence Linking Parental Genotype and Adopted Child Outcomes. Behavior Genetics. 

Dudbridge, F. (2013) Power and Predictive Accuracy of Polygenic Risk Scores. PLoS Genetics. 

Gage, S. H., Smith, G. D., Ware, J. J., Flint, J. & Munafò, M. R. (2016) Correction: G = E: What GWAS 

Can Tell Us about the Environment. PLOS Genetics, 12(5), e1006065-e1006065. 

Goldberg, D. P. & Hillier, V. F. (1979) A scaled version of the General Health Questionnaire. 

Psychological Medicine. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.10.532118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532118
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Howard, D. M., Adams, M. J., Clarke, T. K., Hafferty, J. D., Gibson, J., Shirali, M., Coleman, J. R. I., 

Hagenaars, S. P., Ward, J., Wigmore, E. M., Alloza, C., Shen, X., Barbu, M. C., Xu, E. Y., Whalley, H. C., 

Marioni, R. E., Porteous, D. J., Davies, G., Deary, I. J., Hemani, G., Berger, K., Teismann, H., Rawal, R., 

Arolt, V., Baune, B. T., Dannlowski, U., Domschke, K., Tian, C., Hinds, D. A., Trzaskowski, M., Byrne, E. 

M., Ripke, S., Smith, D. J., Sullivan, P. F., Wray, N. R., Breen, G., Lewis, C. M. & McIntosh, A. M. (2019) 

Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the 

importance of the prefrontal brain regions. Nature Neuroscience. 

Hugh-Jones, D., Verweij, K. J. H., St. Pourcain, B. & Abdellaoui, A. (2016) Assortative mating on 

educational attainment leads to genetic spousal resemblance for polygenic scores. Intelligence. 

Koeter, M. W. J. (1992) Validity of the GHQ and SCL anxiety and depression scales: A comparative 

study. Journal of Affective Disorders. 

Kong, A., Masson, G., Frigge, M. L., Gylfason, A., Zusmanovich, P., Thorleifsson, G., Olason, P. I., 

Ingason, A., Steinberg, S., Rafnar, T., Sulem, P., Mouy, M., Jonsson, F., Thorsteinsdottir, U., 

Gudbjartsson, D. F., Stefansson, H. & Stefansson, K. (2008) Detection of sharing by descent, long-

range phasing and haplotype imputation. Nat Genet, 40(9), 1068-75. 

Kong, A., Thorleifsson, G., Frigge, M. L., Vilhjalmsson, B. J., Young, A. I., Thorgeirsson, T. E., 

Benonisdottir, S., Oddsson, A., Halldorsson, B. V., Masson, G., Gudbjartsson, D. F., Helgason, A., 

Bjornsdottir, G., Thorsteinsdottir, U. & Stefansson, K. (2018) The nature of nurture: Effects of 

parental genotypes. Science, 359(6374), 424-428. 

Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., Nguyen-Viet, T. A., Bowers, P., 

Sidorenko, J., Karlsson Linnér, R., Fontana, M. A., Kundu, T., Lee, C., Li, H., Li, R., Royer, R., Timshel, P. 

N., Walters, R. K., Willoughby, E. A., Yengo, L., Agee, M., Alipanahi, B., Auton, A., Bell, R. K., Bryc, K., 

Elson, S. L., Fontanillas, P., Hinds, D. A., McCreight, J. C., Huber, K. E., Litterman, N. K., McIntyre, M. 

H., Mountain, J. L., Noblin, E. S., Northover, C. A. M., Pitts, S. J., Sathirapongsasuti, J. F., Sazonova, O. 

V., Shelton, J. F., Shringarpure, S., Tian, C., Vacic, V., Wilson, C. H., Beauchamp, J. P., Pers, T. H., 

Rietveld, C. A., Turley, P., Chen, G. B., Emilsson, V., Meddens, S. F. W., Oskarsson, S., Pickrell, J. K., 

Thom, K., Timshel, P., Vlaming, R. d., Abdellaoui, A., Ahluwalia, T. S., Bacelis, J., Baumbach, C., 

Bjornsdottir, G., Brandsma, J. H., Concas, M. P., Derringer, J., Furlotte, N. A., Galesloot, T. E., Girotto, 

G., Gupta, R., Hall, L. M., Harris, S. E., Hofer, E., Horikoshi, M., Huffman, J. E., Kaasik, K., Kalafati, I. P., 

Karlsson, R., Kong, A., Lahti, J., van der Lee, S. J., Leeuw, C. d., Lind, P. A., Lindgren, K. O., Liu, T., 

Mangino, M., Marten, J., Mihailov, E., Miller, M. B., van der Most, P. J., Oldmeadow, C., Payton, A., 

Pervjakova, N., Peyrot, W. J., Qian, Y., Raitakari, O., Rueedi, R., Salvi, E., Schmidt, B., Schraut, K. E., 

Shi, J., Smith, A. V., Poot, R. A., et al (2018) Gene discovery and polygenic prediction from a genome-

wide association study of educational attainment in 1.1 million individuals. Nature Genetics. 

Mathews, C. A. & Reus, V. I. (2001) Assortative mating in the affective disorders: A systematic review 

and meta-analysis. Comprehensive Psychiatry, 42(4), 257-262. 

Morris, T. T., Davies, N. M., Hemani, G. & Smith, G. D. (2020) Population phenomena inflate genetic 

associations of complex social traits. Science Advances, 6(16), eaay0328-eaay0328. 

Mostafavi, H., Harpak, A., Agarwal, I., Conley, D., Pritchard, J. K. & Przeworski, M. (2020) Variable 

prediction accuracy of polygenic scores within an ancestry group. eLife, 9. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.10.532118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532118
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Pingault, J. B., Rijsdijk, F., Schoeler, T., Choi, S. W., Selzam, S., Krapohl, E., O’Reilly, P. F. & Dudbridge, 

F. (2019) Estimating the sensitivity of associations between risk factors and outcomes to shared 

genetic effects. 

Rijsdijk, F. V., Snieder, H., Ormel, J., Sham, P., Goldberg, D. P. & Spector, T. D. (2003) Genetic and 

environmental influences on psychological distress in the population: General Health Questionnaire 

analyses in UK twins. Psychol Med, 33(5), 793-801. 

Rosseel, Y. (2012) Lavaan: An R package for structural equation modeling. Journal of Statistical 

Software. 

Rosseel, Y. (2018) The lavaan tutorial. Department of Data Analysis Ghent University (Belgium). 

Schwabe, I., Janss, L. & van den Berg, S. M. (2017) Can we validate the results of twin studies? A 

census-based study on the heritability of educational achievement. Frontiers in Genetics. 

Shao, N., Gong, Y., Wang, X., Wei, J., Shi, J., Ding, H., Zhang, M., Kang, C., Wang, S., Chen, L., Yu, Y. & 

Han, J. (2021) Effects of polygenic risk score, childhood trauma and resilience on depressive 

symptoms in Chinese adolescents in a three-year cohort study. Journal of Affective Disorders, 282, 

627-636. 

Silventoinen, K., Sammalisto, S., Perola, M., Boomsma, D. I., Cornes, B. K., Davis, C., Dunkel, L., De 

Lange, M., Harris, J. R., Hjelmborg, J. V. B., Luciano, M., Martin, N. G., Mortensen, J., Nisticò, L., 

Pedersen, N. L., Skytthe, A., Spector, T. D., Stazi, M. A., Willemsen, G. & Kaprio, J. (2003) Heritability 

of Adult Body Height: A Comparative Study of Twin Cohorts in Eight Countries. 

Smith, B. H., Campbell, A., Linksted, P., Fitzpatrick, B., Jackson, C., Kerr, S. M., Deary, I. J., MacIntyre, 

D. J., Campbell, H., McGilchrist, M., Hocking, L. J., Wisely, L., Ford, I., Lindsay, R. S., Morton, R., 

Palmer, C. N. A., Dominiczak, A. F., Porteous, D. J. & Morris, A. D. (2013) Cohort profile: Generation 

scotland: Scottish family health study (GS: SFHS). The study, its participants and their potential for 

genetic research on health and illness. International Journal of Epidemiology. 

Stephan, Y., Sutin, A. R., Luchetti, M., Caille, P. & Terracciano, A. (2020) An examination of potential 

mediators of the relationship between polygenic scores of BMI and waist circumference and 

phenotypic adiposity. 

Sterling, M. (2011) General Health Questionnaire-28 (GHQ-28) Article in. Journal of Physiotherapy. 

Stulp, G., Simons, M. J. P., Grasman, S. & Pollet, T. V. (2017) Assortative mating for human height: A 

meta-analysis. American Journal of Human Biology. 

Team, R. C. (2020) R: A language and environment for statistical computing. 

Warrier, V. & Baron-Cohen, S. (2019) Childhood trauma, life-time self-harm, and suicidal behaviour 

and ideation are associated with polygenic scores for autism. Molecular Psychiatry. 

Yanowitz, J. (2010) Meiosis: Making a break for it. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.10.532118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532118
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Yengo, L., Sidorenko, J., Kemper, K. E., Zheng, Z., Wood, A. R., Weedon, M. N., Frayling, T. M., 

Hirschhorn, J., Yang, J. & Visscher, P. M. (2018) Meta-analysis of genome-wide association studies for 

height and body mass index in ~700 000 individuals of European ancestry. Human Molecular 

Genetics. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.10.532118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532118
http://creativecommons.org/licenses/by-nc-nd/4.0/

