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ABSTRACT 

Biotic interactions are expected to influence species’ responses to climate change, but they are 

usually not included when predicting future range shifts. We assessed the importance of biotic 

interactions to understand future consequences of climate and land use change for biodiversity 

using as a model system the brown bear (Ursus arctos) in Europe. By including biotic 

interactions using the spatial variation of energy contribution and habitat models of each food 

species, we showed that the use of biotic factors considerably improves our understanding of the 

distribution of brown bears. Predicted future range shifts, which included changes in the 

distribution of food species, varied greatly when considering various scenarios of change in 

biotic factors, warning about future indirect climate change effects. Our study confirmed that 

advancing our understanding of ecological networks of species interactions will improve future 

scenarios of biodiversity change, which is key for conserving biodiversity and ecosystem 

services. 

 

Keywords: biotic interactions, climate change, food-web, GBIF, habitat, human impact, land 

use, open science, species distribution model, Ursus arctos 

 

INTRODUCTION 

In the current biodiversity crisis1,2, understanding how the distribution of species will be 

impacted by global changes, such as climate and land use changes3,4, is critical for conserving 

biodiversity and securing associated ecosystem services5-7. One of the major outstanding 

challenges is to capture the complexity of biological responses when making predictions about 

how species will respond to global changes. Species distributions are indeed governed by a 
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complex set of abiotic and biotic factors8,9. However, most existing models predicting how 

species will respond to global changes are largely based on abiotic factors, especially climate. 

This is, in part, a result of the perceived differences in scale with abiotic factors thought to 

operate at larger spatial scales10,11 and biotic factors, such as species interactions, being 

considered more important at local scales within communities10,11. Such reliance on abiotic 

factors when explaining large scale species distributions has also resulted from extremely sparse 

data on species interactions. This knowledge gap on species interactions, also termed the 

Eltonian shortfall (understood as the lack of knowledge on intra- and interspecific interactions, 

but also as the physiological tolerances of species and the effects of species on ecosystems), 

severely limits our understanding of large-scale biodiversity patterns12.  

Despite these limitations, studies are beginning to incorporate species interactions into 

species distribution models (SDMs), which are the most widely used tool for understanding the 

role of environmental factors in the geographic distribution of species and for predicting 

potential shifts due to global changes13. These studies have demonstrated that adding 

information on other species into SDMs adds explanatory and predictive power to models14-16, 

suggesting that species interactions are a valuable component in predictive models17. However, 

the approaches used to include species interactions into SDMs usually face three important 

limitations: (1) they assume spatial co-occurrence among species as interaction18,19, (2) they 

typically use a binary measure for interaction, e.g., there is/there is not interaction between 

SpeciesA and SpeciesB, and (3) it is assumed there is no spatial variation in the interaction, e.g., 

interaction between SpeciesA and SpeciesB is considered constant in all ecosystems20. These 

latter three processes would be more accurately quantified on the basis of: (1) real data on 

ecological interactions, e.g., studying the trophic interactions among species; (2) describing the 

interactions among species with quantitative measures, e.g., measuring the relative energy 

obtained from food/consumed species; and (3) incorporating the spatial variability of those 

interactions among different ecosystems21,22, e.g., measuring different values of the relative 

energy from food/consumed species across geographic space. Therefore, to advance our 
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understanding of species distributions, it is necessary to explicitly account for both abiotic and 

biotic factors23,24 based on detailed knowledge (Fig. 1). 

Here, we assess whether considering real data on biotic interactions at large spatial 

scales helps to understand future consequences of global change for biodiversity. Specifically, 

we tested (i) how biotic interactions change over space, (ii) whether species’ geographic 

distributions are better explained by quantitative or binary proxies of biotic interactions, (iii) 

whether species geographic distributions are better explained when combining biotic and abiotic 

factors, and (iv) whether or not future range shifts differ when considering biotic factors.  

We assess these questions using trophic interactions as they are among the most 

important in determining species distributions and are fundamental to ecosystems25,26. We use 

the brown bear Ursus arctos in Europe as our model system for several reasons: it is a very 

well-studied species/area, from an ecosystem perspective the brown bear is a top predator and 

an omnivorous generalist species interacting through its diet with many species, with a very 

strong impact on ecosystems27, and from a conservation point of view, the brown bear is a 

keystone species in the best conservation areas of the continent27 and several of its 

subpopulations are at risk of extinction28. Thus, advances in our model system will target a wide 

range of species and communities with high conservation value. We constructed a database of 

more than 3 million high resolution (1 km2) brown bear occurrences with data from 14 

subpopulations across Europe and Turkey (Occurrence Database; Supplementary Tables 1-3 

and Supplementary Fig. 1; Methods). To obtain detailed knowledge of biotic interactions, we 

reviewed 47 studies of brown bear diet in this area, constructed a unique, highly detailed, 

spatially-explicit database of trophic interactions (Trophic Database; Figs. 1a and 2; 

Supplementary Tables 4-7 and Supplementary Fig. 2), and calculated the relative energy 

contribution of each food item (Fig. 1c). To address question (i), namely whether biotic 

interactions change over space and if they are explained by environmental factors, we used 

averaged linear models predicting the relative energy contribution of different food categories 

(i.e., reproductive plants, vegetative plants, unknown plants, invertebrates and vertebrates) and 

the diet diversity of these food categories as a function of climate29 and land use30 variables. To 
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assess (ii), whether species geographic distributions are better explained by quantitative or 

binary proxies of biotic interactions, for each wild food species in the Trophic Database, we 

fitted ensemble SDMs at 1 km2 using GBIF occurrences31,32 and climate and land use 

variables29,30 as predictors, and calculated the habitat suitability for the current and three future 

Socioeconomic Shared Pathways (SSP; SSP1-2.6, SSP3-6.0 and SSP5-8.5), considering climate 

and land use change (Fig. 1b; Supplementary Figs. 3-5). We calculated two measures of biotic 

interactions. The first was a quantitative measure of biotic interactions (Biotic variables) 

obtained by multiplying the relative energy contribution described at the species level in each 

subpopulation (defined as parts of the distribution of the species that are isolated from others 

and/or present different environmental characteristics and/or conservation status; Fig. 2a; See 

Supplementary Methods and Supplementary Fig. 2) by the current habitat suitability of each 

species, and then combining the values for each food category (Fig. 2d). The second was a 

binary measure of biotic interactions (Biotic_binary) calculated by multiplying the current 

habitat suitability by 1 or 0 depending on, respectively, whether or not an interaction with food 

species was observed in each subpopulation, and then combining the values for each food 

category. For each food category, we fitted and evaluated (AIC based) two univariable SDMs 

explaining brown bear distribution using the brown bear Occurrence Database: (i) a model 

using Biotic variables as predictors and (ii) a model using Biotic_binary variables as predictors. 

To assess (iii), whether species’ geographic distributions are better explained when combining 

biotic and abiotic factors, we fitted and evaluated (WAIC based) three Bayesian models (BMs) 

to explain brown bear distribution, using data from the brown bear Occurrence Database as a 

response variable: (1) a model with abiotic (climate and land use variables) and biotic predictors 

(using the best overall proxies, Biotic variables or Biotic_binary, from the previous univariable 

SDMs), (2) a model with abiotic predictors only, and (3) a model with biotic predictors only 

(Fig. 1e). To minimize bias or the truncation of the environmental space when using only 

current data33-35, two of these BMs utilized historical range data (Range Database): the abiotic 

and biotic BM, and the abiotic BM. Historical range data was included using a Bayesian 

hierarchical model (BHM) which combined models with historical geographic range as a 
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response variable and historical climate variables as predictors and models with current data. To 

address (iv), whether future range shifts differ when considering biotic factors or not, we used 

the best BMs and assessed changes in the potential distribution of the brown bear combining the 

three previous SSPs with three scenarios of change: (1) change in abiotic and biotic variables, 

(2) change in abiotic variables and (3) change in biotic variables (Fig. 1f and 1g; Methods). 

  

 

Fig. 1. Diagram showing our model system to assess the importance of biotic interactions in understanding the 

consequences of global change for biodiversity. a, Construction of a database with detailed explicit knowledge of 

biotic interactions (in our model system brown bear food species in Europe) based on a literature review which 

accounts for the spatial variability of interactions. b, Fit ensemble SDMs for wild food species and calculation of 
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habitat suitability for the current and three future (2040) Shared Socioeconomic Pathways (SSPs), which were 

included using predictions for climate29 and land use changes30. c, Calculation of the relative energy contribution of 

each food species in different subpopulations/space. d, Calculations of quantitative and binary proxies of biotic 

interactions across the space and predicting the spatial biotic interactions for each scenario. e, Fit of a species 

distribution model for the brown bear combining historical and current data and incorporating abiotic factors, which 

refer to the effects of global changes that directly impact the brown bear including temperature changes (i.e., 

affecting hibernation and reproduction) and land use changes (i.e., decreasing suitable habitat), and biotic factors, 

which refer to the effects of global changes through biotic interactions such as changes in the availability of other 

species as food sources. f and g, Current and future predictions for brown bear distribution considering both abiotic 

and biotic factors. 

 

RESULTS 

Spatial variation of biotic interactions 

From the literature search, we identified trophic interactions between the brown bear and 276 

food species (Fig. 1; Supplementary Table 8). In total, 76.1% of species were plants and 23.2% 

were animals (13.0% vertebrates, 10.1% invertebrates). When focusing only on trophic 

interactions described at the species level, we found that the relative energy contribution of each 

food category varied among subpopulations; e.g., in the Scandinavian subpopulation, 51% of 

the energy was of vertebrate origin compared to just 4% for the East Balkan subpopulation 

(Supplementary Tables 9 - 11). Also, the proportion of energy from human-derived sources (n = 

36 species) strongly varied among subpopulations; e.g., in the Karelian subpopulation only 2% 

of the energy was from human-derived sources compared to 93% for the East Balkan 

subpopulation (Fig. 2a-2c; Supplementary Table 12).  

Using all food items in each study site (n > 1,300; not only those described at the 

species level), we found that the relative energy contribution to the diet of the brown bear for all 

food categories (apart from the vegetative plant category), as well as the diversity of food 

categories, was driven by climate and land use (climate and land use variables showed p-values 

< 0.05; Supplementary Tables 13-32). For example, bears consumed proportionally more 

invertebrates and fewer reproductive plant parts (e.g., fleshy fruits and nuts) in areas with low 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532098
http://creativecommons.org/licenses/by/4.0/


15 

 

vegetation cover, and proportionally more vertebrates in areas with climates exhibiting a smaller 

diurnal temperature range and in areas with more shrubland and more sparce vegetation. 

Similarly, bears tend to have more diverse diets when they occur in areas with both high 

broadleaved forest cover (broadleaved forest  showed p-values < 0.05 in the three models 

explaining each diversity index; Supplementary Tables 30-32) and a wide diurnal temperature 

range (diurnal temperature range showed p-values < 0.05 in the models explaining diversity 

indexes; Supplementary Tables 30-31).  
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Fig. 2. Brown bear food web in Europe. a Map showing the 14 brown bear subpopulations considered: Pindus (PI), 

Turkey (TR), East Balkan (EB), Apennine (AP), Pyrenees (PR), Cantabrian (CT), Caucasian (CC), Dinaric (DI), 

Alpine (AL), Western Carpathian (WC), Eastern Carpathian (EC), Baltic (BL), Scandinavian (SC) and Karelian 

(KR). We also mark the location of all the studies of brown bear diet reviewed, indicating if they were ultimately 

included (n = 31) or not (n = 16); note that not all studies are visible due to the overlapping of locations. b, Relative 

estimated dietary energy content (rEDEC, a proxy for the relative importance of each species) identified or not 

identified at the species level for each of the 14 brown bear subpopulations in Europe. c, Proportion of the rEDEC for 

wild species and those of human origin. d, Proportion of the rEDEC identified at the species level for each food 

category (U for unknown plant material, V for vegetative plant material, I for invertebrates), for each of the 14 brown 

bear subpopulations in Europe. 

 

Quantitative versus binary proxies of biotic interactions to explain geographic 

distributions 

Among all wild food species (n = 240; Supplementary Table 8), we were able to build robust 

SDMs and predict the current/future habitat suitability for 205 species (SDMFood: average 

sensitivity of 78.4%, specificity of 69.2% and TSS of 0.48). Invertebrate species were, however, 

underrepresented in the GBIF data, which affected the quality of the predictions for these 

species (Fig. 3; Supplementary Tables 33-39). However, since they were of minor importance in 

the diet of the brown bear in Europe, with an average of only 2% among all subpopulations 

(Fig. 2d and Supplementary Table 11), we believe that this does not affect our main 

conclusions. We then contrasted whether brown bear distribution was better explained by 

quantitative (Biotic variables) or binary proxies of biotic interactions (Biotic_binary). For the 

vegetative plant food category, we found that the binary proxy for the interaction was sufficient 

to best explain brown bear distribution. Conversely, for all other food categories (i.e., 

reproductive plants, unknown plants, invertebrates and vertebrates), including a quantitative 

measure of the interactions with species better explained the distribution of brown bears 

(Supplementary Table 40).  

 

The role of abiotic and biotic factors in explaining species’ geographic distributions 
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When we compared the three Bayesian models (BMs), we found that the model combining 

abiotic and biotic factors was the best and significantly improved the understanding of brown 

bear distribution compared to models using either abiotic or biotic factors (delta WAICAbiotic = 

337.1; delta WAICBiotic = 1,611.2; Supplementary Tables 42-53 and Supplementary Figs. 7-12). 

The model combining abiotic and biotic factors showed a good performance compared with a 

Null model using only the intercept (delta WAICNull = 2,539.7) and yielded a good classification 

accuracy (0.56; Supplementary Table 54), with a low rate to correctly classify the pseudo-

absences of brown bear (true negative rate = 0.25) and a high rate to correctly classify the 

presences of brown bear (true positive rate = 0.87). The model/threshold for classifying 

presence/absence was very good at predicting the presence of species, but tended to 

overestimate it from its current distribution, which was intentional, and similarly to other studies 

of top predators which have suffered important range contraction36, as the past direct 

persecution of the species has locally eliminated the population from potentially suitable areas34 

(see Methods). The predictions showed a current potential distribution for the brown bear of 

2,793,351 km2 (Fig. 4), of which 68% overlaps with the known area of occupancy. Important 

differences for each subpopulation were noted, e.g., the Karelian habitat is 98% occupied, but 

the Alpine, Cantabrian, Apennines and Pyrenees habitats are only 8.9%, 14.5%, 8.7% and 

15.8% occupied, respectively. In other words, there are large areas in those mountain regions 

that could host brown bears but currently do not. Importantly, for a species with several 

subpopulations at risk of extinction, only 19% of the potential distribution is within protected 

areas.  
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Fig. 3. Number of presences and validation of SDMs for wild food species according to category (i.e., 

reproductive plants, vegetative plants, unknown plant material, invertebrates and vertebrates). a, Number of 

presences from the GBIF used to fit a species distribution model (SDM) for each of the 205 wild food species out of 

the total 240 wild species recorded (85.4% of the wild species in the brown bear diet with enough data to fit a SDM). 

b, Predictive quality of SDMs using the true statistics skill (TSS), c, Specificity (percentage of absences correctly 

predicted) and d, Sensitivity (percentage of presences correctly predicted). 
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Fig. 4. Brown bear habitat predictions. a, Prediction of brown bear habitat for current conditions. Future 

predictions of habitat for climate change scenarios SSP1-2.6, SSP3-6.0 and SSP5-8.5 considering changes in both 

abiotic and biotic factors (b, e, h), changes in abiotic factors only (c, f, i) and changes in biotic factors only (d, g, j). 

The predicted area only includes a buffer area of 200 km around the current distribution to avoid extrapolating biotic 

variables into an environmental space where there is no information about the trophic interactions of brown bears. 

 

In terms of species response to the selected abiotic and biotic variables, brown bear 

presence showed a bell-shaped response to most climate variables, but as expected, a negative 

response to the percentage of urban areas, and a positive association with forests and natural 

landscapes (Fig. 5). While the response of brown bear presence to most biotic variables/food 

categories was positive (i.e., reproductive plants, unknown plants and vertebrates), it showed a 
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surprising negative association with the invertebrate food category (see Discussion and 

Supplementary Table 49).  

 

 

Fig. 5. Partial response plots of brown bear distribution to both abiotic and biotic variables. The distribution 

model for brown bear including both abiotic and biotic factors was fitted combining both historical (Range Database) 

and current data (Occurrence Database). The continuous line represents the mean response value and the grey area 

shows the model uncertainty (95% confidence interval). The blue area indicates the range of values of the current 

data. Isothermality (Clim_3), temperature seasonality (Clim_4), mean temperature of the wettest quarter (Clim_5) and 

mean temperature of the warmest quarter (Clim_10). 

 

The effect of biotic factors in future range shifts 

The predictions of biotic interactions, based on the best measures of interaction (Biotic 

variables), for future SSPs showed important differences. The potential available energy for the 

brown bear from all food species (BioAll_species) was predicted to be reduced by 53% under SSP3-

6.0. Importantly, when focusing on the different food categories, future predictions for biotic 

variables showed differences by food category and spatially varied by subpopulation e.g., 

BioVertebrates for SSP3-6.0 is predicted to be reduced by 83% for the Western Carpathian 

subpopulation, whereas for the Apennines subpopulation it is predicted to increase by 16% (Fig. 

1d; Supplementary Fig. 6 and Supplementary Table 41). 
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Those predicted future changes in biotic interactions affected the projected distribution 

of brown bear in the future. Our model showed a drastic range reduction that was more marked 

when considering both abiotic and biotic variables, with an overall reduction of 50%, as 

compared to either biotic (reduction of 13%) or abiotic (reduction of 31%) variables only. 

Range reduction was most pronounced in the south-eastern subpopulations, e.g., 95% reduction 

in the East Balkan subpopulation and 99% reduction in the Turkey subpopulation (Fig. 4; 

Supplementary Table 58). Importantly, the spatial variability of future changes in biotic 

interactions and by food category described above, translated into different effects across the 

brown bear range, as abiotic and biotic factors acted differently among the different 

subpopulations. For example, according to the SSP3-6.0 scenario, in the Alpine subpopulation, 

biotic variables were associated with a habitat reduction of 37% compared to 23% for abiotic 

variables, whereas in Turkey, biotic variables explained a comparatively smaller habitat 

reduction of 8% (Supplementary Tables 55-58). 

 

DISCUSSION 

Our analyses demonstrate the importance of biotic interactions in explaining species 

distributions at continental scales. Specifically, we found that 1) biotic interactions are highly 

variable across geographic space and are determined by climate and land use variables, 2) 

reliably estimating biotic factors for SDMs requires accounting for quantitative measures of 

biotic interactions, 3) including biotic interactions in SDMs significantly improves our 

understanding of species distributions and 4) the consideration of biotic interactions in future 

projections has important effects on predicting future consequences of climate and land use 

changes for species distributions. We also found that both plant- and animal-based interactions 

are important, demonstrating the need to include both for omnivorous species, and we 

confirmed the importance of the brown bear as a keystone species in ecosystems.  

 Climate and human land use determined the biotic interactions through different 

ecosystems, suggesting that future scenarios of climate and land use may directly affect the 

interactions of brown bears with food items, having important implications for ecosystem 
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functioning and services, e.g., seed dispersal, reducing the abundance of ungulates or medium-

size predators, which can influence the diversity of ecosystems37,38 and/or increase human-

wildlife conflicts39, which is a problem for the conservation of species40.  

The distribution of brown bears in Europe depends on climate variables influencing the 

physiological range of the species41, as well as land use, such as forested areas and continuous 

natural areas which could be used as shelters27,36. However, here we show that even biotic 

factors shape brown bear distribution, represented here as the relative energy derived from food 

resources available to the species. According to our results, brown bears select areas that 

maximise this available energy (i.e., positive response of brown bear to most biotic variables), 

which may be explained by the high energy requirements of the species42 and the absence of 

strong interspecific competition for food resources43. The negative association with the 

availability of energy from invertebrates may be related to their negative correlation with 

isothermality (Clim_3; Correlation = -0.47), which has great importance for brown bear 

distribution and exhibits a bell-shaped response (Fig. 5). This could indicate that areas with high 

available energy from invertebrate species are located in less suitable environmental spaces 

respect to this abiotic factor. In addition, the low relative energy which invertebrates represent 

in the brown bear diet —an average of 2% among all subpopulations (Fig. 2d and 

Supplementary Table 11)— may suggest that they represent opportunistic consumption more 

than intentional/preferred prey, which may not influence the distribution of brown bears. Our 

results showed that brown bears currently have a large amount of suitable habitat that could be 

occupied, especially in southern subpopulations, e.g., Cantabrian and Apennine subpopulations. 

However, climate and land use changes might cause an important reduction in their suitable 

habitat, and thus the protection of forests, the reduction of landscape fragmentation and the 

conservation of the community of species interacting with brown bears represent crucial buffers 

against these drivers.  

The use of SDMs is one of the most advanced and widely used tools to understand the 

factors delimiting species distributions and to predict the effects of global change on 

biodiversity13. Our results show the importance of additionally considering biotic factors and 
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taking an ecosystem approach to properly understand species distributions44,45, especially for 

modelling species distributions under climate and land use change scenarios46. However, as 

biotic interactions are highly complex, their inclusion needs to be accounted for on the basis of 

ecological studies which include their spatial heterogeneity and quantitative estimates20,47. Our 

approximation was a simplification of the true biotic interaction networks of the brown bear, 

and other aspects such as competition, parasitism, the potential plasticity of different 

subpopulations to alter their diet in future scenarios and/or other dimensions including temporal 

variation at seasonal, interannual and other spatial scales may be relevant and could be 

considered in future studies. In general, implementation of these new models in other species 

currently faces two big challenges: (1) detailed and extended information about ecological 

interaction networks, and (2) high-quality data about species presences/occurrences. To 

overcome these challenges, global-scale monitoring initiatives with open-source principles, 

open-source databases on species ecology and the reduction of spatial and taxonomic biases will 

be of primary importance48,49. This new generation of SDMs, which allow decoupling abiotic 

and biotic factors, will better identify the drivers responsible for species distributions and will 

enhance the predictions regarding the effects of global change on species; overall they will 

generate important knowledge to conserve biodiversity and ecosystem services. 
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METHODS 

Biotic interactions 

Review of brown bear diet studies 

We reviewed 47 studies of brown bear diet in Europe by searching in SCI Journals, master’s 

and PhD theses, and grey literature (research that is either unpublished or has been published in 

non-commercial form, e.g., technical reports, conference proceedings; Supplementary Tables 4 

and 5 and Supplementary Figure 2). For consistency with climate and land use data, we selected 

31 studies conducted between 1989 and 2018 which had sufficient taxonomic resolution (genus 

and/or species). For each study, we recorded three types of information: study area location; the 

type of samples, e.g., brown bear scat or the stomachs of dead individuals; and the number of 

samples. Additionally, within each study and for each food item we recorded two parameters: 

(1) the relative frequency of occurrence (rF), calculated as the number of occurrences of food 

item i divided by the total number of occurrences of all food items, that is rFi = fi/Σfi; and (2) the 

relative volume (rV), calculated as the volume of food item i divided by the total volume of all 

food items, that is rVi = vi/Σvi. 

 

Calculating energy available from food items 

Because not all studies reported estimates of rV, we used the strong relationship between rF and 

rV (r = 0.86, 0.81-0.90 95% CI from bootstrapped correlation coefficients; Supplementary 
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Figures 3-5) to impute rV for those studies with missing data. We modelled the relationship 

between rV and rF based on studies in which both variables were available with a Bayesian 

hierarchical model that was fitted using the R package MCMCglmm50. We modelled the 

log(rVij) of food item i in study j (so one prey item can have multiple entries if it was found in 

multiple studies) using a normal distribution. We modelled log(rVij) as a function of log(rFij), 

diet category (i.e., vertebrate, invertebrate, seeds, fruits, vegetation or other [i.e., unidentified 

material or garbage]), and their interaction. We included a random intercept for study ID. We 

placed uninformative normal priors on the coefficients of the fixed explanatory variables (i.e., 

[0, 1010]), and weakly informative inverse-gamma priors with shape = rate = 0.001 on the 

variance components (i.e., IG[0.001, 0.001]). The model was run for 130,000 iterations with a 

burn-in of 30,000 and a thinning interval of 100 iterations, resulting in 1,000 posterior samples. 

Convergence was checked using the potential scale reduction factor (PSRF < 1.1)51 and 

temporal autocorrelation (r < 0.1) using the R package coda52. We used this model to impute rV 

for those studies with missing data. Then we applied two sets of correction factors to the 

estimates of rV to account for differences in digestibility and energy content between food 

items. We first applied correction factors for digestibility (CFD; Supplementary Table 6) to 

calculate the relative dry weight of each food item i in each study (rEDC)53 using the formula: 

rEDCi = CFDi × rVi/Σ(CFDi × rVi). Then we used a second set of correction factors (CFE) to 

convert dry matter to digestible energy, and calculated the relative estimated dietary energy 

content (rEDEC)54 of each food item i in each study: rEDECi = CFEi × rEDCi/Σ(CFEi × rEDCi). 

In diet studies, rVi and/or rFi are often provided for groups of several species, and 

within these groups the species are usually described as present but without quantification of rF 

and/or rV, and thus the rEDECi provides a description for a broad taxonomic group. To improve 

the description at the species level, we followed a similar approach to previous food-web 

studies55,56. For each group containing several species, we assigned its described rEDECi to the 

species (s) that was most frequent in the bear diet, rEDECs = rEDECi, when explicitly stated in 

the paper. If several species belonging to the group were consumed by bears, but none explicitly 

mentioned as the most frequently eaten or occurring in scat, we divided equally the rEDECi 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532098
http://creativecommons.org/licenses/by/4.0/


30 

 

among the species consumed by bears and present in the area, rEDECs = rEDECi,/nspecies. For 

example, in Naves et al. (2006), we equally assigned rEDECQuercus among the three Quercus 

species present and reported in the article as being part of the diet, rEDECs = 22.07/3, thus each 

one was assigned 7.36%. We applied this method to items grouped at the genus level for plants 

and animals when the result was rEDECs > 3% (Supplementary Tables 5 and 7).  

 

Calculating associations between diet and environmental variables 

We used the selected studies of brown bear diet (Supplementary Table 4) to calculate the 

association between latitude, land cover and climate variables and the rEDEC in each diet 

category. We first calculated the value of land use30 and climate29 variables (Supplementary 

Tables 59 and 60) within a buffer area of 18 km (an area of 1,018 km2) around the site locations 

of the selected studies. We eliminated highly correlated variables using the variance inflation 

function (VIF)57 in the R package usdm58. Then, we calculated all possible linear models 

explaining the percentage of each diet category using all possible combinations of the remaining 

uncorrelated variables as predictors, using the package MuMIn59 in R. Using the subset of best 

models (delta AICc < 3) we calculated an average model using the subset option. We also 

calculated models explaining diet diversity (among the diet categories) as a function of land use 

and climate variables in the buffer areas. We first calculated three indexes of diversity for the 

diet categories (Simpson, Shannon and Inverse Simpson)60,61 using the R package vegan62. We 

fitted linear models explaining each diversity index as a function of the uncorrelated variables 

previously calculated. We calculated, for each index, all possible models using all possible 

combinations from the uncorrelated variables, and using the subset of best models (delta AICc < 

3) we calculated an average model using the subset option. 

 

Calculation of a representative diet for each subpopulation 

The brown bear is a generalist omnivore species that shows high variation in its diet across its 

geographic distribution63. For example, the diet of bears in Scandinavia has a relatively higher 

proportion of vertebrates compared to individuals living in southern Europe, where the 
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consumption of vegetation is comparatively much higher63. To consider this spatial variation in 

the brown bear diet, we calculated a representative diet of the brown bear for each 

subpopulation (Subp; Supplementary Figure 1). To differentiate brown bear subpopulations in 

Europe we used the definition of subpopulations provided by the IUCN, i.e., “geographically or 

otherwise distinct groups in a population between which there is little exchange”. We utilized 

the current geographic  distribution of brown bears28. Separated polygons were characterised as 

subpopulations and continuous polygons showing important differences in climate, habitat and 

conservation status of different spatial entities were split into subpopulations in order to account 

for this variability (e.g., Scandinavian, Karelian and Baltic subpopulations)28,64. Our assignment 

of subpopulations was similar to Chapron et al.65’s subdivisions for the brown bear, but we 

included two new entities for Europe. First, we considered Pindos a distinct subpopulation 

given its differences in climate and habitat from the Dinaric and East Balkan subpopulations. 

Second, we considered Western Carpathian and Eastern Carpathian brown bears to represent 

different subpopulations on the basis of differences in habitat, climate and conservation 

status28,66. Third, two new subpopulations were considered for Turkey, Turkey and Caucasus. 

We assigned to each subpopulation a unique diet (DS) on the basis of the reviewed studies for 

each subpopulation. 

 Similarly to Banašek-Richter et al. 200447, where consumed biomass was used as a 

quantitative descriptor for the flow of energy in the food system, we used the rEDEC previously 

calculated, which provides a more realistic version of the flow of energy in the brown bear 

food-web system. From the diet studies within each subpopulation, Subp, we calculated for each 

food species (S), the rEDECSubpS, and assumed it to be a representative rEDEC in that 

subpopulation:  

���������� � � ��� 	 ������� 

∑ ��

�
���

�

���

 

where: 

rEDECSubpS is the representative rEDEC in the subpopulation Subp for food species S,   
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i is each diet study within the subpopulation Subp (Supplementary Figure 1 and 

Supplementary Table 4), 

n is the number of diet studies in the subpopulation Subp (Supplementary Table 4), 

Z is the number of sampling units (n scats, or n of stomachs analysed) in each study (we 

use this term to give more importance to studies with more data; Supplementary Table 

4), 

rEDECSi is the rEDEC of food species S in diet study i (Supplementary Table 7). 

 

Calculation of habitat suitability for each wild food species 

We modelled the habitat of wild food species in the diet database (Supplementary Tables 8 and 

33). To do this, we used the R package rgbif67 to download occurrences of each food species 

from the Global Biodiversity Information Facility (GBIF)31, a database which is widely used to 

assess the effects of climate change on biodiversity68,69 for species distribution modelling70,71 

and species conservation72,73. We selected all occurrences of food species with coordinates, 

obtained from human or machine observations (e.g. camera traps), an uncertainty in meters of < 

564 m to match the circumference radius of a circle of an area of our cell size (1km2), located in 

Europe, North Africa and the Middle East (between decimal latitude “15, 75” and decimal 

longitude “-20, 105”) and for the period 1989–2018. Then, we used package 

CoordinateCleaner74 to remove usual errors in occurrences (i.e. country centroids). Points of 

occurrence were transformed into presences and pseudo-absences to reduce the potential spatial 

bias75-77 by aggregating points into equal-area grid cells of 1x1 km using a Conic Equal Area 

projection (Europe Albers Equal Area Conic). Each grid cell that contained at least one 

occurrence point was assigned a ‘1’, and cells without any record of occurrence were assigned a 

‘0’. Furthermore, we excluded species with <50 ‘presence’ grid cells from the analyses.  

 For each of these food species, we selected the same number of random pseudo-

absences as presences inside a minimum 3 km-radius plot and a maximum 10 km-radius plot at 

each presence location. We preselected a total of 11 environmental explanatory variables. First, 

we preselected a subset of 4 bioclimatic variables from the CHELSA dataset29 following 
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previous studies78 (Supplementary Table 59), and then we preselected 7 land use/land cover 

variables representing the percent cover of different land use categories (Supplementary Table 

60), obtained from the Globio4 dataset30. We excluded land use/land cover representing the 

percent cover of urban areas to avoid the introduction of a land cover category potentially 

oversampled. 

 To build the habitat model for each food species, we selected the 6 best variables among 

the previous 11 environmental explanatory variables using the following procedure. First, we 

calculated the variance inflation factor (VIF)57 and excluded highly correlated variables (VIF > 

10) using a stepwise procedure in the R package usdm58. Second, from the remaining 

uncorrelated variables, we fitted univariate Generalized Linear Models (GLMs) and selected the 

best 6 variables using an information theoretic approach based on Akaike Information Criterion 

(AIC)79. Using these 6 selected variables, we modelled the habitat of each food species applying 

ensemble modelling, a statistical technique that improves the robustness of predictions80, using 

the R package Biomod281. For each species we calculated 12 models: (a) we repeated the 

selection of pseudo-absences twice, each time selecting the same number of random pseudo-

absences as presences inside the 3-km and 10-km radius plots (as in the univariate models); (b) 

for each selection of pseudo-absences we repeated the process of data splitting twice (taking 

70% of pseudo-absences to fit the model and 30% to evaluate); and (c) for each dataset of data 

splitting we fitted three different modelling algorithms: GLM with quadratic and second order 

polynomials allowed (for all predictors), Generalized Boosting Model/Boosted Regression 

Trees (GBM) with 3,000 trees and Random Forest (RF) with 750 trees. Each of the 12 fitted 

models (2 pseudo-absences selection x 2 data splitting x 3 modelling algorithms) was evaluated 

using the true skill statistic (TSS)82 and we selected models with TSS > 0.2 to include in the 

ensemble-model building.  

 Using the fitted ensemble models, we predicted the habitat suitability of each food 

species for the current and three future climate and land use scenarios. Future scenarios were 

obtained by using the climate data from the Institut Pierre Simon Laplace Model CM5A-MR 
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(IPSL-CM5A-MR)83 from the CHELSA29 database and land use forecasts from the Globio430 

database for the year 2050.  

The Globio430 database uses three different scenarios based on a combination of three 

Shared Socioeconomic Pathways (SSPs), which are scenarios of projected socioeconomic 

global change up to the year 2100, including (1) the Sustainability scenario, SSP1; (2) the 

Regional Rivalry scenario, SPP3; and (3) the Fossil-Fuelled Development scenario, SPP584,85; 

with three Representative Concentration Pathways (RCPs)86: (1) the very stringent scenario, 

RCP2.6; (2) the intermediate stabilisation pathway scenario, RCP6.0; and (3) the scenario of 

comparatively high greenhouse gas emissions, RCP8.54,84,87. As a result, combined with the 

Globio4 database has the SPP1_RCP2.6 scenario, the SPP3_RCP7.0 scenario and the 

SPP5_RCP8.5 scenario.  

From the IPSL-CM5A-MR from CHELSA, we selected the RCP2.6 scenario, RCP6.0 

scenario and the RCP8.5 scenario. Thus, combining the future scenarios from the Globio4 

database and from CHELSA we obtained three future scenarios for land use and climate, 

namely SSP1-2.6, SSP3-6.0 and SSP5-8.5.  

 

Modelling the potential energy available to the brown bear across space 

We used two proxies to calculate spatial variables describing the biotic interactions between the 

brown bear and food species in its diet. The first approximation generated the Biotic variables, 

which were based on detailed quantitative criteria using a combination of rEDECSubpS and the 

habitat suitability prediction. The second approximation generated the Biotic_binary variables, 

which were based on a qualitative measure, a binary link using the presence/absence of 

interaction between each food species and the brown bear for each subpopulation and the habitat 

suitability prediction. 

 

Calculating potential biotic interactions on the basis of quantitative links: Biotic variables  
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We used the previously calculated rEDECSubpS (See section Calculation of a representative diet 

for each subpopulation) as a link representing the interaction strength between food species S 

and the consumer, the brown bear, among the subpopulation Subp.  

The spatial distribution of these interactions is heterogeneous across the landscape as it 

depends on the co-occurrence of the food species and the consumer, and a higher co-occurrence 

of both species will be positively associated with interaction strength20. Thus, within each 

subpopulation, we assigned the calculated rEDECSubpS as a potential link across the predicted 

habitat of food species S, multiplying the rEDECSubpS by the habitat suitability of food species S. 

Thus, for each grid cell (C) of each subpopulation we calculated a term called Potential energy 

(Pe) as: 

 
������	 � ���������� ���	  	  100 

where: 

PeSubpSC is the potential energy in the subpopulation Subp for species S in cell C, 

HsSC is the habitat suitability of species S in cell C. 

 

We considered groups of food species (i.e., reproductive plants, vegetative plants, unknown 

plants, invertebrates and vertebrates, and a group including all food species) which are vital for 

the brown bear and calculated the Sum of the Potential energy for all food species in each group 

G as: 

�
������	 � � 
������	

�

���

  

where: 

SPeSubpGC is the sum of the potential energy in the subpopulation Subp for all food 

species in group G in cell C, 

n is the number of food species in each subpopulation Subp and group G, 

G represents each of the groups of food species in the diet considered (reproductive 

plants, vegetative plants, unknown plants, invertebrates and vertebrates) and a group 

including all food species. 
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Using the SPeSubpGC over all cells of our study area, we obtained the Biotic variables, which 

represent a spatial downscaling of the potential interaction strength among the food species of 

each diet group considered. Thus, we obtained six Biotic variables: BioAll_species, BioReprod_plant, 

BioVeget_plant, BioUnknown_plant, BioInvertebrates, and BioVertebrates.  

 

 

Calculating potential biotic interactions on the basis of binary links: Biotic_binary variables 

We used a categorical/binary description for each subpopulation, BinarySubpS, as a link 

representing the interaction strength between food species S and the brown bear within the 

subpopulation Subp. BinarySubpS has the binary value 1 when there was consumption of food 

species S by brown bear in the Subp, and 0 when there was no consumption of food species S by 

brown bears in the Subp. 

In this case, within each subpopulation, we assigned the calculated BinarySubpS as a 

potential link over the predicted habitat of food species S, multiplying the BinarySubpS by the 

habitat suitability of food species S. Thus, for each grid cell (C) of each subpopulation we 

calculated a term called Potential energy (Pe) as: 


������	���
�� � ����������� 	 ���	  100 

where: 

PeSubpSCBinary is the potential energy in the subpopulation Subp for food species S in cell 

C, 

HsSC is the habitat suitability of food species S in cell C. 

 

We used the same diet groups of food species considered above for Biotic variables, and we 

calculated the Sum of the Potential energy Binary for all food species in each group G as: 

�
������	���
�� � � 
������	���
�� 

�

���

 

where: 
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SPeSubpGCBinary is the sum of the potential energy in the subpopulation Subp for all food 

species in group G in cell C, 

n is the number of food species in each subpopulation Subp and group G, 

G represents each of the groups of food species in the diet considered (reproductive 

plants, vegetative plants, unknown plants, invertebrates and vertebrates) and a group 

including all species. 

 

Using the SPeSubpGCBinary over all cells of our study area we obtained the Biotic_binary variables, 

which represents a spatial downscaling of the potential interaction strength among the food 

species in each diet group considered. Thus, we obtained six Biotic_binary variables: 

BioB_All_species, BioB_Reprod_plant, BioB_Veget_plant, BioB_Unknown_plant, BioB_Invertebrates, and BioB_Vertebrates.  

 

Comparison of biotic proxies explaining brown bear distribution  

To assess which proxies of biotic interactions better explained brown bear distribution, we 

compared for each group G, the univariate models for Biotic variables and Biotic_binary 

variables. Models were fitted using a frequentist binomial GLMM with subpopulation as 

random factor and the brown bear Occurrence Database as presences/pseudo-absences 

(Supplementary Table 3, Supplementary Figure 1). We compared the univariate models using 

Akaike Information Criterion (AIC)79. 

 

Brown bear presence databases 

We constructed two databases of brown bear presence: (1) a database of brown bear at the scale 

of its geographic range using historical distribution data, the Range Database, and (2) a 

database of brown bear using current data, the Occurrence Database.   

The Range Database contains data, at a low spatial resolution (10 x 10 km), on the 

Eurasian historical distribution of brown bear, areas of current presence and areas which were 

occupied in the past but where the species has been extirpated. We discarded the North 

American brown bear distribution due to large differences in life-history traits between Eurasian 
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and North American subspecies27,88. We used the IUCN historical distribution of the brown 

bear28 and added information on past distributions from several sources of published data and 

historical references89-94 (Supplementary Figure 13). The brown bear is a species that has 

suffered intense human persecution resulting in multiple local extinctions over the last two 

millennia95. Thus, we included information of past brown bear distribution since the 1st century, 

even though human-induced local extirpation of brown bears could have occurred before, e.g., 

in areas surrounding the Mediterranean region96. Absences were extracted randomly within a 50 

km buffer around pixels with brown bear presences in the historical distribution, and we 

selected the same number of pseudo-absences as presences. Across the pixels of presences and 

absences we applied a stratified sampling procedure following section 7.4.3 in Guisan et al. 

201797: first we used climate variables (Clim_3, Clim_4, Clim_8 and Clim_10) to create 

stratums and then we selected an equal number of presences and absences by stratum. This last 

selection was used to model the distribution of brown bear at the range scale.  

The Occurrence Database contains brown bear occurrences in Europe and Turkey with 

an uncertainty of < 1 km2 for the period 1989–2018. We used data from (a) systematic surveys, 

e.g., excluding locations of occasional sightings of bear damage, hunted bears and road/train 

casualties, and (b) bears equipped with GPS/VHF collars, from which we excluded bears that 

were intentionally trapped and collared to be permanently monitored due to their problematic 

behaviour (e.g., bears selected because they frequently approach human settlements, or 

frequently attack livestock and/or cause other types of damage) to avoid bias in the data towards 

problematic bears, but we did not exclude randomly trapped bears that exhibited problematic 

behaviour. The resulting database contained data from 37 different research groups, comprising 

more than 70 researchers, and included data from all European and Turkish subpopulations and 

from all countries, except Belarus, with a stable presence of brown bears. The database was 

formed from 52 original datasets with more than 3.2 million occurrences from diverse sources: 

97.56% from GPS collars, 0.53% from VHF collars, 1.12% from tracks, 0.01% from camera 

traps and 0.01% from unspecified sources (Supplementary Tables 1 and 2). Occurrences were 

rasterized to a binary map of brown bear occurrence (presences = 1) and non-occurrence 
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(pseudo-absences = 0). We obtained more than 100,000 pixels with the presence of brown bear 

showing a spatial bias between the different subpopulations, with a minimum of 471 presences 

for the Turkey subpopulation and a maximum of 45,119 presences for the Scandinavian 

subpopulation (Supplementary Table 3 and Supplementary Figure 1). For models using the 

Occurrence Database, we first excluded data occurring in non-terrestrial systems (i.e., 

presences in lakes or seas). Then, to avoid overrepresentation of some subpopulations due to a 

larger number of individuals or greater sampling effort, and also because of computing 

limitations, we selected a maximum of 2,000 presences for each subpopulation. For 

subpopulations with less than 2,000 presences available, we selected all presences available 

(Supplementary Table 3). Pseudo-absences were extracted randomly within a 5 km buffer 

around pixels with brown bear presences, and we selected the same number of pseudo-absences 

as presences for each subpopulation. In total, we used 24,908 presences, which were split into 

two sets, one set to train the model (19,926 presences, 80%) and the other to validate the model 

(4,982 presences, 20%). The training data were used in all models using the Occurrence 

Database (for comparison of biotic proxies explaining brown bear distribution and for 

modelling brown bear distribution at a fine scale with the Bayesian models, BMs). 

 

Bayesian brown bear species distribution model 

Species distribution model of the historical range 

Data at the range scale are of low resolution but larger extent, which capture a greater variability 

of the effect on species presence of factors acting at larger scales, e.g., climate, and avoid bias or 

the truncation of the environmental space33,34. Data at the habitat scale are of high resolution but 

small extent, which improve spatial precision and our understanding of the effect on species 

presence of factors acting at smaller scales. As we know that the brown bear distribution has 

contracted as a result of human activity, we wanted to explore how the historical relationship of 

brown bear occurrences with climate variables might influence our distribution models. For 

example, if the brown bear historically thrived in warmer conditions, then this information 

could also help us better predict its current and future distribution by avoiding a truncation of 
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environmental variables34. To this end, we used a model of the historical distribution of the 

brown bear (based on historical range data and climate data) to inform models of the current 

distribution. Specifically, we fitted a species distribution model with presences/absences from 

the Range Database (10 x 10 km resolution) as a function of historical bioclimatic variables 

(Supplementary Appendix 2). We selected bioclimatic variables by first dropping those with a 

VIF over a threshold of 10 using the R package usdm58,97. We further refined the variables by 

selecting the four best historical climate variables (Supplementary Table 61) on the basis of the 

AIC of univariate binomial GLMs (logit link) with linear and quadratic effects. We then fitted a 

final ‘historical’ distribution model with a Bayesian binomial GLM using these four variables 

(Clim_3, Clim_4, Clim_8 and Clim_10) and a stratified sampling of presences/absences from 

the brown bear Range Database. We extracted the mean and standard deviation of the 

parameter estimates for use as an informed prior for the models described below 

(Supplementary Tables 62-66 and Supplementary Figures 14-17). 

 

Modelling and predicting brown bear distribution at a fine scale 

We modelled the distribution of the brown bear at a high spatial resolution (1×1 km; 

Supplementary Table 42) using as response variable the training selection of presences/pseudo-

absences from the brown bear Occurrence Database (N presences = 19,926 ; N pseudo-

absences = 19,926; Supplementary Tables 1-3) and three types of predictor variables: climate, 

land-use and biotic. We selected four variables to include within each type. For climate 

variables, we selected the same four variables used in the model of the historical brown bear 

distribution (but with values for the current climate, obtained from the CHELSA database29). 

For land-use and biotic variables, we selected the four best (AIC-based) uncorrelated variables 

determined by a univariable GLMM (Supplementary Tables 67, 68 and 40). 

We fitted three Bayesian models (BMs) explaining brown bear distribution using 

different combinations of factors (abiotic, biotic or both): (1) a model with abiotic (climate and 

land use variables) and biotic predictors (using biotic variables), (2) a model with abiotic 

predictors only, and (3) a model with biotic predictors only (Supplementary Table 41). Note that 
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only models including climate variables can use the historical priors, and thus the model based 

solely on biotic variables can only use current data. We also fitted a null model with only the 

intercept using only current presences/pseudo-absences.  

The two Bayesian hierarchical models (BHMs) which used historical range data (the 

model with abiotic and biotic predictors and the model with biotic predictors only), used non-

informative priors for land use and biotic variables, and informative priors based on the 

historical distribution model as defined above. We assumed equal confidence for the historical 

and current data, and thus the mean and SD of the parameter estimates from the historical 

distribution model were not modified and used directly as priors. The biotic model used non-

informative priors for all variables. All models were Bayesian binomial GLMMs calculated 

with a logit link, using the Hamiltonian Monte Carlo algorithm in Stan (mc-stan.org). We used 

Stan with the rstan, rtanarm and loo packages in R to fit and assess the diagnostics of the 

models98-100. We evaluated and compared the models using the Widely Applicable Information 

Criterion (WAIC)101. The best model (based on the WAIC) was evaluated using the validation 

subset of the brown bear Occurrence Database (N presences = 4,982; N pseudo-absences = 

4,982; Supplementary Table 41). As we used pseudo-absences, we established a cut-off for the 

potential distribution based on the 90th percentile training presence102,103, that is, leaving out 

10% of the observed presences of the training dataset.  

In addition to those models, and in order to evaluate whether there was an effect of 

combining different data, we fitted two simple Bayesian models (not hierarchical) for the two 

BHMs without considering the information of the historical range, we used non-informative 

priors for all predictors (Supplementary Table 42). 

 We used the best model to predict the distribution of brown bear in all subpopulations 

for the current and nine future climate/land use change scenarios which considered 

combinations of three SSPs (SSP1-2.6, SSP3-6.0 and SSP5-8.5) with changes in (1) abiotic and 

biotic variables, (2) abiotic variables and (3) biotic variables. For the biotic variables, the 

climate and land use scenarios were used indirectly to predict the influence of climate and land 

use on the habitat of species in the brown bear diet, which was then summarised as energy 
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available in the space as described above. For the current and each of the nine future 

climate/land use change scenarios for the distribution of brown bear, we calculated different 

descriptors related to the conservation status of species104,105, such as area of the distribution, 

percentage of the distribution occupied,and distribution included in protected areas using the 

World Database of Protected Areas106. All statistical analyses were performed in the R 

program107.  

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532098
http://creativecommons.org/licenses/by/4.0/


43 

 

REFERENCES 

50 Hadfield, J. D. MCMC Methods for Multi-Response Generalized Linear Mixed Models: 

The MCMCglmm R Package. Journal of Statistical Software 33, 1 - 22, 

doi:10.18637/jss.v033.i02 (2010). 

51 Gelman, A. & Rubin, D. B. Inference from Iterative Simulation Using Multiple 

Sequences. Statistical Science 7, 457-472, 416 (1992). 

52 Plummer M, Best N, Cowles K & K, V. CODA: Convergence Diagnosis and Output 

Analysis for MCMC. R News 6, 7–11 (2006). 

53 Pritchard, G. T. & Robbins, C. T. Digestive and metabolic efficiencies of grizzly and 

black bears. Canadian Journal of Zoology 68, 1645-1651, doi:10.1139/z90-244 (1990). 

54 Hewitt, D. G. & Robbins, C. T. Estimating Grizzly Bear Food Habits from Fecal 

Analysis. Wildlife Society Bulletin (1973-2006) 24, 547-550 (1996). 

55 Elgmork, K. & Kaasa, J. Food Habits and Foraging of the Brown Bear Ursus arctos in 

Central South Norway. Ecography 15, 101-110 (1992). 

56 Stenset, N. E. et al. Seasonal and annual variation in the diet of brown bears Ursus 

arctos in the boreal forest of southcentral Sweden. Wildl. Biol. 22, 10 (2016). 

57 Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation 

study evaluating their performance. Ecography 36, 27-46 (2013). 

58 Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is 

positional uncertainty a problem for species distribution modelling? Ecography 37, 191-

203, doi:https://doi.org/10.1111/j.1600-0587.2013.00205.x (2014). 

59 Barton, K. Mu-MIn: Multi-model inference. R Package Version 0.12.2/r18. http://R-

Forge.R-project.org/projects/mumin/.  (2009). 

60 Fisher, R. A., Corbet, A. S. & Williams, C. B. The Relation Between the Number of 

Species and the Number of Individuals in a Random Sample of an Animal Population. 

J. Anim. Ecol. 12, 42-58, doi:10.2307/1411 (1943). 

61 Hurlbert, S. H. The Nonconcept of Species Diversity: A Critique and Alternative 

Parameters. Ecology 52, 577-586, doi:https://doi.org/10.2307/1934145 (1971). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532098
http://creativecommons.org/licenses/by/4.0/


44 

 

62 Jari Oksanen et al. Vegan-package. Community Ecology Package: Ordination, 

Diversity and Dissimilarities https://r-forge.r-project.org/projects/vegan/.  (2013). 

63 Bojarska, K. & Selva, N. Spatial patterns in brown bear Ursus arctos diet: the role of 

geographical and environmental factors. Mamm. Rev. 42, 120-143, 

doi:doi:10.1111/j.1365-2907.2011.00192.x (2012). 

64 Linnell J., V. Salvatori & Boitani, L. Guidelines for population level management plans 

for large carnivores in Europe. A Large Carnivore Initiative for Europe report 

prepared for the European Commission (contract 070501/2005/424162/MAR/B2).  

(2008). 

65 Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated 

landscapes. Science 346, 1517-1519, doi:10.1126/science.1257553 (2014). 

66 Straka, M., Paule, L., Ionescu, O., Štofík, J. & Adamec, M. Microsatellite diversity and 

structure of Carpathian brown bears (Ursus arctos): consequences of human caused 

fragmentation. Conserv. Genet. 13, 153-164, doi:10.1007/s10592-011-0271-4 (2012). 

67 Chamberlain S et al. rgbif: Interface to the Global Biodiversity Information Facility 

API. R package version 1.1.0, https://CRAN.R-project.org/package=rgbif.  (2018). 

68 Dyderski, M. K., Pa, S., Frelich, L. E. & ski, A. M. How much does climate change 

threaten European forest tree species distributions? Global Change Biol. 24, 1150-1163 

(2018). 

69 Klonner, G., Dullinger, I. & and …, W.-J. Will climate change increase hybridization 

risk between potential plant invaders and their congeners in Europe? Diversity and … 

(2017). 

70 Dallas, T., Decker, R. R. & Hastings, A. Species are not most abundant in the centre of 

their geographic range or climatic niche. Ecol. Lett. 20, 1526-1533 (2017). 

71 Filazzola, A., Sotomayor, D. A. & Lortie, C. J. Modelling the niche space of desert 

annuals needs to include positive interactions. Oikos 127, 264-273, 

doi:10.1111/oik.04688 (2018). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532098
http://creativecommons.org/licenses/by/4.0/


45 

 

72 Mounce, R., Smith, P. & Brockington, S. Ex situ conservation of plant diversity in the 

world’s botanic gardens. Nature Plants 3, 795-802, doi:10.1038/s41477-017-0019-3 

(2017). 

73 Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile 

conservation. Nature Ecology & Evolution 1, 1677-1682, doi:10.1038/s41559-017-

0332-2 (2017). 

74 Zizka, A. et al. CoordinateCleaner: Standardized cleaning of occurrence records from 

biological collection databases. Methods Ecol. Evol. 10, 744-751, 

doi:https://doi.org/10.1111/2041-210X.13152 (2019). 

75 Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database 

and its effect on modeling species' geographic distributions. Ecol. Inform. 19, 10-15 

(2014). 

76 Kittle, A. M., Watson, A. C., A., C.-S. & Macdonald, D. W. Forest cover and level of 

protection influence the island-wide distribution of an apex carnivore and umbrella 

species, the Sri Lankan leopard (Panthera pardus kotiya). Biodivers. Conserv. 27, 235-

263, doi:10.1007/s10531-017-1431-8 (2018). 

77 Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. Tradeoffs 

of different types of species occurrence data for use in systematic conservation 

planning. Ecol. Lett. 9, 1136-1145, doi:10.1111/j.1461-0248.2006.00970.x (2006). 

78 Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. 

Uncertainty in ensembles of global biodiversity scenarios. Nature Communications 10, 

1446, doi:10.1038/s41467-019-09519-w (2019). 

79 Burnham, K. P. & Anderson, D. R. Multimodel inference - understanding AIC and BIC 

in model selection. Sociol. Methods Res. 33, 261-304, doi:10.1177/0049124104268644 

(2004). 

80 Araujo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. 

Evol. 22, 42-47, doi:10.1016/j.tree.2006.09.010 (2007). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532098
http://creativecommons.org/licenses/by/4.0/


46 

 

81 Thuiller, W., Georges, D., Engler, R. & Breiner, F. Package ‘biomod2’. Ensemble 

platform for species distribution modeling.  (2016). 

82 Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution 

models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223-

1232, doi:doi:10.1111/j.1365-2664.2006.01214.x (2006). 

83 Mignot, J. & Bony, S. Presentation and analysis of the IPSL and CNRM climate models 

used in CMIP5. Climate Dynamics 40, 2089-2089, doi:10.1007/s00382-013-1720-1 

(2013). 

84 Riahi, K. et al. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. 

Clim. Change 109, 33, doi:10.1007/s10584-011-0149-y (2011). 

85 Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections 

in the Shared Socioeconomic Pathways. Global Environ. Change 42, 200-214, 

doi:https://doi.org/10.1016/j.gloenvcha.2015.06.004 (2017). 

86 Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions 

from 1765 to 2300. Clim. Change 109, 213, doi:10.1007/s10584-011-0156-z (2011). 

87 van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. 

Change 109, 5, doi:10.1007/s10584-011-0148-z (2011). 

88 Zedrosser, A., Steyaert, S. M. J. G., Gossow, H. & Swenson, J. E. Brown bear 

conservation and the ghost of persecution past. Biol. Conserv. 144, 2163-2170, 

doi:https://doi.org/10.1016/j.biocon.2011.05.005 (2011). 

89 Bencatel, J., Ferreira, C. C., Barbosa, A. M., Rosalino, L. M. & Álvares, F. Research 

trends and geographical distribution of mammalian carnivores in Portugal (SW Europe). 

PLoS One 13, e0207866, doi:10.1371/journal.pone.0207866 (2018). 

90 Álvares, F. & Domingues, J. Presence histórica do urso em Portugal e testemunhos da 

sua relação com as comunidades rurais. AÇAFA On Line 3 (2010). 

91 Parde, J.-M. & Camarra, J.-J. in Encycl Carniv Fr     (Société Française Pour l'Etude et 

la Protection des Mammifères, 1992). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532098
http://creativecommons.org/licenses/by/4.0/


47 

 

92 Posillico, M., Meriggi, A., Pagnin, E., Lovari, S. & Russo, L. A habitat model for 

brown bear conservation and land use planning in the central Apennines. Biol. Conserv. 

118, 141-150, doi:https://doi.org/10.1016/j.biocon.2003.07.017 (2004). 

93 Servheen, C., Herrero, S. & Peyton, B. Bears. Status Survey and Conservation Action 

Plan. IUCN/SSC.  (IUCN, 1999). 

94 Valverde, J. A. Anotaciones al “Libro de la Montería” del Rey Alfonso XI.  (Ediciones 

Universidad de Salamanca, 2009). 

95 Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to 

climate and humans. Nature 479, 359-364, doi:10.1038/nature10574 (2011). 

96 Albrecht, J. et al. Humans and climate change drove the Holocene decline of the brown 

bear. Scientific Reports, doi:10.1038/s41598-017-10772-6 (2017). 

97 Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution 

Models: With Applications in R.  (Cambridge University Press, 2017). 

98 Stan Development Team. RStan: the R interface to Stan. R package version 2.21.2. 

http://mc-stan.org/.  (2020). 

99 Goodrich B, Gabry J, Ali I & S, B. “rstanarm: Bayesian applied regression modeling 

via Stan.” R package version 2.21.3, https://mc-stan.org/rstanarm/.  (2022). 

100 Vehtari, A. et al. loo: Efficient leave-one-out cross-validation and WAIC for Bayesian 

models. R package version 2.5.0. https://mc-stan.org/loo/.  (2022). 

101 Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-

one-out cross-validation and WAIC. Statistics and Computing 27, 1413-1432, 

doi:10.1007/s11222-016-9696-4 (2017). 

102 Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of 

occurrence in the prediction of species distributions. Ecography 25, 385-393, 

doi:10.1111/j.0906-7590.2005.03957.x (2005). 

103 Bean, W. T., Stafford, R. & Brashares, J. S. The effects of small sample size and sample 

bias on threshold selection and accuracy assessment of species distribution models. 

Ecography 35, 250-258, doi:10.1111/j.1600-0587.2011.06545.x (2012). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532098
http://creativecommons.org/licenses/by/4.0/


48 

 

104 Lucas, P. M., González�Suárez, M. & Revilla, E. Range area matters, and so does 

spatial configuration: predicting conservation status in vertebrates. Ecography (2019). 

105 Ramírez-Delgado, J. P. et al. Matrix condition mediates the effects of habitat 

fragmentation on species extinction risk. Nature Communications 13, 595, 

doi:10.1038/s41467-022-28270-3 (2022). 

106 UNEP & IUCN. The World Database on Protected Areas (WDPA). Available at: 

www.protectedplanet.net.  (2017). 

107 R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org. v. 

3.1.2 (2017). 

 

ACKNOWLEDGEMENTS 

PML, LJP, WT, NS, MDB, LM, NBa, TD, AF, SCF, AZ were financially supported through the 

2015-2016 BiodivERsA COFUND call, with national funders Agence Nationale de la 

Recherche (ANR), France (Grant number: ANR-16-EBI3-0003), National Science Center 

(NCN), Poland (Grant number: 2016/22/Z/NZ8/00121), Federal Ministry of Education and 

Research (BMBF) and DLR Project Management Agency (DLR-PT), Germany (Grant number: 

01LC1614A), Romanian National Authority for Scientific Research and Innovation, CCCDI – 

UEFISCDI, Romania (Grant number: BiodivERsA3-2015-147-BearConnect (96/2016) within 

PNCDI III, and Norwegian Research Council (RCN), Norway (Grant number: 269863). VPe 

was financially supported by the Grant PID2020-114181GB-I00 funded by MCIN/AEI/ 

10.13039/501100011033 and by “ERDF A way of making Europe”. DZ and AD were funded 

by the PIN-MATRA and the BBI-MATRA programs and the project LIFE07NAT/IT/000502. 

NBo and DC were funded by the Ministry of Education Science and Technological 

Development of the Republic of Serbia (451-03-68/2022-14-200007) and by the WWF Adria. 

SF and LF were funded by the Regione Friuli Venezia Giulia. DH, SR and DDA thanks the 

funding from LIFE DINALP BEAR and EURONATUR. KJ and TS acknowledge the funding 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532098
http://creativecommons.org/licenses/by/4.0/


49 

 

from the LIFE DINALP BEAR (LIFE13 NAT/SI/000550) and the Slovenia Research Agency, 

project J4-7362. AM-J and PMo were funded by WWF Austria, LIFE13 NAT/SI/000550 LIFE 

DINALP BEAR. AAK and MdGH thanks the funding to Vodafone, Acturos and the Hellenic 

Ministry of Rural Development. JK and HB thanks the funding from the Swedish 

Environmental Protection Agency, Norwegian Environmental Agency. YM and MPs were 

funded by the LIFE program (LIFE07 NAT/GR/000291; LIFE07 NAT/IT/000502; LIFE12 

NAT/GR/000784; LIFE09 NAT/GR/000333; LIFE15 NAT/GR/001108; 

LIFE96NAT/GR/003222; LIFE99NAT/GR/006498). ER and JN thanks the funding from the 

Principado de Asturias government. I-MP  was funded by LIFE08NAT/RO/000500-

LIFEURSUS (financed by LIFE+ and ACDB) and by ROSCI0229 Siriu (Romanian 

Environmental SOP 2007-2014). US and ET thanks the funding to the Institutional research 

funding (IUT20-32) and the grant PRG1209 from the Estonian Ministry of Education and 

Research. NS, TZ-K, ASe, FZ thanks the funding from Project GLOBE 

(POLNOR/198352/85/2013) funded by the Polish-Norwegian Research Programme operated by 

the National Centre for Research and Development and by the budget of Tatra National Park. 

ASo, AE thanks the fuding from Hacettepe University, Kastamonu University, General 

Directorate of Nature Conservation and National Parks, Ministry of Forestry and Water Affairs, 

Turkey. ASt and DM were funded by the the Balkan Lynx Recovery Programme. SCF and AZ 

thanks the funding from The Scandinavian Brown Bear Research Project, which is funded by 

the Swedish Environmental Protection Agency, the Norwegian Directorate for Nature 

Management and the Austrian Science Fund. CCB and HA were funded by Kaçkar Mountains 

Sustainable Forest Use and Conservation Project. IK, SH and OH were funded by Ministry of 

Agriculture and Forestry, Government of Finland. MPo, RJ, GI, OI, and GS  were funded by  

Life for Bear LIFE 13 NAT/RO/001154. the Nulceu Programmme ANCSI Eco-etologa 

carnicorelor mari in contextual dezvoltarii infrastructurii, and the BEAR Ethology Around 

Romania FP5. AOS and DO were funded by the Ministry of Forestry and Water Affairs from 

Turkey, the Nature Conservation Centre and the United Nations GEF-5 Programme, by the 

Scientific and Technological Research Council of Turkey. CHS and MWC were funded by the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532098
http://creativecommons.org/licenses/by/4.0/


50 

 

Christensen Fund, National Geographic Society, UNDP Small Grants Programme, University of 

Utah, Whitley Fund. APS, VNP were funded by the Russian Science Foundation (project No. 

18-14-00093). AT and BH were funded by MAVA foundation, EuroNatur foundation. CD was 

funded by Milvus Group’s, Bears in Mind (the Netherlands), Bernd Thies Foundation 

(Switzerland), Columbus Zoo and Aquarium (USA), EuroNatur (Germany), Frankfurt 

Zoological Society (Germany), the International Association for Bear Research and 

Management (USA) and the Nando Peretti Foundation (Italy).  

We thank Manuela Gonzalez-Suarez, Pablo Burraco and Sören Faurby for their helpful 

suggestions regarding the manuscript. We are also in debt to Angel Lucas for the artwork in 

Figs. 1, 3–5. We also thank Galician Supercomputing Center (CESGA, Galicia, Spain) for their 

technical and infrastructure support. We thank GBIF and people and institutions that contribute 

to GBIF, to make public their environmental research data. We would like to thank to the 

Brown Bear Foundation rangers and technicians, regional governments of Cantabria, Galicia, 

Asturias, Cantabria and Castilla y León, Regione Friuli Venezia Giulia, the ISPRA, the Slovenia 

Forest Service, the Hunters Society of Slovenia, the CUFAA, the University of Thessaloniki, 

the Northern Pindos National Park, the AnGre Regional Development, the AnKas Regional 

Development, the Rodopi Mountain Range National Park, the University of Thessaly, Egnatia 

SA, Ministry of Environment, Energy and Climatic Change, Government of Navarra, 

Government of Aragon, Government of Andorra, Conselh Generau d’Aran, Fauna and Flora 

Service, Alt Pirineu Natural Park, Ramón Jato, Ivan Afonso, Sergio Mir, Salvador Gonçalbez, 

Antoni Batet, Jordi Guillén, Xavier Garreta, members and students of the Carpathian Brown 

Bear Project, the personnel of Tatra National Park helping in the captures, the Hacettepe 

University, the Regional Inspectorate of Environment and Waters – Smolyan, the Central 

Balkan National Park, the Vitosha Nature park, Sanna Kokko, the Natural Resources Institute 

Finland, to Slavomír Finďo, the WWF Austria, the Institute of Wildlife Biology and Game 

Management, the University of Natural Resources and Life Sciences, Vienna, to Eko-Zon 

Public Health and Environmental Consultation, to Kolesnikov V.V., Mashkin V.I., Skumatov 

D.V., Zarubin B.E. (all – VNIIOZ, Kirov), the Balkan Lynx Recovery Programme, the DVM 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532098
http://creativecommons.org/licenses/by/4.0/


51 

 

Levente Borka-Vitális (Vets4Wild), Károly Illyés ("Mure�ul" Private Forestry Service), Károly 

Pál ("Pro Diana" Hunting Association) and Ágoston Pál ("Târnava Mare" Hunting and Angling 

Association). 

 

AUTHOR CONTRIBUTIONS 

PML led the conceptualization under the advice of WT and LJP; PML led the data curation, 

including the construction of the brown bear Occurrence Database; PML led the construction of 

the Trophic Database with contributions from JA and NS; NS suggested to reassign rEDEC and 

modified it with JA and PML; PML led the classification of wild/food species with 

contributions from NS, MDB, LM, HB, JK and SO; DDA led the work in the Range Database 

with contributions from JN and PML; PML led the statistical analysis with input from WT, 

MVT, EP, JA, MG, ER and LJP; WT, JA, NS, MDB, LM, NBa, AF and AZ acquired the 

funding; PML, JA, NS, LM, SCF, AZ, IA-J, HA, FB, A-TB, CCB, NBo, EB, KB, NBr, HB, 

MWC, DC, PC, AC, DDA, MdGH, CD, AD, AE, SF, LF, CG, SH, BH, DH, OH, GI, OI, KJ, 

IK, JVL-B, PMä, DM, YM, PMo, AM-J, AM, JN, SO, DO, SP, LPe, AP, VNP, I-MP, MPo, 

MPs, P-YQ, GR, SR, ER, US, APS, AOS, CHS, ASe, GS, TS, MS, ASo, ASt, ET, KT, AT, IT, 

TT, FZ, DZ, TZ-K collected data; PML led the methodology with input from WT, MVT, EP, 

JA, LM, MG, and LJP; NS and MDB contributed with project administration tasks; WT, MVT, 

MG and LJP provided resources; PML led the programming/coding with input from WT, MVT, 

EP, JA, and MG; WT and LJP supervised the results and research outputs; PML led the 

preparation of figures with input from WT, MVT, EP, JA, VPe and LJP; PML wrote the 

original draft with input from WT, MVT, EP, VPe and LJP; PML led the review and 

preparation of the manuscript with input from WT, MVT, EP, JA, NS, MDB, LM, VPe, MG, 

TD, AF, SCF, HA, KB, AC, DDA, CD, SF, LF, DH, OH, KJ, JK, IK, JVL-B, AM-J, ASo, ASt, 

TS, ASe, AT, DZ, LJP. PML coordinated with all coauthors/stakeholders to get brown bear 

occurrences. All authors read and approved the final version of the manuscript. 

 

SUPPLEMENTARY INFORMATION 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532098
http://creativecommons.org/licenses/by/4.0/


52 

 

The online version contains supplementary material. 

Filename Description 
Supplementary_document Contains Appendix 1 showing complementary results explaining the diet category and diet 

diversity as function of climate and land use variables; Appendix 2 with the methodology 
used to calculate historical climate and historical bioclimatic variables; Supplementary Tables 
2 which shows the number of raw occurrences of brown bear by each type of data/source and 
group; Supplementary Table 3 which shows the number of pixels of 1x1 km with presence of 
brown bear by subpopulation; Supplementary Tables 10-12 showing the rate of estimated 
dietary energy content (rEDEC) by subpopulation, diet category and human/wild origin; 
Supplementary Table 34, with the evaluations of species distribution models for wild food 
species; Supplementary Table 36 with the variable importance mean for wild food species; 
Supplementary Table 38 with the mean habitat change for each diet category and scenario; 
Supplementary Table 40 showing the comparison of univariable models explaining the brown 
bear distribution as a function of biotic variables or biotic variables binary; Supplementary 
Table 42 showing the fitted Bayesian models explaining brown bear distribution as different 
combinations of abiotic and biotic variables; Supplementary Table 43 showing the 
performance for the fitted Bayesian models explaining brown bear distribution as different 
combinations of abiotic and boitic variables; Supplementary Tables 44-48 results for fitted 
Bayesian models explaining the distribution of brown bear; Supplementary Table 54 with the 
validation of the best Bayesian model (Combination of abiotic and biotic factors and use of 
current and historical information) explaining brown bear distribution; Supplementary Tables 
59-60 names, codes and definitions of climatic and land use variables used the models; 
Supplementary Tables 61-66, results for models explaining the historical range distribution of 
brown bear; Supplementary Tables 67 and 68 correlation and univariable models with current 
data of brown bear. Supplementary Figures 1-16. 

Supplementary Table 1 Research groups which are sharing brown bear occurrences and description of the datasets 
received and processed 

Supplementary Table 4 List of brown bear diet studies included in our database 

Supplementary Table 5 Database of diet of brown bear obtained from review of diet studies 

Supplementary Table 6 Coefficient factors (Cf1 and Cf2) associated to each category of diet used to convert rV to 
rEDEC 

Supplementary Table 7 Database of diet of brown modified from original database (Supplementary Table 5) 

Supplementary Table 8 List of all species in the diet of brown bear considered 

Supplementary Table 9 Matrix showing the summarized data of rEDEC for each species by subpopulation 

Supplementary Table 13 Univariable models explaining the percentage of diet categories in all locations of studies 

Supplementary Table 14 Univariable models explaining the percentage of diet categories in the  locations of selected 
studies 

Supplementary Table 15 Uncorrelated variables based on VIF with a threshold of 10 

Supplementary Table 16 Best multivariable models explaining the percentage of invertebrates obtained from the 
combination of all uncorrelated variables from table 15 

Supplementary Table 17 Best multivariable models explaining the percentage of reproductive plant material obtained 
from the combination of all uncorrelated variables from table 15 

Supplementary Table 18 Best multivariable models explaining the percentage of unknown plant material and others 
obtained from the combination of all uncorrelated variables from table 15 

Supplementary Table 19 Best multivariable models explaining the percentage of vegetative plant material obtained 
from the combination of all uncorrelated variables from table 15 

Supplementary Table 20 Best multivariable models explaining the percentage of vertebrates obtained from the 
combination of all uncorrelated variables from table 15 

Supplementary Table 21 Averaged model using the best multivariable models from table 16 explaining percentage 
invertebrates obtained from the combination of all uncorrelated variables from table 15 

Supplementary Table 22 Averaged model using the best multivariable models from table 17 explaining percentage 
reproductive plant material obtained from the combination of all uncorrelated variables from 
table 15 

Supplementary Table 23 Averaged model using the best multivariable models from table 18 explaining percentage 
unknown plant material and others obtained from the combination of all uncorrelated 
variables from table 15 

Supplementary Table 24 Averaged model using the best multivariable models from table 19 explaining percentage 
vegetative plant material obtained from the combination of all uncorrelated variables from 
table 15 

Supplementary Table 25 Averaged model using the best multivariable models from table 20 explaining percentage 
vertebrates obtained from the combination of all uncorrelated variables from table 15 

Supplementary Table 26 Diversity indexes of brown bear diet (Simpson, Shannon and inverse Simpsons) for study 
sites 

Supplementary Table 27 Best multivariable models explaining Simpson diversity obtained from the combination of all 
uncorrelated variables from table 15 

Supplementary Table 28 Best multivariable models explaining Shannon diversity obtained from the combination of all 
uncorrelated variables from table 15 

Supplementary Table 29 Best multivariable models explaining inverse Simpsons diversity obtained from the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532098
http://creativecommons.org/licenses/by/4.0/


53 

 

combination of all uncorrelated variables from table 15 

Supplementary Table 30 Averaged model explaining the diet diversity of brown bear, with the  Simpsons' diversity 
index, as a function of climate and land use variables. 

Supplementary Table 31 Averaged model explaining the diet diversity of brown bear, with the Shannon diversity 
index, as a function of climate and land use variables. 

Supplementary Table 32 Averaged model explaining the diet diversity of brown bear, with the inverse Simpsons' 
diversity index, as a function of climate and land use variables. 

Supplementary Table 33 List of the 236 food species for brown for which it has been fitted a species distribution 
model 

Supplementary Table 35 Variable importance mean for the fitted species distribution models of food species 

Supplementary Table 37 Habitat suitability change by food species and subpopulation for the SSP1-2.6, SSP3-6.0 and 
SSP5-8.5 scenarios 

Supplementary Table 39 Mean habitat suitability change (in percentage) for all species by subpopulation and scenario 

Supplementary Table 41 Change in biotic variables for the future socioeconomic shared pathways (SSPs) 

Supplementary Table 49 Correlation of the posterior samples among the predictors used in the Bayesian hierarchical 
model using abiotic and biotic factors to explain brown bear distribution 

Supplementary Table 50 Correlation of the posterior samples among the predictors used in the simple Bayesian model 
(no hierarchical) using abiotic and biotic factors to explain brown bear distribution 

Supplementary Table 51 Correlation of the posterior samples among the predictors used in the Bayesian hierarchical 
model using abiotic factors to explain brown bear distribution 

Supplementary Table 52 Correlation of the posterior samples among the predictors used in the simple Bayesian model 
(no hierarchical) using abiotic factors to explain brown bear distribution 

Supplementary Table 53 Correlation of the posterior samples among the predictors used in the simple Bayesian model 
(no hierarchical) using biotic factors to explain brown bear distribution 

Supplementary Table 55 Current potential brown bear distribution area, percentage of occupation, percentage protected 
areas in Europe 

Supplementary Table 56 Current potential brown bear distribution area, percentage of occupation, percentage protected 
areas by subpopulation 

Supplementary Table 57 Change in potential brown bear distribution area, percentage of occupation, percentage 
protected areas in Europe 

Supplementary Table 58 Change in potential brown bear distribution area, percentage of occupation, percentage 
protected areas by subpopulation 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532098
http://creativecommons.org/licenses/by/4.0/

