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Abstract 

Accurate identification of viral genomes from metagenomic data provides a broad 

avenue for studying viruses in the human gut. Here, we introduce VirRep, a novel virus 

identification method based on a hybrid language representation learning framework. 

VirRep employs a context-aware encoder and a composition-focused encoder to 

incorporate the learned knowledge and known biological insights to better describe the 

source of a DNA sequence. We benchmarked VirRep on multiple human gut virome 

datasets under different conditions and demonstrated significant superiority than state-
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of-the-art methods and even combinations of them. A comprehensive validation has 

also been conducted on real human gut metagenomes to show the great utility of VirRep 

in identifying high-quality viral genomes that are missed by other methods. 

 

Main 

Viruses, especially bacteriophages (viruses that infect bacteria and archaea), are 

essential players of microbial communities and the most numerous biological entities 

within the microecosystem of human gut, having a fundamental impact on regulating 

the structure and function of microbial communities through widespread phage 

predation, lysogeny and horizontal gene transfer1,2. The gut virome has been heavily 

implicated in many human diseases, including inflammatory bowel disease3,4, type 2 

diabetes5,6, and severe acute malnutrition7, to name just a few. Yet, our knowledge about 

the viral genomic diversity in the human gut increases at a slow pace for decades due 

to the difficulties in virus isolation. Metagenomic sequencing can produce huge amount 

of reads from prokaryotes (bacteria and archaea) as well as viruses in the microbial 

community regardless of cultivability. Identifying viral sequences from metagenomic 

data provides researchers another broad avenue for studying viruses in the human gut. 

 

Many computational approaches have been designed to identify viruses from 

metagenomic data, which can be roughly grouped into two categories: alignment-based 

approaches and alignment-free approaches. Alignment-based approaches, such as 

VirSorter8, VIBRANT9, and VirSorter210, discriminate between viral sequences and 

prokaryotic ones based on the combination of gene annotation results and genomic 

structural features. These methods typically start with gene prediction, then annotate 

the origin and function of the predicted proteins against a built-in database via multiple 

sequence alignment. The annotation results were compiled into quantifiable metrics, 

and finally along with other genomic structural features compared to a statistical null 

model or fed into a machine learning/deep learning model to determine the likelihood 

of a sequence being viral in origin. This set of methods is able to capture viral sequences 
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with enough similarity to those in the reference database while keeping high specificity. 

However, their performance declines quickly when sequences are shorter than 10 kbp 

and the alignment procedure consumes too much time according to our evaluation. 

Moreover, high-quality reference genomes and well annotated genes are just the tip of 

the iceberg for viruses in human gut, severely ruining sensitivity of these methods to 

discover novel viruses. 

 

Recently, alignment-free approaches, an alternative route for improved identification 

of viruses, have made profound progress to overcome the limitations of alignment-

based approaches. Such methods are generally learning-based, leveraging machine 

learning or deep learning techniques to automatically learn the rules of k-mer usage 

hidden in viral and host genomes and utilize the differences to discriminate between 

them. For example, VirFinder11 trained three logistic regression models with lasso 

regularization on 8-mer frequencies to predict sequences in different length. 

DeepVirFinder12 and Seeker13 use the one-hot encoded sequence as input for 

Convolutional Neural Network and Long Short-Term Memory model, respectively. 

PPR-Meta14 encoded the sequence with one-hot embedding on both base and codon 

level, and constructed a Bi-path Convolutional Neural Network to simultaneously 

distinguish viruses, plasmids, and chromosomes. One special case is INHERIT15, which 

adopted the pre-train-fine-tune paradigm similar to that in natural language processing. 

In particular, INHERIT first pre-trained two BERT models in a self-supervised manner 

on virus and bacteria datasets respectively to learn the semantics and syntactic rules of 

DNA “words” (i.e., k-mers). It then added a simple classifier on top of the two pre-

trained models and fine-tuned them simultaneously to distinguish between viruses and 

bacteria. 

 

Despite the great value of these alignment-free approaches, directly applying them to 

human gut metagenomic data meets some challenges. First, from the modeling point of 

view, most existing methods just apply a simple neural network architecture. The 

shallow representations they produce are not competent to accurately distinguish viral 
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sequences from prokaryotic ones, leading to much higher false positives compared to 

alignment-based approaches. This would be amplified to disastrous considering that the 

viral sequences make up a rather small proportion in typical human gut metagenomic 

samples. Although INHERIT, the exception, can obtain globally contextualized and 

informative representations of DNA sequences, it is computationally intensive and time 

consuming with a huge number of parameters approaching 200 million, thus not 

suitable for large-scale metagenomic data mining. Second, in terms of prediction 

process, none of the proposed methods consider viral sequences residing in host 

genomes (i.e., proviruses). Given the large part of temperate phages in human gut viral 

population, such ignorance would miss a significant group of viral sequences. 

 

Here, we present VirRep, a novel method based on a hybrid DNA language 

representation learning framework for accurate and efficient identification of viral 

sequences from human gut metagenomic data. VirRep employs a context-aware 

encoder (Semantic Encoder) and a composition-focused encoder (Composition 

Encoder) to incorporate the learned knowledge and known records to better describe 

the source of a DNA sequence. Unlike existing methods, both the positive (virus) and 

negative (prokaryote) training sets are human gut centric. We also designed an iterative 

segment extension mechanism to extract viral signals from prokaryotic genomes. 

Benchmark results on mutiple datasets under different conditions show VirRep 

significantly outperforms state-of-the-art methods and even combinations of them on 

both bulk and virus-enriched metagenomic samples, especially for sequences shorter 

than 10 kbp. We also comprehensively validate the utility of VirRep to identify high-

quality viral genomes that are missed by other methods from real human gut 

metagenomic samples.  

 

Results 

Overview of VirRep workflow and the designed representation learning 

framework 
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VirRep is a fully automated and end-to-end tool for accurately and efficiently mining 

viral signals from human gut metagenomic data based on sophisticated DNA language 

representation learning. VirRep consists of an input module and a scoring module (Fig. 

1a). For each DNA segment in fixed length of 1 kbp and its reverse complementary 

strand, the input module first splits them into two non-overlapping 500 bp-long pieces, 

respectively. Each of the four pieces is then tokenized into a sequence of 7-mers, and a 

special token [CLS] is added in front of every 7-mers sequence. The scoring module is 

a deep siamese neural network consisting of a forward scoring system and a reverse 

scoring system. The two scoring systems separately assess the viral potential of the 

original sequence and its reverse complement, but share the same weights. The final 

output is defined as the average of the predictions from both strands. 

 

The main parts of the two scoring systems are Semantic Encoder and Composition 

Encoder, which are developed to take advantage of both alignment-based and 

alignment-free approaches (Fig. 2a). Specifically, Semantic Encoder employs a BERT-

like16 architecture, relying on the multi-head self-attention mechanism17 to capture the 

importance of each DNA word (i.e., k-mer) and word-word dependencies. Composition 

Encoder is a stacked neural network composed of a token embedding layer, two 

BiLSTM18 layers, an average pooling layer and a layer normalization19 module. 

Composition Encoder behaves like a searching engine to retrieve alignment information 

of the input sequence against a latent database. Representations generated by the two 

encoders are non-linearly transformed by the two parallel pooling layers and then 

concatenated into a single tensor that incorporates globally contextual information and 

sequence alignment information. A simple classifier then outputs a value based on the 

informative tensor to measure the probability that the input sequence derives from 

viruses. 

 

We adopted the pre-train-fine-tune paradigm to build VirRep on human gut centric 

datasets (Fig. 1c). We took advantage of both self-supervised and supervised manners 

to design a sophisticated DNA language representation learning framework. The two 
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encoders were first separately pre-trained in a self-supervised manner. We used the 

adapted masked language model20 as the pretext task for Semantic Encoder pre-training 

to learn the semantics and syntactic rules of DNA words. While for Composition 

Encoder, we first pre-trained its embedding layer by predicting the surrounding contexts 

given the center word, similar to what has been done in the skip-gram model21,22. The 

aim of this step is to force similar 7-mers having similar embeddings. Next, we 

constructed two prediction tasks to finetune the two encoders to obtain fine-grained 

representations in a supervised manner. In particular, Semantic Encoder was made to 

predict whether the input sequence is of viral origin and Composition Encoder to infer 

the proportion (i.e., coverage) of the input sequence being covered by UHGG-Rep 

database. Finally, we simultaneously fine-tuned the two encoders with a classifier on 

top of the concatenated representation to build the final model for virus identification. 

 

We also introduced a delicate mechanism for improved extraction of proviruses through 

iterative segment extension (Fig. 1d). For each sequence to be classified, we break it up 

into several 1 kbp-long segments. VirRep first assigns a score to every segment and 

takes the average as the score of the entire sequence. If the average score is above the 

cutoff set by the user, it is regarded significant and the sequence is considered as entirely 

viral. Otherwise, we search for segments with significant scores. We iteratively extend 

one segment at a time from the first one as long as the average score of these segments 

stay significant. The procedure is repeated until there is no significant segment left. We 

additionally provide a filter to prevent accidental false positives. An initial extracted 

subregion is retained only if it is longer than the user-set minimal length (5 kbp in 

defualt) or a given percentage (0.5 in default) of the length of the original sequence. To 

enhance the continuity of the hits, the filtered subregions deriving from the same 

sequence are merged if the gap between them is shorter than the pre-defined threshold 

(5 kbp in defualt) or the maximum proportion (0.5 in default) of their summed length. 
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Fig. 1 Schematic workflow of VirRep and overview of the hybrid DNA language representation 

learning framework. a, The input sequence is first split into several segments of 1 kbp in length. 

The original segment and its reverse complement are then preprocessed into 4 sequences of 7-mers, 

which are later fed into the two scoring systems. Final prediction is made by averaging the two 

scores. b, VirRep employs a siamese neural network with sharing weights, each composed of one 
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Semantic Encoder, one Composition Encoder, two parallel pooling layers and a classifier. Semantic 

Encoder is a BERT-like neural network aimed to facilitate better global representation of the input 

sequence by obtaining fine-grained meaning of DNA words from the context. Composition Encdoer 

consists of an embedding layer, two BiLSTM layers, an average pooling layer and a layer 

normalization module, which is designed to encode alignment and similarity information of the 

input sequence against UHGG-Rep database. c, A hybrid training strategy is used to train VirRep. 

Semantic Encoder and the embedding layer are first pre-trained separately based on masked 

language model and skip-gram method, respectively. Then, Semantic Encoder is fine-tuned to 

predict whether a given sequence is of viral origin, and Composition Encoder to infer the proportion 

of the input sequence covered by UHGG-Rep database. Finally, two parallel pooling layers and a 

classifier are appended to the two encoders and fine-tuned simultaneously for virus identification. 

Dotted arrows represent model weights transfer. d, Iterative segment extension mechanism for virus 

identification and provirus extraction. 

 

VirRep enables a robust detection of viruses on multiple datasets across a broad 

range of sequence length 

We first evaluated the newly proposed method VirRep on multiple recently published 

human gut virome datasets at different sequence lengths. These datasets included the 

test set of the combination of GVD23, GPD24, CHVD25 and MGV26 (referred to GGCM-

test), subset marked as human intestinal origin of the virus genome database IMG/VR 

v3 (ref. 27) (referred to IMG/VR-gut), the Danish Enteric Virome Catalog28 (referred to 

DEVoC), the union set of complete and high-quality crAss-like phages from two 

studies29,30 and a set of largest reported megaphages to date in the human gut 

microbiome31 (referred to Lak-phage). As negative control, prokaryotic sequences 

assembled from human gut metagenomic samples were also included. In order to 

evaluate the performance of VirRep at different sequence lengths, several fragments 

were randomly generated for a given length interval from each qualified original 

genome in the test datasets. We compared VirRep against both popular alignment-based 

(VIBRANT and VirSorter2) and alignment-free (VirFinder, DeepVirFinder, PPR-Meta, 

Seeker and INHERIT) approaches.  
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Fig. 2 Performance evaluation of VirRep on multiple human gut virome datasets. a-e, VirRep 

consistently achieved better performance than existing methods on the (a) GGCM-test dataset, (b) 

IMGVR-gut dataset, (c) DEVoC dataset, (d) the set of crAss-like phages and (e) the set of Lak-

phages across a broad range of sequence length. We conducted experiments multiple times on the 

five benchmarking datasets (𝑁𝑁 = 30  for GGCM-test, IMG/VR-gut, DEVoC and crAss-phages; 

𝑁𝑁 = 20  for Lak-phages). Each time an equal number of viral (𝑛𝑛 = 1000  for GGCM-test, 

IMG/VR-gut and DEVoC; 𝑛𝑛 = 500 for crAss-phages; 𝑛𝑛 = 100 for Lak-phages) and prokaryotic 

sequences were mixed. Error bars show the 95% confidence intervals. F1 score is used to measure 

the overall performance of VirRep and competing methods, while detailed recall and precision 

results are provided in Fig. S1 and Fig. S2. (f) The embedding generated by VirRep well separates 

viral and prokaryotic sequences. Shown is a two-dimensional visualization of the embedding vectors 

of 5000 randomly selected viral sequences from the GGCM-test dataset and 5000 randomly selected 

prokaryotic sequences from the IMG-GEM dataset based on t-SNE algorithm. 

 

The overall performance of each method was first assessed on the GGCM-test dataset 

to see how sequence length will affect their performance. Sequences in this dataset did 

not overlap with those in the training set and shared less than 90% nucleotide identity 

over 80% of their length with the training ones. As shown in Fig. 2a, all methods 
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demonstrate an increased accuracy as sequence length grows, while VirRep 

significantly outperforms the other methods with the highest average F1 score and 

lowest standard error at all length intervals. Specifically, VirRep achieved F1 score of 

0.93, 0.95, and 0.96 for sequences of 1.5-3 kbp, 3-5 kbp, and 5-10 kbp, while the 

corresponding values for the second best result were 0.88, 0.90, and 0.94, reflecting 

5.7%, 5.6%, and 2.1% increase, respectively. Although VirSorter2, the top alignment-

based method, were comparable with VirRep for sequences longer than 10 kbp, its 

performance declined sharply with shorter sequences, especially for those no more than 

10 kbp. Several alignment-free approaches, such as DeepVirFinder and PPR-Meta 

obtained relatively decent results with sequences of length <5 kbp, their enhancement, 

however, was not as good as expected when sequences reached 10 kbp and longer. 

Seeker and INHERIT performed poorly on this dataset with F1 score <0.8 at all length 

intervals. These results were further validated on the IMG/VR-gut and DEVoC datasets 

(Fig. 2b, c). The two datasets were generated mainly by explicit homology searching to 

known viruses and showed higher sequence similarity with our training set, hence 

explaining the performance improvement achieved by all the evaluated methods. 

 

We additionally evaluated VirRep and the other methods on two particular viral clades 

in the human gut: crAss-like phages and Lak-phages. CrAss-like phages represent the 

most abundant and prevalent viral family in human gut microbiota29,30,32. Effective 

identification of their genome sequences from the human gut metagenomes is of great 

importance for phage biology study and function characterization. Nearly all the 

methods performed well at most length intervals, of which VirRep showed the best 

result, with F1 score exceeding 0.98 even when sequences were as short as 1.5-3 kbp 

(Fig. 2d). VirSorter2, typically the second-best method on the three previously 

described datasets, had much lower F1 scores (decreased by 6.4-19.9%) than VirRep 

for sequences shorter than 10 kbp. INHERIT, nevertheless, replaced other methods as 

the most excellent tool besides VirRep unexpectedly. Lak-phages, the largest phages 

ever reported in human gut microbiome with genome size >540 kbp, are estimated to 

infect Prevotella and be widespread in the population consuming non-Western (i.e., 
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high-fiber and low-fat) diets. Similar trends were also observed on this test set (Fig. 2e). 

Alignment-free methods (except for Seeker) generally obtained higher F1 scores than 

the two alignment-based tools, and VirRep still held the top position. Interestingly, the 

performance of VirSorter2 dramatically decreased by 5.0-35.0% compared to VirRep 

at the five length intervals, indicating its limitation to identify novel and previously 

overlooked viruses in the human gut. We noticed that INHERIT performed much better 

on these two datasets, likely due to the overlap between them and the training set of 

INHERIT. 

 

In order to intuitively explore the ability of VirRep to discriminate between viruses and 

prokaryotes, we visualized the sequence embeddings using t-SNE33. As shown in Fig. 

2f, most of the sequences were well separated according to their origin even in a two-

dimensional space. Overall, VirRep is the only method that enables accurate 

identification of viruses on all the tested datasets across a broad range of sequence 

length. 

 

Dedicated encoders and representation learning improve sensitivity and 

specificity of virus identification 

To further explore what roles of the two encoders are playing and the impact of the 

designed representation learning, we conducted two sets of ablation experiments on the 

GGCM-test dataset. We first compared the performance among the full implementation 

of VirRep, the fine-tuned Semantic-Encoder-based classifier and the finetuned 

Composition-Encoder-based predictor from various aspects. The results showed that 

VirRep significantly outperformed the other two components on precision, F1 score and 

true negative rate (TNR), and displayed comparable results with the Semantic-Encoder-

based classifier on recall (Fig. 3a). The enhancement was particularly pronounced for 

sequences shorter than 10 kbp. Moreover, the performance of the Semantic-Encoder-

based classifier was obviously better than that of the Composition-Encoder-based 

predictor in most cases, which reveals that the representation generated by Semantic 

Encoder is the primary foundation for determining the label of the input sequence. 
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Besides, we also noticed that the Composition-Encoder-based predictor tended to 

relatively better identifying prokaryotic sequences than viral ones, with its true negative 

rate 3.7-10.3% higher than the corresponding recall value. Such observation indicates 

that Composition Encoder acts as an assistant consultant to correct the mistakes made 

by Semantic Encoder, which is consistent with our hypothesis that the alignment 

information will facilitate the improvement of virus detection precision. All in all, the 

two dedicated encoders together can effectively combine the learned knowledge and 

the known records to better describe a sequence, thus enabling more precise and 

sensitive identification of viral genomes. 

 

Pre-training can often help the model learn common and basic knowledge from huge 

amount of unlabeled data. In order to explore whether the learned knowledge would be 

beneficial to our ultimate goal and what extent it would influence the model 

performance, we retrained the model from scratch and compared the retrained version 

to VirRep. Matthews correlation coefficient (MCC), which simultaneously takes true 

positives, false positives, true negatives and false negatives into account, is leveraged 

to measure the overall performance of the two models. The value of MCC ranges from 

-1 to +1, where a higher coefficient represents closer consistency between the observed 

and the predicted labels. As shown in Fig. 3b, VirRep with pre-training had evidently 

higher MCC than that of the version training from scratch across all the five sequence 

length intervals. The differences were not only significant in statistics (Wilcoxon 

signed-rank test, 𝑃𝑃 = 1.86 × 10−9  for length interval 1.5k-3k, 3k-5k, 5k-10k and 

10k-20k; 𝑃𝑃 = 1.8 × 10−6  for length interval >20k), but also numerically distinct. The 

mean values of MCC over 30 replicates were 0.86, 0.90, 0.93, 0.95 and 0.97 as sequence 

length grows for VirRep with pre-training, while the corresponding values for the 

retrained version were 0.80, 0.85, 0.89, 0.91, and 0.94, reflecting 8.1%, 6.0%, 4.3%, 

4.0% and 2.4% improvement, respectively. Such inspiring observations provide ample 

evidence on the tremendous benefits of pre-training in improving model performance 

on down-stream tasks. 
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Fig. 3 The two encoders of VirRep and pre-training significantly improve the overall 

performance of virus identification. Shown are the ablation experiments on the GGCM-test 

dataset under different sequence length intervals. Experimental results on the IMG/VR-gut dataset 

are available in Fig. S3 and Fig. S4. a, Radar plots showing the relative superiority on precision, 

recall, F1 score and true negative rate (TNR) among the full implementation of VirRep, the 

Semantic-Encoder-based classifier and the Composition-Encoder-based predictor. The values are 

linearly scaled for better visualization. b, Boxplots showing the distributions of Matthews 

correlation coefficient (MCC) of the model with pre-training (With pretrain) and the model training 

from scratch (Without pretrain) over 30 replicates. Hypothesis tests were performed based on two-

sided Wilcoxon signed-rank test. 

 

In conclusion, the two dedicated encoders can well incorporate the learned knowledge 

and known records to better describe the source of a DNA sequence, thus enabling 

VirRep to take advantage of both alignment-free and alignment-based methods for more 

sensitive and precise viral signal mining from metagenomic samples. Pre-training 
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facilitates the precious knowledge learned from unlabeled data to guide model training 

on down-stream task-specific data. The two encoders and representation learning 

together profoundly enhance the overall performance of virus identification. 

 

VirRep is well applicable to both bulk and VLP human gut metagenomic samples 

Traditionally, the amount of viral DNA only accounts for a small (~5.8% on average) 

part of the total DNA of the whole microbial community (bulk metagenomic samples) 

in human gut34. Although VLP metagenomic sequencing can enrich viruses to a certain 

extent, there is still unneglectable background noise from prokaryotic organisms35. We 

hence reasoned that the conventional test with equal number of viral and prokaryotic 

sequences may not faithfully reflect the performance of evaluated methods in real-

world usage scenarios. To demonstrate the effectiveness of VirRep on both bulk and 

VLP human gut metagenomic samples, we focused our efforts on four simulated 

metagenomic datasets with different viral proportions. 

 
Fig. 4 Comparison of the performance of VirRep against those of other methods and pipelines 

on simulated metagenomic samples with different viral proportions. Shown are the results on 

samples constructed based on the GGCM-test dataset. Results on samples constructed based on the 
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IMG/VR-gut dataset can be accessed in Fig. S5-7. a, Precision-recall (PR) curves and AUPRC 

values for VirRep and the five alignment-free methods under viral proportion 5%, 10%, 50% and 

90%, respectively. Values in the bracket represents the lower bound and upper bound of the 95% 

confidence intervals over 30 replicates (5000 sequences in total for each replicate). b, Average F1 

score, precision and recall for VirRep and pipelines composed of VirSorter2 and one alignment-free 

method under viral proportion 5%, 10%, 50% and 90%. c, Average F1 score, precision and recall 

for VirRep and pipelines composed of VIBRANT and one alignment-free method under viral 

proportion 5%, 10%, 50% and 90%. Error bar shows the 95% confidence intervals over 30 replicates. 

 

We first assessed VirRep and other methods to see how precision and recall will vary 

with increasing thresholds (Fig. 4a). Here, we excluded the two alignment-based 

approaches, VIBRANT and VirSorter2, since their outputs attached no scores or merely 

assigned scores for significant hits. For the two mimic bulk metagenomic samples (viral 

proportion 5% and viral proportion 10%), VirRep was the only method allowing for 

decent detection of viral sequences, as the average AUPRC scores all exceeding 0.90, 

and were 7.1% and 4.4% higher than the second best results, respectively. This indicates 

VirRep is significantly more powerful than existing methods on bulk metagenomic 

samples. We also tested VirRep on two datasets with viral sequences made up equal or 

more than half of the whole community. These datasets were built to simulate virus-

enriched metagenomes and the extreme case where VirRep is leveraged to 

decontaminate the virome samples. Although most of the assessed methods performed 

well on these two cases, VirRep still achieved the highest AUPRC scores and had the 

highest precision at any recall value. Together, VirRep can be applied to both bulk and 

VLP human gut metagenomic samples and is the most powerful method across a broad 

range of viral proportions. 

 

Alignment-based and Alignment-free approaches each can handle different sequence 

space, and are usually complementary. Combining the two categories of methods would 

be a promising means for virus identification. Many studies have applied this strategy 

to mine viral signals from metagenomic samples23,24. We then compared VirRep against 
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several mixed virus identification pipelines each consisting of one alignment-based 

method and one alignment-free method. Surprisingly, VirRep alone obtained better or 

comparable results than the complicated pipelines. The superiority was especially 

marked when prokaryotic sequences dominate the samples (Fig. 4b). For example, the 

F1 score of VirRep were 0.88 and 0.91 for datasets with 5% and 10% viral sequences, 

which is 8.1% and 3.6% higher than the best pipeline contained VirSorter2 (i.e., 

VirSorter2+PPR-Meta), respectively. This was induced by the stronger capacity of 

VirRep to differentiate between viruses and prokaryotes, since VirRep had much higher 

precision (16.9% and 8.7% higher on average) while keeping similar sensitivity 

compared with the pipeline composed of VirSorter2 and PPR-Meta. For the virus-

enriched metagenomes, VirRep still achieved the best overall performance, while 

DeepVirFinder replaced PPR-Meta to be the best partner with VirSorter2. Even in the 

extreme case where viral sequences accounts for the vast majority of the samples, 

VirRep remained on par with the state-of-the-art strategy. Similar trend was also 

observed when comparing against the pipelines with the participation of VIBRANT. 

VirRep achieved significantly higher precision and recall than most of the pipelines and 

topped the list in overall performance (F1 score) on datasets with 5%, 10% and 50% 

viral sequences, and were comparable with the tested pipelines when viral sequences 

made up the majority of the metagenomic sample (Fig. 4c). 

 

In summary, VirRep is not only well suited for both bulk and VLP human gut 

metagenomic samples, but also can achieve better performance than existing methods 

or even a combination of them in most cases. 

 

Identify high-quality viral genomes from real human gut metagenomic samples of 

a CRC cohort using VirRep 

Encouraged by the above benchmark results, we applied VirRep to scan the real human 

gut metagenomes of a colorectal cancer (CRC) cohort with 75 CRC patients and 53 

healthy controls. In this section, we tended to practically demonstrate the utility of 

VirRep to identify high-quality viral genomes that may be missed by other methods. 
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Sequencing reads from each of the 128 metagenomes were first preprocessed to filter 

out human-genome-derived reads and low-quality bases, then assembled by MEGAHIT. 

The resulting contigs were screened by VirRep and other methods (including 

VIBRANT, VirSorter2, VirFinder, DeepVirFinder, PPR-Meta, Seeker and INHERIT) 

to identify putative viral sequences. Since we focused on high-quality viral genomes, 

only hits longer than 5 kbp were kept for further analysis. After removing flanking host 

regions and dereplication, we obtained a collection comprised of 15519 viral 

representative genomes using VirRep (Methods). 

 

CheckV was leveraged to estimate the level of completeness of each viral genome. In 

total, 501 genomes were predicted as complete and 1444 as high quality (>90% 

complete) (Fig. S8). Among these complete and high-quality viral genomes, 130 were 

totally ignored or partially detected as genome fragments (<90% completeness) by 

other methods. We explored in detail six of these complete and high-quality viral 

genomes with genes encoding termianse large subunit. The first genome 

(ERR1018185_k119_210575) has 55,997 bp and is estimated to be approximately 96% 

complete based on amino acid identity (AAI) with high-confidence. We identified 76 

protein-coding genes and annotated 25 (~33%) of them, including the three hallmark 

genes in tailed phages: large terminase subunit, major capsid protein and portal protein 

(Fig. 5a). The second genome (ERR1018270_k119_58275) is in length of 42,488 bp 

and determined to be 100% complete with 39 predicted genes, of which we were able 

to annotate 16 (~41%) of them (Fig. 5b). Two of the annotated genes encode structural 

proteins (i.e., large terminase subunit and major capsid protein). More interestingly, the 

virus is predicted to encode holin, showing its potential to specifically control 

pathogenetic bacteria. The third genome (ERR1018186_k119_78063) is 34,816 bp-

long with a lower level of completeness (~92%). It was predicted to encode 36 genes 

and 11 (~31%) of them could be annotated, again including terminase large subunit, 

major capsid protein and portal protein (Fig. S9). Phylogenetic analysis was performed 

based on the large terminase genes and showed the three viruses are all members of the 
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Siphoviridae family (Fig. 5d). The fourth genome (ERR1018188_k119_117010) has 

36,519 bp with an estimated completeness of 97%. We recognized 52 putative genes 

and annotated more than half (31, ~60%) of them (Fig. S10). The fifth genome 

(ERR1018262_k119_108237) has 39,369 bp and is predicted 100% complete with 51 

putative genes, of which we annotated 28 (~55%) of them (Fig. 5c). We found one gene 

encode endolysin in each of the two viral genomes, indicating both the two phages can 

be of great value in medical treatment. We build phylogenetic trees relying on the large 

terminase subunits and inferred the two viruses belong to the Myoviridae family (Fig. 

5e). The last genome (ERR1018304_k119_47942) we analyzed is 33,711 bp-long and 

94% complete with 36 predicted genes, of which 23 (~64%) were annotated, including 

an integrase-encoding gene, which indicates the genome may derive from a prophage 

(Fig. S11). Phylogenetic analysis of the large terminase subunits demonstrated the virus 

is a distinct member of the Podoviridae famlily (Fig. 5f). 

 
Fig. 5 Example of high-quality genomes identified by VirRep and missed by other methods. a-

c, Annotated gene map of the viral genomes: (a) ERR1018185_k119_210575, (b) 

ERR1018270_k119_58275, and (c) ERR1018262_k119_108237. d-f, Phylogenetic trees of large 

terminase subunits for the six viral genomes: (d) ERR1018185_k119_210575, 

ERR1018270_k119_58275 and ERR1018186_k119_78063; (e) ERR1018188_k119_117010 and 

ERR1018262_k119_108237; (f) ERR1018304_k119_47942. 
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Discussion 

Viruses are often recognized as the ‘dark matter’ of the human gut microbiome, 

profoundly impacting the human health through microbial community regulation. 

Accurate and efficient identification of viruses from the mixed pool of metagenomic 

sequences has been the cornerstone of human gut virome studies.  

 

In this article, we present a novel method, named VirRep, to identify viral sequences 

from human gut metagenomic data. The core modules of VirRep lie on Semantic 

Encoder and Composition Encoder, which are designed to take advantage of alignment-

free and alignment-based methods, respectively. Ablation studies demonstrate that the 

two encoders can well incorporate the learned knowledge and known records to better 

characterize DNA sequence. We also propose a hybrid DNA language representation 

learning framework that combines self-supervised and supervised manners to obtain 

fine-grained representations for predicting the origins of input sequences. Unlike 

existing alignment-free approaches, we trained VirRep on large-scale human gut centric 

microbiome datasets, thus enabling VirRep to better learn the specific sequence patterns 

of viruses and prokaryotes residing in human gut. VirRep displays high accuracy and 

robustness on multiple human gut virome datasets across a broad range of sequence 

length (Fig. 2a-e), and shows significant superiority or comparable performance on both 

bulk and VLP metagenomic samples comparing against existing methods and even the 

combination of them (Fig. 4). We additionally demonstrate the utility of VirRep by 

applying the method to a CRC cohort with 128 human gut metagenomic samples, where 

we identified several high-quality viral genomes associated with CRC that were missed 

or partially detected by other methods (Fig. 5). 

 

Despite the inspiring results, there are also some limitations and promising directions 

for further improvement should be noticed. First, VirRep is now dedicated to human 

gut metagenomic samples. The performance of identifying viruses from other 

environmental samples have not been comprehensively tested and are not guaranteed, 
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therefore directly applying VirRep to other habitats, such as soil and ocean, needs to be 

cautious. In the future, we will consider to pre-train the model on pooled datasets from 

all habitats to learn more general knowledge and transfer the pre-trained model to 

various environments. Second, the size of Semantic Encoder is reduced to be much 

smaller compared to the original version of the BERT-base model to compensate for 

running efficiency, which will inevitably make a compromise on the model 

performance. Knowledge distillation36 in the form of teacher-student framework can be 

taken into account for better model compression. Finally, the skip-gram method used 

to pre-train the embedding matrix of Composition Encoder is indirect for our purpose 

and does not consider the effect of the positions of differential bases in the central k-

mer on surrounding words in the context window. Take the two 7-mers with only one 

differential base as an example, they can have up to 5 identical surrounding words for 

window size set to 5 if the differential base appears at the head or the tail of the k-mers, 

while merely 4 identical surrounding words at most when the differential base occurs 

at other locations. A more direct metric measuring the distance between two k-mers 

holds great potential to further improve the pre-training process. 

 

Methods 

Neural network architecture of VirRep 

We employ a siamese neural network to separately score the original sequence and its 

reverse complementary strand. The siamese network has two sub-networks with the 

same architecture and shares the same weights. Each of the two sub-networks contains 

one Semantic Encoder and one Composition Encoder, which are designed to take 

advantage of alignment-free and alignment-based approaches, respectively. Apart from 

the two encoders, there are also a pooling module and a binary classification layer on 

top of each sub-network. 

 

Semantic Encoder. Semantic Encoder is generally a BERT-like16 neural network but 

with a reduced size (see Supplementary …) to enhance running efficiency for easy 
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access to large-scale metagenomic data mining. The structure of Semantic Encoder 

consists of an embedding layer and eight Transformer encoder blocks17. The embedding 

layer comprises two lookup tables, which stores the embedding vectors of k-mers and 

positions respectively. Each Transformer encoder has two sub-layers. One is the multi-

head self-attention mechanism, and the other a position-wise feed-forward neural 

network. The two sub-layers both has a residual connection around, and is followed by 

layer normalization operation. The core of Transformer encoder is the multi-head self-

attention mechanism, which can be formular as follows: 

MultiHead(𝑀𝑀) = Concat(head1, … , headh)𝑊𝑊𝑂𝑂 

head𝑖𝑖 = softmax �
𝑀𝑀𝑊𝑊𝑖𝑖

𝑄𝑄(𝑀𝑀𝑊𝑊𝑖𝑖
𝐾𝐾)𝑇𝑇

�𝑑𝑑𝑘𝑘
�𝑀𝑀𝑊𝑊𝑖𝑖

𝑉𝑉 

where 𝑊𝑊𝑂𝑂  and �𝑊𝑊𝑖𝑖
𝑄𝑄 ,𝑊𝑊𝑖𝑖

𝐾𝐾,𝑊𝑊𝑖𝑖
𝑉𝑉�𝑖𝑖=1

ℎ
  are the learned parameters, and 𝑀𝑀  is the 

embedding matrix representing the input sequence for the first block and the output of 

the last block for others. 

 

A tokenized DNA sequence was first fed into the embedding layer and transformed into 

two matrices encoding words and word positions independently. The two matrices are 

then added and used as input to the Transformer encoders. The multi-head self-attention 

mechanism adjusts the embeddings of each word according to the contexts. And the 

output of the last Transformer encoder block corresponding to the first token [CLS] is 

extracted as the final semantic representation of the entire sequence. The data stream 

can be expressed as: 

SemanticEncoder(𝑋𝑋) = 𝑓𝑓𝑛𝑛 

𝑓𝑓𝑖𝑖 = 𝑓𝑓(𝑓𝑓𝑖𝑖−1)  for 𝑖𝑖 = 2, 3, … ,𝑛𝑛 

𝑓𝑓1 = Embedding(𝑋𝑋) 

where 𝑋𝑋  represents the one-hot encoding matrix of the input sequence, and 𝑓𝑓  the 

function underlying Transformer encoder. 

 

Composition Encoder. Composition Encoder is designed to encode the base order and 
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content of a sequence for fast retrieval from the latent prokaryotic database and rough 

similarity estimation. Little contextual understanding of the sequence is required for 

such task, but the k-mer itself and its location in the sequence count. Hence, LSTM 

would be a fit choice to achieve this goal. 

 

Concretely, Composition Encoder is composed of an embedding layer, two stacked 

BiLSTM layers, an average pooling layer and a layer normalization module. The 

embedding layer converts the tokenized DNA sequence into a matrix, which is then fed 

into the BiLSTM blocks. The resulting output of each token incorporates its forward 

and backward information about sequence composition and can be regarded as a 

candidate embedding of the entire sequence. Average pooling is applied to reduce the 

dimension by taking average on the outputs of all the tokens. After layer normalization, 

the final output is treated as the compositional representation of the input sequence. 

 

In formular, the process of feeding a DNA sequence 𝑋𝑋 into Composition Encoder can 

be summarized as follows: 

CompositionEncoder(𝑋𝑋) = LayerNorm�Pool �BiLSTM �BiLSTM�Embedding(𝑋𝑋)���� 

 

Pooling module and classification layer. There is a pooling layer above each of the 

two encoders for nonlinear transformation of the produced representation. The pooling 

layer is actually a fully connected feed-forward network with hyperbolic tangent 

activation function. The classification layer aims to output the likelihood of the input 

sequence deriving from viruses, which consists of a multilayer perceptron with a single 

hidden layer. 

 

Hybrid DNA language representation learning framework 

We proposed a hybrid DNA language representation learning framework by adopting 

both self-supervised and supervised manners to better describe a sequence. The whole 

training process can be divided into three stages: pre-training, fine-tuning phase1 and 
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fine-tuning phase2. 

 

Pre-training. Pre-training aims to make the model learn the basic and common 

knowledge from huge amount of unlabeled data, which will aid to improve model 

performance on down-stream tasks. The key to pre-training lies on appropriate pretext 

tasks. We pre-trained Semantic Encoder and Composition Encoder independently and 

applied different pretext tasks according to their down-stream tasks. 

 

Semantic Encoder pre-training. Semantic Encoder is pre-trained to acquire biological 

meaning and permutation rules of DNA words. Following the previous works16,20, we 

used an adapted version of masked language model as the pretext task. All DNA 

segments used for training are in fixed length of 500 bp. For each segment, we first 

tokenized it into a sequence of k-mers and inserted a special token [CLS] (representing 

the entire segment) at the head of the sequence. Here, we chose 𝑘𝑘 = 7 to balance the 

model size and performance. We next uniformly selected 2.5% of the input tokens as 

the anchor, and extended to cover the most adjacent 𝑘𝑘 − 1 tokens. The tokens and their 

extensions (15% of the input sequence) were selected for possible replacement, of 

which 80% were replaced with the [MASK] token, 10% kept unchanged and the 

remaining substituted by a random token. In the process of pre-training, we predicted 

what the masked token it was by feeding the final output of each masked token into a 

multi-class classification layer. The objective function is to minimize the cross entropy 

loss between the predicted likelihood and the true label. We optimized Semantic 

Encoder with AdamW37. More detailed settings of training are provided in 

Supplementary methods. 

 

Composition Encoder pre-training. Unlike Semantic Encoder, only the embedding 

layer of Composition Encoder is pre-trained. To encode the compositional pattern of a 

sequence for retrieval and similarity estimation against a latent database, embedding 

the k-mers into a space where k-mers with high identity are closer is the fundamental 

step. We followed the skip-gram21 method to pre-train the embedding matrix of k-mers 
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(𝑘𝑘 = 7), which could be briefly summarized as predicting the surrounding k-mers given 

a center k-mer. The rationality for choosing this pretext task is that similar center k-

mers are more likely to have identical neighbors. 

 

We applied the negative sampling technique during training22. Specifically, we first 

converted the nucleotide sequence into a sentence of 7-mers and set the context window 

size to 5. For a given center 7-mer, its neighbors in the context window form positive 

word pairs with it, respectively. For each positive word pair, ten negative word pairs 

were generated by randomly sampling other 7-mers not in the context window. The 

other 7-mer in the word pair is called target word for convenience. We maintained two 

embedding matrices 𝑈𝑈 and 𝑉𝑉 with the same size. Center 7-mers were fed into the 

matrix 𝑈𝑈, while the target 7-mers were fed into the matrix 𝑉𝑉. Then, we performed 

inner product on the embedding vector of center 7-mer and the embedding vector of 

each corresponding target 7-mer. And the scaler was finally normalized to be between 

0 and 1 by sigmoid function. We used the binary cross entropy loss as the cost function 

and optimized the two embedding matrices by Adam38 algorithm (learning rate set to 

0.001) with a batch size of 1000. After xxx training steps, the matrix 𝑈𝑈 was kept as 

the initialized parameters for the embedding layer of Composition Encoder. 

 

Fine-tuning phase1. After pre-training, we continued to fine-tuned the two encoders 

separately in a supervised manner on task-specific data to obtain fine-grained sequence 

representations. Rather than starting from randomly initialized model weights, we 

transferred the pre-trained parameters as the initialization before fine-tuning the 

network. The same training tricks were utilized for both encoders, where the learning 

rate was first warm up to a peak value and then linearly decayed. 

 

Semantic Encoder fine-tuning. For Semantic Encoder, we forced the model to learn how 

to determine if a given nucleotide sequence derives from viruses, a sequence-level 

binary classification task. As mentioned above, the vector corresponding to the token 

[CLS] in the final output matrix (output of the last Transformer encoder block) is 
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regarded as the aggregate representation of the entire sequence. We feed the vector into 

a classification layer which is a simple fully connected feed-forward neural network 

with the sigmoid activation function. Considering the fact that DNA sequence has 

double strands, the prediction scores should be identical for both strands. Thus, we 

score the original sequence and its reverse complement independently and take their 

average as the final output. We followed the instructions in Sun et al. (ref. 39) to fine-

tune Semantic Encoder, including layer-wise decreasing learning rate and applying 

conservative learning rate to avoid catastrophic knowledge forgetting. For training 

details and hyperparameter settings, please refer to Supplementary Methods. 

 

Composition Encoder fine-tuning. Composition Encoder was fine-tuned to infer the 

proportion of the input sequence covered by UHGG database, which can be viewed as 

a regression task. Unlike the pre-training process in which only the embedding matrix 

was trained, all components of Composition Encoder and an additional regression layer 

consisting of two fully connected networks were trained simultaneously at this time. 

We generated the labels of training data by aligning the sequences against UHGG 

database. Specifically, the viral sequences were directly blasted against UHGG 

database, while for prokaryotic ones, extra work should be introduced to ensure data 

diversity since the original training sequences themselves are part of UHGG database. 

We randomly selected half of the sequences in the prokaryotic training set and changed 

15% the bases by deletion, insertion or substitution operations. Then, we blasted both 

the changed and unchanged prokaryotic sequences against UHGG database to carry out 

pairwise comparisons. We kept hits with E-value≤1e-8. For each query sequence, we 

merged the aligned regions that were ≥ 500 bp and shared at least 90% nucleotide 

identity with bedtools v2.29.1 (ref. 40). The coverage for each 500 bp-long segment was 

obtained by calculating the ratio of the length of the aligned regions to the length of the 

segment. We dealt with the double strands in the same way as Semantic Encoder. The 

cost function is Hubber loss, which is formalized as: 

ℒ𝐻𝐻(𝑥𝑥,𝑦𝑦) = �0.5(𝑓𝑓𝜃𝜃(𝑥𝑥) − 𝑦𝑦)2, 𝑖𝑖𝑖𝑖|𝑓𝑓𝜃𝜃(𝑥𝑥) − 𝑦𝑦| < 1
|𝑓𝑓𝜃𝜃(𝑥𝑥) − 𝑦𝑦| − 0.5,                   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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where 𝑥𝑥 and 𝑦𝑦 represents the input sequence and the attached coverage, respectively. 

𝑓𝑓𝜃𝜃(∙) denotes the function of Composition Encoder regressor and 𝜃𝜃 is the set of the 

learned parameters. The more detailed hyperparameter settings can be found in 

Supplementary Methods. 

 

Fine-tuning phase2. The two encoders are now able to generate meaningful 

representations after fine-tuning separately on their own down-stream tasks. We then 

fine-tuned the pooling module and the classification layer over the two representations 

to discriminate between viruses and prokaryotes. The parameters of the two encoders 

were frozen at this step. Again, we employed binary cross entropy loss to measure the 

distance between the predicted probability and the true label. See Supplementary for 

more details of the final fine-tuning process. 

 

Applying VirRep to real human gut metagenomes 

Raw sequencing reads of the 128 human gut metagenomic samples of a Chinese CRC 

cohort were downloaded from the NCBI SRA database under accession PRJEB10878. 

FastQC v0.11.9 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was first 

used to check the overall quality of each downloaded sequence data. We then removed 

human-derived reads by mapping them to human reference genome (hg38) using 

Bowtie2 v2.2.3 (ref. 41). Next, fastp v0.20.0 (ref. 42) was utilized to trim adapters and 

low-quality bases with the following parameters: ‘-l 50 -x -q 20 -u 5 -M 20 -W 4’. After 

preprocessing, MEGAHIT v1.2.8 (ref. 43) was used to assemble the high-quality clean 

reads into contigs with default parameters for each sample. 

 

To identify viral sequences from the assemblies with high confidence, VirRep was run 

with parameters: ‘--min-score 0.8, --provirus-minlen 5000’, while VirSorter2 was run 

with parameters: ‘--high-confidence-only’ and VIBRANT with default parameters. As 

for the alignment-free methods, we ran the re-trained models independently except for 

INHERIT, which was run with the provided version. Sequences with score > 0.9 were 

considered as viral for the alignment-free methods. Since we focused on high quality 
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genomes, only hits longer than 5 kbp were kept. CheckV44 was run on the kept 

sequences for the first time to remove potential flanking regions. The resulting cleaned 

viral hits were dereplicated by clustering these sequences at a 95% nucleotide identity 

over a local alignment of 85% of the shortest sequence using CD-HIT v4.8.1 (options 

‘-c 0.95 -G 0 -aS 0.85’). Finally, we ran CheckV again on the non-redundant viral 

sequence set to assess the level of completeness of each genome. 

 

Gene prediction and functional annotation 

Protein-coding genes were identified by prodigal-gv v2.10.0 

(https://github.com/apcamargo/prodigal-gv) in metagenome mode (option ‘-p meta’), a 

fork of Prodigal45 meant to improve gene calling for giant viruses and viruses that use 

alternative genetic codes. Proteins translated from the CDS regions were then annotated 

with eggNOG mapper v1.0.3 (options ‘--Z 29033, --hmm_evalue 1e-5’) against 

VOGDB (https://vogdb.org/). 

 

Phylogenetic analysis of the six high-quality viral genomes 

We downloaded the large terminase subunits of common viral families (such as 

Siphoviridae, Myoviridae and Podoviridae) from the NCBI viral RefSeq database46. 

Genomes for crAss-like phages were pooled from two studies as mentioned above and 

Gubaphages were obtained from GPD. The large terminase subunits of these two viral 

clades were extracted according to the gene functional annotation results. Phylogenetic 

analysis was performed based on the large terminase subunits. Specifically, for each 

group of viral genomes of interest, their large terminase subunits were first aligned by 

MUSCLE v5.1 (ref. 47) with default parameters. Then, we built phylogenetic trees based 

on the alignment results using FastTree v2.1.11 (ref. 48) with default parameters. Finally, 

iTOL49 was used to visualize the resultant trees. 
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