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ABSTRACT16

We mapped functional and structural brain networks for more than 40,000 UK Biobank participants. Structural connectivity was
estimated with tractography and diffusion MRI. Resting-state functional MRI was used to infer regional functional connectivity.
We provide high-quality structural and functional connectomes for multiple parcellation granularities, several alternative
measures of interregional connectivity, and a variety of common data pre-processing techniques, yielding more than one million
connectomes in total and requiring more than 200,000 hours of compute time. For a single subject, we provide 28 out-of-the-box
versions of structural and functional brain networks, allowing users to select, e.g., the parcellation and connectivity measure
that best suit their research goals. Furthermore, we provide code and intermediate data for the time-efficient reconstruction of
more than 1,000 different versions of a subject’s connectome based on an array of methodological choices. All connectomes
are available via the UK Biobank data sharing platform and our connectome mapping pipelines are openly available. In this
report, we describe our connectome resource in detail for users, outline key considerations in developing an efficient pipeline to
map an unprecedented number of connectomes, and report on the quality control procedures that were completed to ensure
connectome reliability and accuracy. We demonstrate that our structural and functional connectivity matrices meet a number of
quality control checks and replicate previously established findings in network neuroscience. We envisage that our resource
will enable new studies of the human connectome in health, disease and aging at an unprecedented scale.

17

Background & Summary18

Different aspects of brain connectivity can be quantified using different MRI modalities: diffusion-weighted MRI data can be19

utilized to map structural brain networks of white-matter connections1, 2; alternatively, functional MRI data can be used to map20

functional connectivity networks describing inter-regional interactions in brain activity3, 4. These network representations of21

brain connectivity are referred to as connectomes5, 6. Establishing a large-scale community biobank of structural and functional22

human connectomes will enable a diverse range of research into brain networks in health and disease.23

The importance of large-scale neuroimaging biobanks is increasingly recognized as key to addressing reproducibility24

concerns in neuroscience7–12. The UK biobank (UKB)—a population study containing in-depth biomedical, health, and25

environmental data—is the world’s largest neuroimaging resource (with ∼45,000 imaging sessions acquired from ∼40,00026

participants thus far)8, 13–15. This biobank offers tremendous potential for research on early diesase prediction and alignment27

of image-derived phenotypes (IDPs) with cognitive, behavioral, genetic, and medical observations. The availability of28

longitudinal neuroimaging data accompanying constantly updated clinical records enables prospective neuroscientific research29

at a population scale. To facilitate this effort, the UKB has released a range of important quantitative neuroimaging derivatives,30

including regional measures of brain structure, microstructure, and function. At present however, measures of brain connectivity31

are not a part of this resource. Mapping connectomes from neuroimaging data at scale is computationally burdensome and32
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requires significant technical expertise. Establishing a brain connectivity biobank for the UKB will ensure rapid access33

to connectomes for researchers without expertise or computing resources for large-scale connectivity mapping, facilitate34

reproducible neuroscience practices, enhance UKB utilization among the research community and ultimately lead to new35

discoveries about brain networks.36

Figure 1. A comprehensive connectome biobank for the UK Biobank. (a) Structural and functional connectomes were
mapped from diffusion and resting-state functional MRI data, respectively, while T1-weighted structural MRI was used for
brain alignment. (b) Distribution of age and sex in the 41,520 UK Biobank participants with neuroimaging data available.
Longitudinal data was available for 3,456 participants. (c) Various whole-brain atlases were used to map individual
parcellations in native volumetric space. A total of 27 alternative parcellation schemes were computed. Four representative
subcortical (I and II) and cortical (III and IV) parcellations of different granularities are illustrated. (d) Resting-state functional
time series and (e) various structural connectivity matrices were computed for different parcellations. The time series and
structural connectivity matrices are depicted for the same four sample parcellations. Abbreviations; MSA: Melbourne
Subcortical Atlas, FS: FreeSurfer atlases, HCP: HCP-MMP1.0 atlas.
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Here, we introduce our novel human connectome resource of brain atlases and connectivity matrices mapped for more than37

40,000 adults participating in the UKB (see Figure 1). We provide functional activity time series and structural connectivity38

matrices for multiple parcellation schemes, several alternative measures of interregional connectivity and a variety of common39

data pre-processing techniques, yielding 27 brain-wide functional time series (enabling flexible and efficient access to various40

functional connectivity metrics), and 28 structural connectomes per imaging session, and more than one million connectomes41

and time-series in total. This required development of highly efficient connectome mapping pipelines and storage formats.42

Connectivity data is made available in compact and easy-to-use data formats and our connectome mapping pipelines are openly43

available. We completed extensive quality control procedures to ensure the accuracy and reliability of all connectivity matrices.44

This report aims to describe our connectome resource in detail for prospective users, provide insight into the key considerations45

that shaped the development of our connectome mapping pipeline and outline quality control procedures. We envisage that this46

resource will be of high utility and complement the current IDPs available in the UKB.47

Methods48

UK Biobank data49

Background50

The UKB is a large-scale dataset comprising over 500,000 participants (aged 40-69 years). The biobank is publicly available51

to advance health-related research13. Importantly, access to full health records (which are updated over time), and a wide52

range of longitudinal, long-term clinical, phenotypic, and genomic data is available to researchers15. In addition, UKB aims to53

acquire longitudinal neuroimaging data for 100,000 participants, with ∼45,000 separate MRI sessions for ∼40,000 participants54

released thus far8, 14.55

Participants56

Brain MRI data sourced for the connectome biobank consists of 44,976 separate imaging sessions (23,701 females and 21,27557

males) from 41,520 individuals (21,951 females and 19,569 males) aged 44–82 years (µ = 64.0,σ = 7.6 years) at time of58

acquisition. For 3,456 individuals (1,750 females and 1,706 males) a single longitudinal follow-up MRI session was acquired59

1–7 years (µ = 2.35,σ = 0.71 years) after the first acquisition. Further details regarding recruitment protocols are provided60

elsewhere14. Imaging sessions that did not pass the existing UKB preprocessing and quality control pipeline8 were excluded.61

MRI data acquisition and existing preprocessing62

A detailed description of the MRI data acquisition and preprocessing pipeline is provided elsewhere8. All modalities were63

acquired on 3T Siemens Skyra scanners using the standard Siemens 32-channel head coil. The T1-weighted structural brain64

images (Data-Field 20252) were acquired using a 3D MPRAGE acquisition at 1mm isotropic resolution with a 256mm65

superior-inferior field of view8. The preprocessing steps included gradient distortion correction (GDC)16, 17, skull stripping18,66

linear and nonlinear registration to MNI152 standard space19–21, and defacing8. Additional derivative data precalculated and67

provided by the UKB resource include macroscopic tissue segmentation with FSL FAST22, subcortical modeling with FSL68

FIRST23, and brain segmentation including cortical surface estimation with Freesurfer24.69

Resting-state BOLD data (Data-Field 25751) were acquired with a multi-band gradient echo EPI sequence25–27, with an70

acquisition time of ∼6 minutes, for a total of 490 volumes, with a spatial resolution of 2.4mm isotropic voxels (TE/TR=39/73571

ms, MB=8, no in-plane acceleration, flip angle 52◦, conventional fat saturation)14. Preprocessing steps8 consisted of the FSL72

MELODIC pipeline28 (EPI susceptibility distortion correction, GDC, motion correction with FSL MCFLIRT20, grand-mean73

intensity normalization, and high-pass temporal filtering) followed by an ICA + FIX step to suppress remaining artifact74

components29, 30.75

Diffusion-weighted MRI (dMRI) data (Data-Field 20250) were acquired using a multi-band spin echo EPI sequence31,76

with an acquisition time of ∼7 minutes, with 100 unique diffusion sensitisation directions distributed equally across two shells77

(b-values: 1000, 2000 s/mm2), and 5 b=0 volumes, with a spatial resolution of 2mm isotropic voxels (MB=3, no in-plane78

acceleration, TE/TR=92/3600 ms, partial Fourier 6/8, conventional fat saturation). 3 additional b=0 volumes were acquired79

with reversed phase encoding direction to enable susceptibility field estimation32. The data were preprocessed with a pipeline8
80

consisting of correction for eddy current and head motion33–35 followed by GDC36. Additionally, FSL’s dtifit37 and the81

NODDI toolbox38 were used to generate voxelwise microstructural parameters: fractional anisotropy (FA), tensor mode (MO),82

mean diffusivity (MD), b=0 signal intensity (S0), intra-cellular volume fraction (ICVF), isotropic volume fraction (ISOVF),83

and orientation dispersion index (ODI).84

Connectomic nomenclature85

Table 1 provides brief definitions for terms commonly used in this paper.86
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Term Definition

Template space A surface-based (e.g. FreeSurfer’s "fsnative" and HCP’s "fs-LR"), or volumetric
(e.g. MNI 152) common brain space that is normally used for group-level neuroimaging
studies39.

Native space The space in which a subject’s brain imaging data is originally provided.

Registration Computing a transformation that best aligns a subject’s native space MRI data to a
template space.

Brain atlas A standard map of regional delineations segmenting the cortical and subcortical gray
matter into discrete brain regions. These maps are conventionally provided in a standard
template space.

Atlas parcellation The transformation of a brain atlas from template space to subject’s native space provides
a parcellation map delineating different brain regions in an individual.

Brain network /

Connectome

A measure of inter-regional structural or functional relationships stored in the form of
a two-dimensional connectivity matrix40. Rows/columns of this matrics quantify inter-
regional connectivity properties from a region of interest (ROI) in the gray matter. Atlas
parcellarions can be used to define ROIs.

Tractography A computational method to estimate anatomical trajectories of white matter fiber pathways
from dMRI data41.

Streamline A set of 3D coordinates encoding trajectory estimates yielded from tractography.

Structural connectome A connectome constructed from tractography results in which edges quantify properties
describing anatomical connections between ROIs (e.g. number of streamlines, or connec-
tion length)42.

Functional connectome A connectome constructed from fMRI data in which edges quantify pairwise functional
associations between multivariate time-series describing the regional blood-oxygen-level-
dependent (BOLD) signal sampled from ROIs43.

Table 1. A description of frequently used terms.

Connectome reconstruction pipelines87

As detailed below, we developed novel connectome reconstruction pipelines to satisfy five competing demands:88

1. Connectome quality, producing high-quality brain networks by using state-of-the-art pipelines to infer interregional brain89

connectivity from diffusion and functional neuroimaging data.90

2. Accessibility, facilitating streamlined access to connectome data in an efficient and easy to use format.91

3. Flexibility, enabling users to choose from connectomes mapped using a broad range of methodological preferences.92

4. Computational requirements, as our pipeline needed to be executed on data from ∼45,000 MRI sessions, which is a93

considerable burden even when making use of high-performance computing (HPC) services.94

5. Storage requirements, as the generated connectivty data needs to be stored both in the short term on local storage during95

calculation, and in the long term on UKB storage infrastructure.96

Hence, the pipeline was developed to provide a good balance between these competing aims and prepare a comprehensive,97

versatile, and high-quality brain connectivity resource. This included the development of new utilities in software packages98

used to map conenctomes (e.g., MRtrix344) with an explicit focus on reducing computational and storage requirements.99

A crucial conflict identified within this set of demands lies at the intersection of accessibility, flexibility, and storage100

requirements. On the one hand, user flexibility is boosted by providing many versions of the same connectome, mapped101

according to different methodological choices, such as different atlases or interregional connectivity measures. On the other102

hand, catering for flexibility leads to a combinatorial increase in the number of connectomes, which would be prohibitively103
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expensive to store and access for all UKB subjects. This would be particularly the case for SC matrices, for which there are104

many options for the metric of connectivity.105

We addressed this important issue as follows. For a subset of connectome configurations, deemed to be of broad applicability,106

connectivity matrices were calculated and uploaded to the UKB for direct user access. Where an alternative configuration107

is desired, we provide both the requisite intermediate data (ie. for which the most expensive computational processes have108

already been performed) and a software tool that uses these data to efficiently calculate the connectome of interest, such that109

any combination of connectome attributes can be chosen. This tool, along with the relevant code for the pipeline in its entirety,110

is accessible from github.com/sina-mansour/UKB-connectomics.111
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Figure 2. Schematic flowchart of the complete pipeline. Compressed bulk data archives from UKB along with publicly
available brain parcellation atlases and templates were used as inputs of the connectivity mapping pipelines. These inputs were
used in three separate steps to generate parcellations in subject space, that were subsequently utilized in functional and
structural connectome construction pipelines. Flowcharts of these steps are detailed in the ensuing figures. For every imaging
session, the outputs of these three steps are provided as separate compressed archives.

An overview flowchart of the pipeline is presented in Figure 2. In short, a set of automated pipelines were implemented to112

perform three main tasks:113

1. Atlas parcellations: Generate volumetric atlas parcellations in subject space, segmenting cortical and subcortical gray114

matter into distinct brain regions115

2. Functional connectivity: Derive resting-state functional time series of brain activity within these parcels to enable116

functional connectivity (FC) estimation117

3. Structural connectivity: Estimate white matter fiber orientations from diffusion MRI data and perform tractography to118

map structural connectivity (SC) matrices119
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The following sections provide a detailed explanation of every step in the connectome reconstruction pipeline.120

Brain atlas parcellations121

For parcellation of the cortical and subcortical gray matter into distinct nodes of a connected network, here we focus strictly122

on the conventional approach in the domain of neuroimaging connectomics, where spatial correspondence is established123

between a pre-generated atlas defined in some template space and the subject-specific T1-weighted image (see Table1)40, 42.124

Importantly, it is well established that the choice of atlas, and in particular the granularity of gray matter segmentations, may125

impact findings in brain connectivity studies45, 46. To address this issue, as shown in Figure 3, we consider a total of 23 cortical126

and 4 subcortical atlases. This provides researchers with the ability to choose the most appropriate parcellation for their study,127

investigate connectivity features at multiple spatial scales, and replicate analyses across different parcellation schemes.128
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Figure 3. Flowchart for the brain atlas parcellation pipeline. A total of 23 cortical and 4 subcortical atlases, transformed from
their respective template spaces, were mapped to each individual’s native volumetric space. These volumetric atlas
parcellations, as well as additional supporting files (volumetric warp and native surface delineations of cortical atlases), are
made available in the atlas parcellations compressed archive (indicated with yellow highlight).

An important detail of our handling of parcellation data is that cortical and subcortical gray matter parcellations were129

processed entirely independently of one another, and are only combined immediately prior to connectome construction. This130

permits independent selection of both cortical and subcortical parcellations for any given connectome configuration.131

We computed volumetric brain atlases in every individual’s native space for a total of 23 cortical and 4 subcortical132

atlases of the human brain. The cortical atlases included 20 different Scheaffer parcellations47 (derived from two different133

sets of functional networks48 and sub-divided into different parcellation granularities ranging 100–1000 nodes), the Human134

Connectome Project’s multimodal parcellation49 (HCP-MMP1.0; also known as the Glasser atlas), the Desikan-Killiany atlas50
135

(FreeSurfer’s "aparc"), and the Destrieux Atlas51 (FreeSurfer’s "aparc.a2009s"). The subcortical atlases included 4136

different spatial scales of the Melbourne Subcortical Atlas (MSA)52.137

All atlases were transformed to each individual’s native volumetric space. For the subcortical atlases, the UKB provides138

non-linear warp files from the subject’s T1-weighted image to the MNI152 template21, which is the space in which the MSA139

parcellations are defined. We first computed the inverse of this warp (ie. from MNI152 to the subject’s T1-weighted image),140

then applied this transformation to each of the four parcellations using nearest-neighbor interpolation (FSL’s "applywarp").141

To map subject-specific cortical atlases, we started from surface-based labels provided in different template spaces47, 49–51. For142

each participant, we aligned these labels to the subject’s native cortical surface representation (FreeSurfer’s "fsnative"),143
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as this provides superior anatomical accuracy compared to volumetric registrations. To transform surface labels into the144

final volumetric atlases, we first defined, for each subject, a cortical ribbon at the interface between gray and white matter.145

Lastly, we assigned every voxel in the ribbon the label of its nearest surface vertex. The surface transformations made use of146

in-house methods incorporating various functionalities from the Connectome Workbench53, FreeSurfer24, and NiBabel54. All147

parcellations in subject space (both surface and volumetric representations), the inverse nonlinear MNI warp, and associated148

conversion scripts (to expedite use of atlases not processed here) are made available (see Data Records and Code Availability).149

Additional scripts are also provided to combine cortical and subcortical atlases, which are required for mapping SC matrices150

comprising combinations of cortical and subcortical parcellations beyond the ones readily provided in our resource (see151

Structural connectivity: matrices section for detail).152

In some circumstances, both cortical and subcortical sources may attribute a parcel to the same voxel in native space. This153

occurred most predominantly in the hippocampal region when using the HCP-MMP 1.0 / Glasser atlas. The software used for154

connectome construction and provided to the research community prioritizes cortical labels where this occurs.155

Functional connectivity156

FC characterizes statistical dependencies between the BOLD time series recorded from different brain regions40. Several157

computational approaches can be used to map functional connectivity from BOLD signals4, 55. Here, we provide regionally158

averaged BOLD time series for the same brain parcellations atlases used to map SC matrices. This enables researchers to easily159

compute FC matrices using their favorite methods, and also allows for analyses of dynamic and time-varying FC. The flowchart160

of FC processing is shown in Figure 4. All parcellations were first resampled from the subject’s T1-weighted image voxel grid161

to the subject’s preprocessed fMRI voxel grid (FreeSurfer’s mri_vol2vol). For each parcel, the mean time series across the162

fMRI voxels ascribed to that region was calculated. By providing these parcellated BOLD time series, we enable flexibility163

and convenience in mapping functional connectivity across a wide range of alternative spatial resolutions and methodological164

approaches. For instance, FC derived from statistical correlation-based measures (e.g. Pearson’s r) can be directly computed165

from the time series data in a few milliseconds.166
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Figure 4. Flowchart for the functional connectivity mapping pipeline. BOLD regional time series are provided for 27 brain
parcellation atlases, enabling rapid computation of functional connectivity matrices. The global signal time series was
additionally computed. Note: yellow color indicates output resources that are made available in the functional connectivity
compressed archive.

7/24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.10.532036doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532036
http://creativecommons.org/licenses/by/4.0/


Global signal regression (GSR) is an fMRI preprocessing technique with potential merits and drawbacks that are subject167

to debate56–64. We thus calculated the global signal time series and provide those data separately to provide researchers with168

the flexibility to perform GSR if desired. The global signal was computed by averaging the BOLD time series over all voxels169

belonging to the anatomical brain mask.170

Structural connectivity: tractography171

Structural connectomes provide a network representation of the brain white matter axonal architecture40. Whole-brain172

tractography is used to map white matter axonal pathways from an individual’s diffusion MRI data and enable estimation of173

the connectivity properties of these pathways using any of a number of structural connectivity measures. Figure 5 shows how174

whole-brain tractograms were computed using probabilistic tractography as implemented in MRtrix344.175
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Figure 5. Flowchart for the structural connectivity mapping pipeline. The pipeline is divided into two sections. First, white
matter tractography is used to generate streamlines from diffusion-weighted imaging data. Next, these streamlines are used to
estimate interregional connectivity properties based on various measures of structural connectivity. The streamline endpoint
coordinates, connectivity metrics per streamline, and the subset of 28 connectome matrix configurations that were explicitly
generated, are all provided in the structural connectivity compressed archive (shown in yellow).

A brain mask was derived by skull-stripping the mean of DWI volumes without any diffusion weighting (b=0 volumes)176

and executing the FSL bet tool with parameters tuned for diffusion-weighted imaging (DWI) data18. In comparison to the177

DWI masks provided by the UKB, these masks were deemed more accurate and resulted in better registration between the178
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T1 and DWI spaces. Macroscopic tissue response functions65 for white matter (WM), gray matter (GM), and cerebrospinal179

fluid (CSF) were estimated with an unsupervised heuristic66, 67. Multi-shell, multi-tissue (MSMT) constrained spherical180

deconvolution (CSD)68 was used to estimate fiber orientation distributions (FODs). This multi-tissue information was used181

to perform combined intensity normalization and bias field correction69. Liberal and conservative brain masks were used182

respectively for these two steps to mitigate the detrimental influences of imperfect masks in the respective processes.183

Whole-brain tractography was performed as follows. A tissue-type segmentation image, intended for use of the Anatomically-184

Constrained Tractography (ACT) framework70, was constructed using a combination of the FreeSurfer aseg image and the185

results of FSL FIRST23. From this, a mask of the interface between GM and WM was constructed for the purpose of streamline186

seeding. Probabilistic tractography was performed using 2nd-order integration over Fibre Orientation Distributions (iFOD2)71.187

A total of ten million streamline seeds were drawn throughout the GM-WM interface, and generated streamlines were rejected188

if they failed to satisfy length constraints or the ACT priors70. This constant number of streamline seeds is an important189

requirement for computational tractability that provides a more robust upper bound on execution time across sessions.190

Structural connectivity: matrices191

Tractography streamlines and parcellation images were next used to generate SC matrices quantifying various connectivity192

measures for each regional pair. To generate structural connectomes that are representative of whole-brain connectivity, we used193

parcellations that integrated both cortical and sub-cortical atlases. As described previously, structural connectivity matrices were194

pre-calculated for only a subset of all possible connectome configurations; the seven combinations of cortical and subcortical195

parcellations chosen—for which pre-computed out-of-the-box connectivity matrices are available—are summarized in Table 2.196

Nevertheless, the provided scripts and supplementary data (e.g. streamline endpoint coordinates and per-streamline metrics)197

enable connectivity reconstruction for any other possible combination of cortical and subcortical parcellation schemes desired.198

Cortical atlas Cortical regions Subcortical atlas Subcortical regions Total regions

Desikan Killiany 68 MSA - scale I 16 84

Destrieux 148 MSA - scale I 16 164

Glasser 360 MSA - scale I 16 376

Glasser 360 MSA - scale IV 54 414

Schaeffer 200 (7 networks) 200 MSA - scale I 16 216

Schaeffer 500 (7 networks) 500 MSA - scale IV 54 554

Schaeffer 1000 (7 networks) 1000 MSA - scale IV 54 1054

Table 2. The seven combinations of cortical and subcortical parcellations for which structural connectivity matrices were
precomputed, and their respective numbers of regions.

Numerous measures of structural connectivity strength are available. The most common measure is the streamline count,199

which quantifies the total number of streamlines connecting region pairs. Alternatively, post processing algorithms can be200

applied to ensure that streamline counts better reflect the underlying white matter architecture. We provided per-streamline201

"weights" calculated by the SIFT2 method to estimate the Fiber Bundle Capacity (FBC) between regions72. Additionally, the202

average length of all streamlines between region pairs were computed to measure connection length. Finally, microstructural203

parameters (i.e. FA, MD, MO, S0, ICVF, ISOVF, and ODI) were averaged for each streamline trajectory to quantify the204

microstructural properties of connections.205

Regarding the subset of connectome configurations for which we provide pre-computed structural connectivity matrices, for206

each of the combined parcellation schemes as shown in Table 2, matrices were constructed utilizing the following four metrics:207

• Streamline count208

• Fiber Bundle Capacity (from SIFT2)209

• Mean streamline length210

• Mean Fractional Anisotropy (FA)211

For all structural connectivity metrics (ie. not only those for which matrices were pre-computed), the per-streamline212

quantitative metrics are provided alongside the locations of the endpoints of streamlines. This facilitates the construction of213
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structural connectomes using any preferred combination of cortical parcellation, subcortical parcellation, and connectivity214

metric, utilizing the provided connectome generation scripts; this requires both minimal storage (only a pair of 3-vectors and a215

single floating-point value per streamline) and minimal additional computation (as it is the propagation of streamlines that216

incurs the greatest expense; assigning streamline endpoints to a parcellation is comparably simple). Considering all different217

parcellations and connectivity metrics, our code and data resources allow for user-friendly and time-efficient reconstruction of218

∼1000 alternate structural connectivity matrices for a single subject. We further note that the data provided in this form are219

entirely compatible with the adoption of recent developments in the domain such as high-resolution connectomes that consider220

each surface vertex as its own parcel73, and the utilization of spatial smoothing of parcels to enhance reliability74, for which the221

relevant software tools are also provided.222

Computing resources223

The whole pipeline was tailored for parallel execution on high-performance computing (HPC) clusters. Parallelization was224

implemented at the level of individual imaging sessions, with a separate computation job submitted for every session (∼45,000225

parallel job submissions). While many of the underlying software tools are capable of executing multiple threads for a single226

processing job, this was not the case for all such tools, and therefore allocating a single CPU core per session was determined227

to yield the best CPU resource utilization. The maximal memory and wall time per job were empirically minimized to facilitate228

maximal parallelization on the HPC resource without compromising completion of jobs; this was chosen to be 4GB RAM and229

6 hours execution time. The Spartan HPC resource provided by the University of Melbourne75, 76 was utilized for this task,230

which was typically capable of executing 100–200 such jobs in parallel depending on external utilization.231

Time requirements232

In addition to the three primary computation steps of the pipeline, each computing job also involved downloading all required233

UKB data and uploading the resulting derivatives. While data download would typically only require minutes, UKB servers234

permit only 10 parallel downloads per user, and some jobs could hence experience considerable delays in accessing their235

requisite data; the wall time allocated for each job was therefore set in order to tolerate such delays without resulting in job236

failure.237

Following data download, the approximate processing time required for each stage of the pipeline was as follows. The atlas238

mapping pipeline required 10 minutes. Mapping resting functional data required 5 minutes. The most time-consuming step was239

the structural connectivity reconstruction pipeline, which required 150 minutes. Finally, subsequent conversions and upload240

steps required 5 minutes. Overall, the complete pipeline required 3–4 hours to finish for a single imaging session.241

In total, mapping connectomes across all UKB imaging sessions required ∼200,000 CPU hours (∼20 years) of computation242

to complete. This substantial time requirement could only be satisfied with the extensive use of HPC resources in parallel243

execution which reduced the overall required time to map these connectomes from years to months75.244

Storage requirements245

The storage requirements for the derivatives of the analysis pipelines are as follows:246

• Atlas parcellation pipeline: Cortical and subcortical parcellations warped to native subject space, in addition to the247

non-linear warp from MNI to subject space (to facilitate reserarcher utilisation of other parcellations represented in248

MNI152 space), all stored in NIfTI format in a compressed archive, requires ∼100MB per session.249

• Functional connectivity pipeline: The 28 time series (each unique cortical and subcortical parcellation as well as the250

global signal, as detailed in previous sections) are provided in comma-separated values (CSV) format. These files are251

provided as a compressed archive with a size of ∼50MB per session.252

• Structural connectivity pipeline: The combination of parcellations, pre-calculated structural connectome matrices, stream-253

line endpoint coordinates, and per-streamline quantitative metrics for construction of other connectome configurations,254

are provided as a compressed archive with a size of ∼75MB per session.255

As a result, a total of ∼225MB of storage is required to store all derived data per session. The complete set of computed256

connectivity maps across all sessions occupies ∼10TB of storage.257

Data Records258

The generated files are organized into three separate compressed archives for every UKB imaging session. Figure 6 provides a259

summarized list of files provided for a single session. Supplementary Figure S1 provides a more detailed list of all files. All260

data are made available via UKB data returns policy and will be accessible as new bulk files.261
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Atlas parcellations archive

lh.native.[cortical_atlas_name].annot
↳ Left hemisphere atlas on fsnative

×23

×23
rh.native.[cortical_atlas_name].annot

↳ Right hemisphere atlas on fsnative

×27
native.[atlas_name].nii.gz

↳ Volumetric atlas in native T1 space

×27
native.fMRI_space.[atlas_name].nii.gz

↳ Volumetric atlas in fMRI space

atlases/

transforms/

MNI_to_T1_inversed_warp_coef.nii.gz
↳ Nonlinear warp from MNI to native T1

Functional connectivity archive

×27
fMRI.[atlas_name].csv.gz

fMRI.global_signal.csv.gz

↳ Time series downsampled to atlas

↳ Global fMRI signal time series

fMRI/

connectome_mean_FA_10M.csv

tracks_10M_endpoints.npy

↳ Average FA connectivity matrix

↳ Enpoints stored as half-precision binary

connectome_streamline_count_10M.csv
↳ Streamline count connectivity matrix

connectome_mean_length_10M.csv
↳ Streamline length connectivity matrix

connectome_sift2_fbc_10M.csv
↳ SIFT2 connectivity matrix

tractography/

atlases/

connectomes/

endpoints/

metrics/

[combined_atlas_name]/

×8
native.dMRI_space.[atlas_name].nii.gz

↳ Selected atlases in dMRI space

×9
[streamline_metric].npy

↳ Per-streamline metrics in half-precision

Structural connectivity archiveData release directory structure

Figure 6. Summary of file archives comprising the connectome resource. Three separate compressed archives are provided for
atlas parcellations (red), functional time series (blue), and structural connectivity data (green). Alternative configurations of
provided data are summarized by providing a single informative placeholder (colored text in square brackets). A detailed list of
all files is provided in Supplementary Information.

Atlas data262

The compressed bulk file of atlas data contains derivative parcellations in native volumetric space (atlases/native.263

[atlas_name].nii.gz) for all cortical and subcortical atlases used. Cortical atlases are also provided as parcel-264

lated surface data in the FreeSurfer "fsnative" space (atlases/(rh|lh).native.[atlas_name].annot). The265

warp image that can be used for nonlinear transformation from MNI space to native coordinates is additionally provided266

(transforms/MNI_to_T1_inversed_warp_coef.nii.gz).267

Functional data268

The compressed bulk file of functional data contains time series are aggregated within the parcels of various atlases. The time269

series information is stored as a compressed file with comma-separated values, i.e. the .csv.gz format. For each atlas, all270

sampled time series are provided in a single bulk file (fMRI/fMRI.[atlas_name].csv.gz). In addition, the time series271

for the global signal is included (fMRI/fMRI.global_signal.csv.gz).272

Diffusion tractography data273

The compressed bulk file of diffusion data contains:274

• 28 pre-calculated connectivity matrices (all combinations of the combined atlases shown in Table 2 and the four275

primary connectivity metrics listed in the "Structural connectivity: matrices" section), with paths:(tractography/276

connectomes/[cortical_atlas_name]+[subcortical_atlas_name]/connectome_[metric_name]277

_10M.csv).278

• Spatial locations of all streamline endpoints: (tractography/endpoints/tracks_10M_endpoints.npy).279

This facilitates assignment of pre-generated streamlines to any parcellation of interest. This file is stored in a half-precision280

floating-point format (16 bits) to reduce storage requirements with minimal loss of precision.281

• Nine per-streamline quantitative metrics, with paths: tractography/metrics/[metric_name].npy. Metrics282

include streamline length, SIFT2 weights, and mean values of voxel-wise quantitative metrics along the streamline283
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trajectories. These are also stored in half-precision floating-point format, with multiplicative factors of 1e3 and 1e−3284

applied to the mean MD and mean S0 metrics, respectively, to scale the magnitudes of floating-point values toward unity285

and therefore mitigate loss of precision.286

• Statistics regarding tractogram generation (eg. why streamlines were terminated and why they were accepted or rejected).287

• Statistics regarding the operation of the SIFT2 algorithm.288

Data Validation289

All brain imaging data sourced as inputs passed the automated quality control (QC) evaluations by UKB8. We additionally290

computed various assurance metrics to assess the quality of the provided connectomic resource. These evaluations can be291

divided into i) QC metrics to probe data quality and ii) analyses of topological properties of brain networks, showing that our292

connectomes reproduce established findings of the network neuroscience literature.293

Quality control294

We have computed an extensive set of connectomic QC measures. These metrics complement existing QC efforts provided by295

the UKB, and can be used to exclude low-quality or inaccurate connectomes. Figure 7 provides a summary of the provided QC296

measures.297

Figure 7. Quality control measures. (a) For atlas parcellations, the parcel sizes were quantified by the number of voxels within
each region. Distributions of the number of voxels averaged across atlas regions (left) and across imaging sessions (right)
summarize the trends in parcel size for all 27 cortical and subcortical atlases. (b) Similarly, distribution of BOLD signal
variance is shown for all 27 atlases. (c) Summary of structural connectivity QC measures for connectome density, components,
and reconstructed streamlines for all sessions.
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Our QC measures serve as basic features that can be utilized to generate flexible data exclusion criteria tailored to specific298

research questions. For instance, cases where such metrics lie at the tail of the corresponding distribution could be excluded from299

analysis, or QC features could be matched between groups. We suggest that these QC features should be tailored to particular300

study aims, rather than being adopted blindly. For instance, one study may use the metric of total number of streamlines in301

the connectome to exclude individuals where tractography reconstruction is poor, or account for this effect as a confounding302

covariate; in contrast, another study aiming to assess the impact of a particular pathology on the structural integrity of the303

connectome may consider the total number of streamlines to be a variable of interest that should not be matched/regressed.304

Atlas QC measures305

For all volumetric parcellations (cortical and subcortical), the volume of every atlas region in an individual was computed306

as the total number of voxels assigned to each region. This measure can be used to investigate properties of the native atlas307

parcellations. Future studies may decide to exclude sessions or parcellations for which certain regions are not appropriately308

represented, e.g. if a region has no (or very few) voxels. In addition, these measures can optionally be used for normalization of309

particular structural connectivity matrices: since larger brain regions are more likely to be intersected by streamlines, one may310

choose to rescale connectivity based on regional volume2, 77.311

Figure 7.a shows a summary of this QC measure in the UKB sample. Violin plots on the left depict the distribution of312

voxel sizes averaged across all regions and plotted across sessions. Conversely, the plot on the right is averaged across sessions313

and depicts the distribution across regions. As anticipated, parcel volumes tend to become smaller as the granularity of the314

parcellation scheme increases. Furthermore, it indicates that a considerable degree of size variation exists between different315

regions of the same atlas; for instance, the largest regions of Schaeffer’s atlas with 1000 parcels are similar in size to regions316

from the Destrieux atlas with only 148 parcels.317

Functional connectivity QC measures318

For functional time series, the variance of the aggregated signal within each region is reported across all sessions and atlas319

regions. This regional measure of variance can be compared to the variance of the global signal to provide an estimate of320

signal quality78. However, it is important to interpret this information with caution, as the standard deviation of an fMRI signal321

cannot be equated to noise strength and is known to vary with aging and cognition79, 80. Signal variance could still be used as a322

quantitative quality metric to filter out low quality scans.323

Figure 7.b provides summary distribution plots of signal variance averaged across sessions and parcels. These summary324

plots show that relatively higher granularities (e.g. 1000 cortical regions compared to 100 cortical regions) tend to contain325

signals with larger variation. This is because large parcels sample fMRI over more voxels, which eliminates variance sources326

from localized effects and unstructured noise. These variance measures for QC could potentially be used as exclusion criteria327

for sessions in which a region has zero (or very low) variance. A retrospective evaluation of this QC measure indicated a328

limitation in UKB fMRI preprocessing pipelines impacting signal quality at the orbitofrontal cortex, which is known to be329

susceptible to BOLD signal loss81, 82 (see Supplementary Information for further detail).330

Structural connectivity QC measures331

For structural connectivity, the number of streamlines reconstructed by tractography is reported as a measure of whole-brain332

tractogram reconstruction efficacy. Given that the number of seeded streamlines is constant for all individuals (10 million),333

a lower total streamline count indicates higher exclusion rates from streamline acceptance criteria (anatomical validity as334

determined by ACT and adequate length), which may indicate pathology, poor structural integrity, or low quality data. Another335

use of this feature is normalizing the connectivity matrices to construct connectomes with equal total strength, which can be336

more suitable for studying connection probability83. In addition, the number of connected components and total connectome337

density were computed for every structural connectivity matrix. This provides an additional QC feature, as connectomes are338

expected to form a single connected component and therefore disconnected connectomes could indicate either gross structural339

abnormalities or poorly reconstructed structural connectivity. Hence, future studies could exclude SC matrices with more than340

one connected component. As shown in Figure 7.c, SC forms a single connected component for most of the sessions (> 95%341

for the highest granularity, and > 99% for other granularities). Finally, the weighted nodal strength and binary nodal degree342

are provided, with a binarization threshold of one streamline. Figure 7.c summarizes the QC metrics extracted for structural343

connectomes.344

Properties of structural and functional connectomes345

In this last section, we provide an initial exploration of the properties of our structural and functional brain networks. The346

following analyses sought to replicate previously established results in the network neuroscience literature and, as such, further347

demonstrate the quality and utility of our connectivity resource.348
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Figure 8. Properties of structural and functional brain networks. (a) Group-level connectomes were derived from 1000
random sessions. The matrices closely resemble standard brain connectivity characteristics with visual distinctions between the
cortical hemispheres and the subcortex, local clusters of connectivity within each hemisphere, and strong homotopic
connections forming diagonal strides. Results are presented for both SC (blue) and FC (red) matrices in two exemplar
parcellations, with "DK + MSA-S1" containing the fewest and "S7n500 + MSA-S4" containing one of the greatest numbers of
nodes. (b) Degree distributions of individual connectomes used to construct the group-level matrices. Thin lines indicate
trajectories for individual session data; thick line presents the median; shaded regions indicate [25, 75] and [5, 95] centiles. (c)
Structure-function coupling was quantified for both exemplar parcellations. Brain-wide coupling was assessed using Pearson’s
correlation between FC and log(SC) across all edges (scatter plots). Node-wise coupling gradients were computed to project
regions to a spectrum of decoupled (blue) to coupled (red) areas. These gradients were compared with FC-derived gradients of
functional hierarchy in which regions are situated on a gradient from unimodal (green) to transmodal (purple) areas.
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To this end, group-level structural and functional networks were constructed from connectivity data of 1000 randomly349

sampled individuals. We considered two parcellation combinations comprising a total of 68 (cortex: DK, subcortex: MSA-S1)350

and 554 (cortex: Schaefer 500, subcortex: MSA-S4) gray matter regions. FC was mapped using GSR and the pairwise Pearson351

correlation of regional BOLD signals. Group-level FC was computed as the average of functional networks across the 1000352

subjects and group-consensus SC was inferred using consistency-based thresholding84.353

Figure 8.a shows the resulting group average SC (blue) and FC (red) matrices for the two selected parcellation schemes.354

These visualizations align with previous literature2, 85, 86 and exhibit features that are consistent with typical connectomes,355

including i) distinct inter-hemispheric and cortico-subcortical boundaries, ii) a modular structure evident within each hemisphere,356

and iii) evidence of homotopic connections between the two hemispheres.357

Next, we assessed the scale-free network property of the connectomes. We computed the degree distribution of the FC358

and SC matrices for all sessions by assuming respective binarization thresholds of ρ = 0.4 and 1 streamline, respectively. The359

degree distributions of the resulting matrices are presented in Figure 8.b. The corresponding degree distribution plots replicate360

previous findings of characteristics observed in structural and functional connectomes with a degree distribution that follows an361

exponentially truncated power law86–91.362

Finally, we sought to reproduce previous findings of SC-FC coupling (Figure 8.c). The structure and function of the363

human brain networks are interrelated92, 93. This relationship can be investigated by comparing the strengths of structural and364

functional network edges. We present data for three experiments in this regard:365

1. Structure-function correlation: We assessed the degree of collinearity between FC strengths and the logarithm of SC366

strength (as quantified by streamline count). The expected positive correlation94, 95 between the strength of structural and367

functional connectivity was observed for atlases with high (ρ = 0.4) and low (ρ = 0.33) parcellation granularities.368

2. Structure-function coupling gradient: The degree of structure-function coupling is reported to vary across the brain,369

with certain regions exhibiting stronger coupling and others displaying relatively decoupled activity96–99. To evaluate370

structure-function coupling at the level of individual regions, we used a multilinear prediction approach96; in short,371

for each node, we estimated the FC strength to all other nodes via multilinear regression based on four measures of372

inter-regional distance and structural communication: (i) Euclidean distance, (ii) structural connectivity, (iii) shortest373

path length, and (iv) communicability100. The accuracy of model predictions (quantified by Pearson’s correlation) is374

indicative of local SC-FC coupling strength.375

3. Principal functional gradient: In prior work, these local patterns of regional coupling have been reported to follow376

the functional organization hierarchy of unimodal to transmodal brain regions97, 98. We thus computed the principal377

functional gradients by performing diffusion map embedding on group-level FC101 and evaluated its association with the378

SC-FC coupling gradient. Our results (Figure 8.c) successfully replicated the expected relationship between the coupling379

patterns and functional organization hierarchy at low (ρ = 0.24) and high (ρ = 0.49) parcellation granularities.380

The evaluations of network properties presented in this section demonstrate that the connectivity matrices provided here381

reproduce well-established findings in brain connectivity research. This illustrates the high quality of this connectome resource382

and its potential to facilitate future connectomic studies in an aging population.383

Usage Notes384

All data will be made available via UKB data returns policies to be accessible based on UKB material transfer agreements.385

Researchers can apply to access these data by filling out a UKB access application. Additional code and data (such as the label386

ordering of atlases) are made openly available in a publicly accessible git repository. All data are provided in formats that are387

readable in various programming languages. This enables use of several existing software packages for brain connectivity388

analysis such as the Brain Connectivity Toolbox (Matlab)102, bctpy (Python), and Nilearn (Python), as well as general network389

analysis tools such as NetworkX103.390

Code availability391

All scripts used to perform computations described in this manuscript (eg. generating atlas parcellations, aggregating BOLD392

time series, tractography, computing structural connectivity, etc.) are made publicly available in the git repository served393

at github.com/sina-mansour/UKB-connectomics. Additional scripts used to perform QC evaluations are also394

provided in this repository. Furthermore, sample scripts to read the generated data into various programming languages are395

made available to facilitate uptake of this resource by the community.396
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Supplementary Information622

Comprehensive directory tree623

A summarized directory tree was provided in the main text to list all released data. Figure S1 provides an extensive list of all624

files provided in the compressed archives of a session.625

./

├── atlases/

│ ├── lh.native.aparc.a2009s.annot

│ ├── lh.native.aparc.annot

│ ├── lh.native.Glasser.annot

│ ├── lh.native.Schaefer17n1000p.annot

│ ├── lh.native.Schaefer17n100p.annot

│ ├── lh.native.Schaefer17n200p.annot

│ ├── lh.native.Schaefer17n300p.annot

│ ├── lh.native.Schaefer17n400p.annot

│ ├── lh.native.Schaefer17n500p.annot

│ ├── lh.native.Schaefer17n600p.annot

│ ├── lh.native.Schaefer17n700p.annot

│ ├── lh.native.Schaefer17n800p.annot

│ ├── lh.native.Schaefer17n900p.annot

│ ├── lh.native.Schaefer7n1000p.annot

│ ├── lh.native.Schaefer7n100p.annot

│ ├── lh.native.Schaefer7n200p.annot

│ ├── lh.native.Schaefer7n300p.annot

│ ├── lh.native.Schaefer7n400p.annot

│ ├── lh.native.Schaefer7n500p.annot

│ ├── lh.native.Schaefer7n600p.annot

│ ├── lh.native.Schaefer7n700p.annot

│ ├── lh.native.Schaefer7n800p.annot

│ ├── lh.native.Schaefer7n900p.annot

│ ├── native.aparc.a2009s.nii.gz

│ ├── native.aparc.nii.gz

│ ├── native.fMRI_space.aparc.a2009s.nii.gz

│ ├── native.fMRI_space.aparc.nii.gz

│ ├── native.fMRI_space.Glasser.nii.gz

│ ├── native.fMRI_space.Schaefer17n1000p.nii.gz

│ ├── native.fMRI_space.Schaefer17n100p.nii.gz

│ ├── native.fMRI_space.Schaefer17n200p.nii.gz

│ ├── native.fMRI_space.Schaefer17n300p.nii.gz

│ ├── native.fMRI_space.Schaefer17n400p.nii.gz

│ ├── native.fMRI_space.Schaefer17n500p.nii.gz

│ ├── native.fMRI_space.Schaefer17n600p.nii.gz

│ ├── native.fMRI_space.Schaefer17n700p.nii.gz

│ ├── native.fMRI_space.Schaefer17n800p.nii.gz

│ ├── native.fMRI_space.Schaefer17n900p.nii.gz

│ ├── native.fMRI_space.Schaefer7n1000p.nii.gz

│ ├── native.fMRI_space.Schaefer7n100p.nii.gz

│ ├── native.fMRI_space.Schaefer7n200p.nii.gz

│ ├── native.fMRI_space.Schaefer7n300p.nii.gz

│ ├── native.fMRI_space.Schaefer7n400p.nii.gz

│ ├── native.fMRI_space.Schaefer7n500p.nii.gz

│ ├── native.fMRI_space.Schaefer7n600p.nii.gz

│ ├── native.fMRI_space.Schaefer7n700p.nii.gz

│ ├── native.fMRI_space.Schaefer7n800p.nii.gz

│ ├── native.fMRI_space.Schaefer7n900p.nii.gz

│ ├── native.fMRI_space.Tian_Subcortex_S1_3T.nii.gz

│ ├── native.fMRI_space.Tian_Subcortex_S2_3T.nii.gz

│ ├── native.fMRI_space.Tian_Subcortex_S3_3T.nii.gz

│ ├── native.fMRI_space.Tian_Subcortex_S4_3T.nii.gz

│ ├── native.Glasser.nii.gz

│ ├── native.Schaefer17n1000p.nii.gz

│ ├── native.Schaefer17n100p.nii.gz

│ ├── native.Schaefer17n200p.nii.gz

│ ├── native.Schaefer17n300p.nii.gz

│ ├── native.Schaefer17n400p.nii.gz

│ ├── native.Schaefer17n500p.nii.gz

│ ├── native.Schaefer17n600p.nii.gz

│ ├── native.Schaefer17n700p.nii.gz

│ ├── native.Schaefer17n800p.nii.gz

│ ├── native.Schaefer17n900p.nii.gz

│   └── fMRI.Tian_Subcortex_S4_3T.csv.gz

├── tractography/

│   ├── atlases/

│   │   ├── native.dMRI_space.aparc.a2009s.nii.gz

│   │   ├── native.dMRI_space.aparc.nii.gz

│   │   ├── native.dMRI_space.Glasser.nii.gz

│   │   ├── native.dMRI_space.Schaefer7n1000p.nii.gz

│   │   ├── native.dMRI_space.Schaefer7n200p.nii.gz

│   │   ├── native.dMRI_space.Schaefer7n500p.nii.gz

│   │   ├── native.dMRI_space.Tian_Subcortex_S1_3T.nii.gz

│   │   └── native.dMRI_space.Tian_Subcortex_S4_3T.nii.gz

│   ├── connectomes/

│   │   ├── aparc+Tian_Subcortex_S1_3T/

│   │   │   ├── connectome_mean_FA_10M.csv

│   │   │   ├── connectome_mean_length_10M.csv

│   │   │   ├── connectome_sift2_fbc_10M.csv

│   │   │   └── connectome_streamline_count_10M.csv

│   │   ├── aparc.a2009s+Tian_Subcortex_S1_3T/

│   │   │   ├── connectome_mean_FA_10M.csv

│   │   │   ├── connectome_mean_length_10M.csv

│   │   │   ├── connectome_sift2_fbc_10M.csv

│   │   │   └── connectome_streamline_count_10M.csv

│   │   ├── Glasser+Tian_Subcortex_S1_3T/

│   │   │   ├── connectome_mean_FA_10M.csv

│   │   │   ├── connectome_mean_length_10M.csv

│   │   │   ├── connectome_sift2_fbc_10M.csv

│   │   │   └── connectome_streamline_count_10M.csv

│   │   ├── Glasser+Tian_Subcortex_S4_3T/

│   │   │   ├── connectome_mean_FA_10M.csv

│   │   │   ├── connectome_mean_length_10M.csv

│   │   │   ├── connectome_sift2_fbc_10M.csv

│   │   │   └── connectome_streamline_count_10M.csv

│   │   ├── Schaefer7n1000p+Tian_Subcortex_S4_3T/

│   │   │   ├── connectome_mean_FA_10M.csv

│   │   │   ├── connectome_mean_length_10M.csv

│   │   │   ├── connectome_sift2_fbc_10M.csv

│   │   │   └── connectome_streamline_count_10M.csv

│   │   ├── Schaefer7n200p+Tian_Subcortex_S1_3T/

│   │   │   ├── connectome_mean_FA_10M.csv

│   │   │   ├── connectome_mean_length_10M.csv

│   │   │   ├── connectome_sift2_fbc_10M.csv

│   │   │   └── connectome_streamline_count_10M.csv

│   │   └── Schaefer7n500p+Tian_Subcortex_S4_3T/

│   │       ├── connectome_mean_FA_10M.csv

│   │       ├── connectome_mean_length_10M.csv

│   │       ├── connectome_sift2_fbc_10M.csv

│   │       └── connectome_streamline_count_10M.csv

│   ├── endpoints/

│   │   └── tracks_10M_endpoints.npy

│   ├── metrics/

│   │   ├── sift_weights.npy

│   │   ├── streamline_metric_0.001xS0_mean.npy

│   │   ├── streamline_metric_1000xMD_mean.npy

│   │   ├── streamline_metric_FA_mean.npy

│   │   ├── streamline_metric_length.npy

│   │   ├── streamline_metric_MO_mean.npy

│   │   ├── streamline_metric_NODDI_ICVF_mean.npy

│   │   ├── streamline_metric_NODDI_ISOVF_mean.npy

│   │   └── streamline_metric_NODDI_OD_mean.npy

│   └── stats/

│       ├── sift_stats.csv

│       └── tracks_10M_stats.json

└── transforms/

    └── MNI_to_T1_inversed_warp_coef.nii.gz

│   ├── native.Schaefer7n1000p.nii.gz

│   ├── native.Schaefer7n100p.nii.gz

│   ├── native.Schaefer7n200p.nii.gz

│   ├── native.Schaefer7n300p.nii.gz

│   ├── native.Schaefer7n400p.nii.gz

│   ├── native.Schaefer7n500p.nii.gz

│   ├── native.Schaefer7n600p.nii.gz

│   ├── native.Schaefer7n700p.nii.gz

│   ├── native.Schaefer7n800p.nii.gz

│   ├── native.Schaefer7n900p.nii.gz

│   ├── native.Tian_Subcortex_S1_3T.nii.gz

│   ├── native.Tian_Subcortex_S2_3T.nii.gz

│   ├── native.Tian_Subcortex_S3_3T.nii.gz

│   ├── native.Tian_Subcortex_S4_3T.nii.gz

│   ├── rh.native.aparc.a2009s.annot

│   ├── rh.native.aparc.annot

│   ├── rh.native.Glasser.annot

│   ├── rh.native.Schaefer17n1000p.annot

│   ├── rh.native.Schaefer17n100p.annot

│   ├── rh.native.Schaefer17n200p.annot

│   ├── rh.native.Schaefer17n300p.annot

│   ├── rh.native.Schaefer17n400p.annot

│   ├── rh.native.Schaefer17n500p.annot

│   ├── rh.native.Schaefer17n600p.annot

│   ├── rh.native.Schaefer17n700p.annot

│   ├── rh.native.Schaefer17n800p.annot

│   ├── rh.native.Schaefer17n900p.annot

│   ├── rh.native.Schaefer7n1000p.annot

│   ├── rh.native.Schaefer7n100p.annot

│   ├── rh.native.Schaefer7n200p.annot

│   ├── rh.native.Schaefer7n300p.annot

│   ├── rh.native.Schaefer7n400p.annot

│   ├── rh.native.Schaefer7n500p.annot

│   ├── rh.native.Schaefer7n600p.annot

│   ├── rh.native.Schaefer7n700p.annot

│   ├── rh.native.Schaefer7n800p.annot

│   └── rh.native.Schaefer7n900p.annot

├── fMRI/

│   ├── fMRI.aparc.a2009s.csv.gz

│   ├── fMRI.aparc.csv.gz

│   ├── fMRI.Glasser.csv.gz

│   ├── fMRI.global_signal.csv.gz

│   ├── fMRI.Schaefer17n1000p.csv.gz

│   ├── fMRI.Schaefer17n100p.csv.gz

│   ├── fMRI.Schaefer17n200p.csv.gz

│   ├── fMRI.Schaefer17n300p.csv.gz

│   ├── fMRI.Schaefer17n400p.csv.gz

│   ├── fMRI.Schaefer17n500p.csv.gz

│   ├── fMRI.Schaefer17n600p.csv.gz

│   ├── fMRI.Schaefer17n700p.csv.gz

│   ├── fMRI.Schaefer17n800p.csv.gz

│   ├── fMRI.Schaefer17n900p.csv.gz

│   ├── fMRI.Schaefer7n1000p.csv.gz

│   ├── fMRI.Schaefer7n100p.csv.gz

│   ├── fMRI.Schaefer7n200p.csv.gz

│   ├── fMRI.Schaefer7n300p.csv.gz

│   ├── fMRI.Schaefer7n400p.csv.gz

│   ├── fMRI.Schaefer7n500p.csv.gz

│   ├── fMRI.Schaefer7n600p.csv.gz

│   ├── fMRI.Schaefer7n700p.csv.gz

│   ├── fMRI.Schaefer7n800p.csv.gz

│   ├── fMRI.Schaefer7n900p.csv.gz

│   ├── fMRI.Tian_Subcortex_S1_3T.csv.gz

│   ├── fMRI.Tian_Subcortex_S2_3T.csv.gz

│   ├── fMRI.Tian_Subcortex_S3_3T.csv.gz

Figure S1. Complete list of all files included in provided archives. Three separate compressed archives are provided, for each
of atlas parcellation (↪→atlases/*), functional time series (↪→fMRI/*), and structural connectivity
(↪→tractography/*) pipelines.
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Resting-state signal loss626

The BOLD signal was collected using a gradient echo EPI acquisition which can experience geometric distortion as well as627

signal loss in regions of strong susceptibility81. Computing a brain mask from empirical fMRI data, using any method based on628

image intensity, may lead to exclusion of such regions. All voxels outside of this brain mask were explicitly zero-filled in UKB629

fMRI preprocessing pipeline8. For a region that can be clearly delineated on an effectively undistorted anatomical image, but630

its entire volume resides outside of the fMRI brain mask, the aggregate fMRI signal within that region would consequently be631

zero-filled. These cases can be identified by computing the QC measure of regional signal variance. Hence, signal variance can632

be used as a proxy to assess signal loss due to exclusion of susceptible regions.633

To evaluate the cases in which UKB preprocessing led to such problems, we counted the number of sessions for which a634

variance of zero (constant signal) was reported for a brain region. This information was then sorted to pinpoint the regions635

with highest detrimental impact of signal loss. Table S1 provides a list of percentages of signal loss for 100 mostly affected636

brain regions (across different atlases) sorted based on signal loss severity. This indicated a pattern of severe signal loss within637

the orbitofrontal cortex (OFC). The signal loss severity was higher for higher granularity levels such that the cortical atlases638

with 1000 regions had signal loss in more than a third of the cohort. However, the severity was considerably lower for lower639

granularities such that atlases with fewer than 700 regions had signal loss in less than 5% of the cohort.640

We hereby report this issue as a limitation of the fMRI acquisition and preprocessing and suggest either i) conduct-641

ing the analysis at lower granularities (especially if OFC is of interest), or ii) excluding the impacted regions of OFC642

in cases where the analyses are to be conducted on higher granularities. Finally, to verify that signal loss was due to643

impacts of preprocessing on OFC and not a result of the connectivity mapping pipeline manual visual inspections were644

conducted for a handful of sessions. Figure S2 provides an example that shows a complete lack of signal in the OFC parcel645

(Schaefer7n1000p:7Networks_LH_Limbic_OFC_6) due to zero-filling leading to a zero variance QC metric.646

S7n1000 : LH_Limbic_OFC_6 

▪ BOLD variance > 0

Figure S2. Illustration of signal loss near certain OFC regions for a single session. The LH_Limbic_OFC_6 regions from
S7n1000 atlas is highlighted (red) on a 3D rendered T1 brain [left]. A sagittal slice of the brain showing the same parcel (red)
along with a highlighted map of regions within the rfMRI brain mask (green) for which signal variance is positive [middle]. A
similar 3D render showing the particular OFC parcel falling outside of the fMRI mask [right]. The images indicate that the
preprocessed fMRI signal fails to cover certain cortical gray matter regions belonging to the OFC.
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Table S1. One hundred regions that were most severely affected by BOLD signal loss. The percentage of sessions for which
zero variance was recorded in a certain region was quantified. This quantifies the frequency by which a region falls outside of
the fMRI brain mask due to effects of signal loss.

Signal loss Table
Atlas:Parcel Percentage of signal loss (over all sessions)

Schaefer7n1000p:7Networks_LH_Limbic_OFC_6 36.5
Schaefer17n1000p:17Networks_LH_LimbicB_OFC_6 36.5

Schaefer7n1000p:7Networks_LH_Limbic_OFC_3 15
Schaefer17n1000p:17Networks_LH_LimbicB_OFC_3 15

Schaefer7n1000p:7Networks_RH_Limbic_OFC_4 13.6
Schaefer7n900p:7Networks_RH_Limbic_OFC_4 13.6

Schaefer17n1000p:17Networks_RH_LimbicB_OFC_4 13.6
Schaefer17n900p:17Networks_RH_LimbicB_OFC_4 13.6
Schaefer17n900p:17Networks_LH_LimbicB_OFC_7 11.4

Schaefer7n900p:7Networks_LH_Limbic_OFC_7 11.4
Schaefer7n1000p:7Networks_LH_Limbic_OFC_11 10.2

Schaefer17n1000p:17Networks_LH_LimbicB_OFC_11 10.2
Schaefer17n800p:17Networks_LH_LimbicB_OFC_7 8.4

Schaefer7n800p:7Networks_LH_Limbic_OFC_7 8.4
Schaefer7n1000p:7Networks_LH_Limbic_OFC_2 7.9

Schaefer17n1000p:17Networks_LH_LimbicB_OFC_2 7.9
Schaefer7n600p:7Networks_RH_Limbic_OFC_2 7.5

Schaefer17n600p:17Networks_RH_LimbicB_OFC_2 7.5
Schaefer17n700p:17Networks_RH_LimbicB_OFC_2 7.5

Schaefer7n700p:7Networks_RH_Limbic_OFC_2 7.5
Schaefer17n800p:17Networks_RH_LimbicB_OFC_2 6.6

Schaefer7n800p:7Networks_RH_Limbic_OFC_2 6.6
Schaefer7n800p:7Networks_RH_Limbic_OFC_7 6.3

Schaefer17n800p:17Networks_RH_LimbicB_OFC_9 6.3
Schaefer7n900p:7Networks_RH_Limbic_OFC_3 6.3

Schaefer17n900p:17Networks_RH_LimbicB_OFC_3 6.3
Schaefer7n1000p:7Networks_LH_Limbic_OFC_4 6.3

Schaefer17n1000p:17Networks_LH_LimbicB_OFC_4 6.3
Schaefer7n1000p:7Networks_RH_Limbic_OFC_8 6.2

Schaefer17n1000p:17Networks_RH_LimbicB_OFC_10 6.2
Schaefer17n700p:17Networks_LH_LimbicB_OFC_1 5.8

Schaefer7n700p:7Networks_LH_Limbic_OFC_1 5.8
Schaefer7n900p:7Networks_LH_Limbic_OFC_1 5.4

Schaefer17n900p:17Networks_LH_LimbicB_OFC_1 5.4
Schaefer7n800p:7Networks_RH_Limbic_OFC_4 5.3

Schaefer17n800p:17Networks_RH_LimbicB_OFC_4 5.3
Schaefer7n900p:7Networks_RH_Limbic_OFC_8 5.3

Schaefer17n900p:17Networks_RH_LimbicB_OFC_8 5.3
Schaefer7n700p:7Networks_LH_Limbic_OFC_3 4.5

Schaefer17n700p:17Networks_LH_LimbicB_OFC_3 4.5
Schaefer7n1000p:7Networks_RH_Limbic_OFC_3 3.9

Schaefer17n1000p:17Networks_RH_LimbicB_OFC_3 3.9
Schaefer7n600p:7Networks_RH_Limbic_OFC_6 3.9

Schaefer17n600p:17Networks_RH_LimbicB_OFC_7 3.9
Schaefer7n800p:7Networks_RH_Limbic_OFC_3 3.7

Schaefer17n800p:17Networks_RH_LimbicB_OFC_3 3.7
Schaefer7n900p:7Networks_LH_Limbic_OFC_3 3.2

Schaefer17n900p:17Networks_LH_LimbicB_OFC_3 3.2
Schaefer17n800p:17Networks_LH_LimbicB_OFC_2 2.9
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Continuation of signal loss Table S1
Atlas:Parcel Percentage of signal loss (over all sessions)

Schaefer7n800p:7Networks_LH_Limbic_OFC_2 2.9
Schaefer7n700p:7Networks_RH_Limbic_OFC_3 2.6

Schaefer17n700p:17Networks_RH_LimbicB_OFC_3 2.6
Schaefer7n600p:7Networks_RH_Limbic_OFC_3 2.6

Schaefer17n600p:17Networks_RH_LimbicB_OFC_3 2.6
Schaefer7n700p:7Networks_LH_Limbic_OFC_5 2.6

Schaefer17n700p:17Networks_LH_LimbicB_OFC_5 2.6
Schaefer17n600p:17Networks_LH_LimbicB_OFC_4 2.5

Schaefer7n600p:7Networks_LH_Limbic_OFC_4 2.5
Schaefer17n800p:17Networks_LH_LimbicB_OFC_11 2.4

Schaefer7n800p:7Networks_LH_Limbic_OFC_10 2.4
Glasser:L_pOFC_ROI 2.4

Schaefer17n800p:17Networks_LH_LimbicB_OFC_4 2
Schaefer7n800p:7Networks_LH_Limbic_OFC_4 2
Schaefer7n500p:7Networks_RH_Limbic_OFC_2 1.9

Schaefer17n500p:17Networks_RH_LimbicB_OFC_2 1.9
Schaefer7n800p:7Networks_RH_Limbic_OFC_9 1.6
Schaefer7n400p:7Networks_RH_Limbic_OFC_5 1.6

Schaefer17n800p:17Networks_RH_LimbicB_OFC_11 1.6
Schaefer17n400p:17Networks_RH_LimbicB_OFC_5 1.6

Schaefer7n400p:7Networks_LH_Limbic_OFC_1 1.4
Schaefer17n400p:17Networks_LH_LimbicB_OFC_1 1.4

Schaefer17n1000p:17Networks_LH_LimbicB_OFC_12 1.3
Schaefer7n1000p:7Networks_LH_Limbic_OFC_12 1.3

Schaefer17n500p:17Networks_LH_LimbicB_OFC_1 1.3
Schaefer7n500p:7Networks_LH_Limbic_OFC_1 1.3

Schaefer17n600p:17Networks_LH_LimbicB_OFC_2 1.2
Schaefer7n600p:7Networks_LH_Limbic_OFC_2 1.2

Schaefer7n1000p:7Networks_LH_Limbic_OFC_1 1.2
Schaefer17n1000p:17Networks_LH_LimbicB_OFC_1 1.2

Schaefer7n900p:7Networks_RH_Limbic_OFC_2 1.2
Schaefer17n1000p:17Networks_RH_LimbicB_OFC_2 1.2

Schaefer7n1000p:7Networks_RH_Limbic_OFC_2 1.2
Schaefer17n900p:17Networks_RH_LimbicB_OFC_2 1.2

Schaefer7n800p:7Networks_LH_Limbic_OFC_1 0.9
Schaefer17n800p:17Networks_LH_LimbicB_OFC_1 0.9

Schaefer17n1000p:17Networks_RH_LimbicB_OFC_5 0.8
Schaefer7n1000p:7Networks_RH_Limbic_OFC_5 0.8

Glasser:R_25_ROI 0.8
Schaefer7n900p:7Networks_RH_Limbic_OFC_5 0.7

Schaefer17n900p:17Networks_RH_LimbicB_OFC_5 0.7
Schaefer17n900p:17Networks_RH_LimbicA_TempPole_2 0.7

Schaefer7n900p:7Networks_RH_Limbic_TempPole_2 0.7
Glasser:L_25_ROI 0.6

Schaefer17n700p:17Networks_RH_LimbicB_OFC_4 0.6
Schaefer7n700p:7Networks_RH_Limbic_OFC_4 0.6
Schaefer7n500p:7Networks_LH_Limbic_OFC_5 0.5

Schaefer17n500p:17Networks_LH_LimbicB_OFC_5 0.5
Schaefer17n900p:17Networks_LH_LimbicA_TempPole_7 0.5

Schaefer7n900p:7Networks_LH_Limbic_TempPole_7 0.5
Schaefer7n700p:7Networks_LH_Limbic_TempPole_12 0.5
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