

1
2
3
4 **Functional diversity of the *TP53* mutome revealed by saturating CRISPR**
5 **mutagenesis**
6

7 **Authors:** Julianne Funk^{1,9}, Maria Klimovich^{1,9}, Evangelos Pavlakis¹, Michelle Neumann¹,
8 Daniel Drangenstein¹, Maxim Noeparast¹, Pascal Hunold¹, Anna Borowek¹, Dimitrios-Ilias
9 Balourdas^{2,3}, Katharina Kochhan¹, Nastasja Merle¹, Imke Bullwinkel¹, Michael Wanzel¹, Sabrina
10 Elmshäuser¹, Andrea Nist⁴, Tara Procida⁵, Marek Bartkuhn^{5,6}, Katharina Humpert^{1,7}, Marco
11 Mernberger¹, Rajkumar Savai^{5,8}, Andreas C. Joerger^{2,3}, Thorsten Stiewe^{1,4,5,7,8*}

12
13 **Affiliations:**

14 ¹Institute of Molecular Oncology, Philipps-University, 35043 Marburg, Germany.

15 ²Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str.
16 9, 60438 Frankfurt am Main, Germany.

17 ³Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC),
18 Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.

19 ⁴Genomics Core Facility, Philipps-University, 35043 Marburg, Germany.

20 ⁵Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany.

21 ⁶Biomedical Informatics and Systems Medicine, Justus-Liebig-University, 35392 Giessen,
22 Germany.

23 ⁷Bioinformatics Core Facility, Philipps-University, 35043 Marburg, Germany.

24 ⁸Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung
25 Research (DZL), 35392 Giessen, Germany.

26 ⁹These authors contributed equally to this work.

27 *Corresponding author. Email: stiewe@uni-marburg.de

28

29 **Abstract**

30 The tumor suppressor gene *TP53* is the most frequently mutated gene in various cancers. Unlike
31 other tumor suppressors, *TP53* is mostly hit by missense mutations, of which more than 2,000
32 have been described in cancer patients. To take advantage of *TP53* mutation status for
33 personalized therapy, a deeper knowledge of the functional ramifications of specific mutations is
34 required as evidence of the functional heterogeneity of mutant p53 proteins mounts. Here, we
35 report on a CRISPR-based saturation mutagenesis screen of 9,225 variants expressed from the
36 endogenous *TP53* gene locus of a cancer cell. By tracking changes in the abundance of
37 individual variants in response to specific p53-pathway stimulation, we were able to construct
38 high-resolution functional activity maps of the *TP53* mutome, covering ~94.5% of all cancer-
39 associated missense mutations. The results demonstrate the impact of individual mutations on
40 tumor cell fitness with unprecedented precision and coverage, even revealing underlying
41 mechanisms such as apoptosis. The high discriminatory power also resolves subtle loss-of-
42 function phenotypes and highlights a subset of mutants as particularly promising targets for
43 pharmacological reactivation. Moreover, the data offer intriguing insight into the role of aberrant
44 splicing and nonsense-mediated mRNA decay in clearing truncated proteins due to not only
45 nonsense, frameshift, and splice-site mutations but also missense and synonymous mutations.
46 Surprisingly, no missense mutation provided an immediate proliferative advantage over a null
47 mutation. Nonetheless, cells with a missense, but not null mutations, acquired pro-metastatic
48 properties after prolonged growth in mice, emphasizing the significance of mutant p53-directed
49 clonal evolution in the progression of tumors towards metastasis.

50

51 **Introduction**

52 p53, a master regulatory transcription factor, reduces the proliferative fitness of cancer cells,
53 thereby limiting their clonal expansion. This is achieved through a constantly expanding array of
54 mechanisms, including cell-cycle arrest, senescence, and apoptosis¹. Mutations in the p53-
55 encoding gene *TP53* are observed in about half of all cancer patients and, as germline mutations,
56 lead to the hereditary Li-Fraumeni cancer susceptibility syndrome². In many cancers, *TP53*
57 mutations correlate with enhanced metastasis and aggressiveness, decreased response to
58 treatment, and thus poor prognosis³. However, despite the high frequency of *TP53* mutations in
59 cancer patients and their prognostic implications, the use of *TP53* mutation status in clinical
60 decision-making is limited because of the complexity of the *TP53* mutome, i.e., the broad
61 spectrum of functionally diverse mutations, which makes it difficult to predict the pathogenicity
62 and clinical consequences of an individual mutation.

63 The mutome of a cancer gene, and in particular that of *TP53*, arises from biased mutational
64 processes and further editing by evolutionary pressures that deplete immunogenic neoantigens
65 and select for mutations that promote tumor cell fitness⁴⁻⁸. Unlike other tumor suppressor genes,
66 *TP53* mutations are, in the majority of cases, missense mutations that result in the accumulation
67 of full-length p53 proteins with a single amino acid alteration. To date, more than 2,000 different
68 missense mutations have been described in cancer samples⁹. No single mutation occurs at a
69 frequency greater than 6%, and the ten most common (and also most studied) ‘hotspot’ mutants
70 jointly account for only ~30%. In turn, the vast majority (~70%) of patients with *TP53* mutations
71 have one of >2,000 different, poorly characterized non-hotspot mutations⁹.

72 We can distinguish three principal consequences of a *TP53* missense mutation: loss of wild-
73 type function (LOF), dominant-negative effects (DNE), and gain-of-function (GOF)

74 properties^{10,11}. LOF refers to a variable, more or less extensive reduction in tumor suppressive
75 functions. The DNE refers to inhibition of wild-type p53 by mutant p53 (mutp53), while GOF
76 refers to neomorphic properties conveyed by amino acid sequence alterations¹²⁻¹⁸. GOF can
77 promote tumor metastasis, confer drug resistance and immune escape, and generate an oncogene-
78 like addiction that makes tumor cells dependent on the presence of the mutant protein. GOF
79 appears to be highly context-specific, dependent on protein level and the precise amino acid
80 change¹²⁻¹⁶.

81 Given the high prevalence of *TP53* missense mutations in cancer patients and the complexity
82 of the mutome, an in-depth understanding of single mutants and their functional consequences is
83 crucial to better utilize p53 status clinically for personalized treatment decisions. However, most
84 p53 mutations are rare, making it statistically challenging to infer their clinical implications from
85 patient cohorts. High-throughput screens in isogenic cellular models are therefore a valuable tool
86 for functionally annotating the *TP53* mutome. The first comprehensive and systematic analysis
87 was based on a cDNA library of 2,314 missense variants screened for transcriptional activity in a
88 yeast-based reporter system with p53-responsive elements of 8 selected p53 target genes⁷. While
89 this study revealed a widespread loss of transcriptional activity for the hotspot and many non-
90 hotspot cancer mutants, it also highlighted an unexpected heterogeneity with many non-hotspot
91 mutants retaining considerable residual transactivation potential at one or more response
92 elements⁷. Due to the absence of p53, yeast cells lack the p53 control network, which includes
93 key p53 regulators such as Mdm2, as well as other enzymes that fine-tune p53 function through
94 post-translational modifications. In subsequent screens, mutp53 cDNA libraries were therefore
95 analyzed in human cells^{4,6,8}. However, cDNA-based expression screens have inherent
96 limitations, among them non-physiological expression driven by heterologous promoters, the

97 absence of post-transcriptional control through miRNA-UTR interactions, and the lack of
98 (alternative) splicing. Moreover, as these studies focused on the consequences of introducing p53
99 variants into p53-deficient cell lines, they did not systematically assess the clinically most
100 relevant impact of p53 mutations on tumor cell responses to cancer treatments, such as radiation,
101 chemotherapy or targeted therapies.

102 Here, we have leveraged the power of CRISPR/Cas9-mediated gene editing through precise
103 homology-directed repair to introduce a panel of 9,225 variants, comprising approximately
104 94.5% of all *TP53* cancer mutations, into cancer cells with a wild-type *TP53* gene locus and a
105 prototypical p53 response. Unlike previous cDNA overexpression screens, CRISPR-based *TP53*
106 gene editing preserves the physiological regulation of expression through its endogenous
107 regulators, including promoters, enhancers, splice factors, and miRNA binding sites in the UTRs.
108 We have measured the impact of all variants on proliferative fitness following highly specific
109 p53 pathway activation with Mdm2 inhibitors and confirmed similar but quantitatively less
110 pronounced fitness effects for other p53-activating stimuli, including radiation, chemotherapy
111 and starvation. The fitness effects of mutants correlated with their abundance in cancer patients,
112 evolutionary conservation, and known structure-function relationships. In contrast to cDNA
113 overexpression screens, CRISPR-mediated expression from the endogenous *TP53* gene locus
114 allowed for accurate annotation of partial loss-of-function and splice mutations and has
115 demonstrated widespread elimination of frameshift, nonsense and splice mutations by nonsense-
116 mediated mRNA decay. Notably, none of the missense variants resulted in a fitness gain beyond
117 that of null-mutations. Surprisingly, cells with missense but not nonsense mutations stabilized
118 the mutant protein and developed metastatic properties when grown in mice, indicating that GOF

119 effects are not an intrinsic property of the *TP53* mutations but rather a result of mutant p53-
120 directed tumor evolution.

121 **Results**

122 **Isogenic model for *TP53* mutagenesis by CRISPR-HDR**

123 In order to compare the functional impact of *TP53* variants in an isogenic setting, we chose
124 HCT116 colorectal carcinoma cells as our model system. These cells are wild-type for *TP53* and
125 show a prototypical p53 response, making them a well-established model for investigating the
126 mechanistic details of p53-mediated tumor suppression. Additionally, HCT116 cells have a
127 homozygous *MLH1* nonsense mutation, resulting in a mismatch repair deficiency, which
128 facilitates gene targeting through homologous recombination^{19,20}. To ensure unambiguous
129 genotype-phenotype correlations, we haploidized the cells for *TP53* by deleting intronic splicing
130 branch points in one of the two *TP53* alleles (Δ allele, Fig. 1a and Supplementary Fig. 1a-c). To
131 prevent potential bias from the anti-proliferative p53 response triggered by CRISPR/Cas9
132 nucleases during gene editing²¹⁻²³, we silenced expression from the remaining copy reversibly by
133 inserting a LoxP-flanked transcriptional stop cassette (Lox-Stop-Lox, LSL) into intron 4
134 (HCT116 LSL/Δ). The LSL cassette included an EGFP expression cassette for monitoring and a
135 mutated puromycin N-acetyltransferase (*pac*) gene that could be repaired during editing for later
136 selection. The LSL allele was specifically cleaved by CRISPR/Cas9 nucleases targeting the
137 intronic regions deleted on the Δ allele. Specific mutations of interest were introduced into the
138 cut LSL allele by homology-directed repair (HDR) with co-transfected donor vectors harboring
139 the mutations, a mutated protospacer adjacent motif (PAM) to prevent re-cutting, and the LSL-
140 cassette with a repaired *pac* gene. Correctly HDR-edited cells (HCT116 LSL-mut/Δ) were
141 selected with puromycin and infected with Cre recombinase expressing adenovirus (AV-Cre) to
142 induce monoallelic p53 variant expression (HCT116 mut/Δ).

143 We validated the performance of *TP53* editing in HCT116 LSL/Δ cells by introducing a panel
144 of *TP53* variants, including some of the most frequent cancer mutations (V157F, R175H, C176F,
145 H179R, Y220C, G245S, R248Q, R248W, R249S, R273H) with known LOF, the partial LOF
146 (pLOF) mutations R175P and R181L, the nonsense mutation R175X and the wild-type (WT) for
147 reference. Single-cell clones were analyzed and showed correct editing in 75.9% by PCR and
148 56.4% by DNA sequencing (Fig. 1b). Excision of the LSL cassette with AV-Cre resulted in
149 comparable protein expression levels of WT and all p53 missense mutants, which was further
150 boosted by inhibition of Mdm2 with Nutlin-3a (N3a) (Fig. 1c and Supplementary Fig. 1d).
151 Consistent with the expected LOF of many cancer mutants, N3a induced expression of
152 p21/CDKN1A protein and characteristic p53 gene expression signatures only in WT and R181L
153 mutant cells (Fig. 1c-f). Real-time live cell imaging of N3a-treated cells demonstrated a strong
154 reduction in proliferative fitness in WT cells, which was diminished by pLOF mutations and
155 completely abrogated by LOF missense and nonsense mutants (Fig. 1g,h and Supplementary Fig.
156 1e). Notably, different R175H single-cell clones showed only little variation in p53 expression,
157 transcriptional activity, and N3a response (Supplementary Fig. 1f-h). These data validate
158 HCT116 LSL/Δ cells as an efficiently editable cellular model, suitable for exploring the
159 functional impact of *TP53* variants in a high-throughput manner.

160

161 **Saturating R175 screen reveals functional differences between missense variants**

162 Leveraging the editability of HCT116 LSL/Δ cells, we conducted a saturating mutagenesis of
163 codon R175, the most frequently mutated codon in cancer, represented by R175H. We generated
164 a donor library consisting of 27 plasmids, each containing a distinct variant of amino acid
165 substitution (missense, mis), in-frame (if) and frameshift (fs) deletions (del), and insertions (ins),

166 as well as a nonsense mutation (non) and several silent/synonymous (syn) mutations. LSL/Δ cells
167 were co-transfected with a *TP53* intron 5 targeting CRISPR nuclease and the donor library, and
168 edited LSL-mut/Δ cells were selected with puromycin, maintaining an average coverage of at
169 least 1,000 independently edited cells per variant (Fig. 2a).

170 The editing performance was validated through targeted amplicon sequencing of the R175-
171 containing exon 5. The results showed a strong correlation between the variant distributions in
172 the donor plasmid and cell libraries across independent biological replicates (transfections) (Fig.
173 2b, c and Supplementary Table 1). This correlation was maintained even after activation of p53
174 variant expression by AV-Cre (Fig. 2b,c), indicating high reproducibility and absence of
175 significant variant bias during the editing or AV infection process. Upon treatment with N3a, the
176 variant distribution changed significantly and lost correlation with the untreated cell libraries
177 (Fig. 2b-d).

178 Syn variants became strongly depleted and clearly separated from non/fs variants (grouped as
179 ‘null’ mutations), while mis variants showed a highly variable mutation-specific response (Fig.
180 2d,e). To quantify the relative enrichment or depletion of variants within the cell library upon
181 treatment, we calculated an enrichment score (ES), defined as the negative log2-transformed fold
182 change compared to the control treatment (Fig. 2e). In the absence of N3a, the variant
183 distribution in the Cre-recombined cell libraries remained stable for at least eight weeks,
184 displaying only minor depletion of syn variants (Fig. 2e). The N3a response increased with time
185 and N3a concentration and displayed a similar pattern across a range of different Mdm2 and
186 Mdmx inhibitors (Fig. 2e-g and Supplementary Fig. 2a), validating that the measured fitness
187 effects reflect the consequences of p53 activation rather than p53-independent (off-target) effects
188 of N3a. When comparing all mis variants (Fig. 2h), we observed three classes: ‘LOF’ variants

189 like R175H with an ES significantly different from WT and syn mutations, ‘pLOF’ variants with
190 an ES significantly different from both syn and null mutations, and ‘WT-like’ variants that were
191 statistically indifferent from syn mutations. All recurrent R175 mutations in cancer patients fall
192 into the LOF and pLOF class, and the most frequent ones are uniformly classified as LOF,
193 demonstrating the power of the CRISPR mutagenesis screen to correctly identify pathogenic
194 mutations.

195 Over the years, several compounds have been described that may restore tumor suppressive
196 activity to p53 mutants^{3,24,25}. However, the majority of these compounds display considerable
197 p53-independent toxicity, which contributes to, if not determines, their therapeutic effects²⁴. In
198 order to test the capability of two distinct compounds, the alkylating agent APR-246 and the
199 metallochaperone ZMC1^{26,27}, to reactivate mutant p53 in an isogenic setting, we utilized the
200 R175-mutant HCT116 cell pools. Drug-induced reactivation of tumor suppressor activity is
201 expected to reduce the proliferative fitness of cells and selectively deplete cells with
202 reactivatable missense mutants. However, upon treatment with APR-246 or ZMC1, we observed
203 no changes in the abundance of any mutation, including the top target R175H (Supplementary
204 Fig. 2b-e). Even when treating the cell pools with a combination of APR-246 or ZMC1 and the
205 Mdm2 inhibitor N3a, the abundance changes were indistinguishable from treatment with N3a
206 alone. This absence of specific depletion of R175H or other missense mutants strongly indicates
207 that APR-246 and ZMC1 are not capable of reactivating R175 missense mutants sufficiently to
208 reduce proliferative fitness. This result is consistent with studies suggesting that the anti-tumor
209 activity of these compounds may rely more on interference with redox homeostasis than
210 reactivation of mutant p53²⁸⁻³¹.

211 To examine the cell type-specificity of the results, we performed a similar experiment in non-
212 small cell lung cancer cell line H460, which carries 3 wild-type copies of *TP53*. Analogously to
213 HCT116 LSL/Δ cells, we made the expression of one wild-type allele conditional and deleted the
214 remaining two copies, resulting in H460 LSL/Δ/Δ cells (Supplementary Fig. 3a,b). After
215 confirming the effectiveness of the editing process (Supplementary Fig. 3c,d), we introduced the
216 R175 variant library into the editable LSL allele, activated expression with Cre, and measured
217 the response of the H460 mut/Δ/Δ cell library to N3a treatment as described for HCT116 cells
218 (Supplementary Fig. 3e,f). The N3a-induced changes in the abundance of individual p53 variants
219 were significantly correlated between H460 cells and HCT116 cells ($\rho=0.969$, $p<0.0001$),
220 indicating that the fitness effect of mutations is highly conserved across different cell types.

221 We further evaluated the relationship between the response of the R175 variant to specific
222 p53 pathway activation with N3a and the response to other key stress signals in the p53 pathway,
223 such as DNA damage and nutrient deprivation. To this end, we treated the R175 cell library with
224 varying doses of X-irradiation (IR) or 5-fluorouracil (5-FU), starved them in Hank's Balanced
225 Salt Solution (HBSS) or deprived them selectively of glucose or glutamine (Fig. 3a). Under all
226 conditions, the fitness effects correlated significantly with the pattern observed upon N3a
227 treatment. However, the overall effects were less pronounced (Fig. 3b), likely due to the
228 contribution of p53-independent mechanisms to the analyzed stress responses, which attenuates
229 the impact of p53 variants. These results indicate that Mdm2 inhibitors, because of their
230 selectivity for the p53 pathway, are more effective than other p53-activating stimuli in
231 discriminating the functional differences of p53 variants.

232 Moreover, we noted differences in the response kinetics of variants. R175A/C/T/V, much like
233 the WT and syn variants, displayed an early depletion during the first 4 days, when N3a-induced

234 apoptosis was most pronounced (Fig. 2e). In contrast, the depletion of R175I/K/M/N/S could
235 only be observed at later time points, suggesting a different mechanism for their depletion
236 compared to the rapid process of apoptosis. To test this hypothesis, we sorted and sequenced the
237 apoptotic cells, positive for Annexin V, after 2 and 4 days of treatment (Fig. 3c). All syn and mis
238 variants (R175A/C/T/V), which were rapidly depleted from the population, were strongly
239 enriched in the apoptotic fraction (Fig. 3d,e), identifying apoptosis as the crucial mechanism in
240 limiting tumor cell fitness. In contrast, the mutants that were depleted more slowly
241 (R175I/K/M/N/S), were absent from the apoptotic fraction, supporting the idea that they are
242 depleted through a mechanism independent of apoptosis, such as cell-cycle arrest or senescence.
243 These findings underline the significant functional diversity among variants and highlight the
244 power of CRISPR mutagenesis screens to uncover mechanistic differences.

245

246 **Saturating mutagenesis of the p53 DNA binding domain**

247 We continued to screen more complex donor libraries, starting with one that included 210
248 non, syn and mis mutations targeting residues 176-185 that are involved in coordinating zinc and
249 form the short helix H1 (Supplementary Fig. 4 and Supplementary Table 2). We then extended
250 the screen to a comprehensive library that covered the p53 DNA-binding domain from exon 5 to
251 8 (amino acids 126 to 307) and encompassed approximately 94.5% of all cancer-associated
252 missense mutations (Fig. 4a). The library consisted of 9,225 variants (Supplementary Table 3),
253 including 1,919 single nucleotide substitutions (missense, nonsense or synonymous variants),
254 which are the most common type of *TP53* mutations. Additionally, the library included 2,360
255 missense variants with single amino acid exchanges, 477 variants with additional nonsense
256 mutations requiring 2 or 3 nucleotide substitutions, 2,560 variants with all possible single-

257 nucleotide insertions, and 1,908 variants with 1, 2, and 3 bp deletions, including in-frame single
258 amino acid deletions at each position.

259 To measure the abundance of individual variants in highly complex cell pools, an accurate
260 calling of variant frequencies is required, close to the error rate of current deep sequencing
261 technologies. Short-reads sequencing, such as Illumina's sequencing-by-synthesis, currently
262 provides the lowest error rates, but is restricted to a maximum length of 500-600 base pairs and
263 therefore far too short to analyze genomic regions spanning multiple exons. To accommodate the
264 length restrictions, the total library was subdivided into 4 sub-libraries, each covering one exon
265 with 12 additional nucleotides of flanking intronic sequence. As described for the codon 175
266 library, each exon library was co-transfected with the *TP53*-targeting Cas9 nuclease into
267 HCT116 LSL/Δ cells and edited cells were selected with puromycin and transduced with Cre to
268 activate expression of the mutant. The complex cell pools were split and treated with either
269 10 μM N3a or DMSO solvent for 8 days. Genomic DNA was extracted, and the edited exon was
270 selectively amplified by a nested PCR and analyzed by NGS (Supplementary Fig. 1a and
271 Supplementary Table 4). Throughout the entire experiment, we maintained a mean coverage of
272 at least 500 individually edited cells per variant. All screens were performed in three biological
273 replicates for each exon and treatment, which correlated well within the treatment groups and
274 with the original plasmid/donor library in the absence of N3a treatment (Fig. 4b and
275 Supplementary Fig. 5a). Non mutations (LOF controls) and syn mutations (WT-like controls) did
276 not significantly differ in their abundance, indicating highly efficient introduction of the donor
277 library into the cells without detectable bias due to *TP53* status (Supplementary Fig. 5b).
278 Following N3a treatment, the variant distribution changed substantially, reducing the correlation
279 with the donor and DMSO-treated cell libraries (Fig. 4c and Supplementary Fig. 5a). Abundance

280 of non and syn variants increased and decreased, respectively, while all other variants shifted
281 from a uniform to a bimodal distribution, effectively separating LOF from WT-like variants
282 (Supplementary Fig. 5b).

283 To normalize the enrichment scores of variants across multiple exons, the scores were
284 transformed into Relative Fitness Scores (RFS), which scaled from -1 for the median of all
285 synonymous variants to +1 for the median of all nonsense variants (Fig. 4d and Supplementary
286 Fig. 5c,d). Frameshift-inducing variants, such as 1 or 2 bp exonic insertions and deletions
287 (indels), were uniformly enriched, with RFS values similar to the nonsense controls (Fig. 4d).
288 Interestingly, in-frame deletions of 3 consecutive bp also yielded mostly RFS values of +1,
289 highlighting the sensitivity of the p53 DBD to even single amino acid deletions. The damaging
290 effect of nucleotide substitutions was more variable, stronger for transversions versus transitions,
291 and increased with the number of substituted nucleotides (Fig. 4d). Overall, 55.2% of all
292 substitution variants showed a positive RFS value, indicating at least a partial functional
293 impairment (Fig. 4d). The effects of intronic indels and substitution variants were less damaging
294 and more variable, showing mostly negative RFS values, indicating preserved tumor suppressor
295 activity (Fig. 4d).

296 Focusing on missense mutations, we explored the functional consequences of replacing each
297 residue by every other amino acid (Fig. 4e). The screen returned reliable RFS values for 3,425
298 (99.05%) of all possible 3,458 missense mutant proteins, making this the most comprehensive
299 study of the DBD mutome to date. The majority of missing variants mapped to exon boundary-
300 spanning codons (G187, S261, A307) that could not be generated by substitutions within a single
301 exon and were thus omitted during the library design phase. The effects of individual missense
302 variants differed strongly based on their position and the type of amino acid substitution.

303 Hierarchical clustering of missense mutants by RFS values differentiated codons according to
304 their sensitivity to mutagenesis (Supplementary Fig. 5f). Codons that were highly susceptible to
305 any amino acid substitution included the hotspots G245, R248, and R249, while the functional
306 impairment of other hotspots such as R175 and R282 varied with the type of substitution
307 (Supplementary Fig. 5e and f). Moreover, hydrophobic (V, I, L, M), aromatic (Y, F, W) and
308 positively (H, R, K) or negatively (D, E) charged amino acids grouped together based on their
309 biochemical functions, forming separate clusters (Supplementary Fig. 5f). This result confirms
310 that substitutions with biochemically similar amino acids typically cause less damage than
311 others, and that substitutions with structurally related amino acids result in comparable
312 functional impairment.

313 The median RFS values of each codon were mapped onto the 3D protein structure, revealing a
314 significant correlation between proximity to the DNA-binding surface and higher RFS values
315 (Fig. 4f and Supplementary Fig. 5g). In addition, residues in the central hydrophobic core,
316 critical for the thermal DBD stability, also showed significantly higher RFS values
317 (Supplementary Fig. 5g-i). In contrast, solvent-exposed residues at the exterior of the DBD were
318 more mutation-tolerant, with the notable exception of residues that directly contact DNA (R248)
319 or are located at the inter-dimer interface (G199) (Supplementary Fig. 5h).

320 We next investigated whether the *in vitro* measured fitness effect of variants correlates with
321 the prevalence in patient samples, based on over 150,000 *TP53* mutations reported in the UMD,
322 IARC/NCI, TCGA and GENIE databases (Supplementary Table 5). The most frequent hotspot
323 mutations as well as all other missense mutations with a patient count of more than 100 were
324 strongly enriched and scored high RFS values (Fig. 4g, Supplementary Fig. 6a). Although far
325 less prevalent than the most abundant missense mutations, also all of the screened nonsense and

326 indel mutations reported in patient samples were enriched to positive RFS values. Confirming
327 the specificity of the screen, all missense variants with negative (WT-like) RFS values showed
328 lower patient counts. These WT-like missense variants have patient counts indistinguishable
329 from syn mutations and benign polymorphisms³², and represent most likely passenger mutations.
330 A notable outlier, the synonymous variant E224E, affects splicing and is described in more detail
331 later. Comparing codon-level RFS values to evolutionary conservation scores from the ConSurf
332 Database revealed a highly significant correlation (Fig. 4h, Supplementary Fig. 5j and
333 Supplementary Table 6), indicating that p53 residues with high RFS scores are under
334 evolutionary selection.

335 We also observed a high number of missense mutations at evolutionary conserved residues
336 that scored high RFS values but were never or rarely reported in patients (Fig. 4g,h), raising the
337 question whether these are false positives of our screen. Many of these variants were either 2 or 3
338 nt substitutions or single-nucleotide transversions (Supplementary Fig. 6b-d) that are all less
339 frequent in cancer cells than single-nucleotide transitions³³. While most of the hotspot mutations
340 affect CpGs, none of the never observed high-RFS variants were at CpG sites. Nevertheless,
341 irrespective of the type of mutation, variants with a positive RFS had significantly higher patient
342 counts than those with negative RFS (Supplementary Fig. 6e-h), suggesting that they are selected
343 for during tumorigenesis. We therefore also evaluated the sequence context of the screened
344 variants for their mutational probability based on COSMIC mutational signatures that represent
345 the major mutational processes accounting for base substitutions in cancer genomes
346 (Supplementary Fig. 6i-l and Supplementary Table 7)³⁴. Variants with positive RFS and high
347 patient counts showed much higher mutational probabilities for all relevant mutational processes
348 than high-RFS variants with low or zero patient counts (Supplementary Fig. 6i). In addition,

349 variants with negative RFS despite high mutational probability have an average patient count
350 below 100, underlining that these are random passenger mutations which are observed repeatedly
351 in cancer patients only because of their mutational probability, not because they disrupt p53
352 function. When comparing variants with similar mutational probabilities, those with a positive
353 RFS consistently showed significantly higher patient counts than those with a negative RFS
354 (Supplementary Fig. 6k and l). A positive RFS therefore robustly identifies pathogenic loss-of-
355 function variants, which are under positive selection during tumor development, and is therefore
356 particularly informative for the pathogenicity classification of rare variants of unknown
357 significance (VUS).

358

359 **Increased sensitivity of CRISPR screen for subtle loss-of-function**

360 Previous studies have characterized the human *TP53* mutome by employing lentiviral
361 overexpression of mutant cDNA libraries^{4,8}. To compare the results of both types of screens, we
362 transformed data from all screens to RFS values as described above, scaling the median of
363 nonsense mutations to +1 and of synonymous mutations to -1 (Fig. 5a and Supplementary Table
364 8). Quality control plots showed the best separation between positive and negative controls and
365 the highest statistical effect size for the CRISPR screen. The increased discriminatory power
366 provided a clear separation of highly frequent cancer missense mutations from SNVs that were
367 not reported as cancer-associated. In the cDNA overexpression screens, the RFS values for these
368 functionally disparate variant types overlapped notably, possibly due to more variation in mutant
369 expression levels from randomly genome-integrated lentiviral constructs.

370 We first compared the results for individual missense mutants from the CRISPR screen with
371 the study by Kotler⁸ (Fig. 5b). Both screens showed an overall good correlation with concordant

372 classification as WT-like or LOF for all nonsense and synonymous variants and for ~79% of the
373 missense variants. Interestingly, 20.3% of missense variants were differentially classified as LOF
374 by CRISPR and WT-like variants by cDNA screening (lower right (LR) quadrant variants).
375 Hardly any variants (0.54%) were differentially classified in the other direction, indicating that
376 the CRISPR screen has identified many more variants as potentially pathogenic than the cDNA
377 screen. Even though LR variants had comparable mutational probabilities as all others (Fig. 5c,
378 Supplementary Fig. 7a and b), they showed significantly higher patient counts than the WT-like
379 variants in the lower left quadrant (Fig. 5d, Supplementary Fig. 7c), indicating that LR variants
380 are positively selected during tumorigenesis and therefore likely pathogenic.

381 Importantly, three of the LR variants (R175P, R181C and E180R) are tumorigenic in mice
382 with a (partial) LOF phenotype³⁵⁻³⁷, providing a further level of confirmation supporting the
383 CRISPR classification of LR variants as pathogenic. In the 3D structure, a prominent region with
384 discordant RFS values between CRISPR and cDNA screen mapped to the intra-dimer interface,
385 where residues E180 and R181 form a double salt-bridge, mutations of which often result in
386 partial LOF effects³⁸ (Fig. 5e). Together this suggested that the CRISPR screen might be more
387 sensitive for detecting subtle LOF phenotypes. Confirming this hypothesis, we observed the
388 greatest differences between CRISPR and cDNA RFS values for variants with residual
389 transcriptional activity, peaking in the 20-60% of wild-type range (Fig. 5f-h and Supplementary
390 Table 8). An analysis of stability estimates by HoTMuSiC³⁹ demonstrated a significantly higher
391 thermal stability of LR versus UR (LOF) variants, but also a significantly lower stability
392 compared to WT-like variants (Fig. 5i). All these observations were confirmed in a comparison
393 with an independent cDNA screen by Giacomelli et al.⁴ (Supplementary Fig. 8).

394 To experimentally test the function of LR variants, we examined two representative mutations
395 that are distant from functional interfaces, V157L and T256A, with total patient counts of 43 and
396 18 records, respectively. Both mutations clearly reduced the experimentally determined DBD
397 melting temperature (V157L -5.7°C and T256A -3.7°C), but to a lesser extent than other more
398 frequent mutations (V157F -8.5°C and Y220C -8.8°C) (Supplementary Table 9). When
399 introduced into HCT116 LSL/Δ cells by CRISPR-HDR, both mutations rendered cells resistant
400 to N3a comparable to the control mutations R175H and R175X (Fig. 5j and k). Given the modest
401 degree of destabilization, we tested if the function is rescued at lower temperatures. Indeed,
402 when cells were treated with N3a at 32°C, responsiveness to N3a, indicated by p21 expression
403 and inhibition of cell proliferation, was rescued for both mutations, but not for R175H or R175X
404 controls (Figure 5j and k).

405 Together, these results highlight that even a subtle loss of p53 function, resulting from a small
406 degree of thermodynamic destabilization, can cause a profound increase in proliferative fitness.
407 This increase was missed by conventional cDNA expression screens (where moderately
408 increased unfolding rates may be offset by higher expression levels), but correctly identified
409 when mutations are expressed at physiological levels from the endogenous gene locus. The
410 CRISPR screen therefore revealed a novel set of pathogenic missense mutations with a low
411 degree of thermal destabilization and possibly increased susceptibility to pharmacological
412 rescue.

413

414 **Widespread splicing alterations and NMD**

415 Interestingly, the largest differences between the CRISPR and cDNA screen map to a few
416 isolated patches on the DBD surface formed by residues 187, 224, 225, and 261 (Fig. 5e), which

417 are poorly conserved and highly tolerant to mutational perturbation in cDNA screens.
418 Interestingly, these residues are all located at exon borders (Fig. 6a), suggesting that these
419 mutations may affect RNA splicing. To assess the impact of individual variants on splicing, we
420 sequenced cDNA from the cell libraries and correlated the abundance of all variants at the
421 genome level with the abundance of correctly spliced cDNAs (Fig. 6b and Supplementary Table
422 10). Because alternative reading frames in the exons downstream of the DBD contain multiple
423 stop codons, frameshift mutations in exons 5-8 result in premature termination of protein
424 translation and are predicted to trigger nonsense-mediated decay (NMD), similar to nonsense
425 mutations. As such, virtually all nonsense and frameshift mutations were significantly
426 underrepresented at the mRNA level by ~30-fold (Fig. 6c), which was sufficient to enhance
427 proliferative fitness, as indicated by positive RFS values (Fig. 6d,e).

428 Interestingly, several missense mutations were also underrepresented at the mRNA level and
429 associated with a LOF (Supplementary Fig. 9a). Most of these variants are located close to
430 exon/intron borders (Supplementary Fig. 9b), supporting the hypothesis that they might affect
431 mRNA splicing. While many are rare double or triple nucleotide substitutions, some are caused
432 by single nucleotide substitutions (SNVs) and have been reported in several cancer patients
433 (Supplementary Fig. 9c,d). Of particular significance are the G187, E224, and S261 mutations,
434 which are prevalent in cancer samples and have been misclassified as WT-like in cDNA
435 overexpression screens^{4,7,8}. To study their functional impact in more detail, we introduced into
436 HCT116 LSL/Δ cells the missense E224D (GAG>GAC) and synonymous E224E (GAG>GAA)
437 mutations, which affect the last nucleotide of exon 5 and have been reported in 77 and 24
438 patients, respectively. Sequencing of cDNA revealed that both mutations attenuate the wild-type
439 5' splice site (5' ss) of intron 6 and enforce the use of an aberrant downstream 5' ss (Fig. 6f). The

440 resulting inclusion of 5bp from intron 6 into the mature mRNA caused a frameshift and triggered
441 a premature termination codon (PTC) present in an alternative reading frame of exon 7. As a
442 consequence, the mRNA was subject to NMD, which prevented production of a truncated
443 protein and rendered cells resistant to N3a (Fig. 6g-i).

444 We also noted mRNA depletion of one missense variant, L137Q (CTG>CAG), and one
445 synonymous variant, G199G (GGA>GGT, not GGA>GGC or GGA>GGG), that were not
446 located at exon/intron borders (Supplementary Fig. 9e and f). Closer inspection revealed that
447 L137Q creates a new AG 3'ss in exon 5, whereas G199G (GGA>GGT) generates a cryptic GT
448 5'ss within exon 6. Both aberrant splice events were confirmed by sequencing reads spanning the
449 aberrant splice junction. While the aberrant splice product caused by G199G (GGA>GGT) leads
450 to a frameshift and NMD, the L137Q splice product is highly abundant and results in an in-frame
451 deletion of 12 residues (Supplementary Fig. 9h). Although the G199G (GGA>GGT) transversion
452 has a low mutational probability and has not yet been reported in a cancer patient, L137Q has
453 been recurrently found in cancer patients and shows a LOF in the CRISPR screen that was not
454 previously observed by cDNA screening.

455 Notably, 355 missense or synonymous SNVs created new exonic GT or AG dinucleotides that
456 could theoretically function as cryptic splice sites. However, L137Q and G199G were the only
457 SNVs not located at an exon/intron border that showed a more than 2-fold reduction of the
458 expected full-length mRNA and resulted in a LOF (Supplementary Fig. 9a-d). Splice aberrations
459 caused by intra-exonic SNVs are therefore far less frequent than predicted.

460 Apart from exonic splice mutations, we also observed LOF variants in the non-coding, exon-
461 flanking, intronic regions that could be attributed to altered splicing. For example, we expectedly
462 observed a LOF for most essential splice site mutations, i.e. for substitutions affecting the nearly

463 invariant GT and AG dinucleotides at the intron ends (Fig. 6j). Moreover, we detected a
464 deleterious impact of all SNVs at position 5 of intron 5, consistent with a strong prevalence for G
465 at this position in the 5' ss consensus sequence. While the impact of these mutations would have
466 been predicted based on consensus sequences, introns 6-8 also harbor a G at this conserved
467 position, but are tolerant to all substitutions. Consistently, the GENIE database lists 10 cases of
468 various G5 substitutions for intron 5, but only a single case for introns 6-8. We also noted a LOF
469 associated with the g.7673847T>G substitution in the 3' region of intron 7 (Fig. 6j), which has
470 been reported by the TCGA in a pancreatic adenocarcinoma patient⁴⁰. Consistent with the
471 creation of a cryptic 3'ss, we observed an aberrant inclusion of 9 bp of intronic sequence causing
472 an in-frame insertion of 3 amino acids (Supplementary Fig. 9g,h). Different from cDNA-based
473 screens, the CRISPR screen therefore discriminates pathogenic from non-pathogenic variants
474 even in non-coding intronic regions.

475

476 **In vivo tumor growth selects for mutant p53 stabilization and metastatic behavior**

477 Although p53 missense mutations have been described to promote tumorigenesis by a variety
478 of GOF activities^{12,13,17,18}, none of the missense mutations enhanced tumor cell fitness
479 significantly beyond the beneficial effect of nonsense or frameshift mutations (Fig. 4e),
480 suggesting that a proliferative GOF is not an intrinsic property of missense mutations. To
481 examine if missense mutations can specifically enable the development of GOF properties, we
482 compared the behavior of HCT116 cells with a missense and nonsense mutation when allowed to
483 evolve *in vivo*. HCT116 R175H/Δ and HCT116 R175X/Δ cells were intravenously injected into
484 mice, and after several weeks, established tumors were dissected from lungs and metastatic sites
485 such as the liver. Explanted tumor cells were expanded *ex vivo* and re-injected into mice for a

486 total of 3 mouse passages (Fig. 7a). In the course of months of serial *in vivo* propagation, we
487 noted a progressive increase in migratory and invasive behavior of R175H cells from passage 0
488 (p0) to passage 3 (p3) that was not explained by differences in proliferation and not observed
489 with the R175 nonsense mutation (Fig. 7c-j, Supplementary Fig. 10a-d). Migration and invasion
490 of R175H-p3 cells was significantly reduced by knock-down or knock-out of the mutant (Fig.
491 7e-j, Supplementary Fig. 10c-h). Moreover, knockout of the mutant in R175H-p3 cells had no
492 impact on the growth of subcutaneously grown tumors, but significantly impaired metastasis to
493 the liver (Fig. 7k-m). Thus, R175H-p3 cells do not become addicted to R175H, but exhibit
494 metastatic properties that depend on the continued presence of the mutant and are therefore most
495 likely mediated by the mutant protein.

496 Mutant p53 is inherently unstable in non-transformed cells and GOF activities require its
497 stabilization⁴¹. This has been mechanistically linked to the malignant transformation process,
498 during which oncogenes and p53 loss of heterozygosity upregulate heat shock proteins which
499 shield mutant p53 from proteasomal degradation^{42,43}. Even though HCT116 cells are transformed
500 cells derived from a clinically manifest colorectal cancer, CRISPR mutagenesis of the *TP53* gene
501 locus has resulted in HCT116 mut/Δ cells with mutant protein levels that were similar to wild-
502 type p53, and remained under tight Mdm2 control (Fig. 1c). This demonstrates that p53 missense
503 mutants are inherently unstable not only in non-transformed but also in fully transformed cells,
504 unless specific alterations stabilize the mutant protein. Intriguingly, mutant p53 protein levels in
505 HCT116 cells increased progressively upon serial *in vivo* passaging (Fig. 7b), suggesting that *in*
506 *vivo* tumor growth selects for cells which have acquired mechanisms to stabilize the mutant
507 protein. Although metastatic properties of R175H-p3 cells were diminished by mutant p53
508 depletion, mutant p53 stabilization by N3a did not induce metastatic behavior in R175H-p0 cells

509 (Supplementary Fig. 10i-k), demonstrating that stabilization is required but not sufficient for
510 metastatic behavior.

511

512 **Discussion**

513 The comprehensive CRISPR screen reported in this paper covers approximately 94.5% of all
514 cancer-associated *TP53* mutations. This study should be viewed in the context of previous high-
515 throughput screens of the *TP53* mutome using overexpression of mutant cDNA in yeast or
516 human cell lines^{4,7,8}. The CRISPR approach showed superior separation of WT-like and LOF
517 variants due to improved precision and reduced variability in calling fitness effects (Fig. 5a).
518 Despite the fact that lentiviral integration is not entirely random, the increased variability in
519 mutant expression levels in the cDNA overexpression screens may be explained by highly
520 variable lentiviral integration, occurring at differently active genomic regions⁴⁴. In contrast,
521 CRISPR introduces the mutation into a defined genomic locus, here the endogenous *TP53* gene,
522 resulting in highly consistent protein expression and reproducible fitness effects upon N3a
523 treatment between independently edited clones (Supplementary Fig. 1f-h).

524 Due to the observed improvement in discriminatory power, we identified approximately 20%
525 of the missense variants as fitness-promoting mutations that were previously missed by cDNA-
526 screening (Fig. 5b). A closer examination showed that these variants have a similar mutational
527 probability but are significantly more frequent in cancer patients compared to synonymous or
528 WT-like variants (Fig. 5c and d), indicating that they are pathogenic mutations selected during
529 tumorigenesis, which is further demonstrated by the tumorigenicity of some of these variants in
530 mice³⁵⁻³⁷. This suggests that the pathogenic nature of many *TP53* variants has been
531 underestimated previously due to technical limitations that can be overcome by a CRISPR
532 screening approach.

533 Interestingly, many of these variants were predicted to be thermally destabilized by only a few
534 degrees of temperature (Fig. 5i), significantly less than some of the more frequent structural

535 hotspot mutants such as Y220C⁴⁵. This could explain their overall higher residual transcriptional
536 activity (Fig. 5g and h) and their lower frequency in cancer patients (Fig. 5d), but also identifies
537 them as potentially temperature-sensitive, which was confirmed by a detailed analysis of
538 representative mutations (V157L and T256A, Fig. 5j-k). From a translational perspective this
539 suggests that the folded, active conformation of these mutants might be more easily rescued^{24,46},
540 making these variants an especially interesting subset for pharmacological targeting approaches.
541 It is tempting to speculate that cancer patients with variants from this subset might benefit most
542 from therapeutic approaches suggested for temperature-sensitive mutations, such as hypothermia
543 and antiparasitic antimonials^{47,48}.

544 Splicing effects, for which cDNA-based screens are obviously blind, also account for some of
545 the fitness-promoting mutations in our screen. As expected, substitution variants that affect
546 regular splicing tend to cluster at exon/intron borders, either by altering the GT and AG
547 dinucleotides (5' and 3'ss) at the intron ends or by changing the first or last exonic nucleotides,
548 where mutations can weaken the regular splice sites and promote the usage of alternative ones⁴⁹.
549 We observed two intra-exonic substitutions (L137Q missense and G199G (GGA>GGT)
550 synonymous) that created cryptic splice sites, resulting in aberrantly spliced transcripts that
551 promote tumor cell fitness (Supplementary Fig. 9). While the L137Q variant caused an in-frame
552 deletion and was readily detectable at the mRNA level, the G199G mutation led to a frameshift
553 and triggered NMD. Notably, these were the only two SNVs outside the exon/intron border
554 regions that modified splicing patterns. This is especially noteworthy because many more SNVs
555 create potential cryptic splice sites but do not appear to disrupt regular splicing or impair p53
556 function. It was anticipated that SNVs located at putative exonic splicing enhancer/silencers
557 would have splicing effects. However, the lack of splice alterations by most exonic SNVs

558 suggests that *TP53* splicing in the DBD region is robust against SNVs. This means that single-
559 nucleotide alterations are typically not enough to establish a functional splice site or to interfere
560 with the function of splicing enhancers/silencers. However, SNVs that create a novel splice site
561 are removed from the mRNA during splicing, so we can only infer their splicing effect indirectly
562 from the absence of a normally spliced mRNA encoding the variant. It is therefore possible that
563 some SNVs produce a mix of normal and additional, aberrantly spliced transcripts. To fully
564 understand the extent and functional impact of such variants, a comprehensive analysis is needed
565 that combines DNA and mRNA analysis of mutome libraries at the single-cell level.

566 Our study primarily used Mdm2 inhibition with N3a as a specific method to activate p53.
567 This approach is based on the understanding that p53 is ultimately activated by disrupting the
568 p53-Mdm2 interaction, regardless of the stress factor involved. As such, we observed a similar
569 variant enrichment/depletion pattern with various p53-activating stress factors, including DNA
570 damage and metabolic stress, compared to N3a or other Mdm2/Mdmx inhibitors (Fig. 3a and b).
571 However, the level of enrichment/depletion was weaker with other stressors as additional stress
572 pathways not related to p53 also impact on tumor cell fitness. Interestingly, the study noted that
573 loss of p53 function protected from metabolic stress, even though wild-type p53-mediated cell-
574 cycle arrest through p21 induction was shown to promote survival under conditions of temporary
575 nutrient starvation^{50,51}. The difference in our results might be due to different treatment
576 protocols, including our use of harsh starvation conditions that aimed at killing most cells. In
577 addition, the donor vectors used to produce the mutant libraries encode proline at the
578 polymorphic codon 72, which is a weaker activator of p21 and protects less from nutrient
579 deprivation compared to the arginine variant (R72) found in the parental HCT116 cells⁵².

580 It is widely believed that p53 is more frequently hit by missense mutations compared with
581 other tumor suppressors because they can provide the mutant protein with pro-tumorigenic GOF
582 properties^{12,13}. Our study found no evidence of a fitness advantage from missense mutations
583 compared with null mutations (Fig. 4). This may be due to the fact that the stabilizing effect
584 required for GOF properties was not observed in the p53-mutant HCT116 cells. All of the
585 missense mutants showed normal expression levels and only accumulated after N3a treatment
586 (Fig. 1c), which indicates proteasomal degradation by Mdm2 under normal conditions. The
587 stabilization of p53 mutants in tumors is usually achieved through oncogenic alterations that
588 increase the levels of heat shock chaperones, which protect the mutant protein from
589 degradation^{41,53}. This requires the loss of the remaining normal allele^{43,54} as wild-type p53
590 represses the expression of heat shock transcription factor 1⁴². HCT116 cells are fully malignant
591 cells derived from a patient with colon cancer, and the mutant derivatives generated in our study
592 do not express normal p53 (Fig. 1c). Neither malignancy nor loss of heterozygosity is therefore
593 sufficient to stabilize the mutant protein. Nonetheless, HCT116 R175H cells showed
594 stabilization of the mutant protein and acquired pro-metastatic GOF properties when serially
595 propagated *in vivo* (Fig. 7). This suggests that a subset of R175H-mutant cells can acquire
596 mechanisms to stabilize the mutant protein and develop GOF properties. Testing this on other
597 mutants would be valuable. Unfortunately, conducting a comprehensive *in vivo* screen with the
598 available mutant cell libraries is currently unfeasible because the limited tumor-initiating
599 potential of HCT116 cells makes it difficult to maintain a sufficient coverage. A cell-based
600 screen in a cell line with mutant-p53 driven pro-metastatic properties could be an alternative but
601 might face gene editing challenges due to the genetic instability of p53-mutated cells.

602

603 **Limitations**

604 The study was limited in its ability to examine the dominant-negative activity of variants that
605 promotes tumorigenesis in the presence of a remaining wild-type allele^{55,56}. Our HCT116 LSL/Δ
606 screening cell line has an inactive second allele. To study dominant-negative effects, we
607 attempted to generate an LSL/WT cell line, but gene editing in these cells was less efficient,
608 potentially due to wild-type p53 interference with HDR-mediated DSB repair²¹⁻²³. Additionally,
609 these cells were genetically unstable and, like other p53^{+/−} cells^{54,57}, underwent LOH at high
610 frequency. We also confirmed our results in a different cellular context, the p53 wild-type, non-
611 small cell lung cancer cell line H460. We successfully introduced single mutations and a small
612 R175 library into this cell line using the same approach as in HCT116 (Supplementary Fig. 3).
613 The results were similar to those with HCT116 cells, indicating similar effects of variants
614 regardless of cell type. However, the transfection and editing efficiency were inadequate for
615 larger screens. HCT116 cells have already been widely used in the pre-CRISPR era for
616 mutagenesis by homology-directed repair due to their mismatch repair deficiency⁵⁸⁻⁶⁰, and
617 dominant-negative inhibition of MMR has also been shown to improve gene editing with prime
618 editors⁶¹. It is possible that the exceptional HDR efficiency we observed in our screen was
619 facilitated by this, and that transient inhibition of MMR might be a strategy to enable similar
620 screens in other model systems.

621

622 **Conclusion**

623 In summary, the CRISPR screen of the *TP53* cancer mutome provides a comprehensive
624 functional annotation of its impact on tumor cell fitness. The high-resolution analysis identified
625 numerous variants with subtle loss-of-function phenotypes that are selected during tumorigenesis

626 and therefore should be considered pathogenic in genetic counseling or personalized cancer
627 medicine. The temperature-sensitive phenotype of such variants suggests they may be especially
628 susceptible to pharmacological rescue approaches. With the exception of SNVs located at
629 exon/intron borders, few variants affected splicing, demonstrating the robustness of the *TP53*
630 splicing pattern. Notably, the study found no evidence of a fitness advantage from missense
631 mutations compared with null mutations, and neither malignancy nor loss of heterozygosity were
632 sufficient to stabilize the mutant protein, underlining that stabilization and GOF effects are not
633 intrinsic properties of missense mutations but arise during tumor evolution in a mutant p53-
634 dependent manner.

635 **Methods**

636 **Cell Culture**

637 The human colorectal carcinoma cell line HCT116 and human embryonic kidney cell line
638 HEK 293T were obtained from the American Tissue Collection Center (ATCC, CCL-247) and
639 cultured in Dulbecco's modified Eagle's medium (DMEM, Gibco, 41966-029) supplemented
640 with 10% heat-inactivated fetal bovine serum (FBS, Sigma-Aldrich, S0615) and 100 U/ml
641 penicillin and 100 µg/ml streptomycin (Gibco, 15140122). The human large-cell lung cancer cell
642 line NCI-H460 (H460) was obtained from ATCC (HTB-177) and cultured in Roswell Park
643 Memorial Institute (RPMI) 1640 medium (Gibco, 61870) supplemented with 10% FBS and 100
644 U/ml penicillin and 100 µg/ml streptomycin. Cell lines were cultivated in a humidified
645 atmosphere at 37 °C and 5% CO₂ and detached using 0.05% Trypsin-EDTA (Gibco, 15400054).

646

647 **Design of mutome library**

648 The wild-type *TP53* sequence was derived from the human Ensembl genome, revision 96
649 (GRCh38). As the cloning procedure uses BbsI-mediated Golden Gate Cloning, BbsI recognition
650 sites present within *TP53* exon 4 to intron 9 were silently mutated and the resulting sequence was
651 used as a template for library generation. Using transcript ENST00000269305 (RefSeq
652 NM_000546), the sequences of exons 5, 6, 7 and 8, including 12 nucleotides of flanking intron
653 sequence, were selected and subjected to *in silico* mutagenesis. 13 nucleotides of the introns
654 flanking this 'mutable' sequence were added so that this variable region was framed by short
655 constant regions that would remain the same to all resulting synthetic oligonucleotides. To
656 generate an exhaustive set of 'mutated' oligonucleotides that deviate from the wild-type sequence
657 by a single mutation, the variable region was altered in the following way. Initially, each

658 nucleotide was substituted with every other nucleotide, resulting in a comprehensive set of all
659 single-nucleotide variants (SNVs). To include amino acid substitutions that cannot be achieved
660 by a single-nucleotide substitution, we added double-nucleotide variants (DNVs) and triple-
661 nucleotide variants (TNV) to generate each possible amino acid substitution and non-sense
662 mutation. In the case of multiple possible codon exchanges, we prioritized the change with the
663 smallest hamming distance to the reference. To account for insertions, each possible single
664 nucleotide was inserted at every position of the variable region, including the intronic region,
665 resulting in a set of all possible insertions of size 1 bp. Finally, a deletion set was generated by
666 deleting up to three nucleotides at every position of the variable region, thus creating a set of all
667 possible deletions of size one to three.

668

669 **Generation of plasmids for CRISPR mutagenesis by homology directed repair (HDR)**

670 Homology arm 1 ranging from exon 4 to intron 4 (chr17:7,675,788-7,676,168) of the *TP53*
671 gene was PCR-amplified from genomic DNA of HCT116 cells using the following primers:
672 HA1_BsrGI_fw 5'-CAC CTA TAT GTA CAA GAG GCT GCT CCC CCC GTG-3',
673 HA1_BsaI_rev 5'-TAT AGA GAC CGA TGG ATA AAA GCC CAA ATT C-3' and cloned into
674 the multiple cloning site 1 (MCS1) of the vector MCS1-EF1 α -GFP-T2A-Puro-pA-MCS2-PGK-
675 hsvTK (HR700, System Biosciences) using BsrGI (New England Biolabs, R3575) and BsaI
676 (New England Biolabs, R3733). Homology arms 2 ranged from intron 4 to intron 6 (for
677 mutagenesis of exons 5 and 6, chr17:7,674,377-7,675,787) or from intron 4 to intron 9 (for
678 mutagenesis of exons 7 and 8, chr17:7,673,145-7,675,787) with BbsI-recognition sites flanking
679 the region to be mutated (R175: chr17:7,675,059 and 7,675,088; H1 helix: chr17:7,675,059 and
680 7,675,085; Ex5: chr17:7,675,036 and 7,675,254; Ex6: chr17:7,674,842 and 7,674,989; Ex7:

681 chr17:7,674,164 and 7,674,308; Ex8: chr17:7,673,684 and 7,673,855) were purchased as custom
682 gene synthesis (GeneArt, Thermo Fisher) and cloned into MCS2 of HR700 using MluI (New
683 England Biolabs, R3198) and SalI (New England Biolabs, R3138). In total, we generated 6
684 different HR700 donor vectors for cloning of libraries targeting R175, codon 176-185 (short: H1
685 helix), exon 5, 6, 7, and 8.

686 For generation of R175 and H1 helix plasmid libraries, complementary single-stranded
687 oligonucleotides containing the desired mutations were purchased (Eurofins Genomics) and
688 annealed individually to generate double-stranded DNA containing suitable overhangs. Double-
689 stranded oligonucleotides were purified using PCR purification kit (QIAGEN, 28106) and cloned
690 into HR700 vectors using BbsI-mediated Golden Gate Cloning.

691 For generation of exon-wide plasmid libraries, single-stranded oligonucleotide pools
692 containing the desired mutations were purchased (oPools, Integrated DNA Technologies) and
693 BbsI-recognition sites were introduced by PCR-amplification ensuring a coverage of 1×10^6 for
694 each mutation using the following primers: Exon 5 fw 5'-CAA TAT GAA GAC CTC TGT CTC
695 CTT C-3', Exon 5 rev 5'-ATA TAT GAA GAC CGT CTC TCC AGC C-3', Exon 6 fw 5'-CAA
696 TAT GAA GAC CTG ATT CCT CAC T-3', Exon 6 rev 5'-ATA TAT GAA GAC CAG AGA
697 CCC CAG T-3', Exon 7 fw 5'-CAA TAT GAA GAC ATC TTG GGC CTG T-3', Exon 7 rev 5'-
698 ATA TAT GAA GAC TGC AGG GTG GCA A-3', Exon 8 fw 5'-CAA TAT GAA GAC GCT
699 TCT CTT TTC C-3', Exon 8 rev 5'-ATA TAT GAA GAC ACC GCT TCT TGT C-3'.
700 Amplified oligos were purified using PCR purification kit (QIAGEN, 28106) and cloned into
701 HR700 vectors using BbsI-mediated Golden Gate Cloning.

702 Plasmid libraries were transformed into MegaX DH10B T1R Electrocomp E. coli (Invitrogen,
703 C640003) and seeded on 2 (R175), 10 (H1 helix) or 30 (exon-wide libraries) 15 cm agar plates

704 containing 50 µg/ml kanamycin (Carl Roth GmbH, C640003). After 16 h growth at 37 °C,
705 colonies were scraped off, pooled into 100 ml (R175), 400 ml (H1 helix) or 1.2 l LB-medium
706 and incubated for 4 h at 37 °C before extracting plasmid DNA using Nucleobond Xtra Midi kit
707 (Macherey-Nagel, C640003) according to the manufacturer's protocol.

708 Donor HDR plasmids for single mutations were either generated using annealed or PCR-
709 amplified oligonucleotides as described above. Correctness and integrity of plasmids was
710 validated using Sanger sequencing (LGC Genomics) or next-generation sequencing (NGS).
711 Plasmids for delivery of Cas9 and sgRNAs were generated using BbsI-mediated Golden Gate
712 cloning of annealed single-stranded oligonucleotides into pX330-U6-Chimeric_BB-CBh-
713 hSpCas9 (pX330, Addgene #42230), pSpCas9(BB)-2A-Puro (PX459) V2.0 (pX459_puro,
714 Addgene #62988), pSpCas9(BB)-2A-Hygro (pX459_hygro, Addgene #127763) or
715 pSpCas9(BB)-2A-Blast (pX459_blast, Addgene #118055).

716

717 **Generation of HCT116 LSL/Δ and NCI-H460 LSL/Δ/Δ cells**

718 2.5 x 10⁴ HCT116 cells were transfected with 1.25 µg pX330_sgIn5 (sgRNA 5'-TCA GTG
719 AGG AAT CAG AGG CC-3') and 1.25 µg HR700, which contained wild-type homology arms 1
720 and 2 flanking the LSL cassette, using Lipofectamine 2000 (Thermo Fisher Scientific,
721 11668019) according to the manufacturer's protocol. Cells were selected with 1 µg/ml
722 puromycin (Invivogen, ant-pr) and single cell clones were isolated. Single cell clones were
723 chosen based on Nutlin-3a (N3a) and puromycin resistance and analyzed by PCR for a Δ-allele
724 with an inactivating deletion in intron 5 and a second allele containing the LSL-cassette
725 (HCT116 LSL/Δin5). The absence of the LSL-cassette on the Δ-allele was confirmed using
726 primers: Intron4_fw: 5'-CCC TTT GGC TTC CTG TCA GTG-3', Exon7_rev: 5'- GAT GGT

727 GGT ACA GTC AGA GCC-3'. Sanger sequencing showed deletion of chr17:7,674,986 –
728 7,675,001. The presence of the LSL-cassette was validated with two PCRs, one spanning the
729 upstream end (Intron1_fw: 5'-GGT GAC CCA GGG TTG GAA GTG T-3', GFP_rev 5'- TGG
730 GGT GGA TGG CGC TCT TGA A-3') and the other spanning the downstream end (LoxP_fw
731 5'- GGG GGC TGT CCC TAG ATC TAT AA-3', Exon7_rev 5'-GAT GGT GGT ACA GTC
732 AGA GCC-3'). Finally, digital PCR for GFP (TaqMan Copy Number Assay, Applied
733 Biosystems, 4400291) was performed using QuantStudio 3D Digital PCR 20K Chip V2 (Applied
734 Biosystems, A26316) to confirm the presence of only a single copy of the LSL-cassette in the
735 genome. The respective single cell clone of HCT116 LSL/Δin5 was then transfected with
736 pX330_sgPuro (sgRNA 5'-CAC GCC GGA GAG CGT CGA AG-3') to knock out the *pac* gene
737 present in the LSL cassette. After validation of the puromycin sensitivity, HCT116 LSL/Δin5
738 cells were further transfected with pX459_hygro_sgIn7 (sgRNA 5'-CCA CTC AGT TTT CTT
739 TTC TC-3') to generate HCT116 LSL/Δin5+7 cells for mutagenesis of exon 7 and 8. After
740 selection with 250 µg/ml hygromycin (Invivogen, ant-hg), single cell clones were screened via
741 PCR (Δin5+7 allele: Intron4_fw 5'-CCC TTT GGC TTC CTG TCA GTG-3', Exon8_fw 5'-
742 AGG CAT AAC TGC ACC CTT GG-3'; LSL-allele: LoxP_fw 5'-GGG GGC TGT CCC TAG
743 ATC TAT AA-3', Exon8_fw 5'-AGG CAT AAC TGC ACC CTT GG-3'). A respective single
744 cell clone of HCT116 LSL/Δin5+7 with distinguishable deletions (LSL-allele: chr17:7,673,970-
745 7,673,995; Δ-allele: chr17:7,673,986-7,674,259) on both alleles was chosen for further
746 experiments.

747 H460 LSL/Δ/Δ cells were generated from NCI-H460 using the same procedure, with special
748 attention given to the fact that this cell line has three *TP53* alleles, meaning it must contain two Δ
749 alleles and one LSL allele.

750

751 **Generation and treatment of single mutants and cell libraries**

752 For generation of single mutants, 2.5×10^4 HCT116 LSL/ΔIn5, HCT116 LSL/ΔIn5+7 or
753 H460 LSL/Δ/Δ cells were transfected with 1.25 μg LSL allele-specific sgRNAs
754 (pX459_blast_In5^{LSL}, sgRNA 5'-GTG AGG AAT CAG AGG ACC TG-3' or
755 pX459_blast_In7^{LSL}, sgRNA 5'-CTT TGG GAC CTA CCT GGA GC-3') and 1.25 μg of the
756 corresponding HR700 vector carrying the intended mutation using Lipofectamine 2000
757 according to manufacturer's protocol. Transfected cells were selected with 20 μg/ml blasticidin
758 (Invivogen, ant-bl) for 3 days and 1 μg/ml puromycin for 7 days, before single cell clones were
759 isolated and the presence of the mutation was validated through edit-specific PCR and Sanger
760 sequencing. Finally, cells were infected with AV-Cre (ViraQuest Inc., Ad-CMV-Cre, MOI20 for
761 HCT116 cells, MOI250 for H460 cells) and expression of the mutant was confirmed via cDNA
762 sequencing and Western blot analysis.

763 For the generation of R175- and H1 helix libraries, 4×10^6 or 12×10^6 HCT116 LSL/ΔIn5
764 cells were transfected with 6.25 μg or 18.75 μg pX459_blast_In5^{LSL} and 6.25 μg or 18.75 μg of
765 the HR700 vector library, respectively, using Lipofectamine 2000. For the generation of R175-
766 libraries in H460 cells, 4×10^6 H460 LSL/Δ/Δ cells were transfected with 20 μg
767 pX459_blast_In5^{LSL} and 20 μg HR700 vector library using the Neon Transfection System
768 (Thermo Fisher Scientific, MPK10025). Transfected cells were selected for 3 days with 20 μg/ml
769 blasticidin and for 7 days with 1 μg/ml puromycin. 8×10^6 (R175) or 1.6×10^7 (H1 helix) cells
770 were then infected with AV-Cre and, after 5 days, the cell library was divided and treated with
771 10 μM N3a (BOC Sciences, B0084-425358), 75 nM RG7388 (MedChemExpress, HY-15676),
772 10 μM RO-5963 (Calbiochem, 444153), 1 μM MI-773 (Selleckchem, S7649), 750 nM AMG

773 232 (MedChemExpress, HY-12296) or the respective volume of DMSO (Carl Roth GmbH,
774 4720) as solvent control for 8 days. For irradiation experiments, an X-RAD 320iX tube was used
775 with settings of 320 kV voltage and a current of 8 mA, with a dose rate ~1 Gy/min. Cells were
776 further cultivated for 8 days after irradiation. 5-Fluorouracil (pharmacy of the
777 Universitätsklinikum Gießen and Marburg) was administered at a concentration 5 μ M for 24 h or
778 48 h, and cells were further cultivated for 8 days after treatment. For mutant p53 reactivation
779 studies, cell libraries were treated with either 12.5 μ M or 25 μ M APR-246 (Sigma-Aldrich,
780 SML1789) or 0.01 μ M or 0.04 μ M ZMC-1 (Abcam, NSC319726, #A24132) alone or in
781 combination with 10 μ M N3a or DMSO for a total of 8 days. Starvation experiments were
782 performed to investigate the effect of nutrient deprivation on cell growth. Three different
783 conditions were used to induce starvation: HBSS (Gibco, 14025050) for 3 days, DMEM without
784 glucose (Gibco, 14025050) for 1 day, and DMEM without glutamine (Gibco, 21969) for 7 days.
785 Following starvation, cells were allowed to recover and expand for either 1 day in the case of the
786 -glucose condition or 7 days in the case of the HBSS or -glutamine conditions.

787 For generating exon-wide mutant cell libraries, 5.4×10^8 HCT116 LSL/ Δ In5 or HCT116
788 LSL/ Δ In5+7 cells were transfected with 1.125 mg pX459_blast_In5^{LSL} or pX459_blast_In7^{LSL},
789 and 1.125 mg of the corresponding HR700 vector library using Lipofectamine 2000. Transfected
790 cells were selected with 20 μ g/ml blasticidin for 3 days and 1 μ g/ml puromycin for 7 days. $1.2 \times$
791 10^8 cells were infected with AV-Cre and, after 5 days, the cell library was divided and treated
792 with 10 μ M N3a or DMSO for 8 days. Recombination was monitored through FACS-analysis of
793 GFP expression.

794

795 **Genomic DNA analysis of single mutants and mutant libraries**

796 Genomic DNA of mutant cells was isolated using DNA Blood Mini Kit (QIAGEN, 51106)
797 following the manufacturer's protocol, and a nested PCR strategy was used to selectively
798 amplify either edited or edited and recombined alleles (Supplementary Fig. 1a). The input
799 amount of genomic DNA and number of PCR reactions were adjusted to achieve a minimum
800 average coverage of 1000 cells/variant. For first step PCR, the following primers were used
801 before AV-Cre recombination: LoxP fw 5'-GGG GGC TGT CCC TAG ATC TAT AA-3', Intron
802 9 rev 5'-GTA TGC CTG TGG TCC TAG CT-3', and after AV-Cre recombination: Intron 4 fw
803 5'-CCC TTT GGC TTC CTG TCA GTG, Intron 9 rev 5'-GTA TGC CTG TGG TCC TAG CT-
804 3'. The PCR products were pooled, purified and diluted 1:1000 for the second step. Editing-
805 specific primers were used for the second step PCR, exon-wise, with the following primer pairs:
806 Exon 5 fw 5'-TTG CTT TAT CTG TTC ACT TGT GCC C-3', Exon 5 rev 5'-CAG TGA GGA
807 ATC AGA GGC CTC C-3', Exon 6 fw 5'-TGC CCA GGG TCC GGA GGC-3', Exon 6 rev 5'-
808 GGA GGG CCA CTG ACA ACC ACC C-3', Exon 7 fw 5'-TCC CCT GCT TGC CAC AGG-
809 3', Exon 7 rev 5' -GGA GGA GAA GCC ACA GGT TAA GAG-3', Exon 8 fw 5'-GCT TTG
810 GGA CCT CTT AAC CTG TG-3', Exon 8 rev 5'-CAT AAC TGC ACC CTT GGT CTC C-3'.
811 The PCRs were performed with Q5 High-Fidelity DNA Polymerase (New England Biolabs,
812 M0491) following the manufacturer's protocol. PCR products were purified using PCR
813 purification kit according to the manufacturer's protocol. PCR amplicons were purified with
814 AMPure XP beads (Beckman Coulter, A63880) and sequencing libraries were prepared from 5
815 ng of the purified amplicon using the NEBNext Ultra DNA Library Prep Kit for Illumina (New
816 England Biolabs, E7370L) according to manufacturer's protocol. The quality of sequencing
817 libraries was validated with a Bioanalyzer 2100 using the Agilent High Sensitivity DNA Kit
818 (Agilent, 5067-4626). The pooled sequencing libraries were quantified and sequenced on either

819 the MiSeq (v2 or v2 nano, 2x250 cycles, or v3, 2x300 cycles, depending on library complexity)
820 or NovaSeq (SP 2x250 cycles) platform (Illumina).
821 Sequenced reads were demultiplexed using an in-house demultiplexer package mmdemultiplex
822 (version 0.1). Overlapping paired-end reads were trimmed of adapter/primer sequences using
823 CutAdapt⁶² (version 3.5) and merged into a single sequence using NGmerge⁶³ (version 0.3),
824 taking advantage of the overlapping reads to reduce sequencing errors. The occurrence of each
825 synthetic sequence was counted via exact matching, since the minimal hamming distance
826 between synthetic sequences was 1. To calculate the relative frequencies (variant abundances),
827 the count was divided by the total number of matched reads, excluding any wild-type reads and
828 duplicate sequences. Enrichment scores (ES) were determined as the negative log₂ fold change
829 of the variant abundance in treated versus control conditions. However, it should be noted that
830 the ES is dependent on the relative amount of wild-type-like and loss-of-function variants in a
831 cell population, which varies between different libraries. To obtain a score that is comparable
832 across different libraries and screens, the ES was converted into a relative fitness score (RFS) by scaling
833 the median ES of synonymous variants to -1 and the median ES of nonsense variants to +1 for
834 each library and screen.

835

836 **cDNA analysis of single mutants and mutant libraries**

837 Total RNA was isolated using the RNeasy Mini Kit (QIAGEN, 74106) and reverse
838 transcribed using the SuperScript VILO cDNA Synthesis Kit (Invitrogen, 11754250). PCR was
839 performed with the primers: Exon 2 fw 5'-ATG GAG GAG CCG CAG TCA GAT-3', Exon 11
840 rev 5'-TCA GTC TGA GTC AGG CCC TTC-3'. PCR products were purified and sequenced
841 using Sanger sequencing. For cDNA sequencing of mutant cell libraries, RNA was reverse

842 transcribed and amplified in 5 reactions with 1 µg RNA template using SuperScript IV One-Step
843 RT-PCR System with ezDNase (Invitrogen, 12595025) and the primers: Intron 4 fw 5'- TCC
844 CAG AAT GCC AGA GGC TGC T-3', Intron 8 rev 5'-GCT CAC GCC CAC GGA TCT GAA
845 G-3'. The amplified PCR products were pooled, providing an estimated variant coverage of 50-
846 250x, purified and diluted 1:1000 for a second step of PCR, using exon-specific primers and Q5
847 High-Fidelity DNA Polymerase: Exon 5 fw 5'-TGG GAC AGC CAA GTC TGT GAC T-3',
848 Exon 5 rev 5'- AGA TGC TGA GGA GGG GCC AGA C-3', Exon 6 fw 5'-CAT GAC GGA
849 GGT TGT GAG GCG C-3', Exon 6 rev 5'-TTC ATG CCG CCC ATG CAG GAA C-3', Exon 7
850 fw 5'-GTC TGG CCC CTC CTC AGC ATC T-3', Exon 7 rev 5' -GGA CAG GCA CAA ACA
851 CGC ACC T-3', Exon 8 fw 5'-TAA CAG TTC CTG CAT GGG CGG C-3', Exon 8 rev 5'-GCT
852 GGG GAG AGG AGC TGG TGT T-3'. Library preparation, sequencing, and analysis followed
853 the same protocol as for genomic DNA. Merged reads were trimmed to only include exonic
854 regions.

855

856 **RNA-Sequencing**

857 For RNA-Sequencing experiments, cells were treated either with 10 µM N3a or the
858 corresponding volume of DMSO, as solvent control, for 36 h prior to RNA isolation using the
859 RNeasy Mini Kit according to the manufacturer's protocol. RNA quality was evaluated using the
860 Experion RNA StdSens Analysis Kit (Bio□Rad, 700-7103). RNAseq libraries were prepared
861 from total RNA with the QuantSeq 3' mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen,
862 015.24) in combination with the UMI Second Strand Synthesis Module for QuantSeq FWD
863 (Illumina, Read 1) (Lexogen, 081.96) following the manufacturer's protocol. The Quality of
864 sequencing libraries was validated on a Bioanalyzer 2100 using the Agilent High Sensitivity

865 DNA Kit. Pooled sequencing libraries were quantified and sequenced on the NextSeq 550
866 platform (Illumina) with 75-base single reads. Unique molecular identifiers (UMI) were
867 extracted and the first four nucleotides corresponding to the QuantSeq FWD-UMI 3' spacer were
868 removed. The trimmed reads were mapped to the *Homo sapiens* (revision 104, GRCh38)
869 Ensembl reference genome using STAR⁶⁴ (version 2.7.10a). The UMIs were then deduplicated
870 using UMI-tools⁶⁵ (version 1.1.1). The UMI per gene was quantified and normalized to counts
871 per million (CPM). Genes with CPM counts below 1 in all samples were considered background
872 noise and discarded. Further analysis was restricted to protein-coding and lincRNA genes.
873 Differential gene expression was analyzed via DEseq2 (version 1.34.0)⁶⁶. The obtained p-values
874 were corrected via Benjamini-Hochberg correction. Genes with $\log_{2}FC \geq 1$ as well as corrected
875 p-values smaller than 0.05 were considered differentially expressed. Principle component
876 analysis was performed on the corrected count matrix after subjecting it to variance-stabilizing
877 transformation via DEseq2. For heatmaps, expression values were z-transformed and genes were
878 clustered using hierarchical average-linkage clustering based on Euclidean distances. Gene set
879 enrichment analysis was performed using gene sets from the Molecular Signatures Database
880 (MSigDB) and GSEA software⁶⁷ (version 4.2.2). Raw sequencing data was deposited at
881 ArrayExpress, accession number E-MTAB-12734.

882

883 **Proliferation/IC₅₀ Assay**

884 8×10^4 cells were seeded on 96 well plates (Sarstedt, 83.3925) and treated with various doses
885 of N3a after 24 hours. Cells were imaged every 4 hours using the IncuCyte S3 live-cell analysis
886 system (Sartorius). Confluence data was analyzed using the area under the curve (AUC) to
887 calculate IC₅₀ values.

888

889 **Apoptosis Assay**

890 Cells and media supernatants were collected, pelleted, and resuspended in Annexin V-APC
891 conjugate (MabTag, AnxA100) diluted in Annexin V binding buffer (BD Biosciences, 556454)
892 according to the manufacturer's protocol. The suspension was incubated in the dark for 20
893 minutes at RT, washed in Annexin V binding buffer and analyzed by flow cytometry (BD LSR II
894 Flow Cytometer or BD Accuri C6 Plus Cytometer). For sequencing of apoptotic cells, annexin-V
895 positive or negative cells were sorted with a MoFlo Astrios sorter (Beckman Coulter).

896

897 **Reverse transcription quantitative PCR (RTqPCR)**

898 Total RNA was isolated using the RNeasy Mini Kit and reverse transcribed using the
899 SuperScript VILO cDNA Synthesis Kit. The resulting cDNA was used for qPCR using ABsolute
900 qPCR Mix SYBR Green (Thermo Fisher, AB1158B) with the following primers: TP53 fw 5'-
901 GGA GCC GCA GTC AGA TCC-3', TP53 rev 5'-CAA TAT CGT CCG GGG ACA GC-3',
902 GAPDH fw 5'-CTA TAA ATT GAG CCC GCA GCC-3', GAPDH rev 5'-ACC AAA TCC GTT
903 GAC TCC-3'. The data was analyzed using the $\Delta\Delta C_t$ method with GAPDH as reference.

904

905 **Western blot analysis**

906 Cells were lysed in NP-40 Lysis Buffer (50 mM Tris-HCl, 150 mM NaCl, 5 mM EDTA, 2%
907 NP-40, pH 8.0) supplemented with cOmplete ULTRA protease inhibitor cocktail (Roche,
908 4693124001) and sonicated using a Bioruptor (Diagenode) for 5 minutes. 20-40 μ g of protein
909 was separated on NuPAGE 4 to 12% Bis-Tris polyacrylamide gels (Invitrogen, WG1402) using
910 MOPS buffer (Invitrogen, NP0001). Following transfer to Immun-Blot PVDF Membrane

911 (BioRad, 1620177), antigens were detected using the antibodies: p53 (Santa Cruz Biotechnology,
912 sc-126; antibody DO-1) , p21 (Santa Cruz Biotechnology, sc-6246), β -actin (Abcam, ab6276).
913 Detection was performed with secondary goat anti-mouse IgG Fc HRP antibody (Invitrogen,
914 A16084) and WesternBright Sirius chemiluminescent HRP conjugate (advansta, K-12043). β -
915 actin was detected using goat anti-mouse Alexa-488 conjugate (Invitrogen, A-11029).

916

917 **Stability measurements of recombinant p53 DNA-binding domain variants**

918 Cancer mutations were introduced into a stabilized pseudo wild-type variant of the human p53
919 DNA-binding domain (residues 94-312; M133L/V203A/N239Y/N268D) that we have routinely
920 used as a framework for biophysical and structural studies in the past^{45,68}. Sequences of the
921 pET24a-based expression vectors used are given in Supplementary Table 9. The inserts between
922 the NdeI and EcoRI restriction sites encode for a fusion protein containing an N-terminal
923 hexahistidine tag, the lipoyl-binding domain of the dihydrolipoamide acetyltransferase
924 component of pyruvate dehydrogenase complex from *Bacillus stearothermophilus* (Uniprot entry
925 P11961, residues 2-85), followed by a TEV protease cleavage site and human p53 residues 94-
926 312 with mutations of interest. The different p53 DBD variants were expressed in *E. coli* C41
927 cells and purified by Ni-NTA column, overnight TEV protease cleavage, followed by affinity
928 chromatography on a heparin column and size-exclusion chromatography as described
929 previously⁴⁵.

930 Melting temperatures, T_m values, of the purified p53 variants were determined by differential
931 scanning fluorimetry using an Agilent MX3005P real-time qPCR instrument
932 (excitation/emission filters = 492/610 nm). Assay buffer: 25 mM HEPES, pH 7.5,
933 500 mM NaCl, 0.5 mM TCEP, with a final protein concentration of 5 μ M and the fluorescent

934 dye SYPRO Orange (Invitrogen, 10338542) at a dilution of 1:1000. The fluorescence signal was
935 monitored upon temperature increase from 25 to 95 $^{\circ}$ C, at a heating rate of 3 $^{\circ}$ C/min, and T_m
936 values were calculated after fitting the fluorescence curves to the Boltzmann function.
937 Measurements were performed in three independent repeats (each consisting of four technical
938 repeats on the same plate). Mutation-induced changes in DBD stability are given as $\Delta T_m = T_m$
939 (mutant) – T_m (wild type) (Supplementary Table 9).

940

941 **Animal Models**

942 Mouse experiments were performed in accordance with the German Animal Welfare Law
943 (TierSchG) and received approval from the local authority (Regierungspräsidium Gießen). The
944 mice were housed in specific-pathogen free conditions, kept on a 12-h light/dark cycle and fed a
945 standard housing diet (Altromin, 1328), with access to water ad libitum.

946 For *in vivo* passaging of HCT116 R175H/ Δ cells, 1 x 10⁶ cells were injected intravenously
947 into the tail vein of immunodeficient *Rag2*^{tm1.1Flv}; *Il2rg*^{tm1.1Flv} male and female mice that were a
948 minimum of eight weeks old. Starting from the onset of clinical symptoms, mice were monitored
949 daily using a scoring system, and were euthanized by cervical dislocation when critical
950 symptoms appeared or after 12 weeks, whichever came first. Lungs and, if present, metastases
951 were isolated, minced, and incubated in 1 mg/ml Collagenase/Dispase (Roche, 10269638001)
952 and 100 μ g/ml DNase I (Roche, 4536282001) at 37 $^{\circ}$ C for 1 h at 100 rpm on a horizontal shaker.
953 The cells were filtered through a 70 μ M EASYstrainer (Greiner Bio-One, 542070), pelleted at
954 300 x g, and erythrocytes were lysed using red blood cell lysis buffer (150 mM NH₄Cl, 10 mM
955 NaHCO₃, 1.27 mM EDTA) for 5 minutes at RT. Cells were washed once with DPBS (Gibco,
956 14190) and cultured under standard conditions.

957 For the *in vivo* tumor growth and metastasis assay, HCT116 R175H/Δ p3-met cells were
958 labelled with the intracellular Firefly (FLuc) and secreted Gaussia (GLuc) luciferases using the
959 retroviral plasmid pMSCV_FLuc_T2A_GLuc_Hygro. For plasmid generation, the FLuc ORF
960 was PCR-amplified using the following primers: FLuc_BglII_fw 5'-AGA TCT CAC CAT GGA
961 AGA TGC CAA AAA CAT TAA G-3', FLuc_T2A_rev 5'-CAC GTC ACC GCA TGT TAG
962 AAG ACT TCC TCT GCC CTC CAC GGC GAT CTT GCC GCC-3'; the GLuc ORF was PCR-
963 amplified using the following primers: GLuc_T2a_fw 5'-CTA ACA TGC GGT GAC GTG GAG
964 GAG AAT CCC GGC CCT ATG GGA GTC AAA GTT CTG TTT G-3', GLuc_XhoI_rev 5'-
965 CTC GAG TTA GTC ACC ACC GGC CCC-3'. Both fragments were fused using overlap
966 extension PCR and cloned into pCR Blunt II-TOPO vector using Zero Blunt TOPO kit
967 (Invitrogen, 450245) according to the manufacturer's protocol. Lastly, FLuc_T2A_GLuc was
968 cloned into MCS of pMSCV_hygro (Clontech Laboratories, Inc., 631461) using BglII (New
969 England Biolabs, R0144) and XhoI (New England Biolabs, R0146). AmphotroPack-293 cells
970 (Takara Bio Inc., CVCL_WI47) were transfected with pMSCV-FLuc-T2A-GLuc-Hygro using
971 calcium phosphate protocol⁶⁹. Three days after transfection, supernatants were collected, filtered
972 using Filtropur S 0.45 (Sarstedt, 83.1826) and supplemented with 8 µg/ml polybrene (Sigma-
973 Aldrich, 83.1826). 2.5 x 10⁶ tumor cells were transduced with retroviral supernatant using
974 spinoculation (1 h, 600 x g, 37°C). To knock-out p53R175H, labelled cells were transfected with
975 pX459_blast with sgTP53_Ex3: 5'- ACT TCC TGA AAA CAA CGT TC-3' or sgTP53_Ex5: 5'-
976 GTT GAT TCC ACA CCC CCG CC-3' and selected with 20 µg/ml blasticidin. Growth of
977 primary, subcutaneous tumors was assessed longitudinally by measuring GLuc activity in blood
978 samples as described⁷⁰. Livers were incubated using Luciferase Cell Culture Lysis 5 x Reagent
979 (Promega, E1531) according to the manufacturer's protocol. Firefly luciferase activity was

980 measured in liver lysates on a plate reader luminometer (ORION II, Titertek-Berthold) using the
981 Beetle-Juice Luciferase assay Firefly (PJK GmbH, 102511-1) according to the manufacturer's
982 protocol.

983

984 **Invasion/Migration assays**

985 1×10^5 cells were seeded in 24-well transwell inserts with 8 μm pore size (Sarstedt, 102511-
986 1) in media containing 1% FBS. The bottom well was filled with medium containing 10% FBS.
987 After 4 days, the cells remaining on the top of the transwell membrane were thoroughly washed
988 using a Q-Tip dipped in DPBS. The transwell inserts were then fixed for 10 min in 70 % EtOH at
989 RT, dried, and stained for 15 min with 0.2% crystal violet (Sigma-Aldrich, HT90132) in 10 %
990 EtOH. The transwell inserts were washed in water and allowed to dry. For quantification, 200 μl
991 of 20% acetic acid was added to each well and the dish was shaken for 15 min at 350 rpm at RT.
992 The solution was then collected into 96-well plates and the absorbance was measured at 590 nm
993 in a CYTATION 3 imaging plate reader. For normalization, 24-wells were seeded with the same
994 number of cells in media with 1 % FBS and stained one day after plating.

995 For invasion assays, the transwell inserts were pre-coated with 50 μl Matrigel (Corning,
996 354234) prior to seeding the cells. Before staining, the Matrigel was removed using a Q-Tip, and
997 the upper part of membrane was thoroughly washed with DPBS.

998 In the case of siRNA transfections, the cells transfected with the ON-TARGETplus siRNA set
999 of 4 (Horizon Discovery Ltd., LQ-003329-00 for *TP53* or D-001810-10 as non-targeting control)
1000 using Lipofectamine RNAiMax (Thermo Fisher Scientific, 3778075) according to the
1001 manufacturer's protocol and plated on the transwell inserts 24 hours after siRNA transfection.

1002

1003 **Data analysis and Software**

1004 To evaluate the correlation between RFS value and variant frequency in cancer patient
1005 samples, we obtained *TP53* mutation data from the following public databases: UMD *TP53*
1006 Mutation Database² (release 2017_R2, <https://p53.fr/tp53-database>), NCI/IARC The *TP53*
1007 Database⁷¹ (release R20, July 2019, <https://tp53.isb-cgc.org/>), the ‘curated set of non-redundant
1008 studies’ from the TCGA and the AACR project GENIE⁷² from cBioPortal⁷³
1009 (<http://www.cbioportal.org/>, downloaded on Dec 20, 2022). To evaluate the mutational
1010 probability of variants, we used Mutational Signatures (v3.3 – June 2022) downloaded from
1011 COSMIC (<https://cancer.sanger.ac.uk/signatures/>)³⁴. We calculated a mean Single Base
1012 Substitution (SBSmean) signature by averaging signatures SBS1 to SBS21 weighted by their
1013 prevalence in cancer samples, as reported by Alexandrov et al., 2013⁷⁴ (Supplementary Table 3).
1014 The evolutionary conservation profile for p53 was downloaded from the ConSurf-Database
1015 (https://consurf.tau.ac.il/consurf_index.php)⁷⁵. RFS values were mapped onto the p53DBD
1016 structure using PyMOL (version 2.5.2) with Protein Data Bank (PDB) entries 2AHI⁷⁶
1017 (<https://www.rcsb.org/structure/2AHI>) and 3KZ8⁷⁷ (<https://www.rcsb.org/structure/3KZ8>). To
1018 analyze distance relationships within the p53DBD, we generated a contact map for PDB 2AHI
1019 using ProteinTools (<https://proteintools.uni-bayreuth.de/>)⁷⁸. The map represents the distances
1020 between all amino acid pairs in a matrix form. The distance from the DNA-binding surface
1021 (TOP) was defined as the mean distance from the residues 248, 273, 277, and 280; the distance
1022 from the opposite pole (BOTTOM) as the mean distance from residues 153, 225 and 260; and
1023 the distance from the core (CENTER) as the mean distance from residues 195, 236, and 253.
1024 HoTMuSiC³⁹ was used to predict thermal destabilization of variants and solvent accessibility of
1025 residues based on PDB entry 2AHI.

1026 To compare CRISPR and cDNA-based mutome screens, we used datasets from Kotler et al.
1027 2018⁸ and Giacomelli et al., 2018⁴. From Kotler et al., we used enrichment data of p53 variants
1028 measured in the p53-null H1299 cell line (Supplementary Table 2, RFS_H1299), and from
1029 Giacomelli et al., we used enrichment results from the A549 p53-knockout cell line
1030 (A549_p53NULL_Nutlin-3_Z-score). Both cDNA datasets were transformed to RFS as defined
1031 above by scaling the median of nonsense variants to +1 and the median of synonymous variants
1032 to -1. We used yeast reporter data from Kato et al., 2003⁷ (downloaded from the NCI/IARC
1033 TP53 Database) to analyze transcriptional activity of p53 variants. Our analysis used the mean
1034 transcriptional activity (in % of wild type) from 8 different reporter constructs.

1035 The plots and statistical analyses in this study were created using GraphPad Prism (version
1036 9.4.1) or Python (version 3.9.12) with libraries: Matplotlib (version 3.5.1), Seaborn (version
1037 0.11.2), SciPy (version 1.7.3), and Statsmodels (version 0.13.2). Graphics were assembled in
1038 Adobe Illustrator (version 26.5.2). The results presented in the graphs represent the mean or
1039 median values obtained from n biological replicates. The error bars in the figures indicate the
1040 standard deviation (SD), unless stated otherwise. The difference between two sets of data was
1041 assessed through either a two-sided unpaired t-test or a Mann-Whitney test if the data was not
1042 normally distributed. To analyze multiple groups, a one-way ANOVA was used in combination
1043 with a multiple comparisons test. For three or more groups that have been divided into two
1044 independent variables (such as treatment and genotype), a two-way ANOVA was used in
1045 combination with a multiple comparisons test. The ANOVA results and selected pairwise
1046 comparisons are reported in the figures and source data files. A p-value less than 0.05 was
1047 considered statistically significant.

1048

1049 **Data availability**

1050 All data generated or analyzed during this study are included in this published article (and its
1051 supplementary information files). RNA sequencing data was deposited at ArrayExpress,
1052 accession number E-MTAB-12734.

1053

1054 **Oligonucleotides**

1055 All oligonucleotide sequences are provided in Supplementary Table 11.

1056 **Acknowledgements**

1057 The authors thank Sigrid Bischofsberger, Antje Grzeschiczek, Björn Geißert, Angelika Filmer,
1058 Alexandra Schneider and employees of the animal facility of Marburg University for technical
1059 and experimental support. We acknowledge support by the Medical Core Facilities for Genomics
1060 and Flow Cytometry. D.-I.B. and A.C.J. are grateful for support by the Structural Genomics
1061 Consortium (SGC), a registered charity (No:1097737) that received funds from Bayer AG,
1062 Boehringer Ingelheim, Bristol Myers Squibb, Genentech, Genome Canada through Ontario
1063 Genomics Institute, Janssen, Merck KGaA, Pfizer, and Takeda. A.C.J. is funded by German
1064 Research Foundation (DFG) grant JO 1473/1-3. T.S. is funded by grants from BMBF (031L0063
1065 to TS), Deutsche Forschungsgemeinschaft (TRR81/3 109546710 Project A10, STI 182/13-1, STI
1066 182/15-1, GRK2573), German Center for Lung Research (DZL), State of Hesse (LOEWE
1067 iCANx), von Behring-Röntgen Stiftung (65-0004 and 66-LV06), Deutsche José Carreras
1068 Leukämie Stiftung e.V. (09 R/2018). The funding bodies were not involved in the design of the
1069 study and collection, analysis, and interpretation of data and in writing the manuscript.

1070

1071 **Author contributions**

1072 The study was conceptualized by T.S. with support from J.F., M.K., R.S., and A.C.J. The wet-lab
1073 experiments were performed by J.F., M.K., E.P., M.N., D.D., M.N., P.H., A.B., D.-I.B., K.K.,
1074 N.M., and I.B. The animal experiments were conducted by J.F., M.K., E.P., and S.E. The
1075 experiments were supervised by M.W., S.E. A.C.J., and T.S. Next generation sequencing was
1076 performed by A.N., T.P., and M.B. The data was curated, analyzed, and visualized by K.H.,
1077 M.M., J.F., M.K., and T.S. Funding was acquired by R.S., A.C.J., and T.S. The original draft was
1078 written by J.F. and T.S., and all co-authors reviewed and edited the manuscript.

1079

References

1082 1 Kaiser, A. M. & Attardi, L. D. Deconstructing networks of p53-mediated tumor
1083 suppression in vivo. *Cell Death Differ.* **25**, 93-103 (2018).
<https://doi.org/10.1038/cdd.2017.171>

1085 2 Leroy, B., Anderson, M. & Soussi, T. TP53 mutations in human cancer: database
1086 reassessment and prospects for the next decade. *Hum. Mutat.* **35**, 672-688 (2014).
<https://doi.org/10.1002/humu.22552>

1088 3 Sabapathy, K. & Lane, D. P. Therapeutic targeting of p53: all mutants are equal, but
1089 some mutants are more equal than others. *Nat. Rev. Clin. Oncol.* **15**, 13-30 (2018).
<https://doi.org/10.1038/nrclinonc.2017.151>

1091 4 Giacomelli, A. O. *et al.* Mutational processes shape the landscape of TP53 mutations in
1092 human cancer. *Nat. Genet.* **50**, 1381-1387 (2018). <https://doi.org/10.1038/s41588-018-0204-y>

1094 5 Hoyos, D. *et al.* Fundamental immune-oncogenicity trade-offs define driver mutation
1095 fitness. *Nature* **606**, 172-179 (2022). <https://doi.org/10.1038/s41586-022-04696-z>

1096 6 Boettcher, S. *et al.* A dominant-negative effect drives selection of TP53 missense
1097 mutations in myeloid malignancies. *Science* **365**, 599-604 (2019).
<https://doi.org/10.1126/science.aax3649>

1099 7 Kato, S. *et al.* Understanding the function-structure and function-mutation relationships
1100 of p53 tumor suppressor protein by high-resolution missense mutation analysis. *Proc. Natl. Acad. Sci. U. S. A.* **100**, 8424-8429 (2003).
<https://doi.org/10.1073/pnas.1431692100>

1103 8 Kotler, E. *et al.* A Systematic p53 Mutation Library Links Differential Functional Impact
1104 to Cancer Mutation Pattern and Evolutionary Conservation. *Mol. Cell* **71**, 178-190.e178
1105 (2018). <https://doi.org/10.1016/j.molcel.2018.06.012>

1106 9 Donehower, L. A. *et al.* Integrated Analysis of TP53 Gene and Pathway Alterations in
1107 The Cancer Genome Atlas. *Cell Rep.* **28**, 1370-1384 e1375 (2019).
<https://doi.org/10.1016/j.celrep.2019.07.001>

1109 10 Stiewe, T. & Haran, T. E. How mutations shape p53 interactions with the genome to
1110 promote tumorigenesis and drug resistance. *Drug Resist Updat* **38**, 27-43 (2018).
<https://doi.org/10.1016/j.drup.2018.05.001>

1112 11 Pfister, N. T. & Prives, C. Transcriptional Regulation by Wild-Type and Cancer-Related
1113 Mutant Forms of p53. *Cold Spring Harb. Perspect. Med.* **7** (2017).
<https://doi.org/10.1101/cshperspect.a026054>

1115 12 Freed-Pastor, W. A. & Prives, C. Mutant p53: one name, many proteins. *Genes Dev.* **26**,
1116 1268-1286 (2012). <https://doi.org/10.1101/gad.190678.112>

1117 13 Muller, P. A. & Vousden, K. H. Mutant p53 in cancer: new functions and therapeutic
1118 opportunities. *Cancer Cell* **25**, 304-317 (2014). <https://doi.org/10.1016/j.ccr.2014.01.021>

1119 14 Turrell, F. K. *et al.* Lung tumors with distinct p53 mutations respond similarly to p53-
1120 targeted therapy but exhibit genotype-specific statin sensitivity. *Genes Dev.* **31**, 1339-
1121 1353 (2017). <https://doi.org/10.1101/gad.298463.117>

1122 15 Ghosh, M. *et al.* Mutant p53 suppresses innate immune signaling to promote
1123 tumorigenesis. *Cancer Cell* **39**, 494-508 e495 (2021).
<https://doi.org/10.1016/j.ccr.2021.01.003>

1125 16 Alexandrova, E. M. *et al.* Improving survival by exploiting tumour dependence on
1126 stabilized mutant p53 for treatment. *Nature* **523**, 352-356 (2015).
1127 <https://doi.org/10.1038/nature14430>

1128 17 Mantovani, F., Collavin, L. & Del Sal, G. Mutant p53 as a guardian of the cancer cell. *Cell Death Differ.* **26**, 199-212 (2019). <https://doi.org/10.1038/s41418-018-0246-9>

1129 18 Kennedy, M. C. & Lowe, S. W. Mutant p53: it's not all one and the same. *Cell Death Differ.* **29**, 983-987 (2022). <https://doi.org/10.1038/s41418-022-00989-y>

1130 19 Bunz, F. Requirement for p53 and p21 to Sustain G2 Arrest After DNA Damage. *Science* **282**, 1497-1501 (1998). <https://doi.org/10.1126/science.282.5393.1497>

1131 20 Waldman, T. The Inaugural Use of Gene Editing for the Study of Tumor Suppressor Pathways in Human Cells-p21WAF1/CIP1. *Cancer Res.* **76**, 4598-4601 (2016).
1132 <https://doi.org/10.1158/0008-5472.CAN-16-1972>

1133 21 Ihry, R. J. *et al.* p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. *Nat. Med.* **24**, 939-946 (2018). <https://doi.org/10.1038/s41591-018-0050-6>

1134 22 Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. *Nat. Med.* (2018).
1135 <https://doi.org/10.1038/s41591-018-0049-z>

1136 23 Enache, O. M. *et al.* Cas9 activates the p53 pathway and selects for p53-inactivating mutations. *Nat. Genet.* **52**, 662-668 (2020). <https://doi.org/10.1038/s41588-020-0623-4>

1137 24 Joerger, A. C. & Fersht, A. R. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. *Annu. Rev. Biochem.* **85**, 375-404 (2016).
1138 <https://doi.org/10.1146/annurev-biochem-060815-014710>

1139 25 Bykov, V. J. N., Eriksson, S. E., Bianchi, J. & Wiman, K. G. Targeting mutant p53 for efficient cancer therapy. *Nat. Rev. Cancer* **18**, 89-102 (2018).
1140 <https://doi.org/10.1038/nrc.2017.109>

1141 26 Bykov, V. J. *et al.* Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. *Nat. Med.* **8**, 282-288 (2002).
1142 <https://doi.org/10.1038/nm0302-282>

1143 27 Yu, X., Vazquez, A., Levine, A. J. & Carpizo, D. R. Allele-specific p53 mutant reactivation. *Cancer Cell* **21**, 614-625 (2012). <https://doi.org/10.1016/j.ccr.2012.03.042>

1144 28 Liu, D. S. *et al.* Inhibiting the system xC(-)/glutathione axis selectively targets cancers with mutant-p53 accumulation. *Nat Commun* **8**, 14844 (2017).
1145 <https://doi.org/10.1038/ncomms14844>

1146 29 Tessoulin, B. *et al.* PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance. *Blood* **124**, 1626-1636 (2014).
1147 <https://doi.org/10.1182/blood-2014-01-548800>

1148 30 Zaman, S. *et al.* Combinatorial Therapy of Zinc Metallochaperones with Mutant p53 Reactivation and Diminished Copper Binding. *Mol. Cancer Ther.* **18**, 1355-1365 (2019).
1149 <https://doi.org/10.1158/1535-7163.MCT-18-1080>

1150 31 Wang, Z. *et al.* The anti-cancer agent APR-246 can activate several programmed cell death processes to kill malignant cells. *Cell Death Differ.* (2023).
1151 <https://doi.org/10.1038/s41418-023-01122-3>

1152 32 Doffe, F. *et al.* Identification and functional characterization of new missense SNPs in the coding region of the TP53 gene. *Cell Death Differ.* (2020).
1153 <https://doi.org/10.1038/s41418-020-00672-0>

1170 33 Greenman, C. *et al.* Patterns of somatic mutation in human cancer genomes. *Nature* **446**,
1171 153-158 (2007). <https://doi.org/10.1038/nature05610>

1172 34 Alexandrov, L. B. *et al.* The repertoire of mutational signatures in human cancer. *Nature*
1173 **578**, 94-101 (2020). <https://doi.org/10.1038/s41586-020-1943-3>

1174 35 Liu, G. *et al.* Chromosome stability, in the absence of apoptosis, is critical for
1175 suppression of tumorigenesis in Trp53 mutant mice. *Nat. Genet.* **36**, 63-68 (2004).
<https://doi.org/10.1038/ng1282>

1177 36 Timofeev, O. *et al.* p53 DNA binding cooperativity is essential for apoptosis and tumor
1178 suppression *in vivo*. *Cell Rep.* **3**, 1512-1525 (2013).
<https://doi.org/10.1016/j.celrep.2013.04.008>

1180 37 Kang, J. G. *et al.* A Mouse Homolog of a Human TP53 Germline Mutation Reveals a
1181 Lipolytic Activity of p53. *Cell Rep.* **30**, 783-792 e785 (2020).
<https://doi.org/10.1016/j.celrep.2019.12.074>

1183 38 Timofeev, O. & Stiewe, T. Rely on Each Other: DNA Binding Cooperativity Shapes p53
1184 Functions in Tumor Suppression and Cancer Therapy. *Cancers (Basel)* **13** (2021).
<https://doi.org/10.3390/cancers13102422>

1186 39 Pucci, F., Bourgeas, R. & Rooman, M. Predicting protein thermal stability changes upon
1187 point mutations using statistical potentials: Introducing HoTMuSiC. *Sci. Rep.* **6**, 23257
1188 (2016). <https://doi.org/10.1038/srep23257>

1189 40 Cao, S. *et al.* Discovery of driver non-coding splice-site-creating mutations in cancer. *Nat
1190 Commun* **11**, 5573 (2020). <https://doi.org/10.1038/s41467-020-19307-6>

1191 41 Terzian, T. *et al.* The inherent instability of mutant p53 is alleviated by Mdm2 or
1192 p16INK4a loss. *Genes Dev.* **22**, 1337-1344 (2008). <https://doi.org/10.1101/gad.1662908>

1193 42 Isermann, T. *et al.* Suppression of HSF1 activity by wildtype p53 creates a driving force
1194 for p53 loss-of-heterozygosity. *Nat Commun* **12**, 4019 (2021).
<https://doi.org/10.1038/s41467-021-24064-1>

1196 43 Alexandrova, E. M. *et al.* p53 loss-of-heterozygosity is a necessary prerequisite for
1197 mutant p53 stabilization and gain-of-function *in vivo*. *Cell Death Dis.* **8**, e2661 (2017).
<https://doi.org/10.1038/cddis.2017.80>

1199 44 Bushman, F. *et al.* Genome-wide analysis of retroviral DNA integration. *Nat. Rev.
1200 Microbiol.* **3**, 848-858 (2005). <https://doi.org/10.1038/nrmicro1263>

1201 45 Bauer, M. R. *et al.* Targeting Cavity-Creating p53 Cancer Mutations with Small-
1202 Molecule Stabilizers: the Y220X Paradigm. *ACS Chem. Biol.* **15**, 657-668 (2020).
<https://doi.org/10.1021/acschembio.9b00748>

1204 46 Bullock, A. N. & Fersht, A. R. Rescuing the function of mutant p53. *Nat. Rev. Cancer* **1**,
1205 68-76 (2001). <https://doi.org/10.1038/35094077>

1206 47 Tang, Y. *et al.* Repurposing antiparasitic antimonials to noncovalently rescue
1207 temperature-sensitive p53 mutations. *Cell Rep.* **39**, 110622 (2022).
<https://doi.org/10.1016/j.celrep.2022.110622>

1209 48 Lu, J., Chen, L., Song, Z., Das, M. & Chen, J. Hypothermia Effectively Treats Tumors
1210 with Temperature-Sensitive p53 Mutations. *Cancer Res.* **81**, 3905-3915 (2021).
<https://doi.org/10.1158/0008-5472.CAN-21-0033>

1212 49 Bradley, R. K. & Anczukow, O. RNA splicing dysregulation and the hallmarks of cancer.
1213 *Nat. Rev. Cancer* (2023). <https://doi.org/10.1038/s41568-022-00541-7>

1214 50 Jones, R. G. *et al.* AMP-activated protein kinase induces a p53-dependent metabolic
1215 checkpoint. *Mol. Cell* **18**, 283-293 (2005). <https://doi.org/10.1016/j.molcel.2005.03.027>

1216 51 Maddocks, O. D. *et al.* Serine starvation induces stress and p53-dependent metabolic
1217 remodelling in cancer cells. *Nature* **493**, 542-546 (2013).
<https://doi.org/10.1038/nature11743>

1219 52 Kung, C. P., Liu, Q. & Murphy, M. E. The codon 72 polymorphism of p53 influences
1220 cell fate following nutrient deprivation. *Cancer Biol. Ther.* **18**, 484-491 (2017).
<https://doi.org/10.1080/15384047.2017.1323595>

1222 53 Li, D. *et al.* Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes
1223 aberrant stabilization of mutant p53 in human cancer cells. *Mol. Cancer Res.* **9**, 577-588
1224 (2011). <https://doi.org/10.1158/1541-7786.MCR-10-0534>

1225 54 Shetzer, Y. *et al.* The onset of p53 loss of heterozygosity is differentially induced in
1226 various stem cell types and may involve the loss of either allele. *Cell Death Differ.* **21**,
1227 1419-1431 (2014). <https://doi.org/10.1038/cdd.2014.57>

1228 55 Milner, J., Medcalf, E. A. & Cook, A. C. Tumor suppressor p53: analysis of wild-type
1229 and mutant p53 complexes. *Mol. Cell. Biol.* **11**, 12-19 (1991).

1230 56 Milner, J. & Medcalf, E. A. Cotranslation of activated mutant p53 with wild type drives
1231 the wild-type p53 protein into the mutant conformation. *Cell* **65**, 765-774 (1991).

1232 57 Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E. p53-dependent apoptosis
1233 modulates the cytotoxicity of anticancer agents. *Cell* **74**, 957-967 (1993).
[https://doi.org/10.1016/0092-8674\(93\)90719-7](https://doi.org/10.1016/0092-8674(93)90719-7)

1235 58 Bunz, F. *et al.* Requirement for p53 and p21 to sustain G2 arrest after DNA damage.
1236 *Science* **282**, 1497-1501 (1998). <https://doi.org/10.1126/science.282.5393.1497>

1237 59 Bunz, F. *et al.* Disruption of p53 in human cancer cells alters the responses to therapeutic
1238 agents. *J. Clin. Invest.* **104**, 263-269 (1999). <https://doi.org/10.1172/JCI6863>

1239 60 Rago, C., Vogelstein, B. & Bunz, F. Genetic knockouts and knockins in human somatic
1240 cells. *Nat. Protoc.* **2**, 2734-2746 (2007). <https://doi.org/10.1038/nprot.2007.408>

1241 61 Chen, P. J. *et al.* Enhanced prime editing systems by manipulating cellular determinants
1242 of editing outcomes. *Cell* **184**, 5635-5652 e5629 (2021).
<https://doi.org/10.1016/j.cell.2021.09.018>

1244 62 Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
1245 *EMBnet.journal* **17** (2011). <https://doi.org/10.14806/ej.17.1.200>

1246 63 Gaspar, J. M. NGmerge: merging paired-end reads via novel empirically-derived models
1247 of sequencing errors. *BMC Bioinformatics* **19**, 536 (2018).
<https://doi.org/10.1186/s12859-018-2579-2>

1249 64 Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21
1250 (2013). <https://doi.org/10.1093/bioinformatics/bts635>

1251 65 Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in Unique
1252 Molecular Identifiers to improve quantification accuracy. *Genome Res.* **27**, 491-499
1253 (2017). <https://doi.org/10.1101/gr.209601.116>

1254 66 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
1255 for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).
<https://doi.org/10.1186/s13059-014-0550-8>

1257 67 Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for
1258 interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 15545-
1259 15550 (2005). <https://doi.org/10.1073/pnas.0506580102>

1260 68 Joerger, A. C., Ang, H. C. & Fersht, A. R. Structural basis for understanding oncogenic
1261 p53 mutations and designing rescue drugs. *Proc. Natl. Acad. Sci. U. S. A.* **103**, 15056-
1262 15061 (2006). <https://doi.org/10.1073/pnas.0607286103>

1263 69 Kutner, R. H., Zhang, X. Y. & Reiser, J. Production, concentration and titration of
1264 pseudotyped HIV-1-based lentiviral vectors. *Nat. Protoc.* **4**, 495-505 (2009).
1265 <https://doi.org/10.1038/nprot.2009.22>

1266 70 Merle, N. *et al.* Monitoring autochthonous lung tumors induced by somatic CRISPR gene
1267 editing in mice using a secreted luciferase. *Mol. Cancer* **21**, 191 (2022).
1268 <https://doi.org/10.1186/s12943-022-01661-2>

1269 71 de Andrade, K. C. *et al.* The TP53 Database: transition from the International Agency for
1270 Research on Cancer to the US National Cancer Institute. *Cell Death Differ.* **29**, 1071-
1271 1073 (2022). <https://doi.org/10.1038/s41418-022-00976-3>

1272 72 Pugh, T. J. *et al.* AACR Project GENIE: 100,000 Cases and Beyond. *Cancer Discov.* **12**,
1273 2044-2057 (2022). <https://doi.org/10.1158/2159-8290.CD-21-1547>

1274 73 Cerami, E. *et al.* The cBio cancer genomics portal: an open platform for exploring
1275 multidimensional cancer genomics data. *Cancer Discov.* **2**, 401-404 (2012).
1276 <https://doi.org/10.1158/2159-8290.CD-12-0095>

1277 74 Alexandrov, L. B. *et al.* Signatures of mutational processes in human cancer. *Nature* **500**,
1278 415-421 (2013). <https://doi.org/10.1038/nature12477>

1279 75 Ben Chorin, A. *et al.* ConSurf-DB: An accessible repository for the evolutionary
1280 conservation patterns of the majority of PDB proteins. *Protein Sci.* **29**, 258-267 (2020).
1281 <https://doi.org/10.1002/pro.3779>

1282 76 Kitayner, M. *et al.* Structural basis of DNA recognition by p53 tetramers. *Mol. Cell* **22**,
1283 741-753 (2006). <https://doi.org/10.1016/j.molcel.2006.05.015>

1284 77 Kitayner, M. *et al.* Diversity in DNA recognition by p53 revealed by crystal structures
1285 with Hoogsteen base pairs. *Nat. Struct. Mol. Biol.* **17**, 423-429 (2010).
1286 <https://doi.org/10.1038/nsmb.1800>

1287 78 Ferruz, N., Schmidt, S. & Hocker, B. ProteinTools: a toolkit to analyze protein structures.
1288 *Nucleic Acids Res.* **49**, W559-W566 (2021). <https://doi.org/10.1093/nar/gkab375>

1289
1290

1291 **Figure Legends**

1292

1293 **Fig. 1: Panel of single *TP53* mutations in HCT116 cell lines. a,** Scheme for CRISPR/Cas9-
1294 mediated *TP53* mutagenesis via homology-directed recombination (HDR) in HCT116 LSL/Δ
1295 cell line. LSL, loxP-stop-loxP; DBD, DNA-binding domain. **b,** Editing efficiency as percentage
1296 of single-cell clones that contain a targeted integration of the donor and the desired mutation
1297 analyzed by PCR and sequencing, respectively. Shown are results for single mutations and the
1298 mean across the panel. **c,** Western blot demonstrating mutant p53 protein expression in HCT116
1299 clones after Cre-mediated excision of the LSL cassette in absence and presence of 10 μm N3a. **d,**
1300 Principle component analysis based on RNA-seq data of indicated cells clones ±N3a. **e,** Gene
1301 set enrichment analysis for p53-related gene expression signatures comparing indicated N3a and
1302 DMSO-treated cell clones. **f,** mRNA-expression changes of representative p53-activated and
1303 repressed genes following N3a-treatment in cell clones. Shown is the mean ±SD. Data points
1304 indicate data from replicate RNA-seq datasets (n=3). ****, p<0.0001; *, p<0.05; two-way
1305 ANOVA with Sidak's post-hoc multiple comparisons test. **g-h,** Proliferation of *TP53*-mutant cell
1306 clones in presence of increasing concentrations of N3a analyzed by real-time live cell imaging. **g,**
1307 Area under the proliferation curve relative to untreated. **h,** 50% inhibitory concentration (mean
1308 IC₅₀ and 95% CI, n=3) for N3a with p53-null (LSL, red) and wild type (WT, green) as reference.
1309

1310 **Fig. 2: Saturating mutagenesis of TP53 codon R175.** **a**, Scheme for CRISPR/Cas9-mediated
1311 saturating mutagenesis via homology-directed recombination (HDR) in HCT116 LSL/Δ cell line
1312 and analysis of p53-mediated stress responses by next generation sequencing (NGS). Puro,
1313 puromycin; IR, ionizing radiation; 5-FU, fluorouracil. **b** and **d**, Quality control plots illustrating
1314 correlation of variant abundance between donor (plasmid) library and variant cell libraries before
1315 and after Cre recombination (-Cre and +Cre) and following 8 days of N3a treatment (+N3a).
1316 Shown is the mean \pm SD abundance (n=3 biological replicates) for synonymous (syn, green), null
1317 (red) and missense (mis, blue) variants. Kernel density estimation plots illustrate separation of
1318 variants following N3a treatment. Dashed line, line of identity. **c**, Heatmap showing pair-wise
1319 correlation coefficients (ρ , Spearman). Dendrogram shows hierarchical clustering of samples
1320 using average linkage and Euclidean distance. **e**, Heatmap showing the temporal changes of
1321 variant abundance in absence or presence of N3a (n=3 biological replicates per condition).
1322 Enrichment or depletion is shown as the -log₂ fold change versus the mean of the early untreated
1323 replicates. **f** and **g**, Response to Mdm2/Mdmx inhibitors. **f**, Heatmap of variant
1324 enrichment/depletion after 8 days of treatment (n=3 biological replicates per condition). **g**,
1325 Heatmap showing pair-wise correlation coefficients (ρ , Spearman) with hierarchical clustering of
1326 samples using average linkage and Euclidean distance. **h**, Bar plot of variant
1327 enrichment/depletion shown as mean \pm SD of the five tested Mdm2/Mdmx inhibitors. Each data
1328 points represents the enrichment for one compound (median of 3 replicates). Null mutations are
1329 highlighted in red, synonymous variants in green. Statistical significance was tested by one-way
1330 ANOVA. Reported are p-values from Dunnett's post-hoc multiple comparisons test for each
1331 variant versus the mean of all synonymous or all null variants. For each variant, the patient
1332 sample count in the UMD mutation database is stated.

1333 **Fig. 3. R175 variants: differential impact on stress responses and effector mechanisms. a-b,**
1334 Comparison of different stress factors. **a**, Heatmap showing changes in variant abundance in
1335 response to DNA damage (IR, ionizing radiation; 5-FU, 5-fluorouracil) or nutrient starvation
1336 (HBSS, Hank's buffered saline solution; -Glc, glucose starvation; -Gln, glutamine starvation)
1337 compared to control treatment with DMSO and N3a. Shown is the enrichment (n=3 biological
1338 replicates per condition) as the -log2 fold abundance change relative to the negative controls. **b**,
1339 Scatter plots illustrating the correlation between enrichment under DNA damage or nutrient
1340 deprivation and specific p53 activation with N3a. Shown is the mean \pm SD enrichment (n=3
1341 biological replicates) and Pearson correlation coefficient ρ . Dashed line, line of identity. **c-e**,
1342 Pro-apoptotic activity of R175 variants. **c**, Experimental scheme and a representative FACS
1343 scatter plot demonstrating the sorting strategy based on Annexin V staining. GFP-negative cells
1344 were gated to selectively analyze cells expressing the p53 variant, i.e., cells with successful
1345 deletion of the GFP-expressing LSL cassette after AV-Cre infection. **d**, Heatmap illustrating
1346 N3a-induced changes in variant abundance in the Annexin V-positive fraction (left) compared to
1347 the entire cell pool (right). Shown is the -log2 fold change (n=3 biological replicates) relative to
1348 the Annexin V-negative fraction (left) or DMSO-treated control cells (right). Lanes labelled as
1349 '16d-4d' represent the difference between the 4d and 16d timepoint, reflecting late N3a-induced
1350 changes in variant abundance. **e**, Scatterplot showing the correlation between the early (4 days)
1351 and late (between 4 and 16 days) occurring N3a-induced changes in variant abundance versus
1352 their enrichment in the apoptotic cell fraction. Shown is the mean \pm SD enrichment (n=3
1353 biological replicates) relative to the DMSO-treated control and the Pearson correlation
1354 coefficient ρ . Dashed line, line of identity.

1355

1356 **Fig. 4. TP53 DBD mutome screen.** **a**, Composition of the *TP53* DBD mutagenesis library. **b-c**,
1357 Quality control plots. **b**, Heatmap showing pair-wise correlation coefficients (ρ , Spearman)
1358 between sample replicates. **c**, Scatter plot illustrating separation of variants under p53-activating
1359 N3a treatment. Shown is the median abundance of all variants under N3a versus DMSO
1360 treatment (n=3 biological replicates). Synonymous (syn) and nonsense (non) variants highlighted
1361 in green and red, respectively. ρ , Spearman correlation coefficient. Dashed line, line of identity.
1362 **d**, Distribution of relative fitness scores (RFS) for different variant classes. Left violin half shows
1363 distribution for intronic, right violin half for exonic variants. Fs, frameshift; if, in-frame; ins,
1364 insertion; del, deletion; indel, insertion or deletion; mis, missense; sub, substitution; Ts,
1365 transition; Tv, transversion; nt, nucleotide. **e**, Heatmap showing the RFS for all mis, syn, and non
1366 variants. Bar plots show for each codon the mutation frequency in the UMD *TP53* mutation
1367 database, the evolutionary conservation score, and the RFS (mean \pm SD) of all missense
1368 substitutions at this position. **f**, Structure of a DNA-bound p53 DBD dimer colored by RFS
1369 (Protein Data Bank 3KZ8⁷⁷). The DBD-DNA and intra-dimer interaction interface within a
1370 distance of 10 Å is shown as a sphere model and superimposed on the cartoon model to highlight
1371 its sensitivity (red color, positive RFS values) to mutation. **g-h**, Scatter plots showing correlation
1372 between RFS and aggregated variant count in cancer patients listed in the UMD, IARC/NCI,
1373 TCGA, and GENIE databases. Variants are colored by the indicated mutation types (**g**) or
1374 evolutionary conservation (**h**). ρ , Spearman correlation coefficient.

1375

1376 **Fig. 5. CRISPR screen reveals partial loss-of-function variants. a**, Kernel density estimation
1377 (KDE) plots showing the distribution of RFS scores for the indicated groups of variants in the
1378 CRISPR versus cDNA-based mutome screens^{4,8}. For comparison, all results from previously
1379 reported cDNA-screens were transformed to RFS by scaling the median of nonsense mutations
1380 to +1 and the median of synonymous mutations to -1. Z' factors, a measure of statistical effect
1381 size, are stated as a quality parameter for the assay's ability to separate positive (LOF nonsense)
1382 and negative (synonymous) controls. **b-d**, Scatter plots illustrating correlation between RFS
1383 values obtained by CRISPR mutagenesis and cDNA overexpression (Kotler et al., 2018⁸).
1384 Variants are categorized into 4 quadrants (LL, lower left; LR, lower right; UL, upper left; UR,
1385 upper right). Percentage of variants in each quadrant is given in **b**. Variants are colored by
1386 mutation type in **b**, average mutational probability (SBSmean) in **c**, or frequency in cancer
1387 patients in **d**. Inserted violin plots illustrate the value distribution in the three main quadrants. **e**,
1388 Structure of a DNA-bound p53 DBD dimer (Protein Data Bank 2AHI⁷⁶) colored by the
1389 difference in RFS between the CRISPR and cDNA screen. Selected areas of high discrepancy
1390 are labelled. **f**, Scatter plot of the difference between CRISPR and cDNA screen versus the mean
1391 transcriptional activity of variants relative to wild-type p53 (WT) as measured in a yeast-based
1392 reporter system (Kato et al., 2003⁷). The area of 20-60% transcriptional activity (partial loss-of-
1393 function, pLOF) is shaded in grey; red line, cubic spline curve. **g-i**, Scatter plots showing
1394 correlation between RFS values obtained by CRISPR mutagenesis and cDNA overexpression.
1395 Variants are colored by transcriptional activity⁷ in **g**, classification as pLOF in **h**, or thermal
1396 stability as predicted by HoTMuSiC³⁹ in **i**. V157L and T256A are highlighted in **i** with red
1397 outline and increased dot size. Inserted violin plots illustrate the value distribution in the three
1398 main quadrants. **j-k**, Temperature-sensitive function of LR variants V157L and T256A

1399 introduced into HCT116 LSL/Δ cells by CRISPR-HDR. **j**, Western blot of indicated HCT116
1400 mut/Δ cell clones cultured with or without 10 μ M N3a at 37 °C or 32 °C. **k**, Dose-response
1401 curves of N3a for representative cell clones, shown as mean relative proliferation (n=4
1402 replicates), based on confluence measurements using real-time live-cell imaging.
1403 All violin plots show p values from one-way ANOVA and a post-hoc multiple comparisons test
1404 by Tukey (***, <0.001; **, < 0.01; ns, not significant). In all scatter plots, ρ denotes the
1405 Spearman correlation coefficient.
1406

1407 **Fig. 6. Splicing and nonsense-mediated decay (NMD).** **a**, Barplot demonstrating high
1408 differences between CRISPR and cDNA screening results at exon borders (residues G187, E224,
1409 V225, and S261). Shown is the mean difference (\pm SD) of all missense variants at each codon. **b**
1410 and **d**, Scatter plots comparing the abundance of variants in the cell libraries at the level of
1411 genomic DNA and mRNA. Each dot represents the median abundance of a variant from n=3
1412 biological replicates. Variants are colored by mutation type in **b**, and by RFS in **d**. Dashed line,
1413 line of identity. **c**, Violin plot showing NMD as the log2 fold-change in abundance at mRNA and
1414 DNA level by mutation type. ***, p<0.001; *, p<0.05; one-way ANOVA with multiple
1415 comparison by Tukey. **e**, Distribution of RFS values in variants (all or missense) according to
1416 NMD status. Variants with a log2 fold-change in abundance between mRNA and DNA <-2 were
1417 classified as NMD+. ***, p<0.001; two-sided Mann-Whitney test. **f-i**, Loss-of-function and
1418 NMD caused by E224E (synonymous) and E224D (missense) mutations. **f**, Aberrant mRNA
1419 splicing revealed by Sanger sequencing of cDNA. **g**, Quantitative reverse transcription PCR of
1420 indicated HCT116 mut/Δ cells. Shown is the TP53 mRNA expression relative to WT as
1421 mean \pm SD (n=6 replicates). ***, p<0.001; one-way ANOVA with Dunnett's multiple
1422 comparisons test. **h**, Western blot demonstrating lack of p53 protein expression in multiple
1423 HCT116 cell clones with E224/D mutations. **i**, Resistance of E224E/D clones to N3a.
1424 Proliferation was analyzed by real-time live cell imaging. Shown is the area under the
1425 proliferation curve relative to untreated. p53-null (LSL, red) and wild type (WT, green) are
1426 shown as reference. **j**, Impact of intronic and exonic variants near exon borders on tumor cell
1427 fitness. Heatmaps show the RFS of indicated single-nucleotide substitution variants. Wild-type
1428 and synonymous variants are indicated with yellow and green dots, respectively. The number of

1429 cancer patients in GENIE with mutations at exon-flanking intronic nucleotides is indicated below
1430 the heatmaps.

1431 **Fig. 7. R175H enables evolutionary development of pro-metastatic properties. a, *In vivo***
1432 tumor evolution model. HCT116 cells with R175H and R175X mutations were grown in mice
1433 after intravenous injection. Tumors from lungs and metastatic sites were explanted, expanded in
1434 cell culture and re-injected for up to 3 mouse passages. **b**, Western blot of R175H-mutant
1435 HCT116 cells showing protein stabilization following multiple rounds of mouse passaging (p0-
1436 3). The R175H mutant is expressed as the 72P polymorphic variant, resulting in an apparent
1437 higher molecular weight compared to the wild-type protein. **c-d**, Transwell assays for migration
1438 and invasion after indicated rounds of mouse passaging demonstrate gain of pro-metastatic
1439 activity. Shown is the mean \pm SD (n=3 experiments with 3 replicates each) relative to original
1440 p53-null (LSL/Δ) HCT116 cells and results from two-way ANOVA with Dunnett's multiple
1441 comparisons test. **e-j**, Transwell migration and invasion is dependent on R175H protein
1442 expression. nsi, non-silencing siRNA; p53si, p53-targeting siRNA. Shown is the mean \pm SD (n=3
1443 replicates) and results from one-way ANOVA with Sidak's multiple comparisons test. Western
1444 blots in **e** and **h** confirm lack of p53 protein expression in R175X cells and efficient siRNA-
1445 mediated depletion of R175H. **k-m**, *In vivo* metastasis assay. **k**, HCT116 R175H/Δ p3 cells were
1446 dual-labelled with firefly and secreted *Gaussia luciferase*, transfected with CRISPR nucleases
1447 (control or targeting p53), and subcutaneously injected into immunodeficient mice. **l**, Primary
1448 subcutaneous tumor growth was measured based on secreted *Gaussia luciferase* levels in blood
1449 samples. Shown is the mean \pm SD (n=7 mice per group). p-value of group factor from two-way
1450 ANOVA. **m**, Metastasis to liver was measured based on firefly luciferase activity in whole liver
1451 homogenate. Shown is the mean \pm SD luciferase activity relative to control-sgRNA (n=7 mice per
1452 group). RLU, relative light units; p-value from two-sided unpaired t-test.

1453

1454 **Supplementary Figure Legends**

1455

1456 **Supplementary Fig. 1. Generation and functional characterization of single *TP53*-mutant**

1457 **HCT116 cell clones. a**, CRISPR/Cas9-mediated targeting of *TP53* in HCT116 cells. Shown are

1458 the two *TP53* alleles in HCT116 cells and their modifications in HCT116 LSL/Δ cells. Exon 5

1459 and 6 mutations were engineered in the cell line depicted on the left. For mutagenesis of exon 7

1460 and 8, this cell line was further modified as shown on the right. The Δ allele contains inactivating

1461 deletions in introns 5 and 7 as indicated. The second allele contains a loxP-flanked

1462 transcriptional stop (LSL) cassette expressing GFP and a non-functional Puromycin N-

1463 acetyltransferase (Puro^{mut}) resistance gene in intron 4. In addition, the LSL allele harbors

1464 alterations (SNV in intron 5, deletion in intron 7) to enable specific Cas9-targeting of the LSL

1465 allele only. Donor vectors, used to introduce mutations, contain an intact Puromycin resistance

1466 gene allowing selection of HDR-edited cells by Puromycin treatment. To prevent re-cutting and

1467 selective PCR amplification of HDR-edited alleles (LSL-mut), donors for targeting of exons 5/6

1468 contain an additional PAM-inactivating mutation. In case of targeting exons 7/8, a deletion in

1469 intron 7 on the LSL allele eliminated the need for an additional donor mutation. Adenoviral Cre

1470 infection was used to excise the LSL-cassette and activate expression of the mutated allele,

1471 yielding HCT116 mut/Δ cells. Selective next-generation sequencing of the edited and Cre-

1472 recombined allele was ensured by a nested PCR amplification strategy using the indicated, color-

1473 coded, primer pairs. **b** and **c**, Sanger sequencing of intron 5 and 7 deletions in HCT116 LSL/Δ

1474 cells. **d**, Western blot validating Cre and N3a-dependent mutant p53 expression, using LSL-WT

1475 and LSL-R175H cells as an example. **e**, Proliferation of additional *TP53*-mutant cell clones in

1476 presence of increasing concentrations of N3a analyzed by real-time live cell imaging. Shown is

1477 the area under the proliferation curve (AUC) relative to untreated. **f**, Western blot demonstrating
1478 low variability in mutant p53 expression between different R175H cell clones. **g-h**, Proliferation
1479 of different R175H cell clones in presence of increasing concentrations of N3a analyzed by real-
1480 time live cell imaging. p53-null (LSL, red) and wild-type (WT, green) are shown for reference.
1481 **g**, Area under the proliferation curve (AUC) relative to untreated. **h**, 50% inhibitory
1482 concentration (mean IC₅₀ and 95% CI, n=3).

1483 **Supplementary Fig. 2. Impact of R175 variants on drug responses.** **a**, Dose-dependent
1484 changes in R175 variant abundance following 8 days of N3a treatment. Heatmap shows
1485 enrichment (or depletion) as the -log2 fold change versus the mean of the DMSO-treated control.
1486 n=3 biological replicates per condition. **b-c**, Impact of R175 variants on the cellular response to
1487 8-day treatment with the indicated concentrations of APR-246 and N3a. **b**, Heatmap depicting
1488 changes in variant abundance as -log2 fold change versus the untreated control. n=3 biological
1489 replicates per condition. **c**, Heatmap showing pair-wise correlation coefficients (ρ , Spearman).
1490 Dendrogram shows hierarchical clustering of samples using average linkage and Euclidean
1491 distance. **d-e**, Impact of R175 variants on the cellular response to 8-day treatment with the
1492 indicated concentrations of ZMC1 and N3a. **d**, Heatmap depicting changes in variant abundance
1493 as -log2 fold change versus the untreated control. n=3 biological replicates per condition. **e**,
1494 Heatmap showing pair-wise correlation coefficients (ρ , Spearman). Dendrogram shows
1495 hierarchical clustering of samples using average linkage and Euclidean distance.

1496 **Supplementary Fig. 3. R175 mutagenesis screen in H460 cells.** **a**, Scheme depicting
1497 generation of the H460 LSL/Δ/Δ cell line. **b**, Sanger sequencing results of the three *TP53* alleles
1498 in H460 LSL/Δ/Δ cells. **c**, Sanger sequencing results of the LSL allele at codon 175 for R175-
1499 edited/mutated H460 cell clones. **d**, Western blot of mutated H460 cell clones ± Cre and N3a. **e**,
1500 Heatmap depicting changes in variant abundance following 8 days of 10 μ M N3a treatment.
1501 Shown is the -log2 fold change versus the untreated control for n=3 (HCT116) and n=6 (H460)
1502 biological replicates. **f**, Scatter plot illustrating the correlation between N3a-induced variant
1503 enrichment in HCT116 and H460 cells. Shown is the mean \pm SD enrichment (-log2 FC, n=3
1504 biological replicates) and Pearson correlation coefficient ρ . Dashed line, line of identity.

1505 **Supplementary Fig. 4. Codon 176-185 mutagenesis screen. a-c,** Quality control plots
1506 illustrating correlation of variant abundance between donor (plasmid) library and variant cell
1507 libraries before and after Cre recombination (-Cre and +Cre) and following 8 days of 10 μ M N3a
1508 treatment (+N3a). Shown is the mean abundance (n=3 biological replicates) for synonymous
1509 (syn, green), null (red) and missense (mis, grey) variants. Dashed line, line of identity. **d,**
1510 Heatmap showing pair-wise correlation coefficients (ρ , Spearman). Dendrogram shows
1511 hierarchical clustering of samples using average linkage and Euclidean distance. **e,** Heatmap of
1512 variant enrichment/depletion after 8 days of treatment with indicated concentrations of
1513 Mdm2/Mdmx inhibitors. Shown is the -log2 FC relative to the mean of DMSO-treated control
1514 cells for n=3 biological replicates. **f,** Heatmap of variant enrichment after 8 days of 10 μ M N3a
1515 treatment. Shown is the mean -log2 FC relative to DMSO-treated control cells. Synonymous
1516 mutations are marked with a yellow dot.

1517 **Supplementary Fig. 5. TP53 DBD mutome screen.** **a**, Quality control plots illustrating
1518 correlation of variant abundance between donor (plasmid) library and variant cell libraries before
1519 and after Cre recombination (-Cre and +Cre) and following 8 days of 10 μ M N3a treatment
1520 (+N3a). Shown is the median abundance (n=3 biological replicates) for synonymous (syn,
1521 green), nonsense (non, red) and other (grey) variants. ρ , Spearman correlation coefficient.
1522 Dashed line, line of identity. **b**, Kernel density estimation (KDE) plots of variant abundance in
1523 indicated donor and cell libraries. **c**, KDE plot of the log2 fold change (FC) of variant abundance
1524 under N3a treatment. **d**, KDE plot of the relative fitness score (RFS) of variants. **e**, Bar plot
1525 showing the median RFS values of all perturbations at exemplary codons (blue, negative RFS
1526 indicative of WTp53-like activity; red, positive RFS indicative of loss of WTp53 function).
1527 Black bars indicate the number of patients with the respected amino acid substitution in the
1528 UMD TP53 mutation database. **f**, Hierarchically clustered heatmap showing the RFS for all mis,
1529 syn, and non variants. Exemplary codons (mutational hotspots and codons from **e**) are labelled.
1530 Bar plots show for each codon the mutation frequency in the UMD TP53 mutation database, the
1531 evolutionary conservation score, and the RFS (mean \pm SD) of all missense substitutions at this
1532 position. **g**, Scatter plots showing the correlation between RFS and distance of the altered residue
1533 from the TOP (DNA-binding surface), BOTTOM (protein pole opposite from the DNA-binding
1534 surface) and CENTER of the p53 DBD. **h-j**, Scatter plots showing the correlation between RFS
1535 and **(h)** solvent accessibility of the altered residue, **(i)** thermal destabilization of the variant as
1536 predicted by HoTMuSiC³⁹, and **(j)** the conservation score of the altered residue (ConSurf
1537 Database⁷⁵). In **h**, solvent-accessible residues with nevertheless high RFS values are indicated.
1538 R248 is a DNA contact residue, E224 and S261 are located at exon borders and affect splicing,
1539 G199 is located at the inter-dimer interface and also critical for splicing. **g-j**, All plots show

1540 variants as individual datapoints, kernel density estimates, and regression lines with 95%
1541 confidence intervals. ρ , Spearman correlation coefficient.

1542 **Supplementary Fig. 6. RFS and mutational probability. a-d**, Scatter plots of RFS versus
1543 patient count (sum of all records in the UMD, IARC/NCI, TCGA, and GENIE databases). **a**,
1544 Variants are colored by mutation class. Labelled in red are functionally neutral genetic variants
1545 (polymorphisms, poly) according to Doffe et al., 2020³². **b**, Missense variants colored by the
1546 number of substituted nucleotides. **c**, Single-nucleotide missense variants colored as transition Ts
1547 (A-G, C-T) or transversion Tv (A-C, A-T, C-A, C-G) mutations. **d**, Single-nucleotide missense
1548 variants colored as CpG or non-CpG mutations. **e-h**, Violin plots showing the distribution of
1549 patient counts for the mutation types depicted in **a-d** stratified by RFS as RFS+ (RFS>0) or RFS-
1550 (RFS<0). n.o., not observed. Tables report the two-way ANOVA p-value and effect size (ω^2) for
1551 each factor and their interaction. Selected post-hoc multiple comparison test results (Tukey) are
1552 shown directly in the plot. **i-j**, Scatter plots of RFS versus patient count (sum of all records in the
1553 UMD, IARC/NCI, TCGA, and GENIE databases) colored by mutational probability according to
1554 the indicated COSMIC mutational signatures (v3.3 - June 2022)³⁴. SBSmean (**j**) denotes an
1555 averaged mutational signature calculated by weighting the most common mutational signatures
1556 based on their occurrence in the TCGA pan-cancer cohort⁷⁴. **k** and **l**, Violin plots comparing the
1557 distribution of patient counts for single-nucleotide substitutions stratified by RFS as RFS+
1558 (RFS>0, left violin half) or RFS- (RFS<0, right violin half). **k**, All single-nucleotide substitutions
1559 and p-value from a two-sided Mann-Whitney test. Lines show the median and the 25% and 50%
1560 quartiles. **l**, Single-nucleotide substitutions binned by increasing mutational probability using the
1561 ‘SBSmean’ signature. Two-way ANOVA p-value and effect size (ω^2) for each factor (‘RFS’ and
1562 ‘SBSmean bin’) and their interaction are reported in the table, indicating a strong effect of RFS
1563 on patient count mostly independent of mutational probability.

1564 **Supplementary Fig. 7. Selection of CRISPR-identified LOF variants during tumorigenesis.**

1565 **a**, Scatter plots illustrating correlation between RFS values obtained by CRISPR mutagenesis
1566 and cDNA overexpression (Kotler et al., 2018⁸). Variants are colored based on their mutational
1567 probability according to the indicated COSMIC mutational signatures (v3.3 - June 2022)³⁴. **b**,
1568 Violin plots depict the distribution of mutational probabilities among the variants located in the
1569 three main quadrants LL, LR and UR. Reported are p-values from Tukey's post-hoc multiple
1570 comparisons tests performed after one-way ANOVA. **c**, Scatter plots illustrate the correlation
1571 between RFS values obtained by CRISPR mutagenesis and cDNA overexpression (Kotler et al.,
1572 2018⁸). Variants are colored by their frequency in patients based on the indicated mutation
1573 databases (UMD, IARC/NCI, TCGA, GENIE). Violin plots depict the distribution of variant
1574 patient counts in the three main quadrants LL, LR and UR (p-values from one-way ANOVA and
1575 Tukey's post-hoc multiple comparisons tests). All violin plots show the median and the 25% and
1576 50% quartiles.

1577 **Supplementary Fig. 8. Comparison of CRISPR and cDNA overexpression screening**

1578 **results.** **a-f,** Scatter plots illustrate the correlation between RFS values obtained by CRISPR

1579 mutagenesis and cDNA overexpression (Giacomelli et al., 2018⁴). Variants are colored based on

1580 (a) mutation type, (b) thermal stability as predicted by HoTMuSiC³⁹ , (c) average mutational

1581 probability using a weighted average mutational signature SBSmean, (d) frequency in cancer

1582 patients (sum of all records in UMD, IARC/NCI, TCGA, GENIE databases), (e) mean

1583 transcriptional activity relative to wild-type p53 (WT) as measured in a yeast-based reporter

1584 system (Kato et al., 2003⁷), and (f) classification as pLOF (20-60% transcriptional activity).

1585 Inserted violin plots illustrate the value distribution in the four quadrants (LL, lower left; LR,

1586 lower right; UL, upper left; UR, upper right) and report p values from one-way ANOVA with

1587 Tukey's post-hoc multiple comparisons tests (***, <0.001; ns, not significant).

1588 **Supplementary Fig. 9. Missense and synonymous mutations resulting in splicing defects. a-**

1589 **d**, Scatter plots comparing the abundance of missense variants in the cell libraries at the level of

1590 genomic DNA and mRNA. Each dot represents the median abundance of a variant from n=3

1591 biological replicates. Variants are colored by RFS in **a**, by distance from the exon border in **b**,

1592 substitution type in **c**, and patient count in **d**. Variants that are recurrently observed in cancer

1593 patients showing evidence for NMD (i.e., underrepresented at the mRNA level) are individually

1594 labeled (black font for variants at the exon border, red font for variants inside the exon). Dashed

1595 line, line of identity. **e-g**, Schematic depiction of splicing alterations caused by **(e)** L137Q, **(f)**

1596 G199G (GGA>GGT) and **(g)** g.7673847 T>G. **h**, Abundance of the regularly spliced and

1597 alternatively spliced mRNAs compared to the abundance of the indicated variants at the level of

1598 genomic DNA. Alternatively spliced mRNA with in-frame deletions/insertions caused by L137Q

1599 and g.7673847 T>G are well detectable and more abundant than the regularly spliced transcript.

1600 The alternatively spliced (frameshifted) mRNA resulting from G199G (GGA>GGT) is

1601 detectable, but underrepresented compared to its genomic abundance, indicating its clearance by

1602 NMD.

1603 **Supplementary Fig. 10. R175H enables evolutionary development of pro-metastatic**
1604 **properties. a,** Images of transwell migration and invasion assays of indicated HCT116 R175H/Δ
1605 cells. The top three rows show migrated/invaded cells after crystal violet staining. The bottom
1606 three rows show wells with equal amounts of seeded cells as proliferation controls. **b,**
1607 Proliferation curves of R175H p0 and p3-met cells measured by real-time live cell imaging.
1608 Shown is the mean confluence of n=3 experiments. **c,** Images of transwell migration and
1609 invasion assays of indicated HCT116 R175H/Δ and HCT116 R175X/Δ cells transfected with
1610 non-silencing (nsi) or p53-depleting siRNA (p53si). The top three rows show 3 replicate wells of
1611 migrated/invaded cells after crystal violet stain. The bottom three rows show 3 replicate wells
1612 with equal amounts of seeded cells as proliferation controls. **d-h,** Generation and validation of
1613 HCT116 R175H/Δ p3-met cells with CRISPR-knockout of p53^{R175H}. **d,** Proliferation of HCT116
1614 R175H/Δ cells after transduction with p53-targeting or control Cas9-nucleases. **e,** Western blot
1615 confirming efficient p53-knockout. **f,** Images of three replicate wells of migrated and invaded
1616 cells after crystal violet staining. **g** and **h,** Quantification of migration (**g**) and invasion (**h**).
1617 Shown is the mean ±SD (n=3 replicates) relative to sgCtrl-cells and results from one-way
1618 ANOVA with Dunnett's multiple comparisons test. **i-k,** Transwell migration assays of indicated
1619 HCT116 R175H/Δ and HCT116 R175X/Δ p0 cells treated with Nutlin-3a (N3a) or DMSO (D) as
1620 control. **i,** Western blot. **j,** Images of three replicate wells of migrated cells stained with crystal
1621 violet. **k,** Quantification of migration. Shown is the mean ±SD (n=3 replicates) relative to
1622 DMSO-treated R175X cells and results from one-way ANOVA with Dunnett's multiple
1623 comparisons test.

Figure 1

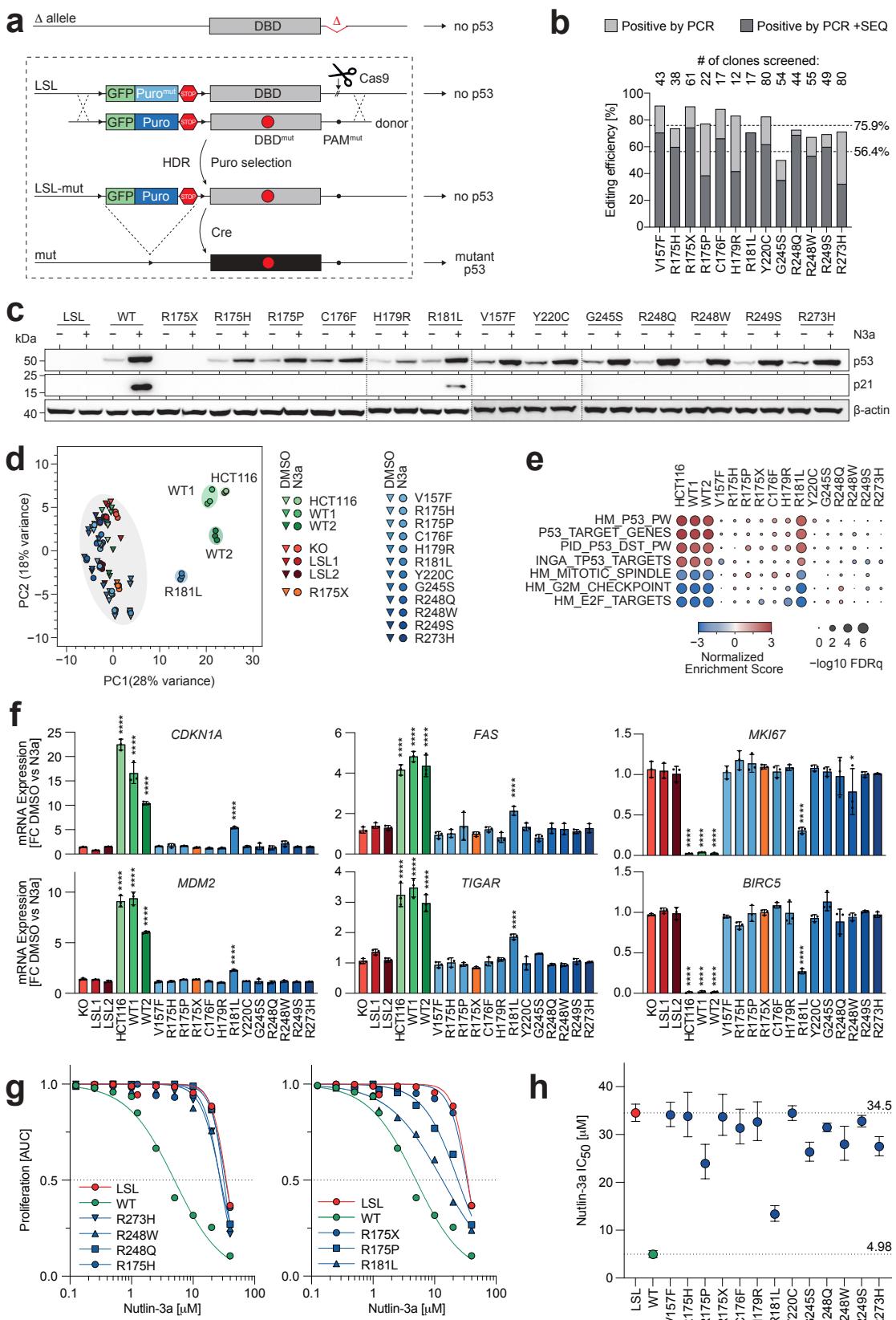
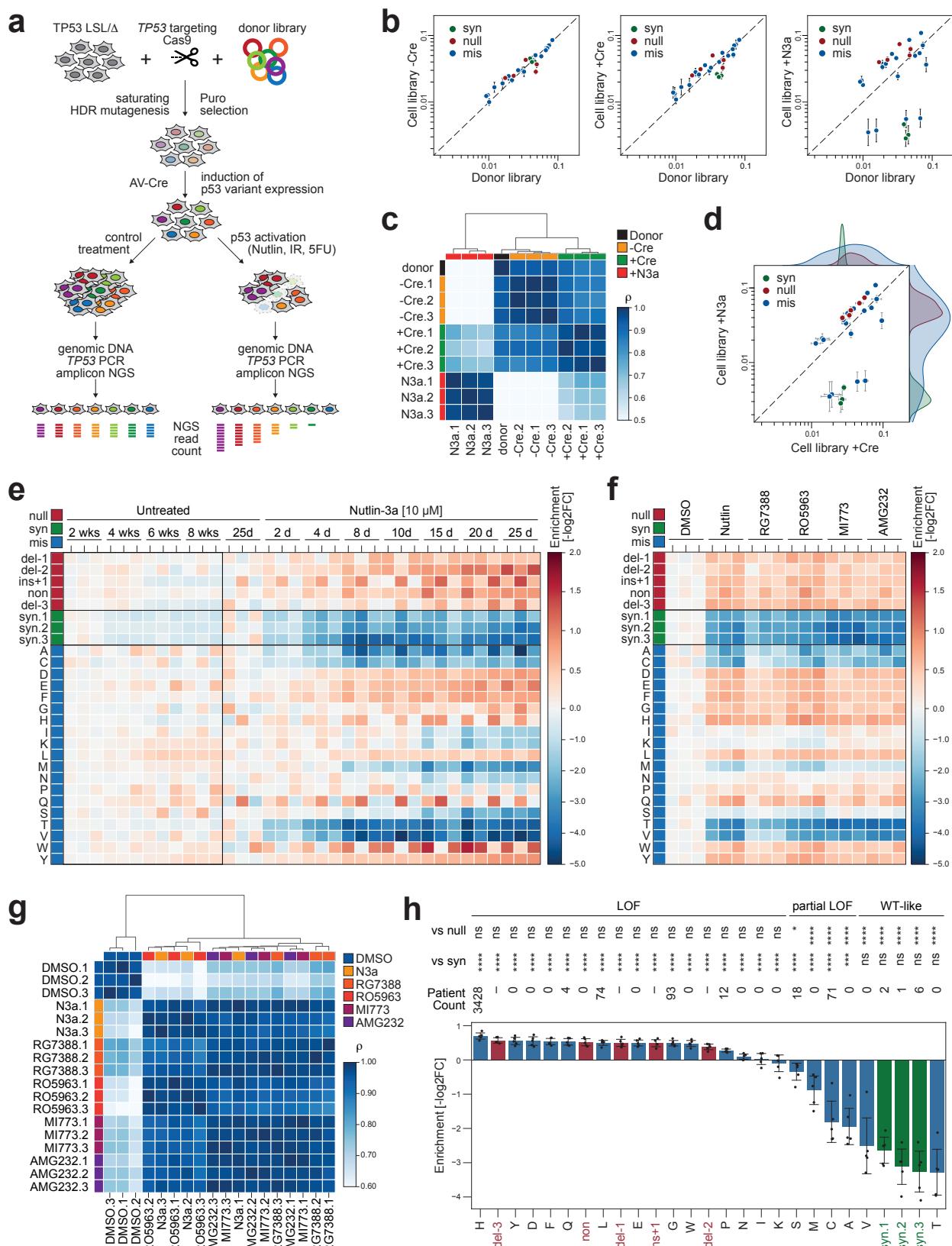



Figure 2

Figure 3

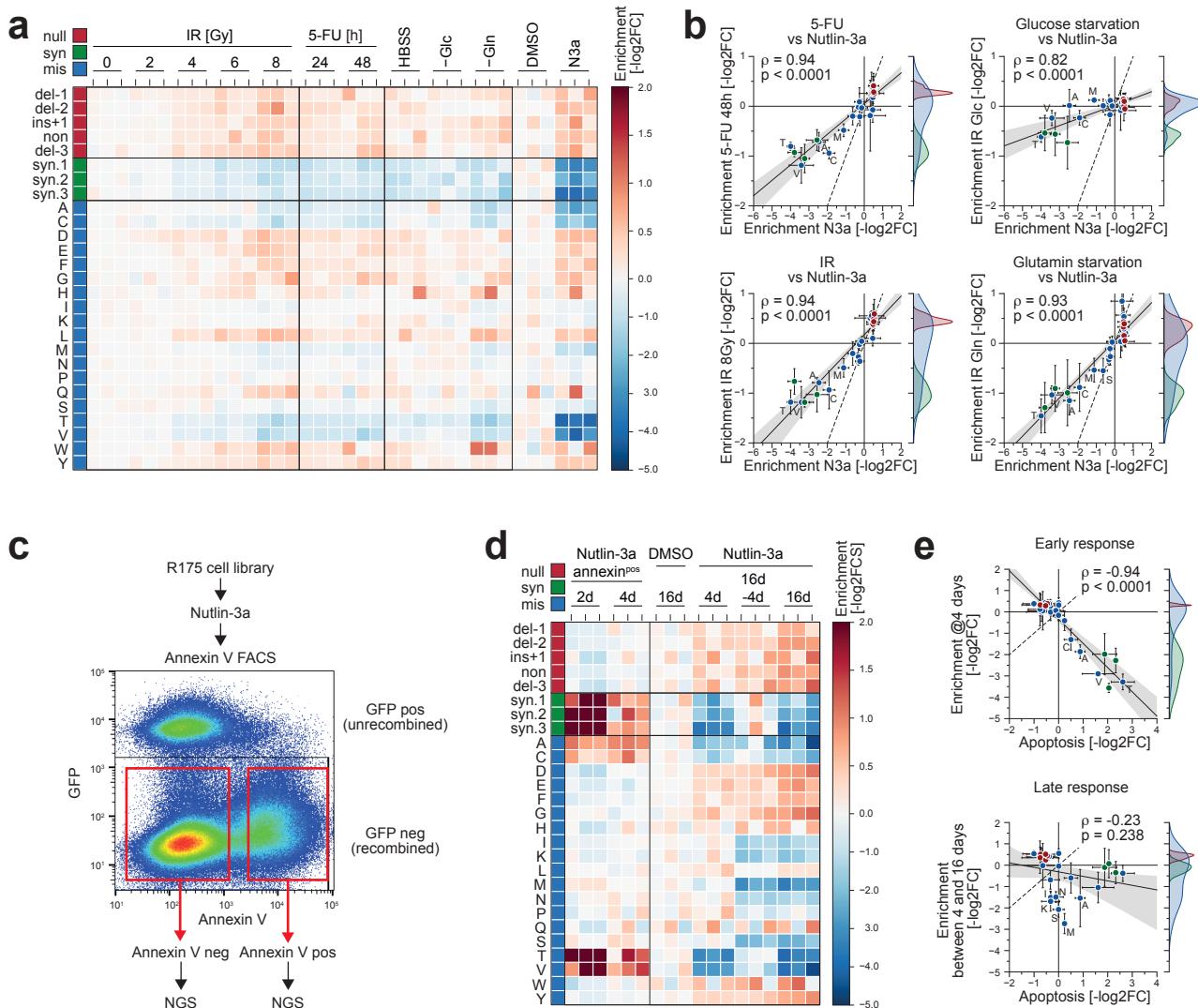


Figure 4

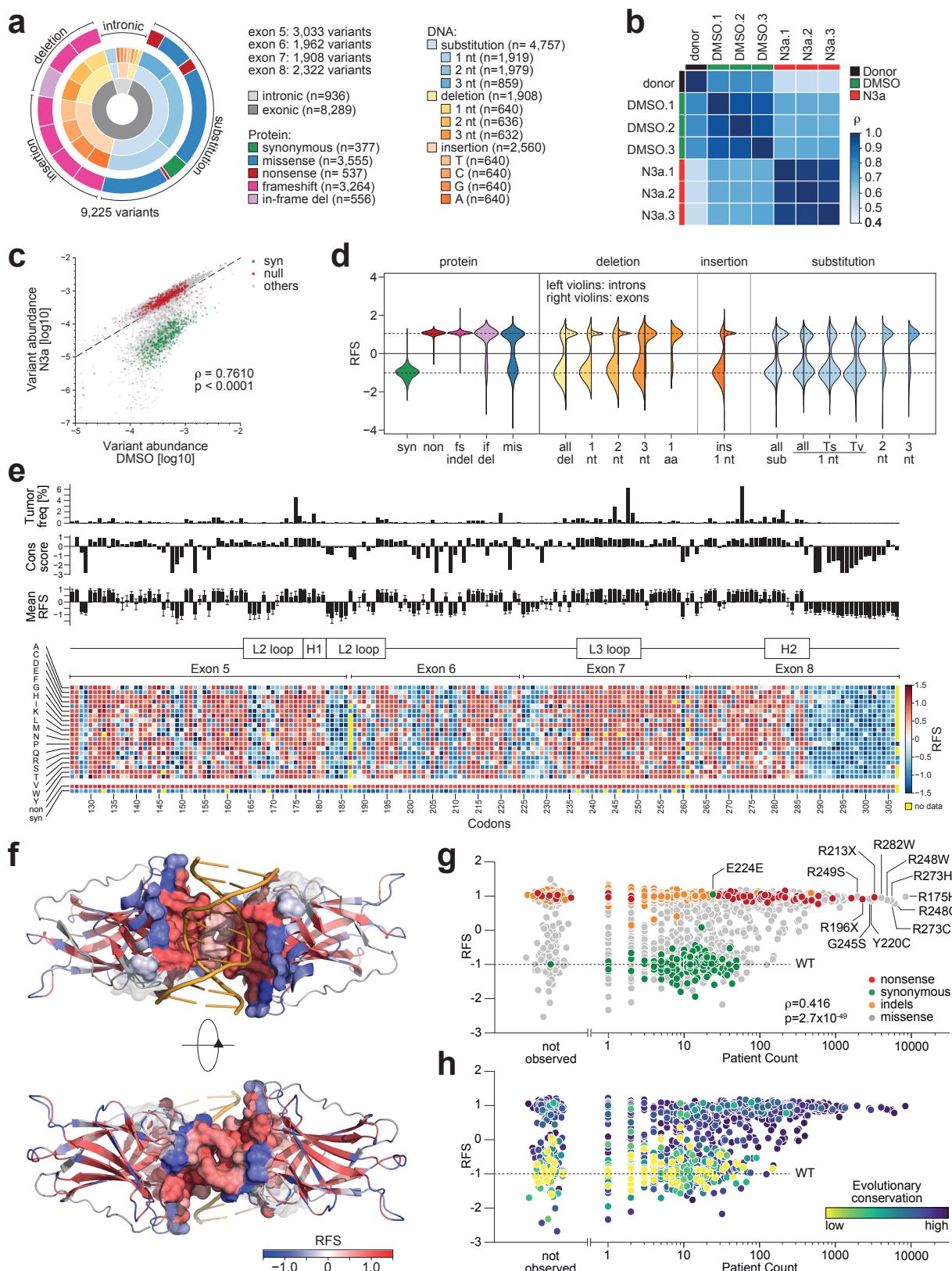


Figure 5

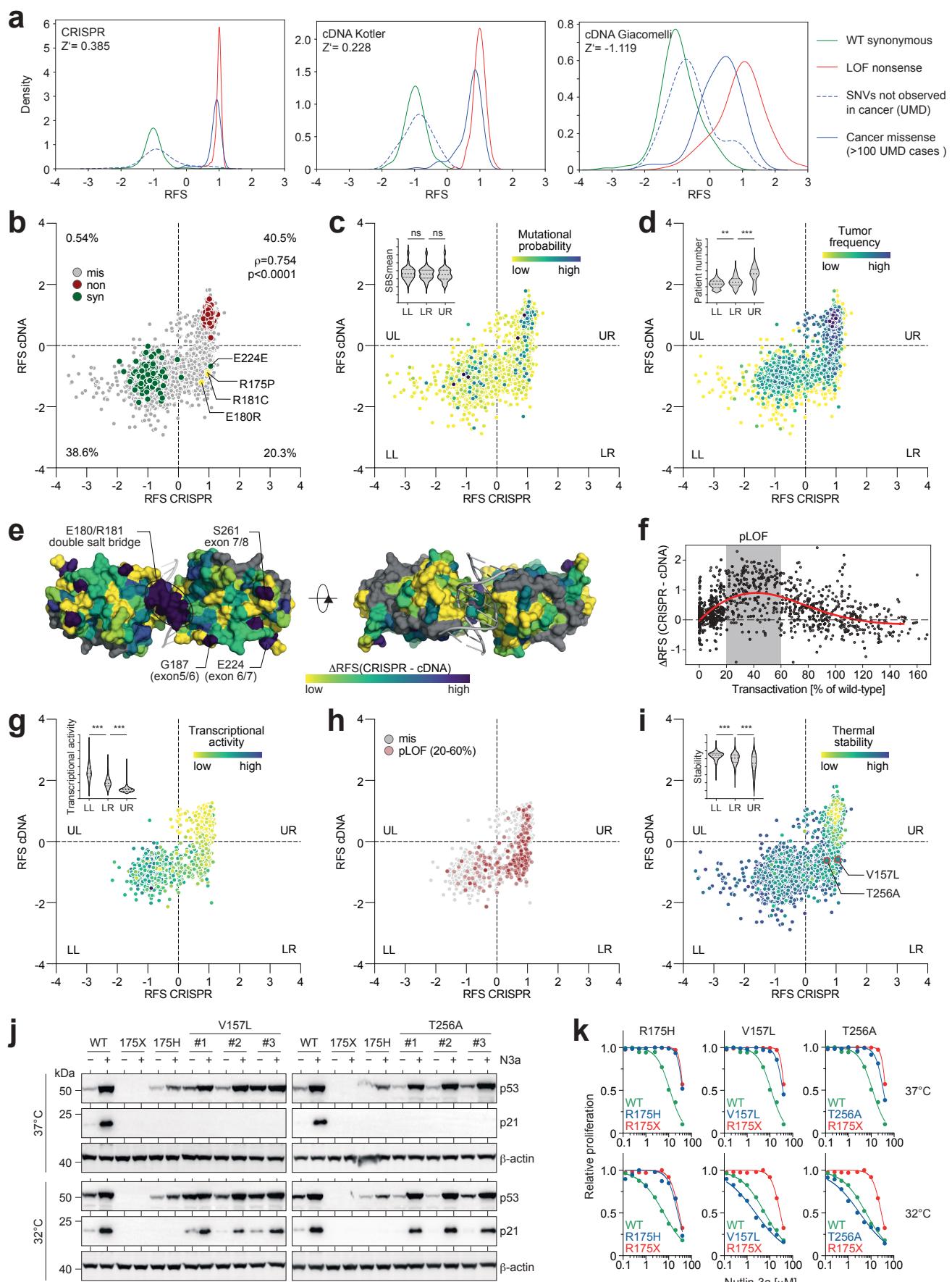
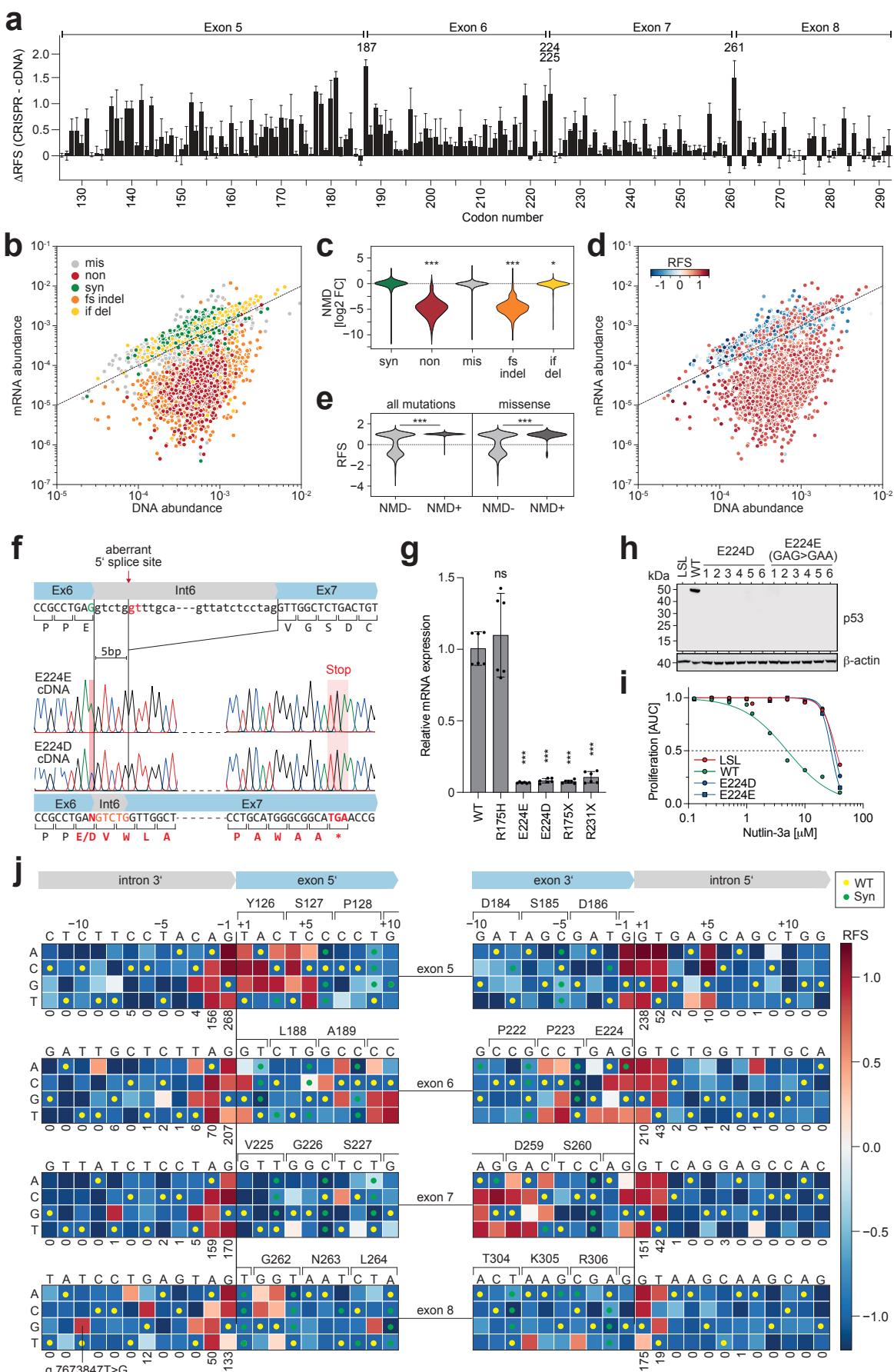
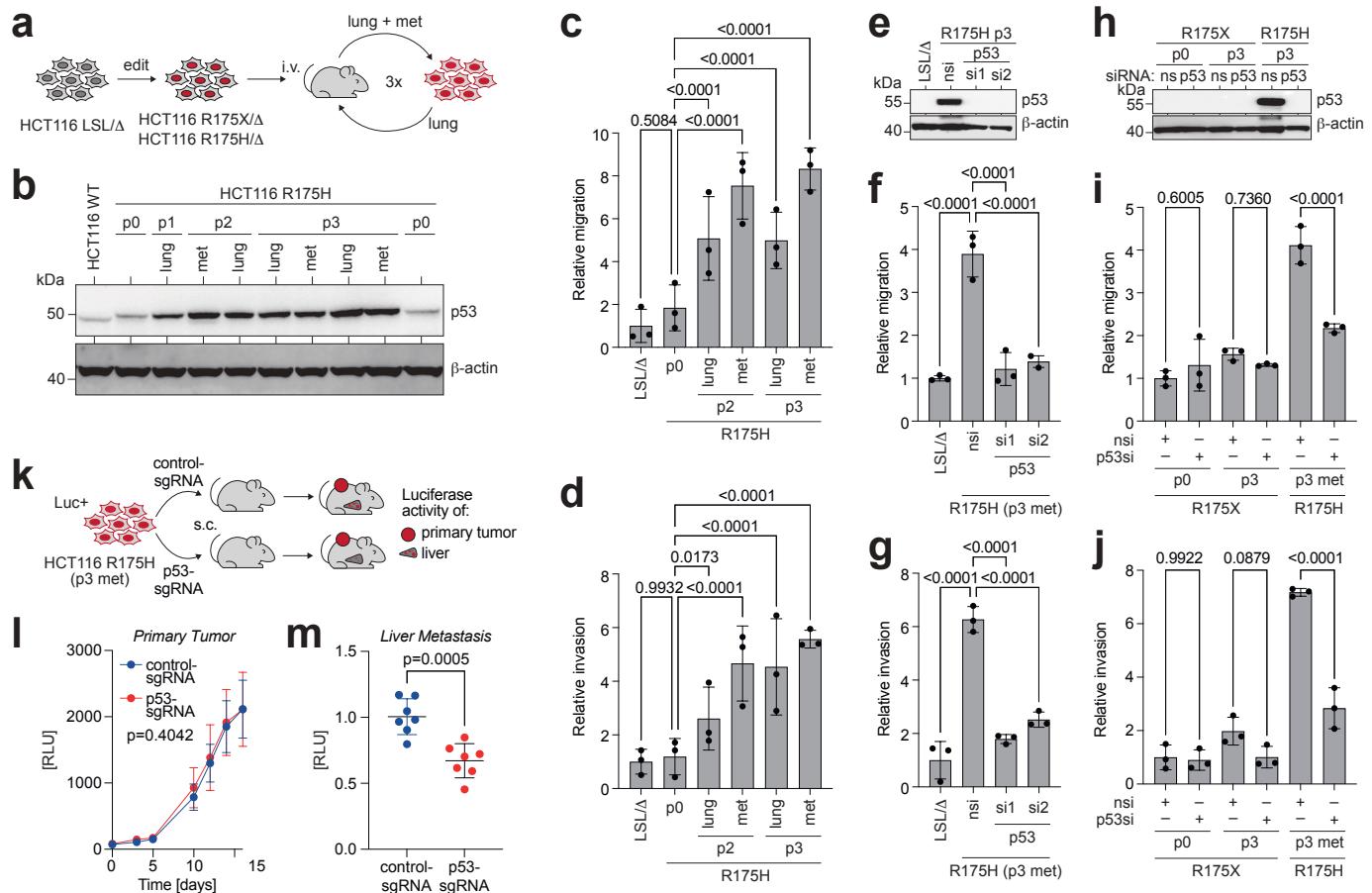




Figure 6

Figure 7

