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Hematopoietic stem and progenitor cells (HSPCs) are known to respond to acute inflammation;
however, little is understood about the dynamics and heterogeneity of these stress responses in
HSPCs. Here, we performed single-cell sequencing of HSPCs during the sensing, response and
recovery phases of the inflammatory response of HSPCs to treatment with the pro-inflammatory
cytokine IFNa to investigate the HSPCs’ dynamic changes during acute inflammation. For the
analysis of the resulting datasets, we developed a computational pipeline for single-cell time series.
Using a semi-supervised response-pseudotime inference approach, we discover a variety of
different gene responses of the HSPCs to the treatment. Interestingly, we were able to associate
reduced myeloid differentiation programs in HSPCs with reduced myeloid progenitor and
differentiated cells following IFNa treatment. Altogether, single-cell time series analysis have
allowed us to unbiasedly study the heterogeneous and dynamic impact of IFNa on the HSPCs.

Inflammation is the body's evolutionarily selected immune response to infection or tissue damage. It not
only results in the activation and consumption of immune cells but is also accompanied by significant
alterations in the function and output of hematopoietic stem and progenitor cells (HSPCs). Identifying how
inflammatory stress regulates the fate of HSPCs and affects their function has become the subject of
thorough scientific investigation in recent years (Caiado, Pietras, and Manz 2021). This started with our
work and the work of others showing that pro-inflammatory cytokines such as interferons (IFNs) (Essers et
al. 2009), (Baldridge et al. 2010), tumor necrosis factor-alpha (TNFa) (Pronk et al. 2011) or interleukin 1
(IL-1) (Pietras et al. 2016) are able to induce proliferation of normally quiescent hematopoietic stem cells
(HSCs). Further investigations on for example, the mechanisms involved in stress-induced HSC activation
or the response of progenitors have faced a significant challenge. Inflammation does not only impact the
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proliferation of hematopoietic cells, but it also induces extensive alterations in the expression of cell-surface
proteins that are used as markers to distinguish different HSPC populations, with the strongest change
being the increase in Sca-1 (Kanayama et al. 2020). This thus questions the reliability of using these surface
markers in flow cytometry to identify and distinguish the different HSPC populations under inflammatory
conditions. The recent development in single-cell expression profiling has advanced our understanding of
HSPC heterogeneity (Watcham, Kucinski, and Gottgens 2019). Single-cell transcriptional profiles of HSPCs
from these studies can now be used as reference datasets to identify individual HSPCs upon inflammation
based on their transcriptional profiles, thus independent of cell-surface marker expression.

First single-cell experiments on HSPCs under inflammation have been reported; however, only a single
time point was studied, thus providing only a snapshot of the response (Giladi et al. 2018). Here, we aimed
to study the progression of inflammation-induced processes over time. This provides a unique opportunity
to investigate the dynamics that underlie the response of the HSPC compartment to inflammation, but at
the same time, generated computational challenges for the analysis of this type of single-cell dataset. Using
a time series of single-cell RNA sequencing experiments covering the first 72 hours of the acute
inflammation response in vivo, including the sensing, response, and recovery phase of HSPCs, we have
worked out a computational pipeline to process and analyze single-cell time series. This pipeline includes
cell type label transfer from the control time point to the treatment time points, characterization of the change
in gene expression per cluster, visualization of the gene expression dynamics over pseudotime, and
analysis of the cell type abundance over time. Using these approaches, we detected global and cluster-
specific gene dynamics linked to different biological responses in HSPCs after IFNa treatment in our time
series. We uncovered a reduction of myeloid progenitor cells associated with changes in transcriptional
programs in multiple clusters. Thus, dynamic single-cell time series analysis has and will help us better
understand how different cell types, genes, and processes change while the HSPC compartment
progresses through the inflammatory response.

Results

A single-cell time series dataset capturing the dynamic inflammatory response of HPSCs

Biological responses such as acute inflammation are dynamic processes in which cells, tissues, and
organisms undergo different phases of sensing differences, responding to these changes, and recovering
upon successful response. Yet, often only single time points of these responses are investigated. Quiescent
HSCs respond to inflammation by increased proliferation, which can be mimicked by treating mice with
single pro-inflammatory cytokines, such as interferon alpha (IFNa). To gain a better understanding of the
dynamics of the HSCs response to acute inflammation, we performed a time series experiment to cover
the sensing, response, and recovery phases of the inflammatory response of HSCs to treatment with IFNa.
While at 3 hours (3h) post-treatment, HSCs showed the first signs of sensing IFNa by increasing expression
of interferon-stimulated genes (ISGs) (data not shown), only at 24 hours (24h) post-treatment HSCs
reached a peak in increased proliferation (Fig. 1a) (Essers et al. 2009; Pietras et al. 2014). 72 hours (72h)
post-treatment HSCs returned to quiescence (Fig. 1a). Unfortunately, inflammation does not only lead to
increased proliferation of HSCs but is also accompanied by increased expression of several cell surface
protein markers used to identify different cell types within the HSPC compartment. The most well-known
example is the increase in the stem cell marker Sca-1 (Essers et al. 2009; Pietras et al. 2014; Kanayama
et al. 2020). Using conventional marker-based flow cytometry including Sca-1, an increase in LSKs (Lin-
Sca-1* cKit*) and a decrease in more committed LS'K (Lin~ Sca-1- cKit") progenitors is observed in
response to inflammation (Fig. 1b-d). However, due to the increase in protein expression of Sca-1 (Fig.
1e,f) it is hard to predict whether these changes in frequency reflect an actual increase/decrease in cell
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frequency or are the result of contamination due to changes in protein expression of the cell markers in a
given population or even both.

To overcome these limitations, we adopted a single-cell RNA-seq approach to investigate the dynamics
and heterogeneity of the stress response of stem and progenitor cells to IFNa treatment. Bone marrow cells
were collected from IFNa-treated mice 3h, 24h, and 72h after treatment. Cells from PBS-treated mice were
included as a control. LK (Lin~ and cKit") cells were sorted to capture a wide spectrum of the HSPC
transcriptional landscape. Since HSCs are much less frequent than the other populations in the LK gate,
we enriched the sorted LK samples with LK CD150* CD48 CD34" cells at a fixed ratio to the number of LK
cells to guarantee sufficient numbers of stem cells for analysis (Supplementary Fig.1a). Inter-animal
heterogeneity of the inflammatory stress response was addressed by performing cell hashing, for which
cells from each biological replicate and time point were labeled with a unique hashtag antibody (Fig.1g and
Methods). The cells from all four experimental time points (control, 3h, 24h, and 72h) were sequenced
simultaneously. The resulting dataset was processed using a computational pipeline designed specifically
for single-cell time series (Fig. 1h). First, the cells that did not meet the quality control standards (e.g.
doublets, dying cells) were removed, resulting in a total count of 1600-3500 cells per time point (see
Methods). Next, clustering of the cells identified 14 different clusters in the control subset. Using known
marker genes for hematopoietic stem and progenitor cell types, 8 different cell types could be distinguished
in the control subset (Fig. 1i,j). The assigned cell type labels were confirmed by scoring each cell for
stemness (Supplementary Fig. 1b,c) and by comparing our dataset to a previously published dataset
(Supplementary Fig. 1d) (Nestorowa et al. 2016). The cell type labels in the control subset were transferred
to the other three treatment time points (Fig. 1h and Methods). Marker gene expression confirmed the cell
type labels in the response time points (Supplementary Fig. 1e). Analysis of the hashtags showed that the
biological replicates in each time point had comparable abundances of each cell type label (Supplementary
Fig. 1f). In addition, expression analysis of the interferon a/p receptor (Ifnar1 and Ifnar2) confirmed that all
clusters expressed the interferon a/f receptor and thus were able to directly respond to IFNa
(Supplementary Fig. 1g,h). As a first measure of the inflammatory response, the expression of interferon-
stimulated genes (ISGs) was scored (Fig. 1k,l). At 3h all clusters underwent a change in their ISG
expression, indicating that the whole HSPC compartment sensed the IFNa treatment (Fig. 1k). However,
the data also indicate great heterogeneity in the ISG response between and within clusters with HSC
clusters showing the biggest change (Fig. 11).

Inflammation response is defined by global and cluster-specific changes in gene expression

To gain a comprehensive understanding of all genes that characterize the IFNa response, we next
performed differential gene expression analysis. Differentially expressed genes were selected between the
control subset and every treatment time point individually to get a set of response genes from any stage of
the response (see Methods). The analysis identified a total of 2501 significant response genes. Expression
profiles of the response genes showed that the expression of some genes changed globally (e.g. Cox7c),
whereas the expression of others was more specifically changed in few or one cluster (e.g. Sec67g and
Mnda) (Fig. 2a). To investigate in which cluster(s) genes were changing the most, the top 500 most
significant response genes were scored for the total expression change in each cluster (change score; see
Methods). After calculating the total change for each cluster, the response genes were categorized into 14
different groups using hierarchical clustering (Fig. 2b), confirming a wide variety of globally responding
genes (groups 1-5), as well as cluster-specific responding genes (groups 6-14). To exclude that the
differences between clusters were a result of completely different expression profiles, the similarity between
a cluster's expression profile and the expression profile in the whole dataset was calculated (Supplementary
Fig. 2a). The results indicate that most expression profiles follow similar patterns in all clusters.

Gene ontology (GO) enrichment analysis (Fig. 3c-e and Supplementary Fig. 2b-I) of the global response
gene signatures in groups 1-4 revealed an overrepresentation of terms associated with translation and
metabolism (Fig. 2c and Supplementary Fig. 2b-d). This is in line with reports of HSPCs undergoing massive
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changes in the metabolism under inflammatory stress (Karigane and Takubo 2017). In addition, global
response genes from group 5 (Supplementary Fig. 2e) showed enrichment for categories associated with
immune response and response to type-l interferon, further supporting the ISG expression data (Fig. 1k),
indicating that all cells sense the changes in IFNa levels. Interestingly, expression changes in the HSC-
enriched groups 12 and 14 were also associated with immune response and response to type-I interferon
(Fig. 2e and Supplementary Fig. 2k). However, these changes were different from the changes in group 5,
suggesting an HSC-specific immune response, which is different from the immune response in progenitors.
HSC-enriched groups 12 and 14 also included GO terms such as regulation of T cell activation and antigen
processing and presentation (Fig. 2e and Supplementary Fig. 2k), which correspond to the newly identified
role of HSCs as immunomodulators (Hernandez-Malmierca et al. 2022), which would be strengthened
under inflammation. Besides global and HSC-specific response genes related to immune response, change
score analysis also identified groups of response genes enriched in committed progenitors related to
progenitor-specific processes. For example, erythroid and eosinophil progenitor-enriched groups 9 and 11
showed an overrepresentation of processes related to erythrocyte differentiation terms and myeloid
development (Supplementary Fig. 2h,j). Change scores in groups 8 and 10 were largest for myeloid
progenitors and connected with biological processes such as phagocytosis, myeloid leukocyte-mediated
immunity, as well as stem cell differentiation, which are characteristic functions of this cell type (Fig. 2d and
Supplementary Fig. 2i). Thus, with the change score analysis both global and cluster-specific signatures
were identified. The analysis highlights that HSCs are the major responders to inflammation in the HSPC
compartment and both global and HSC-specific inflammation signatures are present, indicating
heterogeneity in the inflammatory response between the clusters.

The pseudotemporal ordering of cells enhances the resolution of gene dynamics.

The change score analysis gave an overview of all response genes without taking into account the
dynamics of the response. Therefore, in the next step, the expression dynamics of the response genes
were explored. When zooming into the expression of individual genes in time, different expression patterns
were observed for genes within the same group. For example, the responses of F13a7 and Aldh1b1 were
both assigned to group 8. However, the temporal expression dynamics differed between both genes; F13a1
expression steadily went down (Fig. 2g), whereas Aldh1b1 was upregulated with a peak at 3h and a full
recovery to original (control) expression levels at 24h (Fig. 2f). To improve the characterization of the
expression patterns, we wanted to leverage the single-cell resolution of our dataset. Therefore, we aimed
to construct a pseudotime axis in the gene expression space to describe the inflammatory response. In
datasets covering a developmental process or disease progression, the asynchrony of cells can be
leveraged to infer a pseudotemporal ordering of cells (using methods such as diffusion pseudotime
(Haghverdi et al. 2016), Monocle (Qiu et al. 2017), etc.). These methods are generally based on cell
neighborhood relations, with the assumption that the further apart (in Euclidean, diffusion space, etc.) two
cell states are, the longer the typical transition time between them, hence longer pseudotime (Fig. 3a).
However, this assumption is violated for the type of post-drug treatment time series data we have here,
where the largest transcriptional change is observed shortly after stimulation but (presumably) diminishes
as cells relax to a more control-like state over a longer time (Fig. 3a). Cells from different experimental time
points generally appear either completely intermingled or completely disconnected from one another when
viewed over the first principal components (Supplementary Fig. 3a). This renders the unsupervised,
distance-based pseudotime methods unsuitable for detecting the temporal order of response dynamics.
Thus, to get a higher temporal resolution of the response progression from the four time points, we used a
new approach that finds a pseudotime axis that best correlates with the cells experimental time labels. We
find a transformation of the cells’ expression matrix that reconstructs the experimental time labels plus an
error term that we try to minimize (Supplementary Fig. 3b and Methods). In essence, this approach assigns
a positive/negative weight to each gene (depending on its correlation or anticorrelation with the
experimental time labels), in such a way that the resulting weighted sum of the gene expressions
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approximates the experimental time labels of the cells best. The genes that positively correlate with
experimental time turn out to be often associated with the immune response, whereas anticorrelated genes
display enrichment in processes such as translation (Supplementary Fig. 3c-g). Using the pseudotemporal
order of the cells, the different expression dynamic patterns that follow IFNa treatment were explored.
Response genes were categorized into 16 patterns based on their pseudotemporal dynamics using
hierarchical clustering (Fig. 3c and Supplementary Fig. 3h). Each pattern represents a cluster of genes with
similar expression dynamics following IFNa injection, which can be roughly subdivided in upregulation
(patterns 1-9 and 16) and downregulation (pattern 10-15) patterns. The patterns showed a broad diversity
in the speed of sensing, response and recovery. A few patterns (patterns 5,8,12) do not reach a plateau
until the latest pseudotime points and imply an ongoing trend of change. Genes in patterns 6, 7, and 9 show
quick sensing, response, and recovery associated with immune, interferon, and viral processes (Fig. 3f).
Other patterns resembled a similar fast increase but with slower recovery, as seen for pattern 3, which is
enriched for metabolic processes (Fig. 3e). In addition, the heatmap in figure 3c showcases a variety of
gene dynamics that were different from the rapid response and recovery IFN-response (patterns 6,7 and
9), such as a sustained upregulation in pattern 1, which was associated with translation and other
biosynthetic processes (Fig. 3d). In contrast, several gene patterns encompassed genes that were
downregulated (gene patterns 10-14). After the initial decrease in expression many of these genes failed
to recover to initial expression levels. The majority of these genes were linked to myeloid development and
differentiation (Fig. 3g). This would suggest alterations in myeloid differentiation upon the IFNa treatment,
an observation described for many other pro-inflammatory cytokines (Matatall et al. 2014; Pietras et al.
2016; Yamashita and Passegué 2019) but IFNa.

Response pseudotime reveals a landscape of gene dynamics in HSPCs following IFNa treatment
To decipher the dynamic changes in the inflammatory response in the different clusters, we combined the
information on how response genes changed their expression (Fig. 3c) with whether these changes were
global or cluster-specific (Fig. 2b). The result condenses the plenitude of information in the complete single-
cell time series into a single visualization, which considerably eases the search for (groups of) biologically
relevant genes (Fig. 4a).

The two most commonly found patterns among the groups are patterns 2 and 9, both showing a fast
increase combined with a slow (pattern 2) or fast (pattern 9) recovery. Genes from these patterns were
mainly related to immune responses, highlighting that the sensing and response to IFNa is fast and present
in all groups and clusters. The slower recovery rate in pattern 2, however, also indicates that even the
general immune response does not show full recovery within 72h.

Interestingly, other patterns of fast sensing and response followed by sustained upregulation (patterns 1
and 3) were enriched in the groups with a global signature (groups 1, 2, 3, and 4). Several of these genes
were ribosomal (e.g., Rpl35 and Rps27; Fig. 4b), suggesting that biosynthetic activity increased in most
HSPCs early in the treatment and remained active even in the recovering phase. In addition, several genes
following the sustained upregulation pattern were metabolic. Oxidative phosphorylation (OXPHOS) genes
and mitochondrial enzymes (e.g., Atp5e and Cox7c; Fig. 4c) showed these patterns of prolonged
upregulation. On the other hand, glycolytic genes Hk2 and Pgk1 showed a quick response and recovery
(Fig. 4d). Thus, in contrast to previous reports suggesting a binary (on/off) switch between glycolysis and
OXPHOS (Suda, Takubo, and Semenza 2011), our data suggests that an initial upregulation of glycolytic
and a sustained upregulation of OXPHOS genes go hand in hand in inflammation responding HSPCs.

In contrast to the heterogeneity in dynamics observed globally, HSC-enriched groups (groups 5, 12, and
14) are mainly enriched with gene patterns that increase very early after treatment and quickly return to
homeostatic levels (patterns 6, 7, and 9). Examples of such genes are Irf7 and Irf9 in group 5 (Fig. 4e) or
Ifit2 and Sca-1 in groups 12 and 14 (Fig. 4f,g and Supplementary Fig. 4a,b, which indicates the confidence
intervals for the expression of these genes). Thus, the majority of HSC-enriched groups follow rapid
sensing, responding, and recovery dynamics, with the majority of gene changes preceding the peak in
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proliferation response in these cells. In addition, the majority of HSC-enriched dynamic changes are within
gene groups linked to interferon and immune response, again highlighting the specific, fast HSC-specific
immune response.

In contrast to HSC-specific groups, committed progenitor-specific groups (8, 9, 10, and 11) were strongly
enriched in genes that exhibited persistent downregulation (patterns 10, 11, 12, 14). In the myeloid
progenitor-specific groups 8 and 10, many of these genes were associated with myeloid cell differentiation
and functional programs e.g., Csf1r; Irf8 (Fig. 4h,i and Supplementary Fig. 4c,d), suggesting reduced
myeloid differentiation in the myeloid progenitor clusters.

In summary, response pseudotime has shed light on the heterogeneity in gene dynamics in the HSPC
compartment during the induction of inflammation. Whereas global groups encompass diversity in gene
patterns, cluster-enriched gene groups show far less variation and more specificity, with HSCs being the
fast responders and recoverers, whereas committed myeloid progenitors showing sustained
downregulation of genes.

Single-cell abundance analysis shows myeloid depletion and HSC enrichment following IFNa
treatment

To investigate whether reduced transcriptional programs for myeloid differentiation and function upon IFNa
treatment also impacted the size of the progenitor compartment, we performed differential abundance
analysis. We applied the Milo algorithm (Dann et al., 2021), which models cellular states as overlapping
neighborhoods on a KNN graph, rather than relying on clustering cells into discrete groups (see Methods).
At a false discovery rate (FDR) of 10%, we could observe multiple neighborhoods that were differentially
abundant (Fig. 5a). Neighborhoods received a cell-type label based on the most predominant cluster in the
neighborhood. Even though most progenitor-enriched clusters showed a reduction at 3h, the majority
returned to normal by 24h or 72h, except for the most differentiated myeloid progenitors (Myel. prog. #3),
which were sustainably reduced, even at 72h posttreatment (Fig. 5b,c). The abundance of HSCs only
slightly increased in HSCs #2 at 3h, but was back to normal at 72h (Fig. 5b,c). Thus, this unbiased (i.e.,
abundance analysis of cell types based on the expression of several genes rather than specific markers)
single-cell investigation of the cell type frequency in the HSPC compartment showed that acute IFNa
treatment resulted in a slight enrichment of HSCs at the early time point, but a sustained reduction in the
most committed myeloid progenitors over the whole time course of the response. This is in contrast to the
current notion in the field claiming that the decreased frequency of LS'K (comprising myeloid, erythroid, and
megakaryocytic progenitors) and concurrent increase in LSKs (comprising HSCs and LMPPs) upon IFNa
stimulation (Fig. 1b-e) is mainly the result of contaminating myeloid progenitors that have reacquired Sca-
1 expression (and would fall into the LSK gate) (Pietras et al. 2014; Kanayama et al. 2020). However, when
analyzing Sca-1 gene expression in our data set, no change in Sca-1 mRNA transcripts could be observed
in myeloid progenitors (Fig. 5d,e). In contrast, IFNa induced upregulation of Sca-71 was solely observed in
HSC and LMPP clusters, with the strongest increase in the HSCs (Fig. 5d,e). Hence, this unbiased
investigation of the different clusters based solely on their gene expression identifies a true change in
myeloid population size and not a shift in populations due to marker change.

Myeloid depletion coincides with changes in transcriptional programs

The reduction in the abundance of the myeloid progenitors could be caused by an increased egress of
these cells from the bone marrow, a loss of these cells due to cell death, or a reduction in differentiation
towards myeloid progenitors. Myeloid progenitors were not observed in the blood at any time point following
IFNa treatment (data not shown). However, the number of myeloid progenitors in the spleen decreased at
24h, in line with the reduction observed in the bone marrow (Supplementary Fig. 5a). This suggests that
the reduced abundance of the myeloid progenitors in the bone marrow is not due to increased egress into
the blood or spleen. To investigate whether reduced levels of myeloid progenitors were the result of
increased cell death, gene patterns of pro-survival genes (Bcl2, Birc2, and Birc5) were analyzed and found
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to be decreased following IFNa treatment (Fig. 6a). Yet in Bax”-Bak” double-knockout mice, in which cells
are unable to undergo apoptosis do to the loss of the pro-apoptotic proteins Bax and Bak, a similar reduction
of myeloid progenitors was observed as in wild type mice (Fig. 6b), indicating that apoptosis was not the
reason for the reduction in myeloid progenitors. However, this result does not exclude the involvement of
other forms of cell death, like necroptosis and pyroptosis. Necroptosis gene expression was not altered in
any of the cell types (Fig. 6¢c and Supplementary Fig. 5b-e), but an expression of pyroptosis genes, e.g.,
Casp1 and Casp4, was increased, suggesting an early increase in pyroptosis in the myeloid progenitors in
response to the treatment, possibly resulting in a reduction of these cells (Fig. 6¢,d and Supplementary Fig.
5b-d,f).

To investigate whether insufficient production of new cells might also play a role in the sustained depletion
of myeloid progenitors, the expression of genes involved in myeloid lineage priming was analyzed. By
calculating a gene score for known myeloid transcription factors that have been reported to impact both
stem and progenitor cells, a downregulation in myeloid priming in HSCs and the more differentiated LMPPs
was present in the early stages of the IFN response (Fig. 6e,f). Additionally, a reduction in cell cycle and
purine nucleotide synthesis genes was observed in myeloid progenitors, suggesting that both myeloid
differentiation in HSCs and LMPPs as well as cell production in myeloid progenitors, is affected
(Supplementary Fig. 5g-i). We also tested if the post-inflammation decline in differentiation bias towards
myeloid progenitors could be captured by RNA-velocity (La Manno et al. 2018) of the cells based on the
unspliced versus spliced reads from several genes. However, computing the cell velocities for each of the
datasets in the time series was hindered by the yet insufficient robustness of current velocity estimation
approaches as well as the poor quantification of unspliced versus spliced mRNA, especially in the 3’-end
gene expression short reads captured by the 10X sequencing platform (Supplementary Note 1).

Along with the reduction in myeloid production related genes, neutrophil, and monocyte transcriptional
signatures were also downregulated in myeloid progenitors over the pseudotime axis (neutrophil: myel.
prog. #1; monocyte: myel. prog. #3) (Fig. 6g,h), suggesting continuously reduced differentiation of myeloid
progenitors to mature myeloid cells. Indeed, the number of neutrophils in the blood gradually decreased
over time (Fig. 6i). Monocyte numbers showed recovery at 72h after an initial reduction (Fig. 6j). Taken
together, these in vivo cell analyses and gene expression data indicate an increase in pyroptosis signature
combined with reduced myeloid differentiation both at the stem cell level, as well as in committed
progenitors, and a reduction in the cell production machinery in progenitors, resulting in reduced myeloid
progenitors in the bone marrow, and lower level of mature myeloid cells in the blood (Fig. 6k).

Discussion

Analysis of single-cell RNA-seq time series is nontrivial because of its high complexity, regarding the
inclusion of multiple cell types, a high number of genes, and the extra dimension of (pseudo-) time.
However, these types of experiments allow for marker-independent, unbiased analysis of dynamic
responses of heterogeneous cell populations, such as the response of the HSPC compartment to
inflammatory stress. To overcome the challenges of analyzing such datasets, we designed a computational
pipeline for processing and analyzing single-cell RNA-seq time series, in which clusters were labeled based
on the expression of multiple (n = 3326) genes after correcting for treatment effects (Fig. 6k), thus avoiding
relabeling of the cells undergoing inflammation as separate populations. This will ensure the study of the
same cell type over time. Hence, cell type identity is reliably retrieved, even though the conventional marker
genes might be subject to changes, as is the case during inflammation.

Furthermore, we designed measures that make the temporal dynamics more comprehensible and provide
a (visual) entry point into all the information in the data. Unsupervised methods that are merely based on
cell-to-cell proximities, are unable to capture the pseudotemporal order of the cells in our data, where the
cell states after relaxation become more similar to the cell states before treatment. Therefore, we
implemented a semi-supervised, i.e., using the experimental time labels information, method for inference


https://doi.org/10.1101/2023.03.09.531881
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.09.531881; this version posted March 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

of response pseudotime. Using a minimal linear regression model, our response pseudotime reconstruction
enabled capturing the fine-grained expression changes and dynamical patterns beyond the four discrete
experimental time points (Fig. 6k). Recently, alternative semi-supervised methods such as psupertime
(Macnair, Gupta, and Claassen 2022), or methods suitable for other temporal patterns (e.g., periodic
dynamics) that linear matrix transformations may not capture are also being investigated.

Although many studies have investigated the role of inflammation on HSC function, changes in marker
expression on these cells have made it challenging to examine the impact of inflammation on the
heterogeneity and molecular changes over time in the HSPC compartment. Our response pseudotime
approach allowed us to highlight the dynamic nature of HSPCs’ response to IFNa with global and cell type-
specific distinct molecular patterns of gene expression and biological processes (Fig. 6k). Whereas global
gene groups and patterns were heterogeneous in dynamics and linked to diverse processes such as
metabolism, translation, and inflammation, HSC-specific gene groups and patterns followed rapid sensing,
response, and recovery and were enriched for distinct inflammation-related genes, suggesting global as
well as stem cell-specific responses to inflammation. Interestingly, several gene groups did not recover
from their induced increased or decreased expression along the response pseudotime of 72 hours post-
treatment, suggesting ongoing cascades of molecular changes or possibly also irreversible changes leaving
a mark in the activated cells. This would be in line with a recent study showing that HSC function is
irreversibly attenuated by temporally discrete inflammatory events (Bogeska et al. 2022).

Emergency myelopoiesis, i.e., increased production of myeloid cells, has been described in response to
many pro-inflammatory cytokines and infections (Manz and Boettcher 2014). However, thus far, we have
not been able to identify any impact on myeloid production or differentiation upon IFNa treatment due to
extensive changes in stem cell-specific marker expression upon inflammation (Demerdash et al. 2021).
Others claimed that decreased frequency of myeloid progenitors and the simultaneous increase in LSKs
upon in vitro treatment of HSPCs with IFNa was mainly the result of myeloid progenitors reacquiring Sca-
1 expression (Pietras et al. 2014; Kanayama et al. 2020). With our unbiased investigation of the different
clusters, defined solely by their gene expression, we could now show that IFNa-induced Sca-7 gene
expression only occurred in immature HSCs and LMPPs (Fig. 5d). Even though CITEseq analysis of
HSPCs should be performed to confirm these results at the Sca-1 protein level, our data does indicate that
the LSK expansion observed in flow cytometry is mainly due to the enrichment of the HSCs and multipotent
progenitors and not myeloid progenitor populations shifting into the LSK gate.

Unlike other proinflammatory cytokines such as TNFa (Yamashita and Passegué 2019) and IL1B (Pietras
et al. 2016), we did not find characteristics typical of emergency myelopoiesis. Instead, abundance analysis
showed a decrease in myeloid progenitor numbers; gene expression related to myeloid priming was
downregulated in all clusters from immature HSCs to committed myeloid progenitors; and myeloid-derived
mature neutrophils were continuously reduced in the blood (Fig. 6k). In addition, response pseudotime
analysis revealed changes in expression of genes related to pyroptosis, suggesting that reduced levels of
myeloid progenitors might be the result of a combination of impaired myeloid differentiation with increased
cell death via pyroptosis. Interestingly, upon infection with Mycobacterium tuberculosis, HSCs are
reprogrammed to limit their commitment towards myelopoiesis via a type | IFN signaling axis (Khan et al.
2020). In this same study, they showed that IFNa induces RIPK3-mediated necroptosis in myeloid
progenitors. However, RIPK3 is a component of both pyroptosis and necroptosis depending on other
proteins participating in these pathways (Shlomovitz, Zargrian, and Gerlic 2017). Differentiation and cell
death pathways are not only regulated at the transcriptional level. Thus post-translational analysis and
additional functional approaches need to be performed to unravel further the programs controlling the IFNa-
induced reduction in the myeloid progenitors in the bone marrow. Thus, our time course data suggest an
unanticipated impact of IFNa on the differentiation and production of myeloid cells, highlighting the diverse
impact of the same pro-inflammatory agonist on related but distinct cell types at different timepoints in the
response. This link between IFNa and reduced production and levels of myeloid cells such as neutrophils
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not only helps us to better understand the impact of inflammation on the whole hematopoietic compartment.
It will also help to understand better the role of IFNa in disease settings such as the autoimmune disease
systemic lupus erythematosus (SLE) in which neutrophil dysfunction plays an integral role in disease
pathogenesis (Kaplan 2011) and IFNa is associated with adverse outcomes (Rénnblom and Leonard 2019).

Methods

Mouse models. All animal experiments were approved by the local Animal Care and Use Committees of
the German Regierungsprasidium Karlsruhe fiir Tierschutz und Arzneimitteliberwachung (Karlsruhe,
Germany). Mice were kept under specific pathogen-free conditions (SPF) in ventilated cages (ICV) in the
animal facility of the German Cancer Research Center (DKFZ). Mice used for experiments were between
10-20 weeks old at the beginning of the respective experiments. Sc/ICreERT bax”bak’ mice were on a
C57BI/6 background (Takeuchi et al. 2005), and treated for 5 days with 2mg/day tamoxifen. IFNa treatment
was started 4 weeks post tamoxifen treatment. C57BI/6 (WT) mice were bred at the DKFZ animal facility or
bought from JANIVER lab. Mice were sacrificed by cervical dislocation according to German guidelines.

IFNa treatment of mice. Mice were injected subcutaneously with 50.000 international units (IU) of
recombinant mouse IFNa per 20g mouse (Milteny Biotech). Recombinant mouse IFNa was diluted in PBS
and control mice were injected with 100 ul PBS.

Isolation of bone marrow (BM), spleen, and blood for flow cytometry analysis. Blood was collected
from the vena facialis by sub-mandibular bleeding into EDTA-coated collection tubes. Blood was either
analyzed automatically with a Hemavet cell counter (Drew Scientific) or stained for flow cytometry after
initial RBC lysis by incubation with ACK lysis buffer for 20 mins. Cells were stained for Ter119, CD4, CD8,
CD11b, CD11c, Ly6G, CD41, B220, F4/80. BM cells were isolated from the femur, tibia, hip bone, and
spine by bone-crushing. Splenocytes single-cell suspension was obtained by mashing the spleen through
a 40 ym EASYstrainer™ (greiner bio-one). After ACK lysis BM cells and splenocytes were stained using
antibodies for CD117 (cKit), Sca-1, CD150, CD48, CD34, CD16/32, and lineage antibodies (CD4, CD8,
CD11b, Gr-1, B220, and Ter119). For the BrdU incorporation assay, BrdU (18mg/kg, Sigma-Aldrich) was
administered i.p. for 14 hours prior to harvesting the BM. The BD Pharmingen™ BrdU Flow Kit protocol
was used to stain for BrdU. For flow cytometry analysis the LSR Fortessa or LSRII were used (BD
Biosciences). Flow data were analyzed using BD FACS DIVA v8.0.1 and Flowjo (v10).

FACS sorting. For FACS sorting of single cells, BM cells were isolated and RBC lysed as described above.
This was followed by lineage depletion using a lineage antibody cocktail against CD4, CD8, CD11b, B220,
Gr-1, and Ter119 and incubation with Dynabeads® Magnetic Beads (Invitrogen). Lineage-depleted BM cells
were stained with Zombie Yellow viability dye (BioLegend) followed by incubation with the following
antibodies: CD117, Sca1, CD150, CD48, CD34, and lineage antibodies (CD4, CD8, CD11b, Gr-1, B220,
and Ter119) together with one of the hash antibodies (TotalSeq™-A0301 anti-mouse Hashtag 1 Antibody,
TotalSeq™-A0302 anti-mouse Hashtag 2 Antibody, TotalSeq™-A0303 anti-mouse Hashtag 3 Antibody,
TotalSeq™-A0304 anti-mouse Hashtag 4 Antibody) (BioLegend, TotalsegA antibodies). The 4 biological
replicates of each time point were stained with one of the 4 unique hash antibodies. Cells were sorted using
a FACSAria Fusion or FACSAria Il equipped with a 100 um nozzle (BD Biosciences).

Single-cell RNA library preparation and sequencing. HSPC single-cell RNA-seq was performed using
the 10X Genomics platform. The Chromium Next GEM single cell 3‘ reagent kits v3.1 were implemented to
prepare the libraries, following the official instruction manual
(https://www.10xgenomics.com/support/single-cell-gene-expression/documentation/steps/library-

prep/chromium-single-cell-3-reagent-kits-user-guide-v-3-1-chemistry). Briefly, 10,000 Lin- cKit* cells were
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sorted and enriched for HSCs by sorting additional 3000-4000 Lin" cKit* CD150* CD48  CD34- cells. Cells
were super-loaded according to the manufacturer’s instructions up until the cDNA amplification step. 1
ul/sample of HTO primers was spiked into the cDNA amplification PCR, and cDNA was amplified according
to the 10x Single Cell 3' v3.1 protocol aiming for a targeted cell recovery of 500-6000 cells. Following PCR,
cDNA cleanup was performed by using SPRI to separate the HTO-derived cDNAs (in the supernatant) from
the mRNA-derived cDNAs (retained on beads). The cDNA fraction was processed according to the
manufacturer's protocol to generate the transcriptome library. The quality of the obtained cDNA library upon
adapter ligation and sample index PCR was assessed on an Agilent Bioanalyzer High sensitivity chip.
Library sequencing was performed on the Novaseq 6000 lllumina sequencing platform.

Filtering longitudinal single-cell RNAseq dataset. The cellranger pipeline (version 3.1.0) was used to
align all reads to the mm10 genome and count the coverage of each gene in each cell. Based on the
hashtag barcodes, cells were assigned to their corresponding time point (control, 3h, 24h, or 72h) and
batch (four batches per time point). Cells with multiple barcodes (multiplets) or missing barcodes
(negatives) were removed from the dataset. In the resulting count matrix (cells x genes), cells with a high
amount of mitochondrial genes (> 5%) or a low amount of unique genes (<700) were filtered out. After the
filtering steps, the following number of cells was present in each of the respective time points: control -
2474, 3h - 1661, 24h - 3462, 72h - 2449.

Clustering and cell type annotation. The 500 most highly variable genes (HVGs) were identified in the
control subset using analytic Pearson residuals (Lause, Berens, and Kobak 2021). The control subset was
subsetted for the 500 HVGs, and the counts were L2 normalized. Next, a neighborhood graph was
computed using 10 out of 50 principal components and the 15 nearest neighbors. The Leiden algorithm
(resolution = 0.8) identified 14 distinct clusters in the control subset (Traag, Waltman, and van Eck 2019).
Each cluster was appointed to a cell type based on 1) differentially expressed genes (DEGs) between the
cluster of interest and all other clusters, 2) the expression profiles of the HVGs, 3) known marker genes
and 4) correlation with cell types in a previously published dataset of the HSPCs (Nestorowa et al. 2016).

Label transfer and UMAP representation. We identified the top 2000 HVGs in each subset and subsetted
the complete dataset with the combined list of HVGs. Afterward, the dataset was L2 normalized, and the
different subsets were integrated using Scanorama (Hie, Bryson, and Berger 2019). All 100 Scanorama-
reduced dimensions were used to calculate a neighborhood graph (nearest neighbors = 15). A two-
dimensional UMAP representation was computed using the neighborhood graph. To transfer the cell type
labels from the control subset to the response subsets (3h, 24h, and 72h), cells in the response subsets
would adopt the cell type label that was most common among their 15 nearest neighbors (Euclidean
distance) in the control subset. The integrated data was only used for label transfer and visualization
purposes. For other downstream analyses, we use the filtered-only dataset. In this dataset, we removed
the eosinophils and monocytes because of the small number of cells assigned to those cell types (10 and
52 respectively).

Calculating gene set scores. The filtered dataset was L2 normalized and scaled to unit variance, and
zero mean. The ISG score was calculated by subtracting the average expression of a random set of
reference genes from the average expression of about 400 known ISGs (Scanpy function score genes).
Similarly, the stemness (Giladi et al. 2018), necroptosis (GO:0070266), pyroptosis (GO:0070269), myeloid
TF (Kwok et al. 2020), monocyte and neutrophil differentiation, cell cycle (Giladi et al. 2018) and purine
nucleotide synthesis (Vogel et al. 2019) score were calculated. Genes for each signature are available as
a .csv file (Supplementary Table 1). Necroptosis and pyroptosis gene sets were retrieved from the Mouse
Genome Database (MGD), Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, Maine.
World Wide Web (URL: http://www.informatics.jax.org). (The data was retrieved in the year 2022)
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Differential abundance analysis. We used the R package Milo to perform an abundance analysis on the
L2 normalized, filtered dataset (Dann et al. 2022). A neighborhood graph was built using 30 out of 100 of
the Scanorama-reduced dimensions (see Label transfer and UMAP representation) and 30 nearest
neighbors. Afterward, we followed the steps described in the accompanying tutorial (Milo example on
mouse gastrulation dataset) for each response subset (3h, 24h, and 72h). In each analysis, the control
subset served as the reference, to which the response subset would be compared.

Identifying response genes. We used the edgeR-LRT method in the Libra R package to find the
differentially expressed genes (DEGs) between the control and any of the response subsets, in each cluster
(Robinson et al., 2010; Squair et al., 2021). We considered only DEGs with an adjusted p-value higher than
0.05 and a log-fold change higher than 1 in at least one cluster. For the downstream analyses of the
response genes, we consider only the 500 DEGs with the highest p-values. In case a DEG is found in more
than one cluster and/or time point, we take only the highest p-value into consideration.

Change score. We L2 normalized the filtered dataset per cell. For each response gene (i) we took the
mean expression (u) in each cluster (j) per time point (t). The expression change was calculated as the
absolutes sum of the derivative of the mean expression across all time points (here m = 3 for control-3h,
3h-24h, 24h-72h). Thus the change score (c; ;) per cluster for each response gene:

)] Cij = Ni=1 |.ui,j,t+1_.ui,j,t|

The result is a matrix with change scores per cluster for each of the response genes. We applied
hierarchical clustering and grouped the response genes into 14 groups by setting a threshold at the
cophenetic distance of 3 (Scipy function cluster.hierarchy.linkage and
cluster.hierarchy.fcluster).

Similarity score. We define the similarity score between the cluster-specific expression profiles of gene i
and the expression profile of the same gene in the complete dataset in two steps. First, both the expression
of the cluster and the complete dataset were scaled between 0 and 1 by min-max normalization (with n =
4 indicating the number of time points in the time series).

(3) x o Hije—mingfije
=L T masg py e - ming pyje

Note that max, y; ;» and min, y; ;. indicate the max/min of the mean expression for gene i cluster j among
all time points t. Second, we calculate a dissimilarity score between the cluster and the whole data set for
each response gene by subtracting the cluster-specific expression changes from the expression changes
in the complete dataset. Third, the magnitude of these differences were summed and normalized by the
number of time points. Finally, we turn the dissimilarity into a similarity score (s; ;) by subtracting it from 1
such that 1 presents complete similarity to the average behavior of all cells in the dataset.

Yy |xij=ane = Xijil
) sy =1 - 2

The result is a matrix with similarity scores per cluster for each of the response genes.
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Pseudotemporal ordering of cells during response. We opt to find a pseudotime axis that correlates
with the actual arrow of time. Thus, we look for a transformation (W of size [G, 1]) of the expression data
from all time points that reconstructs the experimental time point of each cell with minimal error ( ¢ ):

() X«sW =T+ ¢

Here, X (of size [N, G]) is the filtered count matrix after L2 normalization, scaling and subsetting for all
response genes. T is a vector (of size [G, 1]) with an (experimental) time assignment for each cell, created
by taking the experimental time points (control, 3h, 24h, and 72h) and converting those to 0, 1, 2, and 3
respectively (alternatively one could consider using the actual time values on a log-scale). The least
squares solution for W (which minimizes &7 * ¢) is given by:

(6) W =XTX) L« XT T

We used the expression matrix X with the size of 9983 cells and 2501 genes and the cells’ corresponding
time labels to solve the above linear regression problem. We note that in order to avoid over-parametrization
and to ensure the identifiability of the solution, the number of cells has to be larger than the number of
genes. After W has been retrieved, a pseudotime coordinate can be calculated for each cell by:

(7) PT =X« W

Where PT (of size [N, 1]) is the vector with the pseudotime coordinate for each cell. After pseudotime
ordering of the cells, we smoothed the expression of candidate genes (e.g. the response genes) by taking
the mean expression per 100 cells over the pseudotime axis. The expression values were scaled between
0 and 1 by min-max normalization. The 500 response genes were then clustered into 16 pseudotemporal
expression patterns, using hierarchical clustering (threshold at cophenetic distance of 5.2).

Gene expression in pseudotime. Expression profiles of individual genes in response pseudotime were
derived using a combination of bin smoothing and bootstrapping. To find the expression profile in the
complete dataset, bin smoothing with a 600-cell window size was performed on a sample of 50% of the
cells in the dataset. This was repeated 20 times to find the mean expression, which defines the expression
profile. The 95% confidence intervals were calculated by multiplying the standard error with 1.96 and
subtracting or adding to the mean. For the cluster-specific expression profiles of individual genes a 50-cell
window size was chosen instead, because of the smaller number of cells in each cluster.

Gene score in pseudotime. The gene set score profile in response pseudotime was calculated using a
combination of locally weighted least squares regression (LOESS) smoothing and bootstrapping. For each
cluster LOESS smoothing with a first order regression model was applied to 50% of the cells. This was
repeated 30 times. The score profile was derived by taking the mean and 1.96 times the standard error for
the 95% confidence intervals.

Code availability
All scripts used in this study are available on Github: https://github.com/bjbouman/pri HSPC.

Data availability
The single-cell RNA-seq data were deposited in the Gene Expression Omnibus (GEQO) under accession
code GSE226824.
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Fig. 1 | A single-cell time series RNA-seq dataset to characterize the response of HSPCs to IFNa treatment. a,
Cell proliferation measured by 14 hour BrdU (18 mg/kg) uptake of HSCs (Lin- Sca-1* cKit* CD150" CD48- CD34") from
control (PBS) or IFNa treated wild type (WT) mice (500001U/20g mouse; 3h, 24h, and 72h). n=3 biological replicates.
b, Representative FACS plots of Sca-1 and cKit expression on Lin" bone marrow (BM) cells after control or 3h, 24h,
and 72h time course IFNa treatment. ¢,d, Frequency of Lin- Sca-1* cKit* (LSK) (¢) and Lin- Sca-1- cKit*(LSK) (d) cells
in BM after control or 3h, 24h, and 72h time course IFN-a treatment. n=7 biological replicates. e,f, quantification (e)
and statistical analysis (f) of Sca1 median fluorescence intensity (MFI) on Lin cKit* cells. g, Scheme illustrating the
experimental steps to acquire the single-cell time series RNA sequencing dataset. h, Scheme of the computational
pipeline used to process the time series dataset. i, Two-dimensional UMAP embedding of cells from all time points,
colored for the different identified clusters as indicated in the legend. j, Expression of marker genes in the different
clusters in the control dataset. Erythroid (Ery.); Myeloid (My.); Eosinophils (Eos.); Universal (U.). k,I, UMAP embeddings
(k), and violin plot (I) of the ISG score (see Methods) in the different cell clusters in the four different time points.
Statistical significance in a, b, d, and e was determined by an ordinary one-way ANOVA using Holm-Sidak's multiple
comparisons test. At least 3 independent experiments were performed; *P<0.05, ***P<0.001 ****P<0.0001
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Fig. 2 | Inter-cluster analysis of response genes shows both global and cluster-specific responding genes. a,
UMAP embeddings with the expression of response genes Cd74, Mnda, and Cox7c in control and 3h, 24h, and 72h
post IFNa treatment. b, Change score (see Methods) in each cluster for the top 500 response genes, grouped using
hierarchical clustering. UMAPs on the right show the expression change for each cell cluster averaged over all response
genes in the corresponding group. On the left are terms summarizing the functional annotation of the response genes
associated with the groups. c,d,e GO terms associated with group 2 (c), 8(d), and 14(e). The length of each bar
represents the statistical significance of each term. f,g, Mean expression of Aldh1b1 (f), and F13a1 (g) in each cluster
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Fig. 4 | Response pseudotime reveals a landscape of gene dynamics in HSPCs following IFNa treatment. a,
Visual summary of the HSPC time series showing the breakdown of the response gene patterns in each change score
group. The numbers in each cell represent the absolute number of genes (e.g. 5 response genes in change score group
1 display pattern 1). The colors represent the number of genes scaled for each change score group. b-e, Examples of
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and myeloid-specific genes (Csf7r, Irf8) (h,i) in different clusters.
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Fig. 6 | Reduced myeloid differentiation bias and increased cell death signature partially explain myeloid
population's reduction upon inflammation. a, Pseudotemporal expression of pro-survival genes (Bcl2, Birc2, Birc5).
b, Flow cytometric analysis of BM frequency of myeloid progenitors (Lin~ Sca-1- cKit" CD34* CD16/32*) following IFNa
treatment in WT and Bax”-Bak” double knockout mice at 3h, 24h, and 72h following IFNa or control (PBS) treatment.
n= 3 biological replicates. ¢, Score of necroptosis gene signature and pyroptosis gene signature in all myeloid
progenitors plotted in pseudotime. d, Pseudotemporal expression of two pyroptosis genes (Casp1, Casp4) in all myeloid
progenitors e, f, Score of (murine) myeloid transcription factors in HSCs (e), and LMPPs (f) plotted in pseudotime. g,h,
Score of monocyte (g) and neutrophil (h) differentiation genes in all three myeloid progenitor clusters plotted in
pseudotime. i,j, Flow cytometric analysis of blood neutrophils (B220- CD4- CD8 Ly6G* CD11b*) (i) and monocytes
(B220- CD4- CD8 Ly6G- CD11b* CD11c F4/80°) (j) normalized to the whole blood leukocyte count as measured by
hemavet at 3h, 24h, and 72h injection of IFNa or control (PBS) treatment in WT mice. n= 8 biological replicates. k.
Graphical abstract of the paper. Statistical significance in i,j was determined by an ordinary one-way ANOVA using
Holm-Sidak's multiple comparisons test. At least two independent experiments were performed; *P<0.05,**P<0.01,
***P<0.001, ****P<0.0001. Data represent mean * standard error of the mean (SEM).
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