

1 A *MSTN*^{Del273C} mutation with *FGF5* knockout sheep by CRISPR/Cas9

2 promotes skeletal muscle myofiber hyperplasia

3 Ming-Ming Chen^{1, †}, Yue Zhao^{1, †}, Xue-Ling Xu¹, Xiao-Sheng Zhang², Jin-Long
4 Zhang², Su-Jun Wu¹, Zhi-Mei Liu¹, Yi-Ming Yuan¹, Xiao-Fei Guo², Shi-Yu Qi¹,
5 Guang Yi¹, Shu-Qi Wang¹, Huang-Xiang Li¹, Ao-Wu Wu¹, Guo-Shi Liu¹, Kun Yu¹,
6 Shoulong Deng³, Hong-Bing Han¹, Feng-Hua Lv^{1, *}, Yan Li^{4, *}, Zheng-Xing Lian^{1, *}

7

¹ Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China

² Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China

14 ³ NHC Key Laboratory of Human Disease Comparative Medicine, Institute of
15 Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative
16 Medicine Center, Peking Union Medical College, Beijing, China

⁴ Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China

19

20

21 † These authors contributed equally to this work.

22 * Correspondence: lianzhx@cau.edu.cn (Zheng-Xing Lian), scauly@cau.edu.cn (Yan
23 Li); lvfenghua@cau.edu.cn (Feng-Hua Lv)

24

25 **Abstract**

26 Mutations in the well-known Myostatin (*MSTN*) produce a “double-muscle”
27 phenotype, which makes it commercially invaluable for improving livestock meat
28 production and providing high-quality protein for humans. However, mutations at
29 different loci of the *MSTN* often produce a variety of different phenotypes. In the
30 current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the
31 traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of
32 biallelic gene. Here, a *MSTN*^{Del273C} mutation with *FGF5* knockout sheep, in which the
33 *MSTN* and *FGF5* dual-gene biallelic homozygous mutations were produced via the
34 deletion of 3-base pairs of AGC in the third exon of *MSTN*, resulting in
35 cysteine-depleted at amino acid position 273, and the *FGF5* double allele mutation
36 led to inactivation of *FGF5* gene. The *MSTN*^{Del273C} mutation with *FGF5* knockout
37 sheep highlights a dominant “double-muscle” phenotype, which can be stably
38 inherited. Both F0 and F1 generation mutants highlight the excellent trait of
39 high-yield meat with a smaller cross-sectional area and higher number of muscle
40 fibers per unit area. Mechanistically, the *MSTN*^{Del273C} mutation with *FGF5* knockout
41 mediated the activation of *FOSL1* via the MEK-ERK-FOSL1 axis. The activated
42 *FOSL1* promotes skeletal muscle satellite cell proliferation and inhibits myogenic
43 differentiation by inhibiting the expression of MyoD1, and resulting in smaller
44 myotubes. In addition, activated ERK1/2 may inhibit the secondary fusion of
45 myotubes by Ca²⁺-dependent CaMKII activation pathway, leading to myoblasts fusion
46 to form smaller myotubes.

47

48 **Keywords:** *MSTN*; *FGF5*; dual-gene biallelic mutation; *FOSL1*; myogenesis

49

50 1 Introduction

51 Myostatin (*MSTN*) has been well-known as a negative regulator of muscle
52 growth and development. Its mutation produces a “double-muscle” phenotype, which
53 shows its inestimable commercial value in improving meat production of livestock
54 and poultry, and providing high-quality protein for humans (Fan *et al.*, 2022; Chen *et*
55 *al.*, 2021b). Due to its role in promoting muscle atrophy and cachexia, *MSTN* has been
56 recognized as a promising therapeutic target to offset the loss of muscle mass (Lee,
57 2021; Baig *et al.*, 2022; Wijaya *et al.*, 2022).

58 *MSTN* is highly conserved in mammals, and mutations in the *MSTN* gene, either
59 artificially or naturally, will result in increased skeletal muscle weight and produce a
60 “double-muscle” phenotype, which has been reported in many species, including
61 cattle, sheep, and pigs, rabbits, and humans (Grisolia *et al.*, 2009; Dilger *et al.*, 2010;
62 Kambadur *et al.*, 1997). However, mutations at different loci of the *MSTN* often
63 produce variety of different phenotypes, and its molecular mechanism of skeletal
64 muscle growth and development remains controversial (Hanset and Michaux, 1985;
65 Grobet *et al.*, 1997; Wegner *et al.*, 2000; Kambadur *et al.*, 1997; Marchitelli *et al.*,
66 2003). More than 77 natural mutation sites of *MSTN* have been reported in various
67 sheep breeds, most of these mutations were found to be located in the non-coding
68 regions, and did not affect *MSTN* activity (Kijas *et al.*, 2007; Sjakste *et al.*, 2011; Han
69 *et al.*, 2013; Dehnavi *et al.*, 2012). In addition to introns, it is still possible that
70 mutations in regulatory regions and exons may not affect the sheep phenotypes
71 (Pothuraju *et al.*, 2015; Kijas *et al.*, 2007; Boman and Vage, 2009; Boman *et al.*,
72 2009).

73 Fibroblast growth factor 5 (*FGF5*) belongs to the fibroblast growth factor (FGF)
74 family and is a secretory signaling protein. *FGF5* played an inhibitory effect on
75 mouse hair growth (Hebert *et al.*, 1994), and its natural mutation can lead to a
76 significant increase in hair growth in angora mice (Sundberg *et al.*, 1997). Subsequent
77 studies have also successively confirmed the inhibitory effect of *FGF5* on mammalian
78 hair growth and is recognized to be a negative regulator of hair growth (Kehler *et al.*,
79 2007; Dierks *et al.*, 2013; Yoshizawa *et al.*, 2015; Legrand *et al.*, 2014; Higgins *et al.*,
80 2014).

81 In this study, to increase both meat and wool production, we first produced the
82 *MSTN* and *FGF5* dual-gene biallelic homozygous mutations sheep by the increased
83 delivery ratio of Cas9 mRNA to sgRNA targeting *MSTN* and *FGF5*. The *MSTN*^{Del273C}
84 mutation with *FGF5* knockout sheep highlights a dominant “double-muscle”
85 phenotype by decreasing the muscle fiber cross-sectional area and increasing the
86 number of muscle fibers per unit area. Then, we used the *MSTN* and *FGF5* dual-gene
87 biallelic homozygous mutations sheep to unravel the molecular mechanism of the
88 “double-muscle” phenotype and myofiber hyperplasia.

89 **2 Materials and Methods**

90 **2.1 Production of Cas9 mRNA and sgRNA**

91 The Cas9 and U6-sgRNA co-expression vector backbones pX330 were
92 purchased from Addgene (plasmid ID: 42230 and 48138). Sheep *MSTN* and *FGF5*
93 sgRNAs were designed using CRISPR Design Tool
94 (<http://tools.genome-engineering.org>). The *MSTN* sgRNA
95 (GACATCTTGTAGGAGTACAGCAA) and *FGF5* sgRNA
96 (AGGTTCCCCTTCCGCACCT) were used in this study. Two complementary guide
97 sequence oligos were synthesized, annealed, and cloned into the pX330 backbone
98 vector to form the functional co-expression plasmids. T7 promoter was linked to the 5'
99 ends of the Cas9 coding region and *MSTN/FGF5* sgRNA template by PCR
100 amplification from the pX330-*MSTN/FGF5* plasmid constructed as described above.
101 Then, these PCR products, as transcription templates, were purified using E.Z.N.A.
102 Cycle Pure Kit (Omega Bio-Tek). *MSTN* sgRNA and *FGF5* sgRNA were prepared by
103 in vitro transcription (IVT) using the MEGAshortscript T7 Kit (Life Technologies).
104 Cas9 mRNA was transcribed with the m7G(5')ppp(5') G cap on its 5' terminal and
105 poly (A) tail on its 3' terminal using the mMESSAGE mMACHINE T7 Ultra Kit
106 (Life Technologies). Both the Cas9 mRNA and the sgRNAs were purified using the
107 MEGAclear Kit (Life Technologies) and eluted in RNase-free water.

108 **2.2 Microinjection and embryo transfer**

109 The procedure for the efficient production of pronuclear embryos has been
110 described previously (Li *et al.*, 2016). Briefly, Cas9 mRNA (1000 ng/μL) and

111 sgRNAs (200 ng/µL) were mixed and injected into the transferable embryos in which
112 the zona pellucida was clear, cytoplasm was uniform, and pronucleus was visible
113 using a FemtoJet microinjector (Eppendorf). Following microinjection, three to five
114 embryos were transplanted into the oviduct of each recipient within 1 h after starting
115 the laparotomy operation. Pregnancy was confirmed by transabdominal ultrasound
116 scanning on the 60th day after embryo transfer.

117 **2.3 Tissue sample collection and preparation**

118 Gluteus medius and longissimus dorsi were harvested from WT and *MSTN*^{Del273C}
119 mutation with *FGF5* knockout (MF^{-/-}) sheep, and three WT sheep and four MF^{-/-} F1
120 generation sheep (half-sib) were used for feeding and slaughter. All sheep were
121 female and are slaughtered at 12-month-old. All samples were immediately frozen in
122 liquid nitrogen and then stored at -80°C until analysis. All sheep are raised by the
123 national feeding standard NT/T815-2004. All procedures performed for this study
124 were consistent with the National Research Council Guide for the Care and Use of
125 Laboratory Animals. All experimental animal protocols in this study were approved
126 and performed following the requirements of the Animal Care and Use Committee at
127 China Agricultural University (AW02012202-1-3). All surgeries were performed
128 under sodium pentobarbital anesthesia, and all efforts were made to minimize any
129 suffering experienced by the animals used in this study.

130 **2.4 H&E staining and morphological analysis of muscle fibers**

131 Fresh muscle tissue samples were fixed, dehydrated, embedded and frozen
132 sectioned, respectively. Next, they were sequentially stained with hematoxylin and
133 eosin, then dehydrated with gradient ethanol and transparentized with xylene, and
134 finally sealed with neutral resin to make tissue sections. The images from at least five
135 random fields were captured with an inverted microscope. The Image J software was
136 used to segment, count and calculate the area of each muscle fiber cell. The number of
137 fiber cell in a fixed area size was calculated to estimate the number of fiber cell per
138 unit area.

139 **2.5 Cell isolation, culture, and transfection**

140 Sheep skeletal muscle satellite cells were isolated and cultured as previously
141 described (Chen *et al.*, 2021a). In brief, the muscle tissues of the hind limbs from
142 3-month-old sheep fetuses were cut into small pieces, digested sequentially with 0.2%
143 collagenase type II (Gibco, Grand Island, NY) and 0.25% trypsin (Gibco, Grand
144 Island, NY). The cell suspension was successively filtered through 100, 200 and 400
145 mesh cell sieves. After this, the cells were resuspended in growth medium (GM)
146 containing DMEM/F12 (Gibco, Grand Island, NY) with 20% fetal bovine serum (FBS,
147 Gibco) and 1% penicillin-streptomycin liquid (Gibco, Grand Island, NY), and
148 cultured for 2-3 times with differential adhesion. To induce differentiation, the cells
149 were cultured to 70% confluence in GM, and followed by an exchange to
150 differentiation medium (DM) containing DMEM high glucose (Gibco, Grand Island,
151 NY) with 2% horse serum (HS, Gibco) and 1% penicillin-streptomycin. To produce
152 viral solution for over-expression of the target gene, it was subcloned into the XbaI
153 and BamHI sites of the lentiviral vector by seamless cloning, and the primer
154 sequences of gene cloning were listed in Table S1. HEK 293T cells were
155 co-transfected with the envelope plasmid pMD2.G, the packaging plasmid psPAX2
156 and the target plasmid at a mass ratio of 1:2:4 to produce the virus. The siRNA were
157 synthesized by Guangzhou RiboBio Co., Ltd, and the sequences were listed in Table
158 S2. Then, the cells were infected with packaged lentivirus or transfected with siRNA
159 using Lipofectamine 3000 (Invitrogen, USA) when they were cultured to 60%-70%
160 confluence.

161 **2.6 Total RNA isolation and real-time quantitative PCR (RT- qPCR)**

162 The total RNA of tissues and cells was isolated using TRIzol reagent (Sangon
163 Biotech, Shanghai, China) following the manufacturer's protocol. In short, after
164 tissues or cells were lysed, chloroform was added to separate the organic and
165 inorganic phases, followed by precipitation with isopropanol and ethanol in turn, and
166 finally, the RNA was dissolved in DEPC water. Then, the first strand cDNA was
167 prepared using PrimeScript II 1st Strand cDNA Synthesis Kit (Takara, Beijing, China).

168 qPCR was performed using 2× SYBR Green qPCR Mix (Low ROX) (Aidlab
169 Biotechnologies, Beijing, China) in a Stratagene Mx3000P (Agilent Technologies,
170 SUA). With GAPDH mRNA as endogenous control, the relative expression level of
171 genes was calculated by the $2^{-\Delta\Delta Ct}$ method. All primers used were listed in Table S3.

172 **2.7 Western blot**

173 Tissue or cell samples were lysed in RIPA buffer (Solarbio, Beijing, China)
174 supplemented with protease and phosphatase inhibitor cocktail (Beyotime, Beijing,
175 China) for total protein extraction. Then, equal amounts of tissue or cell lysate were
176 resolved by 10% SDS-PAGE and transferred onto PVDF membranes (Millipore,
177 USA). The membranes were blocked with 5% BSA for 1h, incubated with primary
178 antibody at 4°C overnight, then incubated with secondary antibody for 1h before
179 detection. The fold change of protein was normalized to GAPDH for quantitative
180 analysis by ImageJ software. The antibodies information was listed in Table S4.

181 **2.8 5-Ethynyl-2'-deoxyuridine (EdU) assay**

182 At 24 h after transfection, sheep skeletal muscle satellite cells were incubated at
183 37°C for 2 h in 96-well plates with 50 µM EdU (Ribobio, Guangzhou, China). Then,
184 fixed the cells in 4% paraformaldehyde for 30 min and neutralized using 2 mg/mL
185 glycine solution. The Apollo® staining solution which contains EdU was added and
186 incubated at room temperature for 30 min in the dark to label the DNA in the
187 synthesis stage, the nuclear was then counterstained with DAPI. The number of EdU
188 positive cells was counted from the images of five random fields obtained with an
189 inverted fluorescence microscope at a magnification of 100×. EdU labeling index was
190 expressed as the number of EdU-positive cell nuclei/total cell nuclei.

191 **2.9 Cell counting kit-8 (CCK-8) and cell cycle detection**

192 Skeletal muscle satellite cells were seeded in 96-well plates and cultured for
193 appropriate time according to different experimental treatments. Then, 10 µL CCK-8
194 solution was added to each well and incubated at 37°C in a 5% CO₂ incubator for 2 h,
195 and then the absorbance at 450 nm was measured with a microplate reader. The

196 cultured skeletal muscle satellite cells were digested with trypsin, centrifuged at 1000
197 g for 5 min to collect the cell pellet, washed once with ice-cold PBS, and then 1 mL of
198 ice-cold 70% ethanol was added to fix the cells overnight at 4°C. The next day, the
199 cells were washed with ice-cold PBS again, and the cells were incubated with 0.5 mL
200 PI staining solution at 37°C for 30 min and collected by flow cytometry at low speed.

201 **2.10 Immunofluorescence staining**

202 Sheep skeletal muscle cells were fixed in 4% paraformaldehyde for 30 min,
203 permeabilized in 0.1% Triton X-100 for 20 min and blocked with 5% normal goat
204 serum for 30 min at room temperature, and then incubated with primary antibody at 4°C
205 overnight. Next, the fluorescent secondary antibody was added and incubated at 37°C
206 for 1 h in the dark, and the nuclear was then counterstained with DAPI. The
207 immunofluorescence images from five random fields were captured with an inverted
208 fluorescence microscope.

209 **2.11 Chromatin Immunoprecipitation (ChIP)**

210 The cells were fixed with 1% formaldehyde, then the cells were collected with a
211 cell scraper and resuspended in cell lysis buffer (10 mM HEPES, 0.5% NP-40, 1.5
212 mM MgCl₂, 10 mM KCl, pH 7.9) containing protease inhibitor cocktail (Beyotime,
213 Beijing, China) and incubated on ice to release the cytoplasm. Next, cell pellets were
214 collected and resuspended in nuclear lysis buffer (50 mM Tris, 10 mM EDTA, 0.3%
215 SDS, pH 8.0) containing protease inhibitor cocktail. After the DNA was fragmented
216 by ultrasonication, the supernatant was collected. The samples were diluted ChIP
217 dilution buffer (0.01% SDS, 1.1% Triton X- 100, 1.2 mM EDTA, 16.7 mM Tris-HCl
218 pH 8.0, 167 mM NaCl), then 5 µg primary antibody was added and incubated
219 overnight at 4°C with rotation. The next day, protein A/G magnetic beads were added
220 to each sample and incubated at 4°C with rotation for 2h. Then, the magnetic beads
221 were respectively washed once with low-salt wash buffer (0.1% SDS, 1% Triton
222 X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.0, 150 mM NaCl), high-salt wash buffer
223 (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 500mM NaCl, 20 mM Tris-HCl pH 8.0),
224 LiCl wash buffer (0.25 M LiCl, 1% NP-40, 1% sodium deoxycholate, 1 mM EDTA,

225 10 mM Tris-HCl pH 8.0), and TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA) at
226 4°C. Next, ChIP elution buffer (1% SDS, 100 mM NaHCO₃) containing proteinase K
227 was added to each sample, then incubated at 62°C overnight, and the DNA was finally
228 purified by a purification column.

229 **2.12 RNA-seq**

230 The rRNA was removed from each total RNA sample of the gluteus medius to
231 construct a strand-specific transcriptome sequencing library, and the Illumina
232 Novaseq 6000 sequencing platform was used to perform high-throughput sequencing
233 with a paired-end read length of 150 bp. Raw data were transformed into clean reads
234 by removing reads containing adapter, ploy-N and low-quality reads from raw data.
235 At the same time, Q20, Q30, GC-content, and sequence duplication levels of the clean
236 data were calculated. The genome index was constructed using Hisat2 software and
237 the clean reads were mapped to the sheep reference genome (*Oar Rambouillet v1.0*),
238 the featureCounts software was used for expression quantification, and DESeq2
239 software was used for differential expression analysis based on *P*-value < 0.05 and |
240 log₂ Fold Change | > 1.

241 **3 Results**

242 **3.1 Elevated molar ratio of Cas9/sgRNA can efficiently generate biallelic
243 homozygous mutant sheep**

244 The sgRNAs for targeting were designed in the third exon of the MSTN and
245 FGF5 genes, respectively (Figure 1A, B). Both MSTN and FGF5 PCR products could
246 be cleaved by T7E1 and the fragment sizes were also as expected, and grayscale
247 analysis showed that the editing efficiency was 14.6% and 11.4%, respectively
248 (Figure 1C), which indicates that the designed sgRNAs can achieve more efficient
249 gene targeting. The microinjection was performed according to the molar ratio of
250 Cas9 mRNA:sgRNAs (1:2, 1:10, and 1:15), respectively. The number of embryos
251 injected, recipients of nuclear transfer, pregnancy, and alive lambs per group were
252 listed in Table S5. The subsequent gene mutation detection showed that a total of 3
253 lambs were mutated in the MSTN and FGF5 genes at a Cas9 mRNA:sgRNAs
254 injection molar ratio of 1:2, with a gene editing mutation rate of 14.3% (4/28).

255 However, all 3 lambs were chimeric, that is, there were both mutant and wild-type
256 after editing, and the biallelic mutation rate was 0% (Table S5 ,Figure 1D). Increasing
257 the injection molar ratio of Cas9 mRNA:sgRNAs to 1:10 resulted in mutations in
258 *MSTN* and *FGF5* genes of two lambs with a gene editing mutation rate of 18.2 %
259 (4/22), which contributed to a significant ($P<0.05$) increase in the biallelic mutation
260 rate (Table S5, Figure 1D). While the injection molar ratio of Cas9 mRNA: sgRNAs
261 was continuously increased to 1:15, one lamb had a mutation, which was a biallelic
262 mutation of *MSTN* gene, and the gene editing mutation rate was 7.14% (1/14) (Table
263 S5, Figure 1D). These results indicate that increasing the delivery molar ratio of Cas9
264 mRNA to sgRNA from 1:2 to 1:10 can greatly improve the efficiency of biallelic
265 mutation in sheep.

266 **3.2 The *MSTN*^{Del273C} mutation with *FGF5* knockout sheep highlights a dominant
267 “double-muscle” phenotype and muscle fiber hyperplasia**

268 Among gene-edited sheep, a sheep with biallelic deletion of *MSTN* and biallelic
269 mutation of *FGF5* aroused our great interest. Specifically, gene editing caused a
270 deletion of 3-base pairs of AGC in the third exon of *MSTN* (Figure 1E, F), resulting in
271 the deletion of cysteine at amino acid position 273 (*MSTN*^{Del273C}) (Figure 1 E, F),
272 which is highlighted by the “double-muscle” phenotype (Figure 2A, 2B). At the same
273 time, a biallelic mutation in *FGF5* caused the knockout of *FGF5* gene and increased
274 the density and length of hairs (Zhang *et al.*, 2020). Compared to WT sheep, the fiber
275 cell number per unit area of gluteus medius and longissimus dorsi in MF^{-/-} sheep was
276 significantly ($P<0.01$) increased (Figure 2C, D), and the cross-sectional area were
277 smaller (Figure 2C, E-F). Similarly, the cross-sectional area of gluteus medius muscle
278 fibers in the offspring generation MF^{+/+} sheep was also smaller (Figure 2G-H), and the
279 number of muscle fiber cells per unit area was significantly increased ($P<0.0001$)
280 (Figure 2G, I); the percentage of smaller muscle fiber area in MF^{+/+} sheep was
281 significantly increased ($P<0.05$) (Figure 2G, J), these results was consistent with that
282 in MF^{-/-} sheep. Interestingly, the FGF5 knockout alone had no significant ($P>0.05$)
283 effect on muscle fiber size (Figure S1A-D). Although the mRNA expression levels of
284 *MSTN* and *FGF5* were significantly ($P<0.05$) reduced in MF^{+/+} sheep during early
285 embryonic development (3-month-old) (Figure S2A), there was no significant

286 differences in *MSTN* mRNA and protein expression levels at 12-month-old after birth
287 (Figure S2B-D). In addition, there was no significant difference in the proportion of
288 centrally nucleated myofibres ($P>0.05$) (Figure S2E), nor were there aberrant
289 expression of some genes related to muscular dystrophy and muscle atrophy (Figure
290 S2F). These results indicate that *MSTN*^{Del273C} mutation with *FGF5* knockout produces
291 muscle fiber hyperplasia instead of muscular dystrophy or muscle atrophy.

292 Further, although the muscle weight of different parts in WT and $MF^{+/+}$ sheep has
293 no significant difference (Table S6), the proportion of hind leg meat was significantly
294 ($P<0.05$) increased by 21.2% (Table S7), and the proportion of gluteus medius in the
295 carcass of $MF^{+/+}$ sheep was significantly ($P<0.01$) increased by 26.3% compared to
296 WT sheep (Figure 2K). In addition, there were no significant ($P>0.05$) differences in
297 pH, color, drip loss, cooking loss, shearing force, and amino acid content of the
298 longissimus dorsi between WT and $MF^{+/+}$ sheep (Table S8-10). All these results
299 demonstrated that the *MSTN*^{Del273C} mutation with *FGF5* knockout sheep had
300 well-developed hip muscles with smaller muscle fibers, which do not affect meat
301 quality, and this phenotype may be dominated by *MSTN* gene.

302 **3.3 The *MSTN*^{Del273C} mutation with *FGF5* knockout promotes skeletal muscle
303 satellite cells proliferation and inhibits myogenic differentiation**

304 The proliferation and differentiation of skeletal muscle satellite cells is a key step
305 in muscle formation and development. The CCK-8 and EdU cell proliferation
306 experiments showed that the proliferative rate of $MF^{+/+}$ cells were highly significantly
307 ($P<0.01$) elevated (Figure 3A) with a significant ($P<0.05$) increase in the rate of
308 EdU-positive cells (Figure 3B, C) compared to WT cells. In addition, cell cycle
309 detection showed a significant ($P<0.01$) reduce in the proportion of G1 phase and a
310 significant increase ($P<0.05$) in the proportion of S phase in $MF^{+/+}$ cells (Figure 3D,
311 E). Meanwhile, the mRNA expression levels of the cell cycle marker genes CyclinB1,
312 CDK4, Cyclin A1, Cyclin E1, and CDK2 were significantly increased ($P<0.05$)
313 (Figure 3F). These results suggest that the *MSTN*^{Del273C} mutation with *FGF5* knockout
314 may promote cell proliferation by accelerating the cell cycle from G0/G1 phase to S
315 phase.

316 The mRNA level of MyHC and the protein levels of MyoD1, MyoG, and MyHC
317 (Figure 3G-I) were dramatically decreased ($P<0.05$) after induced differentiation 2
318 days in $MF^{+/+}$ cells, suggesting that the $MSTN^{Del273C}$ mutation with $FGF5$ inhibit
319 myogenic differentiation. Meanwhile, the immunofluorescence staining of MyoG and
320 MyHC in myotubes showed that myotube fusion index (Figure 3J, K), number of
321 myotubes (Figure 3J, L), and number of nuclei per myotube (Figure 3J, M) were all
322 highly significantly ($P<0.01$) reduced after inducing differentiation for 2 days of
323 $MF^{+/+}$ cells compared to WT cells, as was the myotube diameter at the maximum
324 measured (Figure 3J, N). In addition, the differentiation capacity and fusion ability of
325 $MF^{+/+}$ cells were consistently significantly lower than WT cells during the ongoing
326 differentiation process, as was the diameter of fused myotubes (Figure S3A-J). The
327 reduced expression of myogenic differentiation markers further confirmed that the
328 $MSTN^{Del273C}$ mutation with $FGF5$ knockout consistently inhibits myogenic
329 differentiation of skeletal muscle satellite cells (Figure S3K-N). Taken together, our
330 results elucidated that the $MSTN^{Del273C}$ mutation with $FGF5$ knockout promotes
331 proliferation and inhibits myogenic differentiation of skeletal muscle satellite cells,
332 and induces a smaller myotube diameter of myotubes, which may explain the muscle
333 fiber hyperplasia phenotype and the decreased cross-sectional area of muscle fibers in
334 $MF^{+/+}$ and $MF^{+/+}$ sheep.

335 **3.4 The $MSTN^{Del273C}$ mutation with $FGF5$ knockout contribute to muscle
336 phenotype via MEK-ERK-FOSL1 axis**

337 To elucidate the potential mechanism of the $MSTN^{Del273C}$ mutation with $FGF5$
338 knockout result in smaller muscle fiber cross-sectional area and myotube diameter,
339 the RNA-seq was performed in gluteus medius. GO and KEGG enrichment analysis
340 indicating that differentially expressed genes (DEGs) were significantly closely
341 related to cell proliferation, myogenic differentiation, and muscle development; and
342 significantly enriched in MAPK signaling pathway (Figure 4A-B). Among DEGs,
343 FOSL1 has aroused our interest. Compared to WT sheep, the FOSL1 mRNA level
344 was significantly ($P<0.05$) lower in both gluteus medius and longissimus dorsi in
345 $MF^{+/+}$ sheep (Figure 4C), but it was significantly ($P<0.05$) elevated in $MF^{+/+}$ cells at
346 GM and DM2 (Figure 4D). More strikingly, FOSL1 mRNA level was strongly

347 (P<0.01) decreased after induced differentiation (Figure 5E), and its expression
348 diminished continuously with the differentiation progress. These results suggested
349 that FOSL1 may play a crucial role in the proliferation and myogenic differentiation
350 of skeletal muscle satellite cells.

351 FOSL1 is a member of the AP-1 family, and another member of this family,
352 c-Fos, inhibits myogenesis and MyoD1 expression by directly binding to the MyoD1
353 promoter region. Therefore, we speculated that FOSL1 might have similar functions
354 to c-Fos. Subsequent protein-protein interaction (PPI) analysis further suggested that
355 there was a potential interaction between FOSL1 and MyoD1 (Figure 5F). In addition,
356 the c-Fos mRNA level was highly significantly (P<0.01) reduced in MF^{+/−} myoblasts
357 compared to WT cells, whereas the MyoD1 mRNA level was dramatically (P<0.01)
358 increased (Figure 5G). We further found that two bZIP recognition sites in the MyoD1
359 promoter region had the most significant binding potential to FOSL1 (Figure 5H-J).
360 Subsequently, ChIP-qPCR confirmed that FOSL1 directly binds to these two bZIP
361 recognition sites in the MyoD1 promoter region (Figure 5K-L). The dual luciferase
362 report experiment confirmed that transcription factor FOSL1 can significantly
363 (P<0.05) inhibit MyoD1 promoter activity (Figure 4M). These results indicated that
364 FOSL1 plays an important role in the transcriptional regulation of MyoD1.

365 As mentioned above, FOSL1 may be involved in the proliferation and myogenic
366 differentiation of skeletal muscle satellite cells. Here, the protein levels of FOSL1 and
367 c-Fos were significantly (P<0.05) reduced in MF^{+/−} cells at GM compared to WT cells
368 (Figure 4N-O), and accompanied by a significant (P<0.05) increase in p-FOSL1
369 protein levels (Figure 4N-O), whereas FOSL1 protein levels were significantly
370 (P<0.05) diminished and c-Fos protein levels were highly significantly (P<0.01)
371 elevated in MF^{+/−} cells after induced differentiation (Figure 4P-Q), these results
372 further support the key role of FOSL1 on myogenesis. As demonstrated previously,
373 enrichment analysis significantly enriched the MAPK signaling pathway. Compared
374 to WT cells, ERK1/2 protein level was extremely significantly (P<0.01) decreased,
375 and accompanied by a significant (P<0.05) increase in p-ERK1/2 protein levels
376 (Figure 4N-O). After induced differentiation, although both MEK1/2 and ERK1/2
377 protein levels were dramatically (P<0.01) inhibited (Figure 4P-Q).

378 Considering the possible serum regulation of MSTN, we examined the effects of
379 MSTN mutations on its receptors and downstream target genes, and observed that
380 both MSTN receptors were significantly up-regulated (Figure S4A), whereas the
381 expression of downstream Smad and Jun families was also inhibited to a varying
382 degree (Figure S4B-C). Furthermore, serum from MF^{+/−} sheep promoted the
383 proliferation of skeletal muscle satellite cells (Figure S4D). *MSTN*^{Del273C} mutation
384 with *FGF5* knockout promoted FOSL1 expression using WT sheep serum (Figure
385 S4E), which was similar to the results of FBS culture and HS induction. The serum
386 from MF^{+/−} sheep strongly stimulated FOSL1 expression and the inhibition of MyoD1
387 (Figure S4F). These results suggest that serum regulation cannot be ignored after
388 *MSTN*^{Del273C} mutation with *FGF5* knockout.

389 In summary, *MSTN*^{Del273C} mutation with *FGF5* knockout may regulate the
390 expression and activity of FOSL1 via the MEK1/2-ERK1/2-FOSL1 axis to affect the
391 proliferation and myogenic differentiation of skeletal muscle satellite cells, and
392 further contribute to muscle phenotype.

393 **3.5 FOSL1 expression and activity control the proliferation and myogenic
394 differentiation of skeletal muscle satellite cells**

395 To investigate the role of FOSL1 on the proliferation and myogenic
396 differentiation of skeletal muscle satellite cells, we successfully constructed *FOSL1*
397 gain-of-function model (Figure 5A). We found that overexpression of *FOSL1*
398 significantly ($P<0.05$) promotes cell proliferation (Figure 5B-E), suppressed c-Fos
399 mRNA level (Figure 5F) ($P<0.05$), and inhibited MyoD1 mRNA ($P<0.01$) and protein
400 ($P<0.05$) levels (Figure 5F-H). These results are consistent with what we observed in
401 MF^{+/−} cells at GM, suggesting a potential inhibitory effect of FOSL1 protein on
402 MyoD1. In addition, the protein levels of MyoD1, MyoG and MyHC were all
403 significantly decreased ($P<0.05$), proving that the myogenic differentiation was
404 inhibited after FOSL1 was overexpressed (Figure 5I-J). Subsequently,
405 immunofluorescence staining further confirmed the significant ($P<0.05$) inhibitory
406 effect on cell differentiation (Figure 5K-L). Also, the number of myotubes, the
407 number of nuclei per myotube, and the myotube diameter were all significantly
408 decreased ($P<0.05$) (Figure 5K, M-O). Complementarily, we also constructed *FOSL1*

409 loss-of-function model (Figure 6A). In contrast to what observed in FOSL1
410 overexpression, interference with FOSL1 inhibited skeletal muscle satellite cell
411 proliferation (Figure 6B-E), elevated c-Fos and MyoD1 mRNA levels (Figure 6F) and
412 significantly ($P<0.05$) increased MyoD1 protein level (Figure 6G-H). With myogenic
413 differentiation markers were significantly up-regulated (Figure 6I-J), the myotube
414 fusion index, the number of myotubes, the number of nuclei per myotube, and the
415 myotube diameter were all significantly increased (Figure 6K-O). These results
416 further demonstrated that elevated FOSL1 level inhibits myogenic differentiation and
417 produces smaller myotubes.

418 To further ascertain this insight, the tert-butylhydroquinone (TBHQ), which can
419 strongly activate ERK1/2 and increase p-ERK1/2 protein expression level, was used
420 to activate ERK1/2 and act as an indirect activator of FOSL1. As expected, the
421 addition of 20 μ M TBHQ significantly ($P<0.01$) inhibited the myogenic
422 differentiation of skeletal muscle satellite cells (Figure 7A-B). And, the number of
423 myotubes was significantly increased ($P<0.05$) (Figure 7A, C), while the number of
424 nuclei per myotube was significantly ($P<0.05$) decreased and produced a smaller
425 myotube diameter ($P<0.05$) (Figure 7A, D-E). In addition, PD98509, which can
426 inhibit ERK1/2 and dose-dependent reduce p-ERK1/2 protein expression level, was
427 used for complementary experiments. We observed opposite results to TBHQ
428 treatment, including increase in myotube fusion index, the number of nuclei per
429 myotube, and the myotube diameter (Figure 7F-J). Taken together, our results shed
430 light that the *MSTN*^{Del273C} mutation with *FGF5* knockout mediated the activation of
431 FOSL1 via MEK-ERK-FOSL1 axis, further promotes skeletal muscle satellite cell
432 proliferation, and inhibits myogenic differentiation by inhibiting the transcription of
433 MyoD1, and resulting in smaller myotubes.

434 **3.6 The *MSTN*^{Del273C} mutation with *FGF5* knockout inhibit calcium-dependent
435 transcription signal pathway to regulate secondary fusion of myotubes**

436 As mentioned previously, DEGs identified by RNA-seq were significantly
437 enriched in biological processes such as muscle contraction and cardiac muscle
438 contraction. In muscle contraction, calcium ions (Ca^{2+}) play a crucial role, triggering
439 the process of muscle contraction and relaxation by binding to proteins in muscle

440 fibers. Here, the calcium-calmodulin dependent protein kinase II (CaMKII) α/δ
441 protein level was significantly ($P<0.05$) reduced in $MF^{+/-}$ cells compared to WT cells
442 (Figure 8A-B), and the intracellular Ca^{2+} concentration was also significantly ($P<0.05$)
443 reduced (Figure 8C-D). The high-throughput Ca^{2+} channel RYR is responsible for
444 rapid and massive release Ca^{2+} from the endoplasmic reticulum into cytoplasm. We
445 observed a significant ($P<0.05$) decrease in RYR1 and/or RYR3 mRNA levels in
446 $MF^{+/-}$ sheep skeletal muscle satellite cells and myotubes cells (Figure 8E-F). In
447 addition, intracellular Ca^{2+} concentration correlated with myoblasts fusion, whereas
448 the mRNA levels of MYMK and MYMX, which control myoblasts fusion, were
449 significantly ($P<0.01$) reduced in $MF^{+/-}$ cells (Figure 8E-F). These results suggest that
450 the decrease Ca^{2+} levels and inhibition of myoblasts fusion genes may be potential
451 triggers for the decrease of myotube diameter and myofiber cross-sectional area in
452 $MF^{+/-}$ sheep.

453 In a word, our results shed light that the $MSTN^{Del273C}$ mutation with $FGF5$
454 knockout mediated the activation of FOSL1 via MEK-ERK-FOSL1 axis (Figure 9).
455 The activated FOSL1 promotes skeletal muscle satellite cell proliferation and inhibits
456 myogenic differentiation by inhibiting the expression of MyoD1, and resulting in
457 fusion to form smaller myotubes (Figure 9). In addition, activated ERK1/2 may
458 inhibit the secondary fusion of myotubes by Ca^{2+} -dependent CaMKII activation
459 pathway, leading to myoblasts fusion to form smaller myotubes (Figure 9).

460 **4 Discussion**

461 **4.1 Optimized Cas9 mRNA and sgRNA delivery ratio improves the efficiency of** 462 **dual-gene biallelic homozygous mutations**

463 The strategy for producing gene knockout animals by CRISPR/Cas9 gene editing
464 system is usually to introduce the Cas9 mRNA and the sgRNA of the target gene into
465 their prokaryotic embryos by microinjection. However, this “one-step” method often
466 results in a “mosaic” of gene-edited offspring (Wan *et al.*, 2015). Such chimeric
467 mutants have now been reported in gene knockout mice (Wang *et al.*, 2013), rats (Bao
468 *et al.*, 2015), monkeys (Niu *et al.*, 2014), pigs (Hai *et al.*, 2014), sheep (Hongbing
469 HAN, 2014), goats (Wang *et al.*, 2015), rabbits (Lv *et al.*, 2016), and humans (Wang

470 and Yang, 2019) prepared by a “one-step” method using the CRISPR/Cas9 system.
471 For studies involved in genetic phenotypes, chimeric gene knockout animals require
472 further cross-breeding to obtain animals with a complete knockout of the target gene.
473 Once required to generate multiple gene knockout animals, this time-consuming and
474 laborious operation will become extremely difficult. Although many studies have
475 been devoted to eliminating this widespread chimeric mutation (Sato *et al.*, 2015;
476 Sung *et al.*, 2014; Kotani *et al.*, 2015; Chen *et al.*, 2015; Zhou *et al.*, 2014; Tu *et al.*,
477 2017; Wang *et al.*, 2015), however, these optimizations did not bring about a
478 significant improvement in the production efficiency of biallelic knockout animals.
479 Here, we increased the delivery ratio of Cas9 mRNA to sgRNA from 1:2 to 1:10,
480 which improve the efficiency of the homozygous mutation of the biallelic gene. This
481 unprecedented optimization method not only improved the overall gene knockout
482 efficiency, but also the obtained gene-edited offspring were all dual-gene biallelic
483 mutation. However, it is necessary to point out that although there are statistical
484 differences, due to the limited number of sheep we actually produced and used for
485 evaluation, the strategy to improve the efficiency of the homozygous mutation of
486 biallelic gene by increasing the Cas9 and mRNA delivery ratio needs to be further
487 confirm in future studies.

488 **4.2 Phenotypes produced by *MSTN* mutations are mutation site-dependent**

489 As mentioned previously, although *MSTN* mutations have been found to produce
490 a “double-muscle” phenotype in multiple species, the microscopic phenotypes are
491 different, and this difference is closely related to the mutation site and species types.
492 In mice, the number of skeletal muscle fibers with *MSTN* gene knockout significantly
493 increased by 86% (McPherron *et al.*, 1997). A missense mutant *MSTN* only increased
494 the number of mouse muscle fibers, while dominant negative *MSTN* resulted in
495 increased muscle fiber cross-sectional area in mice, but not the number of muscle
496 fibers (Nishi *et al.*, 2002; Zhu *et al.*, 2000). In addition, the use of *MSTN* neutralizing
497 antibody on adult rats also resulted in an increased muscle fiber cross-sectional area
498 (Haidet *et al.*, 2008). In cattle, natural *MSTN* mutant Belgian Blue cattle had an
499 increased number of muscle fibers and reduced muscle fiber diameter (Wegner *et al.*,
500 2000). The muscle fiber cross-sectional area of longissimus dorsi and gluteus medius

501 in sheep was significantly increased after a 4bp deletion of the first exon of *MSTN*
502 (Zhiliang *et al.*, 2004). In pigs, both the *MSTN* gene-edited Meishan and Hubei pigs
503 showed a phenotype with increased muscle fiber density (Qian *et al.*, 2015; Xu *et al.*,
504 2013). Here, we prepared *MSTN*^{Del273C} mutation with *FGF5* knockout sheep with
505 3-base pairs of AGC in the third exon of *MSTN*, which caused the deletion of cysteine
506 at amino acid position 273. Its macroscopic phenotype is similar to that of the
507 *MSTN*-edited sheep with the first exon knocked out 4-base pairs. Both of them
508 showed an abnormally developed “double-muscle” phenotype of hip muscle, but the
509 *MSTN*^{Del273C} mutation with *FGF5* knockout sheep highlights a muscle fiber
510 hyperplasia phenotype.

511 **4.3 FOSL1 recognizes and binds to the MyoD1 promoter and inhibits its**
512 **expression**

513 As previously described, AP-1 family members play key roles in skeletal muscle
514 cell proliferation, differentiation, and muscle development. In this study, AP-1 family
515 member *FOSL1* was significantly reduced in MF^{+/−} sheep, and its expression were
516 drastically reduced during myogenic differentiation, which was consistent with the
517 decrease of *FOSL1* expression during C2C12 differentiation (Tobin *et al.*, 2016). In
518 addition, *FOSL2*, another AP-1 family member, can also inhibit myoblast
519 differentiation (Alli *et al.*, 2013a), which may support the inhibitory effect of *FOSL1*
520 on myogenic differentiation. Therefore, *FOSL1* was recognized as a potential
521 gatekeeper. It has been shown that *FOSL1* heterodimerizes with other transcription
522 factors, such as the members of the bZIP family, and these dimers are either disabling
523 the transcriptional activator complex or saving the interacting proteins from
524 degradation in proteasomes (Sobolev *et al.*, 2022). Moreover, c-Fos, a member of the
525 AP-1 family, has been shown to inhibit MyoD1 expression and myogenesis by
526 directly binding to the MyoD1 promoter region (Li *et al.*, 1992). Therefore, we
527 speculate that *FOSL1* may have similar functions to c-Fos. PPI analysis suggested a
528 potential interaction between *FOSL1* and MyoD1. Subsequently, we confirmed that
529 *FOSL1* directly binds to two bZIP recognition sites in the MyoD1 promoter region,
530 and inhibits MyoD1 promoter activity. Meanwhile, the overexpression and
531 interference of *FOSL1* further confirmed the inhibitory effect of *FOSL1* on the

532 expression of MyoD1. In a word, these results fully support our hypothesis that
533 FOSL1 binds the MyoD1 promoter and inhibits its expression.

534 **4.4 The *MSTN*^{Del273C} mutation with *FGF5* knockout contribute to muscle
535 phenotype via MEK-ERK-FOSL1 axis**

536 The nonclassical pathway of *MSTN* involves PI3K/Akt/mTOR signaling
537 pathway and MAPK signaling pathway, which mainly includes ERKs, JNKs and p38
538 MAPK (Huang *et al.*, 2007; Gui *et al.*, 2012). All of those pathways are involved in
539 the signal transduction pathway of *MSTN* and mediate the transcription of MRFs
540 (Myogenin, Myf5, MyoD), MuRF-1 and Atrogin-1, to regulate myogenic
541 differentiation and skeletal muscle quality (Chen *et al.*, 2021b). *MSTN* induces muscle
542 fiber hypertrophy prior to satellite cell activation (Wang and McPherron, 2012) and
543 inhibits IGF-I-induced increase in myotube diameter through Akt signaling pathway
544 (Morissette *et al.*, 2009). In our study, the *MSTN*^{Del273C} mutation with *FGF5* knockout
545 resulted in the inhibition of myogenic differentiation of skeletal muscle satellite cells,
546 and the number of myotubes and the myotube size were significantly reduced.

547 As previously described, the DEGs of gluteus medius RNA-seq were
548 significantly enriched in the MAPK signaling pathway. In fact, the MAPK signaling
549 pathway has been proven to be closely related to muscle development and myoblast
550 differentiation (Xie *et al.*, 2018; Segales *et al.*, 2016). For example, ERK1/2 promotes
551 myoblast proliferation in response to various growth factors (Campbell *et al.*, 1995),
552 inhibits signaling pathways that activate ERK1/2, or isolates ERK1/2 in the cytoplasm,
553 leading to cell cycle exit and cell differentiation (Jones *et al.*, 2001; Michailovici *et al.*,
554 2014). The RXR activity in myoblasts promotes myogenesis by regulating MyoD
555 expression and acting as a MyoG cofactor (Zhu *et al.*, 2009). Inhibition of MEK1/2
556 activates satellite cell differentiation in primary muscle fibers (Alli *et al.*, 2013b), and
557 also induces myogenic differentiation and excessive fusion (Eigler *et al.*, 2021). A
558 recent study on glioma showed that FOSL1 can be activated by the
559 Ras-MEK1/2-ERK1/2 axis in MAPK signaling pathway (Marques *et al.*, 2021).
560 Similarly, the activated MEK1/2-ERK1/2 axis in aged skeletal muscle also activates
561 FOSL1 and increases the abundance of FOSL1 and the trans-activation capacity of the
562 Fos-Jun heterodimer (Mathes *et al.*, 2021). In our study, the *MSTN*^{Del273C} mutation

563 with *FGF5* knockout regulates FOSL1 expression and activity through
564 MEK1/2-ERK1/2-FOSL1 axis and activated FOSL1 further inhibits myogenic
565 differentiation of skeletal muscle satellite cells, resulting in smaller myotube diameter.
566 However, despite the high expression of p-FOSL1 in MF^{+/−} myoblasts, it did not
567 significantly inhibit the transcription of MyoD1, which may be related to a dramatic
568 enhance in c-Fos, or there might be other parallel signaling pathways regulating
569 MyoD1 after *MSTN*^{Del273C} mutation with *FGF5* knockout.

570 Furthermore, it has been demonstrated that the inhibition of MEK1/2 using
571 MEK1/2-specific inhibitor PD184352 can significantly down-regulate FOSL1
572 expression (Mathes *et al.*, 2021). In our study, the indirect activation of FOSL1 by
573 TBHQ can inhibit the myogenic differentiation of sheep skeletal muscle satellite cells,
574 leading to reduced myoblast fusion capacity and smaller myotube diameter. In
575 contrast, inhibition of the MEK1/2 pathway by PD98059 to suppress FOSL1 activity
576 produced the opposite effect. Taken together, these results shed light on the potential
577 mechanisms by which *MSTN*^{Del273C} mutation with *FGF5* knockout leads to increased
578 myofiber numbers and decreased fiber cross-sectional area.

579 **4.5 The *MSTN*^{Del273C} mutation with *FGF5* knockout may affect myoblasts fusion
580 through ERK-mediated calcium dependent transcriptional signaling pathway**

581 Ca^{2+} is recognized as a regulator of mammalian muscle fusion (Eigler *et al.*,
582 2021; Constantin *et al.*, 1996). The transient depletion of Ca^{2+} in the endoplasmic
583 reticulum is associated with myoblast differentiation and fusion (Jones *et al.*, 2001).
584 However, the signaling cascade leading to Ca^{2+} -mediated myoblast fusion remains
585 unclear. Intracellular Ca^{2+} level is regulated by various Ca^{2+} voltage-gated channels,
586 including but not limited to ryanodine receptors (RYR), which is the main Ca^{2+}
587 release channel of the sarcoplasmic reticulum. CaMKII is a member of the
588 calcium/calmodulin-dependent serine/threonine kinase family. CaMKII δ , CaMKII γ ,
589 and CaMKII β are the main isoforms expressed in skeletal muscle (Bayer *et al.*, 1996).
590 Recent studies have shown that elevated intracellular Ca^{2+} level is crucial for
591 myoblasts fusion and that Ca^{2+} signaling in newly formed myotubes occurs prior to
592 the rapid growth stage of myotubes, indicating that Ca^{2+} released from the
593 endoplasmic reticulum in early myotubes may promote secondary fusion of myoblasts

594 and myotube expansion (Eigler *et al.*, 2021). Further studies showed that
595 Ca^{2+} -dependent activation of CaMKII is essential for myotubes expansion and may
596 mediate myoblast-myotube fusion by regulating MYMK and Rac1, but it is not
597 necessary for myoblast-myoblast fusion (Eigler *et al.*, 2021).

598 In our study, the *MSTN*^{Del273C} mutation with *FGF5* knockout resulted in a
599 significant reduction of Ca^{2+} level and CaMKII α/δ protein level, and led to a decrease
600 in myotube fusion capacity. Therefore, our results support that the increased
601 p-ERK1/2 level promotes cell proliferation and inhibits myogenic differentiation in
602 MF^{+/−} sheep skeletal muscle satellite cells. Meanwhile, activated ERK1/2 further
603 inhibited RYR activity by suppressing the phosphorylation of RXR, thereby reducing
604 the release of endoplasmic reticulum Ca^{2+} and potentially inhibiting the secondary
605 fusion of myotubes by Ca^{2+} -dependent CaMKII activation pathway, and further
606 mediating myofiber hyperplasia.

607 **5 Conclusion**

608 In this study, we found that increasing the delivery ratio of Cas9 mRNA to
609 sgRNA can improve the efficiency of the homozygous mutation of the biallelic gene.
610 Based on this, we generated a *MSTN*^{Del273C} mutation with *FGF5* knockout sheep, a
611 dual-gene biallelic homozygous mutant, which highlights a dominant “double-muscle”
612 phenotype. Both F0 and F1 generation mutants highlight the excellent trait of
613 high-yield meat and the more number of muscle fibers per unit area. Our results
614 suggested the *MSTN*^{Del273C} mutation with *FGF5* knockout mediated the activation of
615 FOSL1 via MEK-ERK-FOSL1 axis, further promotes skeletal muscle satellite cell
616 proliferation, and inhibits myogenic differentiation by inhibiting the expression of
617 MyoD1, and resulting in smaller myotubes. In addition, activated ERK1/2 may inhibit
618 the secondary fusion of myotubes by Ca^{2+} -dependent CaMKII activation pathway,
619 leading to myoblasts fusion to form smaller myotubes. This supports the myofiber
620 hyperplasia that more number of muscle fibers and smaller cross sectional area,
621 caused by the *MSTN*^{Del273C} mutation with *FGF5* knockout.

622 **Data availability statement**

623 The raw sequence data reported in this paper have been deposited in the Genome
624 Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in National
625 Genomics Data Center (Nucleic Acids Res 2022), China National Center for
626 Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences (GSA:
627 CRA008539) that are publicly accessible at <https://ngdc.cncb.ac.cn/gsa>.

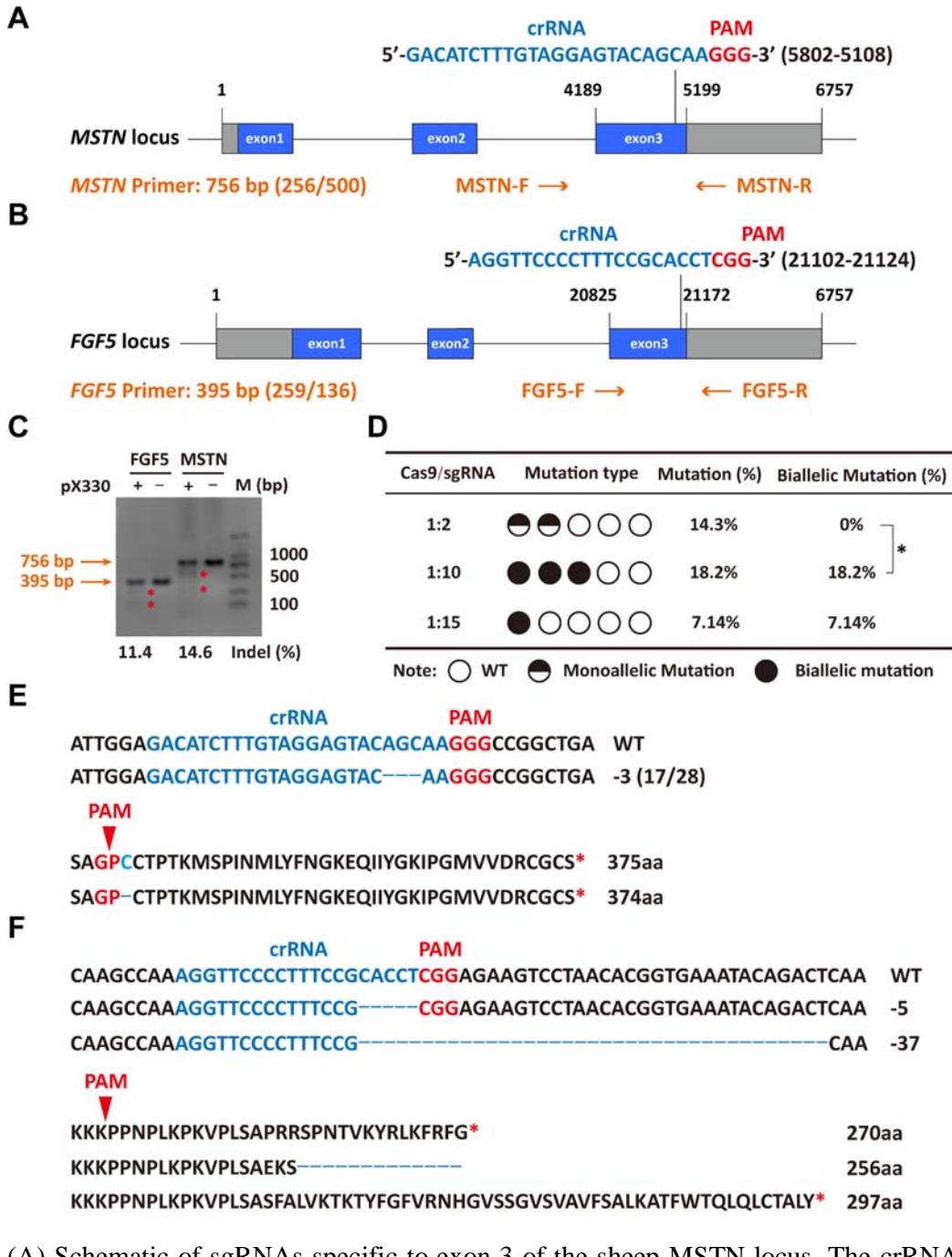
628 **Ethics statement**

629 All experiments were performed in accordance with relevant guidelines and
630 adhere to the ARRIVE guidelines (<https://arriveguidelines.org/>) for the reporting of
631 animal experiments. All sheep are raised in accordance with the national feeding
632 standard NT/T815-2004. All procedures performed were consistent with the National
633 Research Council Guide for the Care and Use of Laboratory Animals. All
634 experimental animal protocols were approved and performed in accordance with the
635 requirements of the Animal Care and Use Committee at China Agricultural University
636 (AW02012202-1-3).

637 **Competing financial interests**

638 The authors declare that there are no competing financial interests.

639 **Author contributions**

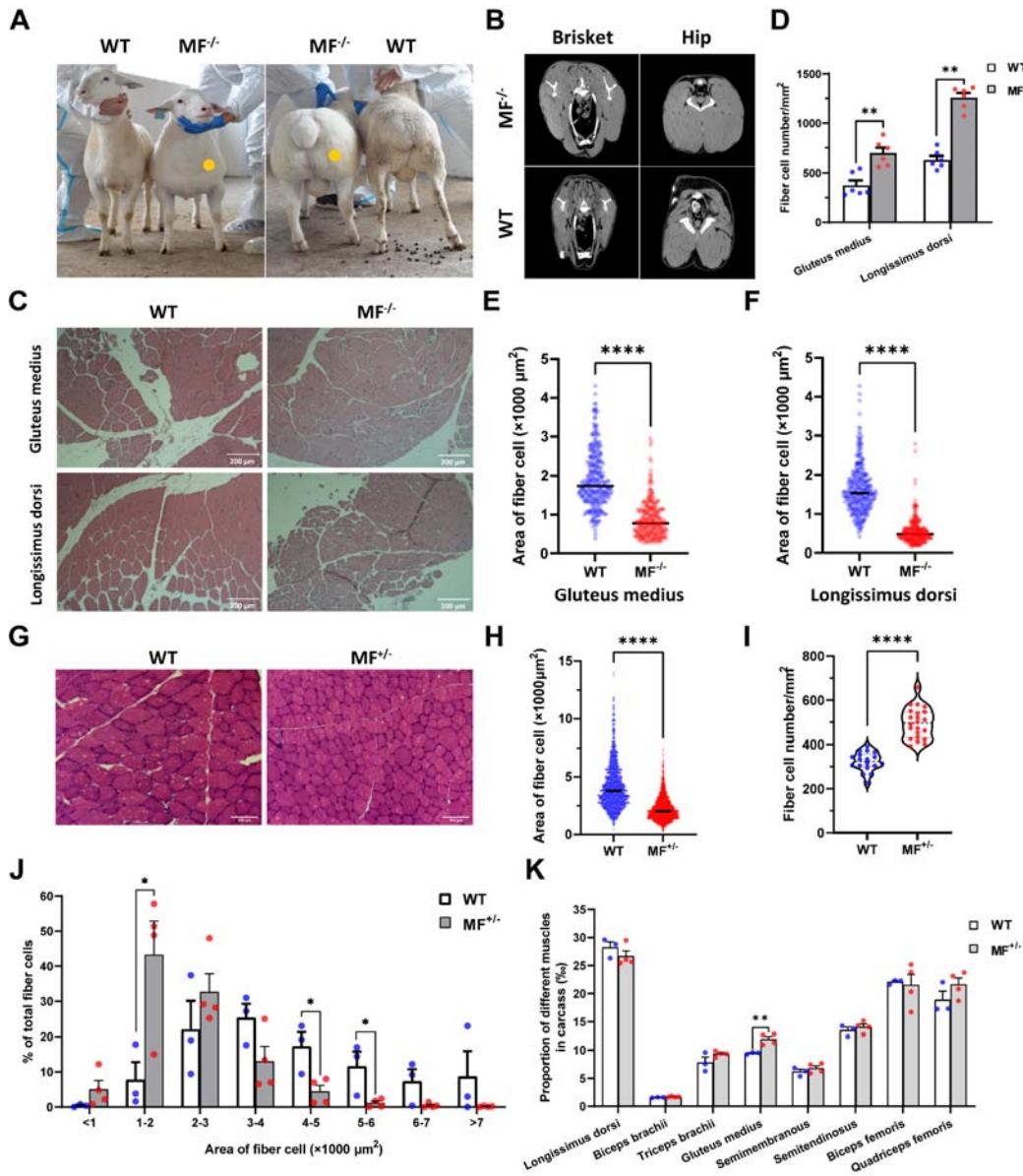

640 MMC performed the majority of experiments, data analysis, and drafted the
641 manuscript. YZ performed a part of experiments and revised the manuscript. XLX,
642 SJW and ZML helped with data analysis. XSZ, JLZ and XFG were responsible for the
643 management of the feeding plant, slaughtering, and collecting samples. YMY helped
644 to process some biological information data. SYQ, GY, SQW, HXL and AWW helped
645 to collect and organize original data. GSL led the prokaryotic injection and embryo
646 transfer. YL prepared the gene editing sheep. KY and HBH participated in project
647 management. KY, FHL and ZXL conceived the project, revised manuscript and final
648 approval of manuscript. All authors read and approved the final manuscript.

649 **Acknowledgments**

650 This work was supported by Major Agricultural Biological Breeding Project
651 (2022ZD04014), National Key Research and Development Program-Key Projects
652 (2021YFF1000704, 2021YFD1200900), Natural Science Foundation of China
653 (32072722), and National Transgenic Creature Breeding Grand Project
654 (2016zx08008-003).
655

656 **Figure Legends**

657 **Figure 1 Efficient generation of sheep carrying biallelic mutations in dual gene**
 658 **via the CRISPR/Cas9 system**

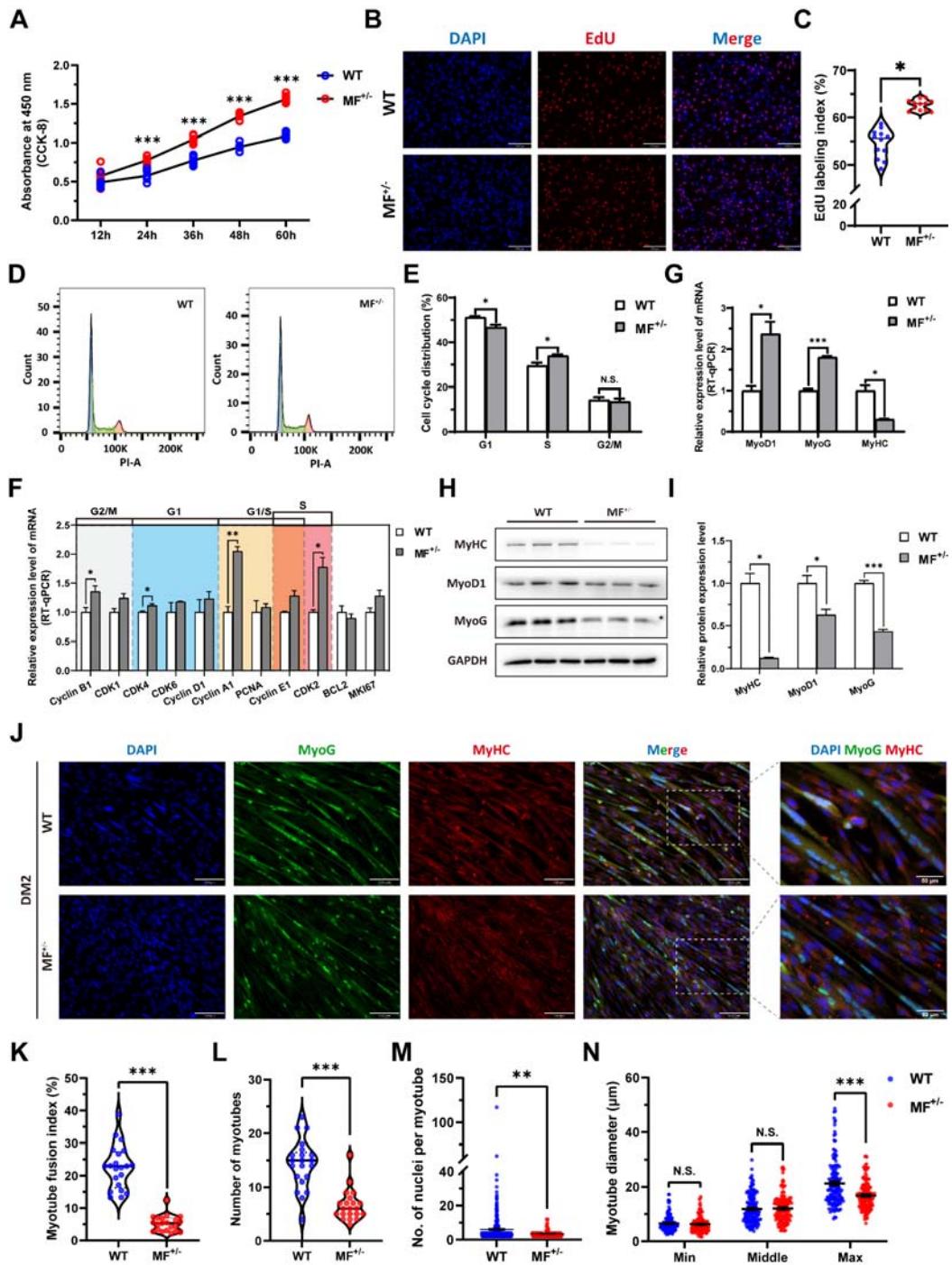

659 (A) Schematic of sgRNAs specific to exon 3 of the sheep MSTN locus. The crRNA
 660 sequences are highlighted in blue typeface and the PAM in red. (B) Schematic of
 661 sgRNAs specific to exon 3 of the sheep FGF5 locus. The crRNA sequences are
 662

663 highlighted in blue typeface and the PAM in red. (C) T7EI assay for sgRNAs of
664 MSTN and FGF5 in sheep fetal fibroblasts. The cleavage bands are marked with an
665 red asterisk (*) and the indel frequencies were calculated using the expected
666 fragments. (D) Summary of the generation of sheep carrying biallelic mutations in
667 dual gene via zygote injection of Cas9 mRNA/sgRNAs. Biallelic mutation rate was
668 statistically analyzed using chi square test. * $P < 0.05$. (E) Analysis of genome
669 sequence and amino acid sequence of MSTN-modified sheep. The location of sgRNA
670 and PAM are highlighted in blue and red, respectively. The deletions are indicated by
671 a dashed line (-). (F) Analysis of genome sequence and amino acid sequence of
672 FGF5-modified sheep. The location of sgRNA and PAM are highlighted in blue and
673 red, respectively. The deletions are indicated by a dashed line (-).

674

675

676 **Figure 2 The *MSTN*^{Del273C} mutation with *FGF5* knockout sheep highlights a**
677 **dominant “double-muscle” phenotype and muscle fiber hyperplasia**

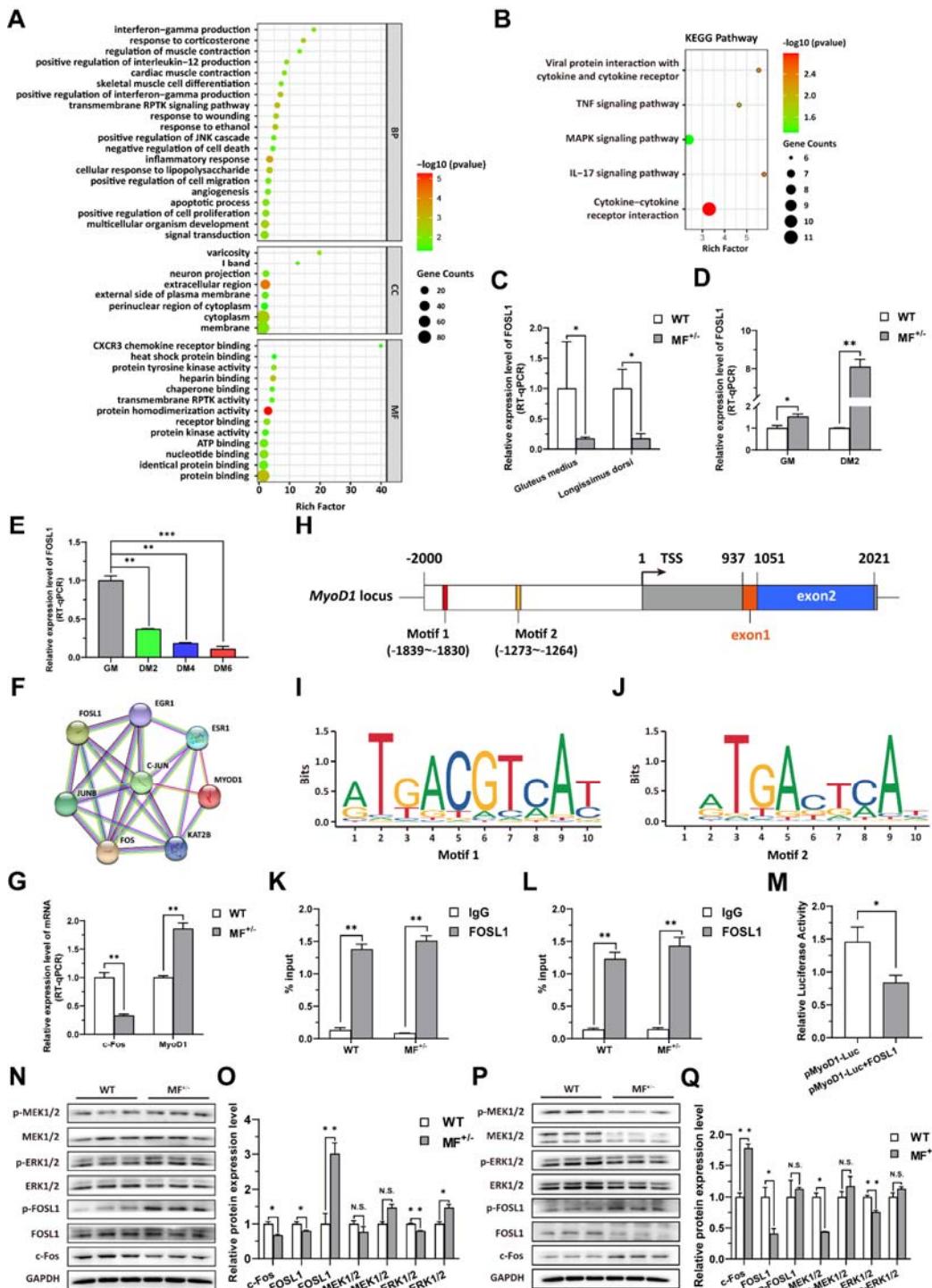

678

679 (A) The 6-month-old WT and MF^{-/-} sheep. The genome-edited sheep displayed an
680 obvious “double-muscle” phenotype compared with the WT. (B) The CT scanning
681 image of the brisket and hip of WT and MF^{-/-} sheep. (C) HE sections of gluteus
682 medius and longissimus dorsi of WT and MF^{-/-} sheep. Scale bar 200 μ m. (D)
683 Quantification of muscle fibre cell number of per unit area in WT (n=3) and MF^{-/-}
684 (n=1) sheep. All data points were shown. (E-F) Quantification of muscle fibre cell
685 area of gluteus medius and longissimus dorsi in WT (n=3) and MF^{-/-} (n=1) sheep. All

686 data points were shown. (G) HE sections of gluteus medius in WT and MF^{+/−} sheep.
687 Scale bar 100 μ m. (H) Quantification of muscle fibre cell area of gluteus medius in
688 WT (n=3) and MF^{+/−} (n=4) sheep. (I) Quantification of muscle fibre cell number of
689 per unit area in WT (n=3) and MF^{+/−} (n=4) sheep. (J) The percentage of
690 cross-sectional area of different size muscle fibers. (K) The proportion of different
691 muscles in carcass in WT (n=3) and MF^{+/−} (n=4) sheep. Data: mean \pm SEM. Unpaired
692 student's t-test were used for statistical analysis after the equal variance test,
693 otherwise the t-test with Welch's correction were performed. *P < 0.05, **P < 0.01,
694 ***P < 0.001, and ****P < 0.0001.

695

696 **Figure 3 The *MSTN*^{Del273C} mutation with *FGF5* knockout promote proliferation**
 697 **and inhibit differentiation of skeletal muscle satellite cells**

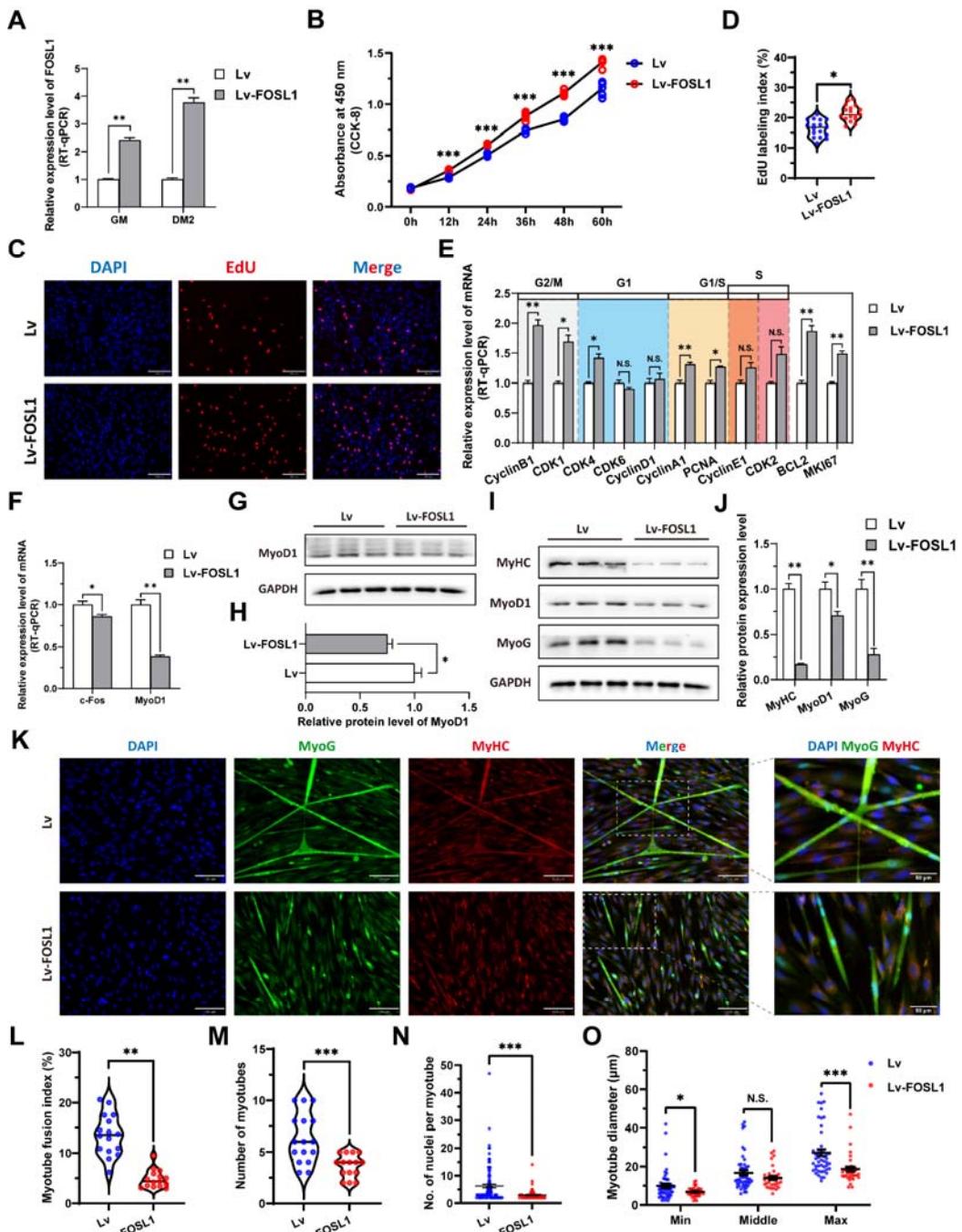

698

699 (A) The number of cells was detected by CCK-8 at 12h, 24h, 36h, 48h, and 60h in
 700 GM (n=7-8 per group). (B-C) EdU assay showed that the number of EdU positive
 701 cells and EdU labeling index were significantly increased in $MF^{+/-}$ cells (n=3). Scale

702 bar 130 μ m. All data points were shown. (D-E) PI staining to detect cell cycle and
703 showed a significant reduce in the proportion of G1 phase and a significant increase in
704 the proportion of S phase in MF^{+/−} cells (n=4). (F) The mRNA expression levels of
705 cell cycle marker genes and cell proliferation marker genes (n=3). (G) The mRNA
706 expression levels of myogenic differentiation marker genes MyoG, MyoD1, and
707 MyHC (n=3). (H-I) The protein expression levels of myogenic differentiation marker
708 genes MyoG, MyoD1, and MyHC (n=3). (J) The MyoG and MyHC
709 immunofluorescence staining of myotubes in DM2. Scale bar 130 μ m. (K) The
710 myotube fusion index, which was represented by the number of cell nuclei in
711 myotubes/total cell nuclei (n=3). All data points were shown. (L) The number of
712 myotubes, which was the number of all myotubes in the field of view (n=3). All data
713 points were shown. (M) The number of nuclei per myotube (n=3). All data points
714 were shown. (N) The myotube diameter (n=3). To reflect the myotube diameter as
715 accurately as possible, the vertical line at the thinnest position of the myotube is taken
716 as the minimum measured (Min), the mid-perpendicular line of the long myotube axis
717 is taken as the middle measured (Middle), and the vertical line at the widest position
718 of the myotube is taken as the maximum measured (Max). All data points were shown.
719 Data: mean \pm SEM. Unpaired student's t-test and chi square test were used for
720 statistical analysis. All student's t-test were performed after the equal variance test,
721 otherwise the t-test with Welch's correction were used. *P < 0.05, **P < 0.01, and
722 ***P < 0.001.

723

724 **Figure 4 The *MSTN*^{Del273C} mutation with *FGF5* knockout contributes to muscle
725 phenotype via MEK-ERK-FOSL1 axis**

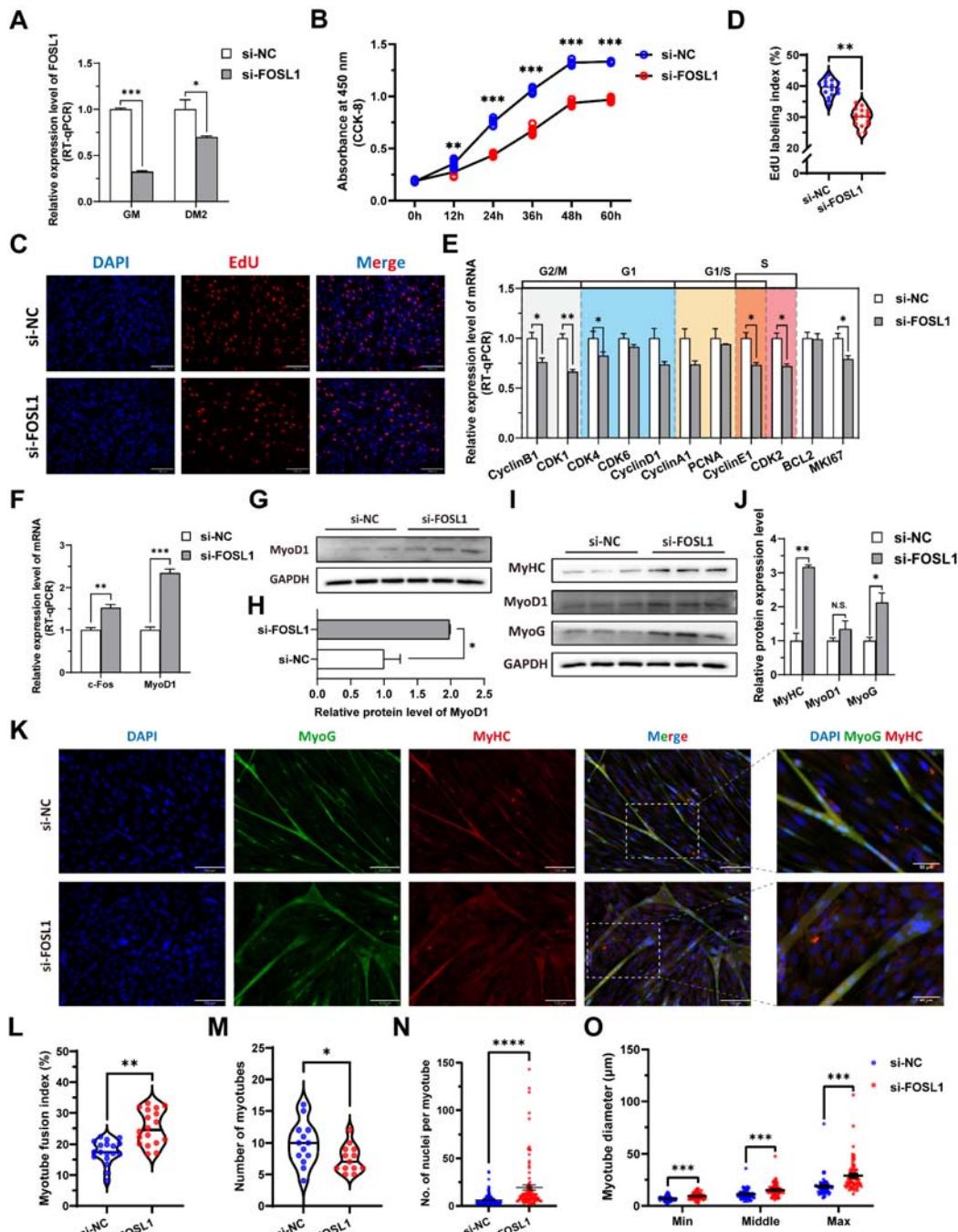


726
727 (A) Go enrichment analysis of DEGs. Among them, the top 20 entries with significant
728 enrichment are listed in biological process (BP). CC, cellular component; MF,

729 molecular function. (B) KEGG enrichment analysis of DEGs. (C) The mRNA
730 expression level of FOSL1 both at gluteus medius and longissimus dorsi in WT (n=3)
731 and MF^{+/−} (n=4) sheep. (D) The mRNA expression level of FOSL1 both at GM and
732 DM2 in WT and MF^{+/−} cells (n=3). (E) The expression level of FOSL1 mRNA during
733 myogenic differentiation (n=3). (F) The protein-protein interaction (PPI) analysis of
734 FOSL1, c-Fos and MyoD1. (G) The mRNA expression level of c-Fos and MyoD1 at
735 GM in WT and MF^{+/−} myoblasts (n=3). (H) Schematic diagram of MyoD1 gene body,
736 promoter region and binding sites. (I-J) FOSL1 recognition motif in the MyoD1
737 promoter region. (K) FOSL1 ChIP-qPCR of motif 1 recognition region (n=3). (L)
738 FOSL1 ChIP-qPCR of motif 2 recognition region (n=3). (M) Dual luciferase assay for
739 the effect of FOSL1 on MyoD1 promoter activity (n=4). (N) Western blot of FOSL1,
740 c-Fos, and key kinases of MAPK signaling pathways at GM. (O) Quantification of
741 protein expression of FOSL1, c-Fos, and key kinases of MAPK signaling pathways at
742 GM (n=3). (P) Western blot of FOSL1, c-Fos, and key kinases of MAPK signaling
743 pathways at DM2. (Q) Quantification of protein expression of FOSL1, c-Fos, and key
744 kinases of MAPK signaling pathways at DM2 (n=3). Data: mean ± SEM. Unpaired
745 student's t-test was used for statistical analysis. All student's t-test were performed
746 after the equal variance test, otherwise the t-test with Welch's correction were used.
747 *P < 0.05, **P < 0.01, and ***P < 0.001.

748

749 **Figure 5 The overexpression of *FOSL1* promotes proliferation and inhibits**
750 **differentiation of skeletal muscle satellite cells**

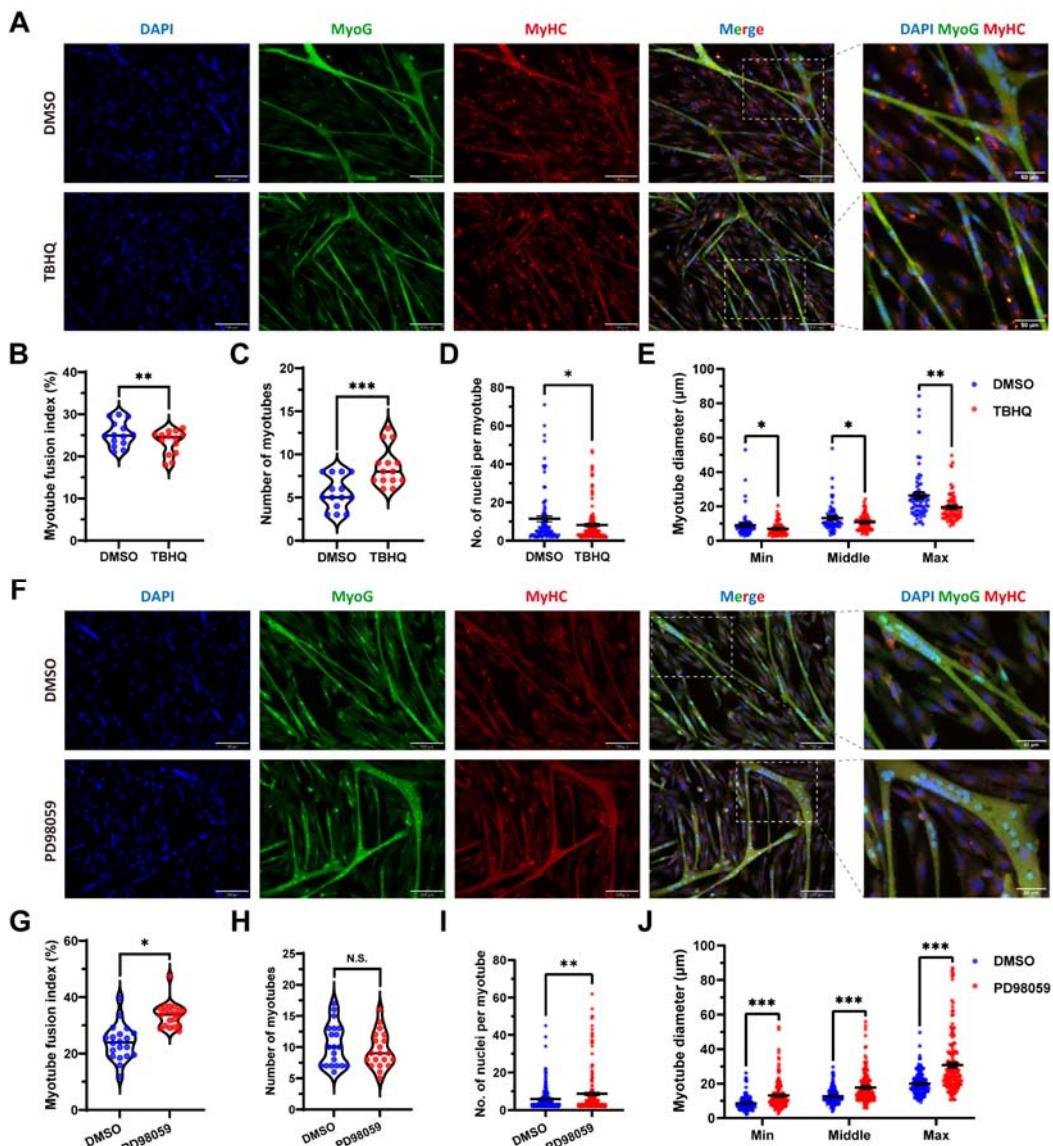


751
752 (A) The mRNA expression level of *FOSL1* at GM and DM2 after lentivirus infection
753 (n=3). (B) The number of cells detected by CCK-8 at 0h, 12h, 24h, 36h, 48h, and 60h
754 after infection with lentivirus (n=4-6). (C-D) EdU assay showed that the number of
755 EdU positive cells and EdU labeling index were significantly increased after infection

756 with lentivirus (n=3). Scale bar 130 μ m. All data points were shown. (E) The mRNA
757 expression levels of cell cycle marker genes and cell proliferation marker genes (n=3).
758 (F) The mRNA expression levels of c-Fos and MyoD1 at GM after overexpression of
759 FOSL1 (n=3). (G-H) The protein expression levels of MyoD1 at GM after
760 overexpression of FOSL1 (n=3). (I-J) The protein expression levels of myogenic
761 differentiation marker genes MyoD1, MyoG and MyHC at DM2 after overexpression
762 of FOSL1 (n=3). (K) The MyoG and MyHC immunofluorescence staining of
763 myotubes at DM2 after overexpression of FOSL1. Scale bar 130 μ m. (L-O) The
764 myotube fusion index, number of myotubes, number of nuclei per myotube and the
765 myotube diameter at DM2 after overexpression of FOSL1 (n=3). All data points were
766 shown. Data: mean \pm SEM. Unpaired student's t-test and chi square test were used for
767 statistical analysis. All student's t-test were performed after the equal variance test,
768 otherwise the t-test with Welch's correction were used. *P < 0.05, **P < 0.01, and
769 ***P < 0.001.

770

771 **Figure 6 The inhibition of *FOSL1* suppresses proliferation and promotes**
772 **differentiation of skeletal muscle satellite cells**

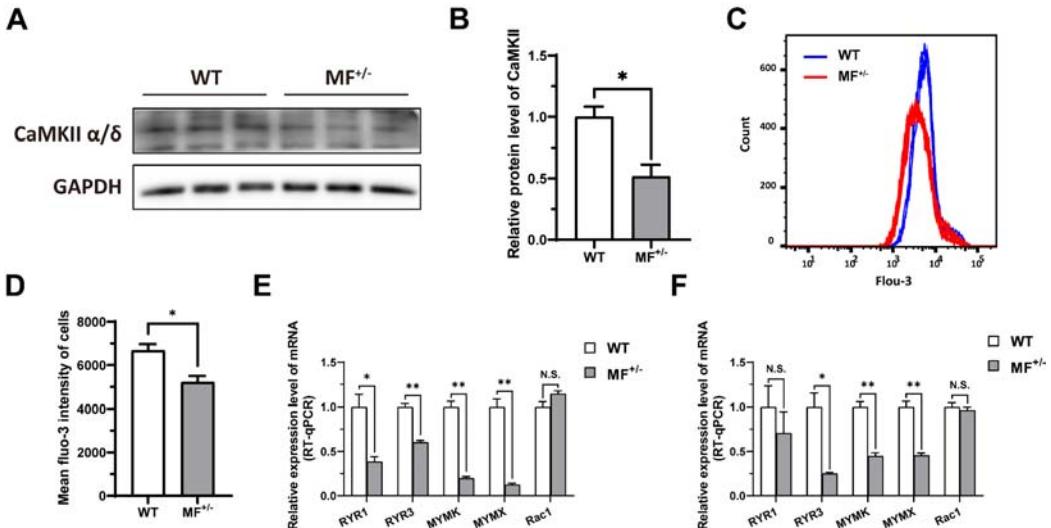

773
774 (A) The mRNA expression level of *FOSL1* at GM and DM2 after inhibiting *FOSL1*
775 (n=3). (B) The number of cells detected by CCK-8 at 0h, 12h, 24h, 36h, 48h, and 60h
776 after inhibiting *FOSL1* (n=4-6). (C-D) EdU assay showed that the number of EdU
777 positive cells and EdU labeling index were significantly decreased after inhibiting

778 FOSL1 (n=3). Scale bar 130 μ m. All data points were shown. (E) The mRNA
779 expression levels of cell cycle marker genes and cell proliferation marker genes (n=3).
780 (F) The mRNA expression levels of c-Fos and MyoD1 at GM after inhibiting FOSL1
781 (n=3). (G-H) The protein expression levels of MyoD1 at GM after inhibiting FOSL1
782 (n=3). (I-J) The protein expression levels of myogenic differentiation marker genes
783 MyoD1, MyoG and MyHC at DM2 after inhibiting FOSL1 (n=3). (K) The MyoG and
784 MyHC immunofluorescence staining of myotubes at DM2 after inhibiting FOSL1.
785 Scale bar 130 μ m. (L-O) The myotube fusion index, number of myotubes, number of
786 nuclei per myotube and the myotube diameter at DM2 after overexpression of FOSL1
787 (n=3). All data points were shown. Data: mean \pm SEM. Unpaired student's t-test and
788 chi square test were used for statistical analysis. All student's t-test were performed
789 after the equal variance test, otherwise the t-test with Welch's correction were used.
790 * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, and **** $P < 0.0001$.

791

792

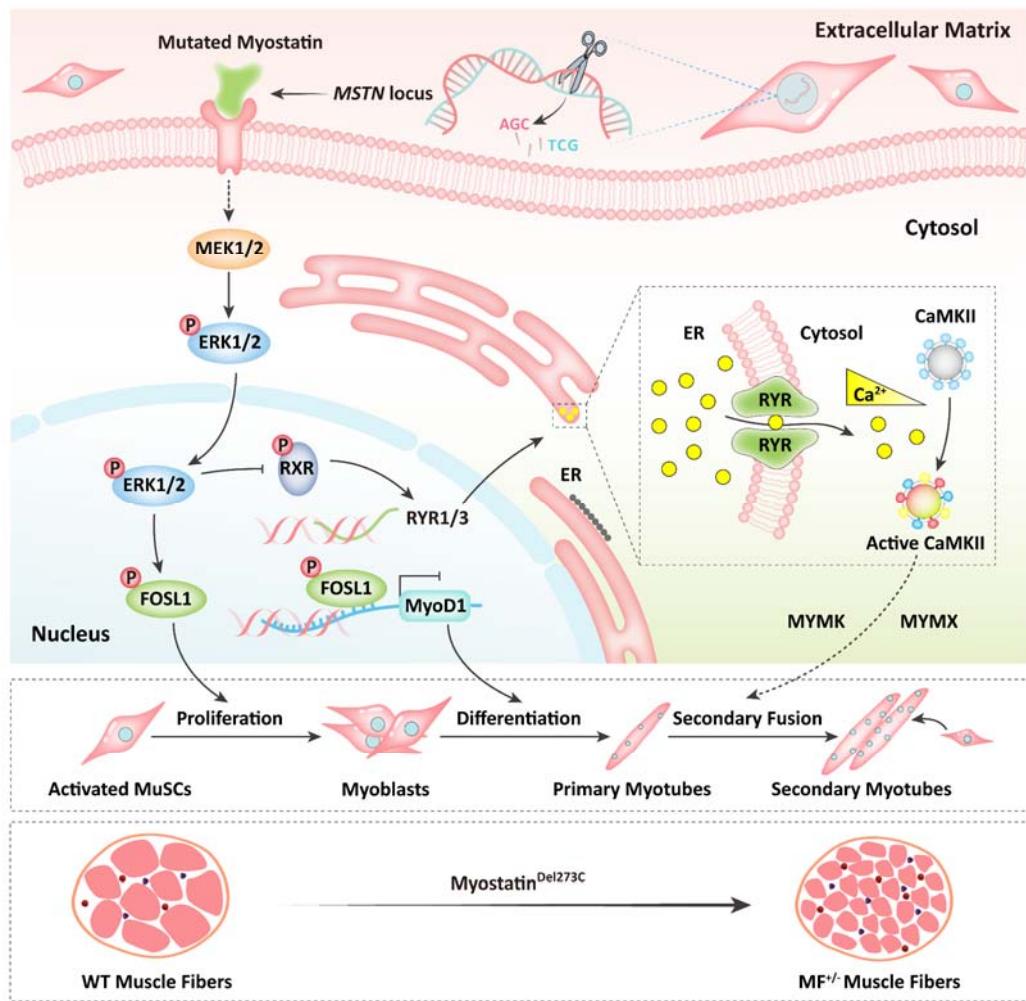
793 **Figure 7 FOSL1 activity is a key regulator of myogenic differentiation and**
794 **muscle myofiber hyperplasia**



795

796 (A) Immunofluorescence staining of myogenic differentiation markers MyoG and
797 MyHC in sheep skeletal muscle satellite cells at DM2 after addition of 20 μ M TBHQ.
798 Scale bar 130 μ m or 50 μ m. (B-E) The myotube fusion index, number of myotubes,
799 number of nuclei per myotube and the myotube diameter at DM2 after addition of 20
800 μ M TBHQ (n=3). All data points were shown. (F) Immunofluorescence staining of
801 myogenic differentiation markers MyoG and MyHC in sheep skeletal muscle satellite
802 cells at DM2 after addition of 1 μ M PD98059. Scale bar 130 μ m or 50 μ m. (G-J) The
803 myotube fusion index, number of myotubes, number of nuclei per myotube and the

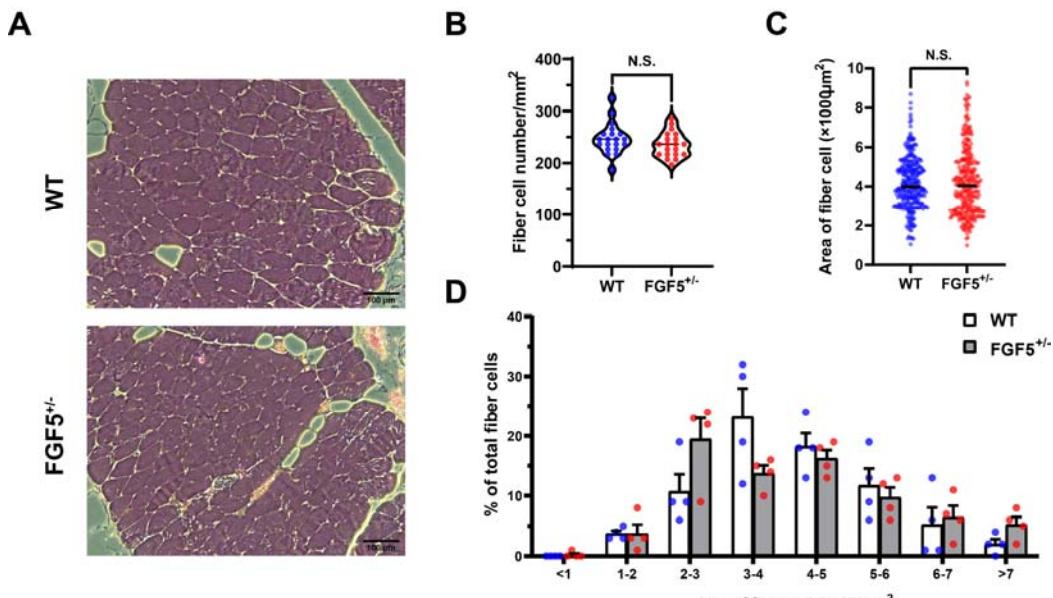
804 myotube diameter at DM2 after addition of 1 μ M PD98059 (n=3). All data points
805 were shown. Data: mean \pm SEM. Unpaired student's t-test and chi square test were
806 used for statistical analysis. All student's t-test were performed after the equal
807 variance test, otherwise the t-test with Welch's correction were used. * $P < 0.05$, ** $P <$
808 0.01, and *** $P < 0.001$.
809


810 **Figure 8** The *MSTN*^{Del273C} mutation with *FGF5* knockout inhibit
811 calcium-dependent transcription signal pathway

812
813 (A-B) The protein expression level of CaMKII α/δ between WT and $MF^{+/-}$ cells at
814 GM (n=3). (C) Distribution of intracellular Ca^{2+} signals between WT and $MF^{+/-}$ cells
815 at GM. (D) Average intracellular Ca^{2+} fluorescence intensity between WT and $MF^{+/-}$
816 cells at GM (n=4). (E) The mRNA expression levels of Ca^{2+} channels and myoblast
817 fusion-related genes at GM (n=3). (F) The mRNA expression levels of Ca^{2+} channels
818 and myoblast fusion-related genes at DM2 (n=3). Data: mean \pm SEM. Unpaired
819 student's t-test was used for statistical analysis. All student's t-test were performed
820 after the equal variance test, otherwise the t-test with Welch's correction were used.
821 *P < 0.05, **P < 0.01.

822

823 **Figure 9 Schematic illustration of the regulation of muscle phenotypes by**
824 ***MSTN*^{Del273C} mutation with *FGF5* knockout**



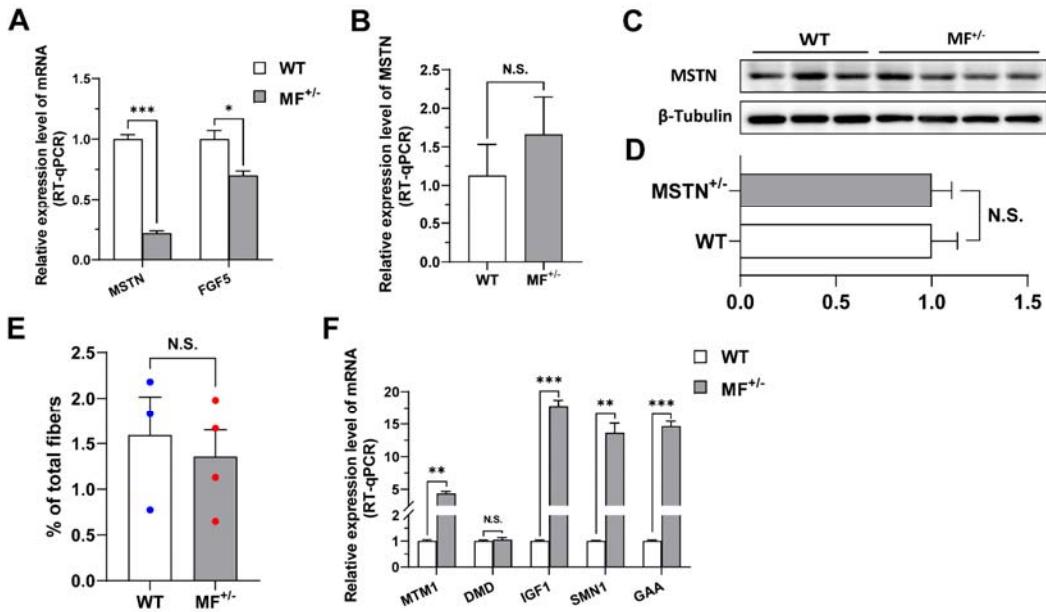
826 The *MSTN*^{Del273C} mutation with *FGF5* knockout mediated the activation of
827 FOSL1 via MEK-ERK-FOSL1 axis. The activated FOSL1 promotes skeletal muscle
828 satellite cell proliferation and inhibits myogenic differentiation by inhibiting the
829 expression of MyoD1, and resulting in fusion to form smaller myotubes. In addition,
830 activated ERK1/2 may inhibit the secondary fusion of myotubes by Ca²⁺-dependent
831 CaMKII activation pathway, leading to myoblasts fusion to form smaller myotubes.

832

833

834 **Figure S1 *FGF5* mutation does not affect muscle fiber size**

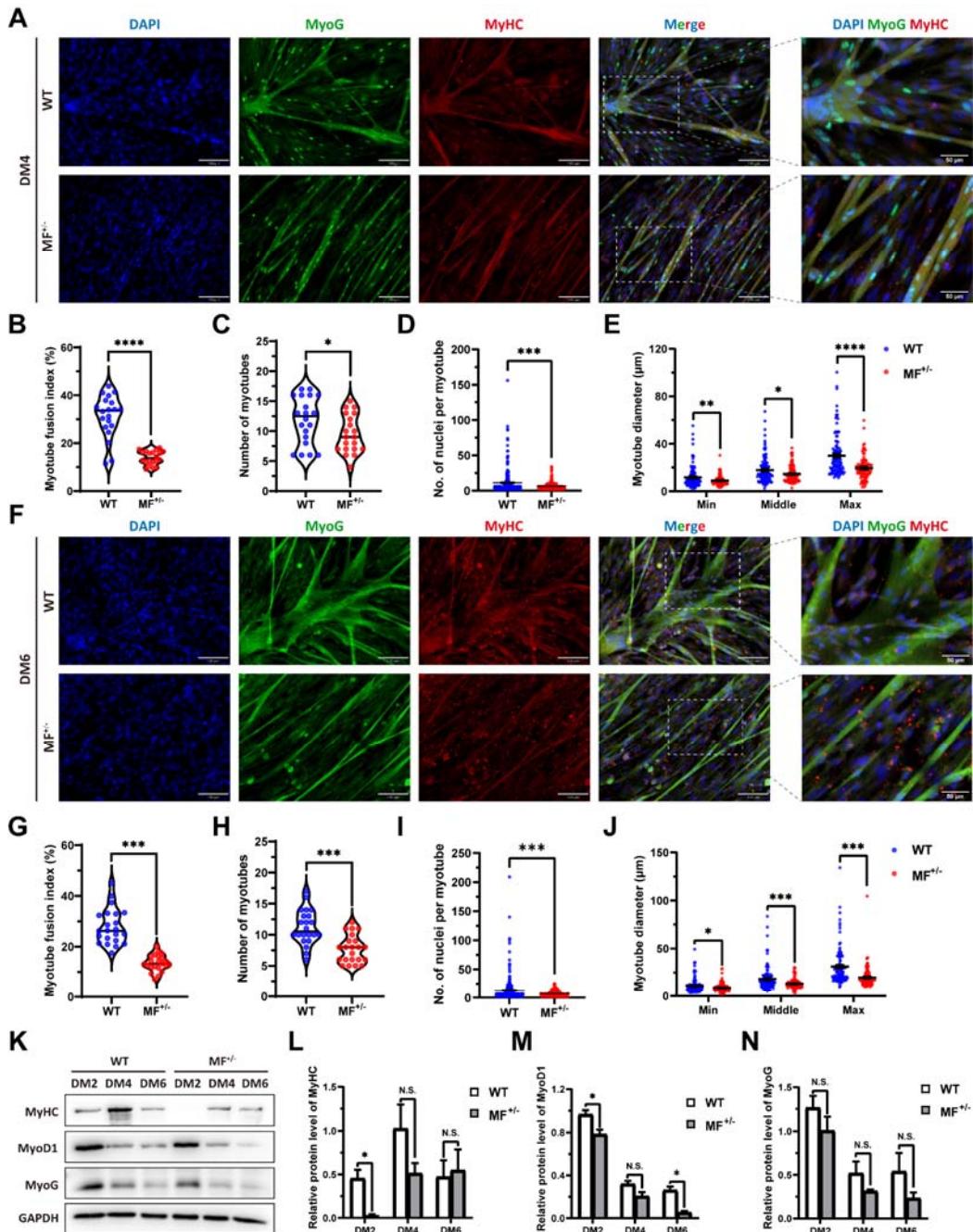
835


836 (A) HE sections of gluteus medius in WT and *FGF5*^{+/−} sheep. Scale bar 100 µm. (B)
837 Quantification of muscle fibre cell area of gluteus medius in WT and *FGF5*^{+/−} sheep.
838 (C) Quantification of muscle fibre cell number of per unit area in WT and *FGF5*^{+/−}
839 sheep. (D) The percentage of cross-sectional area of different size muscle fibers. Data:
840 mean ± SEM. Unpaired student's t-test was used for statistical analysis. All student's
841 t-test were performed after the equal variance test, otherwise the t-test with Welch's
842 correction were used.

843

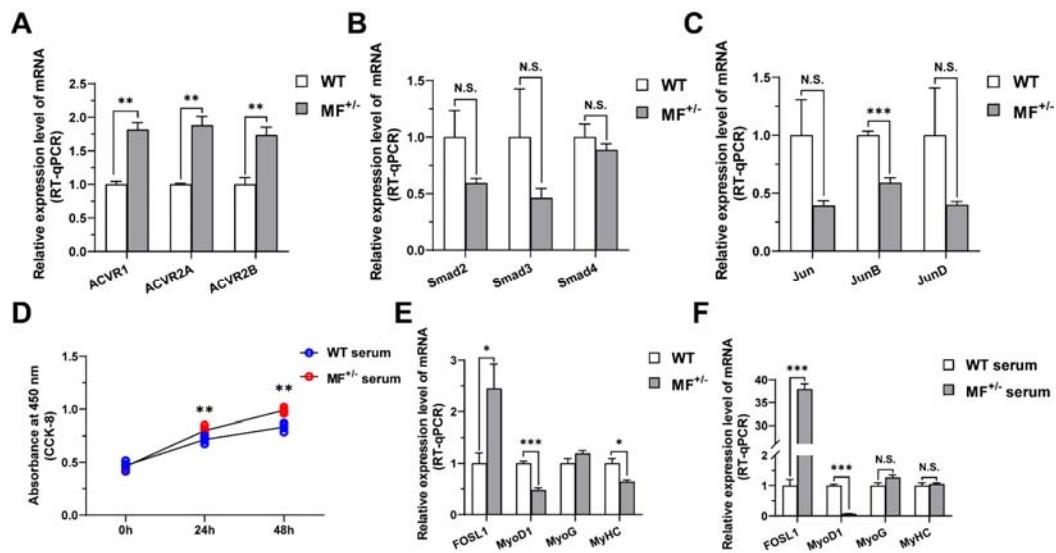
844

845


846 **Figure S2 The *MSTN*^{Del273C} mutation with *FGF5* knockout has no potential effect**
847 **on MSTN expression and muscular dystrophy**

848 (A) The mRNA expression levels of *MSTN* and *FGF5* of gluteus medius in WT (n=4) and *MF^{+/-}* (n=4) sheep at 3-month-old. (B) *MSTN* mRNA expression level of gluteus medius in WT (n=3) and *MF^{+/-}* (n=4) sheep. (C-D) MSTN protein expression level of gluteus medius in WT (n=3) and *MF^{+/-}* (n=4) sheep. (E) The proportion of centrally nucleated myofibres between WT (n=3) and *MF^{+/-}* (n=4) sheep. (F) The mRNA expression of muscular dystrophy related genes between WT and *MF^{+/-}* sheep (n=4). Data: mean \pm SEM. Unpaired student's t-test was used for statistical analysis. All student's t-test were performed after the equal variance test, otherwise the t-test with Welch's correction were used. *P < 0.05, **P < 0.01, and ***P < 0.001.

858


859 **Figure S3 The myogenic differentiation ability of MF^{+/−} cells was continuously
860 inhibited**

861
862 (A) The MyoG and MyHC immunofluorescence staining of myotubes at DM4. Scale
863 bar 130 μ m. (B-E) The myotube fusion index, number of myotubes, number of nuclei
864 per myotube and the myotube diameter at DM4 (n=3). (F) The MyoG and MyHC
865 immunofluorescence staining of myotubes at DM6. Scale bar 130 μ m. (G-J) The
866 myotube fusion index, number of myotubes, number of nuclei per myotube and the

867 myotube diameter at DM6 (n=3). (K-N) The protein expression levels of myogenic
868 differentiation markers during myogenic differentiation between WT and MF^{+/−} cells
869 (n=2-3). Data: mean ± SEM. Unpaired student's t-test and chi square test were used
870 for statistical analysis. All student's t-test were performed after the equal variance test,
871 otherwise the t-test with Welch's correction were used. *P < 0.05, **P < 0.01,
872 ***P < 0.001, and ****P < 0.0001.

873 **Figure S4 The effects of MSTN signaling pathway and MF^{+/−} serum on**
874 **proliferation and differentiation of skeletal muscle satellite cells**

875
876 (A) The mRNA expression levels of type I and type II receptors of MSTN between
877 WT (n=3) and MF^{+/−} (n=4) sheep gluteus medius. (B) The mRNA expression levels of
878 the Smad family downstream of MSTN between WT (n=3) and MF^{+/−} (n=4) sheep
879 gluteus medius. (C) The mRNA expression levels of the Jun family downstream of
880 MSTN between WT (n=3) and MF^{+/−} (n=4) sheep gluteus medius. (D) The number of
881 cells detected by CCK-8 at 0h, 24h, and 48h after culturing cells with serum from WT
882 sheep and MF^{+/−} sheep (n=4-5). (E) The mRNA expression levels of FOSL1 and
883 myogenic differentiation markers between WT and MF^{+/−} sheep skeletal muscle
884 satellite cells cultured and induced differentiation in sheep serum (n=4). (F) The
885 mRNA expression levels of FOSL1 and myogenic differentiation markers in skeletal
886 muscle satellite cells cultured and induced differentiation by serum from WT and
887 MF^{+/−} sheep (n=4). Data: mean ± SEM. Unpaired student's t-test and chi square test
888 were used for statistical analysis. All student's t-test were performed after the equal
889 variance test, otherwise the t-test with Welch's correction were used. *P < 0.05, **P <
890 0.01, and ***P < 0.001.

891

892 References

893 Alli, N. S., Yang, E. C., Miyake, T., Aziz, A., Collins-Hooper, H., Patel, K. &
894 McDermott, J. C. (2013a). Signal-dependent fra-2 regulation in skeletal
895 muscle reserve and satellite cells. *Cell Death Dis* 4: e692.

896 Alli, N. S., Yang, E. C., Miyake, T., Aziz, A., Collins-Hooper, H., Patel, K. &
897 McDermott, J. C. (2013b). Signal-dependent fra-2 regulation in skeletal
898 muscle reserve and satellite cells. *Cell Death Dis* 4(6): e692.

899 Baig, M. H., Ahmad, K., Moon, J. S., Park, S. Y., Ho Lim, J., Chun, H. J., Qadri, A. F.,
900 Hwang, Y. C., Jan, A. T., Ahmad, S. S., Ali, S., Shaikh, S., Lee, E. J. & Choi, I.
901 (2022). Myostatin and its Regulation: A Comprehensive Review of Myostatin
902 Inhibiting Strategies. *Front Physiol* 13: 876078.

903 Bao, D., Ma, Y., Zhang, X., Guan, F., Chen, W., Gao, K., Qin, C. & Zhang, L. (2015).
904 Preliminary Characterization of a Leptin Receptor Knockout Rat Created by
905 CRISPR/Cas9 System. *Sci Rep* 5: 15942.

906 Bayer, K. U., Lohler, J. & Harbers, K. (1996). An alternative, nonkinase product of
907 the brain-specifically expressed Ca²⁺/calmodulin-dependent kinase II alpha
908 isoform gene in skeletal muscle. *Mol Cell Biol* 16(1): 29-36.

909 Boman, I. A., Klemetsdal, G., Blichfeldt, T., Nafstad, O. & Vage, D. I. (2009). A
910 frameshift mutation in the coding region of the myostatin gene (MSTN)
911 affects carcass conformation and fatness in Norwegian White Sheep (*Ovis*
912 *aries*). *Anim Genet* 40(4): 418-422.

913 Boman, I. A. & Vage, D. I. (2009). An insertion in the coding region of the myostatin
914 (MSTN) gene affects carcass conformation and fatness in the Norwegian
915 Spaelsau (*Ovis aries*). *BMC Res Notes* 2: 98.

916 Campbell, J. S., Wenderoth, M. P., Hauschka, S. D. & Krebs, E. G. (1995).
917 Differential activation of mitogen-activated protein kinase in response to basic
918 fibroblast growth factor in skeletal muscle cells. *Proc Natl Acad Sci U S A*
919 92(3): 870-874.

920 Chen, M., Zhang, L., Guo, Y., Liu, X., Song, Y., Li, X., Ding, X. & Guo, H. (2021a).
921 A novel lncRNA promotes myogenesis of bovine skeletal muscle satellite cells
922 via PFN1-RhoA/Rac1. *J Cell Mol Med*.

923 Chen, M. M., Zhao, Y. P., Zhao, Y., Deng, S. L. & Yu, K. (2021b). Regulation of
924 Myostatin on the Growth and Development of Skeletal Muscle. *Front Cell
925 Dev Biol* 9: 785712.

926 Chen, Y., Zheng, Y., Kang, Y., Yang, W., Niu, Y., Guo, X., Tu, Z., Si, C., Wang, H.,
927 Xing, R., Pu, X., Yang, S. H., Li, S., Ji, W. & Li, X. J. (2015). Functional
928 disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. *Hum
929 Mol Genet* 24(13): 3764-3774.

930 Constantin, B., Cognard, C. & Raymond, G. (1996). Myoblast fusion requires
931 cytosolic calcium elevation but not activation of voltage-dependent calcium
932 channels. *Cell Calcium* 19(5): 365-374.

933 Dehnavi, E., Ahani Azari, M., Hasani, S., Nassiry, M. R., Mohajer, M., Khan Ahmadi,
934 A., Shahmohamadi, L. & Yousefi, S. (2012). Polymorphism of Myostatin
935 Gene in Intron 1 and 2 and Exon 3, and Their Associations with Yearling
936 Weight, Using PCR-RFLP and PCR-SSCP Techniques in Zel Sheep.
937 *Biotechnol Res Int* 2012: 472307.

938 Dierks, C., Momke, S., Philipp, U. & Distl, O. (2013). Allelic heterogeneity of FGF5
939 mutations causes the long-hair phenotype in dogs. *Anim Genet* 44(4): 425-431.

940 Dilger, A. C., Gabriel, S. R., Kutzler, L. W., McKeith, F. K. & Killefer, J. (2010). The
941 myostatin null mutation and clenbuterol administration elicit additive effects
942 in mice. *Animal* 4(3): 466-471.

943 Eigler, T., Zarfati, G., Amzallag, E., Sinha, S., Segev, N., Zabary, Y., Zaritsky, A.,
944 Shakked, A., Umansky, K. B., Schejter, E. D., Millay, D. P., Tzahor, E. &
945 Avinoam, O. (2021). ERK1/2 inhibition promotes robust myotube growth via
946 CaMKII activation resulting in myoblast-to-myotube fusion. *Dev Cell* 56(24):
947 3349-3363 e3346.

948 Fan, Z., Liu, Z., Xu, K., Wu, T., Ruan, J., Zheng, X., Bao, S., Mu, Y., Sonstegard, T. &
949 Li, K. (2022). Long-term, multidomain analyses to identify the breed and
950 allelic effects in MSTN-edited pigs to overcome lameness and sustainably
951 improve nutritional meat production. *Sci China Life Sci* 65(2): 362-375.

952 Grisolia, A. B., D'Angelo, G. T., Porto Neto, L. R., Siqueira, F. & Garcia, J. F. (2009).
953 Myostatin (GDF8) single nucleotide polymorphisms in Nellore cattle. *Genet
954 Mol Res* 8(3): 822-830.

955 Grobet, L., Martin, L. J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J.,
956 Schoeberlein, A., Dunner, S., Menissier, F., Massabanda, J., Fries, R., Hanset,
957 R. & Georges, M. (1997). A deletion in the bovine myostatin gene causes the
958 double-muscled phenotype in cattle. *Nat Genet* 17(1): 71-74.

959 Gui, T., Sun, Y., Shimokado, A. & Muragaki, Y. (2012). The Roles of
960 Mitogen-Activated Protein Kinase Pathways in TGF-beta-Induced
961 Epithelial-Mesenchymal Transition. *J Signal Transduct* 2012: 289243.

962 Hai, T., Teng, F., Guo, R., Li, W. & Zhou, Q. (2014). One-step generation of knockout
963 pigs by zygote injection of CRISPR/Cas system. *Cell Res* 24(3): 372-375.

964 Haidet, A. M., Rizo, L., Handy, C., Umapathi, P., Eagle, A., Shilling, C., Boue, D.,
965 Martin, P. T., Sahenk, Z., Mendell, J. R. & Kaspar, B. K. (2008). Long-term
966 enhancement of skeletal muscle mass and strength by single gene
967 administration of myostatin inhibitors. *Proc Natl Acad Sci U S A* 105(11):
968 4318-4322.

969 Han, J., Forrest, R. H. & Hickford, J. G. (2013). Genetic variations in the myostatin
970 gene (MSTN) in New Zealand sheep breeds. *Mol Biol Rep* 40(11): 6379-6384.

971 Hanset, R. & Michaux, C. (1985). On the genetic determinism of muscular
972 hypertrophy in the Belgian White and Blue cattle breed. I. Experimental data.
973 *Genet Sel Evol* (1983) 17(3): 359-368.

974 Hebert, J. M., Rosenquist, T., Gotz, J. & Martin, G. R. (1994). FGF5 as a regulator of
975 the hair growth cycle: evidence from targeted and spontaneous mutations. *Cell*
976 78(6): 1017-1025.

977 Higgins, C. A., Petukhova, L., Harel, S., Ho, Y. Y., Drill, E., Shapiro, L., Wajid, M. &
978 Christiano, A. M. (2014). FGF5 is a crucial regulator of hair length in humans.
979 *Proc Natl Acad Sci U S A* 111(29): 10648-10653.

980 Hongbing HAN, Y. M., Tao WANG,Ling LIAN,Xiuzhi TIAN,Rui HU,Shoulong
981 DENG,Kongpan LI,Feng WANG,Ning LI,Guoshi LIU,Yaofeng
982 ZHAO,Zhengxing LIAN (2014). One-step generation of myostatin gene
983 knockout sheep via the CRISPR/Cas9 system. *Front. Agr. Sci. Eng.* 1(1): 2-5.

984 Huang, Z., Chen, D., Zhang, K., Yu, B., Chen, X. & Meng, J. (2007). Regulation of
985 myostatin signaling by c-Jun N-terminal kinase in C2C12 cells. *Cell Signal*
986 19(11): 2286-2295.

987 Jones, N. C., Fedorov, Y. V., Rosenthal, R. S. & Olwin, B. B. (2001). ERK1/2 is
988 required for myoblast proliferation but is dispensable for muscle gene
989 expression and cell fusion. *J Cell Physiol* 186(1): 104-115.

990 Kambadur, R., Sharma, M., Smith, T. P. & Bass, J. J. (1997). Mutations in myostatin
991 (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. *Genome Res*
992 7(9): 910-916.

993 Kehler, J. S., David, V. A., Schaffer, A. A., Bajema, K., Eizirik, E., Ryugo, D. K.,
994 Hannah, S. S., O'Brien, S. J. & Menotti-Raymond, M. (2007). Four
995 independent mutations in the feline fibroblast growth factor 5 gene determine
996 the long-haired phenotype in domestic cats. *J Hered* 98(6): 555-566.

997 Kijas, J. W., McCulloch, R., Edwards, J. E., Oddy, V. H., Lee, S. H. & van der Werf, J.
998 (2007). Evidence for multiple alleles effecting muscling and fatness at the
999 ovine GDF8 locus. *BMC Genet* 8: 80.

1000 Kotani, H., Taimatsu, K., Ohga, R., Ota, S. & Kawahara, A. (2015). Efficient Multiple
1001 Genome Modifications Induced by the crRNAs, tracrRNA and Cas9 Protein
1002 Complex in Zebrafish. *PLoS One* 10(5): e0128319.

1003 Lee, S. J. (2021). Targeting the myostatin signaling pathway to treat muscle loss and
1004 metabolic dysfunction. *J Clin Invest* 131(9).

1005 Legrand, R., Tiret, L. & Abitbol, M. (2014). Two recessive mutations in FGF5 are
1006 associated with the long-hair phenotype in donkeys. *Genet Sel Evol* 46: 65.

1007 Li, L., Chambard, J. C., Karin, M. & Olson, E. N. (1992). Fos and Jun repress
1008 transcriptional activation by myogenin and MyoD: the amino terminus of Jun
1009 can mediate repression. *Genes Dev* 6(4): 676-689.

1010 Li, Y., Lian, D., Deng, S., Zhang, X., Zhang, J., Li, W., Bai, H., Wang, Z., Wu, H., Fu,
1011 J., Han, H., Feng, J., Liu, G., Lian, L. & Lian, Z. (2016). Efficient production
1012 of pronuclear embryos in breeding and nonbreeding season for generating
1013 transgenic sheep overexpressing TLR4. *J Anim Sci Biotechnol* 7: 38.

1014 Lv, Q., Yuan, L., Deng, J., Chen, M., Wang, Y., Zeng, J., Li, Z. & Lai, L. (2016).
1015 Efficient Generation of Myostatin Gene Mutated Rabbit by CRISPR/Cas9. *Sci
1016 Rep* 6: 25029.

1017 Marchitelli, C., Savarese, M. C., Crisa, A., Nardone, A., Marsan, P. A. & Valentini, A.
1018 (2003). Double muscling in Marchigiana beef breed is caused by a stop codon
1019 in the third exon of myostatin gene. *Mamm Genome* 14(6): 392-395.

1020 Marques, C., Unterkircher, T., Kroon, P., Oldrini, B., Izzo, A., Dramaretska, Y.,
1021 Ferrarese, R., Kling, E., Schnell, O., Nelander, S., Wagner, E. F., Bakiri, L.,
1022 Gargiulo, G., Carro, M. S. & Squatrito, M. (2021). NF1 regulates
1023 mesenchymal glioblastoma plasticity and aggressiveness through the AP-1
1024 transcription factor FOSL1. *Elife* 10.

1025 Mathes, S., Fahrner, A., Ghoshdastider, U., Rudiger, H. A., Leunig, M., Wolfrum, C.
1026 & Krutzfeldt, J. (2021). FGF-2-dependent signaling activated in aged human
1027 skeletal muscle promotes intramuscular adipogenesis. *Proc Natl Acad Sci U S
1028 A* 118(37).

1029 McPherron, A. C., Lawler, A. M. & Lee, S. J. (1997). Regulation of skeletal muscle
1030 mass in mice by a new TGF-beta superfamily member. *Nature* 387(6628):
1031 83-90.

1032 Michailovici, I., Harrington, H. A., Azogui, H. H., Yahalom-Ronen, Y., Plotnikov, A.,
1033 Ching, S., Stumpf, M. P., Klein, O. D., Seger, R. & Tzahor, E. (2014). Nuclear
1034 to cytoplasmic shuttling of ERK promotes differentiation of muscle
1035 stem/progenitor cells. *Development* 141(13): 2611-2620.

1036 Morissette, M. R., Cook, S. A., Buranasombati, C., Rosenberg, M. A. & Rosenzweig,
1037 A. (2009). Myostatin inhibits IGF-I-induced myotube hypertrophy through
1038 Akt. *Am J Physiol Cell Physiol* 297(5): C1124-1132.

1039 Nishi, M., Yasue, A., Nishimatu, S., Nohno, T., Yamaoka, T., Itakura, M., Moriyama,
1040 K., Ohuchi, H. & Noji, S. (2002). A missense mutant myostatin causes
1041 hyperplasia without hypertrophy in the mouse muscle. *Biochem Biophys Res
1042 Commun* 293(1): 247-251.

1043 Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., Kang, Y., Zhao, X., Si, W., Li,
1044 W., Xiang, A. P., Zhou, J., Guo, X., Bi, Y., Si, C., Hu, B., Dong, G., Wang, H.,
1045 Zhou, Z., Li, T., Tan, T., Pu, X., Wang, F., Ji, S., Zhou, Q., Huang, X., Ji, W. &
1046 Sha, J. (2014). Generation of gene-modified cynomolgus monkey via
1047 Cas9/RNA-mediated gene targeting in one-cell embryos. *Cell* 156(4):
1048 836-843.

1049 Pothuraju, M., Mishra, S. K., Kumar, S. N., Mohamed, N. F., Kataria, R. S., Yadav, D.
1050 K. & Arora, R. (2015). Polymorphism in the Coding Region Sequence of Gdf8
1051 Gene in Indian Sheep. *Genetika* 51(11): 1297-1300.

1052 Qian, L., Tang, M., Yang, J., Wang, Q., Cai, C., Jiang, S., Li, H., Jiang, K., Gao, P.,
1053 Ma, D., Chen, Y., An, X., Li, K. & Cui, W. (2015). Targeted mutations in
1054 myostatin by zinc-finger nucleases result in double-muscled phenotype in
1055 Meishan pigs. *Sci Rep* 5: 14435.

1056 Sato, M., Koriyama, M., Watanabe, S., Ohtsuka, M., Sakurai, T., Inada, E., Saitoh, I.,
1057 Nakamura, S. & Miyoshi, K. (2015). Direct Injection of
1058 CRISPR/Cas9-Related mRNA into Cytoplasm of Parthenogenetically
1059 Activated Porcine Oocytes Causes Frequent Mosaicism for Indel Mutations.
1060 *Int J Mol Sci* 16(8): 17838-17856.

1061 Segales, J., Perdiguero, E. & Munoz-Canoves, P. (2016). Regulation of Muscle Stem
1062 Cell Functions: A Focus on the p38 MAPK Signaling Pathway. *Front Cell Dev
1063 Biol* 4: 91.

1064 Sjakste, T., Paramonova, N., Grislis, Z., Trapina, I. & Kairisa, D. (2011). Analysis of
1065 the single-nucleotide polymorphism in the 5'UTR and part of intron I of the
1066 sheep MSTN gene. *DNA Cell Biol* 30(7): 433-444.

1067 Sobolev, V. V., Khashukoeva, A. Z., Evina, O. E., Geppe, N. A., Chebysheva, S. N.,
1068 Korsunskaya, I. M., Tchepourina, E. & Mezentsev, A. (2022). Role of the
1069 Transcription Factor FOSL1 in Organ Development and Tumorigenesis. *Int J
1070 Mol Sci* 23(3).

1071 Sundberg, J. P., Rourk, M. H., Boggess, D., Hogan, M. E., Sundberg, B. A. &
1072 Bertolino, A. P. (1997). Angora mouse mutation: altered hair cycle, follicular
1073 dystrophy, phenotypic maintenance of skin grafts, and changes in keratin
1074 expression. *Vet Pathol* 34(3): 171-179.

1075 Sung, Y. H., Kim, J. M., Kim, H. T., Lee, J., Jeon, J., Jin, Y., Choi, J. H., Ban, Y. H.,
1076 Ha, S. J., Kim, C. H., Lee, H. W. & Kim, J. S. (2014). Highly efficient gene
1077 knockout in mice and zebrafish with RNA-guided endonucleases. *Genome Res*
1078 24(1): 125-131.

1079 Tobin, S. W., Yang, D., Girgis, J., Farahzad, A., Blais, A. & McDermott, J. C. (2016).
1080 Regulation of Hspb7 by MEF2 and AP-1: implications for Hspb7 in muscle
1081 atrophy. *J Cell Sci* 129(21): 4076-4090.

1082 Tu, Z., Yang, W., Yan, S., Yin, A., Gao, J., Liu, X., Zheng, Y., Zheng, J., Li, Z., Yang,
1083 S., Li, S., Guo, X. & Li, X. J. (2017). Promoting Cas9 degradation reduces
1084 mosaic mutations in non-human primate embryos. *Sci Rep* 7: 42081.

1085 Wan, H., Feng, C., Teng, F., Yang, S., Hu, B., Niu, Y., Xiang, A. P., Fang, W., Ji, W.,
1086 Li, W., Zhao, X. & Zhou, Q. (2015). One-step generation of p53 gene biallelic
1087 mutant Cynomolgus monkey via the CRISPR/Cas system. *Cell Res* 25(2):
1088 258-261.

1089 Wang, H. & Yang, H. (2019). Gene-edited babies: What went wrong and what could
1090 go wrong. *PLoS Biol* 17(4): e3000224.

1091 Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F. &
1092 Jaenisch, R. (2013). One-step generation of mice carrying mutations in
1093 multiple genes by CRISPR/Cas-mediated genome engineering. *Cell* 153(4):
1094 910-918.

1095 Wang, Q. & McPherron, A. C. (2012). Myostatin inhibition induces muscle fibre
1096 hypertrophy prior to satellite cell activation. *J Physiol* 590(9): 2151-2165.

1097 Wang, X., Yu, H., Lei, A., Zhou, J., Zeng, W., Zhu, H., Dong, Z., Niu, Y., Shi, B., Cai,
1098 B., Liu, J., Huang, S., Yan, H., Zhao, X., Zhou, G., He, X., Chen, X., Yang, Y.,
1099 Jiang, Y., Shi, L., Tian, X., Wang, Y., Ma, B., Huang, X., Qu, L. & Chen, Y.
1100 (2015). Generation of gene-modified goats targeting MSTN and FGF5 via
1101 zygote injection of CRISPR/Cas9 system. *Sci Rep* 5: 13878.

1102 Wegner, J., Albrecht, E., Fiedler, I., Teuscher, F., Papstein, H. J. & Ender, K. (2000).
1103 Growth- and breed-related changes of muscle fiber characteristics in cattle. *J
1104 Anim Sci* 78(6): 1485-1496.

1105 Wijaya, Y. T., Setiawan, T., Sari, I. N., Park, K., Lee, C. H., Cho, K. W., Lee, Y. K.,
1106 Lim, J. Y., Yoon, J. K., Lee, S. H. & Kwon, H. Y. (2022). Ginsenoside Rd
1107 ameliorates muscle wasting by suppressing the signal transducer and activator
1108 of transcription 3 pathway. *J Cachexia Sarcopenia Muscle*.

1109 Xie, S. J., Li, J. H., Chen, H. F., Tan, Y. Y., Liu, S. R., Zhang, Y., Xu, H., Yang, J. H.,
1110 Liu, S., Zheng, L. L., Huang, M. B., Guo, Y. H., Zhang, Q., Zhou, H. & Qu, L.
1111 H. (2018). Inhibition of the JNK/MAPK signaling pathway by
1112 myogenesis-associated miRNAs is required for skeletal muscle development.
1113 *Cell Death Differ* 25(9): 1581-1597.

1114 Xu, T. S., Gu, L. H., Zhang, X. H., Ye, B. G., Liu, X. L. & Hou, S. S. (2013).
1115 Characterization of myostatin gene (MSTN) of Pekin duck and the association
1116 of its polymorphism with breast muscle traits. *Genet Mol Res* 12(3):
1117 3166-3177.

1118 Yoshizawa, Y., Wada, K., Shimo, G., Kameyama, Y., Wakabayashi, Y., Fukuta, K. &
1119 Hashizume, R. (2015). A 1-bp deletion in Fgf5 causes male-dominant long
1120 hair in the Syrian hamster. *Mamm Genome* 26(11-12): 630-637.
1121 Zhang, R., Li, Y., Jia, K., Xu, X., Li, Y., Zhao, Y., Zhang, X., Zhang, J., Liu, G., Deng,
1122 S. & Lian, Z. (2020). Crosstalk between androgen and Wnt/beta-catenin leads
1123 to changes of wool density in FGF5-knockout sheep. *Cell Death Dis* 11(5):
1124 407.
1125 Zhiliang, G., Dahai, Z., Ning, L., Hui, L., Xuemei, D. & Changxin, W. (2004). The
1126 single nucleotide polymorphisms of the chicken myostatin gene are associated
1127 with skeletal muscle and adipose growth. *Sci China C Life Sci* 47(1): 25-30.
1128 Zhou, J., Wang, J., Shen, B., Chen, L., Su, Y., Yang, J., Zhang, W., Tian, X. & Huang,
1129 X. (2014). Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome
1130 targeting. *FEBS J* 281(7): 1717-1725.
1131 Zhu, G. H., Huang, J., Bi, Y., Su, Y., Tang, Y., He, B. C., He, Y., Luo, J., Wang, Y.,
1132 Chen, L., Zuo, G. W., Jiang, W., Luo, Q., Shen, J., Liu, B., Zhang, W. L., Shi,
1133 Q., Zhang, B. Q., Kang, Q., Zhu, J., Tian, J., Luu, H. H., Haydon, R. C., Chen,
1134 Y. & He, T. C. (2009). Activation of RXR and RAR signaling promotes
1135 myogenic differentiation of myoblastic C2C12 cells. *Differentiation* 78(4):
1136 195-204.
1137 Zhu, X., Hadhazy, M., Wehling, M., Tidball, J. G. & McNally, E. M. (2000).
1138 Dominant negative myostatin produces hypertrophy without hyperplasia in
1139 muscle. *FEBS Lett* 474(1): 71-75.

1140