

1 **Long-B prokaryotic Argonaute systems employ various effectors to confer immunity**
2 **via abortive infection**

3 Xinmi Song¹#, Sheng Lei¹#, Shunhang Liu¹#, Yanqiu Liu¹#, Pan Fu¹, Zhifeng Zeng¹, Ke
4 Yang¹, Yu Chen¹, Ming Li², Qunxin She³, Wenyuan Han^{1,4}

5 ¹State Key Laboratory of Agricultural Microbiology and College of Life Science and
6 Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan,
7 China

8 ²CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key
9 Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences,
10 Beijing, China

11 ³CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial
12 Technology, Shandong University, Binhai Road 72, Jimo, 266237 Qingdao, China

13 #These authors contributed equally to the manuscript.

14 ⁴Lead contact

15 email: hanwenyuan@mail.hzau.edu.cn

16

17 **Summary:** Argonaute proteins (Agos) bind short nucleic acids as guides and are directed by
18 them to recognize target complementary nucleic acids. Prokaryotic Agos (pAgos) are
19 extremely diverse, with potential functions in microbial defense. The functions and
20 mechanisms of a group of full-length yet inactive pAgos, long-B pAgos, remain enigmatic.
21 Here, we show that most long-B pAgos constitute cell suicide systems together with their
22 various associated proteins, including nucleases, Sir2-domain-containing proteins and trans-
23 membrane proteins, respectively. Among them, the long-B pAgo-nuclease system utilizes an
24 RNA-programmed and target-recognition-activated collateral DNA cleavage activity to sense
25 invaders and kill the infected cells. This results in depletion of the invading plasmid from the
26 cell population. Together, our data indicate that the long-B pAgo systems induce cell death
27 with various effector proteins after recognition of invading nucleic acids, corresponding to an
28 immune response via abortive infection.

29 **Introduction**

30 Argonaute proteins (Agos) are important defense elements in both eukaryotes and
31 prokaryotes¹. Eukaryotic Agos (eAgos) provide immunity against viruses and transposons by
32 RNA silencing^{2,3}. In the RNA silencing pathways, eAgos are loaded with short RNA
33 fragments (guides) generated from viruses, transposons or genomic transcripts, and are
34 directed to recognize and/or cleave target RNA for silencing. The structural basis of the RNA-
35 guided RNA recognition of eAgos have been revealed⁴. They consist of two lobes, which
36 comprise N-terminal (N) and PAZ (PIWI–Argonaute–Zwille) domains, and MID (Middle) and
37 PIWI (P-element Induced Wimpy Testis) domains, respectively^{5,6}. The MID domain contains
38 a pocket that binds to the 5'-end of the guide RNA, while the PAZ domain anchors the 3'-end
39 of the guide. PIWI domain forms an RNaseH fold and usually contains a DEDX (where X
40 denotes D, H, or K) catalytic tetrad, which is essential for the RNA cleavage activity.

41 Prokaryotic Agos (pAgos) show much higher diversity than eAgos^{7,8}. They can be classified
42 into three groups according to the phylogenetic analyses: long-A, long-B and short pAgos⁸.
43 Long-A and long-B pAgos contain all the four domains as eAgos, while short pAgos lack the
44 N and PAZ domains. Most of long-A pAgos are active since their catalytic tetrad is intact.
45 Many long-A pAgos are directed by DNA guides to bind and cleave DNA targets⁹⁻¹⁴. In vivo,
46 their guides are more often derived from extrachromosomal genetic elements and/or multicopy
47 genetic elements and thus are directed to target invading viruses and plasmids^{9,14}. Long-A
48 pAgos also acquire guides from the region of replication termination and can be directed by
49 them to resolve replicated DNA molecules^{14,15}. Other long-A pAgos show diverse guides and
50 targets preferences¹⁶⁻²⁰, suggesting that they may play versatile physiological functions.

51 Short pAgos are inactive as a result of the mutation of the catalytic tetrad, and their functions
52 have been a mystery for a long time until most recently. It was reported that short pAgos and
53 a (preduso)short pAgo from *Sulfolobus islandicus* (Si) that shares the same domain
54 architecture as short pAgos but is not classified into the short group by the phylogenetic

55 analysis²¹, constitute defense systems together with their associated proteins²²⁻²⁵. These
56 defense systems confer immunity against viruses and plasmids via an abortive infection (Abi)
57 response. Abi is a defense strategy that kills the infected cells or induces cell dormancy to
58 suppress the spreading of the invaders²⁶. The general mechanism for the Abi response is
59 that short pAgos sense invaders by guide-directed target recognition and activate their
60 associated proteins, such as NADase and membrane protein, to induce cell death or cell
61 dormancy²⁷.

62 Long-B pAgos constitute the second inactive pAgo group⁸. A representative long-B pAgo,
63 *Rhodobacter sphaeroides* (Rs) Ago, binds short RNA as guides and is directed to recognize
64 target DNA^{28,29}. The DNA binding results in suppression of plasmid-encoded gene
65 expression and/or plasmid degradation^{28,29}, but the involved mechanisms remain elusive.
66 Moreover, gene neighborhood of long-B pAgos also encodes the so-called pAgo-associated
67 proteins⁸, the functional connections of which with long-B pAgos remain unknown. In this
68 study, we explored the diversity of long-B pAgos and found that long-B pAgos are genetically
69 and functionally associated with nucleases, NADases and membrane proteins. Relying on
70 these associated effectors, the long-B pAgos mediate Abi response to provide
71 immunoprotection against invading plasmid. In particular, the long-B pAgo-nuclease system
72 performs RNA-guided unspecific DNA degradation following recognition of a specific DNA
73 target, indicating that both CRISPR-Cas systems and pAgo systems can utilize the target
74 recognition-activated collateral DNA degradation as a defense strategy³⁰⁻³⁴.

75 **Results**

76 **Long-B pAgos cluster with potential toxic effectors**

77 Bioinformatic analysis indicates that long-B pAgos tend to associate with a number of proteins
78 that can be clustered into several orthogroups (og)⁸. Among them, og_15 (nuclease), og_44
79 (SIR2_2 domain containing protein) and og_100 (protein with unknown domain) are usually
80 encoded by simple operons that only contain 2 or 3 genes⁸. To further analyze the
81 connection between long-B pAgos and their associated proteins, we constructed a
82 phylogenetic tree of long-B pAgos and marked them with different colors according to their
83 associated proteins (**Figure 1A**). This reveals that the long-B pAgos associated with og_15,
84 og_44, og_54 (VirE N-terminal domain containing protein) and og_100 can be clustered into
85 separated subclades. Further, comparison of the phylogenetic trees of og_15, og_44 and
86 og_100, and their respective pAgos suggests the coevolution of the long-B pAgos and the
87 associated proteins (**Figure 1B-D**). In addition, the operons encoding og_15, og_44 and
88 og_100 are organized in the same structure, with pAgos upstream of the associated genes
89 (**Figure 1E**). Together, the analyses strongly suggest that og_15, og_44 and og_100, and
90 their respective long-B pAgos are functionally connected.

91 To gain an insight into the possible function of og_100 that was annotated as “protein with
92 unknown domain”⁸, we predicted the structure of og_100 members using DeepTMHMM and
93 Alphafold2. This reveals that the og_100 members are trans-membrane (TM) proteins (an
94 example shown in Figure S1 G and H). Nucleases, SIR2-like proteins and TM proteins are
95 widely found in Abi defense systems, including the characterized pAgo Abi systems^{22-25,35-41}.
96 Their association with long-B pAgos implies that the related long-B pAgo systems might also
97 mediate Abi responses. Based on the nomenclature proposed for short pAgo systems and
98 SiAgo system^{22,25}, the long-B systems are named as BPAN (long-B prokaryotic argonaute
99 nuclease), BPAS (long-B prokaryotic argonaute Sir2) and BPAM (long-B prokaryotic
100 argonaute trans-membrane) systems, respectively. Correspondingly, the associated proteins
101 are named bAgaN (long-B pAgo-associated nuclease), bAgaS (long-B pAgo-associated Sir2)
102 and bAgaM (long-B pAgo-associated trans-membrane). To reveal the functions and molecular
103 mechanisms of these long-B pAgo systems, we selected the *Escherichia coli* (Ec) BPAN
104 system, a BPAS system from unclassified *Gammaproteobacteria bacterium* (Gb) and the
105 *Elizabethkingia anophelis* (Ea) BPAM system for analysis (Figure 1E and Table S1).

106 bAgaN is a PD-(D/E)XK superfamily DNase

107 We began by focusing on the biochemical properties of bAgaN. bAgaN was annotated as a
108 member of the RecB-like protein family, belonging to the PD-(D/E)XK superfamily⁸. Members
109 of the superfamily are involved in restriction-modification systems, DNA metabolism, tRNA
110 splicing⁴². Recently, many members of the superfamily are found as effectors of type III
111 CRISPR-Cas and CBASS defense systems^{32,33}. We expressed EcbAgaN in *E. coli* BL21 and
112 purified it to apparent homogeneity (Figure S2A). The analysis by multi-angle light scattering
113 coupled with size exclusion chromatography (SEC-MALS) indicates that EcbAgaN forms a
114 dimer in solution (Figure 2A). We predicted the dimer structure of EcbAgaN (Figure S1A). The
115 analysis reveals that EcbAgaN is composed of two domains that are connected by an
116 unstructured link and the C-terminal domain adopts a restriction endonuclease-like fold
117 (Figure S1A and B), which possesses the conserved D-EVK motif as shown by the sequence
118 alignment analysis (Figure S1C). A database search using the DALI structure-comparison
119 server⁴³ reveal structural similarity to the type III CRISPR-Cas system accessory nuclease
120 Card1 (PDB: 6wxx)³⁴ and Can2 (PDB: 7bdv)⁴⁴, and the type IIS restriction endonuclease
121 R.BspD6I (PDB: 2ewf)⁴⁵. Then, we analyzed the nuclease activity of EcbAgaN with various
122 substrates. The results show that EcbAgaN efficiently cleaves ssDNA, dsDNA and ssDNA
123 from a DNA/RNA duplex but shows no activity towards RNA (Figure 2B), and the DNase
124 activity of EcbAgaN is dependent on Mn²⁺ (Figure S2B). In addition, EcbAgaN also efficiently
125 degrades plasmids and genomic DNA that are extracted from *E. coli* DH5α cells (Figure 2C),
126 suggesting that EcbAgaN can cleave methylated DNA. We then constructed the mutants that
127 carry alanine substitutions of the D-EVK motif (M1: D298A; M2: E309A-K311A). Analysis of
128 the mutants reveals that they are inactive for DNA cleavage (Figure 2D), indicating that the
129 motif is essential for the nuclease activity.

130 **The EcBPAN system confers cell toxicity via degrading genomic DNA**

131 We noticed that EcAgo and its close homologues have two predicted starting codons, ATG
132 and TTG, encoding a 743 amino-acids (a.a.) protein (EcAgo⁷⁴³) and a 731-a.a. Ago (EcAgo⁷³¹)
133 respectively (Figure S3A, Table S1). We firstly focused on the EcAgo⁷⁴³ system. We
134 constructed strains expressing EcAgo⁷⁴³ and EcbAgaN individually or both of them (i.e., the
135 BPAN system) using the expression plasmids pCDF-EcAgo⁷⁴³ and pET28T-EcbAgaN (Table
136 S2) respectively or together. The strains, as well as the control strain containing empty
137 vectors (EV), were grown in the presence of inducers (IPTG and aTc) but without antibiotics.
138 At 4 h during the induction, cell viability was assessed by plating of the cells onto plates with
139 or without antibiotics. The results derived from the antibiotic-free plates show that individual
140 expression of EcAgo⁷⁴³ and EcbAgaN has little effect on the cell viability, while expression of
141 the EcBPAN system results in an over 100-fold reduction in the cell viability (Figure 3A). The
142 results indicate that EcAgo⁷⁴³ and EcbAgaN cooperatively confer cytotoxicity. In addition, the
143 mutated EcBPAN systems containing EcbAgaN dead mutants (M1 and M2) do not induce any
144 reduction in the cell viability, indicating that the cytotoxicity is dependent on the nuclease
145 activity of EcbAgaN.

146 To reveal how the EcBPAN system mediates cytotoxicity, we analyzed the genome integrity
147 of the cells. The cell samples were taken from the cultures during the induction and subjected
148 to genomic DNA extraction and DAPI-staining. Gel electrophoresis analysis of the genomic
149 DNA indicates that the EcBPAN system results in extensive genomic DNA degradation at 2 h
150 (Figure 3B). Meanwhile, analysis of the DAPI-stained cells with flow cytometry shows that the
151 EcBPAN system induces dramatic decrease of the cellular DNA content (Figure 3C). By
152 comparison, the dead mutations of EcbAgaN abolished the observed genomic DNA
153 degradation (Figure 3B and C). Together, the data indicate that EcAgo⁷⁴³ and EcbAgaN
154 cooperatively induce cytotoxicity by degrading genomic DNA with the nuclease activity of
155 EcbAgaN.

156 **The cell toxicity of the EcBPAN system is triggered by the CloDF13 origin**

157 To reveal whether the system could also induce plasmid depletion, we compared the cell
158 viability on the antibiotic-free plates and the plates containing Kanamycin (Kan, for selection
159 of pET28aT-EcbAgaN) or streptomycin (Str, for selection of pCDF-EcAgo⁷⁴³), or both of them
160 (Figure 3A). The results show that individual EcAgo⁷⁴³ or EcbAgaN, or the mutated EcBPAN
161 systems do not lead to any plasmid depletion. By comparison, the wild type EcBPAN system
162 induces a 100-fold decrease in the cell viability on the Str plates compared to the antibiotic-
163 free plates, and on the Kan+Str plates compared to the Kan plates (Figure 3A), indicative of
164 the depletion of the pCDF-EcAgo⁷⁴³ plasmid. Nevertheless, the cell viability on the Kan plates
165 is the same as that on the antibiotic-free plates. The results suggest that the EcBPAN system
166 might mediate selected depletion of pCDF-EcAgo⁷⁴³. To explore the phenomenon, we
167 expressed EcAgo⁷⁴³ and EcbAgaN using the pBAD24 plasmid with araBAD promoter and Tet

168 promoter respectively. In this case, induction of EcAgo⁷⁴³ and EcbAgaN using arabinose and
169 aTc does not induce cell viability reduction (Figure 3D). Then, the cells were transformed with
170 the pCDF-EGFP plasmid, which, however, rendered the expression of EcAgo⁷⁴³ and
171 EcbAgaN toxic, resulting a ~1000-fold reduction in the cell viability (Figure 3D). In addition,
172 the cell viability reduction requires both EcAgo⁷⁴³ and the nuclease activity of EcbAgaN. The
173 data indicate that pCDF-EGFP activates the EcBPAN system to mediate cell death. Thus, the
174 depletion of pCDF-EcAgo⁷⁴³ in Figure 3A could be due to the selective killing of the cells
175 carrying the plasmid.

176 The CloDF13 origin and T7 expression cassettes of pCDF-EGFP have been shown to act as
177 triggers for short pAgo systems^{23,25}. To gain further insights into how pCDF-EGFP triggers
178 the toxicity of the EcBPAN system, we replaced the CloDF13 origin of pCDF-EGFP with the
179 ColA origin and the pSC101 replicon respectively, and also removed the T7 expression
180 cassettes (T7Es) of pCDF-EGFP. Then, the cell viability of the cells containing these variant
181 plasmids was analyzed on the plates in the presence or absence of IPTG (Figure 3E). The
182 results indicate that the origin replacement abolishes the cytotoxicity of the EcBPAN system,
183 while removal of T7Es has little effects on the cytotoxicity. In addition, IPTG has little effects
184 on the cytotoxicity, either. Together, the data indicate that the CloDF13 origin activates the
185 EcBPAN system to trigger cell death. We also analyzed the functions of the EcBPAN system
186 expressing EcAgo⁷³¹. The results show that the EcAgo⁷³¹ system does not induce any
187 reduction in the cell viability when expressed from the pBAD24 vector, while pCDF-EGFP
188 activates the cytotoxicity of the system (Figure S3B), indicating that presence of the 12 a.a. or
189 not does not alter the functions of EcAgo.

190 Next, we analyzed whether the EcBPAN system could provide immunoprotection against
191 phages. Efficiency of plaque formation (EOP) of T5, T7 and lambda-vir on the bacterial lawn
192 expressing the EcBPAN system or its mutants was measured (Figure S3C). The results show
193 that the EcBPAN system did not induce any reduction in the EOP of any phage.

194 **In vivo nucleic acid binding of EcBPAN system**

195 pAgo proteins are inherently directed by nucleic acid guides to recognize complementary
196 nucleic acid targets^{9,28}, and the ability is employed by short pAgo and SiAgo systems to
197 sense invaders^{22,23,25}. To gain insight into how the EcBPAN system sense the invading
198 plasmid, we analyzed the nucleic acids associated with EcAgo in vivo. Specifically, EcAgo⁷⁴³
199 was purified from the cells containing pCDF-EGFP (+pCDF) or EcbAgaN (+bAgaN) or both of
200 them (+pCDF, +bAgaN), and the nucleic acids were extracted from the three protein samples.
201 The nucleic acids were subjected to Fast Thermosensitive Alkaline Phosphatase (FastAP)
202 treatment or not, followed by T4 polynucleotide kinase (PNK) labeling with γ P³²-ATP. Only the
203 FastAP-treated nucleic acids were efficiently labeled by PNK (Figure 4A), indicating that most
204 of the nucleic acids contain 5' phosphate group. The assay also indicates that the nucleic
205 acids were less abundant in the sample lacking pCDF-EGFP. Then, treatment of the labeled

206 nucleic acids by RNase and DNase respectively reveals that only RNase degraded the
207 nucleic acids (Figure 4B). Together, the EcAgo-associated nucleic acids are small RNAs
208 containing 5' phosphate group.

209 Next, the small RNAs were subjected to RNA sequencing, and meanwhile the transcriptome
210 of the corresponding cultures was also analyzed. The results show that the abundance of
211 small RNAs is correlated with the RNA sequences in the transcriptome in the samples
212 containing pCDF-EGFP (Figure 4C and D, Table S5). Moreover, pCDF-EGFP generated
213 much more RNAs than the pBAD24 plasmids and even more than the *E. coli* genome in the
214 transcriptome. Consequently, the pCDF-EGFP-derived small RNAs are much more abundant
215 than those derived from the pBAD24 plasmids and the genome (Figure 4C and D), in
216 agreement with that only pCDF-EGFP activates the EcBPAN system. On the other hand,
217 absence of EcbAgaN has no apparent effects on the abundance of the small RNAs or their
218 correlation with the transcriptome.

219 Then, we analyzed the length distribution and sequence bias properties of the small RNAs.
220 From the cells containing pCDF-EGFP, the small RNAs are predominantly ~18-22 nt in length
221 and show a bias toward A and U at the first two nt, independent of EcbAgaN (Figure 4E and
222 F). By comparison, absence of pCDF-EGFP lowered the AU bias and results in the
223 accumulation of the small RNAs shorter than 18 nt, possibly because the genome-derived
224 small RNAs are shorter than the plasmid-derived small RNAs (Figure S4). Intriguingly, the
225 length distribution and sequence bias properties are applied to the small RNAs derived from
226 both the CloDF13 origin and other genetic elements that do not activate the EcBPAN system,
227 such as the pBAD24 plasmids and the two T7 expression cassettes (T7Es) of pCDF-EGFP
228 (Figure S4 and S5). In particular, T7Es generate even more abundant small RNAs than the
229 CloDF13 origin. The data suggest that EcAgo does not specifically acquire small RNAs from
230 the CloDF13 origin-derived transcripts, although it is the specific trigger.

231 **Guide-directed target recognition of EcAgo activates EcbAgaN**

232 To gain further insight into how the EcBPAN system senses invading genetic element and
233 how it is activated, we performed an electrophoretic mobility shift assay (EMSA) to analyze
234 the guide loading and target binding properties of EcAgo. Both EcAgo⁷⁴³ and EcAgo⁷³¹ were
235 successfully purified (Figure S2C). However, binding by EcAgo⁷⁴³ resulted in that the nucleic
236 acid substrates were stuck in the wells of the gel (data not shown). Thus, we analyzed the
237 nucleic acid binding properties of EcAgo⁷³¹. Single strand (ss) RNA and DNA substrates
238 containing a 5' phosphate (5P) group and a 5' hydroxyl group (5OH) respectively were used
239 in the assays. The results show that EcAgo⁷³¹ efficiently binds to 5P-RNA (Figure 5A), in
240 agreement with that it associates with 5P-RNA in vivo. Moreover, when preloaded with 5P-
241 RNA as a guide, EcAgo⁷³¹ can specifically recognize target ssDNA, rather than non-target
242 ssDNA, target RNA or double strand DNA containing the target sequence (Figure 5B). This
243 suggests that although not detected in the EcAgo-copurified nucleic acids, ssDNA could serve

244 the target of the EcBPAN system. We further analyzed whether EcAgo could mediate any
245 DNA cleavage. Incubation of the ssDNA and dsDNA substrates with apo EcAgo⁷³¹ or the
246 EcAgo⁷³¹ supplemented with guide RNA and/or target DNA does not result in any cleavage of
247 the substrates (Figure S2D), suggesting that the mutation of the catalytic site indeed
248 inactivates the long-B pAgo.

249 The above data suggest that RNA-directed target DNA binding by EcAgo may activate the
250 system. To constitute the activation in vitro, the EcAgo⁷³¹-gRNA (5P-RNA) complex was
251 incubated with target ssDNA, nontarget ssDNA, target RNA or nontarget RNA. The resulting
252 mixtures, as well as apo EcAgo⁷³¹ and the EcAgo⁷³¹-gRNA complex, were analyzed for their
253 effects on the DNase activity of EcbAgaN using genomic DNA, plasmid DNA and PCR
254 product as substrates (Figure 5C and Figure S6). The results show that the DNase activity of
255 EcbAgaN is significantly stimulated by the EcAgo⁷³¹-gRNA complex supplemented with the
256 target ssDNA instead of other oligonucleotides. The data reveal that target ssDNA recognition
257 of guide-directed EcAgo activates EcbAgaN for nonspecific DNA degradation.

258 **The GbBPAS system is activated by the CloDF13 origin to mediate NAD⁺ depletion**

259 Next, we aimed to reveal whether BPAS systems also provide immunity against invading
260 plasmid. bAgaS has been annotated as a Sir2_2-domain-containing protein and is only
261 distantly related to the Sir2 domain of the short pAgo-associated Sir2-APA protein⁸.
262 Structural prediction reveals that the Sir2_2 of domain GbbAgaS is similar to that of ThsA
263 protein⁴⁶ and they share the conserved residues of the NAD-binding site (Figure S1D-F). We
264 constructed strains expressing individual GbAgo and GbAgaS proteins, GbBPAS system as
265 well as the GbAgaS mutant (N155A) protein or system using the pBAD24 vector. Alanine
266 substitution of the Asparagine in ThsA can abolish its activity and function^{46,47}. To analyze
267 the potential function of pCDF-EGFP, the above-mentioned strains were also transformed
268 with the plasmid. Then, the strains with or without pCDF-EGFP were plated onto the plates
269 containing corresponding antibiotics and with or without the inducer (arabinose), and the cell
270 viability was measured (Figure 6A). The results show that individual GbAgaS induces a ~10⁴-
271 reduction in the cell viability, which is independent of pCDF-EGFP but is abolished by GbAgo.
272 On the other hand, GbAgaS and GbAgo only confer cytotoxicity in the presence of pCDF-
273 EGFP, indicating that the plasmid activates the GbBPAS system. In addition, the N155A
274 mutation abolishes the reduction of cell viability, indicating that the activity of the Sir2_2
275 domain is essential for the cytotoxicity. The variants of pCDF-EGFP were also tested for their
276 ability to activate the GbBPAS system (Figure 6B). This reveals that the CloDF13 origin
277 activates the GbBPAS system as observed for the EcBPAN system.

278 Since many defense systems containing Sir2-like domains confer immunity by NAD⁺
279 depletion^{23,24,46,47}, we analyzed whether the GbBPAS system can also deplete NAD⁺. The
280 cells expressing GbAgaS or its mutant, the GbBPAS system or the mutated system in the
281 presence of pCDF-EGFP, were grown in liquid medium and protein expression was induced

282 by arabinose. The results show that GbAgaS individually and the GbBPAS system together
283 with pCDF-EGFP induce significant culture growth retardation and NAD⁺ level reduction
284 (Figure S7A and B, Figure 6C and D), in line with the cell viability results. Moreover, the
285 N155A mutation abolishes the reduction in NAD⁺ level and relieves the growth retardation.
286 Together, The data indicate that the GbBPAS system confers immunity against invading
287 plasmid via the Sir2_2 domain-mediated NAD⁺ depletion.

288 **The EaBPAM system triggers cell death depending on the trans-membrane (TM)
289 effector**

290 The functions of the EaBPAM system were analyzed using the same methods as applied for
291 the GbBPAS system. Instead of a site mutation, we constructed a truncation mutant of
292 EabAgaM (EabAgaM^{ΔTM}) that lacks the C-terminal TM region (106 a.a.) (Figure S1G and H).
293 The results show that the EaBPAM system triggers a ~10³-reduction in the cell viability, which
294 requires both EaAgo and the full-length EabAgaM (Figure 7A). Nevertheless, the pCDF-
295 EGFP plasmid is not required since the system expressed from the pBAD24 vector confers
296 cytotoxicity in the absence of pCDF-EGFP. Then, we analyzed the cytotoxicity of the system
297 expressed from pKD46, a low-copy vector. Again, the EaBPAM system induces significant
298 cell death regardless of the presence of other plasmids (Figure 7B). When expressed in liquid
299 medium, the EaBPAM system results in growth retardation (Figure S7C). However, it does
300 not induce significant membrane depolarization or membrane destruction (Figure S7D and E)
301 as other defense systems carrying a TM effector usually do^{22,26,37}.

302 **Discussion**

303 In this study, we characterized three different long-B pAgo systems that comprise ~60% of all
304 long-B pAgos (Figure 1A). The three systems are equipped with different associated effectors
305 respectively, and can employ the effectors to induce cell death. Two of them, i.e. the BPAN
306 and BPAS systems, are activated by the CloDF13 origin to mediate genome degradation and
307 NAD⁺ depletion, respectively. The genome degradation is performed by the nuclease of the
308 BPAN system, which is activated by the target DNA recognition of the RNA-guided long-B
309 pAgo. With such a mechanism, the systems can defend against invaders via Abi responses.

310 Abi is the second most prevalent defense strategy that is manifested by many defense
311 systems^{27,48}. Abi provides population-level immunity by killing the infected cells or triggering
312 cell dormancy, which can suppress the spreading of the invader, gain time for other immune
313 systems to clear the invader, and finally remove the invader from the cell population^{26,27}.
314 Indeed, the EcBPAN system can specifically deplete the invader plasmid (pCDF), while the
315 innocent plasmid (pET28T) is retained (Figure 3A). The phenomena could be due to the
316 selective killing of the cells containing the invader after protein expression was induced, while
317 the cells depleting the invader can survive.

318 Any defense system has to specifically discriminate invaders from self, while the guide-
319 directed target recognition ability of pAgos is supposed to achieve such a function^{22,23,25}.
320 Remarkably, all characterized inactive pAgos, including EcAgo and RsAgo as representative
321 long-B pAgos and several representative short pAgos, prefer small RNAs containing a 5'-end
322 phosphate group (5P-RNA) as guides and single strand DNA as target (Figure 5)^{23,25,28,29}.
323 Moreover, they associate with the 5P-RNA guides in vivo and the abundance of the guides
324 are correlated with that of the RNAs in transcriptome (Figure 4)^{25,28}. This suggests that the
325 high abundance of the RNAs derived from invaders may contribute to the invader
326 discrimination.

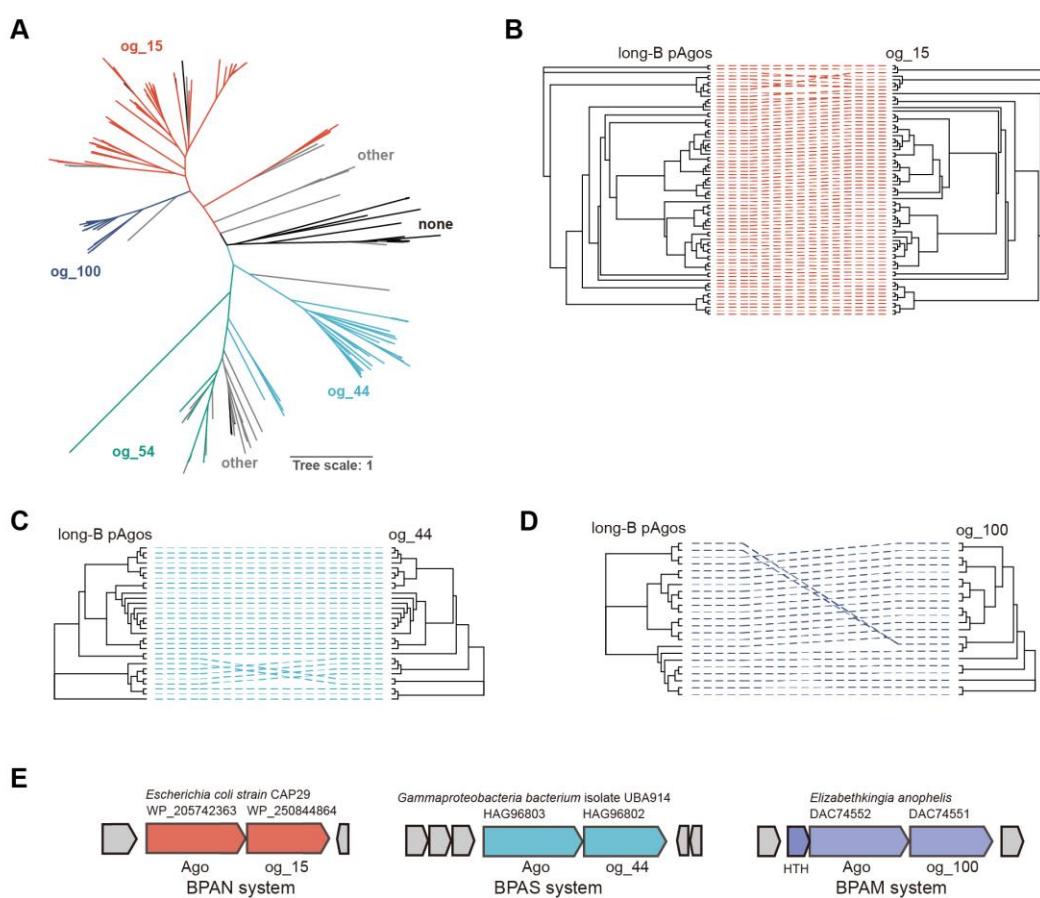
327 Nevertheless, the abundance of the genome-derived guides is comparable to that from the
328 invaders^{25,28} (Figure 4), indicating that the invader discrimination does not only occur at the
329 guide-acquisition step. EcBPAN, GbBPAS system and *Geobacter sulfurreducens* short pAgo
330 system (GsSPARSA) are specifically activated by the CloDF13 origin, instead of other genetic
331 elements from the same plasmid (Figure 3 and 6)²³, even though the latter, e.g. the T7
332 expression cassettes, may generate more guides than the CloDF13 origin as observed for
333 EcAgo. CloDF13 origin, belonging to the ColE1-like type, uses two RNAs to initiate plasmid
334 replication and generates ssDNA region^{49,50}, which possibly provides available target DNA.
335 Indeed, for *Maribacter polysiphoniae* short pAgo system (MapSPARTA), the high copy
336 number of invading plasmid plays a role in the activation of the Abi response possibly by
337 increasing the accessibility of the target DNA²⁵. On the other hand, the ColE1 origin that
338 initiates plasmid replication with a similar mechanism does not activate EcBPAN system or
339 GbBPAS system. The reason for the phenomena might be that the ColE1 origin generates
340 much less guides than the CloDF13 origin (Figure 4D). In contrast, the EaBPAM system,
341 even when expressed from a low-copy plasmid pKD46 with a different replication mechanism
342⁵¹, still induces cell death. Together, these studies demonstrate the diversity of the invader
343 discrimination mechanisms of these inactive pAgo systems.

344 The three long-B pAgo systems employ different effectors to mediate cytotoxicity, i.e. the
345 nuclease EcbAgaN, the Sir2_2-domain-containing protein GbbAgaS and the trans-membrane
346 (TM) protein EabAgaM, respectively. Interestingly, these effectors are commonly found in
347 many Abi systems^{22-25,35-38}, suggesting that the defense systems can exchange their effectors
348 during the evolution history. EcbAgaN is activated by the specific target recognition of guide-
349 directed EcAgo and performs indiscriminate DNA degradation to mediate Abi. The immune
350 process resembles the collateral DNA degradation of some CRISPR-Cas systems after
351 crRNA-directed target binding³¹⁻³⁴, indicative of the convergent evolution of the two nucleic
352 acid-directed defense systems. Similar to the CRISPR-Cas systems, the EcBPAN system
353 also has potential to be repurposed for nucleic acid detection using DNA substrates³⁰ or
354 other sequence-specific technologies.

355 The GbBPAS system mediates NAD⁺ depletion in the presence of the invading plasmid via
356 the Sir2_2 domain of GbbAgaS, in agreement with the canonical functions of Sir2-like

357 domains in many defense systems^{23-25,47}. Based on our findings of the EcBPAN system and
358 previous studies of the SPARSA systems²³, it is tempting to suggest that the GbBPAS
359 system is also activated by the target recognition of the guide-bound GbAgo. Interestingly,
360 GbbAgaS alone can induce significant cytotoxicity and the cytotoxicity is suppressed by
361 GbAgo. The regulation is in a similar manner to the TIR-APAZ protein of SPARTA systems²⁵.
362 By comparison, EcbAgaN and EabAgaM do not reduce cell viability individually, indicative of
363 diverse regulation mechanisms of the associated effectors. In addition, although the EaBPAM
364 system efficiently induces cell death, the system does not mediate membrane depolarization
365 or membrane destruction as other TM effectors usually do^{22,26,37}. The specific mechanism
366 how EabAgaM mediates cytotoxicity remains to be analyzed in future.

367 In conclusion, we demonstrate that long-B pAgo systems generally confer immunity via Abi
368 using their associated proteins as toxic effectors. During the immune response, pAgo senses
369 invaders by RNA-directed target DNA recognition and activates the associated effector. On
370 the other hand, our phylogenetic analysis reveals that a minority of long-B pAgos cluster with
371 other proteins, such as the og_54 VirE-N domain-containing protein, or do not have any
372 associated protein in an operon (Figure 1A). The biological functions and mechanisms of
373 these long-B pAgos need to be addressed by future studies.


374 **Acknowledgments:** The research was supported by National Key Research and
375 Development program of China (2022YFA0912200, 2019YFA0906400), National Natural
376 Science Foundation of China (Grant No. 31970545, 32270099, and 31970544), Fundamental
377 Research Funds for Central Universities (Grant No. 2662020SKPY001), the Foundation of
378 Hubei Hongshan Laboratory (No. 2021hszd022) and Huazhong Agricultural University
379 Scientific & Technological Self-innovation Foundation. We thank the core facilities of Center
380 for Protein Research (CPR) and Experimental Teaching Center of Bioengineering at
381 Huazhong Agricultural University for technical support.

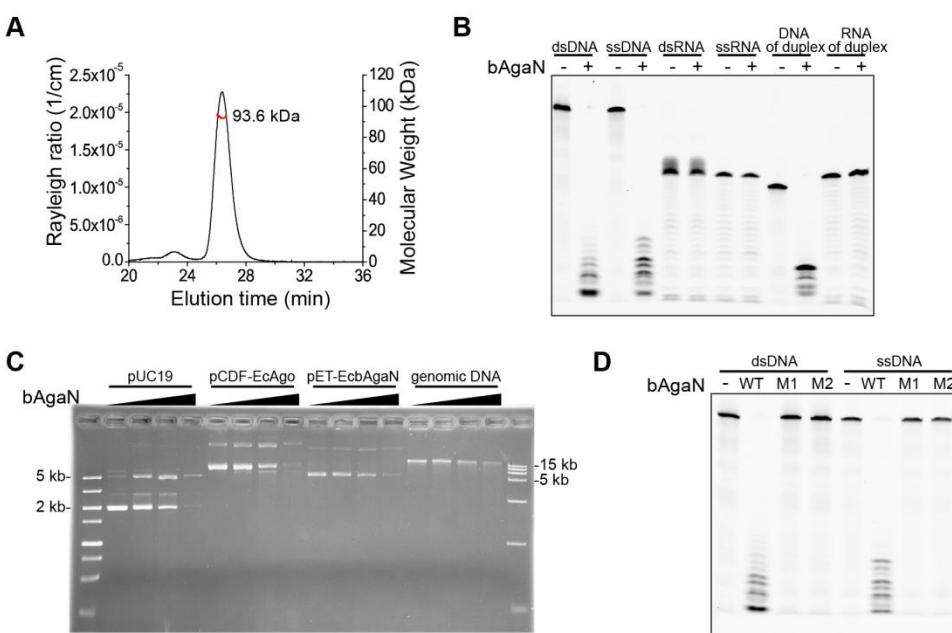
382 **Author contributions:** X.S., S.L. (Sheng Lei), S.H.L. (Shunhang Liu) and Y.L. conducted the
383 experiments with the assistance from P.F., Z.Z., K.Y. and Y.C.. Y.L. performed phylogenetic
384 analysis and RNA sequencing analysis. M.L. and Q.S. gave important advice and critically
385 commented the draft. W.H. acquired the funding, supervised the work and wrote the original
386 draft. All authors contributed to review and editing.

387 **Competing interests:** The authors declare no competing interests.

388

389 **FIGURES**

390
391 **Figure 1 Phylogenetic analysis of long-B pAgo systems**


392 A. Maximum likelihood-based unrooted phylogenetic tree of long-B pAgo. The proteins were
393 derived from the supplementary data provided by Ryazansky et al., 2018, *mbio*. The long-B
394 pAgo associated with different orthogroups (ogs) are marked with different color, and the
395 corresponding ogs are indicated. none: the adjacent genes do not form an operon-like
396 structure with the long-B pAgo genes; other: the adjacent genes form an operon-like structure
397 with the long-B pAgo genes but do not encode any protein belonging to og_15, og_44, og_54
398 or og_100.

399 B-D. Tanglegram of phylogenetic trees of og_15, og_44 and og_100 (right), and their
400 respective long-B pAgo (left).

401 E. Operon structure and neighborhood genes (shown in grey) of representative long-B pAgo
402 systems. The names of the systems, their source organisms, and the encoded proteins and
403 their accession numbers are indicated. HTH: putative helix-turn-helix transcription regulator.

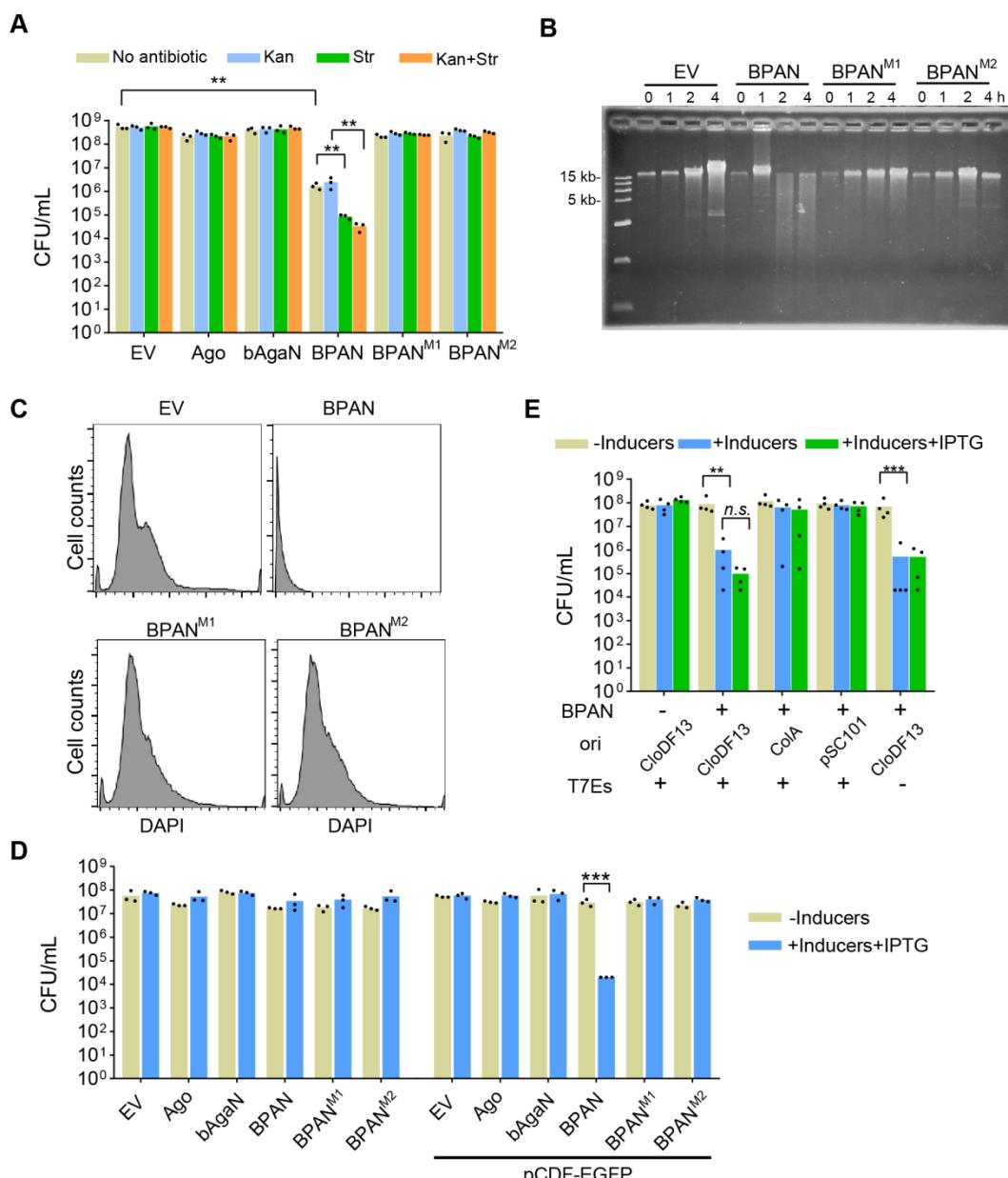
404 See also Figure S1 and Table S1.

405

406
407 Figure 2 EcbAgaN is a nonspecific DNase.

408 A. Multi-angle light scattering coupled with size exclusion chromatography (SEC-MALS)
409 analysis of EcbAgaN.

410 B. Substrate specificity of EcbAgaN. FAM-labeled dsDNA, ssDNA, dsRNA, ssRNA and
411 DNA/RNA duplexes that containing either FAM-labeled DNA strand or RNA strand were
412 incubated with EcbAgaN and then analyzed by denaturing polyacrylamide gel electrophoresis.


413 C. Degradation of plasmid DNA and genomic DNA by EcbAgaN. Plasmid DNA, including
414 pUC19, pCDF-EcAgo⁷⁴³, pET28T-EcbAgaN, and *E. coli* genomic DNA were incubated with a
415 gradient of EcbAgaN and then analyzed by agarose gel electrophoresis.

416 D. DNase activity of EcbAgaN and its mutants. M1: D298A; M2: E309A-K311A.

417 See also Figure S1 and S2.

418

419

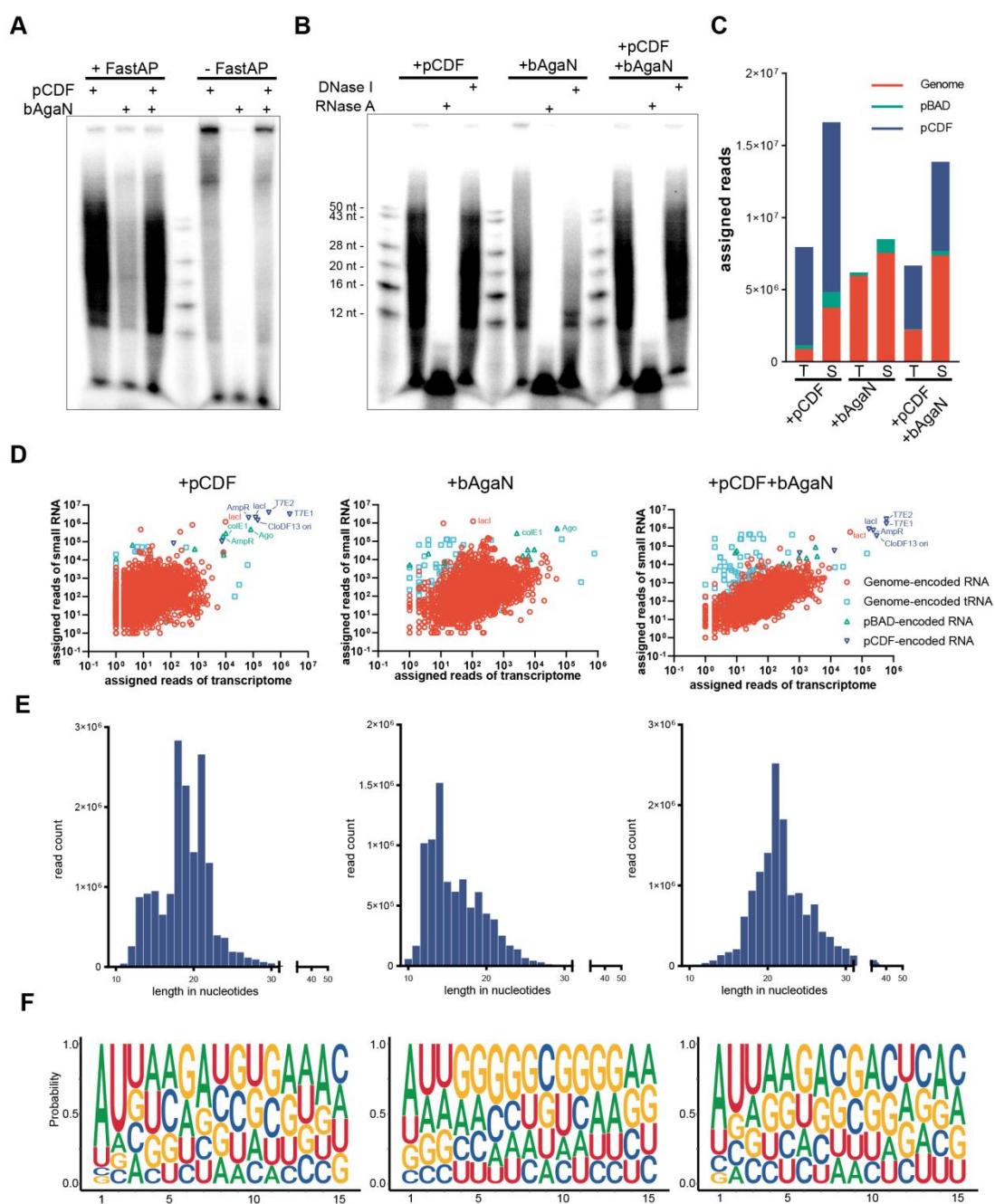
420
421

Figure 3 EcBPAN system is activated by the CloDF13 origin and degrades genomic DNA.

422 A. Expression of the EcBPAN system triggers cell death. The cells containing empty vector
423 (EV), EcAgo, EcbAgaN, the EcBPAN system and the mutated EcBPAN systems (M1 and M2)
424 were grown in LB medium supplemented with IPTG and aTc for 4 h. Then, the cells were
425 plated onto the plates with or without antibiotics as indicated. The colony formation unit per
426 mL (CFU/mL) was calculated.

427 B. EcBPAN system degrades genomic DNA in vivo. After the wild type and mutated EcBPAN
428 systems were induced by IPTG and aTc, genomic DNA was extracted at indicated time points
429 and analyzed by agarose gel electrophoresis.

430 C. Flow cytometry analysis of DNA content distributions in the cells after the wild type and
431 mutated EcBPAN systems were induced by IPTG and aTc for 2h.


432 D. The pBAD-expressed EcBPAN system is activated by pCDF-EGFP. The cells expressing
433 EcAgo, EcbAgaN, the EcBPAN system and the mutated EcBPAN systems (M1 and M2) in
434 the presence or absence of pCDF-EGFP were plated onto the plates without inducers or with
435 the inducers plus IPTG. Inducers: arabinose and aTc.

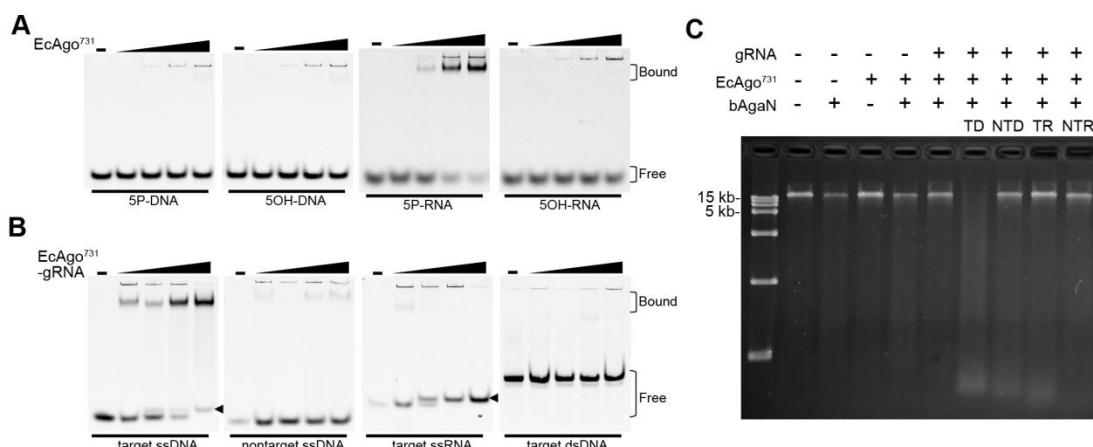
436 E. The pBAD-expressed EcBPAN system is activated by the CloDF13 origin. The cells
437 carrying EcBPAN system were transformed with pCDF-EGFP and its variants, where the
438 CloDF13 origin was substituted with the indicated origins or the T7 expression cassettes
439 (T7Es) were removed. Then, the cells were plated onto the plates with or without inducers, or
440 with inducers and IPTG. Inducers: arabinose and aTc.

441 For all bar graphs, CFU/mL was calculated and the average of three or four biological
442 replicates are shown, with individual data points overlaid. **: $p < 0.01$; ***: $p < 0.001$; n.s.: not
443 significant.

444 See also Figure S3.

445

446
447 Figure 4 EcAgo associates with small RNAs that are derived from transcriptome and contain
448 5'-end phosphate group.

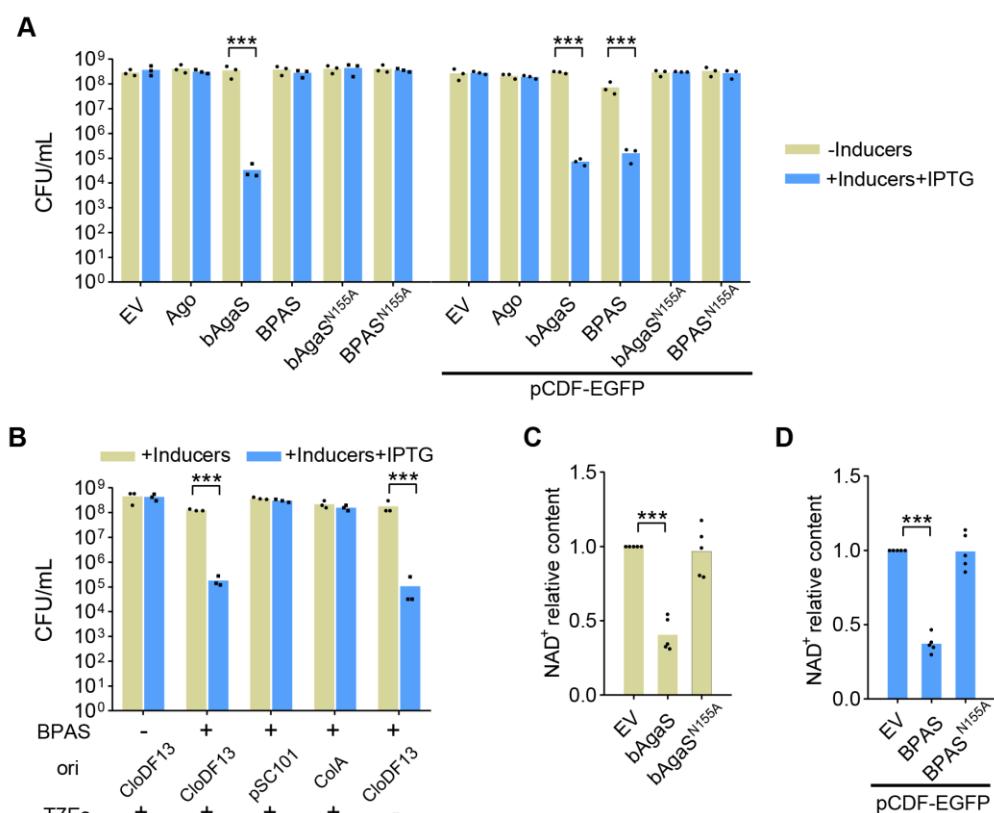

449 A. Analysis of the 5'-end of EcAgo-associated nucleic acids. Nucleic acids were extracted
450 from the EcAgo⁷⁴³ protein samples that were purified from the cells containing pCDF-EGFP or
451 EcbAgaN or both. The nucleic acids were treated with FastAP or not, and then labeled with
452 γ P³²-ATP, followed by analysis by denaturing polyacrylamide gel electrophoresis.

453 B. Treatment of the labeled nucleic acids with DNase I and RNase A, respectively.

454 C. Reads numbers of the transcriptome sequences (T) and small RNA sequences (S) that are
455 assigned to genome and plasmids. pBAD: pBad24-EcAgo⁷⁴³ or pBad24-EcAgo⁷⁴³-EcbAgaN;
456 pCDF: pCDF-EGFP.

457 D. Correlation between the transcriptome sequences and small RNA sequences. The
458 Pearson correlation coefficients of the three samples are $r > 0.65$, $r > 0.034$, $r > 0.88$,
459 respectively, with p values $< 10^{-99}$, < 0.03 , $< 10^{-99}$, respectively.

460 E. Length distribution of the small RNAs.
461 F. Nucleotide bias of the small RNAs.
462 See also Figure S4 and S5, and Table S5.
463


464
465 Figure 5 EcAgo is directed by 5P-RNA guides to bind ssDNA targets and activates EcbAgaN.
466 A. Nucleic-acid binding of EcAgo⁷³¹. The different substrates are indicated below the panels.
467 B. Target-binding of EcAgo⁷³¹ preloaded with 5P-RNA as guide (gRNA). The different
468 substrates are indicated below the panels. The arrows indicate duplex formed by the guide
469 and target ssDNA or ssRNA.
470 C. Target recognition of the gRNA-bound EcAgo activates EcbAgaN. About 200 ng genomic
471 DNA was treated with EcbAgaN. Aliquots of the reaction were also supplemented with
472 EcAgo⁷³¹, 5P-RNA and/or target ssDNA or other oligonucleotides. TD: target ssDNA; NTD:
473 nontarget ssDNA; TR: target ssRNA; NTR: nontarget ssRNA.

474 See also Figure S2 and S6.

475

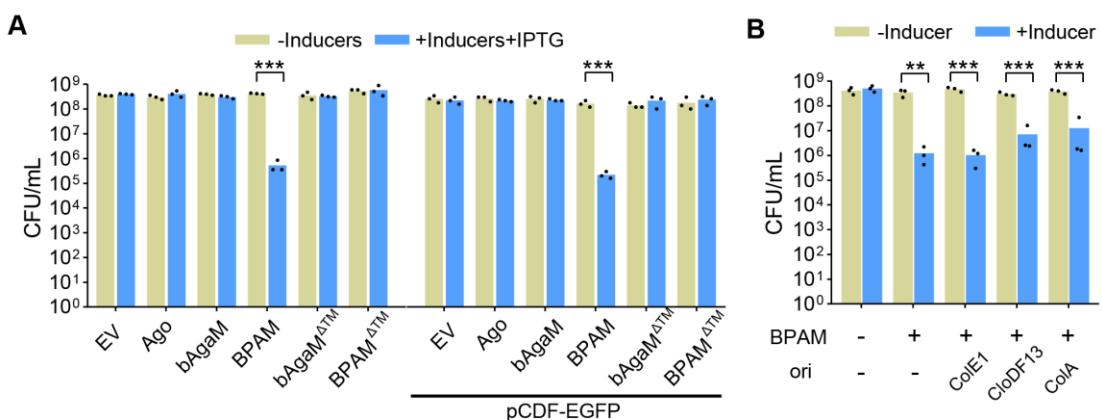
476

477

478
479 Figure 6 GbBPAS system is activated by the CloDF13 origin and mediates NAD⁺ depletion.

480 A. GbBPAS system is activated by pCDF-EGFP to induce cell death. The cells containing
481 empty vector (EV), the wild type and mutant GbBPAS systems, and individual proteins as well
482 as mutants in the presence or absence of pCDF-EGFP were plated onto the plates without
483 inducer or with the inducer and IPTG. Then, CFU/mL was calculated.

484 B. Activation of the GbBPAS system requires the CloDF13 origin. Cell viability of the cells
485 carrying the GbBPAS system in the presence of pCDF-EGFP or its variants was measured.


486 C. GbbAgaS reduces cellular NAD⁺ level. NAD⁺ amount of the cells carrying wild type and
487 mutant GbbAgaS proteins was measured, and relative NAD⁺ level was calculated with the
488 values of the EV samples set as 1.

489 D. GbBPAS system reduces cellular NAD⁺ level in the presence of pCDF-EGFP. NAD⁺
490 amount of the cells carrying wild type and mutant GbBPAS systems was measured, and
491 relative NAD⁺ level was calculated.

492 For all bar graphs, the average of three or five biological replicates are shown, with individual
493 data points overlaid. ***: p < 0.001; inducer: arabinose.

494 See also Figure S7.

495

496

497 Figure 7 EaBPAM system induces cell death.

498 A. Cell viability of the cells containing empty vector (EV), the wild type and mutant EaBPAM
499 systems, and individual proteins as well as mutants in the presence or absence of pCDF-
500 EGFP was analyzed.

501 B. Cell viability of the cells containing the EaBPAM system in the presence of pCDF-EGFP or
502 its variants was measured. **: p < 0.01; ***: p < 0.001; inducer: arabinose.

503 See also Figure S7.

504

505

506 **STAR METHODS**

507 **RESOURCE AVAILABILITY**

508 **Lead Contact**

509 Further information and requests for resources and reagents should be directed to and will be
510 fulfilled by the Lead Contact, Wenyuan Han (hanwenyuan@mail.hzau.edu.cn).

511 **Materials Availability**

512 Plasmids, strains and other unique reagents generated in this study are available upon
513 request.

514 **Data and Code Availability**

- 515 • All raw data from the assays reported in this paper will be shared by the lead contact
516 upon request. In addition, small and total RNA sequencing data are available on the
517 NCBI Sequence Read Archive under BioProject ID PRJNA932940.
- 518 • This study did not generate any unique code.
- 519 • Any additional information required to reanalyze the data reported in this work paper is
520 available from the lead contact upon request.

521 **EXPERIMENTAL MODELS AND SUBJECT DETAILS**

522 *Escherichia coli* DH5a were routinely grown in Lysogeny broth (LB) medium and used for
523 plasmid cloning, while *E. coli* BL21 (DE3) was used for protein expression and the in vivo
524 assays. *E. coli* phages T5, T7 and Lambda-vir are gifts from Shi Chen lab (Wuhan University,
525 China).

526 **METHOD DETAILS**

527 **Plasmid construction**

528 In general, the plasmids were constructed with the restriction-ligation cloning method or
529 assembled with ClonExpress II One Step Cloning Kit (Vazyme, Nanjing, China). For the
530 former, the gene fragments were amplified using the primers containing restriction sites
531 (Table S3), digested by restriction enzymes and inserted into the plasmid vectors between the
532 corresponding sites. For the latter, the fragments of gene coding sequences, replication
533 origins, and expression cassettes were amplified with the primers that have homologous
534 sequences with the backbone vectors, and the linear vectors were prepared either by
535 restriction digestion or by PCR. Then, the fragments were assembled following the instruction
536 of the manufacturer. The plasmids listed in Table S2 were used as vectors to express long-B
537 pAgos and their associated proteins and to construct the trigger plasmids. The primers used
538 for plasmid construction were listed in Table S3 with the cloning methods indicated. All
539 cloning work was performed with *E. coli* DH5a. All the primers were synthesized by Tingke
540 (Beijing, China).

541 Specifically, the optimized coding sequences of long-B pAgos and their associated proteins
542 were synthesized by Tingke (Beijing, China). In particular, the TTG start codon of EcAgo⁷³¹

543 was replaced with ATG. To obtain EcAgo and EcbAgaN proteins for biochemical analysis, the
544 coding sequences of EcAgo⁷⁴³ and EcAgo⁷³¹ were inserted into pCDFDuet-1, while the coding
545 sequence of EcbAgaN were inserted into pET28a, allowing the proteins were expressed from
546 an IPTG-induced promoter with N-terminal 6xHis tag. Site mutagenesis was performed by
547 overlapping PCR.

548 For in vivo experiments, pET28T, where the T7 promoter and lacO operator were replaced by
549 a TetR expression cassette and a Tet promoter from the p46Cpf1-OP2 plasmid (Addgene
550 #98592), was used to express EcbAgaN and its mutants, as well as His-tag-free EcbAgaN
551 (pET28T-EcbAgaN_HF). In addition, the coding sequences of EcAgo⁷⁴³ and EcAgo⁷³¹ were
552 also inserted into pBAD24 to express the proteins under control of an araBAD promoter. To
553 express EcBPAN system using pBAD24, a fragment containing TetR expression cassette, Tet
554 promoter, EcbAgaN coding sequence and the terminator was amplified and inserted into
555 pBAD-EcAgo⁷⁴³. The plasmids expressing mutant EcBPAN systems were constructed in a
556 similar way.

557 To generate the pCDF-ΔT7 plasmid, the DNA fragment lacking T7 expression boxes was
558 amplified from pCDF-EGFP. Then, recircularization of the fragment was performed by
559 ClonExpress II One Step Cloning Kit. To replace the origin of pCDF-EGFP plasmids with
560 ColA or pSC101^{TR}, the DNA fragments containing ColA or pSC101^{TR} replicons, and the
561 backbone of pCDF-EGFP plasmid were amplified respectively, and assembled using the
562 ClonExpress kit.

563 For the in vivo experiments of GbBPAS system and EaBPAM system, the coding sequences
564 of long-B pAgos and their associated proteins were inserted into pBAD24 respectively. Then,
565 the expression cassettes of GbbAgaS and EabAgaM were amplified and inserted into
566 pBAD24-GbAgo and pBAD24-EaAgo, respectively. The site mutagenesis of GbbAgaS was
567 performed by overlapping PCR, while the truncation of *EabAgaM* gene was performed by
568 amplification of the fragment lacking the gene C-terminal region from pBAD24-EaAgo-
569 EabAgaM and pBAD24-EabAgaM respectively and recircularization of the fragment.

570 To construct the pKD46-M1-EaAgo-EabAgaM plasmid, the p^{TR}Cas12a-NT plasmid from our
571 previous study⁵² was used as template to amplify the Chl-resistant gene and the araBAD
572 promoter-araC-pSC101 origin fragment. Then, the fragments were assembled with the
573 fragment containing *EaAgo* and *EabAgaM* genes amplified from pBAD24-EaAgo-EabAgaM.

574 **Protein expression and purification**

575 The plasmids used for purification of EcAgo and EcbAgaN proteins and their variants were
576 transformed into *E. coli* BL21(DE3). The transformants were grown in LB medium at 37 °C
577 containing the corresponding antibiotics. At an optical density (OD₆₀₀) of ~1.0, the cultures
578 were cooled on ice for 10 min and then protein expression was induced with 0.4 mM IPTG at
579 16 °C for 18 h. The purification procedure was modified from the published protocol of our lab,
580 and the common steps include cell extract preparation, Ni-NTA affinity chromatography (NAC),

581 anion exchange chromatography (AEC) and size exclusion chromatography (SEC)²². In
582 addition, an ammonium sulfate precipitation step (ASP) was performed before NAC to remove
583 the nucleic acids in EcAgo. Specifically, the cell extract was slowly supplemented with
584 saturated ammonium sulfate solution up to the final saturation of 55%. Then, the cell extract
585 was incubated on ice for 1 h and the proteins were collected by centrifugation at 13000 g for
586 40 min. The proteins were resuspended by 10 mL of lysis buffer (20 mM HEPES pH 7.5, 20
587 mM imidazole, 500 mM NaCl) and subjected to NAC and the following purification steps as
588 described previously²².

589 **Size exclusion chromatography – multi-angle light scattering**

590 SEC-MALS (Size Exclusion Chromatography with Multi-Angle Light Scattering) was used to
591 analyze the oligomer size of EcbAgaN. Specifically, after purified with SEC, EcbAgaN was
592 loaded onto a Superdex 200 10/300 GL column (Cytiva, Marlborough, MA, USA) pre-
593 equilibrated with 20 mM Tris-HCl pH 7.5, 250 mM NaCl, at 0.5 mL/min flow rate. Then, Wyatt
594 Dawn Heleos II detector (Wyatt Technology, Santa Barbara, CA, USA) collected the static
595 light scattering, while the absorbance at 280 nm was monitored by AKTA pure 25 UV detector
596 (Cytiva, Marlborough, MA, USA). Data were collected and analyzed in ASTRA 7 software
597 (Wyatt Technology, Santa Barbara, CA, USA). BSA monomer is used as a known molecular
598 weight standard.

599 **Nuclease assay**

600 The oligos used as substrates in the nuclease assay are listed in **Table S4**. The substrates
601 genomic DNA and pUC19 plasmid were extracted from *E. coli* DH5a, while the PCR product
602 substrate was generated by PCR amplification using pUC19 as template and PXS79 and
603 PXS80 primers (**Table S3**). To analyze the substrate specificity of EcbAgaN, 100 nM FAM-
604 labeled single strand (ss) DNA (OXS1), double strand (ds) DNA (OXS1/OXS2),
605 ssRNA(OXS3), dsRNA (OXS3/OXS4) and DNA/RNA (OXS5/OXS6 or OXS7/OXS8) duplexes
606 were incubated with 200 nM EcbAgaN in the presence of 20 mM Tris-HCl (pH 7.5), 5 mM
607 MgCl₂ and 5 mM MnCl₂ at 37 °C for 10 min. Then, the reactions were analyzed by denaturing
608 polyacrylamide gel electrophoresis, and the gel was imaged by a Typhoon 5 laser-scan
609 (Cytiva, Marlborough, MA, USA). The oligos used as the substrates or to prepare the
610 substrates by annealing are listed in **Table S4**. The same reaction mixtures containing dsDNA
611 (OXS1/OXS2) and ssDNA (OXS1) as substrates were also used to analyze the activity of
612 EcbAgaN mutants. In the assays, the monomer concentration of EcbAgaN was calculated.

613 To analyze the metal dependency of EcbAgaN, 100 nM FAM-labeled dsDNA (OXS1/OXS2)
614 was incubated with 200 nM EcbAgaN in the presence of 20 mM Tris-HCl (pH 7.5) as well as
615 indicated metal ions or EDTA at 37 °C for 10 min. The reactions were analyzed as described
616 above.

617 To analyze whether EcbAgaN degrades plasmid and genomic DNA, ~200 ng pUC19, pCDF-
618 EcAgo⁷⁴³, pET28T-EcbAgaN, and *E. coli* genomic DNA were incubated with a gradient of

619 EcbAgaN (0, 50, 100, 200 nM) at 37 °C for 40 min, respectively. Then, the samples were
620 separated by agarose gel electrophoresis, stained with EtBr, and imaged using Molecular
621 Imager Gel Doc EX system (NewBio Industry, Tianjin, China).

622 To analyze the possible nuclease activity of EcAgo, 100 nM labeled ssDNA (OXS1) and
623 dsDNA (OXS1/OXS2) substrates were incubated with 500 nM EcAgo⁷³¹, with or without 100
624 nM unlabeled 5P-RNA (OXS13) and target DNA (OXS16) at 37 °C for 1 h. Then, the
625 reactions were treated with 2 mg/mL Protease K (Thermo Fisher Scientific, Waltham, MA,
626 USA) in the presence of 5 mM CaCl₂ at 55 °C for 30 min. At last, the samples were analyzed
627 by denaturing polyacrylamide gel electrophoresis as described above.

628 To analyze whether EcbAgaN is activated by EcAgo upon guide and targeting binding, 500
629 nM EcAgo⁷³¹ was firstly incubated with 500 nM 5P-RNA (OXS13) guide at 37 °C for 15 min,
630 followed by a subsequent incubation with 500 nM target ssDNA (OXS16), nontarget ssDNA
631 (OXS17), target ssRNA (OXS18) and nontarget ssRNA (OXS19) at 37 °C for 15 min
632 respectively. Then, ~200 ng genomic DNA and 40 nM EcbAgaN were supplemented into the
633 reaction mixtures, which were then incubated at 37 °C for 1 h. Mock incubation using the
634 protein storage buffer and water was performed as controls. At last, the samples were treated
635 with 2 mg/mL Protease K and analyzed by agarose gel electrophoresis as described above.
636 The plasmid degradation and PCR product degradation assay was performed in the same
637 procedure as the genomic DNA degradation assay except that ~200 ng pUC19 plasmid DNA
638 and PCR product was treated with 100 nM and 80 EcbAgaN, respectively.

639 **Electrophoretic mobility shift assay (EMSA)**

640 To analyze the nucleic acid binding properties of EcAgo, 100 nM of four different 3'-FAM
641 labeled nucleic acid substrates (5P-DNA (OXS10), 5OH-DNA (OXS9), 5P-RNA (OXS12) and
642 5OH-RNA (OXS11)) were incubated with a gradient of EcAgo⁷³¹ (125, 250, 500, 1000 nM),
643 respectively, in a 10 μL mixture containing 20 μM Tris-HCl pH 7.5, 5 mM MgCl₂ and 5 mM
644 MnCl₂ at 37 °C for 15 min. After incubation, the reaction samples were supplemented with 4
645 μL loading dye containing 50% glycerol, 0.1% bromophenol blue and 0.1% xylene cyanol,
646 and loaded onto 8% native polyacrylamide gels. The electrophoresis was performed in
647 0.5×TB buffer (44.5 mM Tris, 44.5 mM boric acid) at 100 V for 1 h. At last, the fluorescent
648 signal was visualized using Amersham Typhoon 5 (Cytiva, Marlborough, MA, USA).

649 To analyze the target binding specificity of EcAgo-guide complex, 500 nM EcAgo⁷³¹ was
650 incubated with 100 nM unlabeled 5P-RNA (OXS13) at 37 °C for 15 min. Then, aliquots of the
651 mixture were diluted to 125 nM and 250 nM EcAgo⁷³¹, respectively. After that, the mixtures
652 were incubated with 100 nM of FAM-labeled target DNA (OXS5), nontarget DNA (OXS14),
653 target RNA (OXS15) and dsDNA (OXS1/OXS2) at 37 °C for 20 min, respectively. The
654 reactions were also analyzed by native polyacrylamide gel electrophoresis as described
655 above.

656 **Cytotoxicity assay**

657 In general, the cytotoxicity of the long-B pAgo systems was analyzed in two ways, i.e. protein
658 expression was induced when the cells were grown on plates or in liquid medium, hereafter,
659 the plate induction assay and the liquid medium induction assay.

660 For the plate induction assay, single colonies of the transformants containing individual long-B
661 pAgos and the associated proteins, the long-B pAgo systems and/or the trigger plasmids
662 were grown in LB medium containing corresponding antibiotics at 37 °C overnight. The
663 cultures (0.1 mL) were transformed into fresh medium (10 mL) containing corresponding
664 antibiotics and grown at 37 °C for ~3 h. Then, the cells were serially diluted and dropped onto
665 LB agar plates containing the corresponding antibiotics and inducers. After the plates were
666 incubated at 37 °C for 16 h, the numbers of the colonies were counted and colony formation
667 units per mL (CFU/mL) were calculated.

668 For the liquid medium induction assay, single colonies of the transformants containing
669 individual long-B pAgos and the associated proteins, the long-B pAgo systems and/or the
670 trigger plasmids were grown in LB liquid medium containing corresponding antibiotics
671 overnight. The cultures were transformed into fresh medium at a ratio of 1:100 with
672 corresponding antibiotics (Figure 6C-D, Figure S7) or without them (Figure 3A-C). The
673 cultures were grown for ~60 min up to an OD₆₀₀ of ~0.25, when the inducers, including
674 arabinose, aTc and/or IPTG as indicated in the figure legends, were supplemented. Then,
675 aliquots of the cultures were sampled at indicated time points to analyze cell viability and
676 plasmid maintenance, genomic DNA integrity, NAD⁺ level, membrane polarity and
677 permeability as indicated in figure legends. Cell viability and plasmid maintenance were
678 analyzed by measuring CFU/mL on antibiotic-free plates and the plates containing
679 corresponding antibiotics, respectively. The OD₆₀₀ of the starting cultures for the growth curve
680 analysis for BPAS system and BPAM system was adjusted to 0.1.

681 **Genomic DNA extraction and analysis**

682 The cells expressing wild type EcBPAN system with pCDF-EcAgo⁷⁴³ and pET28T-EcbAgaN,
683 or the mutant systems using pET28T-EcbAgaN-M1 and pET28T-EcbAgaN-M2 instead, or
684 containing the corresponding empty vectors were transformed from overnight cultures into
685 100 mL antibiotic-free LB medium. At an OD₆₀₀ of ~0.25, protein expression was induced by
686 80 ng/mL aTc and 50 μM IPTG. At 0, 1, 2, 4 h post induction (hpi), cells from 2 mL of the
687 cultures were collected by centrifugation. Genomic DNA was extracted using HiPure Bacterial
688 DNA Kit (Magen, Guangzhou, China) following the manufacturer's instruction, and at the final
689 step, the genomic DNA was eluted by 30 μL water. Then, 1 μL of the DNA samples were
690 loaded on a 0.7% agarose gel, run for 45 min at 150 V in 1x TBE buffer and stained with EtBr.
691 The results were imaged and analyzed using Molecular Imager Gel Doc EX system (NewBio
692 Industry, Tianjin, China).

693 **Flow cytometry analysis of DNA content distributions**

694 The cultures were prepared as described in the **Genomic DNA extraction and analysis**
695 section, and the samples for flow cytometry analysis were prepared following the protocol
696 established in our group with some modifications ²². Specifically, 300 μ L of the cultures were
697 mixed with 700 μ L absolute ethanol at 2 hpi and incubated at 4 °C overnight. Before stained,
698 the cells were collected by centrifuging at 5000 rpm for 5 min and washed with 1 mL 1x PBS
699 buffer. The cells were collected by centrifugation again and resuspended in 30 μ L 1x PBS
700 buffer supplemented with 2 mg/mL DAPI (Thermo Scientific, Waltham, MA, USA), and stained
701 for at least 1 h on ice in darkness. Then, the cell suspensions were diluted to a final volume of
702 1 mL by 1x PBS buffer and loaded onto a cytoflex-LX flow cytometer (Beckman Coulter, Brea,
703 CA, USA) with a 375 nm laser, and a dataset of at least 40,000 cells was recorded for each
704 sample. For each cell, the values of fluorescence signal at 450 nm (DAPI signal), FSC
705 (forward scattered light), and SSC (side scattered light) were measured. The results were
706 analyzed and visualized by FlowJo v.10.8.1 (BD Biosciences, Franklin Lakes, NJ, USA).

707 **Quantification of cellular NAD⁺ level**

708 The cells expressing EabAgaS or its mutant, or EaBPAS system or the mutant system in the
709 presence of pCDF-EGFP, or containing pBAD24 as empty vector were grown in
710 corresponding antibiotics as described in the liquid medium induction assay. At an OD₆₀₀ of
711 ~0.25, protein expression was induced by 0.2% arabinose. At 2 hpi, the OD₆₀₀ of cultures
712 were normalized to ~0.4, and the cells from 1 mL of the cultures were collected by
713 centrifugation and washed by 1 mL 1x PBS buffer. The cells were subjected to the
714 measurements of NAD⁺ level using the Coenzyme I NAD(H) Content Assay Kit (Solarbio,
715 Beijing, China) following the instructions of the manufacturer. Specifically, the cells were
716 resuspended by 500 μ L of the acid extraction buffer (Solarbio, Beijing, China), and lysed by
717 the sonicator bath (amp 20%, 2s ON/2s OFF, 2 min duration) at 4 °C. The cell extracts were
718 centrifuged to remove cell debris at 12000 g for 10 min, and the NAD⁺ level of supernatant
719 was quantified by the MTT (Methyl Thiazolyl Tetrazolium) assay following the instructions.
720 Finally, the OD at 570 nm of each sample (OD^{sample}) and the corresponding control
721 (OD^{sample_control}), where the NAD⁺ in the sample was neutralized before supplementation of
722 MTT, was measured. The relative NAD⁺ content of each sample was calculated using the
723 following equation:

724
$$\text{Relative NAD}^+ \text{ content} = (\text{OD}^{\text{sample}} - \text{OD}^{\text{sample_control}})/(\text{OD}^{\text{EV}} - \text{OD}^{\text{EV_control}})$$

725 Five biological replicates were performed for the NAD⁺ level assay. EV: empty vector.

726 **Flow cytometry analysis of membrane polarity and membrane permeability**

727 The cells containing pBAD24-EaAgo-EabAgaM, pBAD24-EaAgo-EabAgaM_ΔTM or pBAD24
728 as empty vector were grown in the presence of 100 μ g/mL ampicillin as described in the liquid
729 medium induction assay, and the protein expression was induced by 0.2% arabinose. At 2 hpi,
730 ~10⁶ cells were collected from the cultures by centrifugation (the cell number is calculated
731 based on the estimation that 1 mL of OD₆₀₀=1 culture contains 10⁹ cells). Then, the cells were

732 resuspended in 50 μ L 1x PBS buffer containing 1 μ g/mL DiBAC₄ (Sigma-Aldrich, St. Louis,
733 MO, USA) for membrane polarity analysis, or in 50 μ L 1xPBS buffer containing 1 μ L of dye
734 mix containing SYTO9 and PI in the ratio 1:1(LIVE/DEAD BacLight bacterial viability kit,
735 Thermo Scientific, Waltham, MA, USA) for membrane permeability analysis. Then, the
736 fluorescence signal at 525 nm of the DiBAC₄-stained cells was collected by the cytoflex-LX
737 flow cytometer, while the fluorescence signal at 525 nm (SYTO9) and 610 nm (PI) was
738 collected for the membrane permeability analysis. All of the data was analysed using FlowJo
739 v.10.8.1 (BD Biosciences, Franklin Lakes, NJ, USA).

740 **Purification of EcAgo⁷⁴³ for nucleic acid extraction**

741 The cells containing pBAD24-EcAgo⁷⁴³ and pCDF-EGFP (+pCDF), pBAD24-EcAgo⁷⁴³-
742 EcbAgaN (+bAgaN), pBAD24-EcAgo⁷⁴³-EcbAgaN and pCDF-EGFP (+pCDF, +bAgaN) were
743 grown in LB medium containing corresponding antibiotics at 37 °C up to an OD₆₀₀ of ~0.7.
744 Protein expression was induced by 0.2% arabinose for EcAgo⁷⁴³ and 80 ng/mL aTc for
745 EcbAgaN at 37 °C for 4 h. For the cells containing pCDF-EGFP, 400 μ M IPTG was also
746 supplemented to induce the T7 promoter. Then, the cells were collected by centrifugation,
747 resuspended by lysis buffer (20 mM HEPES pH 7.5, 20 mM imidazole, 500 mM NaCl) and
748 disrupted by French press. The cell extracts were subjected to NAC purification and the
749 proteins were eluted by a gradient of imidazole. The eluted proteins were analyzed by SDS-
750 PAGE to confirm the expression of EcAgo⁷⁴³. Meanwhile, the cells from 10 mL of the same
751 culture were also collected and used for extraction of total RNA, respectively.

752 **Extraction of EcAgo⁷⁴³-copurified nucleic acids**

753 To extract the copurified nucleic acids, 500 μ L of the protein solution was treated with 200
754 μ g/mL Protease K for 1 h and then supplemented with 500 μ L phenol/chloroform/isoamyl
755 alcohol (pH 8.0, 25:24:1), followed by a brief vortexing. The sample was centrifuged at 16000
756 g for 20 min at 4 °C. The upper phase (about 400 μ L) was transferred into a new tube and
757 mixed with 40 μ L 3 M NaAc (pH 5.2) and 500 μ L isopropanol. After incubated at -20 °C for 1 h,
758 The sample was centrifuged at 16000 g for 20 min at 4 °C. The pellet was washed with 1 mL
759 pre-cooled 70% ethanol and dried for 30 min at room temperature. Finally, the nucleic acids in
760 the pellets were resuspended in 50 μ L DEPC water.

761 **Labeling and treatment of the EcAgo⁷⁴³-copurified nucleic acids**

762 One μ L of the nucleic acids was treated with FastAP Thermosensitive Alkaline Phosphatase
763 (Thermo Fisher Scientific, Waltham, MA, USA) in a 10- μ L mixture containing 1 μ L of 10X
764 Buffer (Thermo Fisher Scientific) at 37 °C for 30 min. Mock treatment using water instead of
765 FastAP was performed as controls (- FastAP). Then, the samples were heated at 90 °C for 10
766 min. One μ L of the heated samples was labeled with [γ ³²P]-ATP (PerkinElmer, Waltham, MA,
767 United States) by T4 polynucleotide kinase (PNK, Thermo Scientific) using the forward
768 reaction buffer at 37 °C for 20 min. Then, the samples were analyzed by denaturing

769 polyacrylamide gel electrophoresis. The gel was exposed to a phosphor screen and imaged
770 by a Typhoon 5 laser-scan (Cytiva, Marlborough, MA, USA).

771 The labeled nucleic acids were further treated with RNase A (DNase and protease-free,
772 Thermo Scientific, EN0531) or DNase I (RNase-free, Thermo Scientific, EN0521) for 1 h at 37
773 °C, and analyzed by denaturing polyacrylamide gel electrophoresis and autoradiography as
774 described above.

775 **RNA sequencing and analysis**

776 Total RNA was used to generate sequencing libraries for the transcriptome analysis with
777 NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, USA, Catalog #: E7530L). The library
778 quality was assessed on the Agilent 5400 system (Agilent, USA). The qualified libraries were
779 pooled and sequenced by Illumina NovaSeq6000 sequencing with PE150 strategy (paired-
780 end reads and 150 bp read length) in Novogene Bioinformatics Technology Co., Ltd (Beijing,
781 China).

782 Small RNA sequencing libraries were generated using NEBNext® Multiplex Small
783 RNALibrary Prep Set for Illumina® (Set 1) (NEB, USA, Catalog #: E7300S). Subsequently,
784 library quality was assessed on the Agilent 5400 system (Agilent, USA). The Qualified
785 libraries were pooled and sequenced on by Illumina NovaSeq6000 sequencing with SE50
786 strategy (single-end reads and 50 bp read length) in Novogene Bioinformatics Technology
787 Co., Ltd (Beijing, China).

788 We used Fastp (version 0.23.1)⁵³ to process the raw reads with default parameters. The
789 processed paired-end reads of the transcriptome sequencing were aligned to the genome of
790 *E. coli* BL21 (GenBank: CP053602.1) and to the expression plasmids (pCDF-EGFP and/or
791 pBAD24-EcAgo⁷⁴³ or pBAD24-EcAgo⁷⁴³-EcbAgaN) using HISAT2 v2.1.0 (default parameters)
792⁵⁴. The single-end reads of the small RNA sequencing were aligned to the above genomes
793 and expression plasmids using bowtie v1.3.1⁵⁵, with the -v parameter limiting the number of
794 mismatched bases to 1 and other parameters as default. The length distribution of small
795 RNAs was analyzed by samtools stats⁵⁶. Nucleotide frequency distributions were visualized
796 using the R package 'ggseqlogo' after intercepting mapped reads from 1-15 nt using seqkit⁵⁷.
797 FeatureCounts⁵⁸ was used to assign reads to genomic features.

798 **Phylogenetic analysis**

799 **Gene neighborhood (operons) analysis and protein sequences**

800 The accession numbers of 192 long-B pAgos were obtained from the previous study⁸, and
801 the protein sequences were downloaded from Genbank using Batch Entrez
802 (<https://www.ncbi.nlm.nih.gov/sites/batchentrez?>). To analyze the associated proteins of long-
803 B pAgos, the neighborhood containing 10 genes from both upstream and downstream of
804 long-B pAgo genes was analyzed manually. This reveals that the og_15, og_44 and og_100
805 genes are invariably organized in the same operon with long-B pAgos with conserved operon
806 structure (Figure 1E), while og_54 is usually located between the 2th and 8th genes upstream

807 of long-B pAgos. Then, if the upstream or downstream genes do not encode any protein from
808 the four ogs, we analyzed whether the long-B pAgos form operon-like structures with their
809 adjacent genes. If not, the long-B pAgos are considered to have no associated proteins
810 (marked as none in [Figure 1A](#)), while the long-B pAgos that form operon-like structures with
811 their adjacent genes are considered to have associated proteins other than the four ogs
812 (marked as other in [Figure 1A](#)). The protein sequences of og_15, og_44 and og_100
813 members were also downloaded from Genbank using Batch Entrez.

814 To select the long-B systems that can be characterized using *E. coli* as a proper host, the
815 protein sequences of og_15, og_44 and og_100 members from the previous study⁸ were
816 used as queries to search their homologues in the non-redundant protein sequences
817 database with the NCBI blastp suite. Then, we selected the BPAN system and BPAS system
818 from Gammaproteobacteria, and the BPAM system from *Elizabethkingia anophelis*, a
819 mesophilic pathogen ([Figure 1E](#) and [Table S1](#)). The gene clusters and neighborhoods of the
820 systems were confirmed manually.

821 **Phylogeny construction**

822 Homologous sequences were aligned with MAFFT using the automated strategy (v7.490)⁵⁹.
823 Phylogenetic trees were constructed using maximum-likelihood method by FastTree. The
824 results were saved as newick files and imported into iTOL to plot unrooted tree (v6.5.8;
825 itol.embl.de)⁶⁰.

826 **Tanglegram**

827 The phylogenetic trees of long-B pAgos, and og_15, og_44 or og_100 proteins were imported
828 into R environment (v4.2.1). The tanglegrams were visualized using the cophyloplot function
829 of 'ape' R package (v5.6-2)⁶¹ with the association information between long-B pAgos and
830 their respective associated proteins.

831 **Bioinformatics analysis**

832 The structures of long-B pAgo-associated proteins were predicted by AlpfaFold2⁶² using the
833 COSMIC² platform (<https://cosmic2.sdsc.edu/>). Protein sequence alignment of EcbAgaN
834 homologues and GbbAgaS homologues was performed using Clustal W, and the results were
835 visualized with ESPript (<https://escript.ibcp.fr/EScript/EScript/>). Transmembrane region was
836 predicted with DeepTMHMM (<https://dtu.biolib.com/DeepTMHMM>).

837 **QUANTIFICATION AND STATISTICAL ANALYSIS**

838 The cell viability assay, NAD⁺ level assay and growth curve assay were performed in 3-5
839 biological replicates as indicated in the figure legends, of which the average values are shown
840 in the graphs. The statistical analyses were performed with Excel. The unpaired t-test was
841 used to calculate the p-value: <0.05 = *; <0.01 = **, <0.001=***.

842 The correlation of the assigned small RNA sequences and transcriptome RNA sequences
843 was analyzed using Origin 2018, with the Pearson correlation coefficients and corresponding
844 p-values calculated.

845 **References**

- 846 1. Wein, T., and Sorek, R. (2022). Bacterial origins of human cell-autonomous
847 innate immune mechanisms. *Nat Rev Immunol* **22**, 629-638. 10.1038/s41577-
848 022-00705-4.
- 849 2. Ozata, D.M., Gainetdinov, I., Zoch, A., O'Carroll, D., and Zamore, P.D. (2019).
850 PIWI-interacting RNAs: small RNAs with big functions. *Nature reviews. Genetics* **20**, 89-108. 10.1038/s41576-018-0073-3.
- 851 3. Ding, S.W. (2010). RNA-based antiviral immunity. *Nature reviews. Immunology* **10**, 632-644. 10.1038/nri2824.
- 852 4. Sheu-Gruttaduria, J., and MacRae, I.J. (2017). Structural Foundations of
853 RNA Silencing by Argonaute. *Journal of molecular biology* **429**, 2619-2639.
854 10.1016/j.jmb.2017.07.018.
- 855 5. Swarts, D.C., Makarova, K., Wang, Y., Nakanishi, K., Ketting, R.F., Koonin,
856 E.V., Patel, D.J., and van der Oost, J. (2014). The evolutionary journey of
857 Argonaute proteins. *Nature structural & molecular biology* **21**, 743-753.
858 10.1038/nsmb.2879.
- 859 6. Meister, G. (2013). Argonaute proteins: functional insights and emerging
860 roles. *Nature reviews. Genetics* **14**, 447-459. 10.1038/nrg3462.
- 861 7. Makarova, K.S., Wolf, Y.I., van der Oost, J., and Koonin, E.V. (2009).
862 Prokaryotic homologs of Argonaute proteins are predicted to function as key
863 components of a novel system of defense against mobile genetic elements.
864 *Biology direct* **4**, 29. 10.1186/1745-6150-4-29.
- 865 8. Ryazansky, S., Kulbachinskiy, A., and Aravin, A.A. (2018). The Expanded
866 Universe of Prokaryotic Argonaute Proteins. *mBio* **9**, e01935-01918.
867 10.1128/mBio.01935-18.
- 868 9. Swarts, D.C., Jore, M.M., Westra, E.R., Zhu, Y., Janssen, J.H., Snijders, A.P.,
869 Wang, Y., Patel, D.J., Berenguer, J., Brouns, S.J.J., and van der Oost, J.
870 (2014). DNA-guided DNA interference by a prokaryotic Argonaute. *Nature*
871 **507**, 258-261. 10.1038/nature12971.
- 872 10. Swarts, D.C., Hegge, J.W., Hinojo, I., Shiimori, M., Ellis, M.A.,
873 Dumrongkulraksa, J., Terns, R.M., Terns, M.P., and van der Oost, J. (2015).
874 Argonaute of the archaeon *Pyrococcus furiosus* is a DNA-guided nuclease that
875 targets cognate DNA. *Nucleic acids research* **43**, 5120-5129.
876 10.1093/nar/gkv415.
- 877 11. Willkomm, S., Oellig, C.A., Zander, A., Restle, T., Keegan, R., Grohmann, D.,
878 and Schneider, S. (2017). Structural and mechanistic insights into an archaeal
879 DNA-guided Argonaute protein. *Nature microbiology* **2**, 17035.
880 10.1038/nmicrobiol.2017.35.
- 881 12. Hegge, J.W., Swarts, D.C., Chandradoss, S.D., Cui, T.J., Kneppers, J., Jinek,
882 M., Joo, C., and van der Oost, J. (2019). DNA-guided DNA cleavage at
883 moderate temperatures by *Clostridium butyricum* Argonaute. *Nucleic acids*
884 *research* **47**, 5809-5821. 10.1093/nar/gkz306.
- 885 13. Kuzmenko, A., Yudin, D., Ryazansky, S., Kulbachinskiy, A., and Aravin, A.A.
886 (2019). Programmable DNA cleavage by Ago nucleases from mesophilic
887 bacteria *Clostridium butyricum* and *Limnothrix rosea*. *Nucleic acids research*
888 **47**, 5822-5836. 10.1093/nar/gkz379.
- 889 14. Kuzmenko, A., Ogienko, A., Esyunina, D., Yudin, D., Petrova, M., Kudinova,
890 A., Maslova, O., Ninova, M., Ryazansky, S., Leach, D., et al. (2020). DNA
891 targeting and interference by a bacterial Argonaute nuclease. *Nature* **587**,
892 632-637. 10.1038/s41586-020-2605-1.
- 893
- 894

895 15. Jolly, S.M., Gainetdinov, I., Jouravleva, K., Zhang, H., Strittmatter, L., Bailey,
896 S.M., Hendricks, G.M., Dhabaria, A., Ueberheide, B., and Zamore, P.D. (2020).
897 *Thermus thermophilus* Argonaute Functions in the Completion of DNA
898 Replication. *Cell* *182*, 1545-1559 e1518. 10.1016/j.cell.2020.07.036.

899 16. Kropocheva, E., Kuzmenko, A., Aravin, A.A., Esyunina, D., and Kulbachinskiy,
900 A. (2021). A programmable pAgo nuclease with universal guide and target
901 specificity from the mesophilic bacterium *Kurthia massiliensis*. *Nucleic acids*
902 *research* *49*, 4054-4065. 10.1093/nar/gkab182.

903 17. Liu, Y., Li, W., Jiang, X., Wang, Y., Zhang, Z., Liu, Q., He, R., Chen, Q., Yang,
904 J., Wang, L., et al. (2021). A programmable omnipotent Argonaute nuclease
905 from mesophilic bacteria *Kurthia massiliensis*. *Nucleic acids research* *49*,
906 1597-1608. 10.1093/nar/gkaa1278.

907 18. Kaya, E., Doxzen, K.W., Knoll, K.R., Wilson, R.C., Strutt, S.C., Kranzusch, P.J.,
908 and Doudna, J.A. (2016). A bacterial Argonaute with noncanonical guide RNA
909 specificity. *Proceedings of the National Academy of Sciences of the United
910 States of America* *113*, 4057-4062. 10.1073/pnas.1524385113.

911 19. Wang, L.Y., Xie, X.C., Lv, B., Liu, Y., Li, W.Q., Zhang, Z.W., Yang, J., Yan,
912 G.B., Chen, W.P., Zhang, C., et al. (2022). A bacterial Argonaute with
913 efficient DNA and RNA cleavage activity guided by small DNA and RNA. *Cell
914 reports* *41*. Artn 111533

915 10.1016/j.Celrep.2022.111533.

916 20. Lisitskaya, L., Shin, Y., Agapov, A., Olina, A., Kropocheva, E., Ryazansky, S.,
917 Aravin, A.A., Esyunina, D., Murakami, K.S., and Kulbachinskiy, A. (2022).
918 Programmable RNA targeting by bacterial Argonaute nucleases with
919 unconventional guide binding and cleavage specificity. *Nature
920 communications* *13*. Artn 4624

921 10.1038/S41467-022-32079-5.

922 21. Koopal, B., Mutte, S.K., and Swarts, D.C. (2022). A long look at short
923 prokaryotic Argonautes. *Trends in cell biology*. 10.1016/j.tcb.2022.10.005.

924 22. Zeng, Z., Chen, Y., Pinilla-Redondo, R., Shah, S.A., Zhao, F., Wang, C., Hu, Z.,
925 Wu, C., Zhang, C., Whitaker, R.J., et al. (2022). A short prokaryotic
926 Argonaute activates membrane effector to confer antiviral defense. *Cell host
927 & microbe* *30*, 930-943. 10.1016/j.chom.2022.04.015.

928 23. Zaremba, M., Dakineviciene, D., Golovinas, E., Zagorskaité, E., Stankunas, E.,
929 Lopatina, A., Sorek, R., Manakova, E., Ruksenaite, A., Silanskas, A., et al.
930 (2022). Short prokaryotic Argonautes provide defence against incoming
931 mobile genetic elements through NAD⁺ depletion. *Nature microbiology* *7*,
932 1857-1869. <https://doi.org/10.1101/2021.12.14.472599>.

933 24. Garb, J., Lopatina, A., Bernheim, A., Zaremba, M., Siksny, V., Melamed, S.,
934 Leavitt, A., Millman, A., Amitai, G., and Sorek, R. (2022). Multiple phage
935 resistance systems inhibit infection via SIR2-dependent NAD⁺ depletion.
936 *Nature microbiology* *7*, 1849-1856.

937 25. Koopal, B., Potocnik, A., Mutte, S.K., Aparicio-Maldonado, C., Lindhoud, S.,
938 Vervoort, J.J.M., Brouns, S.J.J., and Swarts, D.C. (2022). Short prokaryotic
939 Argonaute systems trigger cell death upon detection of invading DNA. *Cell
940 DOI: 10.1016/j.cell.2022.03.012*. 10.1016/j.cell.2022.03.012.

941 26. Lopatina, A., Tal, N., and Sorek, R. (2020). Abortive Infection: Bacterial
942 Suicide as an Antiviral Immune Strategy. *Annual review of virology* *7*, 371-
943 384. 10.1146/annurev-virology-011620-040628.

944 27. Chen, Y., Zeng, Z., She, Q., and Han, W. (2022). The abortive infection
945 functions of CRISPR-Cas and Argonaute. *Trends in microbiology*.
946 10.1016/j.tim.2022.11.005.

947 28. Olovnikov, I., Chan, K., Sachidanandam, R., Newman, D.K., and Aravin, A.A.
948 (2013). Bacterial argonaute samples the transcriptome to identify foreign
949 DNA. *Molecular cell* *51*, 594-605. 10.1016/j.molcel.2013.08.014.

950 29. Miyoshi, T., Ito, K., Murakami, R., and Uchiumi, T. (2016). Structural basis for
951 the recognition of guide RNA and target DNA heteroduplex by Argonaute.
952 *Nature communications* *7*, 11846. 10.1038/ncomms11846.

953 30. Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M.,
954 and Doudna, J.A. (2018). CRISPR-Cas12a target binding unleashes
955 indiscriminate single-stranded DNase activity. *Science* *360*, 436-439.
956 10.1126/science.aar6245.

957 31. Dmytrenko, O., Neumann, G.C., Hallmark, T., Keiser, D.J., Crowley, V.M.,
958 Vialeto, E., Mougiaikos, I., Wandera, K.G., Domgaard, H., Weber, J., et al.
959 (2023). Cas12a2 elicits abortive infection through RNA-triggered destruction
960 of dsDNA. *Nature* *613*, 588-594. 10.1038/s41586-022-05559-3.

961 32. Mayo-Munoz, D., Smith, L.M., Garcia-Doval, C., Malone, L.M., Harding, K.R.,
962 Jackson, S.A., Hampton, H.G., Fagerlund, R.D., Gumy, L.F., and Fineran, P.C.
963 (2022). Type III CRISPR-Cas provides resistance against nucleus-forming
964 jumbo phages via abortive infection. *Molecular cell* *82*, 4471-4486 e4479.
965 10.1016/j.molcel.2022.10.028.

966 33. Lau, R.K., Ye, Q., Birkholz, E.A., Berg, K.R., Patel, L., Mathews, I.T., Watrous,
967 J.D., Ego, K., Whiteley, A.T., Lowey, B., et al. (2020). Structure and
968 Mechanism of a Cyclic Trinucleotide-Activated Bacterial Endonuclease
969 Mediating Bacteriophage Immunity. *Molecular cell* *77*, 723-733 e726.
970 10.1016/j.molcel.2019.12.010.

971 34. Rostol, J.T., Xie, W., Kuryavyi, V., Maguin, P., Kao, K., Froom, R., Patel, D.J.,
972 and Marraffini, L.A. (2021). The Card1 nuclease provides defence during type
973 III CRISPR immunity. *Nature* *590*, 624-629. 10.1038/s41586-021-03206-x.

974 35. Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai,
975 G., and Sorek, R. (2018). Systematic discovery of antiphage defense systems
976 in the microbial pangenome. *Science* *359*, eaar4120.
977 10.1126/science.aar4120.

978 36. Gao, L., Alatae-Tran, H., Bohning, F., Makarova, K.S., Segel, M., Schmid-Burgk,
979 J.L., Koob, J., Wolf, Y.I., Koonin, E.V., and Zhang, F. (2020). Diverse
980 enzymatic activities mediate antiviral immunity in prokaryotes. *Science* *369*,
981 1077-1084. 10.1126/science.aba0372.

982 37. Millman, A., Bernheim, A., Stokar-Avhail, A., Fedorenko, T., Voichek, M.,
983 Leavitt, A., Oppenheimer-Shaanan, Y., and Sorek, R. (2020). Bacterial
984 Retrons Function In Anti-Phage Defense. *Cell* *183*, 1551-1561 e1512.
985 10.1016/j.cell.2020.09.065.

986 38. Millman, A., Melamed, S., Amitai, G., and Sorek, R. (2020). Diversity and
987 classification of cyclic-oligonucleotide-based anti-phage signalling systems.
988 *Nature microbiology* *5*, 1608-1615. 10.1038/s41564-020-0777-y.

989 39. Rousset, F., Depardieu, F., Miele, S., Dowding, J., Laval, A.L., Lieberman, E.,
990 Garry, D., Rocha, E.P.C., Bernheim, A., and Bikard, D. (2022). Phages and
991 their satellites encode hotspots of antiviral systems. *Cell host & microbe* *30*,
992 740-753 e745. 10.1016/j.chom.2022.02.018.

993 40. Vassallo, C., Doering, C., Littlehale, M.L., Teodoro, G., and M.T., L. (2022). A
994 functional selection reveals previously undetected anti-phage defence
995 systems in the *E. coli* pangenome. *Nature microbiology* *7*, 1568-1579.

996 41. Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hor, J., Garb,
997 J., Bechon, N., Brandis, A., Lopatina, A., et al. (2022). An expanded arsenal
998 of immune systems that protect bacteria from phages. *Cell host & microbe* *30*,
999 1556-1569 e1555. 10.1016/j.chom.2022.09.017.

1000 42. Steczkiewicz, K., Muszewska, A., Knizewski, L., Rychlewski, L., and Ginalski, K.
1001 (2012). Sequence, structure and functional diversity of PD-(D/E)XK
1002 phosphodiesterase superfamily. *Nucleic acids research* *40*, 7016-7045.
1003 10.1093/nar/gks382.

1004 43. Holm, L., and Rosenstrom, P. (2010). Dali server: conservation mapping in
1005 3D. *Nucleic acids research* *38*, W545-W549. 10.1093/nar/gkq366.

1006 44. Zhu, W., McQuarrie, S., Gruschow, S., McMahon, S.A., Graham, S., Gloster,
1007 T.M., and White, M.F. (2021). The CRISPR ancillary effector Can2 is a dual-
1008 specificity nuclease potentiating type III CRISPR defence. *Nucleic acids*
1009 *research* *49*, 2777-2789. 10.1093/nar/gkab073.

1010 45. Kachalova, G.S., Rogulin, E.A., Yunusova, A.K., Artyukh, R.I., Perevyazova,
1011 T.A., Matvienko, N.I., Zheleznyaya, L.A., and Bartunik, H.D. (2008). Structural
1012 analysis of the heterodimeric type IIS restriction endonuclease R.BspD6I
1013 acting as a complex between a monomeric site-specific nickase and a
1014 catalytic subunit. *Journal of molecular biology* *384*, 489-502.
1015 10.1016/j.jmb.2008.09.033.

1016 46. Ka, D., Oh, H., Park, E., Kim, J.H., and Bae, E. (2020). Structural and
1017 functional evidence of bacterial antiphage protection by Thoeris defense
1018 system via NAD(+) degradation. *Nature communications* *11*, 2816.
1019 10.1038/s41467-020-16703-w.

1020 47. Ofir, G., Herbst, E., Baroz, M., Cohen, D., Millman, A., Doron, S., Tal, N.,
1021 Malheiro, D.B.A., Malitsky, S., Amitai, G., and Sorek, R. (2021). Antiviral
1022 activity of bacterial TIR domains via immune signalling molecules. *Nature* *600*,
1023 116-120. 10.1038/s41586-021-04098-7.

1024 48. Tesson, F., Herve, A., Mordret, E., Touchon, M., d'Humieres, C., Cury, J., and
1025 Bernheim, A. (2022). Systematic and quantitative view of the antiviral arsenal
1026 of prokaryotes. *Nature communications* *13*, 2561. 10.1038/s41467-022-
1027 30269-9.

1028 49. Masukata, H., Dasgupta, S., and Tomizawa, J. (1987). Transcriptional
1029 activation of ColE1 DNA synthesis by displacement of the nontranscribed
1030 strand. *Cell* *51*, 1123-1130. 10.1016/0092-8674(87)90598-8.

1031 50. del Solar, G., Giraldo, R., Ruiz-Echevarria, M.J., Espinosa, M., and Diaz-Orejas,
1032 R. (1998). Replication and control of circular bacterial plasmids. *Microbiology*
1033 and molecular biology reviews : MMBR *62*, 434-464.
1034 10.1128/MMBR.62.2.434-464.1998.

1035 51. Manen, D., and Caro, L. (1991). The replication of plasmid pSC101. *Molecular*
1036 *microbiology* *5*, 233-237. 10.1111/j.1365-2958.1991.tb02103.x.

1037 52. Liu, S., Rao, X., Zhao, R., and Han, W. (2022). The trans DNA cleavage
1038 activity of Cas12a provides no detectable immunity against plasmid or phage.
1039 *Front Genome Ed* *4*, 929929. 10.3389/fgeed.2022.929929.

1040 53. Chen, S.F., Zhou, Y.Q., Chen, Y.R., and Gu, J. (2018). fastp: an ultra-fast all-
1041 in-one FASTQ preprocessor. *Bioinformatics* *34*, 884-890.
1042 10.1093/bioinformatics/bty560.

1043 54. Kim, D., Landmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced
1044 aligner with low memory requirements. *Nat Methods* *12*, 357-U121.
1045 10.1038/Nmeth.3317.

1046 55. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with
1047 Burrows-Wheeler transform. *Bioinformatics* *25*, 1754-1760.
1048 10.1093/bioinformatics/btp324.

1049 56. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
1050 Abecasis, G., Durbin, R., and Proc, G.P.D. (2009). The Sequence
1051 Alignment/Map format and SAMtools. *Bioinformatics* *25*, 2078-2079.
1052 10.1093/bioinformatics/btp352.

1053 57. Shen, W., Le, S., Li, Y., and Hu, F.Q. (2016). SeqKit: A Cross-Platform and
1054 Ultrafast Toolkit for FASTA/Q File Manipulation. *Plos One* *11*. ARTN e0163962
1055 10.1371/journal.pone.0163962.

1056 58. Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general
1057 purpose program for assigning sequence reads to genomic features.
1058 *Bioinformatics* *30*, 923-930. 10.1093/bioinformatics/btt656.

1059 59. Katoh, K., and Standley, D.M. (2013). MAFFT Multiple Sequence Alignment
1060 Software Version 7: Improvements in Performance and Usability. *Mol Biol
1061 Evol* *30*, 772-780. 10.1093/molbev/mst010.

1062 60. Letunic, I., and Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online
1063 tool for phylogenetic tree display and annotation. *Nucleic Acids Res* *49*,
1064 W293-W296. 10.1093/nar/gkab301.

1065 61. Paradis, E., and Schliep, K. (2019). ape 5.0: an environment for modern
1066 phylogenetics and evolutionary analyses in R. *Bioinformatics* *35*, 526-528.
1067 10.1093/bioinformatics/bty633.

1068 62. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,
1069 Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., et al. (2021).
1070 Highly accurate protein structure prediction with AlphaFold. *Nature* *596*, 583-
1071 589. 10.1038/s41586-021-03819-2.

1072

1073