

1 **Subgenual Anterior Cingulate Cortex Functional Connectivity**
2 **Abnormalities in Depression: Insights from Brain Imaging Big Data and**
3 **Precision-Guided Personalized Intervention via Transcranial Magnetic**
4 **Stimulation**

5 Xiao Chen^{1,2,3,4,5}#, Bin Lu^{1,3,4,5}#, Yu-Wei Wang^{1,3,4,5}, Xue-Ying Li^{1,3,4,5}, Zi-Han Wang^{1,3,4,5}, Hui-Xian Li⁶,
6 Yi-Fan Liao^{1,3,4,5}, Daniel M. Blumberger^{2,7}, Francisco Xavier Castellanos^{8,9}, Eduardo A. Garza-Villarreal¹⁰,
7 Li-Ping Cao¹¹, Guan-Mao Chen¹², Jian-Shan Chen¹¹, Tao Chen¹³, Tao-Lin Chen^{14,15}, Yan-Rong Chen^{1,3,4,5},
8 Yu-Qi Cheng¹⁶, Zhao-Song Chu¹⁶, Shi-Xian Cui^{1,17,18}, Xi-Long Cui¹⁹, Zhao-Yu Deng^{1,3,4,5}, Qing-Lin Gao^{1,3,4,5},
9 Qi-Yong Gong^{14,15}, Wen-Bin Guo¹⁹, Can-Can He²⁰, Zheng-Jia-Yi Hu^{1,17,18}, Qian Huang²¹, Xin-Lei Ji¹⁹,
10 Feng-Nan Jia²², Li Kuang²¹, Bao-Juan Li²³, Feng Li²⁴, Tao Li^{25,26}, Xue Li^{1,3,4,5}, Tao Lian^{1,3,4,5}, Xiao-Yun Liu²⁷,
11 Yan-Song Liu²², Zhe-Ning Liu¹⁹, Yi-Cheng Long¹⁹, Jian-Ping Lu²⁸, Jiang Qiu²⁹, Xiao-Xiao Shan¹⁹, Tian-Mei
12 Si³⁰, Peng-Feng Sun³¹, Chuan-Yue Wang²⁴, Han-Lin Wang^{1,3,4,5}, Xiang Wang¹⁹, Ying Wang¹², Chen-Nan
13 Wu^{1,3,4,5}, Xiao-Ping Wu³¹, Xin-Ran Wu²⁹, Yan-Kun Wu³⁰, Chun-Ming Xie²⁰, Guang-Rong Xie¹⁹, Peng
14 Xie^{32,33,34}, Xiu-Feng Xu¹⁶, Zhen-Peng Xue²⁸, Hong Yang¹³, Jian Yang³³, Hua Yu^{25,26}, Yong-Qiang Yu^{35,36,37},
15 Min-Lan Yuan³⁸, Yong-Gui Yuan²⁷, Yu-Feng Zang^{39,40}, Ai-Xia Zhang⁴¹, Ke-Rang Zhang⁴¹, Wei Zhang³⁸,
16 Zi-Jing Zhang^{1,3,4,5}, Jing-Ping Zhao¹⁹, Jia-Jia Zhu^{35,36,37}, Xi-Nian Zuo^{42,43}, the DIRECT Consortium,
17 Hua-Ning Wang²³, Chao-Gan Yan^{1,3,4,5,17,18*}

18 ¹CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China

19 ²Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for
20 Addiction and Mental Health, Toronto, Ontario M6J1H4, Canada

21 ³Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences,
22 Beijing 100101, China

23 ⁴Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China

24 ⁵International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing 100101,
25 China

26 ⁶The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China

27 ⁷Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario

28 M5S1A1, Canada

29 ⁸Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY

30 10016, USA

31 ⁹Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA

32 ¹⁰Instituto de Neurobiología, Universidad Nacional Autónoma de México campus Juriquilla, Querétaro

33 7630, Mexico

34 ¹¹Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China

35 ¹²The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 250024, China

36 ¹³Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University,

37 Hangzhou, Zhejiang 310058, China

38 ¹⁴Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular

39 Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu,

40 Sichuan 610041, China

41 ¹⁵Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041,

42 China

43 ¹⁶Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan

44 650032, China

45 ¹⁷Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China

46 ¹⁸Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences,

47 Beijing 101408, China

48 ¹⁹Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second

49 Xiangya Hospital of Central South University, Changsha, Hunan 410011, China

50 ²⁰Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu

51 210009, China

52 ²¹Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing

53 400042, China

54 ²²Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of

55 Soochow University, Suzhou, Jiangsu 215003, China

56 ²³Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710032, China

57 ²⁴Beijing Anding Hospital, Capital Medical University, Beijing 100120, China

58 ²⁵Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of

59 Medicine, Hangzhou, Zhejiang 310063, China

60 ²⁶Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University,

61 Chengdu, Sichuan 610044, China

62 ²⁷Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast

63 University, Nanjing, Jiangsu 210009, China

64 ²⁸Shenzhen Kangning Hospital, Shenzhen, Guangzhou 518020, China

65 ²⁹Faculty of Psychology, Southwest University, Chongqing 400715, China

66 ³⁰National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key

67 Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China

68 ³¹Xi'an Central Hospital, Xi'an, Shaanxi 710004, China

69 ³²Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China

70 ³³Chongqing Key Laboratory of Neurobiology, Chongqing 400000, China

71 ³⁴Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing

72 400042, China

73 ³⁵Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui

74 230022, China

75 ³⁶Research Center of Clinical Medical Imaging, Hefei, Anhui 230032, China

76 ³⁷Anhui Provincial Institute of Translational Medicine, Hefei, Anhui 230032, China

77 ³⁸West China Hospital of Sichuan University, Chengdu, Sichuan 610044, China

78 ³⁹Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University,

79 Hangzhou, Zhejiang 310018, China

80 ⁴⁰Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang

81 310000, China

82 ⁴¹First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China

83 ⁴²Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain

84 Research, Beijing Normal University, Beijing 100091, China

85 ⁴³National Basic Science Data Center, Beijing 100038, China

86 ⁴⁴Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine,
87 Hangzhou, Zhejiang 310020, China

88 ⁴⁵Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030,
89 China

90 ⁴⁶Department of Diagnostics, Affiliated Hospital, Hangzhou Normal University Medical School,
91 Hangzhou, Zhejiang 311121, China

92 ⁴⁷Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning
93 110122, China

94 ⁴⁸Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical
95 University, Nanjing, Jiangsu 210024, China

96 ⁴⁹Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui
97 230022, China

98 ⁵⁰Department of Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
99

100 *Corresponding author:

101 Chao-Gan Yan, Ph. D.

102 CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China

103 16 Lincui Road, Chaoyang District, Beijing 100101, China

104 Tel: +86-10-64101582

105 E-mail: yancg@psych.ac.cn

106

107 #Xiao Chen and Bin Lu contributed equally to this work.

108 DIRECT consortium: Chao-Gan Yan, Ph.D.^{1,3,4,5,17,18}, Xiao Chen, Ph.D.^{1,2,3,4,5}, Li-Ping Cao, M.D.¹¹, Wei
109 Chen, M.D.⁴⁴, Yu-Qi Cheng, M.D.¹⁶, Yi-Ru Fang, M.D.⁴⁵, Qi-Yong Gong, M.D.^{14,15}, Wen-Bin Guo, M.D.¹⁹,
110 Li Kuang, M.D.²¹, Bao-Juan Li, M.D.²³, Tao Li, M.D.^{25,26}, Yan-Song Liu, M.D.²², Zhe-Ning Liu, M.D.¹⁹,
111 Jian-Ping Lu, M.D.²⁸, Qing-Hua Luo, M.D.²¹, Hua-Qing Meng, M.D.²¹, Dai-Hui Peng, M.D.⁴⁵, Jiang Qiu,
112 Ph.D.²⁹, Yue-Di Shen, M.D.⁴⁶, Tian-Mei Si, M.D.³⁰, Yan-Qing Tang, M.D.⁴⁷, Chuan-Yue Wang, M.D.²⁴, Fei
113 Wang, M.D.^{47,48}, Hua-Ning Wang, M.D.²³, Kai Wang, M.D.⁴⁹, Xiang Wang, M.D.¹⁹, Ying Wang, M.D.¹²,
114 Xiao-Ping Wu, M.D.³¹, Chun-Ming Xie, M.D.²⁰, Guang-Rong Xie, M.D.¹⁹, Peng Xie, M.D.^{32,33,34}, Xiu-Feng

115 Xu, M.D.¹⁶, Hong Yang, M.D.¹³, Jian Yang, M.D.³³, Shu-Qiao Yao, M.D.¹⁹, Yong-Qiang Yu, M.D.^{35,36,37},
116 Yong-Gui Yuan, M.D.²⁷, Ke-Rang Zhang, M.D.⁴¹, Wei Zhang, M.D.³⁸, Zhi-Jun Zhang, M.D.²⁰, Jun-Juan Zhu,
117 M.D.⁵⁰, Xi-Nian Zuo, Ph.D.^{42,43}, Jing-Ping Zhao, M.D.¹⁹, Yu-Feng Zang, M.D.^{39,40}

118 **Abstract**

119 **Background** The subgenual anterior cingulate cortex (sgACC) plays a central role in the
120 pathophysiology of major depressive disorder (MDD), and its functional interactive profile
121 with the left dorsal lateral prefrontal cortex (DLPFC) is associated with transcranial magnetic
122 stimulation (TMS) treatment outcomes. Nevertheless, previous research on sgACC functional
123 connectivity (FC) in MDD has yielded inconsistent results, partly due to small sample sizes
124 and limited statistical power. Furthermore, calculating sgACC-FC to target TMS individually is
125 challenging.

126 **Methods** Leveraging a large multi-site cross-sectional sample (1660 MDD patients vs. 1341
127 healthy controls) from Phase II of the Depression Imaging REsearch ConsorTium (DIRECT), we
128 systematically delineated case-control difference maps of sgACC-FC. Then, we explored the
129 potential impact of such group-level abnormality profiles on the TMS target localization and
130 clinical efficacy. Next, we developed an MDD big data-guided individualized TMS targeting
131 algorithm to integrate group-level statistical maps with individual-level brain activity to
132 localize TMS targets individually.

133 **Results** We found an enhanced sgACC-DLPFC FC in MDD patients compared to healthy
134 controls (HC). Such group differences altered the position of the sgACC anti-correlation peak
135 in the left DLPFC. In two independent clinical samples, we showed that the magnitude of
136 TMS targets' case-control differences in sgACC FC was related to clinical improvement. The
137 MDD big data-guided individualized TMS targeting algorithm may generate individualized
138 TMS targets that are clinically superior to group-level targets.

139 **Interpretation** We reliably delineated MDD-related abnormalities of sgACC-FC profiles in a
140 large, independently ascertained sample and demonstrated the potential impact of such
141 case-control differences on FC-guided localization of TMS targets.

142 **Funding** Ministry of Science and Technology of the People's Republic of China, National
143 Natural Science Foundation of China, and Chinese Academy of Sciences

144 **Keywords:** major depressive disorder, transcranial magnetic stimulation, individualization,
145 subgenual anterior cingulate cortex, functional connectivity, dual regression

147 **Introduction**

148 Major depressive disorder (MDD) is a common and debilitating psychiatric disorder projected
149 to be the most burdensome condition worldwide by 2030¹. Despite extensive research, the
150 pathophysiology of MDD remains elusive. Nevertheless, a key putative brain region or
151 network hub appears to be the subgenual anterior cingulate cortex (sgACC), which shows
152 reproducible metabolic hyperactivity², has been implicated in emotional responses,
153 motivation, and rumination in MDD³, and it has been shown to be an important target in
154 deep brain stimulation and transcranial magnetic stimulation (TMS)^{4,5}. Repetitive TMS above
155 5 Hz on the left dorsolateral prefrontal cortex (DLPFC) indirectly stimulates the sgACC, and
156 the closer to the sgACC target, the better the clinical outcome⁶. Accordingly, identifying an
157 optimized neuromodulation target in the left DLPFC based on sgACC-related functional
158 connectivity (FC) is crucial for developing effective depression treatments^{7,8}. In light of
159 inconsistent findings derived from studies with small sample sizes⁹⁻¹⁵, we set out to establish
160 a large sample to identify a reliable abnormal sgACC-DLPFC FC profile in MDD and further
161 integrate this profile with individual brain activity to generate individualized
162 neuromodulation targets for treating depression.

163

164 Numerous investigations have delved into FC abnormalities in MDD using resting-state
165 functional magnetic resonance imaging (R-fMRI). Abnormal FCs between sgACC and
166 amygdala, thalamus, temporal gyrus, lingual gyrus, cerebellum, DLPFC, and default mode
167 network (DMN) regions such as medial and dorsal medial prefrontal cortex, precuneus, and
168 parahippocampus have been reported^{9,10,13-20}. However, findings have been inconsistent,
169 making integrating findings and generating precise profiles of sgACC-related FC abnormalities
170 challenging. This deficiency in reproducibility could be partially due to small sample sizes,
171 differences in preprocessing pipelines, and low statistical power of clinical imaging studies
172^{21,22}. To address the issue of limited sample size, we initiated the Depression Imaging
173 REsearch Consortium (DIRECT)²³ and conducted an initial meta/mega-analysis ($N_{MDD} = 1300$),
174 referred to as REST-meta-MDD²⁴. DIRECT Phase I shared ROI-level signals, thus enabling the

175 investigation of multiple MDD-related abnormalities in network FC, FC topological and
176 dynamic features, and functional lateralization ²⁴⁻³¹. In DIRECT Phase II data reporting, we
177 pooled an expanded MDD sample ($N_{MDD} = 1660$), which was preprocessed with a
178 surface-based pipeline, DPABISurf ³². DIRECT Phase II shared voxel/vertex level BOLD time
179 series, allowing more flexible and thorough investigations. Leveraging the most
180 comprehensive MDD R-fMRI dataset to date encompassing depression patients and healthy
181 controls, we can determine an aberrant sgACC-FC profile associated with MDD, characterized
182 by superior reproducibility and low risk of false positives.

183

184 Maps of sgACC-related FC abnormalities are clinically useful for predicting repetitive TMS
185 (rTMS) treatment outcomes in MDD patients ³³⁻³⁵. Specifically, the anti-correlation between
186 sgACC and left DLPFC has been associated with clinical improvement from rTMS treatment
187 ³⁶⁻⁴⁰. This has led to the intriguing notion that the FC between sgACC and left DLPFC could be
188 leveraged to identify more precise rTMS targets and improve the efficacy of rTMS delivered
189 to the left DLPFC ^{7,41}. Researchers have identified a group-wise TMS target ³⁸, which was the
190 most anticorrelated DLPFC site to sgACC in the mean FC map from a large cohort of healthy
191 adults. Subtle but significant case-control differences in resting-state FC profiles have been
192 identified in a large sample of MDD patients ²⁴. Thus, understanding the profiles of sgACC FC
193 case-control differences and their impact on potential targets for rTMS applied to the left
194 DLPFC could be a critical step toward developing optimized rTMS target site identification
195 methods.

196

197 Individual human brains exhibit highly heterogeneous functional organization ⁴², with the
198 DLPFC regions exhibiting the highest level of interindividual variation in cytoarchitecture,
199 brain function, and network connectivity profiles ^{8,43}. While several individualized FC-guided
200 TMS target identification algorithms have been proposed ^{36,41,44-48}, the target localizations of
201 most existing TMS protocols have not been individualized. The major obstacles to identifying
202 individualized TMS locations are the low signal-to-noise ratio in the sgACC area and the poor
203 reproducibility of individual FC maps ^{49,50}. The high reliability and statistical power of the

204 DIRECT MDD cohort ($N_{MDD} = 1660$) allow the integration of group-level statistical maps and
205 individual functional brain images to achieve precise and reliable TMS localization. Here, we
206 propose an MDD big data-guided individualized TMS targeting algorithm based on dual
207 regression (DR), which was initially developed for mapping group-level independent
208 component analysis (ICA) results onto individual brains⁵¹. During individualized target
209 localization, the DR calculation is entirely confined to the DLPFC region, which has a high
210 signal-to-noise ratio, avoiding noisy signals from the sgACC region. Thus, this approach
211 enhances the efficacy and reliability of individualization approaches for identifying TMS
212 targets⁵².

213

214 In the present study, we leverage a large-scale multi-center sample (DIRECT Phase II, 1660
215 MDD patients and 1341 healthy controls (HCs)) to derive a reliable sgACC-related FC
216 abnormality profile for MDD. Next, we showed that such case-control difference profiles may
217 be related to the clinical efficiency of TMS and that the positions of the sgACC
218 anti-correlation peaks might be different in the MDD patients as compared to the HC. In
219 light of this, we developed an MDD big data-guided individualized TMS targeting algorithm
220 that may boost the clinical efficiency of TMS. We hypothesized that MDD patients would
221 show a significantly abnormal sgACC-FC profile, especially in the left DLPFC. We also
222 hypothesized that our newly developed DR-based approach would outperform traditional
223 TMS group targets. To our knowledge, this is the first study to show the possible implications
224 of the case-control abnormalities regarding the sgACC-FC profiles on the TMS target
225 localization and to integrate large-scale group-level statistical maps with individual-level
226 spontaneous brain activity to achieve individualized TMS targeting in MDD.

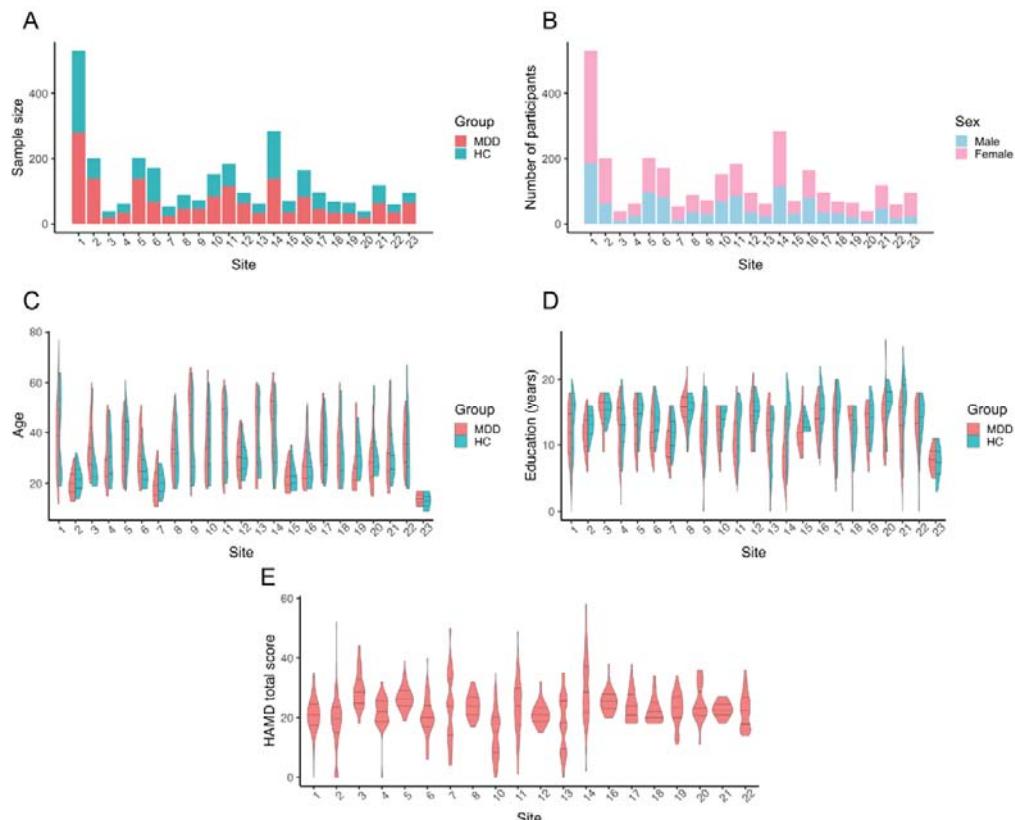
227

228 **Materials and methods**

229 **Study sample**

230 This study utilized four independent datasets. The first dataset ("DIRECT") is a large-scale,

231 multi-site consortium sharing standardized preprocessed R-fMRI time series. Building on the
232 initial success of DIRECT Phase I (the REST-meta-MDD Project)²⁴, consortium members and
233 international collaborators met on May 11th-12th, 2019, and agreed to launch DIRECT Phase II,
234 which comprises 23 case-control designed datasets, including R-fMRI and T1 structural scans
235 from 1660 MDD patients and 1341 HCs. Researchers from each site took a 2-day DPABISurf
236 training course on September 14th-15th, 2019, to harmonize the organization and
237 preprocessing of R-fMRI/T1 structural data. Demographic and clinical characteristics for each
238 sample are presented in Figure 1 and Table 1. Site information, sample size, and previous
239 publications based on the shared data are listed in Table S1. All participants were asked to
240 self-report their sex (biological attribute) as part of the case report form (CRF). All
241 participants in DIRECT Phase II were East Asian. Patients were diagnosed with MDD based on
242 ICD 10 or DSM-IV. Healthy controls matched with MDD patients by age, sex ratio, and
243 educational levels were recruited at each site. All participants provided written informed
244 consent, and local institutional review boards approved each study from all included cohorts.
245 The analysis plan of the current study has been reviewed and approved by the Institutional
246 Review Board of the Institute of Psychology, Chinese Academy of Sciences (No. H21102).
247 Data will be made available to the public as outlined in the Data Sharing Statement.
248



249

250 Figure 1. Sample characteristics of the DIRECT dataset. (A) Sample sizes of each site; (B) Number of
251 male/female subjects irrespective of diagnosis; (C) Violin plots depicting the age distribution (in years).
252 Solid black lines indicate the mean, 25th, and 75th percentiles; (D) Violin plots show education
253 distribution (in years). Solid black lines indicate the mean, 25th, and 75th percentiles; (E) Violin plots
254 depicting the distribution of scores of the Hamilton Depression Rating Scale (HAMD). Solid black lines
255 indicate the mean, 25th, and 75th percentiles.

256

257 The second dataset ("TRD-TMS") comprises 25 medication-treatment-resistant MDD (TRD)
258 patients who underwent 4 to 7 weeks of daily repetitive TMS applied over the left DLPFC.
259 Patients' TMS sites were recorded using their structural MRI images and a frameless
260 neuronavigation system. Treatment response was assessed with the 24-item Hamilton
261 Depression Rating Scale (HAMD). The targets for rTMS stimulation were determined using
262 the 5.5-cm method. Only TMS outcomes and target coordinates were openly shared for this

263 dataset. We obtained access to these data from the supplementary materials of Weigand et
264 al.³⁸. For more details on this dataset, please refer to Weigand et al.³⁸.

265

266 The third dataset ("SID-TMS") consists of 28 MDD patients with suicidal ideation who
267 underwent 10 daily sessions of rTMS over the left DLPFC for 5 consecutive days. Clinical
268 efficacy was evaluated using a 17-item HAMD. The TMS outcomes, neuroimaging data,
269 participants' demographic information, and target coordinates for this dataset were made
270 available upon request, enabling evaluation of the performance of the MDD big data-guided
271 individualized TMS targeting algorithm. The targets for individualized rTMS stimulation were
272 determined by identifying the peak subunits in the DLPFC area with the most negative
273 connections to the sgACC area in the original study. For more details on this dataset, see Li et
274 al.⁵³.

275

276 The fourth dataset ("CUD-TMS") comprises 27 cocaine use disorder (CUD) patients who
277 underwent two daily sessions of rTMS treatment over the left DLPFC in an acute phase and
278 two weekly sessions of rTMS treatment in a maintenance phase. The rTMS treatment was
279 delivered at the left DLPFC using either the 5.5 cm anatomic criterion or the Beam F3
280 method. Depressive symptoms were a secondary treatment outcome in the original study. A
281 subsample of 16 individuals, all with baseline HAMD scores above 7, was used for further
282 calculation of individualized TMS targets. The TMS outcomes, neuroimaging data,
283 participants' demographic info, and target coordinates for this dataset were openly shared
284 (<https://openneuro.org/datasets/ds003037/versions/1.0.0>). For more details on this dataset,
285 see Garza-Villarreal et al.⁵⁴.

286 **Approach**

287 The study's first objective was to delineate case-control differences in the sgACC-FC profile
288 and explore its implication in identifying FC-guided individualized TMS targets. Accordingly,
289 we conducted a generalized linear model (GLM) to compare voxel-wise sgACC-FC maps of
290 MDD patients and HCs in the DIRECT dataset. We then demonstrated the association

291 between clinical improvement and group differences in TMS targeting sgACC-FCs by
292 leveraging the TRD-TMS and SID-TMS datasets. Given that the peak sgACC anticorrelation of
293 a normative connectome within the left DLPFC was usually selected as the FC-guided sgACC
294 group target, we showed the impact of case-control differences on such group targets by
295 separately identifying the peak sgACC anticorrelation in the mean sgACC-FC maps of the
296 MDD group and HC group from the DIRECT dataset. Finally, we identified individualized
297 optimal targets using the MDD big data-guided individualized TMS targeting algorithm
298 guided by statistical maps (e.g., group difference map, mean sgACC-FC maps). We validated
299 the clinical effectiveness of the individualized approach by computing the correlation
300 between clinical outcomes and the distance between the actual TMS sites and the identified
301 individualized targets in the SID-TMS and CUD-TMS datasets. All statistical tests conducted in
302 the current study were two-sided.

303 **Power calculations for primary hypotheses**

304 The primary outcome of the current study is the case-control differences regarding the
305 sgACC-FC profiles. Estimates of the effect size (Cohen's $d = 0.186$) of MDD patients'
306 abnormalities in FCs are drawn directly from our prior research based on the DIRECT Phase I
307 dataset²⁴. Power calculation was performed using R version 4.3.1⁵⁵ with pwr⁵⁶. A sample of
308 455 patients will achieve 80% power with a 5% Type I error rate.

309 **Image preprocessing**

310 Acquisition parameters and scanners for all cohorts are provided in Table S2. All R-fMRI and
311 structural MRI scans were preprocessed at each site using the same DPABISurf protocol, an
312 R-fMRI data analysis toolbox evolved from DPABI/DPARSF^{32,57,58} (For details, see SI). Given
313 the controversy regarding global signal regression (GSR) and its essential role in identifying
314 TMS targets⁴¹, we performed preprocessing pipelines with and without GSR.

315 **FC maps of sgACC**

316 Although recent studies have attempted to identify personalized TMS targets using
317 surface-based algorithms⁴⁴, most previous studies have reported targets in volume-based
318 MNI space with sgACC ROIs defined as a sphere in volume-based space^{36,59}. As a result, we
319 used the volume-based preprocessed imaging data from DPABISurf to better compare our
320 results with the existing literature.

321

322 We defined the sgACC as a 10 mm diameter sphere located on the average MNI coordinates
323 based on prior studies showing reduced glucose metabolism or blood flow after receiving an
324 antidepressant treatment (MNI coordinates: x = 6, y = 16, z = -10. For details, please refer to
325 Fox et al., 2012³⁶). The sgACC time series were determined for each individual by spatially
326 averaging the preprocessed R-fMRI time series across all voxels in the abovementioned
327 masks. We then calculated whole-brain FC maps in volume-based MNI space. FC was
328 calculated using Pearson's correlation and underwent Fisher's r-to-z transformation. All FC
329 maps were smoothed with a 6 mm full-width half maximum (FWHM) kernel size. We used
330 ComBat⁶⁰ to control potential site and scanner biases (For details, see SI).

331 **Group difference maps of sgACC-FC profiles**

332 We used a voxel-wise GLM to examine differences in the FC maps of sgACC between MDD
333 patients and HCs in DIRECT Phase II. Cohen's f^2 was calculated to characterize the effect sizes
334 of this group difference effect. The GLM model includes age, sex, education, and head
335 motion as covariates:

$$y = \mu + X\beta + \epsilon \quad (1)$$

336 where y denotes the FC value of a given voxel from a given participant; μ stands for the
337 constant term; X represents the design matrix for the covariates of interest (diagnosis, age,
338 sex, education, and head motion); β is a vector of regression coefficients corresponding to X ;
339 and ϵ is a vector of residuals that follow $N(0, \sigma^2)$. Multiple comparison correction was
340 conducted using false discovery rate (FDR) correction at $q < 0.05$.

342

343 To further interpret group difference maps, we extracted the mean FC values of seven
344 networks using Schaefer's 400 parcellation atlas⁶¹. A GLM model identical to model (1) was
345 constructed to characterize case-control differences for each network. Bonferroni multiple
346 comparison correction was conducted ($p < 0.05/7$). We further explored the effect of the
347 identified DLPFC clusters in several subgroups. Specifically, patients who were in their first
348 episode and had never received any antidepressant medication treatment (first episode drug
349 naïve, FEDN, N = 484) and patients who had undergone more than one episode (recurrent, N
350 = 439) were selected and compared. Three contrasts, FEDN vs. HC, recurrent vs. HC, and
351 FEDN vs. recurrent, were analyzed.

352 **Relationship between group differences in TMS targets' sgACC FCs and clinical outcomes**

353 To explore the relationship between group differences in TMS targets' sgACC FCs and clinical
354 outcomes, we first extracted the mean t -values from the group difference map of 8 mm
355 radius spheres centered at each targeting coordinate in the TRD-TMS dataset, then examined
356 the Pearson correlations between these t -values and HAMD score reductions. We
357 anticipated that greater group differences in sgACC-FC at the target location (i.e., higher t
358 values) would be related to better TMS therapeutic effects (higher HAMD reductions). To test
359 the robustness of our findings, we also used spheres with 2 mm, 4 mm, and 10 mm radii
360 to extract the t -values of group differences.

361 **Group targets based on mean sgACC-FC maps**

362 The prior group-level DLPFC TMS target had been derived from a cohort of healthy young
363 adults³⁸; here, we separately averaged whole-brain sgACC-FC maps across all the DIRECT
364 participants in the MDD and HC groups. We then searched for the peak sgACC anticorrelated
365 voxel within the DLPFC area (i.e., Brodmann area (BA) 46) as the mean sgACC-FC guided TMS
366 targets for the MDD and HC groups.

367 **Identification of individualized TMS targets**

368 The reliable statistical maps from the DIRECT big sample best reflect the probability of
369 MDD-related abnormalities in sgACC-FC. Therefore, we can use these maps to guide the
370 identification of individualized abnormalities by combining this big-data-based abnormality
371 information with the individualized R-fMRI data from a given patient, obtaining reliable
372 statistical maps from the DIRECT sample. We used the dual regression approach to identify
373 individualized TMS targets guided by group-level statistical maps in the SID-TMS and
374 CUD-TMS datasets. Dual regression is a common method in independent component analysis
375 (ICA) for projecting group-level independent components (e.g., functional networks) onto
376 the individual subject level (see Figure S4 for details). In the first step of the MDD big
377 data-guided individualized TMS targeting algorithm, a group-level statistical spatial map (e.g.,
378 the sgACC-FC group difference map reflecting the probability of MDD-related abnormalities
379 in sgACC-FC) was used as a spatial regressor in the GLM to identify the temporal dynamic of
380 the group-level map (similar to spatial correlation with the abnormality spatial map). A time
381 series associated with the spatial map of MDD-related FC abnormalities was generated. In
382 the second step, the derived time series was used as a temporal regressor in the GLM to
383 identify an individual-level spatial map (similar to the temporal correlation with the previous
384 time series). This spatial map can be considered the best-individualized abnormality guided
385 by big-data-based abnormality. Given our prior knowledge of DLPFC TMS treatment in MDD,
386 we confined the big-data-based abnormality dual regression to the DLPFC area. That is, we
387 use the group DLPFC abnormality probability map to find the individualized DLPFC target in a
388 given MDD patient. The final coordinates for the individualized TMS targets are defined as
389 the centroids of the largest clusters within this DLPFC region on the individual-level spatial
390 maps. Additionally, we calculated the individualized target coordinates using the seed map
391 approach, following the methods described by Fox et al.⁴¹ and Cash et al.⁴⁴. In the seed-map
392 approach, a seed time series is extracted by computing a weighted average time series of all
393 voxels within the seed map (e.g., a group average map of sgACC-FC, but excluding the DLPFC
394 area). Subsequently, Pearson's correlation coefficients are computed between this extracted

395 time series and all other DLPFC voxels. The final TMS target is the most negatively
396 functionally connected cluster in the DLPFC area. Of note, in the seed map approach, the
397 goal of the first step is to find the most sgACC-like time series, which is not confined to the
398 noisy sgACC area. Following this rationale, the DLPFC time series should not be included to
399 avoid biasing the estimation of the sgACC-like time series. Thus, the DLPFC area was
400 excluded. Thus, the exclusion and inclusion of DLPFC differs between the seed map approach
401 and the DR approach due to the different underlying rationales. Details of the individualized
402 TMS target localization algorithms are provided in the supplementary materials.

403

404 **Clinical efficacy of the group-level and individualized TMS targets**

405 We leveraged the SID-TMS and CUD-TMS datasets to evaluate the clinical significance of
406 individualized TMS targets. We identified the proposed individualized TMS targets from the
407 MDD big data-guided individualized TMS targeting algorithm and calculated the targeting
408 offset (i.e., Euclidean distance between the individualized optimal TMS targets and the actual
409 stimulation coordinates) for each patient. Subsequently, we calculated the Pearson
410 correlations between clinical improvement (i.e., HAMD reductions) and targeting offset. We
411 anticipated a negative correlation between clinical outcomes and target offset (i.e., the
412 closer the actual stimulation target was to the individualized target from the MDD big
413 data-guided individualized TMS targeting algorithm, the higher the clinical improvement).
414 Age, sex, and head motion were included as covariates in the regression models when
415 calculating correlations between targeting offsets and clinical improvement.

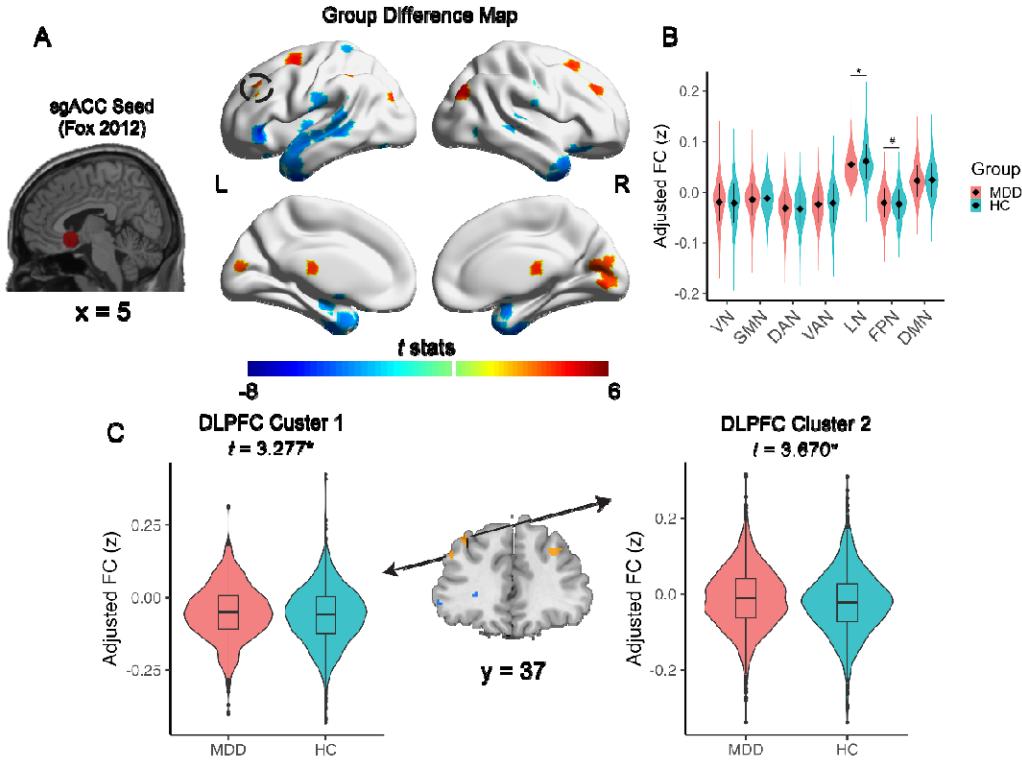
416

417 **Results**

418 **Group difference maps of sgACC-FC**

419 In the large-scale DIRECT Phase II dataset, we found significant MDD-related
420 hyperconnectivity with the sgACC in bilateral DLPFC, temporal parietal junction, and occipital

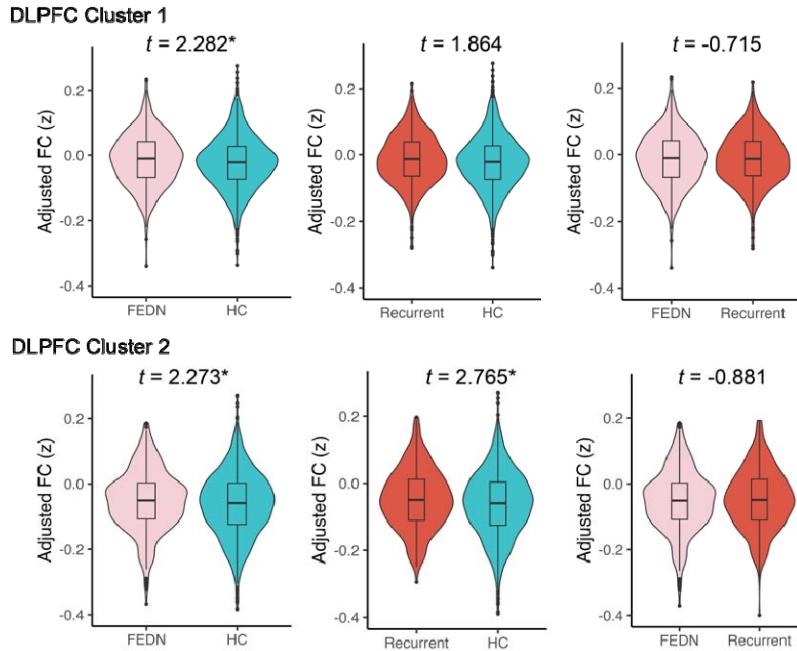
421 lobe, as well as hypoconnectivity in the bilateral temporal lobe, left inferior frontal gyrus, and
422 left postcentral gyrus when preprocessing included GSR (Figure 2A). When GSR was not
423 included in preprocessing, MDD-related sgACC FC alterations showed predominantly
424 hypoconnectivity. Such abnormally decreased FCs were found across the central gyrus,
425 occipital lobe, insular cortex, temporal lobe, and a small portion of the frontal lobe. Without
426 GSR, MDD-related hyperconnectivity was limited to subcortical regions (Figure S1A). Given
427 that significant case-control differences in the DLPFC area were revealed only when GSR was
428 implemented, subsequent analyses were based on results with GSR. The uncorrected group
429 difference maps calculated in the volume space showed remarkable similarity with those in
430 the surface space (Figure S2). Network-wise FC analyses showed that MDD patients' FC
431 between sgACC and the limbic network (LN) was significantly reduced compared to HC
432 ($t(2880) = -4.122$, $p_{corrected} < 0.001$, Cohen's $d = 0.171$). The FC between sgACC and the
433 frontoparietal network (FPN) was enhanced and approached significance ($t(2880) = 2.419$,
434 $p_{corrected} = 0.055$, Cohen's $d = 0.090$, Figure 2B). Without GSR, MDD patients showed
435 decreased FC between sgACC and all brain networks (all $p_{corrected} < 0.05$) except for the FPN
436 (Figure S1B). We identified two contiguous clusters of voxels that showed significant group
437 differences in the left DLPFC. Group difference cluster 1 (MNI coordinates: $x = -44$, $y = 38$, $z =$
438 32 ; $t(2880) = 3.277$, $p < 0.001$, Cohen's $d = 0.141$) was ventral to group difference cluster 2
439 (MNI coordinates: $x = -34$, $y = 36$, $z = 40$; $t(2880) = 3.670$, $p < 0.001$, Cohen's $d = 0.126$)
440 (Figure 2C). In subgroup analyses, when GSR was performed, FEDN patients showed
441 enhanced FCs in both clusters (cluster 1: $t(1790) = 2.282$, $p = 0.023$, Cohen's $d = 0.124$;
442 cluster 2: $t(1790) = 2.273$, $p = 0.023$, Cohen's $d = 0.123$). There was a significant
443 enhancement in the DLPFC cluster 2 between the recurrent MDD patients and HCs ($t(1745) =$
444 2.765 , $p = 0.006$, Cohen's $d = 0.159$) while cluster 1 approached significance ($t(1745) = 1.864$,
445 $p = 0.063$, Cohen's $d = 0.107$). No significant difference was revealed between the FEDN and
446 recurrent patients (see Figure 3).
447



448

449 Figure 2. Group differences of subgenual anterior cingulate cortex (sgACC) functional connectivity (FC)
450 profiles are related to TMS treatment efficacy, demonstrating clinical significance. (A) Two-sample
451 t-test maps of MDD-related sgACC FC abnormalities with global signal regression (GSR) implemented.
452 (B) Group differences of FCs between sgACC and visual network (VN), somatomotor network (SMN),
453 dorsal attention network (DAN), ventral attention network (VAN), limbic network (LN), frontoparietal
454 network (FPN), and default mode network (DMN). (C) Two clusters showed significant case-control
455 differences in sgACC-FC. Abbreviations: DLPFC, dorsal lateral prefrontal cortex; L, left hemisphere; R,
456 right hemisphere. *: significant after Bonferroni correction; #: approaching significance.

457



458

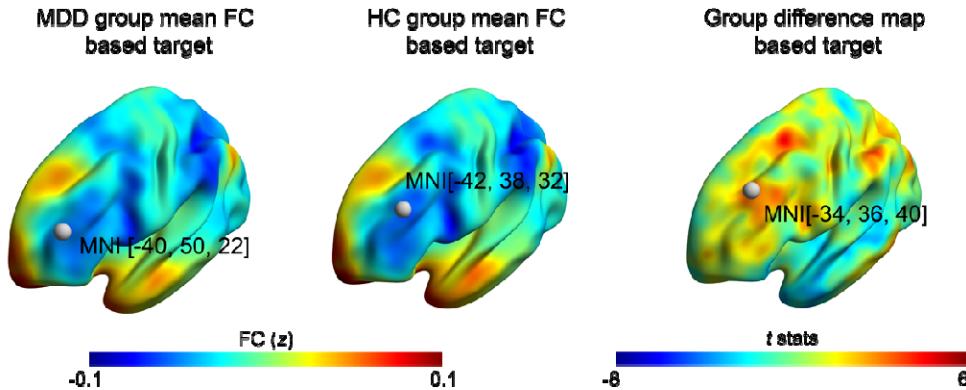
459 Figure 3. Subgroup differences regarding two clusters found in DLPFC. Abbreviations: FEDN, first
460 episode drug naïve; HC, healthy control.

461

462 **sgACC anticorrelation peaks in MDD and HCs**

463 Our results highlighted the case-control differences in sgACC-FC profiles. Since the prior
464 sgACC group target (MNI coordinates: $x = -42, y = 44, z = 30$) had been based on a cohort of
465 young, healthy adults³⁸, we sought to examine potential differences in anticorrelation peaks
466 extracted from the mean sgACC FC maps of MDD and HC groups (Figure 4B-C) in the DIRECT
467 dataset. We found that the anticorrelation peak of MDD patients (MNI coordinates: $x = -40, y$
468 = 50, $z = 22$) differed from that of HCs (MNI coordinates: $x = -42, y = 38, z = 32$), probably due
469 to abnormal FCs within the left DLPFC in MDD patients. The anticorrelation peak extracted
470 from the DIRECT HCs was closer to the previously reported locus³⁸ (Figure 4).

471



472

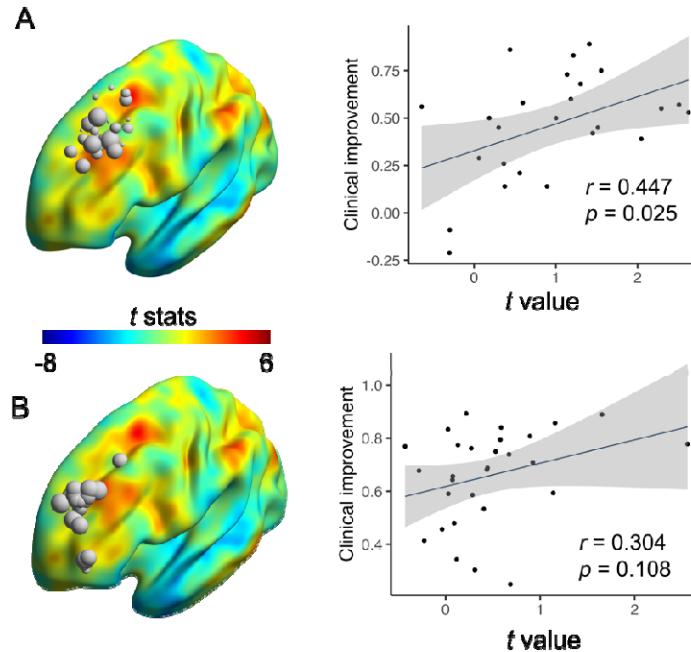
473 Figure 4. The peak of the sgACC anticorrelation in MDD patients differed from that in HCs.

474

475 **sgACC-FC group differences correlate with TMS treatment outcomes**

476 Using the TRD-TMS dataset, we examined the relationship between group differences
477 (*t*-values) and clinical outcomes (HAMD reductions) to test the clinical relevance of the group
478 difference maps. Group differences were positively correlated with HAMD score reductions
479 ($r(23) = 0.448, p = 0.025$, Figure 5A), suggesting that group-level difference maps may be
480 useful for enhancing the outcomes of TMS for treating MDD by improving target localization.
481 Significant associations were also observed using different radius settings (Figure S11).
482 The same trend was observed in the SID-TMS dataset, albeit it failed to achieve significance
483 ($r(26) = 0.304, p = 0.108$, Figure 5).

484



485

486 Figure 5. The group difference regarding sgACC-FC to the TMS targets was correlated with clinical
487 efficacy. (A) The TMS targets were extracted from the TRD-TMS dataset ³⁸. The sizes of the spheres
488 indicate the magnitudes in Hamilton Depression Rating Scale (HAMD) reductions, with the group
489 difference map rendered on the surface. The scatter plot depicted that the magnitudes of the group
490 differences in the FC between TMS targets and sgACC were positively related to clinical improvements
491 in the TRD dataset. (B) Findings were replicated in the SID-TMS dataset ⁵³. Abbreviations: FC,
492 functional connectivity; TMS, transcranial magnetic stimulation.

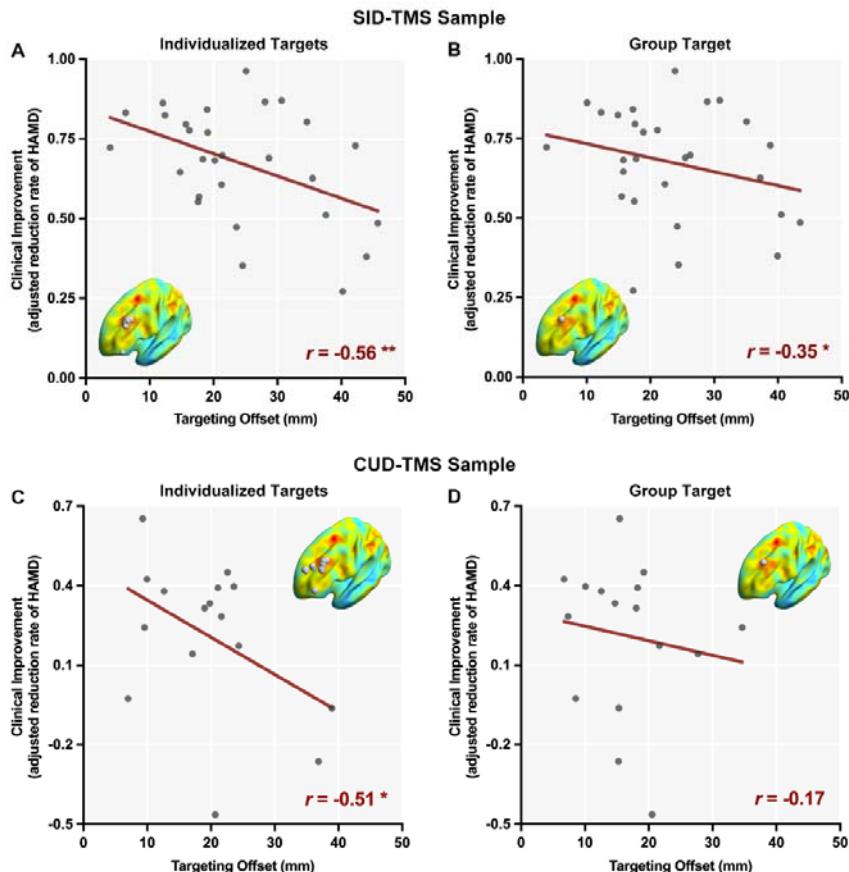
493

494 **Individualized targets suggest higher clinical efficacy than group targets**

495 We utilized the MDD big data-guided individualized TMS targeting algorithm to calculate
496 individualized optimal targets for each SID-TMS and CUD-TMS dataset participant. Clinical
497 relevance of the targets was determined by the correlation between target offset and clinical
498 improvement. The individualized target locations derived from the sgACC-FC group
499 difference map are illustrated in Figure 6. The individualized targets (SID-TMS: $r(26) = -0.562$,
500 $p = 0.002$; CUD-TMS: $r(14) = -0.511$, $p = 0.037$) outperformed their corresponding group-level
501 targets (SID-TMS: $r(26) = -0.349$, $p = 0.044$; CUD-TMS: $r(14) = -0.167$, $p = 0.293$) in both

502 datasets (Figure 6). The DR-based individualized targets derived from the MDD or HC
503 group-average sgACC-FC maps also outperformed their corresponding group-level targets
504 and seed map-based targets (Figure S6-8). Among all the individualized targets, the DR-based
505 targets guided by the group difference map achieved the highest clinical efficacy.

506



507

508 Figure 6. Individualized targets derived from the group difference map exhibited greater clinical
509 efficacy than the corresponding group targets. Clinical efficacy was characterized by computing the
510 correlations between the offset distances of TMS targets and the clinical improvements observed in
511 the CUD-TMS dataset. The TMS targeting offset distance was defined as the Euclidean distance
512 between the actual rTMS stimulation coordinates and the individualized or group targets. Clinical
513 improvement was defined as the HAMD reduction during rTMS treatment, adjusted for age, sex, and
514 head motion. The locations of the targets are displayed on the cortex. The sizes of the spheres indicate
515 the magnitudes of Hamilton Depression Rating Scale (HAMD) reductions. (A-B) Clinical efficacy of the

516 individualized and group targets in the SID-TMS sample. (C-D) Clinical efficacy of the individualized and
517 group targets in the CUD-TMS sample. * $p < 0.05$. ** $p < 0.01$.

518

519 **Discussion**

520 In the present study, we leveraged a large multi-site fMRI sample (1660 MDD patients and
521 1341 HCs) and three independent TMS datasets to delineate abnormalities in sgACC FC in
522 MDD and explore their potential impact on the localization of TMS targets. Specifically, with
523 GSR implemented, we found enhanced FCs between sgACC and left DLPFC, bilateral
524 supplementary motor areas and inferior parietal lobes, thalamus, and visual areas, and
525 decreased FCs between sgACC and left anterior insula, left superior temporal lobe, and
526 bilateral temporal poles in MDD patients. Patients with MDD exhibited significantly reduced
527 FC between the sgACC and the DMN, while FC between the sgACC and the FPN was only
528 marginally increased. Crucially, we showed that the clinical outcomes of TMS treatments
529 were related to the magnitude of the case-control differences in the FCs between sgACC and
530 TMS targets. Furthermore, such group difference profiles altered the position of the sgACC
531 anti-correlation peak in the left DLPFC. Additionally, the MDD big data-guided individualized
532 TMS targeting algorithm to identify individualized TMS targets showed better clinical efficacy
533 than TMS targets based on group sgACC-FC profiles.

534 **MDD-related FC abnormalities of sgACC**

535 Our results add to a growing literature documenting functional network abnormalities
536 involving the sgACC in MDD^{9,11-13,17,19,62-64}. Nevertheless, notable discrepancies in the type of
537 abnormality (enhanced/reduced) and specific brain regions showing altered sgACC FCs have
538 been reported. Considering the small effect sizes (Cohen's $f^2 < 0.01$) of MDD-related
539 sgACC-FC abnormalities, the limited sample sizes in previous studies entail a high risk of false
540 positive findings^{21,65,66}. Another potential source of heterogeneity in previous findings may
541 be whether or not they applied GSR (See supplementary materials for detailed discussion).

542 With an unprecedented sample size, our results provide among the most robust evidence to
543 date. Specifically, MDD patients showed enhanced sgACC-thalamus FC and decreased
544 sgACC-limbic network FC regardless of whether GSR was implemented. These results are
545 consistent with previous studies in adolescents¹⁹ and adults⁵⁹ with MDD. Previous studies
546 have reported abnormal FCs between sgACC and limbic areas and some subcortical regions,
547 such as the amygdala^{9,20} and parahippocampus regions¹³. Together, the present results are
548 consistent with a model highlighting sgACC as a critical hub in an “extended medial network,”
549 which also encompasses limbic, thalamic, and striatal regions and plays a key role in the
550 pathophysiology of MDD^{67,68}. This “extended medial network” overlaps substantially with
551 the DMN. Indeed, decreased FCs between sgACC and DMN regions, such as the medial
552 prefrontal cortex, precuneus, temporal gyrus, and parahippocampus regions, were revealed
553 in MDD relative to HCs when GSR was not implemented. Such abnormalities have been
554 previously reported^{10,12,15,34}, which led to the hypothesis that abnormally enhanced FC
555 between sgACC and DMN are the network underpinnings of rumination⁶⁹. However,
556 contrary to the aforementioned hypothesis, we found reduced, instead of enhanced FC
557 between sgACC and DMN. Similarly, in the first phase of DIRECT, we demonstrated that MDD
558 was characterized by reduced FC within DMN^{23,24}. We note that the first and second phases
559 of the DIRECT data are solely comprised of Chinese samples, while most studies that have
560 reported enhanced sgACC-DMN FCs have been in Caucasian samples. Different prevalence
561 rates^{70,71}, heterogeneous symptoms⁷², and different risk alleles⁷³ have been reported in
562 Caucasian and Eastern Asian groups. Accordingly, we cannot exclude racial differences
563 contributing to this discrepancy. It is worth noting that we found enhanced FCs between the
564 visual region and sgACC in MDD patients relative to HCs when GSR was implemented, while
565 significantly reduced sgACC-visual region FCs were revealed when GSR was not performed.
566 Most of DIRECT II sites’ R-fMRI data were collected with participants’ eyes closed (22 out of
567 23 sites). Prior research had shown that participants are more likely to fall asleep when their
568 eyes are closed during data acquisition, and drowsiness may alter FC patterns in visual
569 regions⁷⁴. Thus, it is possible that abnormalities in visual region FCs may be due to MDD
570 patients’ lower levels of wakefulness.

571 **Clinical relevance of abnormal sgACC-DLPFC anticorrelation in MDD**

572 Once the group difference maps of sgACC FC profiles were delineated, we further explored
573 the impact of such an abnormality, especially in DLPFC, on identifying TMS targets. Most
574 clinical trials have focused on applying TMS to the left DLPFC based on the hypothesis that
575 high-frequency rTMS will enhance hypoactivity during depressive episodes^{8,75}. The DLPFC is
576 anatomically extensive⁷⁶. However, which DLPFC sub-field is the best target for TMS remains
577 unclear. The current FDA-approved protocol (i.e., the “5 cm” method) leads to large
578 interindividual variation in stimulation sites, which may contribute to the heterogeneity in
579 the effect sizes of antidepressant responses in prior trials^{77,78}.

580

581 Previous targeting approaches leveraging anatomical landmarks has not consistently
582 outperformed the “5 cm” method or the F3 Beam method^{79,80}. Considering the
583 unsatisfactory effect of TMS target localization based on brain anatomical parcellation,
584 group-level normative sgACC anticorrelation peaks based on healthy population datasets
585 have been frequently used as TMS targets in recent years^{36,38,41}. However, in the present
586 study, we found that the locations of such anticorrelated peaks differ substantially between
587 MDD and HC samples when measured in a large clinical cohort. Therefore, it might be
588 problematic to identify TMS targets based solely on sgACC-FC profiles in healthy or
589 depressed individuals. Intriguingly, we found that the magnitudes of case-control differences
590 in TMS targets’ FCs to sgACC were positively related to the clinical improvements after
591 receiving rTMS to the left DLPFC. Such correlation implies that the case-control differences in
592 the FC between sgACC and the left DLPFC might bear important information that could be
593 leveraged to guide the identification of reliable, individualized TMS targets.

594 **The MDD big data-guided individualized TMS targeting algorithm may improve the clinical
595 efficacy of TMS targets**

596 In the current study, we developed an MDD big data-guided individualized TMS targeting
597 algorithm to individualize the TMS targets derived from group-level statistical maps. The

598 proposed approach takes advantage of the high signal-to-noise ratio and reliability of large
599 sample statistical maps while integrating individual spontaneous brain activity of individuals
600 with MDD. Most existing individualized TMS target localization algorithms are based on
601 calculating sgACC FCs using densely sampled MRI images from single subjects⁸¹. However,
602 individual MRI images tend to be noisy and unreliable^{82,83}, especially in the sgACC region. Air
603 in the sinuses often introduces susceptibility artifacts due to the different magnetic
604 properties of air and brain tissue. Signal loss and geometric distortion are common in areas
605 close to air-filled sinuses, such as the inferior frontal cortex, including the sgACC⁸⁴. The seed
606 map approach has been proposed to alleviate such difficulties due to the subpar image
607 quality of the sgACC region^{41,44}. In the seed map approach, all voxels within the seed map
608 (except for the DLPFC region) were used to extract the seed time series to improve its
609 signal-to-noise ratio. However, considering that the weight (e.g., FC value) of the sgACC area
610 is usually extremely high in the seed map, the derived seed time series remains somewhat
611 similar to the noisy sgACC time series and doesn't achieve the best TMS localization. A
612 cutting-edge MDD TMS therapy combining FC-guided target localization, high dose, and
613 intermittent theta-burst stimulation (iTBS) was reported to be highly effective in a
614 randomized, double-blinded, sham-controlled clinical trial^{45,46}. However, the targeting
615 algorithm relied on hierarchical agglomerative clustering in the sgACC area which has a low
616 signal-to-noise ratio. Nevertheless, the final target was still determined according to
617 individual-level sgACC-DLPFC FCs. For the proposed MDD big data-guided individualized TMS
618 targeting algorithm, we view the reliable statistical maps from the DIRECT big sample as the
619 best reflection of the probability of MDD-related abnormalities in sgACC-FC. Therefore, we
620 used these maps to guide the identification of individualized abnormalities by combining this
621 big-data-based abnormality information with the individualized R-fMRI data from a given
622 patient. Given the a priori knowledge of DLPFC TMS treatment in MDD, we confined the
623 big-data-based abnormality dual regression only within the DLPFC area, which is less affected
624 by susceptibility artifacts. In this way, the superior signal quality of DLPFC and the effective
625 and reliable properties of the dual regression algorithm enhance the accuracy of target
626 localization.

627

628 Encouragingly, the DR-based individualization targets enhanced the clinical significance of
629 corresponding group-level targets, regardless of the template used. This result supports the
630 generalizability and extensibility of the algorithm, offering the potential for TMS targeting
631 based on other circuits and biomarkers. Considering most existing TMS research still relies on
632 the traditional 5 cm or Beam F3 methods for targeting, one approach based on our data to
633 improve targeting would be simply shifting the target to a more anterior and lateral position.
634 However, such a simple shift was not supported by the present study. Instead, 25% of targets
635 individualized using the group difference map were more medial than the original targets,
636 and 50% of targets individualized by the group difference map were more posterior than the
637 original targets. Therefore, the MDD big data-guided individualized TMS targeting algorithm
638 does not simply set a more anterior and lateral coordinate in the BA46 area as the
639 individualized optimization target for subjects. Among the group-level templates used in the
640 MDD big data-guided individualized TMS targeting algorithm, the sgACC-FC group difference
641 map performed the best, instead of the commonly used average sgACC based on healthy
642 individuals. This may reflect the abnormal posterior shift of the MDD sgACC anticorrelation
643 peak we found, and it emphasizes the immense clinical value of examining spontaneous
644 brain activity differences between MDD and HC in a large sample. Previous studies either
645 included only a small quantity of MDD functional MRI data^{46,47,85} or developed targeting
646 algorithms based on large-scale HC samples⁴⁹. In this study, we utilized an unprecedented
647 amount of functional MRI data from MDD and HC, obtained a reliable group-level difference
648 map of sgACC-FC, and successfully validated its potential in treating MDD with TMS.

649

650 **Limitations**

651 Several limitations need to be considered. First, we noted that the inconsistency between
652 our results and the broader literature could partly be due to racial differences of the samples
653 (i.e., Eastern Asian vs. Caucasian). Efforts that intend to pool existing neuroimaging data
654 worldwide, such as the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA)

655 Major Depressive Disorder (MDD) consortium ²⁵, have accumulated large-scale data primarily
656 from Western countries and published several high-impact studies delineating MDD-related
657 anatomical abnormalities ^{86,87}. Planned collaborations between the DIRECT and the
658 ENIGMA-MDD consortiums are ongoing to help address potential cultural, genetic, and
659 environmental mechanisms in more diverse groups of MDD patients. Second, we performed
660 volume-based preprocessing to facilitate comparison with the previous literature.
661 Surface-based preprocessing strategies have provided more accurate and detailed
662 representations of cortical and subcortical structures ⁸⁸. Recent research has begun to
663 explore surface-based rTMS target identification algorithms and has shown promising clinical
664 relevance ^{39,40,89}. Future research should consider using surface-based case-control difference
665 maps to further refine ways to identify TMS targets. Given the established involvement of
666 the left DLPFC in existing TMS treatment protocols, the present study restricted investigation
667 to within this area.

668
669 We noted that other brain regions (e.g., angular gyrus and supplementary motor area)
670 showed significant case-control differences worth further research and may serve as
671 potential targets for neuromodulation ^{90,91,92}. The MDD big data-guided individualized TMS
672 targeting algorithm can be readily transferred to other neural circuits or other brain
673 imaging-derived feature maps (e.g., ICA, functional gradient, normative modeling). The
674 clinical efficacy of these alternative targets is worthy of future investigations. Identifying a
675 reliable personalized TMS target solely based on an individual's R-fMRI data (around 8 mins
676 of fMRI scan in clinical practice) is challenging. Due to the poor replicability of FC ⁹³, existing
677 individual-level network parcellation algorithms need a large quantity of fMRI images
678 (usually more than one hour of scanning time) ⁹⁴. The present study utilized three
679 independent TMS samples to validate the efficacy of the individualized algorithm.
680 Nevertheless, the two TMS datasets used to validate the individualized TMS targets are
681 limited in sample size ^{37,95}. Publicly available TMS brain imaging datasets could be used for
682 independent validation of target localization algorithms to reduce the false positive rate;
683 however, access to such datasets remains challenging. In addition, prospective, double-blind

684 clinical trials are warranted to compare the treatment outcome across different rTMS
685 targeting algorithms (e.g., traditional anatomical landmark-based targeting, group-level
686 sgACC-FC targeting, and MDD big data-guided individualized TMS targeting algorithm).
687 Therefore, we call upon researchers involved in this field to publicly share data on TMS
688 targets, clinical efficacy, and brain imaging, and we will also openly share data from our
689 related prospective studies ⁹⁶. The large sample size of the DIRECT consortium aggregated
690 dataset allows for intriguing analyses, such as bio-subgroups of MDD patients. Indeed, some
691 previous DIRECT studies have shown that MDD patients can be subgrouped ^{30,97}. Future
692 studies may further determine whether bio-types could be achieved using sgACC ⁹¹. Most of
693 the DIRECT II R-fMRI data were acquired when participants were instructed to close their
694 eyes, which has been shown to be associated with an increased likelihood of sleep during
695 scanning ⁷⁴. Instructing participants to keep their eyes open and look at fixation can help
696 prevent participants from falling asleep and is easy to apply. Since large multi-site R-fMRI
697 data aggregation endeavors such as DIRECT are prone to be biased by non-neurophysical
698 factors such as head motion, sleepiness, etc. ⁹⁸, it is important to prospectively apply
699 well-designed standard operation procedures in future large-scale multi-site scientific
700 projects.

701

702 Conclusion

703 In summary, we leveraged a large sample of MDD patients to fully delineate group
704 differences in sgACC-FC maps between MDD patients and HCs. We next demonstrated the
705 impact of such case-control differences on group TMS targets based on sgACC-FC profiles by
706 showing that the magnitudes of case-control differences in the FC between sgACC and TMS
707 targets were positively associated with clinical outcomes and the peak sgACC anticorrelation
708 locations were different in MDD patients as compared to HCs. Moreover, we developed an
709 MDD big data-guided individualized TMS targeting algorithm to identify individualized TMS
710 targets and demonstrated that this approach may improve clinical efficacy compared to
711 group targets based on sgACC-FC profiles.

712

713 **Contributors**

714 C-GY, Y-FZ, X-NZ, XC, and BL conceived and designed the study. C-GY, Y-FZ, J-PZ, and X-NZ
715 coordinated the collaboration. JQ, LK, T-MS, TL, K-RZ, Z-NL, L-PC, JY, X-PW, Y-GY, C-YW, C-MX,
716 G-RX, Y-SL, Y-QY, XW, YW, X-FX, Y-QC, Q-YG, W-BG, J-PZ, YH, H-NW, B-JL, WZ, and J-PL
717 supervised data collection. X-RW, QH, Y-KW, HY, A-XZ, Y-CL, J-SC, P-FS, X-YL, FL, C-CH, X-LC,
718 F-NJ, J-JZ, X-LJ, G-MC, Z-SC, T-LC, X-XS, TC, B-JL, M-LY, Z-PX and BL organized the data. XC and
719 C-GY analyzed and interpreted the data. BL and C-GY designed the dual regression-based
720 TMS targeting algorithm. H-NW and B-JL collected the SID-TMS dataset. XC, BL, and C-GY
721 drafted the manuscript. All authors revised the manuscript for important intellectual content
722 and approved the final submitted version. XC, BL, and C-GY accessed and verified the data.
723 XC, BL, and C-GY had full access to all the data in the study. C-GY had final responsibility for
724 the decision to submit for publication. All authors were responsible for the final decision to
725 submit for publication and have seen and approved the manuscript.

726

727 **Conflict of interest**

728 DMB receives research support from the Canadian Institutes of Health Research (CIHR),
729 National Institutes of Health – US (NIH), Brain Canada Foundation, and the Temerty Family
730 through the CAMH Foundation and the Campbell Family Research Institute. He received
731 research support and in-kind equipment support for an investigator-initiated study from
732 Brainsway Ltd., and he was the site principal investigator for three sponsor-initiated studies
733 for Brainsway Ltd. He received in-kind equipment support from Magventure for
734 investigator-initiated studies. He received medication supplies for an investigator-initiated
735 trial from Indivior. He has participated in an advisory board for Janssen. He has participated
736 in an advisory board for Welcony Inc. No other conflicts of interest.

737

738 **Inclusion and Ethics**

739 Local researchers were included throughout the research process. Research protocols have
740 been approved by local ethics review committees. No potential risk was involved in the
741 current research, and all local researchers have discussed and approved the research
742 protocol. All participants provided written informed consent, and local institutional review
743 boards approved each study from all included cohorts. The analysis plan of the current study
744 has been reviewed and approved by the Institutional Review Board of the Institute of
745 Psychology, Chinese Academy of Sciences (No. H21102).

746

747 **Data Sharing**

748 According to the success of the data sharing model of DIRECT Phase I data (REST-meta-MDD,
749 <http://rfmri.org/REST-meta-MDD>), DIRECT Phase II data will also have 2 sharing stages. 1)
750 Stage 1: coordinated sharing upon the publication of this announcing manuscript. To reduce
751 conflict among the researchers, the consortium will review and coordinate the proposals
752 submitted by interested researchers. The interested researchers first send a letter of intent
753 to rfmrilab@gmail.com. Then, the consortium will send all the approved proposals to the
754 applicant. The applicant should submit a new innovative proposal while avoiding conflict
755 with approved proposals. The consortium would review and approve this proposal if there is
756 no conflict. Once approved, this proposal would enter the pool of approved proposals and
757 prevent future conflict. 2) Stage 2: unrestricted sharing after January 1, 2026. The
758 researchers can perform any analyses of interest while not violating ethics. All codes have
759 been made openly available
760 (https://github.com/Chaogan-Yan/PaperScripts/tree/master/Chen_2023).

761

762 **Acknowledgments**

763 This work was funded by the Sci-Tech Innovation 2030 - Major Project of Brain Science and

764 Brain-inspired Intelligence Technology (No. 2021ZD0200600), the National Key R&D Program
765 of China (No. 2017YFC1309902), the National Natural Science Foundation of China (No.
766 82122035, No. 81671774 and No. 81630031), the Key Research Program of the Chinese
767 Academy of Sciences (No. ZDBS-SSW-JSC006), Beijing Nova Program of Science and
768 Technology (No. Z191100001119104 and 20230484465), Beijing Natural Science Foundation
769 (J230040), the Scientific Foundation of Institute of Psychology, Chinese Academy of Sciences
770 (No. E2CX4425YZ and No. Y9CX422005), the China Postdoctoral Science Foundation (No.
771 2019M660847), the China National Postdoctoral Program for Innovative Talents (No.
772 BX20200360), the Special Research Assistant Program of the Chinese Academy of Sciences
773 (No. E2CX0624) and the Key R&D Program of Sichuan Province (No. 2023YFS0076). The
774 support provided by the China Scholarship Council (CSC, No. 202104910248) during a visit of
775 Xiao Chen to the Centre for Addiction and Mental Health is acknowledged. In addition, we
776 would like to acknowledge the valuable insights provided by Prof. B.T. Thomas Yeo, whose
777 comments helped to shape our understanding of the data and refine our analysis.

778

779 **References**

- 780 1. Malhi GS, Mann JJ. Depression. *Lancet (London, England)* 2018; **392**(10161): 2299-312.
- 781 2. Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood
782 disorders: implications for neurocircuitry models of depression. *Brain structure & function*
783 2008; **213**(1-2): 93-118.
- 784 3. Disner SG, Beevers CG, Haigh EAP, Beck AT. Neural mechanisms of the cognitive model of
785 depression. *Nat Rev Neurosci* 2011; **12**(8): 467-77.
- 786 4. Mayberg HS. Modulating dysfunctional limbic-cortical circuits in depression: towards
787 development of brain-based algorithms for diagnosis and optimised treatment. *British
788 medical bulletin* 2003; **65**: 193-207.
- 789 5. Mayberg HS, Lozano AM, Voon V, et al. Deep brain stimulation for treatment-resistant
790 depression. *Neuron* 2005; **45**(5): 651-60.
- 791 6. Cash RFH, Zalesky A. Personalized and Circuit-Based Transcranial Magnetic Stimulation:
792 Evidence, Controversies, and Opportunities. *Biol Psychiatry* 2024; **95**(6): 510-22.
- 793 7. Cash RFH, Weigand A, Zalesky A, et al. Using Brain Imaging to Improve Spatial Targeting
794 of Transcranial Magnetic Stimulation for Depression. *Biol Psychiatry* 2020.
- 795 8. Fitzgerald PB. Targeting repetitive transcranial magnetic stimulation in depression: do
796 we really know what we are stimulating and how best to do it? *Brain Stimul* 2021; **14**(3):

797 730-6.

798 9. Connolly CG, Wu J, Ho TC, et al. Resting-State Functional Connectivity of Subgenual
799 Anterior Cingulate Cortex in Depressed Adolescents. *Biological Psychiatry* 2013; **74**(12):
800 898-907.

801 10. Greicius MD, Flores BH, Menon V, et al. Resting-state functional connectivity in major
802 depression: abnormally increased contributions from subgenual cingulate cortex and
803 thalamus. *Biol Psychiatry* 2007; **62**(5): 429-37.

804 11. Wu H, Sun H, Xu J, et al. Changed Hub and Corresponding Functional Connectivity of
805 Subgenual Anterior Cingulate Cortex in Major Depressive Disorder. *Front Neuroanat* 2016; **10**:
806 120.

807 12. Davey CG, Harrison BJ, Yucel M, Allen NB. Regionally specific alterations in functional
808 connectivity of the anterior cingulate cortex in major depressive disorder. *Psychol Med* 2012;
809 **42**(10): 2071-81.

810 13. Cheng B, Meng Y, Zuo Y, et al. Functional connectivity patterns of the subgenual anterior
811 cingulate cortex in first-episode refractory major depressive disorder. *Brain imaging and*
812 *behavior* 2021; **15**(5): 2397-405.

813 14. Sheline YI, Price JL, Yan Z, Mintun MA. Resting-state functional MRI in depression
814 unmasks increased connectivity between networks via the dorsal nexus. *Proc Natl Acad Sci U*
815 *S A* 2010; **107**(24): 11020-5.

816 15. Berman MG, Peltier S, Nee DE, Kross E, Deldin PJ, Jonides J. Depression, rumination and
817 the default network. *Social cognitive and affective neuroscience* 2011; **6**(5): 548-55.

818 16. Wu X, Lin P, Yang J, Song H, Yang R, Yang J. Dysfunction of the cingulo-opercular network
819 in first-episode medication-naive patients with major depressive disorder. *J Affect Disord*
820 2016; **200**: 275-83.

821 17. Sudheimer K, Keller J, Gomez R, et al. Decreased hypothalamic functional connectivity
822 with subgenual cortex in psychotic major depression. *Neuropsychopharmacology* 2015; **40**(4):
823 849-60.

824 18. Davey CG, Yücel M, Allen NB, Harrison BJ. Task-related deactivation and functional
825 connectivity of the subgenual cingulate cortex in major depressive disorder. *Frontiers in*
826 *psychiatry* 2012; **3**: 14.

827 19. Gaffrey MS, Luby JL, Repovš G, et al. Subgenual cingulate connectivity in children with a
828 history of preschool-depression. *Neuroreport* 2010; **21**(18): 1182-8.

829 20. Ho TC, Yang G, Wu J, et al. Functional connectivity of negative emotional processing in
830 adolescent depression. *J Affect Disord* 2014; **155**: 65-74.

831 21. Button KS, Ioannidis JPA, Mokrysz C, et al. Power failure: why small sample size
832 undermines the reliability of neuroscience. *Nat Rev Neurosci* 2013; **14**(5): 365-76.

833 22. Algermissen J, Mehler DMA. May the power be with you: are there highly powered
834 studies in neuroscience, and how can we get more of them? *J Neurophysiol* 2018; **119**(6):
835 2114-7.

836 23. Chen X, Lu B, Li H-X, et al. The DIRECT consortium and the REST-meta-MDD project:
837 towards neuroimaging biomarkers of major depressive disorder. *Psychoradiology* 2022; **2**(1):
838 32-42.

839 24. Yan CG, Chen X, Li L, et al. Reduced default mode network functional connectivity in

840 patients with recurrent major depressive disorder. *Proc Natl Acad Sci U S A* 2019.

841 25. Schmaal L, Pozzi E, T CH, et al. ENIGMA MDD: seven years of global neuroimaging

842 studies of major depression through worldwide data sharing. *Transl Psychiatry* 2020; **10**(1):

843 172.

844 26. Yang H, Chen X, Chen ZB, et al. Disrupted intrinsic functional brain topology in patients

845 with major depressive disorder. *Mol Psychiatry* 2021.

846 27. Long Y, Cao H, Yan C, et al. Altered resting-state dynamic functional brain networks in

847 major depressive disorder: Findings from the REST-meta-MDD consortium. *Neuroimage Clin*

848 2020; **26**: 102163.

849 28. Ding YD, Yang R, Yan CG, et al. Disrupted hemispheric connectivity specialization in

850 patients with major depressive disorder: Evidence from the REST-meta-MDD Project. *J Affect*

851 *Disord* 2021; **284**: 217-28.

852 29. Deng K, Yue JH, Xu J, et al. Impaired robust interhemispheric function integration of

853 depressive brain from REST-meta-MDD database in China. *Bipolar disorders* 2021.

854 30. Liang S, Deng W, Li X, et al. Biotypes of major depressive disorder: Neuroimaging

855 evidence from resting-state default mode network patterns. *Neuroimage Clin* 2020; **28**:

856 102514.

857 31. Liu PH, Li Y, Zhang AX, et al. Brain structural alterations in MDD patients with

858 gastrointestinal symptoms: Evidence from the REST-meta-MDD project. *Progress in*

859 *neuro-psychopharmacology & biological psychiatry* 2021; **111**: 110386.

860 32. Yan C-G, Wang X-D, Lu B. DPABISurf: data processing & analysis for brain imaging on

861 surface. *Science Bulletin* 2021.

862 33. Ge R, Downar J, Blumberger DM, Daskalakis ZJ, Vila-Rodriguez F. Functional connectivity

863 of the anterior cingulate cortex predicts treatment outcome for rTMS in treatment-resistant

864 depression at 3-month follow-up. *Brain Stimul* 2020; **13**(1): 206-14.

865 34. Cash RFH, Cocchi L, Anderson R, et al. A multivariate neuroimaging biomarker of

866 individual outcome to transcranial magnetic stimulation in depression. *Hum Brain Mapp*

867 2019; **40**(16): 4618-29.

868 35. Philip NS, Barredo J, van 't Wout-Frank M, Tyrka AR, Price LH, Carpenter LL. Network

869 Mechanisms of Clinical Response to Transcranial Magnetic Stimulation in Posttraumatic

870 Stress Disorder and Major Depressive Disorder. *Biol Psychiatry* 2018; **83**(3): 263-72.

871 36. Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A. Efficacy of transcranial

872 magnetic stimulation targets for depression is related to intrinsic functional connectivity with

873 the subgenual cingulate. *Biol Psychiatry* 2012; **72**(7): 595-603.

874 37. Elbau IG, Lynch CJ, Downar J, et al. Functional Connectivity Mapping for rTMS Target

875 Selection in Depression. *Am J Psychiatry* 2023; **180**(3): 230-40.

876 38. Weigand A, Horn A, Caballero R, et al. Prospective Validation That Subgenual

877 Connectivity Predicts Antidepressant Efficacy of Transcranial Magnetic Stimulation Sites. *Biol*

878 *Psychiatry* 2018; **84**(1): 28-37.

879 39. Cash RFH, Cocchi L, Lv J, Fitzgerald PB, Zalesky A. Functional Magnetic Resonance

880 Imaging-Guided Personalization of Transcranial Magnetic Stimulation Treatment for

881 Depression. *JAMA psychiatry* 2021; **78**(3): 337-9.

882 40. Siddiqi SH, Weigand A, Pascual-Leone A, Fox MD. Identification of Personalized

883 Transcranial Magnetic Stimulation Targets Based on Subgenual Cingulate Connectivity: An
884 Independent Replication. *Biol Psychiatry* 2021; **90**(10): e55-e6.

885 41. Fox MD, Liu H, Pascual-Leone A. Identification of reproducible individualized targets for
886 treatment of depression with TMS based on intrinsic connectivity. *Neuroimage* 2013; **66**:
887 151-60.

888 42. Gordon EM, Nelson SM. Three types of individual variation in brain networks revealed
889 by single-subject functional connectivity analyses. *Current Opinion in Behavioral Sciences*
890 2021; **40**: 79-86.

891 43. Doucet GE, Lee WH, Frangou S. Evaluation of the spatial variability in the major
892 resting-state networks across human brain functional atlases. *Hum Brain Mapp* 2019; **40**(15):
893 4577-87.

894 44. Cash RFH, Cocchi L, Lv J, Wu Y, Fitzgerald PB, Zalesky A. Personalized connectivity-guided
895 DLPFC-TMS for depression: Advancing computational feasibility, precision and reproducibility.
896 *Hum Brain Mapp* 2021.

897 45. Cole EJ, Phillips AL, Bentzley BS, et al. Stanford Neuromodulation Therapy (SNT): A
898 Double-Blind Randomized Controlled Trial. *Am J Psychiatry* 2021: appiajp202120101429.

899 46. Cole EJ, Stimpson KH, Bentzley BS, et al. Stanford Accelerated Intelligent
900 Neuromodulation Therapy for Treatment-Resistant Depression. *Am J Psychiatry* 2020; **177**(8):
901 716-26.

902 47. Williams NR, Sudheimer KD, Bentzley BS, et al. High-dose spaced theta-burst TMS as a
903 rapid-acting antidepressant in highly refractory depression. *Brain* 2018; **141**(3): e18.

904 48. Cash RFH, Zalesky A, Thomson RH, Tian Y, Cocchi L, Fitzgerald PB. Subgenual Functional
905 Connectivity Predicts Antidepressant Treatment Response to Transcranial Magnetic
906 Stimulation: Independent Validation and Evaluation of Personalization. *Biol Psychiatry* 2019;
907 **86**(2): e5-e7.

908 49. Cash RFH, Cocchi L, Lv J, Wu Y, Fitzgerald PB, Zalesky A. Personalized connectivity-guided
909 DLPFC-TMS for depression: Advancing computational feasibility, precision and reproducibility.
910 *Hum Brain Mapp* 2021; **42**(13): 4155-72.

911 50. Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE. Anatomic
912 localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility
913 artifacts. *Neuroimage* 1997; **6**(3): 156-67.

914 51. Beckmann CF, Mackay CE, Filippini N, Smith SM. Group comparison of resting-state fMRI
915 data using multi-subject ICA and dual regression. *Neuroimage* 2009; **47**.

916 52. Zuo XN, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP. Reliable intrinsic
917 connectivity networks: test-retest evaluation using ICA and dual regression approach.
918 *Neuroimage* 2010; **49**(3): 2163-77.

919 53. Li B, Zhao N, Tang N, et al. Targeting suicidal ideation in major depressive disorder with
920 MRI-navigated Stanford accelerated intelligent neuromodulation therapy. *Transl Psychiatry*
921 2024; **14**(1): 21.

922 54. Garza-Villarreal EA, Alcalá-Lozano R, Fernández-Lozano S, et al. Clinical and Functional
923 Connectivity Outcomes of 5-Hz Repetitive Transcranial Magnetic Stimulation as an Add-on
924 Treatment in Cocaine Use Disorder: A Double-Blind Randomized Controlled Trial. *Biological
925 psychiatry Cognitive neuroscience and neuroimaging* 2021; **6**(7): 745-57.

926 55. R Core Team. R: A language and environment for statistical computing. Vienna, Austria:
927 Vienna: R Foundation for Statistical Computing; 2013.

928 56. Champely S, Ekstrom C, Dalgaard P, et al. pwr: Basic functions for power analysis. 2017.

929 57. Yan C-G, Wang X-D, Zuo X-N, Zang Y-F. DPABI: Data Processing & Analysis for
930 (Resting-State) Brain Imaging. *Neuroinformatics* 2016; **14**(3): 339-51.

931 58. Yan C-G, Zang Y-F. DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of
932 Resting-State fMRI. *Frontiers in systems neuroscience* 2010; **4**: 13.

933 59. Liston C, Chen AC, Zebley BD, et al. Default mode network mechanisms of transcranial
934 magnetic stimulation in depression. *Biol Psychiatry* 2014; **76**(7): 517-26.

935 60. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data
936 using empirical Bayes methods. *Biostatistics* 2007; **8**(1): 118-27.

937 61. Schaefer A, Kong R, Gordon EM, et al. Local-Global Parcellation of the Human Cerebral
938 Cortex from Intrinsic Functional Connectivity MRI. *Cerebral cortex (New York, NY : 1991)*
939 2018; **28**(9): 3095-114.

940 62. Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. *Current
941 opinion in neurology* 2008; **21**(4): 424-30.

942 63. Cullen KR, Gee DG, Klimes-Dougan B, et al. A preliminary study of functional
943 connectivity in comorbid adolescent depression. *Neuroscience Letters* 2009; **460**(3): 227-31.

944 64. Strikwerda-Brown C, Davey CG, Whittle S, et al. Mapping the relationship between
945 subgenual cingulate cortex functional connectivity and depressive symptoms across
946 adolescence. *Social cognitive and affective neuroscience* 2015; **10**(7): 961-8.

947 65. Ioannidis JPA. Why Most Published Research Findings Are False. *PLOS Medicine* 2005;
948 **2**(8): e124.

949 66. Chen X, Lu B, Yan CG. Reproducibility of R-fMRI metrics on the impact of different
950 strategies for multiple comparison correction and sample sizes. *Hum Brain Mapp* 2018; **39**(1):
951 300-18.

952 67. Price JL, Drevets WC. Neurocircuitry of mood disorders. *Neuropsychopharmacology*
953 2010; **35**(1): 192-216.

954 68. Price JL, Drevets WC. Neural circuits underlying the pathophysiology of mood disorders.
955 *Trends Cogn Sci* 2012; **16**(1): 61-71.

956 69. Hamilton JP, Farmer M, Fogelman P, Gotlib IH. Depressive Rumination, the Default-Mode
957 Network, and the Dark Matter of Clinical Neuroscience. *Biol Psychiatry* 2015; **78**(4): 224-30.

958 70. Parker G, Chan B, Hadzi-Pavlovic D. Lower rates of depression in westernised Chinese in
959 the US. *J Affect Disord* 2007; **104**(1-3): 175-8.

960 71. Parker G, Gladstone G, Chee KT. Depression in the planet's largest ethnic group: the
961 Chinese. *Am J Psychiatry* 2001; **158**(6): 857-64.

962 72. Qiu P, Caine ED, Hou F, Cerulli C, Wittink MN. Depression as seen through the eyes of
963 rural Chinese women: Implications for help-seeking and the future of mental health care in
964 China. *J Affect Disord* 2018; **227**: 38-47.

965 73. Kiyohara C, Yoshimasu K. Association between major depressive disorder and a
966 functional polymorphism of the 5-hydroxytryptamine (serotonin) transporter gene: a
967 meta-analysis. *Psychiatr Genet* 2010; **20**(2): 49-58.

968 74. Tagliazucchi E, Laufs H. Decoding wakefulness levels from typical fMRI resting-state data

969 reveals reliable drifts between wakefulness and sleep. *Neuron* 2014; **82**(3): 695-708.

970 75. Fitzgerald PB, Oxley TJ, Laird AR, Kulkarni J, Egan GF, Daskalakis ZJ. An analysis of
971 functional neuroimaging studies of dorsolateral prefrontal cortical activity in depression.
972 *Psychiatry Res* 2006; **148**(1): 33-45.

973 76. Rajkowska G, Goldman-Rakic PS. Cytoarchitectonic definition of prefrontal areas in the
974 normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the
975 Talairach Coordinate System. *Cerebral cortex (New York, NY : 1991)* 1995; **5**(4): 323-37.

976 77. Johnson KA, Baig M, Ramsey D, et al. Prefrontal rTMS for treating depression: location
977 and intensity results from the OPT-TMS multi-site clinical trial. *Brain Stimul* 2013; **6**(2):
978 108-17.

979 78. Perera T, George MS, Grammer G, Janicak PG, Pascual-Leone A, Wirecki TS. The Clinical
980 TMS Society Consensus Review and Treatment Recommendations for TMS Therapy for Major
981 Depressive Disorder. *Brain Stimul* 2016; **9**(3): 336-46.

982 79. Fitzgerald PB, Hoy K, McQueen S, et al. A randomized trial of rTMS targeted with MRI
983 based neuro-navigation in treatment-resistant depression. *Neuropsychopharmacology* 2009;
984 **34**(5): 1255-62.

985 80. Hebel T, Göllnitz A, Schoisswohl S, et al. A direct comparison of neuronavigated and
986 non-neuronavigated intermittent theta burst stimulation in the treatment of depression.
987 *Brain Stimul* 2021; **14**(2): 335-43.

988 81. Modak A, Fitzgerald PB. Personalising transcranial magnetic stimulation for depression
989 using neuroimaging: A systematic review. *The World Journal of Biological Psychiatry* 2021;
990 **22**(9): 647-69.

991 82. Dubois J, Adolphs R. Building a Science of Individual Differences from fMRI. *Trends in
992 Cognitive Sciences* 2016; **20**(6): 425-43.

993 83. Zuo XN, Xing XX. Test-retest reliabilities of resting-state fMRI measurements in human
994 brain functional connectomics: a systems neuroscience perspective. *Neurosci Biobehav Rev*
995 2014; **45**: 100-18.

996 84. Zald DH, Rauch S. The orbitofrontal cortex: Oxford University Press, USA; 2006.

997 85. Siddiqi SH, Trapp NT, Hacker CD, et al. Repetitive Transcranial Magnetic Stimulation with
998 Resting-State Network Targeting for Treatment-Resistant Depression in Traumatic Brain Injury:
999 A Randomized, Controlled, Double-Blinded Pilot Study. *J Neurotrauma* 2019; **36**(8): 1361-74.

1000 86. Schmaal L, Hibar DP, Samann PG, et al. Cortical abnormalities in adults and adolescents
1001 with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA
1002 Major Depressive Disorder Working Group. *Mol Psychiatry* 2016.

1003 87. Schmaal L, Veltman DJ, van Erp TG, et al. Subcortical brain alterations in major
1004 depressive disorder: findings from the ENIGMA Major Depressive Disorder working group.
1005 *Mol Psychiatry* 2016; **21**(6): 806-12.

1006 88. Esteban O, Markiewicz CJ, Blair RW, et al. fMRIprep: a robust preprocessing pipeline for
1007 functional MRI. *Nat Methods* 2019; **16**(1): 111-6.

1008 89. Lynch CJ, Elbau IG, Ng TH, et al. Automated optimization of TMS coil placement for
1009 personalized functional network engagement. *Neuron* 2022; **110**(20): 3263-77.e4.

1010 90. Downar J, Daskalakis ZJ. New targets for rTMS in depression: a review of convergent
1011 evidence. *Brain Stimul* 2013; **6**(3): 231-40.

1012 91. Siddiqi SH, Khosravani S, Rolston JD, Fox MD. The future of brain circuit-targeted
1013 therapeutics. *Neuropsychopharmacology* 2023.

1014 92. Dunlop K, Sheen J, Schulze L, et al. Dorsomedial prefrontal cortex repetitive transcranial
1015 magnetic stimulation for treatment-refractory major depressive disorder: A three-arm,
1016 blinded, randomized controlled trial. *Brain Stimul* 2020; **13**(2): 337-40.

1017 93. Zuo X-N, Xing X-X. Test-retest reliabilities of resting-state fMRI measurements in human
1018 brain functional connectomics: A systems neuroscience perspective. *Neuroscience &*
1019 Biobehavioral Reviews 2014; **45**: 100-18.

1020 94. Wang D, Buckner RL, Fox MD, et al. Parcellating cortical functional networks in
1021 individuals. *Nat Neurosci* 2015; **18**(12): 1853-60.

1022 95. Marek S, Tervo-Clemmens B, Calabro FJ, et al. Reproducible brain-wide association
1023 studies require thousands of individuals. *Nature* 2022; **603**(7902): 654-60.

1024 96. Lu B, Chen X, Xavier Castellanos F, et al. The power of many brains: Catalyzing
1025 neuropsychiatric discovery through open neuroimaging data and large-scale collaboration.
Sci Bull (Beijing) 2024; **69**(10): 1536-55.

1027 97. Chen X, Lu B, Li HX, et al. The DIRECT consortium and the REST-meta-MDD project:
1028 towards neuroimaging biomarkers of major depressive disorder. *Psychoradiology* 2022; **2**(1):
1029 32-42.

1030 98. Wang YW, Chen X, Yan CG. Comprehensive evaluation of harmonization on functional
1031 brain imaging for multisite data-fusion. *Neuroimage* 2023: 120089.

1032

1033

Table 1. Demographic and clinical data for all samples included in the DIRECT II project

Site	Age (HC) ¹	Age (MDD) ¹	% Male (HC) ²	% Female (HC) ²	% Male (MDD) ²	% Female (MDD) ²	Education (HC, years) ¹	Education (MDD, years) ¹	Age at the onset of the first episode (years) ¹	Episode number ¹	Full episode durations (months) ¹	HAMD-17 score ¹	N (HC)	N (MDD)
1	39.33 (15.80)	38.67 (13.50)	87 (35.22%)	160 (64.78%)	98 (35.13%)	181 (64.87%)	13.05 (3.89)	12.03 (3.62)	35.75 (13.47)	1.19 (0.40)	49.01 (64.25)	20.96 (5.60)	247	279
2	20.90 (2.89)	19.02 (3.79)	24 (38.71%)	38 (61.29%)	37 (27.41%)	98 (72.59%)	13.73 (1.80)	11.97 (2.55)	16.28 (4.05)	1.07 (0.35)	16.94 (19.74)	18.06 (8.99)	62	135
3	26.50 (11.22)	34.40 (10.56)	5 (25.00%)	15 (75.00%)	5 (25.00%)	15 (75.00%)	15.40 (1.47)	14.90 (2.97)	35.55 (11.96)	1.15 (0.49)	14.50 (29.14)	29.37 (6.41)	20	20
4	29.89 (9.88)	30.87 (10.39)	9 (33.33%)	18 (66.67%)	13 (41.94%)	18 (58.06%)	13.04 (3.80)	12.65 (4.22)	26.80 (10.89)	2.52 (3.66)	42.03 (58.57)	21.79 (5.74)	27	31
5	36.79 (9.07)	33.59 (9.85)	32 (56.14%)	25 (43.86%)	60 (46.88%)	68 (53.13%)	14.37 (2.64)	13.07 (3.43)	NA (NA)	1.00 (0.00)	NA (NA)	26.59 (3.76)	57	128
6	23.75 (5.15)	30.90 (9.29)	45 (44.55%)	56 (55.45%)	31 (52.54%)	28 (47.46%)	13.88 (2.31)	12.03 (3.06)	28.14 (9.46)	1.87 (1.12)	44.14 (61.28)	20.51 (6.71)	101	59
7	19.80 (3.85)	20.00 (6.51)	8 (26.67%)	22 (73.33%)	5 (23.81%)	16 (76.19%)	11.90 (2.55)	10.81 (2.86)	18.81 (7.19)	1.10 (0.30)	15.60 (16.23)	24.10 (12.68)	30	21
8	31.93 (9.66)	32.84 (8.95)	18 (42.86%)	24 (57.14%)	15 (34.88%)	28 (65.12%)	15.40 (1.86)	15.79 (1.82)	30.60 (8.78)	3.65 (2.29)	21.51 (11.65)	23.84 (3.88)	42	43
9	36.12 (13.85)	45.11 (14.32)	10 (40.00%)	15 (60.00%)	19 (40.43%)	28 (59.57%)	13.56 (4.01)	10.83 (4.52)	42.19 (14.23)	1.43 (0.77)	36.07 (53.22)	NA (NA)	25	47

10	36.49 (12.64)	34.00 (11.81)	30 (44.78%)	37 (55.22%)	36 (45.00%)	44 (55.00%)	14.58 (2.30)	13.25 (3.08)	26.15 (10.47)	2.30 (1.78)	92.00 (96.70)	14.58 (8.21)	67	80
11	36.62 (12.11)	38.29 (12.75)	30 (44.12%)	38 (55.88%)	55 (48.67%)	58 (51.33%)	12.96 (3.57)	10.96 (3.48)	32.21 (12.46)	3.36 (3.63)	75.51 (93.37)	23.54 (9.23)	68	113
12	29.59 (5.00)	30.47 (7.20)	15 (46.88%)	17 (53.13%)	21 (33.87%)	41 (66.13%)	14.59 (2.82)	13.73 (3.39)	29.63 (7.11)	1.00 (0.00)	6.10 (4.22)	21.27 (3.47)	32	62
13	35.45 (13.76)	38.00 (14.56)	9 (31.03%)	20 (68.97%)	13 (40.63%)	19 (59.38%)	11.28 (4.31)	12.03 (3.87)	33.09 (13.93)	1.45 (1.12)	NA	18.66 (9.66)	29	32
14	38.10 (11.96)	43.50 (11.28)	65 (45.14%)	79 (54.86%)	47 (34.56%)	89 (65.44%)	13.24 (4.20)	9.07 (3.60)	37.52 (11.50)	2.55 (2.15)	67.16 (77.29)	30.04 (10.52)	144	136
15	21.51 (4.58)	22.06 (4.70)	23 (65.71%)	12 (34.29%)	7 (20.59%)	27 (79.41%)	12.57 (1.42)	11.85 (2.39)	21.82 (5.19)	2.50 (2.81)	12.76 (15.11)	NA	35	34
16	25.73 (7.38)	26.07 (7.66)	44 (54.32%)	37 (45.68%)	37 (44.58%)	46 (55.42%)	15.53 (2.81)	13.81 (2.60)	23.02 (8.11)	1.73 (1.11)	30.18 (44.24)	25.42 (3.78)	81	83
17	34.73 (9.66)	35.21 (9.43)	19 (38.78%)	30 (61.22%)	15 (35.71%)	27 (64.29%)	14.31 (4.21)	12.50 (4.09)	35.00 (9.53)	1.00 (0.00)	3.79 (2.62)	23.67 (5.25)	49	42
18	32.19 (11.83)	35.25 (13.15)	13 (40.63%)	19 (59.38%)	12 (50.00%)	12 (50.00%)	12.53 (3.03)	13.42 (4.47)	NA	1.58 (0.72)	17.77 (19.57)	22.38 (4.23)	32	24
19	30.94 (7.32)	27.03 (11.04)	16 (50.00%)	16 (50.00%)	5 (15.63%)	27 (84.38%)	13.94 (2.84)	12.69 (3.18)	25.58 (10.86)	1.28 (0.46)	12.88 (14.38)	23.06 (5.66)	32	32
20	31.40 (10.99)	27.80 (8.99)	5 (25.00%)	15 (75.00%)	4 (20.00%)	16 (80.00%)	16.10 (3.21)	13.60 (4.36)	26.65 (9.21)	1.30 (0.47)	14.55 (15.14)	24.85 (6.47)	20	20
21	32.80 (11.06)	32.52 (11.44)	31 (55.36%)	25 (44.64%)	17 (28.33%)	43 (71.67%)	15.88 (4.59)	12.20 (4.12)	31.44 (11.70)	NaN (NaN)	35.79 (44.90)	22.71 (2.62)	56	60
22	34.67 (13.54)	35.74 (10.02)	8 (33.33%)	16 (66.67%)	10 (28.57%)	25 (71.43%)	14.21 (2.86)	13.20 (3.75)	31.23 (7.91)	1.06 (1.35)	5.59 (14.93)	22.29 (6.04)	24	35

23	13.57 (2.18)	13.91 (1.48)	14 (50.00%)	14 (50.00%)	8 (13.79%)	50 (86.21%)	7.57 (2.18)	7.91 (1.48)	NA	NA	NA	NA	28	58
----	-----------------	-----------------	----------------	----------------	---------------	----------------	----------------	----------------	----	----	----	----	----	----

1034 1 Mean (SD)

1035 2 N (%)

1036 NA: data were missing for this site.