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118  Abstract

119  Background The subgenual anterior cingulate cortex (sgACC) plays a central role in the

120  pathophysiology of major depressive disorder (MDD), and its functional interactive profile
121  with the left dorsal lateral prefrontal cortex (DLPFC) is associated with transcranial magnetic
122 stimulation (TMS) treatment outcomes. Nevertheless, previous research on sgACC functional
123 connectivity (FC) in MDD has yielded inconsistent results, partly due to small sample sizes
124  and limited statistical power. Furthermore, calculating sgACC-FC to target TMS individually is
125  challenging.

126  Methods Leveraging a large multi-site cross-sectional sample (1660 MDD patients vs. 1341
127  healthy controls) from Phase Il of the Depression Imaging REsearch ConsorTium (DIRECT), we
128  systematically delineated case-control difference maps of sgACC-FC. Then, we explored the
129  potential impact of such group-level abnormality profiles on the TMS target localization and
130  clinical efficacy. Next, we developed an MDD big data-guided individualized TMS targeting
131  algorithm to integrate group-level statistical maps with individual-level brain activity to

132  localize TMS targets individually.

133 Results We found an enhanced sgACC-DLPFC FC in MDD patients compared to healthy

134  controls (HC). Such group differences altered the position of the sgACC anti-correlation peak
135 inthe left DLPFC. In two independent clinical samples, we showed that the magnitude of
136  TMS targets’ case-control differences in sgACC FC was related to clinical improvement. The
137 MDD big data-guided individualized TMS targeting algorithm may generate individualized
138  TMS targets that are clinically superior to group-level targets.

139 Interpretation We reliably delineated MDD-related abnormalities of sgACC-FC profilesin a
140 large, independently ascertained sample and demonstrated the potential impact of such
141  case-control differences on FC-guided localization of TMS targets.

142  Funding Ministry of Science and Technology of the People's Republic of China, National

143 Natural Science Foundation of China, and Chinese Academy of Sciences

144  Keywords: major depressive disorder, transcranial magnetic stimulation, individualization,

145  subgenual anterior cingulate cortex, functional connectivity, dual regression
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147  Introduction

148 Major depressive disorder (MDD) is a common and debilitating psychiatric disorder projected
149  to be the most burdensome condition worldwide by 2030 *. Despite extensive research, the
150  pathophysiology of MDD remains elusive. Nevertheless, a key putative brain region or

151 network hub appears to be the subgenual anterior cingulate cortex (sgACC), which shows
152 reproducible metabolic hyperactivity 2, has been implicated in emotional responses,

153 motivation, and rumination in MDD >, and it has been shown to be an important target in
154  deep brain stimulation and transcranial magnetic stimulation (TMS) *°. Repetitive TMS above
155 5 Hz on the left dorsolateral prefrontal cortex (DLPFC) indirectly stimulates the sgACC, and
156  the closer to the sgACC target, the better the clinical outcome °. Accordingly, identifying an
157  optimized neuromodulation target in the left DLPFC based on sgACC-related functional

158  connectivity (FC) is crucial for developing effective depression treatments 2. In light of

159  inconsistent findings derived from studies with small sample sizes °**, we set out to establish
160  alarge sample to identify a reliable abnormal sgACC-DLPFC FC profile in MDD and further
161 integrate this profile with individual brain activity to generate individualized

162 neuromodulation targets for treating depression.

163

164  Numerous investigations have delved into FC abnormalities in MDD using resting-state

165  functional magnetic resonance imaging (R-fMRI). Abnormal FCs between sgACC and

166  amygdala, thalamus, temporal gyrus, lingual gyrus, cerebellum, DLPFC, and default mode
167  network (DMN) regions such as medial and dorsal medial prefrontal cortex, precuneus, and
168  parahippocampus have been reported >'>***°. However, findings have been inconsistent,
169  making integrating findings and generating precise profiles of sgACC-related FC abnormalities
170  challenging. This deficiency in reproducibility could be partially due to small sample sizes,
171  differences in preprocessing pipelines, and low statistical power of clinical imaging studies
172 2% To address the issue of limited sample size, we initiated the Depression Imaging

173 REsearch ConsorTium (DIRECT) ** and conducted an initial meta/mega-analysis (Nupp = 1300),

174  referred to as REST-meta-MDD *. DIRECT Phase | shared ROI-level signals, thus enabling the
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175  investigation of multiple MDD-related abnormalities in network FC, FC topological and

2431 |n DIRECT Phase Il data reporting, we

176 dynamic features, and functional lateralization
177  pooled an expanded MDD sample (Nypp = 1660), which was preprocessed with a

178  surface-based pipeline, DPABISurf **. DIRECT Phase Il shared voxel/vertex level BOLD time
179  series, allowing more flexible and thorough investigations. Leveraging the most

180 comprehensive MDD R-fMRI dataset to date encompassing depression patients and healthy
181  controls, we can determine an aberrant sgACC-FC profile associated with MDD, characterized
182 by superior reproducibility and low risk of false positives.

183

184  Maps of sgACC-related FC abnormalities are clinically useful for predicting repetitive TMS
185  (rTMS) treatment outcomes in MDD patients >>°. Specifically, the anti-correlation between
186  sgACC and left DLPFC has been associated with clinical improvement from rTMS treatment
187 % This has led to the intriguing notion that the FC between sgACC and left DLPFC could be
188  leveraged to identify more precise rTMS targets and improve the efficacy of rTMS delivered
189  to the left DLPFC “*. Researchers have identified a group-wise TMS target *, which was the
190  most anticorrelated DLPFC site to sgACC in the mean FC map from a large cohort of healthy
191  adults. Subtle but significant case-control differences in resting-state FC profiles have been
192  identified in a large sample of MDD patients **. Thus, understanding the profiles of sgACC FC
193  case-control differences and their impact on potential targets for rTMS applied to the left
194  DLPFC could be a critical step toward developing optimized rTMS target site identification
195  methods.

196

197  Individual human brains exhibit highly heterogeneous functional organization %, with the
198  DLPFC regions exhibiting the highest level of interindividual variation in cytoarchitecture,
199  brain function, and network connectivity profiles ***. While several individualized FC-guided

36,41,44-48

200  TMS target identification algorithms have been proposed , the target localizations of

201  most existing TMS protocols have not been individualized. The major obstacles to identifying

202 individualized TMS locations are the low signal-to-noise ratio in the sgACC area and the poor

49,50

203  reproducibility of individual FC maps . The high reliability and statistical power of the
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204  DIRECT MDD cohort (Nvpp = 1660) allow the integration of group-level statistical maps and
205  individual functional brain images to achieve precise and reliable TMS localization. Here, we
206  propose an MDD big data-guided individualized TMS targeting algorithm based on dual

207  regression (DR), which was initially developed for mapping group-level independent

208  component analysis (ICA) results onto individual brains >*. During individualized target

209  localization, the DR calculation is entirely confined to the DLPFC region, which has a high
210  signal-to-noise ratio, avoiding noisy signals from the sgACC region. Thus, this approach

211  enhances the efficacy and reliability of individualization approaches for identifying TMS

212 targets >,

213

214 Inthe present study, we leverage a large-scale multi-center sample (DIRECT Phase Il, 1660
215 MDD patients and 1341 healthy controls (HCs)) to derive a reliable sgACC-related FC

216  abnormality profile for MDD. Next, we showed that such case-control difference profiles may
217  be related to the clinical efficiency of TMS and that the positions of the sgACC

218  anti-correlation peaks might be different in the MDD patients as compared to the HCs. In
219  light of this, we developed an MDD big data-guided individualized TMS targeting algorithm
220  that may boost the clinical efficiency of TMS. We hypothesized that MDD patients would
221  show a significantly abnormal sgACC-FC profile, especially in the left DLPFC. We also

222 hypothesized that our newly developed DR-based approach would outperform traditional
223 TMS group targets. To our knowledge, this is the first study to show the possible implications
224  of the case-control abnormalities regarding the sgACC-FC profiles on the TMS target

225  localization and to integrate large-scale group-level statistical maps with individual-level
226  spontaneous brain activity to achieve individualized TMS targeting in MDD.

227

228  Materials and methods

229 Study sample

230  This study utilized four independent datasets. The first dataset (“DIRECT”) is a large-scale,

10
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231  multi-site consortium sharing standardized preprocessed R-fMRI time series. Building on the
232 initial success of DIRECT Phase | (the REST-meta-MDD Project) >, consortium members and
233 international collaborators met on May 11"-12"", 2019, and agreed to launch DIRECT Phase I,
234 which comprises 23 case-control designed datasets, including R-fMRI and T1 structural scans
235  from 1660 MDD patients and 1341 HCs. Researchers from each site took a 2-day DPABISurf
236 training course on September 14th—15th, 2019, to harmonize the organization and

237  preprocessing of R-fMRI/T1 structural data. Demographic and clinical characteristics for each
238 sample are presented in Figure 1 and Table 1. Site information, sample size, and previous
239  publications based on the shared data are listed in Table S1. All participants were asked to
240  self-report their sex (biological attribute) as part of the case report form (CRF). All

241  participants in DIRECT Phase Il were East Asian. Patients were diagnosed with MDD based on
242 ICD 10 or DSM-IV. Healthy controls matched with MDD patients by age, sex ratio, and

243 educational levels were recruited at each site. All participants provided written informed

244  consent, and local institutional review boards approved each study from all included cohorts.
245  The analysis plan of the current study has been reviewed and approved by the Institutional
246  Review Board of the Institute of Psychology, Chinese Academy of Sciences (No. H21102).

247 Data will be made available to the public as outlined in the Data Sharing Statement.

248

11
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249

250 Figure 1. Sample characteristics of the DIRECT dataset. (A) Sample sizes of each site; (B) Number of
251 male/female subjects irrespective of diagnosis; (C) Violin plots depicting the age distribution (in years).
252 Solid black lines indicate the mean, 25", and 75" percentiles; (D) Violin plots show education

253 distribution (in years). Solid black lines indicate the mean, 25" and 75" percentiles; (E) Violin plots
254 depicting the distribution of scores of the Hamilton Depression Rating Scale (HAMD). Solid black lines
255  indicate the mean, 25", and 75" percentiles.

256

257  The second dataset ("TRD-TMS”) comprises 25 medication-treatment-resistant MDD (TRD)
258 patients who underwent 4 to 7 weeks of daily repetitive TMS applied over the left DLPFC.
259 Patients’ TMS sites were recorded using their structural MRI images and a frameless

260 neuronavigation system. Treatment response was assessed with the 24-item Hamilton

261  Depression Rating Scale (HAMD). The targets for rTMS stimulation were determined using

262  the 5.5-cm method. Only TMS outcomes and target coordinates were openly shared for this

12
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263  dataset. We obtained access to these data from the supplementary materials of Weigand et
264 al. ®. For more details on this dataset, please refer to Weigand et al. 8

265

266  The third dataset (“SID-TMS”) consists of 28 MDD patients with suicidal ideation who

267  underwent 10 daily sessions of rTMS over the left DLPFC for 5 consecutive days. Clinical

268 efficacy was evaluated using a 17-item HAMD. The TMS outcomes, neuroimaging data,

269  participants' demographic information, and target coordinates for this dataset were made
270  available upon request, enabling evaluation of the performance of the MDD big data-guided
271  individualized TMS targeting algorithm. The targets for individualized rTMS stimulation were
272  determined by identifying the peak subunits in the DLPFC area with the most negative

273  connections to the sgACC area in the original study. For more details on this dataset, see Li et
274 al.”.

275

276  The fourth dataset ("CUD-TMS”) comprises 27 cocaine use disorder (CUD) patients who

277  underwent two daily sessions of rTMS treatment over the left DLPFC in an acute phase and
278  two weekly sessions of rTMS treatment in a maintenance phase. The rTMS treatment was
279 delivered at the left DLPFC using either the 5.5 cm anatomic criterion or the Beam F3

280 method. Depressive symptoms were a secondary treatment outcome in the original study. A
281 subsample of 16 individuals, all with baseline HAMD scores above 7, was used for further
282  calculation of individualized TMS targets. The TMS outcomes, neuroimaging data,

283  participants' demographic info, and target coordinates for this dataset were openly shared
284 (https://openneuro.org/datasets/ds003037/versions/1.0.0). For more details on this dataset,

285  see Garza-Villarreal et al. **.

286  Approach

287  The study's first objective was to delineate case-control differences in the sgACC-FC profile
288 and explore its implication in identifying FC-guided individualized TMS targets. Accordingly,
289  we conducted a generalized linear model (GLM) to compare voxel-wise sgACC-FC maps of

290 MDD patients and HCs in the DIRECT dataset. We then demonstrated the association
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291  between clinical improvement and group differences in TMS targeting sgACC-FCs by

292  leveraging the TRD-TMS and SID-TMS datasets. Given that the peak sgACC anticorrelation of
293  anormative connectome within the left DLPFC was usually selected as the FC-guided sgACC
294  group target, we showed the impact of case-control differences on such group targets by
295  separately identifying the peak sgACC anticorrelation in the mean sgACC-FC maps of the

296 MDD group and HC group from the DIRECT dataset. Finally, we identified individualized

297  optimal targets using the MDD big data-guided individualized TMS targeting algorithm

298  guided by statistical maps (e.g., group difference map, mean sgACC-FC maps). We validated
299  the clinical effectiveness of the individualized approach by computing the correlation

300  between clinical outcomes and the distance between the actual TMS sites and the identified
301  individualized targets in the SID-TMS and CUD-TMS datasets. All statistical tests conducted in

302  the current study were two-sided.

303 Power calculations for primary hypotheses

304  The primary outcome of the current study is the case-control differences regarding the

305  sgACC-FC profiles. Estimates of the effect size (Cohen’s d = 0.186) of MDD patients’

306  abnormalities in FCs are drawn directly from our prior research based on the DIRECT Phase |
307  dataset **. Power calculation was performed using R version 4.3.1 *° with pwr *°. A sample of

308 455 patients will achieve 80% power with a 5% Type | error rate.

309 Image preprocessing

310  Acquisition parameters and scanners for all cohorts are provided in Table S2. All R-fMRI and
311  structural MRl scans were preprocessed at each site using the same DPABISurf protocol, an
312 R-fMRI data analysis toolbox evolved from DPABI/DPARSF ***”*% (For details, see Sl). Given
313  the controversy regarding global signal regression (GSR) and its essential role in identifying

314  TMS targets *, we performed preprocessing pipelines with and without GSR.
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315  FC maps of sgACC

316  Although recent studies have attempted to identify personalized TMS targets using
317 surface-based algorithms **, most previous studies have reported targets in volume-based

%2 As aresult, we

318 MNI space with sgACC ROls defined as a sphere in volume-based space
319 used the volume-based preprocessed imaging data from DPABISurf to better compare our
320  results with the existing literature.

321

322  We defined the sgACC as a 10 mm diameter sphere located on the average MNI coordinates
323  based on prior studies showing reduced glucose metabolism or blood flow after receiving an
324 antidepressant treatment (MNI coordinates: x = 6, y = 16, z = -10. For details, please refer to
325  Foxetal., 2012 *). The sgACC time series were determined for each individual by spatially
326  averaging the preprocessed R-fMRI time series across all voxels in the abovementioned

327  masks. We then calculated whole-brain FC maps in volume-based MNI space. FC was

328 calculated using Pearson’s correlation and underwent Fisher’s r-to-z transformation. All FC

329  maps were smoothed with a 6 mm full-width half maximum (FWHM) kernel size. We used

330  ComBat * to control potential site and scanner biases (For details, see Sl).

331  Group difference maps of sgACC-FC profiles

332  We used a voxel-wise GLM to examine differences in the FC maps of sgACC between MDD
333 patients and HCs in DIRECT Phase II. Cohen’s f* was calculated to characterize the effect sizes
334  of this group difference effect. The GLM model includes age, sex, education, and head

335 motion as covariates:

336 y=u+Xp+e (1)
337  where y denotes the FC value of a given voxel from a given participant; p stands for the

338  constant term; X represents the design matrix for the covariates of interest (diagnosis, age,
339  sex, education, and head motion); B is a vector of regression coefficients corresponding to X;
340  and €is a vector of residuals that follow N(0, %). Multiple comparison correction was

341  conducted using false discovery rate (FDR) correction at g < 0.05.
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342

343  To further interpret group difference maps, we extracted the mean FC values of seven

344  networks using Schaefer’s 400 parcellation atlas ®*. A GLM model identical to model (1) was
345  constructed to characterize case-control differences for each network. Bonferroni multiple
346  comparison correction was conducted (p < 0.05/7). We further explored the effect of the
347 identified DLPFC clusters in several subgroups. Specifically, patients who were in their first
348  episode and had never received any antidepressant medication treatment (first episode drug
349 naive, FEDN, N = 484) and patients who had undergone more than one episode (recurrent, N
350 =439) were selected and compared. Three contrasts, FEDN vs. HC, recurrent vs. HC, and

351  FEDN vs. recurrent, were analyzed.

352 Relationship between group differences in TMS targets’ sgACC FCs and clinical outcomes

353  To explore the relationship between group differences in TMS targets’ sgACC FCs and clinical
354  outcomes, we first extracted the mean t-values from the group difference map of 8 mm

355  radius spheres centered at each targeting coordinate in the TRD-TMS dataset, then examined
356  the Pearson correlations between these t-values and HAMD score reductions. We

357  anticipated that greater group differences in sgACC-FC at the target location (i.e., higher t
358  values) would be related to better TMS therapeutic effects (higher HAMD reductions). To test
359  therobustness of our findings, we also used spheres with 2 mm, 4 mm, and 10 mm radiuses

360  to extract the t-values of group differences.

361  Group targets based on mean sgACC-FC maps

362  The prior group-level DLPFC TMS target had been derived from a cohort of healthy young
363 adults *; here, we separately averaged whole-brain sgACC-FC maps across all the DIRECT
364  participants in the MDD and HC groups. We then searched for the peak sgACC anticorrelated
365  voxel within the DLPFC area (i.e., Brodmann area (BA) 46) as the mean sgACC-FC guided TMS

366  targets for the MDD and HC groups.

16


https://doi.org/10.1101/2023.03.09.531726
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.09.531726; this version posted October 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

367 Identification of individualized TMS targets

368  The reliable statistical maps from the DIRECT big sample best reflect the probability of

369 MDD-related abnormalities in sgACC-FC. Therefore, we can use these maps to guide the

370 identification of individualized abnormalities by combining this big-data-based abnormality
371  information with the individualized R-fMRI data from a given patient, obtaining reliable

372  statistical maps from the DIRECT sample. We used the dual regression approach to identify
373 individualized TMS targets guided by group-level statistical maps in the SID-TMS and

374  CUD-TMS datasets. Dual regression is a common method in independent component analysis
375  (ICA) for projecting group-level independent components (e.g., functional networks) onto
376  theindividual subject level (see Figure S4 for details). In the first step of the MDD big

377  data-guided individualized TMS targeting algorithm, a group-level statistical spatial map (e.g.,
378  the sgACC-FC group difference map reflecting the probability of MDD-related abnormalities
379  in sgACC-FC) was used as a spatial regressor in the GLM to identify the temporal dynamic of
380 the group-level map (similar to spatial correlation with the abnormality spatial map). A time
381  series associated with the spatial map of MDD-related FC abnormalities was generated. In
382  the second step, the derived time series was used as a temporal regressor in the GLM to

383  identify an individual-level spatial map (similar to the temporal correlation with the previous
384  time series). This spatial map can be considered the best-individualized abnormality guided
385 by big-data-based abnormality. Given our prior knowledge of DLPFC TMS treatment in MDD,
386  we confined the big-data-based abnormality dual regression to the DLPFC area. That is, we
387  use the group DLPFC abnormality probability map to find the individualized DLPFC target in a
388  given MDD patient. The final coordinates for the individualized TMS targets are defined as
389  the centroids of the largest clusters within this DLPFC region on the individual-level spatial
390  maps. Additionally, we calculated the individualized target coordinates using the seed map
391  approach, following the methods described by Fox et al. ** and Cash et al. **. In the seed-map
392  approach, a seed time series is extracted by computing a weighted average time series of all
393  voxels within the seed map (e.g., a group average map of sgACC-FC, but excluding the DLPFC

394  area). Subsequently, Pearson's correlation coefficients are computed between this extracted
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395  time series and all other DLPFC voxels. The final TMS target is the most negatively

396 functionally connected cluster in the DLPFC area. Of note, in the seed map approach, the
397  goal of the first step is to find the most sgACC-like time series, which is not confined to the
398  noisy sgACC area. Following this rationale, the DLFPC time series should not be included to
399  avoid biasing the estimation of the sgACC-like time series. Thus, the DLPFC area was

400  excluded. Thus, the exclusion and inclusion of DLPFC differs between the seed map approach
401  and the DR approach due to the different underlying rationales. Details of the individualized
402  TMS target localization algorithms are provided in the supplementary materials.

403

404  Clinical efficacy of the group-level and individualized TMS targets

405  We leveraged the SID-TMS and CUD-TMS datasets to evaluate the clinical significance of
406  individualized TMS targets. We identified the proposed individualized TMS targets from the
407 MDD big data-guided individualized TMS targeting algorithm and calculated the targeting
408  offset (i.e., Euclidean distance between the individualized optimal TMS targets and the actual
409  stimulation coordinates) for each patient. Subsequently, we calculated the Pearson

410  correlations between clinical improvement (i.e., HAMD reductions) and targeting offset. We
411  anticipated a negative correlation between clinical outcomes and target offset (i.e., the

412  closer the actual stimulation target was to the individualized target from the MDD big

413 data-guided individualized TMS targeting algorithm, the higher the clinical improvement).
414  Age, sex, and head motion were included as covariates in the regression models when

415 calculating correlations between targeting offsets and clinical improvement.

416

417  Results

418  Group difference maps of sgACC-FC

419  Inthe large-scale DIRECT Phase Il dataset, we found significant MDD-related

420 hyperconnectivity with the sgACC in bilateral DLPFC, temporal parietal junction, and occipital
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421 lobe, as well as hypoconnectivity in the bilateral temporal lobe, left inferior frontal gyrus, and
422  left postcentral gyrus when preprocessing included GSR (Figure 2A). When GSR was not

423  included in preprocessing, MDD-related sgACC FC alterations showed predominantly

424 hypoconnectivity. Such abnormally decreased FCs were found across the central gyrus,

425  occipital lobe, insular cortex, temporal lobe, and a small portion of the frontal lobe. Without
426  GSR, MDD-related hyperconnectivity was limited to subcortical regions (Figure S1A). Given
427  that significant case-control differences in the DLPFC area were revealed only when GSR was
428 implemented, subsequent analyses were based on results with GSR. The uncorrected group
429  difference maps calculated in the volume space showed remarkable similarity with those in
430  the surface space (Figure S2). Network-wise FC analyses showed that MDD patients’ FC

431  between sgACC and the limbic network (LN) was significantly reduced compared to HC

432 (t(2880) = -4.122, peorrected < 0.001, Cohen’s d = 0.171). The FC between sgACC and the

433  frontoparietal network (FPN) was enhanced and approached significance (t(2880) = 2.419,
434 Peorrecred = 0.055, Cohen’s d = 0.090, Figure 2B). Without GSR, MDD patients showed

435 decreased FC between sgACC and all brain networks (all peorrectes < 0.05) except for the FPN
436  (Figure S1B). We identified two contiguous clusters of voxels that showed significant group
437  differences in the left DLPFC. Group difference cluster 1 (MNI coordinates: x =-44,y=38,z =
438  32; t(2880) =3.277, p < 0.001, Cohen’s d = 0.141) was ventral to group difference cluster 2
439  (MNI coordinates: x =-34, y = 36, z = 40; t(2880) = 3.670, p < 0.001, Cohen’s d = 0.126)

440  (Figure 2C). In subgroup analyses, when GSR was performed, FEDN patients showed

441  enhanced FCs in both clusters (cluster 1: t(1790) = 2.282, p = 0.023, Cohen’s d = 0.124;

442  cluster 2: £(1790) = 2.273, p = 0.023, Cohen’s d = 0.123). There was a significant

443  enhancement in the DLPFC cluster 2 between the recurrent MDD patients and HCs (t(1745) =
444  2.765, p = 0.006, Cohen'’s d = 0.159) while cluster 1 approached significance (t(1745) = 1.864,
445  p=0.063, Cohen’s d = 0.107). No significant difference was revealed between the FEDN and
446  recurrent patients (see Figure 3).

447
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449 Figure 2. Group differences of subgenual anterior cingulate cortex (sgACC) functional connectivity (FC)
450 profiles are related to TMS treatment efficacy, demonstrating clinical significance. (A) Two-sample
451 t-test maps of MDD-related sgACC FC abnormalities with global signal regression (GSR} implemented.
452 (B) Group differences of FCs between sgACC and visual network (VN), somatomotor network (SMN),
453 dorsal attention network (DAN), ventral attention network (VAN), limbic network (LN}, frontoparietal
454 network (FPN), and default mode network (DMN). (C) Two clusters showed significant case-control
455 differences in sgACC-FC. Abbreviations: DLPFC, dorsal lateral prefrontal cortex; L, left hemisphere; R,

456 right hemisphere. *: significant after Bonferroni correction; #: approaching significance.

457
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459 Figure 3. Subgroup differences regarding two clusters found in DLPFC. Abbreviations: FEDN, first
460 episode drug naive; HC, healthy control.

461

462  sgACC anticorrelation peaks in MDD and HCs

463 Our results highlighted the case-control differences in sgACC-FC profiles. Since the prior

464  sgACC group target (MNI coordinates: x =-42, y = 44, z = 30) had been based on a cohort of
465  young, healthy adults **, we sought to examine potential differences in anticorrelation peaks
466  extracted from the mean sgACC FC maps of MDD and HC groups (Figure 4B-C) in the DIRECT
467 dataset. We found that the anticorrelation peak of MDD patients (MNI coordinates: x =-40, y
468 =50, z = 22) differed from that of HCs (MNI coordinates: x =-42, y = 38, z = 32), probably due
469  to abnormal FCs within the left DLPFC in MDD patients. The anticorrelation peak extracted
470  from the DIRECT HCs was closer to the previously reported locus *® (Figure 4).

471
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473 Figure 4. The peak of the sgACC anticorrelation in MDD patients differed from that in HCs.

474

475  sgACC-FC group differences correlate with TMS treatment outcomes

476 Using the TRD-TMS dataset, we examined the relationship between group differences

477  (t-values) and clinical outcomes (HAMD reductions) to test the clinical relevance of the group
478  difference maps. Group differences were positively correlated with HAMD score reductions
479 (r(23) =0.448, p = 0.025, Figure 5A), suggesting that group-level difference maps may be

480  useful for enhancing the outcomes of TMS for treating MDD by improving target localization.
481  Significant associations were also observed using different radius settings (Figure S11).

482  The same trend was observed in the SID-TMS dataset, albeit it failed to achieve significance
483  (r(26) =0.304, p = 0.108, Figure 5).

484
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486 Figure 5. The group difference regarding sgACC-FC to the TMS targets was correlated with clinical
487 efficacy. (A} The TMS targets were extracted from the TRD-TMS dataset % The sizes of the spheres
488 indicate the magnitudes in Hamilton Depression Rating Scale (HAMD) reductions, with the group
489 difference map rendered on the surface. The scatter plot depicted that the magnitudes of the group
490 differences in the FC between TMS targets and sgACC were positively related to clinical improvements
491 in the TRD dataset. (B) Findings were replicated in the SID-TMS dataset >3 Abbreviations: FC,
492 functional connectivity; TMS, transcranial magnetic stimulation.

493

494 Individualized targets suggest higher clinical efficacy than group targets

495  We utilized the MDD big data-guided individualized TMS targeting algorithm to calculate

496 individualized optimal targets for each SID-TMS and CUD-TMS dataset participant. Clinical
497 relevance of the targets was determined by the correlation between target offset and clinical
498 improvement. The individualized target locations derived from the sgACC-FC group

499 difference map are illustrated in Figure 6. The individualized targets (SID-TMS: r(26) = -0.562,
500 p=0.002; CUD-TMS: r(14) = -0.511, p = 0.037) outperformed their corresponding group-level
501 targets (SID-TMS: r(26) = -0.349, p = 0.044; CUD-TMS: r(14) =-0.167, p =0.293) in both
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502  datasets (Figure 6). The DR-based individualized targets derived from the MDD or HC
503  group-average sgACC-FC maps also outperformed their corresponding group-level targets
504  and seed map-based targets (Figure $6-8). Among all the individualized targets, the DR-based

505 targets guided by the group difference map achieved the highest clinical efficacy.

506
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508 Figure 6. Individualized targets derived from the group difference map exhibited greater clinical
509 efficacy than the corresponding group targets. Clinical efficacy was characterized by computing the
510 correlations between the offset distances of TMS targets and the clinical improvements observed in
511 the CUD-TMS dataset. The TMS targeting offset distance was defined as the Euclidean distance
512 between the actual rTMS stimulation coordinates and the individualized or group targets. Clinical
513 improvement was defined as the HAMD reduction during rTMS treatment, adjusted for age, sex, and
514 head motion. The locations of the targets are displayed on the cortex. The sizes of the spheres indicate

515 the magnitudes of Hamilton Depression Rating Scale (HAMD) reductions. (A-B) Clinical efficacy of the
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516 individualized and group targets in the SID-TMS sample. (C-D) Clinical efficacy of the individualized and
517 group targets in the CUD-TMS sample. *p < 0.05. ** p < 0.01.

518

519 Discussion

520 Inthe present study, we leveraged a large multi-site fMRI sample (1660 MDD patients and
521 1341 HCs) and three independent TMS datasets to delineate abnormalities in sgACC FC in
522 MDD and explore their potential impact on the localization of TMS targets. Specifically, with
523  GSRimplemented, we found enhanced FCs between sgACC and left DLPFC, bilateral

524  supplementary motor areas and inferior parietal lobes, thalamus, and visual areas, and

525 decreased FCs between sgACC and left anterior insula, left superior temporal lobe, and

526  bilateral temporal poles in MDD patients. Patients with MDD exhibited significantly reduced
527 FC between the sgACC and the DMN, while FC between the sgACC and the FPN was only
528  marginally increased. Crucially, we showed that the clinical outcomes of TMS treatments
529  were related to the magnitude of the case-control differences in the FCs between sgACC and
530  TMS targets. Furthermore, such group difference profiles altered the position of the sgACC
531  anti-correlation peak in the left DLPFC. Additionally, the MDD big data-guided individualized
532  TMS targeting algorithm to identify individualized TMS targets showed better clinical efficacy

533  than TMS targets based on group sgACC-FC profiles.

534  MDD-related FC abnormalities of sgACC

535 Our results add to a growing literature documenting functional network abnormalities

536 involving the sgACC in MDD #*31719628% Neyertheless, notable discrepancies in the type of
537 abnormality (enhanced/reduced) and specific brain regions showing altered sgACC FCs have

538  been reported. Considering the small effect sizes (Cohen’s f* < 0.01) of MDD-related

539  sgACC-FC abnormalities, the limited sample sizes in previous studies entail a high risk of false

21,65,66

540  positive findings . Another potential source of heterogeneity in previous findings may

541  be whether or not they applied GSR (See supplementary materials for detailed discussion).
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542  With an unprecedented sample size, our results provide among the most robust evidence to
543  date. Specifically, MDD patients showed enhanced sgACC-thalamus FC and decreased

544  sgACC-limbic network FC regardless of whether GSR was implemented. These results are

545  consistent with previous studies in adolescents ** and adults *° with MDD. Previous studies
546  have reported abnormal FCs between sgACC and limbic areas and some subcortical regions,
547 such as the amygdala ** and parahippocampus regions **. Together, the present results are
548  consistent with a model highlighting sgACC as a critical hub in an “extended medial network,”
549  which also encompasses limbic, thalamic, and striatal regions and plays a key role in the

67,68

550  pathophysiology of MDD °"*°. This “extended medial network” overlaps substantially with
551  the DMN. Indeed, decreased FCs between sgACC and DMN regions, such as the medial

552  prefrontal cortex, precuneus, temporal gyrus, and parahippocampus regions, were revealed
553  in MDD relative to HCs when GSR was not implemented. Such abnormalities have been

554  previously reported 1%+

, which led to the hypothesis that abnormally enhanced FC

555  between sgACC and DMN are the network underpinnings of rumination *°. However,

556  contrary to the aforementioned hypothesis, we found reduced, instead of enhanced FC

557  between sgACC and DMN. Similarly, in the first phase of DIRECT, we demonstrated that MDD
558  was characterized by reduced FC within DMN ****, We note that the first and second phases
559  of the DIRECT data are solely comprised of Chinese samples, while most studies that have
560 reported enhanced sgACC-DMN FCs have been in Caucasian samples. Different prevalence
561 rates "®’", heterogeneous symptoms 2, and different risk alleles "> have been reported in
562  Caucasian and Eastern Asian groups. Accordingly, we cannot exclude racial differences

563  contributing to this discrepancy. It is worth noting that we found enhanced FCs between the
564  visual region and sgACC in MDD patients relative to HCs when GSR was implemented, while
565  significantly reduced sgACC-visual region FCs were revealed when GSR was not performed.
566  Most of DIRECT Il sites’ R-fMRI data were collected with participants’ eyes closed (22 out of
567 23 sites). Prior research had shown that participants are more likely to fall asleep when their
568  eyes are closed during data acquisition, and drowsiness may alter FC patterns in visual

569 regions "%, Thus, it is possible that abnormalities in visual region FCs may be due to MDD

570  patients’ lower levels of wakefulness.
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571  Clinical relevance of abnormal sgACC-DLPFC anticorrelation in MDD

572  Once the group difference maps of sgACC FC profiles were delineated, we further explored
573  the impact of such an abnormality, especially in DLPFC, on identifying TMS targets. Most
574  clinical trials have focused on applying TMS to the left DLPFC based on the hypothesis that
575 high-frequency rTMS will enhance hypoactivity during depressive episodes *”. The DLPFC is
576  anatomically extensive ’°. However, which DLPFC sub-field is the best target for TMS remains
577  unclear. The current FDA-approved protocol (i.e., the “5 cm” method) leads to large

578 interindividual variation in stimulation sites, which may contribute to the heterogeneity in
579  the effect sizes of antidepressant responses in prior trials 7*’%.

580

581  Previous targeting approaches leveraging anatomical landmarks has not consistently

582  outperformed the “5 cm” method or the F3 Beam method **°. Considering the

583  unsatisfactory effect of TMS target localization based on brain anatomical parcellation,
584  group-level normative sgACC anticorrelation peaks based on healthy population datasets

585  have been frequently used as TMS targets in recent years >**%*

. However, in the present
586  study, we found that the locations of such anticorrelated peaks differ substantially between
587 MDD and HC samples when measured in a large clinical cohort. Therefore, it might be

588  problematic to identify TMS targets based solely on sgACC-FC profiles in healthy or

589  depressed individuals. Intriguingly, we found that the magnitudes of case-control differences
590 in TMS targets’ FCs to sgACC were positively related to the clinical improvements after

591  receiving rTMS to the left DLPFC. Such correlation implies that the case-control differences in

592  the FC between sgACC and the left DLPFC might bear important information that could be

593 leveraged to guide the identification of reliable, individualized TMS targets.

594  The MDD big data-guided individualized TMS targeting algorithm may improve the clinical

595 efficacy of TMS targets

596 In the current study, we developed an MDD big data-guided individualized TMS targeting

597  algorithm to individualize the TMS targets derived from group-level statistical maps. The
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598  proposed approach takes advantage of the high signal-to-noise ratio and reliability of large
599  sample statistical maps while integrating individual spontaneous brain activity of individuals
600  with MDD. Most existing individualized TMS target localization algorithms are based on

601  calculating sgACC FCs using densely sampled MRl images from single subjects **. However,

602 individual MRIimages tend to be noisy and unreliable **%

, especially in the sgACC region. Air
603 in the sinuses often introduces susceptibility artifacts due to the different magnetic

604  properties of air and brain tissue. Signal loss and geometric distortion are common in areas
605 close to air-filled sinuses, such as the inferior frontal cortex, including the sgACC 8 The seed
606  map approach has been proposed to alleviate such difficulties due to the subpar image

41,44

607  quality of the sgACC region . In the seed map approach, all voxels within the seed map
608  (except for the DLPFC region) were used to extract the seed time series to improve its

609  signal-to-noise ratio. However, considering that the weight (e.g., FC value) of the sgACC area
610 is usually extremely high in the seed map, the derived seed time series remains somewhat
611  similar to the noisy sgACC time series and doesn’t achieve the best TMS localization. A

612 cutting-edge MDD TMS therapy combining FC-guided target localization, high dose, and

613  intermittent theta-burst stimulation (iTBS) was reported to be highly effective in a

614  randomized, double-blinded, sham-controlled clinical trial ***¢

. However, the targeting

615  algorithm relied on hierarchical agglomerative clustering in the sgACC area which has a low
616  signal-to-noise ratio. Nevertheless, the final target was still determined according to

617  individual-level sgACC-DLPFC FCs. For the proposed MDD big data-guided individualized TMS
618  targeting algorithm, we view the reliable statistical maps from the DIRECT big sample as the
619  best reflection of the probability of MDD-related abnormalities in sgACC-FC. Therefore, we
620  used these maps to guide the identification of individualized abnormalities by combining this
621  big-data-based abnormality information with the individualized R-fMRI data from a given
622  patient. Given the a priori knowledge of DLPFC TMS treatment in MDD, we confined the

623 big-data-based abnormality dual regression only within the DLPFC area, which is less affected
624 by susceptibility artifacts. In this way, the superior signal quality of DLPFC and the effective
625 and reliable properties of the dual regression algorithm enhance the accuracy of target

626 localization.
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627

628  Encouragingly, the DR-based individualization targets enhanced the clinical significance of
629  corresponding group-level targets, regardless of the template used. This result supports the
630  generalizability and extensibility of the algorithm, offering the potential for TMS targeting
631  based on other circuits and biomarkers. Considering most existing TMS research still relies on
632  the traditional 5 cm or Beam F3 methods for targeting, one approach based on our data to
633  improve targeting would be simply shifting the target to a more anterior and lateral position.
634 However, such a simple shift was not supported by the present study. Instead, 25% of targets
635 individualized using the group difference map were more medial than the original targets,
636  and 50% of targets individualized by the group difference map were more posterior than the
637  original targets. Therefore, the MDD big data-guided individualized TMS targeting algorithm
638  does not simply set a more anterior and lateral coordinate in the BA46 area as the

639  individualized optimization target for subjects. Among the group-level templates used in the
640 MDD big data-guided individualized TMS targeting algorithm, the sgACC-FC group difference
641 map performed the best, instead of the commonly used average sgACC based on healthy
642  individuals. This may reflect the abnormal posterior shift of the MDD sgACC anticorrelation
643 peak we found, and it emphasizes the immense clinical value of examining spontaneous

644  brain activity differences between MDD and HC in a large sample. Previous studies either

46,47,85

645  included only a small quantity of MDD functional MRI data or developed targeting
646  algorithms based on large-scale HC samples *. In this study, we utilized an unprecedented
647  amount of functional MRI data from MDD and HC, obtained a reliable group-level difference
648  map of sgACC-FC, and successfully validated its potential in treating MDD with TMS.

649

650 Limitations

651  Several limitations need to be considered. First, we noted that the inconsistency between
652  our results and the broader literature could partly be due to racial differences of the samples
653 (i.e., Eastern Asian vs. Caucasian). Efforts that intend to pool existing neuroimaging data

654  worldwide, such as the Enhancing Neurolmaging Genetics through Meta-Analysis (ENIGMA)
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655  Major Depressive Disorder (MDD) consortium *>, have accumulated large-scale data primarily
656  from Western countries and published several high-impact studies delineating MDD-related

8257 planned collaborations between the DIRECT and the

657  anatomical abnormalities
658 ENIGMA-MDD consortiums are ongoing to help address potential cultural, genetic, and

659  environmental mechanisms in more diverse groups of MDD patients. Second, we performed
660  volume-based preprocessing to facilitate comparison with the previous literature.

661  Surface-based preprocessing strategies have provided more accurate and detailed

662  representations of cortical and subcortical structures *. Recent research has begun to

663  explore surface-based rTMS target identification algorithms and has shown promising clinical

664  relevance *%%

. Future research should consider using surface-based case-control difference
665  maps to further refine ways to identify TMS targets. Given the established involvement of
666  the left DLPFC in existing TMS treatment protocols, the present study restricted investigation
667  to within this area.

668

669 We noted that other brain regions (e.g., angular gyrus and supplementary motor area)

670  showed significant case-control differences worth further research and may serve as

671 potential targets for neuromodulation **°* *>, The MDD big data-guided individualized TMS
672  targeting algorithm can be readily transferred to other neural circuits or other brain

673  imaging-derived feature maps (e.g., ICA, functional gradient, normative modeling). The

674  clinical efficacy of these alternative targets is worthy of future investigations. Identifying a
675 reliable personalized TMS target solely based on an individual’s R-fMRI data (around 8 mins
676  of fMRI scan in clinical practice) is challenging. Due to the poor replicability of FC **, existing
677 individual-level network parcellation algorithms need a large quantity of fMRI images

678  (usually more than one hour of scanning time) °*. The present study utilized three

679  independent TMS samples to validate the efficacy of the individualized algorithm.

680 Nevertheless, the two TMS datasets used to validate the individualized TMS targets are

681  limited in sample size ¥*

. Publicly available TMS brain imaging datasets could be used for
682 independent validation of target localization algorithms to reduce the false positive rate;

683  however, access to such datasets remains challenging. In addition, prospective, double-blind
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684  clinical trials are warranted to compare the treatment outcome across different rTMS

685  targeting algorithms (e.g., traditional anatomical landmark-based targeting, group-level

686  sgACC-FC targeting, and MDD big data-guided individualized TMS targeting algorithm).

687  Therefore, we call upon researchers involved in this field to publicly share data on TMS

688  targets, clinical efficacy, and brain imaging, and we will also openly share data from our

689  related prospective studies °°. The large sample size of the DIRECT consortium aggregated
690  dataset allows for intriguing analyses, such as bio-subgroups of MDD patients. Indeed, some
691 previous DIRECT studies have shown that MDD patients can be subgrouped ***’. Future

692  studies may further determine whether bio-types could be achieved using sgACC **. Most of
693  the DIRECT Il R-fMRI data were acquired when participants were instructed to close their
694  eyes, which has been shown to be associated with an increased likelihood of sleep during
695  scanning " Instructing participants to keep their eyes open and look at fixation can help
696  prevent participants from falling asleep and is easy to apply. Since large multi-site R-fMRI
697  data aggregation endeavors such as DIRECT are prone to be biased by non-neurophysical
698  factors such as head motion, sleepiness, etc. %%, it is important to prospectively apply

699  well-designed standard operation procedures in future large-scale multi-site scientific

700 projects.

701

702  Conclusion

703 In summary, we leveraged a large sample of MDD patients to fully delineate group

704  differences in sgACC-FC maps between MDD patients and HCs. We next demonstrated the
705  impact of such case-control differences on group TMS targets based on sgACC-FC profiles by
706  showing that the magnitudes of case-control differences in the FC between sgACC and TMS
707  targets were positively associated with clinical outcomes and the peak sgACC anticorrelation
708 locations were different in MDD patients as compared to HCs. Moreover, we developed an
709 MDD big data-guided individualized TMS targeting algorithm to identify individualized TMS
710  targets and demonstrated that this approach may improve clinical efficacy compared to

711  group targets based on sgACC-FC profiles.
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Table 1. Demographic and clinical data for all samples included in the DIRECT Il project

Age Age % Male % Female | % Male % Female | Education | Education | Age at Episode | Full HAMD-17 | N N
(HC)* (MDD)" | (HC) (HC)? (MDD)* | (MDD)’ (HC, (MDD, the number" | episode | score' (HC) | (MDD)
years)" years)" onset durations
Site of the (months)*
first
episode
(years)'
39.33 38.67 87 160 98 181 13.05 12.03 35.75 1.19 49.01 20.96 247 279
! (15.80) | (13.50) | (35.22%) | (64.78%) | (35.13%) | (64.87%) | (3.89) (3.62) (13.47) | (0.40) (64.25) (5.60)
) 20.90 19.02 24 38 37 98 13.73 11.97 16.28 1.07 16.94 18.06 62 135
(2.89) | (3.79) | (38.71%) | (61.29%) | (27.41%) | (72.59%) | (1.80) (2.55) (4.05) | (0.35) (19.74) (8.99)
26.50 34.40 5 15 5 15 15.40 14.90 35.55 1.15 14.50 29.37 20 20
} (11.22) | (10.56) | (25.00%) | (75.00%) | (25.00%) | (75.00%) | (1.47) (2.97) (11.96) | (0.49) (29.14) (6.41)
29.89 30.87 9 18 13 18 13.04 12.65 26.80 2.52 42.03 21.79 27 31
4 (9.88) | (10.39) | (33.33%) | (66.67%) | (41.94%) | (58.06%) | (3.80) (4.22) (10.89) | (3.66) (58.57) (5.74)
36.79 33.59 32 25 60 68 14.37 13.07 1.00 26.59 57 128
> (9.07) | (9.85) | (56.14%) | (43.86%) | (46.88%) | (53.13%) | (2.64) (3.43) NA (0.00) NA (3.76)
6 23.75 30.90 45 56 31 28 13.88 12.03 28.14 1.87 4414 20.51 101 59
(5.15) | (9.29) | (44.55%) | (55.45%) | (52.54%) | (47.46%) | (2.31) (3.06) (9.46) | (1.12) (61.28) (6.71)
7 19.80 20.00 8 22 5 16 11.90 10.81 18.81 1.10 15.60 24.10 30 21
(3.85) (6.51) (26.67%) | (73.33%) (23.81%) | (76.19%) (2.55) (2.86) (7.19) (0.30) (16.23) (12.68)
31.93 32.84 18 24 15 28 15.40 15.79 30.60 3.65 21.51 23.84 42 43
8 (9.66) | (8.95) | (42.86%) | (57.14%) | (34.88%) | (65.12%) | (1.86) (1.82) (8.78) | (2.29) (11.65) (3.88)
9 36.12 45.11 10 15 19 28 13.56 10.83 42.19 1.43 36.07 25 47
(13.85) | (14.32) | (40.00%) | (60.00%) (40.43%) | (59.57%) (4.01) (4.52) (14.23) | (0.77) (53.22) NA
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Lo | 3649 | 3400 |30 37 36 44 14.58 13.25 26.15 | 2.30 92.00 14.58 67 80
. . . 0 . () . () . ('] . . . . . .
(12.64) | (11.81) | (44.78%) | (55.22%) | (45.00%) | (55.00%) | (2.30) (3.08) (10.47) | (1.78) (96.70) (8.21)
L | 3662 | 3829 |30 38 55 58 12.96 10.96 3221 | 3.36 75.51 23.54 68 113
. . . 0 . () . () . (] . o B . . .
(12.11) | (12.75) | (44.12%) | (55.88%) | (48.67%) | (51.33%) | (3.57) (3.48) (12.46) | (3.63) (93.37) (9.23)
L | 2959|3047 |15 17 21 41 14.59 13.73 29.63 | 1.00 6.10 21.27 32 62
. . o () . (] » (] . 0 o . . . . .
(5.00) | (7.20) | (46.88%) | (53.13%) | (33.87%) | (66.13%) | (2.82) (3.39) (7.11) | (0.00) (4.22) (3.47)
L5 | 3545 | 3800 |9 20 13 19 11.28 12.03 3309 | 1.45 18.66 29 32
. . . 0 . () . () . ('] . . . . .
(13.76) | (14.56) | (31.03%) | (68.97%) | (40.63%) | (59.38%) | (4.31) (3.87) (13.93) | (1.12) NA (9.66)
L4 | 3810 | 4350 |65 79 47 89 13.24 9.07 3752 | 2.55 67.16 30.04 144 | 136
. . . 0 . () . () . 0 . . . . . .
(11.96) | (11.28) | (45.14%) | (54.86%) | (34.56%) | (65.44%) | (4.20) (3.60) (11.50) | (2.15) (77.29) (10.52)
s | 245t | 2206 |23 12 7 27 12.57 11.85 2182 | 2.50 12.76 35 34
(4.58) | (4.70) | (65.71%) | (34.29%) | (20.59%) | (79.41%) | (1.42) (2.39) (5.19) | (2.81) (15.11) NA
o | 2573|2607 |44 37 37 46 15.53 13.81 2302 | 173 30.18 25.42 81 83
. . . 0 . () . () . (] o . . . . .
(7.38) | (7.66) | (54.32%) | (45.68%) | (44.58%) | (55.42%) | (2.81) (2.60) (8.11) | (1.11) (44.24) (3.78)
L | 3473 |3s21 |10 30 15 27 14.31 12.50 3500 | 1.00 3.79 23.67 49 42
. . . 0 . () . () . 0 . . . . . .
(9.66) | (9.43) | (38.78%) | (61.22%) | (35.71%) | (64.29%) | (4.21) (4.09) (9.53) | (0.00) (2.62) (5.25)
g | 3219|3525 |13 19 12 12 12.53 13.42 1.58 17.77 2238 32 24
(11.83) | (13.15) | (40.63%) | (59.38%) | (50.00%) | (50.00%) | (3.03) (4.47) NA (0.72) (19.57) (4.23)
o | 3094 | 2703 |16 16 5 27 13.94 12.69 2558 | 1.28 12.88 23.06 32 32
7.32 11.04) | (50.00%) | (50.00% 15.63%) | (84.38% 2.84 3.18 10.86) | (0.46 14.38 5.66
(7.32) | ( ) | ( ) | K ) | | ) | (2.84) (3.18) ( ) | (0.46) ( ) (5.66)
o | 3140|2780 |5 15 4 16 16.10 13.60 2665 | 1.30 14.55 24.85 20 20
10.99) | (8.99 25.00%) | (75.00% 20.00%) | (80.00% 3.21 4.36 9.21 0.47 15.14 6.47
( ) | (899) | ( ) | ) | ) | ) | (3.21) (4.36) (9.21) | (0.47) ( ) (6.47)
,, | 3280 | 3252 |31 25 17 43 15.88 12.20 3144 | NaN 35.79 22.71 56 60
11.06) | (11.44) | (55.36%) | (44.64% 28.33%) | (71.67% 459 4.12 11.70) | (NaN 44.90 2.62
( ) | ( ) | ( ) | ( K ) | ( ) | (4.59) (4.12) ( ) | (NaN) ( ) (2.62)
,, | 3467 | 3574 |8 16 10 25 14.21 13.20 3123 | 1.06 5.59 22.29 24 35
(13.54) | (10.02) | (33.33%) | (66.67%) | (28.57%) | (71.43%) | (2.86) (3.75) (7.91) | (1.35) (14.93) (6.04)
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NA: data were missing for this site.
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