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Abstract 118 

Background The subgenual anterior cingulate cortex (sgACC) plays a central role in the 119 

pathophysiology of major depressive disorder (MDD), and its functional interactive profile 120 

with the left dorsal lateral prefrontal cortex (DLPFC) is associated with transcranial magnetic 121 

stimulation (TMS) treatment outcomes. Nevertheless, previous research on sgACC functional 122 

connectivity (FC) in MDD has yielded inconsistent results, partly due to small sample sizes 123 

and limited statistical power. Furthermore, calculating sgACC-FC to target TMS individually is 124 

challenging.  125 

Methods Leveraging a large multi-site cross-sectional sample (1660 MDD patients vs. 1341 126 

healthy controls) from Phase II of the Depression Imaging REsearch ConsorTium (DIRECT), we 127 

systematically delineated case-control difference maps of sgACC-FC. Then, we explored the 128 

potential impact of such group-level abnormality profiles on the TMS target localization and 129 

clinical efficacy. Next, we developed an MDD big data-guided individualized TMS targeting 130 

algorithm to integrate group-level statistical maps with individual-level brain activity to 131 

localize TMS targets individually.  132 

Results We found an enhanced sgACC-DLPFC FC in MDD patients compared to healthy 133 

controls (HC). Such group differences altered the position of the sgACC anti-correlation peak 134 

in the left DLPFC. In two independent clinical samples, we showed that the magnitude of 135 

TMS targets’ case-control differences in sgACC FC was related to clinical improvement. The 136 

MDD big data-guided individualized TMS targeting algorithm may generate individualized 137 

TMS targets that are clinically superior to group-level targets.  138 

Interpretation We reliably delineated MDD-related abnormalities of sgACC-FC profiles in a 139 

large, independently ascertained sample and demonstrated the potential impact of such 140 

case-control differences on FC-guided localization of TMS targets. 141 

Funding Ministry of Science and Technology of the People's Republic of China, National 142 

Natural Science Foundation of China, and Chinese Academy of Sciences 143 

Keywords: major depressive disorder, transcranial magnetic stimulation, individualization, 144 

subgenual anterior cingulate cortex, functional connectivity, dual regression 145 
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Introduction 147 

Major depressive disorder (MDD) is a common and debilitating psychiatric disorder projected 148 

to be the most burdensome condition worldwide by 2030 
1
. Despite extensive research, the 149 

pathophysiology of MDD remains elusive. Nevertheless, a key putative brain region or 150 

network hub appears to be the subgenual anterior cingulate cortex (sgACC), which shows 151 

reproducible metabolic hyperactivity 2, has been implicated in emotional responses, 152 

motivation, and rumination in MDD 3, and it has been shown to be an important target in 153 

deep brain stimulation and transcranial magnetic stimulation (TMS) 
4,5

. Repetitive TMS above 154 

5 Hz on the left dorsolateral prefrontal cortex (DLPFC) indirectly stimulates the sgACC, and 155 

the closer to the sgACC target, the better the clinical outcome 6. Accordingly, identifying an 156 

optimized neuromodulation target in the left DLPFC based on sgACC-related functional 157 

connectivity (FC) is crucial for developing effective depression treatments 7,8. In light of 158 

inconsistent findings derived from studies with small sample sizes 
9-15

, we set out to establish 159 

a large sample to identify a reliable abnormal sgACC-DLPFC FC profile in MDD and further 160 

integrate this profile with individual brain activity to generate individualized 161 

neuromodulation targets for treating depression. 162 

 163 

Numerous investigations have delved into FC abnormalities in MDD using resting-state 164 

functional magnetic resonance imaging (R-fMRI). Abnormal FCs between sgACC and 165 

amygdala, thalamus, temporal gyrus, lingual gyrus, cerebellum, DLPFC, and default mode 166 

network (DMN) regions such as medial and dorsal medial prefrontal cortex, precuneus, and 167 

parahippocampus have been reported 9,10,13-20. However, findings have been inconsistent, 168 

making integrating findings and generating precise profiles of sgACC-related FC abnormalities 169 

challenging. This deficiency in reproducibility could be partially due to small sample sizes, 170 

differences in preprocessing pipelines, and low statistical power of clinical imaging studies 171 

21,22. To address the issue of limited sample size, we initiated the Depression Imaging 172 

REsearch ConsorTium (DIRECT) 23 and conducted an initial meta/mega-analysis (NMDD = 1300), 173 

referred to as REST-meta-MDD 
24

. DIRECT Phase I shared ROI-level signals, thus enabling the 174 
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investigation of multiple MDD-related abnormalities in network FC, FC topological and 175 

dynamic features, and functional lateralization 24-31. In DIRECT Phase II data reporting, we 176 

pooled an expanded MDD sample (NMDD = 1660), which was preprocessed with a 177 

surface-based pipeline, DPABISurf 32. DIRECT Phase II shared voxel/vertex level BOLD time 178 

series, allowing more flexible and thorough investigations. Leveraging the most 179 

comprehensive MDD R-fMRI dataset to date encompassing depression patients and healthy 180 

controls, we can determine an aberrant sgACC-FC profile associated with MDD, characterized 181 

by superior reproducibility and low risk of false positives. 182 

 183 

Maps of sgACC-related FC abnormalities are clinically useful for predicting repetitive TMS 184 

(rTMS) treatment outcomes in MDD patients 
33-35

. Specifically, the anti-correlation between 185 

sgACC and left DLPFC has been associated with clinical improvement from rTMS treatment 186 

36-40. This has led to the intriguing notion that the FC between sgACC and left DLPFC could be 187 

leveraged to identify more precise rTMS targets and improve the efficacy of rTMS delivered 188 

to the left DLPFC 
7,41

. Researchers have identified a group-wise TMS target 
38

, which was the 189 

most anticorrelated DLPFC site to sgACC in the mean FC map from a large cohort of healthy 190 

adults. Subtle but significant case-control differences in resting-state FC profiles have been 191 

identified in a large sample of MDD patients 24. Thus, understanding the profiles of sgACC FC 192 

case-control differences and their impact on potential targets for rTMS applied to the left 193 

DLPFC could be a critical step toward developing optimized rTMS target site identification 194 

methods.  195 

 196 

Individual human brains exhibit highly heterogeneous functional organization 42, with the 197 

DLPFC regions exhibiting the highest level of interindividual variation in cytoarchitecture, 198 

brain function, and network connectivity profiles 
8,43

. While several individualized FC-guided 199 

TMS target identification algorithms have been proposed 
36,41,44-48

, the target localizations of 200 

most existing TMS protocols have not been individualized. The major obstacles to identifying 201 

individualized TMS locations are the low signal-to-noise ratio in the sgACC area and the poor 202 

reproducibility of individual FC maps 49,50. The high reliability and statistical power of the 203 
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DIRECT MDD cohort (NMDD = 1660) allow the integration of group-level statistical maps and 204 

individual functional brain images to achieve precise and reliable TMS localization. Here, we 205 

propose an MDD big data-guided individualized TMS targeting algorithm based on dual 206 

regression (DR), which was initially developed for mapping group-level independent 207 

component analysis (ICA) results onto individual brains 
51

. During individualized target 208 

localization, the DR calculation is entirely confined to the DLPFC region, which has a high 209 

signal-to-noise ratio, avoiding noisy signals from the sgACC region. Thus, this approach 210 

enhances the efficacy and reliability of individualization approaches for identifying TMS 211 

targets 52. 212 

 213 

In the present study, we leverage a large-scale multi-center sample (DIRECT Phase II, 1660 214 

MDD patients and 1341 healthy controls (HCs)) to derive a reliable sgACC-related FC 215 

abnormality profile for MDD. Next, we showed that such case-control difference profiles may 216 

be related to the clinical efficiency of TMS and that the positions of the sgACC 217 

anti-correlation peaks might be different in the MDD patients as compared to the HCs. In 218 

light of this, we developed an MDD big data-guided individualized TMS targeting algorithm 219 

that may boost the clinical efficiency of TMS. We hypothesized that MDD patients would 220 

show a significantly abnormal sgACC-FC profile, especially in the left DLPFC. We also 221 

hypothesized that our newly developed DR-based approach would outperform traditional 222 

TMS group targets. To our knowledge, this is the first study to show the possible implications 223 

of the case-control abnormalities regarding the sgACC-FC profiles on the TMS target 224 

localization and to integrate large-scale group-level statistical maps with individual-level 225 

spontaneous brain activity to achieve individualized TMS targeting in MDD. 226 

 227 

Materials and methods 228 

Study sample 229 

This study utilized four independent datasets. The first dataset (“DIRECT”) is a large-scale, 230 
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multi-site consortium sharing standardized preprocessed R-fMRI time series. Building on the 231 

initial success of DIRECT Phase I (the REST-meta-MDD Project) 24, consortium members and 232 

international collaborators met on May 11th-12th, 2019, and agreed to launch DIRECT Phase II, 233 

which comprises 23 case-control designed datasets, including R-fMRI and T1 structural scans 234 

from 1660 MDD patients and 1341 HCs. Researchers from each site took a 2-day DPABISurf 235 

training course on September 14
th

-15
th

, 2019, to harmonize the organization and 236 

preprocessing of R-fMRI/T1 structural data. Demographic and clinical characteristics for each 237 

sample are presented in Figure 1 and Table 1. Site information, sample size, and previous 238 

publications based on the shared data are listed in Table S1. All participants were asked to 239 

self-report their sex (biological attribute) as part of the case report form (CRF). All 240 

participants in DIRECT Phase II were East Asian. Patients were diagnosed with MDD based on 241 

ICD 10 or DSM-IV. Healthy controls matched with MDD patients by age, sex ratio, and 242 

educational levels were recruited at each site. All participants provided written informed 243 

consent, and local institutional review boards approved each study from all included cohorts. 244 

The analysis plan of the current study has been reviewed and approved by the Institutional 245 

Review Board of the Institute of Psychology, Chinese Academy of Sciences (No. H21102). 246 

Data will be made available to the public as outlined in the Data Sharing Statement. 247 

 248 
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 249 

Figure 1. Sample characteristics of the DIRECT dataset. (A) Sample sizes of each site; (B) Number of 250 

male/female subjects irrespective of diagnosis; (C) Violin plots depicting the age distribution (in years). 251 

Solid black lines indicate the mean, 25
th

, and 75
th

 percentiles; (D) Violin plots show education 252 

distribution (in years). Solid black lines indicate the mean, 25
th

, and 75
th

 percentiles; (E) Violin plots 253 

depicting the distribution of scores of the Hamilton Depression Rating Scale (HAMD). Solid black lines 254 

indicate the mean, 25
th

, and 75
th

 percentiles. 255 

 256 

The second dataset ("TRD-TMS”) comprises 25 medication-treatment-resistant MDD (TRD) 257 

patients who underwent 4 to 7 weeks of daily repetitive TMS applied over the left DLPFC. 258 

Patients’ TMS sites were recorded using their structural MRI images and a frameless 259 

neuronavigation system. Treatment response was assessed with the 24-item Hamilton 260 

Depression Rating Scale (HAMD). The targets for rTMS stimulation were determined using 261 

the 5.5-cm method. Only TMS outcomes and target coordinates were openly shared for this 262 
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dataset. We obtained access to these data from the supplementary materials of Weigand et 263 

al. 38. For more details on this dataset, please refer to Weigand et al. 38. 264 

 265 

The third dataset (“SID-TMS”) consists of 28 MDD patients with suicidal ideation who 266 

underwent 10 daily sessions of rTMS over the left DLPFC for 5 consecutive days. Clinical 267 

efficacy was evaluated using a 17-item HAMD. The TMS outcomes, neuroimaging data, 268 

participants' demographic information, and target coordinates for this dataset were made 269 

available upon request, enabling evaluation of the performance of the MDD big data-guided 270 

individualized TMS targeting algorithm. The targets for individualized rTMS stimulation were 271 

determined by identifying the peak subunits in the DLPFC area with the most negative 272 

connections to the sgACC area in the original study. For more details on this dataset, see Li et 273 

al. 53. 274 

 275 

The fourth dataset ("CUD-TMS”) comprises 27 cocaine use disorder (CUD) patients who 276 

underwent two daily sessions of rTMS treatment over the left DLPFC in an acute phase and 277 

two weekly sessions of rTMS treatment in a maintenance phase. The rTMS treatment was 278 

delivered at the left DLPFC using either the 5.5 cm anatomic criterion or the Beam F3 279 

method. Depressive symptoms were a secondary treatment outcome in the original study. A 280 

subsample of 16 individuals, all with baseline HAMD scores above 7, was used for further 281 

calculation of individualized TMS targets. The TMS outcomes, neuroimaging data, 282 

participants' demographic info, and target coordinates for this dataset were openly shared 283 

(https://openneuro.org/datasets/ds003037/versions/1.0.0). For more details on this dataset, 284 

see Garza-Villarreal et al. 54. 285 

Approach 286 

The study's first objective was to delineate case-control differences in the sgACC-FC profile 287 

and explore its implication in identifying FC-guided individualized TMS targets. Accordingly, 288 

we conducted a generalized linear model (GLM) to compare voxel-wise sgACC-FC maps of 289 

MDD patients and HCs in the DIRECT dataset. We then demonstrated the association 290 
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between clinical improvement and group differences in TMS targeting sgACC-FCs by 291 

leveraging the TRD-TMS and SID-TMS datasets. Given that the peak sgACC anticorrelation of 292 

a normative connectome within the left DLPFC was usually selected as the FC-guided sgACC 293 

group target, we showed the impact of case-control differences on such group targets by 294 

separately identifying the peak sgACC anticorrelation in the mean sgACC-FC maps of the 295 

MDD group and HC group from the DIRECT dataset. Finally, we identified individualized 296 

optimal targets using the MDD big data-guided individualized TMS targeting algorithm 297 

guided by statistical maps (e.g., group difference map, mean sgACC-FC maps). We validated 298 

the clinical effectiveness of the individualized approach by computing the correlation 299 

between clinical outcomes and the distance between the actual TMS sites and the identified 300 

individualized targets in the SID-TMS and CUD-TMS datasets. All statistical tests conducted in 301 

the current study were two-sided. 302 

Power calculations for primary hypotheses 303 

The primary outcome of the current study is the case-control differences regarding the 304 

sgACC-FC profiles. Estimates of the effect size (Cohen’s d = 0.186) of MDD patients’ 305 

abnormalities in FCs are drawn directly from our prior research based on the DIRECT Phase I 306 

dataset 24. Power calculation was performed using R version 4.3.1 55 with pwr 56. A sample of 307 

455 patients will achieve 80% power with a 5% Type I error rate. 308 

Image preprocessing 309 

Acquisition parameters and scanners for all cohorts are provided in Table S2. All R-fMRI and 310 

structural MRI scans were preprocessed at each site using the same DPABISurf protocol, an 311 

R-fMRI data analysis toolbox evolved from DPABI/DPARSF 32,57,58 (For details, see SI). Given 312 

the controversy regarding global signal regression (GSR) and its essential role in identifying 313 

TMS targets 
41

, we performed preprocessing pipelines with and without GSR. 314 
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FC maps of sgACC  315 

Although recent studies have attempted to identify personalized TMS targets using 316 

surface-based algorithms 
44

, most previous studies have reported targets in volume-based 317 

MNI space with sgACC ROIs defined as a sphere in volume-based space 36,59. As a result, we 318 

used the volume-based preprocessed imaging data from DPABISurf to better compare our 319 

results with the existing literature. 320 

 321 

We defined the sgACC as a 10 mm diameter sphere located on the average MNI coordinates 322 

based on prior studies showing reduced glucose metabolism or blood flow after receiving an 323 

antidepressant treatment (MNI coordinates: x = 6, y = 16, z = -10. For details, please refer to 324 

Fox et al., 2012 36). The sgACC time series were determined for each individual by spatially 325 

averaging the preprocessed R-fMRI time series across all voxels in the abovementioned 326 

masks. We then calculated whole-brain FC maps in volume-based MNI space. FC was 327 

calculated using Pearson’s correlation and underwent Fisher’s r-to-z transformation. All FC 328 

maps were smoothed with a 6 mm full-width half maximum (FWHM) kernel size. We used 329 

ComBat 60 to control potential site and scanner biases (For details, see SI).  330 

Group difference maps of sgACC-FC profiles 331 

We used a voxel-wise GLM to examine differences in the FC maps of sgACC between MDD 332 

patients and HCs in DIRECT Phase II. Cohen’s f2 was calculated to characterize the effect sizes 333 

of this group difference effect. The GLM model includes age, sex, education, and head 334 

motion as covariates: 335 

� � � ��� � �                           (1) 336 

where y denotes the FC value of a given voxel from a given participant; � stands for the 337 

constant term; X represents the design matrix for the covariates of interest (diagnosis, age, 338 

sex, education, and head motion); 	 is a vector of regression coefficients corresponding to X; 339 

and 
 is a vector of residuals that follow N(0, �2). Multiple comparison correction was 340 

conducted using false discovery rate (FDR) correction at q < 0.05.  341 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2024. ; https://doi.org/10.1101/2023.03.09.531726doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531726
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

16

 342 

To further interpret group difference maps, we extracted the mean FC values of seven 343 

networks using Schaefer’s 400 parcellation atlas 61. A GLM model identical to model (1) was 344 

constructed to characterize case-control differences for each network. Bonferroni multiple 345 

comparison correction was conducted (p < 0.05/7). We further explored the effect of the 346 

identified DLPFC clusters in several subgroups. Specifically, patients who were in their first 347 

episode and had never received any antidepressant medication treatment (first episode drug 348 

naïve, FEDN, N = 484) and patients who had undergone more than one episode (recurrent, N 349 

= 439) were selected and compared. Three contrasts, FEDN vs. HC, recurrent vs. HC, and 350 

FEDN vs. recurrent, were analyzed. 351 

Relationship between group differences in TMS targets’ sgACC FCs and clinical outcomes 352 

To explore the relationship between group differences in TMS targets’ sgACC FCs and clinical 353 

outcomes, we first extracted the mean t-values from the group difference map of 8 mm 354 

radius spheres centered at each targeting coordinate in the TRD-TMS dataset, then examined 355 

the Pearson correlations between these t-values and HAMD score reductions. We 356 

anticipated that greater group differences in sgACC-FC at the target location (i.e., higher t 357 

values) would be related to better TMS therapeutic effects (higher HAMD reductions). To test 358 

the robustness of our findings, we also used spheres with 2 mm, 4 mm, and 10 mm radiuses 359 

to extract the t-values of group differences. 360 

Group targets based on mean sgACC-FC maps 361 

The prior group-level DLPFC TMS target had been derived from a cohort of healthy young 362 

adults 38; here, we separately averaged whole-brain sgACC-FC maps across all the DIRECT 363 

participants in the MDD and HC groups. We then searched for the peak sgACC anticorrelated 364 

voxel within the DLPFC area (i.e., Brodmann area (BA) 46) as the mean sgACC-FC guided TMS 365 

targets for the MDD and HC groups.  366 
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Identification of individualized TMS targets 367 

The reliable statistical maps from the DIRECT big sample best reflect the probability of 368 

MDD-related abnormalities in sgACC-FC. Therefore, we can use these maps to guide the 369 

identification of individualized abnormalities by combining this big-data-based abnormality 370 

information with the individualized R-fMRI data from a given patient, obtaining reliable 371 

statistical maps from the DIRECT sample. We used the dual regression approach to identify 372 

individualized TMS targets guided by group-level statistical maps in the SID-TMS and 373 

CUD-TMS datasets. Dual regression is a common method in independent component analysis 374 

(ICA) for projecting group-level independent components (e.g., functional networks) onto 375 

the individual subject level (see Figure S4 for details). In the first step of the MDD big 376 

data-guided individualized TMS targeting algorithm, a group-level statistical spatial map (e.g., 377 

the sgACC-FC group difference map reflecting the probability of MDD-related abnormalities 378 

in sgACC-FC) was used as a spatial regressor in the GLM to identify the temporal dynamic of 379 

the group-level map (similar to spatial correlation with the abnormality spatial map). A time 380 

series associated with the spatial map of MDD-related FC abnormalities was generated. In 381 

the second step, the derived time series was used as a temporal regressor in the GLM to 382 

identify an individual-level spatial map (similar to the temporal correlation with the previous 383 

time series). This spatial map can be considered the best-individualized abnormality guided 384 

by big-data-based abnormality. Given our prior knowledge of DLPFC TMS treatment in MDD, 385 

we confined the big-data-based abnormality dual regression to the DLPFC area. That is, we 386 

use the group DLPFC abnormality probability map to find the individualized DLPFC target in a 387 

given MDD patient. The final coordinates for the individualized TMS targets are defined as 388 

the centroids of the largest clusters within this DLPFC region on the individual-level spatial 389 

maps. Additionally, we calculated the individualized target coordinates using the seed map 390 

approach, following the methods described by Fox et al. 41 and Cash et al. 44. In the seed-map 391 

approach, a seed time series is extracted by computing a weighted average time series of all 392 

voxels within the seed map (e.g., a group average map of sgACC-FC, but excluding the DLPFC 393 

area). Subsequently, Pearson's correlation coefficients are computed between this extracted 394 
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time series and all other DLPFC voxels. The final TMS target is the most negatively 395 

functionally connected cluster in the DLPFC area. Of note, in the seed map approach, the 396 

goal of the first step is to find the most sgACC-like time series, which is not confined to the 397 

noisy sgACC area. Following this rationale, the DLFPC time series should not be included to 398 

avoid biasing the estimation of the sgACC-like time series. Thus, the DLPFC area was 399 

excluded. Thus, the exclusion and inclusion of DLPFC differs between the seed map approach 400 

and the DR approach due to the different underlying rationales. Details of the individualized 401 

TMS target localization algorithms are provided in the supplementary materials. 402 

 403 

Clinical efficacy of the group-level and individualized TMS targets 404 

We leveraged the SID-TMS and CUD-TMS datasets to evaluate the clinical significance of 405 

individualized TMS targets. We identified the proposed individualized TMS targets from the 406 

MDD big data-guided individualized TMS targeting algorithm and calculated the targeting 407 

offset (i.e., Euclidean distance between the individualized optimal TMS targets and the actual 408 

stimulation coordinates) for each patient. Subsequently, we calculated the Pearson 409 

correlations between clinical improvement (i.e., HAMD reductions) and targeting offset. We 410 

anticipated a negative correlation between clinical outcomes and target offset (i.e., the 411 

closer the actual stimulation target was to the individualized target from the MDD big 412 

data-guided individualized TMS targeting algorithm, the higher the clinical improvement). 413 

Age, sex, and head motion were included as covariates in the regression models when 414 

calculating correlations between targeting offsets and clinical improvement. 415 

 416 

Results 417 

Group difference maps of sgACC-FC  418 

In the large-scale DIRECT Phase II dataset, we found significant MDD-related 419 

hyperconnectivity with the sgACC in bilateral DLPFC, temporal parietal junction, and occipital 420 
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lobe, as well as hypoconnectivity in the bilateral temporal lobe, left inferior frontal gyrus, and 421 

left postcentral gyrus when preprocessing included GSR (Figure 2A). When GSR was not 422 

included in preprocessing, MDD-related sgACC FC alterations showed predominantly 423 

hypoconnectivity. Such abnormally decreased FCs were found across the central gyrus, 424 

occipital lobe, insular cortex, temporal lobe, and a small portion of the frontal lobe. Without 425 

GSR, MDD-related hyperconnectivity was limited to subcortical regions (Figure S1A). Given 426 

that significant case-control differences in the DLPFC area were revealed only when GSR was 427 

implemented, subsequent analyses were based on results with GSR. The uncorrected group 428 

difference maps calculated in the volume space showed remarkable similarity with those in 429 

the surface space (Figure S2). Network-wise FC analyses showed that MDD patients’ FC 430 

between sgACC and the limbic network (LN) was significantly reduced compared to HC 431 

(t(2880) = -4.122, pcorrected < 0.001, Cohen’s d = 0.171). The FC between sgACC and the 432 

frontoparietal network (FPN) was enhanced and approached significance (t(2880) = 2.419, 433 

pcorrected = 0.055, Cohen’s d = 0.090, Figure 2B). Without GSR, MDD patients showed 434 

decreased FC between sgACC and all brain networks (all pcorrected < 0.05) except for the FPN 435 

(Figure S1B). We identified two contiguous clusters of voxels that showed significant group 436 

differences in the left DLPFC. Group difference cluster 1 (MNI coordinates: x = -44, y = 38, z = 437 

32; t(2880) = 3.277, p < 0.001, Cohen’s d = 0.141) was ventral to group difference cluster 2 438 

(MNI coordinates: x = -34, y = 36, z = 40; t(2880) = 3.670, p < 0.001, Cohen’s d = 0.126) 439 

(Figure 2C). In subgroup analyses, when GSR was performed, FEDN patients showed 440 

enhanced FCs in both clusters (cluster 1: t(1790) = 2.282, p = 0.023, Cohen’s d = 0.124; 441 

cluster 2: t(1790) = 2.273, p = 0.023, Cohen’s d = 0.123). There was a significant 442 

enhancement in the DLPFC cluster 2 between the recurrent MDD patients and HCs (t(1745) = 443 

2.765, p = 0.006, Cohen’s d = 0.159) while cluster 1 approached significance (t(1745) = 1.864, 444 

p = 0.063, Cohen’s d = 0.107). No significant difference was revealed between the FEDN and 445 

recurrent patients (see Figure 3). 446 

 447 
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 448 

Figure 2. Group differences of subgenual anterior cingulate cortex (sgACC) functional connectivity (FC) 449 

profiles are related to TMS treatment efficacy, demonstrating clinical significance. (A) Two-sample 450 

t-test maps of MDD-related sgACC FC abnormalities with global signal regression (GSR) implemented. 451 

(B) Group differences of FCs between sgACC and visual network (VN), somatomotor network (SMN), 452 

dorsal attention network (DAN), ventral attention network (VAN), limbic network (LN), frontoparietal 453 

network (FPN), and default mode network (DMN). (C) Two clusters showed significant case-control 454 

differences in sgACC-FC. Abbreviations: DLPFC, dorsal lateral prefrontal cortex; L, left hemisphere; R, 455 

right hemisphere. *: significant after Bonferroni correction; #: approaching significance. 456 

 457 
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 458 

Figure 3. Subgroup differences regarding two clusters found in DLPFC. Abbreviations: FEDN, first 459 

episode drug naïve; HC, healthy control. 460 

 461 

sgACC anticorrelation peaks in MDD and HCs 462 

Our results highlighted the case-control differences in sgACC-FC profiles. Since the prior 463 

sgACC group target (MNI coordinates: x = −42, y = 44, z = 30) had been based on a cohort of 464 

young, healthy adults 
38

, we sought to examine potential differences in anticorrelation peaks 465 

extracted from the mean sgACC FC maps of MDD and HC groups (Figure 4B-C) in the DIRECT 466 

dataset. We found that the anticorrelation peak of MDD patients (MNI coordinates: x = -40, y 467 

= 50, z = 22) differed from that of HCs (MNI coordinates: x = -42, y = 38, z = 32), probably due 468 

to abnormal FCs within the left DLPFC in MDD patients. The anticorrelation peak extracted 469 

from the DIRECT HCs was closer to the previously reported locus 
38

 (Figure 4). 470 

 471 
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 472 

Figure 4. The peak of the sgACC anticorrelation in MDD patients differed from that in HCs.  473 

 474 

sgACC-FC group differences correlate with TMS treatment outcomes 475 

Using the TRD-TMS dataset, we examined the relationship between group differences 476 

(t-values) and clinical outcomes (HAMD reductions) to test the clinical relevance of the group 477 

difference maps. Group differences were positively correlated with HAMD score reductions 478 

(r(23) = 0.448, p = 0.025, Figure 5A), suggesting that group-level difference maps may be 479 

useful for enhancing the outcomes of TMS for treating MDD by improving target localization. 480 

Significant associations were also observed using different radius settings (Figure S11). 481 

The same trend was observed in the SID-TMS dataset, albeit it failed to achieve significance 482 

(r(26) = 0.304, p = 0.108, Figure 5).  483 

 484 
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 485 

Figure 5. The group difference regarding sgACC-FC to the TMS targets was correlated with clinical 486 

efficacy. (A) The TMS targets were extracted from the TRD-TMS dataset 
38

. The sizes of the spheres 487 

indicate the magnitudes in Hamilton Depression Rating Scale (HAMD) reductions, with the group 488 

difference map rendered on the surface. The scatter plot depicted that the magnitudes of the group 489 

differences in the FC between TMS targets and sgACC were positively related to clinical improvements 490 

in the TRD dataset. (B) Findings were replicated in the SID-TMS dataset 
53

. Abbreviations: FC, 491 

functional connectivity; TMS, transcranial magnetic stimulation. 492 

 493 

Individualized targets suggest higher clinical efficacy than group targets 494 

We utilized the MDD big data-guided individualized TMS targeting algorithm to calculate 495 

individualized optimal targets for each SID-TMS and CUD-TMS dataset participant. Clinical 496 

relevance of the targets was determined by the correlation between target offset and clinical 497 

improvement. The individualized target locations derived from the sgACC-FC group 498 

difference map are illustrated in Figure 6. The individualized targets (SID-TMS: r(26) = -0.562, 499 

p = 0.002; CUD-TMS: r(14) = -0.511, p = 0.037) outperformed their corresponding group-level 500 

targets (SID-TMS: r(26) = -0.349, p = 0.044; CUD-TMS: r(14) = -0.167, p = 0.293) in both 501 
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datasets (Figure 6). The DR-based individualized targets derived from the MDD or HC 502 

group-average sgACC-FC maps also outperformed their corresponding group-level targets 503 

and seed map-based targets (Figure S6-8). Among all the individualized targets, the DR-based 504 

targets guided by the group difference map achieved the highest clinical efficacy. 505 

 506 

 507 

Figure 6. Individualized targets derived from the group difference map exhibited greater clinical 508 

efficacy than the corresponding group targets. Clinical efficacy was characterized by computing the 509 

correlations between the offset distances of TMS targets and the clinical improvements observed in 510 

the CUD-TMS dataset. The TMS targeting offset distance was defined as the Euclidean distance 511 

between the actual rTMS stimulation coordinates and the individualized or group targets. Clinical 512 

improvement was defined as the HAMD reduction during rTMS treatment, adjusted for age, sex, and 513 

head motion. The locations of the targets are displayed on the cortex. The sizes of the spheres indicate 514 

the magnitudes of Hamilton Depression Rating Scale (HAMD) reductions. (A-B) Clinical efficacy of the 515 
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individualized and group targets in the SID-TMS sample. (C-D) Clinical efficacy of the individualized and 516 

group targets in the CUD-TMS sample. *p < 0.05. ** p < 0.01. 517 

 518 

Discussion 519 

In the present study, we leveraged a large multi-site fMRI sample (1660 MDD patients and 520 

1341 HCs) and three independent TMS datasets to delineate abnormalities in sgACC FC in 521 

MDD and explore their potential impact on the localization of TMS targets. Specifically, with 522 

GSR implemented, we found enhanced FCs between sgACC and left DLPFC, bilateral 523 

supplementary motor areas and inferior parietal lobes, thalamus, and visual areas, and 524 

decreased FCs between sgACC and left anterior insula, left superior temporal lobe, and 525 

bilateral temporal poles in MDD patients. Patients with MDD exhibited significantly reduced 526 

FC between the sgACC and the DMN, while FC between the sgACC and the FPN was only 527 

marginally increased. Crucially, we showed that the clinical outcomes of TMS treatments 528 

were related to the magnitude of the case-control differences in the FCs between sgACC and 529 

TMS targets. Furthermore, such group difference profiles altered the position of the sgACC 530 

anti-correlation peak in the left DLPFC. Additionally, the MDD big data-guided individualized 531 

TMS targeting algorithm to identify individualized TMS targets showed better clinical efficacy 532 

than TMS targets based on group sgACC-FC profiles. 533 

MDD-related FC abnormalities of sgACC 534 

Our results add to a growing literature documenting functional network abnormalities 535 

involving the sgACC in MDD 9,11-13,17,19,62-64. Nevertheless, notable discrepancies in the type of 536 

abnormality (enhanced/reduced) and specific brain regions showing altered sgACC FCs have 537 

been reported. Considering the small effect sizes (Cohen’s f2 < 0.01) of MDD-related 538 

sgACC-FC abnormalities, the limited sample sizes in previous studies entail a high risk of false 539 

positive findings 21,65,66. Another potential source of heterogeneity in previous findings may 540 

be whether or not they applied GSR (See supplementary materials for detailed discussion). 541 
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With an unprecedented sample size, our results provide among the most robust evidence to 542 

date. Specifically, MDD patients showed enhanced sgACC-thalamus FC and decreased 543 

sgACC-limbic network FC regardless of whether GSR was implemented. These results are 544 

consistent with previous studies in adolescents 19 and adults 59 with MDD. Previous studies 545 

have reported abnormal FCs between sgACC and limbic areas and some subcortical regions, 546 

such as the amygdala 
9,20

 and parahippocampus regions 
13

. Together, the present results are 547 

consistent with a model highlighting sgACC as a critical hub in an “extended medial network,” 548 

which also encompasses limbic, thalamic, and striatal regions and plays a key role in the 549 

pathophysiology of MDD 67,68. This “extended medial network” overlaps substantially with 550 

the DMN. Indeed, decreased FCs between sgACC and DMN regions, such as the medial 551 

prefrontal cortex, precuneus, temporal gyrus, and parahippocampus regions, were revealed 552 

in MDD relative to HCs when GSR was not implemented. Such abnormalities have been 553 

previously reported 10,12,15,34, which led to the hypothesis that abnormally enhanced FC 554 

between sgACC and DMN are the network underpinnings of rumination 69. However, 555 

contrary to the aforementioned hypothesis, we found reduced, instead of enhanced FC 556 

between sgACC and DMN. Similarly, in the first phase of DIRECT, we demonstrated that MDD 557 

was characterized by reduced FC within DMN 23,24. We note that the first and second phases 558 

of the DIRECT data are solely comprised of Chinese samples, while most studies that have 559 

reported enhanced sgACC-DMN FCs have been in Caucasian samples. Different prevalence 560 

rates 
70,71

, heterogeneous symptoms 
72

, and different risk alleles 
73

 have been reported in 561 

Caucasian and Eastern Asian groups. Accordingly, we cannot exclude racial differences 562 

contributing to this discrepancy. It is worth noting that we found enhanced FCs between the 563 

visual region and sgACC in MDD patients relative to HCs when GSR was implemented, while 564 

significantly reduced sgACC-visual region FCs were revealed when GSR was not performed. 565 

Most of DIRECT II sites’ R-fMRI data were collected with participants’ eyes closed (22 out of 566 

23 sites). Prior research had shown that participants are more likely to fall asleep when their 567 

eyes are closed during data acquisition, and drowsiness may alter FC patterns in visual 568 

regions 74. Thus, it is possible that abnormalities in visual region FCs may be due to MDD 569 

patients’ lower levels of wakefulness. 570 
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Clinical relevance of abnormal sgACC-DLPFC anticorrelation in MDD 571 

Once the group difference maps of sgACC FC profiles were delineated, we further explored 572 

the impact of such an abnormality, especially in DLPFC, on identifying TMS targets. Most 573 

clinical trials have focused on applying TMS to the left DLPFC based on the hypothesis that 574 

high-frequency rTMS will enhance hypoactivity during depressive episodes 8,75. The DLPFC is 575 

anatomically extensive 76. However, which DLPFC sub-field is the best target for TMS remains 576 

unclear. The current FDA-approved protocol (i.e., the “5 cm” method) leads to large 577 

interindividual variation in stimulation sites, which may contribute to the heterogeneity in 578 

the effect sizes of antidepressant responses in prior trials 77,78.  579 

 580 

Previous targeting approaches leveraging anatomical landmarks has not consistently 581 

outperformed the “5 cm” method or the F3 Beam method 79,80. Considering the 582 

unsatisfactory effect of TMS target localization based on brain anatomical parcellation, 583 

group-level normative sgACC anticorrelation peaks based on healthy population datasets 584 

have been frequently used as TMS targets in recent years 36,38,41. However, in the present 585 

study, we found that the locations of such anticorrelated peaks differ substantially between 586 

MDD and HC samples when measured in a large clinical cohort. Therefore, it might be 587 

problematic to identify TMS targets based solely on sgACC-FC profiles in healthy or 588 

depressed individuals. Intriguingly, we found that the magnitudes of case-control differences 589 

in TMS targets’ FCs to sgACC were positively related to the clinical improvements after 590 

receiving rTMS to the left DLPFC. Such correlation implies that the case-control differences in 591 

the FC between sgACC and the left DLPFC might bear important information that could be 592 

leveraged to guide the identification of reliable, individualized TMS targets. 593 

The MDD big data-guided individualized TMS targeting algorithm may improve the clinical 594 

efficacy of TMS targets 595 

In the current study, we developed an MDD big data-guided individualized TMS targeting 596 

algorithm to individualize the TMS targets derived from group-level statistical maps. The 597 
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proposed approach takes advantage of the high signal-to-noise ratio and reliability of large 598 

sample statistical maps while integrating individual spontaneous brain activity of individuals 599 

with MDD. Most existing individualized TMS target localization algorithms are based on 600 

calculating sgACC FCs using densely sampled MRI images from single subjects 81. However, 601 

individual MRI images tend to be noisy and unreliable 
82,83

, especially in the sgACC region. Air 602 

in the sinuses often introduces susceptibility artifacts due to the different magnetic 603 

properties of air and brain tissue. Signal loss and geometric distortion are common in areas 604 

close to air-filled sinuses, such as the inferior frontal cortex, including the sgACC 84. The seed 605 

map approach has been proposed to alleviate such difficulties due to the subpar image 606 

quality of the sgACC region 
41,44

. In the seed map approach, all voxels within the seed map 607 

(except for the DLPFC region) were used to extract the seed time series to improve its 608 

signal-to-noise ratio. However, considering that the weight (e.g., FC value) of the sgACC area 609 

is usually extremely high in the seed map, the derived seed time series remains somewhat 610 

similar to the noisy sgACC time series and doesn’t achieve the best TMS localization. A 611 

cutting-edge MDD TMS therapy combining FC-guided target localization, high dose, and 612 

intermittent theta-burst stimulation (iTBS) was reported to be highly effective in a 613 

randomized, double-blinded, sham-controlled clinical trial 45,46. However, the targeting 614 

algorithm relied on hierarchical agglomerative clustering in the sgACC area which has a low 615 

signal-to-noise ratio. Nevertheless, the final target was still determined according to 616 

individual-level sgACC-DLPFC FCs. For the proposed MDD big data-guided individualized TMS 617 

targeting algorithm, we view the reliable statistical maps from the DIRECT big sample as the 618 

best reflection of the probability of MDD-related abnormalities in sgACC-FC. Therefore, we 619 

used these maps to guide the identification of individualized abnormalities by combining this 620 

big-data-based abnormality information with the individualized R-fMRI data from a given 621 

patient. Given the a priori knowledge of DLPFC TMS treatment in MDD, we confined the 622 

big-data-based abnormality dual regression only within the DLPFC area, which is less affected 623 

by susceptibility artifacts. In this way, the superior signal quality of DLPFC and the effective 624 

and reliable properties of the dual regression algorithm enhance the accuracy of target 625 

localization. 626 
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 627 

Encouragingly, the DR-based individualization targets enhanced the clinical significance of 628 

corresponding group-level targets, regardless of the template used. This result supports the 629 

generalizability and extensibility of the algorithm, offering the potential for TMS targeting 630 

based on other circuits and biomarkers. Considering most existing TMS research still relies on 631 

the traditional 5 cm or Beam F3 methods for targeting, one approach based on our data to 632 

improve targeting would be simply shifting the target to a more anterior and lateral position. 633 

However, such a simple shift was not supported by the present study. Instead, 25% of targets 634 

individualized using the group difference map were more medial than the original targets, 635 

and 50% of targets individualized by the group difference map were more posterior than the 636 

original targets. Therefore, the MDD big data-guided individualized TMS targeting algorithm 637 

does not simply set a more anterior and lateral coordinate in the BA46 area as the 638 

individualized optimization target for subjects. Among the group-level templates used in the 639 

MDD big data-guided individualized TMS targeting algorithm, the sgACC-FC group difference 640 

map performed the best, instead of the commonly used average sgACC based on healthy 641 

individuals. This may reflect the abnormal posterior shift of the MDD sgACC anticorrelation 642 

peak we found, and it emphasizes the immense clinical value of examining spontaneous 643 

brain activity differences between MDD and HC in a large sample. Previous studies either 644 

included only a small quantity of MDD functional MRI data 46,47,85 or developed targeting 645 

algorithms based on large-scale HC samples 
49

. In this study, we utilized an unprecedented 646 

amount of functional MRI data from MDD and HC, obtained a reliable group-level difference 647 

map of sgACC-FC, and successfully validated its potential in treating MDD with TMS. 648 

 649 

Limitations 650 

Several limitations need to be considered. First, we noted that the inconsistency between 651 

our results and the broader literature could partly be due to racial differences of the samples 652 

(i.e., Eastern Asian vs. Caucasian). Efforts that intend to pool existing neuroimaging data 653 

worldwide, such as the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) 654 
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Major Depressive Disorder (MDD) consortium 
25

, have accumulated large-scale data primarily 655 

from Western countries and published several high-impact studies delineating MDD-related 656 

anatomical abnormalities 86,87. Planned collaborations between the DIRECT and the 657 

ENIGMA-MDD consortiums are ongoing to help address potential cultural, genetic, and 658 

environmental mechanisms in more diverse groups of MDD patients. Second, we performed 659 

volume-based preprocessing to facilitate comparison with the previous literature. 660 

Surface-based preprocessing strategies have provided more accurate and detailed 661 

representations of cortical and subcortical structures 88. Recent research has begun to 662 

explore surface-based rTMS target identification algorithms and has shown promising clinical 663 

relevance 
39,40,89

. Future research should consider using surface-based case-control difference 664 

maps to further refine ways to identify TMS targets. Given the established involvement of 665 

the left DLPFC in existing TMS treatment protocols, the present study restricted investigation 666 

to within this area.  667 

 668 

We noted that other brain regions (e.g., angular gyrus and supplementary motor area) 669 

showed significant case-control differences worth further research and may serve as 670 

potential targets for neuromodulation 90,91 92. The MDD big data-guided individualized TMS 671 

targeting algorithm can be readily transferred to other neural circuits or other brain 672 

imaging-derived feature maps (e.g., ICA, functional gradient, normative modeling). The 673 

clinical efficacy of these alternative targets is worthy of future investigations. Identifying a 674 

reliable personalized TMS target solely based on an individual’s R-fMRI data (around 8 mins 675 

of fMRI scan in clinical practice) is challenging. Due to the poor replicability of FC 93, existing 676 

individual-level network parcellation algorithms need a large quantity of fMRI images 677 

(usually more than one hour of scanning time) 94. The present study utilized three 678 

independent TMS samples to validate the efficacy of the individualized algorithm. 679 

Nevertheless, the two TMS datasets used to validate the individualized TMS targets are 680 

limited in sample size 37,95. Publicly available TMS brain imaging datasets could be used for 681 

independent validation of target localization algorithms to reduce the false positive rate; 682 

however, access to such datasets remains challenging. In addition, prospective, double-blind 683 
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clinical trials are warranted to compare the treatment outcome across different rTMS 684 

targeting algorithms (e.g., traditional anatomical landmark-based targeting, group-level 685 

sgACC-FC targeting, and MDD big data-guided individualized TMS targeting algorithm). 686 

Therefore, we call upon researchers involved in this field to publicly share data on TMS 687 

targets, clinical efficacy, and brain imaging, and we will also openly share data from our 688 

related prospective studies 96. The large sample size of the DIRECT consortium aggregated 689 

dataset allows for intriguing analyses, such as bio-subgroups of MDD patients. Indeed, some 690 

previous DIRECT studies have shown that MDD patients can be subgrouped 30,97. Future 691 

studies may further determine whether bio-types could be achieved using sgACC 91. Most of 692 

the DIRECT II R-fMRI data were acquired when participants were instructed to close their 693 

eyes, which has been shown to be associated with an increased likelihood of sleep during 694 

scanning 74. Instructing participants to keep their eyes open and look at fixation can help 695 

prevent participants from falling asleep and is easy to apply. Since large multi-site R-fMRI 696 

data aggregation endeavors such as DIRECT are prone to be biased by non-neurophysical 697 

factors such as head motion, sleepiness, etc. 
98

, it is important to prospectively apply 698 

well-designed standard operation procedures in future large-scale multi-site scientific 699 

projects. 700 

 701 

Conclusion 702 

In summary, we leveraged a large sample of MDD patients to fully delineate group 703 

differences in sgACC-FC maps between MDD patients and HCs. We next demonstrated the 704 

impact of such case-control differences on group TMS targets based on sgACC-FC profiles by 705 

showing that the magnitudes of case-control differences in the FC between sgACC and TMS 706 

targets were positively associated with clinical outcomes and the peak sgACC anticorrelation 707 

locations were different in MDD patients as compared to HCs. Moreover, we developed an 708 

MDD big data-guided individualized TMS targeting algorithm to identify individualized TMS 709 

targets and demonstrated that this approach may improve clinical efficacy compared to 710 

group targets based on sgACC-FC profiles. 711 
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Table 1. Demographic and clinical data for all samples included in the DIRECT II project 1033 

Site 

Age 

(HC)
1

 

Age 

(MDD)
1

 

% Male 

(HC)
2

 

% Female 

(HC)
2

 

% Male 

(MDD)
2

 

% Female 

(MDD)
2

 

Education 

(HC, 

years)
1

 

Education 

(MDD, 

years)
1

 

Age at 

the 

onset 

of the 

first 

episode 

(years)
1

 

Episode 

number
1

 

Full 

episode 

durations 

(months)
1
 

HAMD-17 

score
1

 

N 

(HC) 

N 

(MDD) 

1 
39.33 

(15.80) 

38.67 

(13.50) 

87 

(35.22%) 

160 

(64.78%) 

98 

(35.13%) 

181 

(64.87%) 

13.05 

(3.89) 

12.03 

(3.62) 

35.75 

(13.47) 

1.19 

(0.40) 

49.01 

(64.25) 

20.96 

(5.60) 

247 279 

2 
20.90 

(2.89) 

19.02 

(3.79) 

24 

(38.71%) 

38 

(61.29%) 

37 

(27.41%) 

98 

(72.59%) 

13.73 

(1.80) 

11.97 

(2.55) 

16.28 

(4.05) 

1.07 

(0.35) 

16.94 

(19.74) 

18.06 

(8.99) 

62 135 

3 
26.50 

(11.22) 

34.40 

(10.56) 

5 

(25.00%) 

15 

(75.00%) 

5 

(25.00%) 

15 

(75.00%) 

15.40 

(1.47) 

14.90 

(2.97) 

35.55 

(11.96) 

1.15 

(0.49) 

14.50 

(29.14) 

29.37 

(6.41) 

20 20 

4 
29.89 

(9.88) 

30.87 

(10.39) 

9 

(33.33%) 

18 

(66.67%) 

13 

(41.94%) 

18 

(58.06%) 

13.04 

(3.80) 

12.65 

(4.22) 

26.80 

(10.89) 

2.52 

(3.66) 

42.03 

(58.57) 

21.79 

(5.74) 

27 31 

5 
36.79 

(9.07) 

33.59 

(9.85) 

32 

(56.14%) 

25 

(43.86%) 

60 

(46.88%) 

68 

(53.13%) 

14.37 

(2.64) 

13.07 

(3.43) NA 

1.00 

(0.00) NA 

26.59 

(3.76) 

57 128 

6 
23.75 

(5.15) 

30.90 

(9.29) 

45 

(44.55%) 

56 

(55.45%) 

31 

(52.54%) 

28 

(47.46%) 

13.88 

(2.31) 

12.03 

(3.06) 

28.14 

(9.46) 

1.87 

(1.12) 

44.14 

(61.28) 

20.51 

(6.71) 

101 59 

7 
19.80 

(3.85) 

20.00 

(6.51) 

8 

(26.67%) 

22 

(73.33%) 

5 

(23.81%) 

16 

(76.19%) 

11.90 

(2.55) 

10.81 

(2.86) 

18.81 

(7.19) 

1.10 

(0.30) 

15.60 

(16.23) 

24.10 

(12.68) 

30 21 

8 
31.93 

(9.66) 

32.84 

(8.95) 

18 

(42.86%) 

24 

(57.14%) 

15 

(34.88%) 

28 

(65.12%) 

15.40 

(1.86) 

15.79 

(1.82) 

30.60 

(8.78) 

3.65 

(2.29) 

21.51 

(11.65) 

23.84 

(3.88) 

42 43 

9 
36.12 

(13.85) 

45.11 

(14.32) 

10 

(40.00%) 

15 

(60.00%) 

19 

(40.43%) 

28 

(59.57%) 

13.56 

(4.01) 

10.83 

(4.52) 

42.19 

(14.23) 

1.43 

(0.77) 

36.07 

(53.22) NA 

25 47 

.
C

C
-B

Y
-N

C
-N

D
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10 
36.49 

(12.64) 

34.00 

(11.81) 

30 

(44.78%) 

37 

(55.22%) 

36 

(45.00%) 

44 

(55.00%) 

14.58 

(2.30) 

13.25 

(3.08) 

26.15 

(10.47) 

2.30 

(1.78) 

92.00 

(96.70) 

14.58 

(8.21) 

67 80 

11 
36.62 

(12.11) 

38.29 

(12.75) 

30 

(44.12%) 

38 

(55.88%) 

55 

(48.67%) 

58 

(51.33%) 

12.96 

(3.57) 

10.96 

(3.48) 

32.21 

(12.46) 

3.36 

(3.63) 

75.51 

(93.37) 

23.54 

(9.23) 

68 113 

12 
29.59 

(5.00) 

30.47 

(7.20) 

15 

(46.88%) 

17 

(53.13%) 

21 

(33.87%) 

41 

(66.13%) 

14.59 

(2.82) 

13.73 

(3.39) 

29.63 

(7.11) 

1.00 

(0.00) 

6.10 

(4.22) 

21.27 

(3.47) 

32 62 

13 
35.45 

(13.76) 

38.00 

(14.56) 

9 

(31.03%) 

20 

(68.97%) 

13 

(40.63%) 

19 

(59.38%) 

11.28 

(4.31) 

12.03 

(3.87) 

33.09 

(13.93) 

1.45 

(1.12) NA 

18.66 

(9.66) 

29 32 

14 
38.10 

(11.96) 

43.50 

(11.28) 

65 

(45.14%) 

79 

(54.86%) 

47 

(34.56%) 

89 

(65.44%) 

13.24 

(4.20) 

9.07 

(3.60) 

37.52 

(11.50) 

2.55 

(2.15) 

67.16 

(77.29) 

30.04 

(10.52) 

144 136 

15 
21.51 

(4.58) 

22.06 

(4.70) 

23 

(65.71%) 

12 

(34.29%) 

7 

(20.59%) 

27 

(79.41%) 

12.57 

(1.42) 

11.85 

(2.39) 

21.82 

(5.19) 

2.50 

(2.81) 

12.76 

(15.11) NA 

35 34 

16 
25.73 

(7.38) 

26.07 

(7.66) 

44 

(54.32%) 

37 

(45.68%) 

37 

(44.58%) 

46 

(55.42%) 

15.53 

(2.81) 

13.81 

(2.60) 

23.02 

(8.11) 

1.73 

(1.11) 

30.18 

(44.24) 

25.42 

(3.78) 

81 83 

17 
34.73 

(9.66) 

35.21 

(9.43) 

19 

(38.78%) 

30 

(61.22%) 

15 

(35.71%) 

27 

(64.29%) 

14.31 

(4.21) 

12.50 

(4.09) 

35.00 

(9.53) 

1.00 

(0.00) 

3.79 

(2.62) 

23.67 

(5.25) 

49 42 

18 
32.19 

(11.83) 

35.25 

(13.15) 

13 

(40.63%) 

19 

(59.38%) 

12 

(50.00%) 

12 

(50.00%) 

12.53 

(3.03) 

13.42 

(4.47) NA 

1.58 

(0.72) 

17.77 

(19.57) 

22.38 

(4.23) 

32 24 

19 
30.94 

(7.32) 

27.03 

(11.04) 

16 

(50.00%) 

16 

(50.00%) 

5 

(15.63%) 

27 

(84.38%) 

13.94 

(2.84) 

12.69 

(3.18) 

25.58 

(10.86) 

1.28 

(0.46) 

12.88 

(14.38) 

23.06 

(5.66) 

32 32 

20 
31.40 

(10.99) 

27.80 

(8.99) 

5 

(25.00%) 

15 

(75.00%) 

4 

(20.00%) 

16 

(80.00%) 

16.10 

(3.21) 

13.60 

(4.36) 

26.65 

(9.21) 

1.30 

(0.47) 

14.55 

(15.14) 

24.85 

(6.47) 

20 20 

21 
32.80 

(11.06) 

32.52 

(11.44) 

31 

(55.36%) 

25 

(44.64%) 

17 

(28.33%) 

43 

(71.67%) 

15.88 

(4.59) 

12.20 

(4.12) 

31.44 

(11.70) 

NaN 

(NaN) 

35.79 

(44.90) 

22.71 

(2.62) 

56 60 

22 
34.67 

(13.54) 

35.74 

(10.02) 

8 

(33.33%) 

16 

(66.67%) 

10 

(28.57%) 

25 

(71.43%) 

14.21 

(2.86) 

13.20 

(3.75) 

31.23 

(7.91) 

1.06 

(1.35) 

5.59 

(14.93) 

22.29 

(6.04) 

24 35 
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43

23 
13.57 

(2.18) 

13.91 

(1.48) 

14 

(50.00%) 

14 

(50.00%) 

8 

(13.79%) 

50 

(86.21%) 

7.57 

(2.18) 

7.91 

(1.48) NA NA NA NA 

28 58 

1 Mean (SD) 1034 

2 N (%) 1035 

NA: data were missing for this site. 1036 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted O
ctober 2, 2024. 

; 
https://doi.org/10.1101/2023.03.09.531726

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2023.03.09.531726
http://creativecommons.org/licenses/by-nc-nd/4.0/

