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Abstract: Complex interactions between brain regions and the spinal cord (SC) govern body motion,12

which is ultimately driven by muscle activation. Motor planning or learning are mainly conducted at13

higher brain regions, whilst the SC acts as a brain-muscle gateway and as a motor control centre pro-14

viding fast reflexes and muscle activity regulation. Thus, higher brain areas need to cope with the SC as15

an inherent and evolutionary older part of the body dynamics. Here, we address the question of how SC16

dynamics affects motor learning within the cerebellum; in particular, does the SC facilitate cerebellar17

motor learning or constitute a biological constraint? We provide an exploratory framework by inte-18

grating biologically plausible cerebellar and SC computational models in a musculoskeletal upper limb19

control loop. The cerebellar model, equipped with the main form of cerebellar plasticity, provides motor20

adaptation; whilst the SC model implements stretch reflex and reciprocal inhibition between antagonist21

muscles. The resulting spino-cerebellar model is tested performing a set of upper limb motor tasks,22

including external perturbation studies. A cerebellar model, lacking the implemented SC model and23

directly controlling the simulated muscles, was also tested in the same benchmark. The performances24

of the spino-cerebellar and cerebellar models were then compared, thus allowing directly addressing25

the SC influence on cerebellar motor adaptation and learning, and on handling external motor pertur-26

bations. Performance was assessed in both joint and muscle space, and compared with kinematic and27

EMG recordings from healthy participants. The differences in cerebellar synaptic adaptation between28

both models were also studied. We conclude that the SC facilitates cerebellar motor learning; when29

the SC circuits are in the loop, faster convergence in motor learning is achieved with simpler cerebellar30

synaptic weight distributions. The SC is also found to improve robustness against external perturbations,31

by better reproducing and modulating muscle cocontraction patterns.32

33

Summary: Accurate motor control emerges from complex interactions between different brain areas,34

the spinal cord (SC), and the musculoskeletal system. These different actors contribute with distributed,35

integrative and complementary roles yet to be fully elucidated. To further study and hypothesise about36

such interactions, neuromechanical modelling and computational simulation constitute powerful tools.37

Here, we focus on the SC influence on motor learning in the cerebellum, an issue that has drawn little38

attention so far; does the SC facilitate or hinder cerebellar motor learning? To address this question, we39

integrate biologically plausible computational models of the cerebellum and SC, equipped with motor40

learning capability and fast reflex responses respectively. The resulting spino-cerebellar model is used41

to control a simulated musculoskeletal upper limb performing a set of motor tasks involving two degrees42

of freedom. Moreover, we use kinematic and EMG recordings from healthy participants to validate the43

model performance. The SC fast control primitives operating in muscle space are shown to facilitate44

cerebellar motor learning, both in terms of kinematics and synaptic adaptation. This, to the best of our45

knowledge, is the first time to be shown. The SC also modulates muscle cocontraction, improving the46

robustness against external motor perturbations.47

1 Introduction48

Accurate motor control enables interactions with the environment and others, a process in which sen-49

sory information is integrated by the central nervous system (CNS) and translated into muscle activity,50

eventually driving body motion. Body motion results from the interaction between the musculoskele-51

tal system and diverse neural regions with distributed, integrative and complementary roles [1]. In the52

brain, various neural regions project descending motor control signals to the spinal cord (SC); e.g., the53

motor cortex, involved in the volitional control of motion [2]; the basal ganglia, involved in selecting54

motor behaviour and balance control [3, 4]; the cerebellum, involved in motor coordination and learning55

[5]. The SC circuits integrate those motor descending signals to regulate motoneuron activity, ultimately56

driving muscle activation. Besides, the SC also implements its own motor control mechanisms; e.g., fast57

reflexes, control of rhythmic locomotion movements, or responses against perturbations [5].58
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Motor control within the CNS could be synthesised as a hierarchical process; higher brain areas59

govern motor functions such as planning or learning, and the SC then integrates their descending control60

signals, provides faster and lower-level control mechanisms, and ultimately drives muscle activity. To61

comprehend and hypothesise about this hierarchical interaction, neuromechanical modelling and com-62

putational simulation represent powerful tools, providing a holistic view conjugating from neuron to63

neural network to motor behaviour levels [6]. To that aim, we present a hierarchical structure compris-64

ing: a cerebellar model, a higher brain area equipped with motor learning and adaptation; an SC model,65

integrating the cerebellar descending control signals and implementing fast-reflexes and muscle activity66

regulation, and finally actuating a musculoskeletal upper limb model. This spino-cerebellar integration67

thus provides a computational exploratory framework, which was further complemented with kinematic68

and EMG data validation. Both the cerebellum and SC main physiological mechanisms have been pre-69

viously described, however, little attention has been put on the SC influence on cerebellar motor control.70

Spinal circuits are evolutionary old, they were present in the first vertebrates emerged about 500 million71

years ago [7] and fully allowed basic locomotion [8]. As new higher neural areas evolved to handle more72

complex motor control, they had to coexist and interact with the old lower spinal circuits. It is not clear73

whether that interaction facilitates motor control or implies a constraint with which higher neural regions74

have to live with. On the one hand, the SC benefits motor control providing fast feedback loops, lower75

dimensionality for planning and control, and motor primitives (i.e., low level motor building blocks).76

On the other hand, higher brain areas have to deal with the highly non-uniform control space and hidden77

states in the SC, and the need for inverse models that cover not only the body dynamics but also the78

SC dynamics. Here, we study whether the SC facilitates cerebellar motor learning, or it is simply an79

evolutionary constraint to be handled.80

The cerebellum is key in motor control and coordination, and most importantly motor learning [9].81

The Marr-Albus-Ito theory on cerebellar function [10] established the computational principles for su-82

pervised cerebellar learning [11], by which the cerebellum enables the adaptation of our actions so their83

consequences match up to our expectations, i.e., minimising the difference between our intention and84

the actual movement [12]. This motor learning capability stands upon the plasticity exhibited at the85

synapses from parallel fibres (PF), i.e., axons of granule cells (GC), to Purkinje cells (PC); plasticity86

regulated by the action of climbing fibres (CF) reaching PCs [13]. The Marr-Albus-Ito theory assumes87

the GCs carry a recoding of the sensory inputs conveyed through mossy fibres (MF) [14], whereas CFs88

carry an instructive signal coding the disparity between our motor expectation and the actual motor state.89

Despite the well-accepted common ground on the cerebellum established by the Marr-Albus-Ito theory,90

new findings keep refining the understanding about cerebellar structure and operation, for which com-91

putational models are key contributors [15]. Computational models of the cerebellum have been used92

to study its inner dynamics [16, 17], as well as harnessing cerebellar motor adaptation capabilities to93

develop adaptive controllers based on internal model building [18, 19].94

Lower down in the CNS hierarchy, the SC transmits control signals from brain motor areas to the95

muscles, and it also conveys sensory signals from muscle receptors back to the brain. But its role in96

motor control goes beyond a mere gateway between the brain and muscles [20, 21]. The SC contains97

neural pathways that regulate muscle activity, control reflex responses and produce rhythmic locomotion98

movements. These spinal pathways channel the sensory feedback mainly from stretch sensitive muscle99

spindles and tension sensitive Golgi tendon organs (GTO). This sensory feedback is then transmitted to100

motoneurons through afferent fibres and spinal interneurons, allowing reflex responses and muscle reg-101

ulation mechanisms: e.g., stretch velocity reflex, static stretch reflex, Golgi tendon reflex, or reciprocal102

inhibition between antagonist muscles [5]. Besides, these spinal pathways are modulated by higher brain103

areas during movement execution such as between the stance and swing phases during gait [22, 23], or104

during arm movements [24, 25, 26], thus highlighting the importance of the interaction between the SC105

and higher brain areas.106

Computational models have been used to gain deeper insight on the SC role in motor control; e.g.,107
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control of centre-out reaching movements [27]; control of biceps stretch reflex [28]; reflex modulation108

via feedback gains [29]; rejection of dynamic perturbations, highlighting the latency hierarchy levels of109

feedback [30], or the contribution of GTO feedbacks [31]. However, these approaches lacked complex110

descending signals from higher brain areas, usually applying open-loop supraspinal modules, hence hin-111

dering their use to study the interaction between the SC and higher neural regions; larger scale models112

are required.113

Little work has been done on large scale modelling to dig into the SC interaction with higher CNS114

regions. A recent example coupled spinal circuits with sensory and motor cortex models, forming a115

feedback control loop designed to reduce the difference between the desired and perceived state of a116

planar six-muscle arm [32]. The model showed motor control success and reproduced some previous117

experimental phenomena, whilst it was suggested that the ataxic nature of the produced movements118

could be due to the lack of a cerebellum model in the loop.119

Regarding spino-cerebellar integration in particular, a few previous computational approaches ex-120

ist. Contreras-Vidal et al. modelled a cerebellum cooperating with an SC-based muscular force model,121

together with a central pattern generator representing the motor cortex and basal ganglia [33]. The122

cerebellar model, developed in analogue form and lacking the temporal correlation nature of cerebel-123

lar learning, succeeded in learning muscle synergies, including cocontraction of antagonist pairs, that124

improved upon the SC feedback control of tracking. Different cerebellar lesions were studied, but the125

influence of the SC in cerebellar motor adaptation was sidestepped. Subsequently, Spoelstra et al. inte-126

grated a cerebellar model with an SC model for postural control of a six-muscle two-dimensional arm127

model [34]. The study assessed the predictive role of the cerebellum in accurate motor control, but128

again, the effect of the SC in cerebellar learning was not addressed. More recently, Jo integrated a func-129

tional cerebellar model with spinal circuits equipped with plasticity but lacking reflex or other complex130

spinal dynamics [35]. Results showed the effectiveness of the model to learn movements, with synaptic131

plasticity at the SC helping to acquire muscle synergies. However, as stated by the author, that learning132

capacity provided to the SC could be located anywhere in the corticospinal pathway, hence loosening133

possible conclusions on the cerebellum-SC relation.134

With the present work, we intend to extend the spino-cerebellar integration studies; we addressed the135

questions of whether the SC facilitates cerebellar learning or it is just as an evolutionary constraint, and136

how the SC contributes to handling motor perturbations. We modelled a biologically plausible cerebellar137

spiking neural network (SNN), equipped with synaptic plasticity at GC-PC connections guided by the138

instructive signal conveyed through CFs, thus, able to provide motor adaptation. We added an SC model139

equipped with stretch reflex and reciprocal inhibition, integrating the descending signals from the cere-140

bellum and sending muscle excitation commands to the musculoskeletal upper limb model, equipped141

with two degrees of freedom (DOF) actuated by eight Hill-based muscles. Both the cerebellar and SC142

model were integrated in a negative feedback control loop. The study, developed using computational143

tools and neuromechanical modelling, is also supported by lab recorded kinematics and EMG data from144

healthy participants.145

In the presented framework, the cerebellar model provides the motor adaptation required for the146

musculoskeletal upper limb model to achieve a set of goal motor behaviours, i.e., different upper limb147

movements are defined in joint space (position and velocity), and the cerebellum acquires the inverse148

model allowing accurate position and velocity tracking. We suggest the SC fast control primitives and149

regulation of muscle activity to be key in facilitating the cerebellar learning of the muscle dynamics; the150

SC allowed faster motor learning with simpler cerebellar synaptic adaptation. We also hypothesise that151

the SC plays a major motor control role through cocontraction modulation; i.e., regulation of simultane-152

ous activation of antagonist muscles. Cocontraction has been shown to improve stability by increasing153

joint apparent stiffness [36], enhance upper limb movement accuracy [37], and it has also appeared use-154

ful in movements requiring robustness against perturbations [38]. We found that the stretch reflex and155

reciprocal inhibition mechanisms participate in modulating cocontraction, with a significant impact on156
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cerebellar motor adaptation and response against external perturbations.157

2 Results158

We integrated the spinal cord and cerebellum models in an upper limb musculoskeletal feedback control159

loop (Fig. 1A). The spino-cerebellar model commanded the upper limb to perform a set of motor tasks,160

a motor benchmark divided in two groups: i) lab recorded upper limb movements performed by two161

healthy participants to study natural self-selected movements, ii) lab designed upper limb movements162

with bell-shaped velocity profiles to study standard characteristic reaching movements. A cerebellar163

model lacking the SC integration performed in the same motor benchmark (Fig. 1B) thus providing a164

spino-cerebellar vs. cerebellar control framework that allowed contextualising the SC and cerebellum165

integration (see Methods for a further description of the control loop and motor benchmark).166

Fig. 1. Spino-cerebellar and cerebellar control loops. A) Spino-cerebellar model. The cerebellum
received the following input sensory information: the desired trajectory (joint position, Qd, and velocity,
Q̇d) coming from a trajectory generator, representing the motor cortex and other motor areas performing
motor planning and inverse kinematics; the actual upper limb state (joint position, Qa, and velocity, Q̇a)
received from the musculoskeletal model; the instructive signal (ε) obtained as the mismatch between
the desired and actual joint state. The cerebellum then generated two output control signals per joint (M f

and Me, for flexor and extensor muscles, respectively), which were processed at the spinal cord. The
spinal cord also received the muscle state (length, lm, and velocity, l̇m) and generated the final muscle
excitation signals (um) which actuated the musculoskeletal model. The musculoskeletal model included
two joints, shoulder and elbow, actuated by eight muscles: deltoid posterior and biceps long as shoulder
flexors; deltoid anterior and triceps long as shoulder extensors; biceps long, short and brachialis as elbow
flexors; triceps long, lateral and medial as elbow extensors. B) Cerebellar model. M f and Me were
directly applied as muscle excitation signals commanded to the upper limb. For bi-articular muscles
(biceps long and triceps long), the resulting um was the mean of the control signal (M f or Me) from both
joints.

The following sections present the validation of the spino-cerebellar model with the lab recorded167

kinematics and EMG data; an evaluation of the SC effect in cerebellar motor adaptation in joint, synaptic168

and muscle spaces; and testing the response against external motor perturbations.169
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2.1 Spino-cerebellar and cerebellar models perform the recorded kinematics170

We extracted kinematics and EMG data from two healthy participants (P1 and P2) performing upper171

limb movements in the vertical plane involving the shoulder and elbow (see Methods). The motor tasks172

performed by P1 and P2 can be grouped in: i) flexion-extension movements, ii) hand-tracked circular173

trajectories. Both motor task groups were performed at different speeds, thus providing a set of natural174

upper limb trajectories which constituted our initial motor control benchmark. We used the joint kine-175

matics (i.e., shoulder and elbow position, Qd, and velocity, Q̇d) extracted from the recording sessions176

as the desired trajectory to be learnt by the spino-cerebellar (Fig. 1A) and cerebellar (Fig. 1B) models177

in the simulation framework. Both models performed 2000 consecutive trials of each desired trajectory,178

a trial-and-error process that allowed motor adaptation to fully deploy from scratch. The performance179

metric was given by the position and velocity mean absolute error (MAE), i.e., difference between the180

desired and actual trajectory in joint space, allowing to assess motor behaviour (see Methods).181

We first calculated the position and velocity MAE evolution for both the spino-cerebellar and cere-182

bellar models performing the trajectories extracted from each participant (Fig. 2A, P1’s 1.8s circle tra-183

jectory; Fig. 3A, P2’s 1.2s flexion-extension; see Supporting Information for all P1 and P2 motor tasks184

MAE evolution (S1A to S9A Fig.)). As the trajectory was repeated over time, the cerebellar adaptation185

allowed position and velocity error reduction. At the end of the motor adaptation process, both the spino-186

cerebellar and cerebellar models followed the target kinematics (Fig. 2B and Fig. 3B; see Supporting187

Information for all P1 and P2 motor tasks kinematics performance (S1B,C to S9B,C Fig.)).188
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Fig. 2. Spino-cerebellar and cerebellar models kinematics performance for the lab recorded sce-
nario, participant 1 (P1). A) Position and velocity mean absolute error (MAE) over the 2000-trial
motor adaptation process for both the spino-cerebellar and cerebellar models performing P1’s slow cir-
cle trajectory (1.8s). B) Joint kinematics of the last 200 trials (mean and std) for both models performing
P1’s slow circle trajectory (1.8s). C) Mean and std of the position and velocity MAE (last 200 trials) for
all P1 recorded trajectories. All spino-cerebellar vs. cerebellar mean position and velocity MAE have a
T-test p-value ≤ 0.001.

We found that, attending to the MAE mean and standard deviation (std) of the last 200 trials of the189

motor adaptation process (Fig. 2C and Fig. 3C), the spino-cerebellar model reached better performance190

in terms of position tracking for all trajectories except for P1’s slow (2.3s) and moderate (1.8s) flexion-191

extension (all spino-cerebellar vs. cerebellar mean position MAE having a T-test p-value ≤ 0.001).192

Conversely, the cerebellar model reached better performance in terms of velocity tracking except for193

P1’s slow (1.8s) circle and P2’s moderate (1.6s) and fast (1.2s) circle (all spino-cerebellar vs. cerebellar194

mean velocity MAE having a T-test p-value ≤ 0.001, except for P2’s fast circle (1.2s) with a p-value =195

0.136).196
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Fig. 3. Spino-cerebellar and cerebellar models kinematics performance for the lab recorded sce-
nario, participant 2 (P2). A) Position and velocity mean absolute error (MAE) over the 2000-trial mo-
tor adaptation process for both the spino-cerebellar and cerebellar models performing P2’s fast flexion-
extension (1.2s). B) Joint kinematics of the last 200 trials (mean and std) for both models performing
P2’s fast flexion-extension (1.2s). C) Mean and std of the position and velocity MAE (last 200 trials) for
all P2 recorded trajectories. All spino-cerebellar vs. cerebellar mean position and velocity MAE have a
T-test p-value ≤ 0.001, except for fast circle (1.3s) velocity with a p-value = 0.136.

2.2 The spinal cord improves cerebellar learning convergence and speed197

Once we revealed the adaptation capability of both the spino-cerebellar and cerebellar models, we stud-198

ied the influence of the SC model on cerebellar learning over the adaptation process. Using the position199

and velocity MAE evolution of each P1 and P2 trajectory, we compared the spino-cerebellar and cerebel-200

lar models learning convergence and learning speed. To study learning convergence we applied control201

charts on the MAE data to determine the number of trials required to achieve a stable performance [39].202

To check learning speed we analysed the number of trials required for the mean MAE of 200 samples203

to reach a given target (i.e., 0.1 rad for position MAE, and 0.5 rad/s for velocity MAE). Learning con-204

vergence and speed were tested on both position and velocity tracking performance (see Fig. 4A for205

an example of position and velocity MAE evolution and the metrics used, see Methods for a further206

description).207

The SC was proven to facilitate cerebellar learning as it reduced learning convergence time (Fig. 4B),208

and increased learning speed (Fig. 4C) for both position and velocity for both P1 and P2 trajectories209

(Fig. 4 left and right column, respectively). Thus, cerebellar motor adaptation was shown to be: i)210
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stabilised by the SC: average convergence time for MAEpos was 988 ± 466 trials for the spino-cerebellar211

model, and 1607 ± 536 trials for the cerebellar model; and for MAEvel 978 ± 512 trials, and 1255 ± 581212

trials, respectively; ii) accelerated by the SC: average learning speed for position was 3.5e−3 ± 1.0e−3213

trials−1 for the spino-cerebellar model, and 2.3e−3 ± 1.4e−3 trials−1 for the cerebellar model; and for214

velocity 2.8e−3 ± 1.2e−3 trials−1, and 2.1e−3 ± 1.4e−3 trials−1, respectively.215

Fig. 4. Spino-cerebellar and cerebellar models motor adaptation for all P1 and P2 recorded
trajectories. A) Position MAE for the spino-cerebellar and cerebellar models for P1 slow circle (left
column), and velocity MAE for both models performing P2 fast flexion-extension (right column). Both
MAE plots show the trials at which the learning convergence and learning speed metrics are fulfilled. B)
Learning convergence for both models and all trajectories from P1 (left column) and P2 (right column).
The bar plots display the number of trials required by each model to fulfill the learning convergence
criteria (see Methods). C) Learning speed for both models and all trajectories from P1 (left column) and
P2 (right column). The bar plots depict the inverse of the number of trials required to reach a position
MAE of 0.1 rad and a velocity MAE of 0.5 rad/s.

2.3 The spinal cord simplifies cerebellar synaptic adaptation at GC-PC216

Consistently with the Marr-Albus-Ito cerebellar theory, learning in the cerebellum was provided by217

means of an STDP mechanism adjusting the synaptic weights at GC to PC synapses (a connection218

established through PFs, i.e., GC axons). The effect of the SC on cerebellar learning, already checked219

in terms of motor performance in the previous section, must leave its trace at the level of cerebellar220

synaptic adaptation.221

During the motor adaptation process of both the spino-cerebellar and cerebellar models, we recorded222

the synaptic weight evolution at GC-PC connections every 200 trials for all P1 and P2 trajectories223

(Fig. 5A and B). We then measured the entropy of the GC-PC synaptic weight distributions to quan-224

tify the synaptic complexity for both models: the higher the entropy, the more complex the synaptic225
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weight distribution, i.e., higher heterogeneity of synaptic weights at the GC-PC population. Contrasting226

the synaptic entropy of both models allowed evaluating the effect of the SC on cerebellar synaptic adap-227

tation (Fig. 5C and D). Noteworthy, results showed that for all motor tasks the SC reduced the entropy228

of the synaptic weight distribution: the mean entropy over all P1 and P2 trajectories was 3.65 ± 0.78229

for the spino-cerebellar model, and 4.41 ± 1.14 for the cerebellar model. When the SC was lacking in230

the control loop, more complex synaptic patterns (i.e., higher specialisation) were required at cerebellar231

GC-PC connections. The spino-cerebellar model showed a simpler distribution of synaptic weights at232

GC-PC connections; in other words, the spinal cord was therefore shown to simplify learning in the233

cerebellum.234

Fig. 5. Spino-cerebellar and cerebellar synaptic entropy. A), B) Synaptic weights at granule cell
- Purkinje cell synapses, after 200 and 2000 trials respectively, for both models performing P1’s 1.8s
circle trajectory. The heat map represents the normalised GC-PC synaptic weights, which could range
from 0.0 to 15.0 nS. C), D) Evolution of the synaptic entropy at the GC-PC synapses over the 2000-trial
motor adaptation process, for all P1 and P2 trajectories, respectively. The higher the entropy, the more
complex the GC-PC synaptic distribution (i.e., higher heterogeneity in the synaptic weights over the
GC-PC synapses).

2.4 Spino-cerebellar and cerebellar outcome in muscle space235

We then evaluated the outcome in muscle space of both the spino-cerebellar and cerebellar models.236

We compared the recorded EMG envelopes to the main activated muscles during P1 and P2 trajecto-237

ries (Fig. 6A, deltoid posterior (DELTpost) and brachialis (BRA) for P1 slow circle, deltoid anterior238
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(DELTant) and triceps lateral (TRIlat) for P2 fast flexion-extension; please find a figure displaying all239

the recorded EMG in Supporting Information (S13 and S14 Fig.)). Both models reproduced the main ac-240

tivation patterns of each muscle with a small shift for P2 DELTant and TRIlat. The correlation between241

the spino-cerebellar or cerebellar activation and the EMG signals was generally larger than 0.5 (see Sup-242

porting Information (S15 and S16 Fig.)). The correlation was, however, larger for the spino-cerebellar243

model for most of the muscles and scenarios (all spino-cerebellar vs. cerebellar correlation having a244

T-test p-value ≤ 0.001). Nevertheless, the correlation averaged over muscles was similar between the245

two models for all the movements and we could not conclude on a better muscle pattern reproduction246

by one or the other model (all spino-cerebellar vs. cerebellar mean correlation having a T-test p-value ≥247

0.05).248

Results might not be conclusive when referred to a direct, muscle by muscle comparison between249

our models performance and the recorded EMG; note that our musculoskeletal upper limb model was250

actuated by 8 muscles, a mere simplification of the complex muscle dynamics of the human upper251

limb. To overcome this, we further studied performance in muscle space using the joint cocontraction252

index (CCI), thus unifying muscle activity per joint and providing a more comprehensive analysis (see253

Methods). We found that the spino-cerebellar model better reproduced the CCI patterns at the level of254

the elbow for P1 slow circle and at the level of the shoulder for P2 fast flexion-extension (Fig. 6B).255

Significantly, the spino-cerebellar model provided a higher CCI for all P1 and P2 trajectories, both for256

the shoulder and elbow (Fig. 6C, all spino-cerebellar vs. cerebellar CCI having a T-test p-value ≤ 0.001).257

We then compared the CCI provided by both models with the CCI from the recorded EMG (Fig. 6D).258

The correlation was mainly higher for the spino-cerebellar model for all the trajectories except P1’s slow259

circle (1.8s) and P2’s fast circle (1.2s) for the shoulder (all spino-cerebellar vs. cerebellar correlation260

with a T-test p-value ≤ 0.001, except for the fast trajectories for the elbow). We observed a similar trend261

as that observed for MAEvel, therefore, we performed a linear regression between the CCI and MAEvel262

for each joint. The results (Fig. 6E) highlighted a linear trend between these quantities for P1 elbow and263

P2 shoulder and elbow (with a coefficient of determination of 0.81, 0.68 and 0.60 respectively), whereas264

P1 shoulder presented a weaker relationship (with a coefficient of determination of 0.17).265

Overall, we highlighted various findings that were consistent for various trajectories with various266

initial and final positions and speeds. The spino-cerebellar model provided more stable and faster learn-267

ing with simpler cerebellar synaptic adaptation, and an increase in CCI with better correlation to the268

recorded EMG.269
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Fig. 6. Spino-cerebellar and cerebellar model performance in muscle space for all P1 and P2
recorded trajectories. A) Comparison of muscle activation signals with recorded EMGs: the compar-
ison only shows the main activated muscles during recordings of P1’s slow circle (two left columns)
and P2’s fast flexion-extension (two right columns). The plots show the muscle activity of the 200 trials
prior to reaching the learning convergence metric, as well as their mean and std, for the two models
performance. EMG signals are scaled by the maximum of the activation signals for each muscle for the
sake of representation. B) Joint cocontraction indexes (CCI) from EMG activity and both models perfor-
mance, for the trajectories represented in A). EMG CCI are scaled by the maximum of the models CCI
for the sake of representation. C) Joint CCI values for both models and all P1 (two left columns) and P2
(two right columns) trajectories. All spino-cerebellar vs. cerebellar CCI have a T-test p-value ≤ 0.001.
D) Joint CCI correlation between the models and EMG for all P1 (two left columns) and P2 (two right
columns) trajectories. All spino-cerebellar vs. cerebellar CCI correlation have a T-test p-value ≤ 0.001,
except for the fast trajectories for the elbow. E) CCI-MAEvel relation: linear regression between joint
CCI and joint MAEvel over all the trajectories from P1 (two left columns) and P2 (two right columns).

2.5 The spinal cord increases the robustness against motor perturbations270

To study the response against external perturbations of both the spino-cerebellar and cerebellar models,271

we used our lab designed benchmark: upper limb flexion-extension movements with bell-shaped ve-272

locity profiles, characteristic of reaching movements [40]. This kind of movement is usually used for273
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addressing active-limb control malfunctioning, as cerebellar patients usually display upper limb oscilla-274

tory tremors that result in endpoint overshooting and undershooting when reaching a target [41].275

Both models faced 2000 consecutive trials of the flexion-extension movement performed at dif-276

ferent speeds (3s, 2.3s, 1.5s); after motor adaptation, both models succeeded in performing the target277

kinematics (see Supporting Information (S17 Fig.)). Once both models adapted to perform the desired278

trajectories, we tested the contribution of the SC in handling motor perturbations. For that, we induced279

a set of external forces: i.e., 50 N for 30 ms applied to the hand in different directions and at different280

points along the flexion-extension movement, resulting in kinematics deviation (Fig. 7A). We then mea-281

sured the MAE deviation from the ideal, no-perturbation scenario (Fig. 7B). Each perturbation type was282

applied on 10 separate trajectory trials to get an average response (see Methods). The cerebellar learning283

capability was disabled to avoid adaptation to the perturbations. Fig. 7A displays the kinematics perfor-284

mance of both models under one perturbation type, whilst performing the moderate flexion-extension285

movement (2.3s). Larger kinematic deviation can be observed for the cerebellar model compared to286

the spino-cerebellar one, especially at the level of the elbow. Fig. 7B presents spino-cerebellar and287

cerebellar model response against all the perturbations applied during the moderate flexion-extension288

trajectory. The spino-cerebellar model shows smaller MAE deviation ( ¯∆MAE) in position performance289

for all perturbation types, and smaller velocity ¯∆MAE for all perturbations except for the first, fourth290

and sixth perturbation types. It can be noted that there were both inter and intra-variability in the effect291

of the various perturbation types on the trajectory kinematics, resulting in T-test p-values ≥ 0.05 for292

spino-cerebellar vs. cerebellar MAE deviation for some cases (see Fig. 7 caption). Similar results were293

obtained for the slow and fast bell-shaped flexion-extension trajectories; please find the corresponding294

figure in Supporting Information (S18 Fig.). The spino-cerebellar model was shown to be more robust295

against perturbations than the cerebellar model.296

Fig. 7C finally presents the average MAE deviation over all the applied perturbations for the three297

bell-shaped, flexion-extension trajectories. The spino-cerebellar model results in larger velocity MAE298

deviation for the fast trajectory, but lower MAE deviation for all the other cases (all spino-cerebellar vs.299

cerebellar mean MAE deviation having a T-test p-value ≥ 0.05 due to the variable effect of the various300

perturbation types). The SC is thus shown to help handling motor perturbations in most cases.301
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Fig. 7. Spino-cerebellar and cerebellar model response against external force perturbations during
bell-shaped flexion-extension trajectories. A) Kinematics performance for both the spino-cerebellar
and cerebellar models under one forward perturbation at the flexed position whilst performing the 2.3s
flexion-extension trajectory. 10 trials are displayed. B) Position and Velocity MAE deviation (∆ ¯MAE)
due to all the perturbations applied during the 2.3s flexion-extension trajectory. Mean ∆ ¯MAE and se of
10 trials are displayed. Spino-cerebellar vs. cerebellar MAE deviation have a T-test p-value ≤ 0.05 for
position for the 3rd, 5th, 6th, 7th and 8th perturbation type, and for velocity for the 1st, 2nd, 4th, 6th and
7th, whereas the other cases have a T-test p-value ≥ 0.05. C) Mean ∆ ¯MAE and se for all the perturbations
applied to the flexion-extension trajectories with different speeds (3s, 2.3s, 1.5s). 10 perturbed trials were
used for each perturbation type. All spino-cerebellar vs. cerebellar mean MAE deviations have a T-test
p-value ≥ 0.05.

3 Discussion302

The integration of biologically plausible computational models of neural regions allows studying their303

interaction and complementarity. We presented a computational exploratory approach integrating a cere-304

bellar and an SC model, performing motor control of an upper limb musculoskeletal model; a simulation305

framework complemented with kinematic and EMG data validation. We contrasted the spino-cerebellar306

integrated model with a cerebellar model, both performing in the same motor benchmark, which al-307

lowed us to extract some key elements of the kinematic and muscle performance directly attributable to308

the presence of the SC in the spino-cerebellar control loop. The SC was found to stabilise and accelerate309

cerebellar motor adaptation and to improve the response against perturbations through stretch reflexes310

and reciprocal inhibition. Rather than being an evolutionary constraint, the SC offers motor control ben-311

efits.312

Both the spino-cerebellar and cerebellar models succeeded in learning the musculoskeletal dynam-313

ics to achieve the goal motor behaviour. Noteworthy, the presence of the SC provided faster motor314

adaptation, thus assisting cerebellar learning. In this regard, a significant finding was the fact that the315

spino-cerebellar model revealed less complexity at the GC-PC synaptic weight distribution; i.e., the SC316

led to the formation of less specialised GC-PC synapses in the cerebellum. To the best of our knowledge,317

it is the first time that a computational model highlights and weights the influence of the SC in facilitat-318

ing cerebellar learning. Direct regulation of muscle activity by the SC has been here found to facilitate319
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the cerebellar acquisition of the upper limb inverse dynamics. Indeed, the body plant dynamics to be320

learnt by higher brain areas, might be simplified by the SC taking over lower level and faster control321

primitives, such as the SC potential role in gravity compensation [42, 43]. Thus, the SC performance in322

muscle space may lighten other operations of the sensorimotor process, occurring at a higher level such323

as the cerebellum’s contribution in compensating interaction torques in joint space [44], or in shaping324

spatiotemporal muscle synergies rather than generating specific complex muscle patterns [45].325

The SC stabilises the system at muscle level, increasing cocontraction through stretch reflexes and326

coordinating the antagonist activation patterns through reciprocal inhibition. Thus, the SC participates in327

modulating cocontraction, which plays an important role in motor control and stability [36, 38], provid-328

ing better accuracy despite its energy cost [37]. In our framework, the spino-cerebellar model increased329

the joint CCI in all the studied motor tasks compared to the cerebellar model; i.e., cocontraction was330

indeed mostly determined by the SC motor action. Importantly, the CCI from the spino-cerebellar model331

also resulted in a better correlation with the CCI patterns from the recorded EMG signals, thus support-332

ing closer biological plausibility than the cerebellar model. The CCI increment was also revealed when333

inducing perturbations in the control loop; the spino-cerebellar model provided a better response, reduc-334

ing the kinematic deviation. Muscle elasticity has been previously pointed as a key passive contributor335

in handling perturbations [46]. Our framework, using the same muscle mechanical properties in both336

the spino-cerebellar and cerebellar control loops, allowed directly assigning to the SC a pivotal role in337

providing robustness against external perturbations, thus supporting previous findings [30, 31].338

The cocontraction increase carried by the SC involved a poorer velocity tracking. Indeed, the spinal339

reflexes between antagonist muscles may induce oscillatory activation patterns and thus alter the velocity340

performance. We did not observe, however, any trend in CCI values related to movement speeds despite341

higher cocontraction values have been reported in slower movements [38]. Due to the SC and cerebellar342

models conception, our implementation lacks differentiation between the roles of the cerebellum and SC343

depending on movement speed. Note however that it is expected a major role of the cerebellum in fast344

ballistic movements which cannot rely on feedback availability [47, 34], and which do present lower345

cocontraction levels [38].346

Our model could be further improved by adding other cocontraction mechanisms to the control loop.347

Clinical studies supported a potential role of the cerebellum and basal ganglia in cocontraction mech-348

anisms. In particular, patients with cerebellar ataxia showed excessive agonist-antagonist coactivation349

[48] and cerebellar stimulation was shown to reduce coactivation in patients with spasticity [49]. Thus,350

future development of the cerebellar model shall include control of the cocontraction level. On the SC351

side other pathways could be included, in particular modulation mechanisms that are present during352

arm movements [24, 25, 26]. For instance, presynaptic inhibition of Ia terminals at both activated and353

antagonist pathways is slightly decreased at the onset of a voluntary contraction through descending sig-354

nals. Thus, the increased gain of the stretch reflex pathway ensures that activated motoneurons receive355

Ia feedback support. The reciprocal Ia inhibition is also depressed during a voluntary contraction at356

the corresponding muscle to prevent its inhibition by the stretch-induced Ia discharge from its antago-357

nist. During cocontraction, reciprocal Ia inhibition is also depressed by increased presynaptic inhibition358

on Ia terminals [5]. Also synaptic plasticity could be included in the SC model, as done in previous359

computational approaches [32]. Activity dependent plasticity mechanisms have been reported in the360

SC: e.g., the spinal stretch reflex can indeed be conditioned [50]; the feedforward circuits within the361

SC, in addition to somatosensory feedbacks, may contribute to SC learning by allowing motoneurons to362

contrast feedforward and feedback motor inputs [51]. Supporting the latter, [52] showed that signals in363

human muscle spindle afferents during unconstrained wrist and finger movements predict future kine-364

matic states of their parent muscle. Muscle spindles would then have a forward-sensory-model role, as365

that attributed to the cerebellum [53], emphasising the complementarity and overlapping functionality366

between neural regions.367

Integrated computational models represent a powerful tool to support and guide experimental studies368
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in the pursuit of a better understanding of the CNS. We believe our spino-cerebellar model to contribute369

in this direction, providing a picture of how the SC influences cerebellar motor adaptation and learn-370

ing. Further development of the model, together with addition of other neural regions, will help to keep371

elucidating CNS operation.372

4 Methods373

The cerebellar and SC models operated in a closed loop with joint and muscle feedback (Fig. 1A), in374

which cerebellar motor learning was assisted by fast reflex response and muscle activity regulation pro-375

vided by the SC. The cerebellar model received sensory input signals describing the desired motor state376

(desired position, Qd, and velocity, Q̇d, per joint) and the actual motor state of the upper limb muscu-377

loskeletal model (actual position, Qa, and velocity, Q̇a, per joint). The comparison of the desired and378

actual motor states provided the instructive signal (ε per joint), also received by the cerebellum. The379

cerebellar output comprised a flexor-extensor (i.e., agonist-antagonist) pair of control signals (M f and380

Me per joint) that were sent to the SC model, which also received direct muscle feedback (length, lm,381

and velocity, l̇m, per muscle). The SC generated the muscle excitation signals (um per muscle) resulting382

in muscle activation which finally actuated the upper limb musculoskeletal model, thus closing the loop.383

To contextualise the spino-cerebellar integration, we also implemented the control loop lacking the SC384

circuits (Fig. 1B). In this scenario, the cerebellar output signals were directly used as muscle excitation385

signals. The control loop included sensory and motor delays, mimicking the biological pathways. In386

the cerebellar sensorimotor pathway, there exists a delay ranging from about 100 to 150ms (with inter387

and intraindividual variations), accounting for the time spent from the generation of a motor command388

until sensing back its effect [54]. Regarding the SC to muscles transmission, a delay of about 30ms389

has been reported for the upper limb [55, 56]. Our spino-cerebellar model included a 50ms sensorial390

delay affecting the reception of sensory inputs in the cerebellum; a transmission delay of 30ms from the391

cerebellum to the SC, and 30ms from the SC to the muscles, total motor delay of 60ms. The asymmetry392

between sensory and motor delay stands for the higher latency found in neuromuscular junction, elec-393

tromechanical and force generation delays (involved in the motor pathway), compared to the sensing,394

nerve conduction and synaptic delays (involved in the sensory pathway) [57].395

The following subsections describe the different components of our spino-cerebellar control loop.396

The various building blocks were integrated using Robot Operating System (ROS), allowing a modular397

implementation.398

4.1 Cerebellar model399

We implemented a spiking neural network (SNN) replicating some cerebellar neural layers and equipped400

with spike-timing-dependent plasticity (STDP) to allow motor learning and adaptation. The cerebellar401

SNN model was adapted from previous models applied to robot control loops [18, 19]. The cerebellar402

SNN structure was divided in the following neural layers: i) mossy fibres (MFs), constituted the sensory403

input layer conveying the desired and actual motor state signals (Qd, Q̇d, Qa, Q̇a); ii) the spiking activity404

of MFs was transferred through excitatory afferents to the granule cell (GC) layer, where the sensory405

input information was univocally recoded; iii) the axons of the GCs, i.e., the parallel fibres (PFs), formed406

excitatory connections with the Purkinje cells (PCs); iv) PCs also received the excitatory action of the407

climbing fibres (CFs) conveying the instructive signal (ε); v) the deep cerebellar nuclei (DCN) layer408

received the inhibitory action from PCs and excitatory connections from both MFs and CFs. The DCN409

spiking activity was translated into output motor commands (flexor-extensor motor control signals, M f410

and Me) that constituted the cerebellar motor response to the sensory stimuli. Every neural layer was411

divided in two microcomplexes [58], being each microcomplex oriented to drive one of the two joints412

(shoulder or elbow). Each microcomplex at the PC-CF-DCN loop was partitioned into two regions: ag-413
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onist and antagonist. The agonist region operated the joint flexor muscles, whereas the antagonist region414

operated the extensor muscles. This synergic agonist-antagonist (flexor-extensor) architecture allowed415

the cerebellar model to regulate the spatiotemporal muscle activity patterns [45], key for successful mo-416

tor control [59]. See Fig. 8 for a schematic representation of the cerebellar network, and Table 1 for417

network topology.418

Fig. 8. Cerebellum model. A) Neural layers, connections, input and output sensorimotor signals.
The input signals are conveyed by the mossy fibres (MFs), which project excitatory synapses to the
granule cells (GCs). These perform a recoding of the input signals, and project excitatory connections
through the parallel fibres (PFs) reaching Purkinje cells (PCs). PF-PC connections are endowed with
plasticity, balanced between the long-term potentiation (LTP) caused by the input PF spikes, and long-
term depression derived from the climbing fibres (CFs) activity reaching PCs. CFs convey the instructive
signal. Finally, PCs project inhibitory synapses towards the deep cerebellar nuclei (DCN), the output
layer of the cerebellar model, which also receives a baseline excitatory action from MFs and CFs. B)
Detailed schematic of the cerebellar connections. Each GC receives the input excitatory action from a
unique combination of four MFs. Each input signal (Qd, Q̇d, Qa, Q̇a), is codified by ten MFs, being only
one out of the ten MFs active at each time step. Hence, at each time step, four MFs will be active (one per
input signal). That unique combination of four input MFs excites one single GC, allowing to perform a
univocal representation of the sensory input at the granular layer. PCs then receive the excitatory action
from all GCs in the cerebellar model and only one CF, allowing to relate the joint-specific instructive
signal, to the global sensory state received from GCs. The PC-CF-DCN loop differentiates between
agonist and antagonist regions, thus allowing simultaneous control of both flexor and extensor muscles.

Table 1. Cerebellar neural topology. Dashed entries stand for not applicable.

Neurons Synapses
Pre-synaptic Post-synaptic Number Type Initial Weight (nS) Weight range (nS)

80 MFs 20x10³ GCs 80x10³ AMPA 0.18 -
80 MFs 200 DCN 16x10³ AMPA 0.3 -

20x10³ GCs 200 PCs 4000x10³ AMPA 4.8 [0.0, 15.0]
200 PCs 200 DCN 200 GABA 1.0 -
200 CFs 200 PCs 200 AMPA 0.0 -
200 CFs 200 DCN 200 AMPA 0.5 -
200 CFs 200 DCN 200 NMDA 0.25 -
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Consistently with the Marr-Albus-Ito theory on cerebellar motor adaptation [60, 61, 62], our cere-419

bellar SNN model was equipped with synaptic plasticity at the GC-PC synapses. The synaptic weights420

were adjusted by means of an STDP mechanism that correlated the sensory information (univocally421

coded at GCs and transferred to PCs through PFs) and the instructive signal (conveyed to PCs by CFs).422

This STDP mechanism was a balanced process of long-term potentiation (LTP) and long-term depres-423

sion (LTD). Each time a PC neuron received a GC spike through a PF, that synapse was potentiated424

(LTP) by a fixed amount as follows:425

LT P∆WGCi−PC j(t) = α(δGCspike(t) ∗ dt) (1)

where ∆WGCi−PC j(t) stands for the synaptic weight change between GC i and PC j; α = 0.006nS is the426

synaptic weight increment; and δGCspike(t) is the Dirac delta function of a GC spike, received at PCs427

through PFs.428

When the spiking activity of a CF conveyed an instructive signal to a PC neuron, the GC-PC con-429

nection that was involved in that error generation was depressed (LTD) as described by:430

LT D∆WGCi−PC j(t) = β ∗

∫ tCFspike

−∞

k(t − tCFspike) ∗ δGCspike(t) ∗ dt (2)

where β = −0.003nS stands for the synaptic weight decrement; and k(x) defines the integrative kernel431

with eligibility trace correlating past sensory inputs with the present instructive signal, i.e., the amount of432

LTD due to a CF spike depended on the previous GC activity received at PCs through PFs (see [18, 19]433

for a further description). A well-balanced LTP-LTD process changed the PF-PC synaptic weights, thus434

modifying the PCs output activity and the inhibitory action of PCs over DCN neurons, which ultimately435

varied the DCN output activity. Modulating the DCN activity allowed adaptation of the output motor436

response to the input stimuli. An iterative exposure to the sensory patterns defining the desired motor437

task, allowed adapting the motor response for error reduction.438

We used leaky integrate and fire (LIF) neurons (see Supporting Information (S1)) and EDLUT sim-439

ulator [63] to build the cerebellar SNN model. Please see [18, 19] for a further review of the STDP440

mechanism and cerebellar layers.441

4.2 Spinal cord model442

Our SC model integrated the descending control signals from the cerebellum and the direct muscle feed-443

back (Fig. 9A). The SC model allowed fast reflex response and muscle activity regulation by means of444

monosynaptic Ia stretch reflex and disynaptic reciprocal inhibition pathways between antagonist mus-445

cles. The motoneuron (MN) of a given muscle received the following inputs: i) an excitatory connection446

conveying the cerebellar output signal (M f or Me, for flexor or extensor muscle); ii) an excitatory con-447

nection from the Ia afferent fibre of the muscle (i.e., stretch reflex); iii) an inhibitory connection from the448

Ia interneuron (Ia IN) innervated by the Ia afferent of the antagonist muscle (i.e., reciprocal inhibition).449

The antagonist relation between the muscles of the upper limb model is detailed below. The neuron450

leaky integrate dynamics of the MN firing rate, r, were modelled as follows:451

τṙ(t) = −r(t) + σ(
∑

i

wiri(t − τi)) (3)

where τ = 1ms stands for the spinal neuron activation time constant; σ(x) = 1
1+exp(−D(x−0.5)) with D = 8,452

emulating the on-off behaviour of neurons; i describes the MN input signals; wi is the synaptic weight of453

the input connection, being 1 for excitatory synapses and 0.5 for the inhibitory; ri is the input activity;454

and τi = 30ms stands for the stretch reflex response delay. Depending on neuron size, τ can vary from455

1 to 10ms [64], we only considered fast-response neurons as in [28]. For the upper limb, τi is about456
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30ms [55, 56]. The output rates of the MNs are finally provided as muscle excitation signals to the457

musculoskeletal model through a sigmoid (u(t) = σ(r(t))), thus inducing movement. The dynamics of Ia458

IN neurons followed the same description, with differing input activity including inhibitory connections459

between antagonist Ia IN (Fig. 9B).460

Fig. 9. Spinal cord model. A) The spinal cord circuits were modelled as one motoneuron per muscle,
receiving an excitatory input control signal (M) from the cerebellum, an excitatory connection from the
Ia afferent fibre of the muscle (i.e., stretch reflex) and an inhibitory connection from the Ia interneuron (Ia
IN) innervated by the Ia afferent of the antagonist muscle (i.e., reciprocal inhibition). We also included
inhibitory connections between antagonist Ia interneurons. Each neuron is modelled with leaky integrate
dynamics. B) Antagonist relation between the 8 upper limb muscles: all the muscles shared the same
synaptic weight for the stretch reflex and reciprocal inhibition pathways, i.e., 1 for excitatory synapses
and 0.5 for the inhibitory.

We used Prochazka’s model for the Ia afferent feedback dynamics [65], with a mean firing rate of461

10Hz [28, 66, 67]:462

rIa(t) = sgn(l̇m(t)) ∗ 4.3|l̇m(t)|0.6+ +2(lm(t) − l0,m) + 10 (4)

where lm and l̇m describes the muscle fibre length and velocity in mm and mm/s; and |x|+= max(|x|, 0.01).463

The output rate, rIa, was scaled by its maximum rIa,max to get a normalised value, i.e., rIaε[0, 1].464

To model the SC we used FARMS Python library, developed at the BioRobotics laboratory.465

4.3 Musculoskeletal upper limb model466

We used a 2 DOF musculoskeletal upper limb model as the front-end body to be controlled. The model,467

adapted from [68], included two flexion-extension joints: shoulder and elbow. The model was actuated468

by 8 Hill-based muscles [69], with the following joint distribution: i) for the shoulder, flexion was469

carried by the deltoid anterior and posterior (DELTant, DELTpost) and the biceps long (BIClong), and470

extension was conducted by the triceps long (TRIlong); ii) for the elbow, flexion was provided by the471

biceps long and short (BICshort) and the brachialis (BRA), whilst extension was allowed by the triceps472

long, lateral and medial (TRIlat, TRImed). Note that BIClong and TRIlong were bi-articular muscles, as473

they actuated both joints. The antagonist relation between muscles is depicted in Fig. 9B. The Hill-based474

muscle dynamics were the following:475 {
fm = (a ∗ flv(lm, l̇m) + fp(lm)) ∗ cosθ
da
dt = u−a

τ(u,A)
(5)
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with fm the muscle force, flv a combination of the force-length and force-velocity curves, fp the passive476

force-length curve, θ the pennation angle, a the muscle activation (i.e., the concentration of calcium ions477

within the muscle), and u the muscle excitation (i.e., the firing of the MN) [69]. We used OpenSim478

physics engine to simulate the muscle and skeleton dynamics [70]. To allow using kinematics and EMG479

from lab recordings, an OpenSim upper limb model was scaled to match the morphology of each lab480

participant. This scaling process was achieved using OpenPifPaf Human Pose Estimation algorithm [71]481

during the static period and OpenSim scaling tool.482

4.4 Benchmarking with various motor tasks483

We used a set of different motor tasks to be performed by the spino-cerebellar and cerebellar models,484

differentiating between two scenarios: lab recorded and lab designed motor tasks.485

For the lab recorded scenario, we used kinematics and EMG recordings from healthy participants486

performing different arm movements. Experiments were approved by the CER-VD under the license487

number 2017-02112 and performed in accordance with the Declaration of Helsinki in NeuroRestore488

laboratory at Lausanne CHUV. Two participants, P1 and P2, were asked to perform planar reaching489

movements (flexion-extension) and continuous circular movements, both movements performed in the490

vertical plane and at various speeds (self-selected speeds). For flexion-extension movements both shoul-491

der and elbow moved in the same direction, whilst during the continuous circular movements the joints492

moved in opposite directions. Thus, our benchmark includes interaction torques both assisting and re-493

sisting the movement. The recorded kinematics (i.e., joint position and velocity) constituted the desired494

motor state (Qd, Q̇d) used as the control loop sensory input, whilst the EMG recordings supported model495

validation in muscle space. For each recorded motor task we ran the experimental setup with both the496

spino-cerebellar and cerebellar models, using an OpenSim upper limb model scaled to match the partic-497

ipant’s morphology. We then compared the models’ experimental performance to the lab recordings in498

both joint and muscle spaces.499

P1 and P2 movements were recorded using an RGB-D camera, and we used OpenPifPaf human pose500

estimation algorithm [71] to extract the 2D positions of the participant’s anatomical joints at a frame rate501

of 25fps. Then 3D pose was deduced from the 2D pose, camera intrinsic, and depth information after502

accounting for distortion. The occlusions were removed using specially designed filters that ensure co-503

herence in joint anatomy and time. We scaled an OpenSim upper limb musculoskeletal model to match504

the participant’s morphology, and ran inverse kinematics (IK) over the body segment kinematics, thus505

allowing the extraction of joint position and velocity from the participant’s motion. P1 generally per-506

formed fast movements, and the kinematics recordings of his fast circular movements were too noisy to507

extract joint position, thus we excluded this scenario from our analysis. For muscle activity, we recorded508

EMG using Delsys system and Trigno Avanti and Trigno Quattro sensors with a acquisition frequency509

of 1259.3Hz. We aligned the EMG with the kinematics signals thanks to a trigger inducing a pulse in an510

additional EMG channel and lightning a led in the camera range. We then computed the EMG envelopes511

to compare with our models muscle activation signals. For each recorded signal, we removed the mean512

and rectified the signal, which was then filtered using a low pass Butterworth filter with a 5Hz cutoff513

frequency. We applied the same processing steps to the maximal voluntary contraction (MVC) signal514

of each muscle (recorded at the beginning of the session), and used the maximal value of the processed515

MVC to normalise the corresponding muscle processed EMG signal.516

For the lab designed scenario, we implemented a set of flexion-extension movements with different517

bell-shaped joint velocity profiles, characteristic of multi-joint arm reaching movements [40]. We then518

used the joint kinematics (Qd, Q̇d) as the desired motor state to be performed by the spino-cerebellar519

and cerebellar models (please see Supporting Information for a depiction of the bell-shaped trajectories520

(S10 to S12 Fig.)). We broadened the benchmark by adding a perturbation study using these bell-shaped521

trajectories. After cerebellar learning consolidation, we applied a set of motor perturbations whilst the522
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trajectories were being performed: 50N for 30ms, applied to the hand in different directions and at dif-523

ferent points along the flexion-extension movement. Each perturbation type was applied to 10 separate524

trials to get an average response, leaving 3 non-perturbed trials in between perturbed trials so that the525

model returned to its unperturbed state. Note that cerebellar learning was disabled during the perturba-526

tion study, to avoid cerebellar adaptation to the external forces and focus on SC response.527

Using this motor benchmark, and comparing the performance of the spino-cerebellar and cerebellar528

models, we could evaluate the cerebellum and spinal cord integration in terms of: muscle activity, motor529

adaptation and joint space performance, synaptic adaptation, and response to motor perturbations, for530

various trajectories with different initial and final positions and speeds. Please see Supporting Informa-531

tion for a representation of the motor tasks joint kinematics (S1 to S12 Fig.).532

4.5 Cerebellar instructive signal533

The cerebellar instructive signal ε(t) was obtained as the mismatch between the desired and actual joint534

state, combining in a single value per joint both position and velocity errors as follows:535

ε(t) = Kp[Qd(t) − Qa(t)] + Kv[Q̇d(t) − Q̇a(t)] (6)

where Kp = 3 and Kv = 1 are the position and velocity error gain, respectively. The trajectory error536

signal in joint space can be derived from the proprioceptive and sensory information conveyed by the537

spino-cerebellar tract from the muscle spindles (muscle length) and Golgi tendon organs (muscle force)538

to the cerebellum [72].539

4.6 Performance metrics540

4.6.1 Measuring kinematics performance541

To evaluate the kinematic performance of the spino-cerebellar and cerebellar models, we defined a set542

of metrics based on the mean absolute error (MAE) between the desired (Qd, Q̇d) and actual (Qa, Q̇a)543

motor state of the arm:544

545  MAEpos(t) = 1
N
∑N

j=1|Qd, j (t) − Qa, j (t)|
MAEvel(t) = 1

N
∑N

j=1|Q̇d, j (t) − Q̇a, j (t)|
(7)

546

where N stands for the number of joints (2), and j for the joint index. We considered the position and547

velocity MAE of each motor task trial to assess the performance accuracy:548

549 {
MAEpos = 1

T
∑T

t=0 MAEpos(t)
MAEvel = 1

T
∑T

t=0 MAEvel(t)
(8)

where T stands for the motor task period. We finally averaged these values over 200 trials and compared550

the final performance of the two models with the final mean MAEpos and MAEvel ( ¯MAEpos, f , ¯MAEvel, f ).551

We also computed the standard deviation (std) and the T-test p-value between the two models’ results552

with a T-test for the means of two independent samples of values.553

4.6.2 Measuring learning performance554

To measure the learning convergence (i.e., number of trials required to reach a stable trajectory track-555

ing), we used control chart metrics [39]. Throughout the MAEpos and MAEvel curve of each motor task556

(all performed for a total of 2000 learning trials) we computed the mean (µ) and standard deviation (σ)557
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using a sample size of 200 trials, which provided the following performance stability limits:558

559 
L1 = ¯MAEx ∈ [µ − σ, µ + σ]
L2 = ¯MAEx ∈ [µ − 3σ, µ − 2σ]U[µ + 2σ, µ + 3σ]
L3 = ¯MAEx ∈] −∞, µ − 3σ]U[µ + 3σ,+∞[

(9)

560

We then checked the percentage of those 200 trials within each limit. As the limits were defined by561

the std, we also checked that the std value was below 0.012rad for position and 0.055rad/s for velocity.562

Thus, at trial x, the behaviour was stable if the percentage of the 200 previous trials within each limit563

fulfilled the metrics defined in Table 2, and the std was equal or below the aforementioned values.564

By comparing the learning convergence of the spino-cerebellar and cerebellar models (i.e., number of565

trials required to reach a stable performance) we quantified the effect of the SC in the cerebellar motor566

adaptation process.567

Additionally, we assessed the learning speed of the two models by considering the number of trials568

required to reach a target MAEpos of 0.1rad and a target MAEvel of 0.5rad/s. We defined the learning569

speed metric as 1 over this number of trials (N−1
trials).570

Thus, we evaluated how long it took for the performance to stabilise (learning convergence) and how571

fast the performance approached accurate tracking (learning velocity).572

Table 2. MAE convergence criteria from control chart

Stability limit MAEpos MAEvel

L1 = MAEx ∈ [µ − σ, µ + σ] ≥ 78% ≥ 73%
L2 = MAEx ∈ [µ − 3σ, µ − 2σ]U[µ + 2σ, µ + 3σ] ≤ 3% ≤ 3%

L3 = MAEx ∈] −∞, µ − 3σ]U[µ + 3σ,+∞[ ≤ 2% ≤ 2%
σ ≤ 0.012 ≤ 0.055

4.6.3 Measuring cerebellar synaptic adaptation573

To study the effect of the SC in cerebellar synaptic adaptation we quantified the difference in the synaptic574

weight distribution at GC-PC connections between the spino-cerebellar and cerebellar models. Each PC575

was innervated by all GCs in the model; i.e., a GC formed an excitatory synapse with each PC (total576

number of GCs in the model i = 20000; total number of PCs in the model j = 200). We stored the577

synaptic weight of all GC-PC synapses in a matrix of size ix j:578

579

W =


w1,1 w1,2 ... w1, j
w2,1 w2,2 ... w2, j
...

wi,1 wi,2 ... wi, j

 (10)

580

where wx,y is the synaptic weight of the synapse between GC x and PC y.581

We then represented the normalised weights stored in W, using i as the y-axis and j as the x-axis,582

providing a visual representation of the synaptic weight distribution (Fig. 5). To analyse the differences583

between the synaptic patterns that were formed in each model, we applied to the images Shannon’s584

entropy from [73], thus providing a quantitative measure of the complexity of the synaptic distribution.585

The higher the entropy, the more heterogeneous the synaptic weights; i.e., more specialised GC-PC586

connections were formed.587

22

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.531839doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.08.531839
http://creativecommons.org/licenses/by/4.0/


4.6.4 Measuring robustness against perturbations588

To assess the robustness against perturbations, for each applied perturbation type we computed the mean589

MAE deviation from the no-perturbation scenario over the 10 perturbed trials as follow:590

591 {
∆ ¯MAEpos = 1

10
∑10

i=1|MAEpos,i − ¯MAEpos, f |

∆ ¯MAEvel = 1
10
∑10

i=1|MAEvel,i − ¯MAEvel, f |
(11)

592

where MAEx,i is the MAE resulting from the ith perturbed trial and ¯MAEx, f the final MAE for the593

corresponding no-perturbation scenario. We also computed the std and T-test p-value between the spino-594

cerebellar and cerebellar model results as above.595

4.6.5 Measuring muscle space performance596

We also evaluated performance in the muscle space using the lab recorded benchmark. Activation signals597

from models are commonly compared to EMG envelopes, but such comparisons are generally difficult598

to achieve due to scaling issues that hinder a direct analogy between the model and the real muscle599

dynamics. To overcome this issue, we followed a more comprehensive approach by computing the cor-600

relation between activation signals and EMG envelopes. We computed the EMG envelopes by rectifying601

and low pass filtering the signals using a 5th order Butterworth filter with a cut-off frequency of 5Hz.602

We also recorded the maximal velocity contraction (MVC) signals for each participant, we processed603

them the same way and finally normalised the EMG signals by the maximum of the muscle MVC signal.604

Then, for each movement type, we considered only the main activated muscles with clear activation pat-605

terns during the recordings, i.e., DELTant, BIClong, BICshort, TRIlat and BRA for P1 flexion-extension606

movements; DELTant, DELTpost, BIClong, TRIlat and BRA for P1 circular movements; DELTant, BI-607

Clong, TRIlong and TRIlat for P2 flexion-extension movements; and DELTant, DELTpost, and BRA608

for P2 circular movements. Thus, there is inter-participant variability in muscle patterns. A figure per609

participant displays all the recorded EMG and highlights these main patterns in Supporting Information610

(S13 and S14 Fig.). It is worth noting that P1 performed smaller shoulder flexion with larger elbow611

flexion during flexion-extension movements compared to P2, corresponding to additional BICshort and612

BRA activation without TRIlong activation. In our experimental setup, we computed the maximal cor-613

relation around lag 0 (on a window of one-fourth of the movement duration) for the 200 trials prior614

to reaching the learning convergence metric and extracted the mean, std and T-test p-value between the615

spino-cerebellar and cerebellar model results. Regarding the lab recorded data, we did not consider those616

muscles that presented low and noisy EMG signals; however, those muscles were actually activated in617

our experimental simulations. Our musculoskeletal model indeed contained only 8 muscles, so that such618

overactivation may reproduce other non-modelled muscle recruitment.619

To study our cocontraction hypothesis, we computed and compared the cocontraction index (CCI)620

for each joint. From lab recordings or experimental simulations, we considered the average of EMG621

envelop or muscle activation signals, respectively, within each agonist and antagonist muscle group622

(i.e, DELTant and BIClong for shoulder flexor muscles; DELTpost and TRIlong for shoulder extensors;623

BIClong, BICshort and BRA for elbow flexors; TRIlong and TRIlat for elbow extensors) and the CCI624

defined by [74] and assessed by [75]:625

CCI j(t) =
¯EMG j,l(t)
¯EMG j,h(t)

( ¯EMG j,l(t) + ¯EMG j,h(t)) (12)

where ¯EMG j,l is the level of activity in the less active muscle group and ¯EMG j,h the level of activity626

in the most active muscle group for each joint. As this index is also sensitive to scaling, we computed627

the maximal correlation around lag 0 (on a window of one-fourth of the movement duration) for the628
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first 200 trials reaching our learning convergence metric (see Methods) and extracted the mean, std and629

T-test p-value between the spino-cerebellar and cerebellar model results. We also computed the mean630

joint CCI over each trajectory. A similar trend as that seen for the MAEvel was observed. We studied631

this potential relationship through a linear regression over all P1 and P2 trajectories.632

Data availability633

For reproducibility and comparative purposes, the source code is available on Zenodo at https://doi.634

org/10.5281/zenodo.7701436635
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