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12 Abstract: Complex interactions between brain regions and the spinal cord (SC) govern body motion,
13 which is ultimately driven by muscle activation. Motor planning or learning are mainly conducted at
12 higher brain regions, whilst the SC acts as a brain-muscle gateway and as a motor control centre pro-
15 viding fast reflexes and muscle activity regulation. Thus, higher brain areas need to cope with the SC as
16 an inherent and evolutionary older part of the body dynamics. Here, we address the question of how SC
17 dynamics affects motor learning within the cerebellum; in particular, does the SC facilitate cerebellar
1¢  motor learning or constitute a biological constraint? We provide an exploratory framework by inte-
19 grating biologically plausible cerebellar and SC computational models in a musculoskeletal upper limb
20 control loop. The cerebellar model, equipped with the main form of cerebellar plasticity, provides motor
21 adaptation; whilst the SC model implements stretch reflex and reciprocal inhibition between antagonist
22 muscles. The resulting spino-cerebellar model is tested performing a set of upper limb motor tasks,
23 including external perturbation studies. A cerebellar model, lacking the implemented SC model and
24 directly controlling the simulated muscles, was also tested in the same benchmark. The performances
25 of the spino-cerebellar and cerebellar models were then compared, thus allowing directly addressing
26 the SC influence on cerebellar motor adaptation and learning, and on handling external motor pertur-
27 bations. Performance was assessed in both joint and muscle space, and compared with kinematic and
23  EMG recordings from healthy participants. The differences in cerebellar synaptic adaptation between
29 both models were also studied. We conclude that the SC facilitates cerebellar motor learning; when
s0 the SC circuits are in the loop, faster convergence in motor learning is achieved with simpler cerebellar
a1 synaptic weight distributions. The SC is also found to improve robustness against external perturbations,
32 by better reproducing and modulating muscle cocontraction patterns.

33

s+  Summary: Accurate motor control emerges from complex interactions between different brain areas,
35 the spinal cord (SC), and the musculoskeletal system. These different actors contribute with distributed,
s integrative and complementary roles yet to be fully elucidated. To further study and hypothesise about
a7 such interactions, neuromechanical modelling and computational simulation constitute powerful tools.
ss Here, we focus on the SC influence on motor learning in the cerebellum, an issue that has drawn little
ss attention so far; does the SC facilitate or hinder cerebellar motor learning? To address this question, we
40 integrate biologically plausible computational models of the cerebellum and SC, equipped with motor
41 learning capability and fast reflex responses respectively. The resulting spino-cerebellar model is used
42 to control a simulated musculoskeletal upper limb performing a set of motor tasks involving two degrees
a3 of freedom. Moreover, we use kinematic and EMG recordings from healthy participants to validate the
4« model performance. The SC fast control primitives operating in muscle space are shown to facilitate
45 cerebellar motor learning, both in terms of kinematics and synaptic adaptation. This, to the best of our
s knowledge, is the first time to be shown. The SC also modulates muscle cocontraction, improving the
47 robustness against external motor perturbations.

s 1 Introduction

s Accurate motor control enables interactions with the environment and others, a process in which sen-
so sory information is integrated by the central nervous system (CNS) and translated into muscle activity,
st eventually driving body motion. Body motion results from the interaction between the musculoskele-
s2 tal system and diverse neural regions with distributed, integrative and complementary roles [[1]. In the
53 brain, various neural regions project descending motor control signals to the spinal cord (SC); e.g., the
s4 motor cortex, involved in the volitional control of motion [2f]; the basal ganglia, involved in selecting
55 motor behaviour and balance control [3}4]; the cerebellum, involved in motor coordination and learning
s [J]. The SC circuits integrate those motor descending signals to regulate motoneuron activity, ultimately
57 driving muscle activation. Besides, the SC also implements its own motor control mechanisms; e.g., fast
ss reflexes, control of rhythmic locomotion movements, or responses against perturbations [3]].
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Motor control within the CNS could be synthesised as a hierarchical process; higher brain areas
govern motor functions such as planning or learning, and the SC then integrates their descending control
signals, provides faster and lower-level control mechanisms, and ultimately drives muscle activity. To
comprehend and hypothesise about this hierarchical interaction, neuromechanical modelling and com-
putational simulation represent powerful tools, providing a holistic view conjugating from neuron to
neural network to motor behaviour levels [6]. To that aim, we present a hierarchical structure compris-
ing: a cerebellar model, a higher brain area equipped with motor learning and adaptation; an SC model,
integrating the cerebellar descending control signals and implementing fast-reflexes and muscle activity
regulation, and finally actuating a musculoskeletal upper limb model. This spino-cerebellar integration
thus provides a computational exploratory framework, which was further complemented with kinematic
and EMG data validation. Both the cerebellum and SC main physiological mechanisms have been pre-
viously described, however, little attention has been put on the SC influence on cerebellar motor control.
Spinal circuits are evolutionary old, they were present in the first vertebrates emerged about 500 million
years ago [/] and fully allowed basic locomotion [8]]. As new higher neural areas evolved to handle more
complex motor control, they had to coexist and interact with the old lower spinal circuits. It is not clear
whether that interaction facilitates motor control or implies a constraint with which higher neural regions
have to live with. On the one hand, the SC benefits motor control providing fast feedback loops, lower
dimensionality for planning and control, and motor primitives (i.e., low level motor building blocks).
On the other hand, higher brain areas have to deal with the highly non-uniform control space and hidden
states in the SC, and the need for inverse models that cover not only the body dynamics but also the
SC dynamics. Here, we study whether the SC facilitates cerebellar motor learning, or it is simply an
evolutionary constraint to be handled.

The cerebellum is key in motor control and coordination, and most importantly motor learning [9].
The Marr-Albus-Ito theory on cerebellar function [[10]] established the computational principles for su-
pervised cerebellar learning [[11], by which the cerebellum enables the adaptation of our actions so their
consequences match up to our expectations, i.e., minimising the difference between our intention and
the actual movement [12]. This motor learning capability stands upon the plasticity exhibited at the
synapses from parallel fibres (PF), i.e., axons of granule cells (GC), to Purkinje cells (PC); plasticity
regulated by the action of climbing fibres (CF) reaching PCs [13]]. The Marr-Albus-Ito theory assumes
the GCs carry a recoding of the sensory inputs conveyed through mossy fibres (MF) [[14], whereas CFs
carry an instructive signal coding the disparity between our motor expectation and the actual motor state.
Despite the well-accepted common ground on the cerebellum established by the Marr-Albus-Ito theory,
new findings keep refining the understanding about cerebellar structure and operation, for which com-
putational models are key contributors [15]. Computational models of the cerebellum have been used
to study its inner dynamics [16, [17], as well as harnessing cerebellar motor adaptation capabilities to
develop adaptive controllers based on internal model building [[18. [19].

Lower down in the CNS hierarchy, the SC transmits control signals from brain motor areas to the
muscles, and it also conveys sensory signals from muscle receptors back to the brain. But its role in
motor control goes beyond a mere gateway between the brain and muscles [20, 21]]. The SC contains
neural pathways that regulate muscle activity, control reflex responses and produce rhythmic locomotion
movements. These spinal pathways channel the sensory feedback mainly from stretch sensitive muscle
spindles and tension sensitive Golgi tendon organs (GTO). This sensory feedback is then transmitted to
motoneurons through afferent fibres and spinal interneurons, allowing reflex responses and muscle reg-
ulation mechanisms: e.g., stretch velocity reflex, static stretch reflex, Golgi tendon reflex, or reciprocal
inhibition between antagonist muscles [S]]. Besides, these spinal pathways are modulated by higher brain
areas during movement execution such as between the stance and swing phases during gait [22} 23], or
during arm movements [24, |25, [26[], thus highlighting the importance of the interaction between the SC
and higher brain areas.

Computational models have been used to gain deeper insight on the SC role in motor control; e.g.,
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108 control of centre-out reaching movements [27]]; control of biceps stretch reflex [28]]; reflex modulation
109 via feedback gains [29]; rejection of dynamic perturbations, highlighting the latency hierarchy levels of
1o feedback [30], or the contribution of GTO feedbacks [31]]. However, these approaches lacked complex
11 descending signals from higher brain areas, usually applying open-loop supraspinal modules, hence hin-
112 dering their use to study the interaction between the SC and higher neural regions; larger scale models
ns  are required.

114 Little work has been done on large scale modelling to dig into the SC interaction with higher CNS
15 regions. A recent example coupled spinal circuits with sensory and motor cortex models, forming a
116 feedback control loop designed to reduce the difference between the desired and perceived state of a
117 planar six-muscle arm [32]]. The model showed motor control success and reproduced some previous
1s experimental phenomena, whilst it was suggested that the ataxic nature of the produced movements
119 could be due to the lack of a cerebellum model in the loop.

120 Regarding spino-cerebellar integration in particular, a few previous computational approaches ex-
121 ist. Contreras-Vidal et al. modelled a cerebellum cooperating with an SC-based muscular force model,
122 together with a central pattern generator representing the motor cortex and basal ganglia [33]. The
123 cerebellar model, developed in analogue form and lacking the temporal correlation nature of cerebel-
124 lar learning, succeeded in learning muscle synergies, including cocontraction of antagonist pairs, that
125 improved upon the SC feedback control of tracking. Different cerebellar lesions were studied, but the
126 influence of the SC in cerebellar motor adaptation was sidestepped. Subsequently, Spoelstra et al. inte-
127 grated a cerebellar model with an SC model for postural control of a six-muscle two-dimensional arm
128 model [34]. The study assessed the predictive role of the cerebellum in accurate motor control, but
129 again, the effect of the SC in cerebellar learning was not addressed. More recently, Jo integrated a func-
130 tional cerebellar model with spinal circuits equipped with plasticity but lacking reflex or other complex
131 spinal dynamics [35]]. Results showed the effectiveness of the model to learn movements, with synaptic
132 plasticity at the SC helping to acquire muscle synergies. However, as stated by the author, that learning
133 capacity provided to the SC could be located anywhere in the corticospinal pathway, hence loosening
13¢  possible conclusions on the cerebellum-SC relation.

135 With the present work, we intend to extend the spino-cerebellar integration studies; we addressed the
136 questions of whether the SC facilitates cerebellar learning or it is just as an evolutionary constraint, and
137 how the SC contributes to handling motor perturbations. We modelled a biologically plausible cerebellar
138 spiking neural network (SNN), equipped with synaptic plasticity at GC-PC connections guided by the
139 instructive signal conveyed through CFs, thus, able to provide motor adaptation. We added an SC model
140 equipped with stretch reflex and reciprocal inhibition, integrating the descending signals from the cere-
141 bellum and sending muscle excitation commands to the musculoskeletal upper limb model, equipped
142 with two degrees of freedom (DOF) actuated by eight Hill-based muscles. Both the cerebellar and SC
143 model were integrated in a negative feedback control loop. The study, developed using computational
144 tools and neuromechanical modelling, is also supported by lab recorded kinematics and EMG data from
145 healthy participants.

146 In the presented framework, the cerebellar model provides the motor adaptation required for the
147 musculoskeletal upper limb model to achieve a set of goal motor behaviours, i.e., different upper limb
145 movements are defined in joint space (position and velocity), and the cerebellum acquires the inverse
149 model allowing accurate position and velocity tracking. We suggest the SC fast control primitives and
150 regulation of muscle activity to be key in facilitating the cerebellar learning of the muscle dynamics; the
151 SC allowed faster motor learning with simpler cerebellar synaptic adaptation. We also hypothesise that
152 the SC plays a major motor control role through cocontraction modulation; i.e., regulation of simultane-
153 ous activation of antagonist muscles. Cocontraction has been shown to improve stability by increasing
154 joint apparent stiffness [36], enhance upper limb movement accuracy [37]], and it has also appeared use-
155 ful in movements requiring robustness against perturbations [38]]. We found that the stretch reflex and
156 reciprocal inhibition mechanisms participate in modulating cocontraction, with a significant impact on
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157 cerebellar motor adaptation and response against external perturbations.

s 2  Results

159 We integrated the spinal cord and cerebellum models in an upper limb musculoskeletal feedback control
160 loop (Fig. TA). The spino-cerebellar model commanded the upper limb to perform a set of motor tasks,
161 a motor benchmark divided in two groups: i) lab recorded upper limb movements performed by two
162 healthy participants to study natural self-selected movements, ii) lab designed upper limb movements
163 with bell-shaped velocity profiles to study standard characteristic reaching movements. A cerebellar
e« model lacking the SC integration performed in the same motor benchmark (Fig. IB) thus providing a
165 spino-cerebellar vs. cerebellar control framework that allowed contextualising the SC and cerebellum
186 integration (see Methods for a further description of the control loop and motor benchmark).
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Fig. 1. Spino-cerebellar and cerebellar control loops. A) Spino-cerebellar model. The cerebellum
received the following input sensory information: the desired trajectory (joint position, Qy, and velocity,
Q,) coming from a trajectory generator, representing the motor cortex and other motor areas performing
motor planning and inverse kinematics; the actual upper limb state (joint position, Q,, and velocity, Q,)
received from the musculoskeletal model; the instructive signal (€) obtained as the mismatch between
the desired and actual joint state. The cerebellum then generated two output control signals per joint (M
and M., for flexor and extensor muscles, respectively), which were processed at the spinal cord. The
spinal cord also received the muscle state (length, /,,, and velocity, /,,) and generated the final muscle
excitation signals (u,,) which actuated the musculoskeletal model. The musculoskeletal model included
two joints, shoulder and elbow, actuated by eight muscles: deltoid posterior and biceps long as shoulder
flexors; deltoid anterior and triceps long as shoulder extensors; biceps long, short and brachialis as elbow
flexors; triceps long, lateral and medial as elbow extensors. B) Cerebellar model. My and M, were
directly applied as muscle excitation signals commanded to the upper limb. For bi-articular muscles
(biceps long and triceps long), the resulting u,,, was the mean of the control signal (M or M.) from both
joints.

167 The following sections present the validation of the spino-cerebellar model with the lab recorded
s kinematics and EMG data; an evaluation of the SC effect in cerebellar motor adaptation in joint, synaptic
1se and muscle spaces; and testing the response against external motor perturbations.
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170 2.1 Spino-cerebellar and cerebellar models perform the recorded kinematics

i1 We extracted kinematics and EMG data from two healthy participants (P1 and P2) performing upper
172 limb movements in the vertical plane involving the shoulder and elbow (see Methods). The motor tasks
173 performed by P1 and P2 can be grouped in: i) flexion-extension movements, ii) hand-tracked circular
174 trajectories. Both motor task groups were performed at different speeds, thus providing a set of natural
175 upper limb trajectories which constituted our initial motor control benchmark. We used the joint kine-
176 matics (i.e., shoulder and elbow position, Qy, and velocity, Qy) extracted from the recording sessions
177 as the desired trajectory to be learnt by the spino-cerebellar (Fig. TIA) and cerebellar (Fig. IB) models
178 in the simulation framework. Both models performed 2000 consecutive trials of each desired trajectory,
179 a trial-and-error process that allowed motor adaptation to fully deploy from scratch. The performance
180 metric was given by the position and velocity mean absolute error (MAE), i.e., difference between the
181 desired and actual trajectory in joint space, allowing to assess motor behaviour (see Methods).

182 We first calculated the position and velocity MAE evolution for both the spino-cerebellar and cere-
183 bellar models performing the trajectories extracted from each participant (Fig. 2JA, P1’s 1.8s circle tra-
18a  jectory; [Fig. 3JA, P2’s 1.2s flexion-extension; see Supporting Information for all P1 and P2 motor tasks
185 MAE evolution (S1A to S9A Fig.)). As the trajectory was repeated over time, the cerebellar adaptation
186 allowed position and velocity error reduction. At the end of the motor adaptation process, both the spino-
17 cerebellar and cerebellar models followed the target kinematics (Fig. 2B and [Fig. 3[B; see Supporting
188 Information for all P1 and P2 motor tasks kinematics performance (S1B,C to S9B,C Fig.)).
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Fig. 2. Spino-cerebellar and cerebellar models kinematics performance for the lab recorded sce-
nario, participant 1 (P1). A) Position and velocity mean absolute error (MAE) over the 2000-trial
motor adaptation process for both the spino-cerebellar and cerebellar models performing P1’s slow cir-
cle trajectory (1.8s). B) Joint kinematics of the last 200 trials (mean and std) for both models performing
P1’s slow circle trajectory (1.8s). C) Mean and std of the position and velocity MAE (last 200 trials) for
all P1 recorded trajectories. All spino-cerebellar vs. cerebellar mean position and velocity MAE have a
T-test p-value < 0.001.

We found that, attending to the MAE mean and standard deviation (std) of the last 200 trials of the
motor adaptation process (Fig. 2C and [Fig. 3[C), the spino-cerebellar model reached better performance
in terms of position tracking for all trajectories except for P1’s slow (2.3s) and moderate (1.8s) flexion-
extension (all spino-cerebellar vs. cerebellar mean position MAE having a T-test p-value < 0.001).
Conversely, the cerebellar model reached better performance in terms of velocity tracking except for
P1’s slow (1.8s) circle and P2’s moderate (1.6s) and fast (1.2s) circle (all spino-cerebellar vs. cerebellar
mean velocity MAE having a T-test p-value < 0.001, except for P2’s fast circle (1.2s) with a p-value =
0.136).
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Fig. 3. Spino-cerebellar and cerebellar models kinematics performance for the lab recorded sce-
nario, participant 2 (P2). A) Position and velocity mean absolute error (MAE) over the 2000-trial mo-
tor adaptation process for both the spino-cerebellar and cerebellar models performing P2’s fast flexion-
extension (1.2s). B) Joint kinematics of the last 200 trials (mean and std) for both models performing
P2’s fast flexion-extension (1.2s). C) Mean and std of the position and velocity MAE (last 200 trials) for
all P2 recorded trajectories. All spino-cerebellar vs. cerebellar mean position and velocity MAE have a
T-test p-value < 0.001, except for fast circle (1.3s) velocity with a p-value = 0.136.

2.2 The spinal cord improves cerebellar learning convergence and speed

Once we revealed the adaptation capability of both the spino-cerebellar and cerebellar models, we stud-
ied the influence of the SC model on cerebellar learning over the adaptation process. Using the position
and velocity MAE evolution of each P1 and P2 trajectory, we compared the spino-cerebellar and cerebel-
lar models learning convergence and learning speed. To study learning convergence we applied control
charts on the MAE data to determine the number of trials required to achieve a stable performance [39].
To check learning speed we analysed the number of trials required for the mean MAE of 200 samples
to reach a given target (i.e., 0.1 rad for position MAE, and 0.5 rad/s for velocity MAE). Learning con-
vergence and speed were tested on both position and velocity tracking performance (see [Fig. 4A for
an example of position and velocity MAE evolution and the metrics used, see Methods for a further
description).

The SC was proven to facilitate cerebellar learning as it reduced learning convergence time (Fig. 4B),
and increased learning speed (Fig. 4C) for both position and velocity for both P1 and P2 trajectories
left and right column, respectively). Thus, cerebellar motor adaptation was shown to be: 1)
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stabilised by the SC: average convergence time for MAE ,,; was 988 + 466 trials for the spino-cerebellar
model, and 1607 + 536 trials for the cerebellar model; and for MAE,,; 978 + 512 trials, and 1255 + 581
trials, respectively; ii) accelerated by the SC: average learning speed for position was 3.5¢—3 = 1.0e—-3
trials~! for the spino-cerebellar model, and 2.3e—3 + 1.4e-3 trials~! for the cerebellar model; and for
velocity 2.8¢—3 + 1.2¢—3 trials™!, and 2.1e—3 + 1.4e—3 trials~!, respectively.
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Fig. 4. Spino-cerebellar and cerebellar models motor adaptation for all P1 and P2 recorded
trajectories. A) Position MAE for the spino-cerebellar and cerebellar models for P1 slow circle (left
column), and velocity MAE for both models performing P2 fast flexion-extension (right column). Both
MAE plots show the trials at which the learning convergence and learning speed metrics are fulfilled. B)
Learning convergence for both models and all trajectories from P1 (left column) and P2 (right column).
The bar plots display the number of trials required by each model to fulfill the learning convergence
criteria (see Methods). C) Learning speed for both models and all trajectories from P1 (left column) and
P2 (right column). The bar plots depict the inverse of the number of trials required to reach a position
MAE of 0.1 rad and a velocity MAE of 0.5 rad/s.

2.3 The spinal cord simplifies cerebellar synaptic adaptation at GC-PC

Consistently with the Marr-Albus-Ito cerebellar theory, learning in the cerebellum was provided by
means of an STDP mechanism adjusting the synaptic weights at GC to PC synapses (a connection
established through PFs, i.e., GC axons). The effect of the SC on cerebellar learning, already checked
in terms of motor performance in the previous section, must leave its trace at the level of cerebellar
synaptic adaptation.

During the motor adaptation process of both the spino-cerebellar and cerebellar models, we recorded
the synaptic weight evolution at GC-PC connections every 200 trials for all P1 and P2 trajectories
(Fig. 5]A and B). We then measured the entropy of the GC-PC synaptic weight distributions to quan-
tify the synaptic complexity for both models: the higher the entropy, the more complex the synaptic
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226 weight distribution, i.e., higher heterogeneity of synaptic weights at the GC-PC population. Contrasting
227 the synaptic entropy of both models allowed evaluating the effect of the SC on cerebellar synaptic adap-
26 tation (Fig. 5C and D). Noteworthy, results showed that for all motor tasks the SC reduced the entropy
229 of the synaptic weight distribution: the mean entropy over all P1 and P2 trajectories was 3.65 + 0.78
230 for the spino-cerebellar model, and 4.41 + 1.14 for the cerebellar model. When the SC was lacking in
231 the control loop, more complex synaptic patterns (i.e., higher specialisation) were required at cerebellar
232 GC-PC connections. The spino-cerebellar model showed a simpler distribution of synaptic weights at
233 GC-PC connections; in other words, the spinal cord was therefore shown to simplify learning in the
234 cerebellum.
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Fig. 5. Spino-cerebellar and cerebellar synaptic entropy. A), B) Synaptic weights at granule cell
- Purkinje cell synapses, after 200 and 2000 trials respectively, for both models performing P1’s 1.8s
circle trajectory. The heat map represents the normalised GC-PC synaptic weights, which could range
from 0.0 to 15.0 nS. C), D) Evolution of the synaptic entropy at the GC-PC synapses over the 2000-trial
motor adaptation process, for all P1 and P2 trajectories, respectively. The higher the entropy, the more
complex the GC-PC synaptic distribution (i.e., higher heterogeneity in the synaptic weights over the
GC-PC synapses).

2s 2.4 Spino-cerebellar and cerebellar outcome in muscle space

236  We then evaluated the outcome in muscle space of both the spino-cerebellar and cerebellar models.
237 We compared the recorded EMG envelopes to the main activated muscles during P1 and P2 trajecto-
28 ries (Fig. 6A, deltoid posterior (DELTpost) and brachialis (BRA) for P1 slow circle, deltoid anterior
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23s  (DELTant) and triceps lateral (TRIlat) for P2 fast flexion-extension; please find a figure displaying all
240 the recorded EMG in Supporting Information (S13 and S14 Fig.)). Both models reproduced the main ac-
241 tivation patterns of each muscle with a small shift for P2 DELTant and TRIlat. The correlation between
242 the spino-cerebellar or cerebellar activation and the EMG signals was generally larger than 0.5 (see Sup-
243 porting Information (S15 and S16 Fig.)). The correlation was, however, larger for the spino-cerebellar
244+ model for most of the muscles and scenarios (all spino-cerebellar vs. cerebellar correlation having a
245 T-test p-value < 0.001). Nevertheless, the correlation averaged over muscles was similar between the
246 two models for all the movements and we could not conclude on a better muscle pattern reproduction
247 by one or the other model (all spino-cerebellar vs. cerebellar mean correlation having a T-test p-value >
28 0.05).

249 Results might not be conclusive when referred to a direct, muscle by muscle comparison between
250 our models performance and the recorded EMG; note that our musculoskeletal upper limb model was
251 actuated by 8 muscles, a mere simplification of the complex muscle dynamics of the human upper
252 limb. To overcome this, we further studied performance in muscle space using the joint cocontraction
253 index (CCI), thus unifying muscle activity per joint and providing a more comprehensive analysis (see
254 Methods). We found that the spino-cerebellar model better reproduced the CCI patterns at the level of
255 the elbow for P1 slow circle and at the level of the shoulder for P2 fast flexion-extension (Fig. 6B).
256 Significantly, the spino-cerebellar model provided a higher CCI for all P1 and P2 trajectories, both for
257 the shoulder and elbow (Fig. 6C, all spino-cerebellar vs. cerebellar CCI having a T-test p-value < 0.001).
255 We then compared the CCI provided by both models with the CCI from the recorded EMG (Fig. 6D).
2ss  The correlation was mainly higher for the spino-cerebellar model for all the trajectories except P1’s slow
260 circle (1.8s) and P2’s fast circle (1.2s) for the shoulder (all spino-cerebellar vs. cerebellar correlation
261 with a T-test p-value < 0.001, except for the fast trajectories for the elbow). We observed a similar trend
262 as that observed for MAE,,;, therefore, we performed a linear regression between the CCI and MAE,,;
263 for each joint. The results (Fig. 6E) highlighted a linear trend between these quantities for P1 elbow and
264 P2 shoulder and elbow (with a coefficient of determination of 0.81, 0.68 and 0.60 respectively), whereas
26s P1 shoulder presented a weaker relationship (with a coefficient of determination of 0.17).

266 Overall, we highlighted various findings that were consistent for various trajectories with various
267 initial and final positions and speeds. The spino-cerebellar model provided more stable and faster learn-
268 ing with simpler cerebellar synaptic adaptation, and an increase in CCI with better correlation to the
269 recorded EMG.
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Fig. 6. Spino-cerebellar and cerebellar model performance in muscle space for all P1 and P2
recorded trajectories. A) Comparison of muscle activation signals with recorded EMGs: the compar-
ison only shows the main activated muscles during recordings of P1’s slow circle (two left columns)
and P2’s fast flexion-extension (two right columns). The plots show the muscle activity of the 200 trials
prior to reaching the learning convergence metric, as well as their mean and std, for the two models
performance. EMG signals are scaled by the maximum of the activation signals for each muscle for the
sake of representation. B) Joint cocontraction indexes (CCI) from EMG activity and both models perfor-
mance, for the trajectories represented in A). EMG CCI are scaled by the maximum of the models CCI
for the sake of representation. C) Joint CCI values for both models and all P1 (two left columns) and P2
(two right columns) trajectories. All spino-cerebellar vs. cerebellar CCI have a T-test p-value < 0.001.
D) Joint CCI correlation between the models and EMG for all P1 (two left columns) and P2 (two right
columns) trajectories. All spino-cerebellar vs. cerebellar CCI correlation have a T-test p-value < 0.001,
except for the fast trajectories for the elbow. E) CCI-MAE,,; relation: linear regression between joint
CCI and joint MAE,,; over all the trajectories from P1 (two left columns) and P2 (two right columns).

2.5 The spinal cord increases the robustness against motor perturbations

To study the response against external perturbations of both the spino-cerebellar and cerebellar models,
we used our lab designed benchmark: upper limb flexion-extension movements with bell-shaped ve-
locity profiles, characteristic of reaching movements [40]. This kind of movement is usually used for
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274 addressing active-limb control malfunctioning, as cerebellar patients usually display upper limb oscilla-
275 tory tremors that result in endpoint overshooting and undershooting when reaching a target [41].

276 Both models faced 2000 consecutive trials of the flexion-extension movement performed at dif-
277 ferent speeds (3s, 2.3s, 1.5s); after motor adaptation, both models succeeded in performing the target
278 kinematics (see Supporting Information (S17 Fig.)). Once both models adapted to perform the desired
279 trajectories, we tested the contribution of the SC in handling motor perturbations. For that, we induced
280 a set of external forces: i.e., 50 N for 30 ms applied to the hand in different directions and at different
281 points along the flexion-extension movement, resulting in kinematics deviation (Fig. 7]A). We then mea-
22 sured the MAE deviation from the ideal, no-perturbation scenario (Fig. 7B). Each perturbation type was
233 applied on 10 separate trajectory trials to get an average response (see Methods). The cerebellar learning
284 capability was disabled to avoid adaptation to the perturbations. [Fig. 7]A displays the kinematics perfor-
285 mance of both models under one perturbation type, whilst performing the moderate flexion-extension
286 movement (2.3s). Larger kinematic deviation can be observed for the cerebellar model compared to
257 the spino-cerebellar one, especially at the level of the elbow. presents spino-cerebellar and
233 cerebellar model response against all the perturbations applied during the moderate flexion-extension
289 trajectory. The spino-cerebellar model shows smaller MAE deviation (AMAE) in position performance
200 for all perturbation types, and smaller velocity AMAE for all perturbations except for the first, fourth
201 and sixth perturbation types. It can be noted that there were both inter and intra-variability in the effect
202 of the various perturbation types on the trajectory kinematics, resulting in T-test p-values > 0.05 for
203 spino-cerebellar vs. cerebellar MAE deviation for some cases (see caption). Similar results were
204 obtained for the slow and fast bell-shaped flexion-extension trajectories; please find the corresponding
205 figure in Supporting Information (S18 Fig.). The spino-cerebellar model was shown to be more robust
206 against perturbations than the cerebellar model.

297 finally presents the average MAE deviation over all the applied perturbations for the three
208 bell-shaped, flexion-extension trajectories. The spino-cerebellar model results in larger velocity MAE
209 deviation for the fast trajectory, but lower MAE deviation for all the other cases (all spino-cerebellar vs.
a0 cerebellar mean MAE deviation having a T-test p-value > 0.05 due to the variable effect of the various
st perturbation types). The SC is thus shown to help handling motor perturbations in most cases.

13


https://doi.org/10.1101/2023.03.08.531839
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.08.531839; this version posted March 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

made available under aCC-BY 4.0 International license.

A
508 @ 5 = T 4
[ = T ©
5E 06 88 s & N\ & ks
3504 3> 25 N\ 2=
£ = £ 0 w = A\ w s -4
n 3 0.2 [ @ \\ Rs}
S ool = 25 = 001 - * 81
00 05 10 15 20 00 05 10 15 20 00 05 10 15 20 0.0 05 10 15 20
Time (s) Time (s) Time (s) Time (s)
=== Spino-cerebellar model == Cerebellar model = = = Desired trajectory Perturbation time
B c
) =
22 _ > 23 12 |
o g IF|=50N s
Lx02 (30 ms) L
L) 1 | 5 0.8
c@® | c®
2w o1 I | =t
gy° o 3% os
3, o 0 { 1 # -
0.0 | shill . i | |+| i ey i . 0.0 ) |
Extension Flex-ext (3s)  Flex-ext (2.3s)  Flex-ext (1.5s)
2 v (2
Flexion
Spino-cerebellar model B Cerebellar model I Position performance [ Velocity performance

Fig. 7. Spino-cerebellar and cerebellar model response against external force perturbations during
bell-shaped flexion-extension trajectories. A) Kinematics performance for both the spino-cerebellar
and cerebellar models under one forward perturbation at the flexed position whilst performing the 2.3s
flexion-extension trajectory. 10 trials are displayed. B) Position and Velocity MAE deviation (AMAE)
due to all the perturbations applied during the 2.3s flexion-extension trajectory. Mean AMAE and se of
10 trials are displayed. Spino-cerebellar vs. cerebellar MAE deviation have a T-test p-value < 0.05 for
position for the 3rd, 5th, 6th, 7th and 8th perturbation type, and for velocity for the 1st, 2nd, 4th, 6th and
7th, whereas the other cases have a T-test p-value > 0.05. C) Mean AMAE and se for all the perturbations
applied to the flexion-extension trajectories with different speeds (3s, 2.3s, 1.5s). 10 perturbed trials were
used for each perturbation type. All spino-cerebellar vs. cerebellar mean MAE deviations have a T-test
p-value > 0.05.

3 Discussion

The integration of biologically plausible computational models of neural regions allows studying their
interaction and complementarity. We presented a computational exploratory approach integrating a cere-
bellar and an SC model, performing motor control of an upper limb musculoskeletal model; a simulation
framework complemented with kinematic and EMG data validation. We contrasted the spino-cerebellar
integrated model with a cerebellar model, both performing in the same motor benchmark, which al-
lowed us to extract some key elements of the kinematic and muscle performance directly attributable to
the presence of the SC in the spino-cerebellar control loop. The SC was found to stabilise and accelerate
cerebellar motor adaptation and to improve the response against perturbations through stretch reflexes
and reciprocal inhibition. Rather than being an evolutionary constraint, the SC offers motor control ben-
efits.

Both the spino-cerebellar and cerebellar models succeeded in learning the musculoskeletal dynam-
ics to achieve the goal motor behaviour. Noteworthy, the presence of the SC provided faster motor
adaptation, thus assisting cerebellar learning. In this regard, a significant finding was the fact that the
spino-cerebellar model revealed less complexity at the GC-PC synaptic weight distribution; i.e., the SC
led to the formation of less specialised GC-PC synapses in the cerebellum. To the best of our knowledge,
it is the first time that a computational model highlights and weights the influence of the SC in facilitat-
ing cerebellar learning. Direct regulation of muscle activity by the SC has been here found to facilitate
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s20 the cerebellar acquisition of the upper limb inverse dynamics. Indeed, the body plant dynamics to be
321 learnt by higher brain areas, might be simplified by the SC taking over lower level and faster control
s22 primitives, such as the SC potential role in gravity compensation [42, 43]]. Thus, the SC performance in
323 muscle space may lighten other operations of the sensorimotor process, occurring at a higher level such
324 as the cerebellum’s contribution in compensating interaction torques in joint space [44], or in shaping
325 spatiotemporal muscle synergies rather than generating specific complex muscle patterns [45]].

326 The SC stabilises the system at muscle level, increasing cocontraction through stretch reflexes and
s27  coordinating the antagonist activation patterns through reciprocal inhibition. Thus, the SC participates in
s2s modulating cocontraction, which plays an important role in motor control and stability [36, 38|, provid-
3¢ ing better accuracy despite its energy cost [37]]. In our framework, the spino-cerebellar model increased
a3 the joint CCI in all the studied motor tasks compared to the cerebellar model; i.e., cocontraction was
331 indeed mostly determined by the SC motor action. Importantly, the CCI from the spino-cerebellar model
a2 also resulted in a better correlation with the CCI patterns from the recorded EMG signals, thus support-
sz ing closer biological plausibility than the cerebellar model. The CCI increment was also revealed when
s34 inducing perturbations in the control loop; the spino-cerebellar model provided a better response, reduc-
a3  ing the kinematic deviation. Muscle elasticity has been previously pointed as a key passive contributor
s in handling perturbations [46]. Our framework, using the same muscle mechanical properties in both
a7 the spino-cerebellar and cerebellar control loops, allowed directly assigning to the SC a pivotal role in
sss  providing robustness against external perturbations, thus supporting previous findings [30, [31]].

339 The cocontraction increase carried by the SC involved a poorer velocity tracking. Indeed, the spinal
a0 reflexes between antagonist muscles may induce oscillatory activation patterns and thus alter the velocity
asr performance. We did not observe, however, any trend in CCI values related to movement speeds despite
a2 higher cocontraction values have been reported in slower movements [38]]. Due to the SC and cerebellar
a3 models conception, our implementation lacks differentiation between the roles of the cerebellum and SC
a4 depending on movement speed. Note however that it is expected a major role of the cerebellum in fast
a5 ballistic movements which cannot rely on feedback availability [47, 34], and which do present lower
a6 cocontraction levels [38]].

347 Our model could be further improved by adding other cocontraction mechanisms to the control loop.
ass  Clinical studies supported a potential role of the cerebellum and basal ganglia in cocontraction mech-
a4 anisms. In particular, patients with cerebellar ataxia showed excessive agonist-antagonist coactivation
350 [48]] and cerebellar stimulation was shown to reduce coactivation in patients with spasticity [49]. Thus,
351 future development of the cerebellar model shall include control of the cocontraction level. On the SC
352 side other pathways could be included, in particular modulation mechanisms that are present during
sss - arm movements [24) 25, 26]. For instance, presynaptic inhibition of Ia terminals at both activated and
354 antagonist pathways is slightly decreased at the onset of a voluntary contraction through descending sig-
sss  nals. Thus, the increased gain of the stretch reflex pathway ensures that activated motoneurons receive
sse la feedback support. The reciprocal Ia inhibition is also depressed during a voluntary contraction at
357 the corresponding muscle to prevent its inhibition by the stretch-induced Ia discharge from its antago-
sss  nist. During cocontraction, reciprocal Ia inhibition is also depressed by increased presynaptic inhibition
a9 on la terminals [5]. Also synaptic plasticity could be included in the SC model, as done in previous
ss0 computational approaches [32]]. Activity dependent plasticity mechanisms have been reported in the
a1 SC: e.g., the spinal stretch reflex can indeed be conditioned [50]; the feedforward circuits within the
sz SC, in addition to somatosensory feedbacks, may contribute to SC learning by allowing motoneurons to
ses contrast feedforward and feedback motor inputs [51]. Supporting the latter, [52] showed that signals in
s« human muscle spindle afferents during unconstrained wrist and finger movements predict future kine-
ses matic states of their parent muscle. Muscle spindles would then have a forward-sensory-model role, as
see that attributed to the cerebellum [53]], emphasising the complementarity and overlapping functionality
37 between neural regions.

368 Integrated computational models represent a powerful tool to support and guide experimental studies
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see in the pursuit of a better understanding of the CNS. We believe our spino-cerebellar model to contribute
a0 in this direction, providing a picture of how the SC influences cerebellar motor adaptation and learn-
a7 ing. Further development of the model, together with addition of other neural regions, will help to keep
a2 elucidating CNS operation.

w4 Methods

s+ The cerebellar and SC models operated in a closed loop with joint and muscle feedback (Fig. TA), in
ars which cerebellar motor learning was assisted by fast reflex response and muscle activity regulation pro-
a7e  vided by the SC. The cerebellar model received sensory input signals describing the desired motor state
77 (desired position, Qy, and velocity, Qg, per joint) and the actual motor state of the upper limb muscu-
s loskeletal model (actual position, Q,, and velocity, Q,, per joint). The comparison of the desired and
a7e actual motor states provided the instructive signal (e per joint), also received by the cerebellum. The
a0 cerebellar output comprised a flexor-extensor (i.e., agonist-antagonist) pair of control signals (M and
ss1 M, per joint) that were sent to the SC model, which also received direct muscle feedback (length, /,,,
sz and velocity, /,,, per muscle). The SC generated the muscle excitation signals (u,, per muscle) resulting
ss3 in muscle activation which finally actuated the upper limb musculoskeletal model, thus closing the loop.
s« To contextualise the spino-cerebellar integration, we also implemented the control loop lacking the SC
ses  circuits (Fig. IB). In this scenario, the cerebellar output signals were directly used as muscle excitation
ass signals. The control loop included sensory and motor delays, mimicking the biological pathways. In
a7 the cerebellar sensorimotor pathway, there exists a delay ranging from about 100 to 150ms (with inter
sss and intraindividual variations), accounting for the time spent from the generation of a motor command
sse until sensing back its effect [54]. Regarding the SC to muscles transmission, a delay of about 30ms
a0 has been reported for the upper limb [55, [56]. Our spino-cerebellar model included a 50ms sensorial
so1  delay affecting the reception of sensory inputs in the cerebellum; a transmission delay of 30ms from the
sz cerebellum to the SC, and 30ms from the SC to the muscles, total motor delay of 60ms. The asymmetry
a3 between sensory and motor delay stands for the higher latency found in neuromuscular junction, elec-
se4 tromechanical and force generation delays (involved in the motor pathway), compared to the sensing,
s9s nerve conduction and synaptic delays (involved in the sensory pathway) [S7].

396 The following subsections describe the different components of our spino-cerebellar control loop.
sz The various building blocks were integrated using Robot Operating System (ROS), allowing a modular
s9s implementation.

ss 4.1 Cerebellar model

a0  We implemented a spiking neural network (SNN) replicating some cerebellar neural layers and equipped
st with spike-timing-dependent plasticity (STDP) to allow motor learning and adaptation. The cerebellar
a2 SNN model was adapted from previous models applied to robot control loops [18], [19]. The cerebellar
a3 SNN structure was divided in the following neural layers: i) mossy fibres (MFs), constituted the sensory
w4 input layer conveying the desired and actual motor state signals (Qg, Q4, Qu, Qa); ii) the spiking activity
a5 of MFs was transferred through excitatory afferents to the granule cell (GC) layer, where the sensory
a6 input information was univocally recoded; iii) the axons of the GCs, i.e., the parallel fibres (PFs), formed
a7 excitatory connections with the Purkinje cells (PCs); iv) PCs also received the excitatory action of the
a8 climbing fibres (CFs) conveying the instructive signal (€); v) the deep cerebellar nuclei (DCN) layer
a0e received the inhibitory action from PCs and excitatory connections from both MFs and CFs. The DCN
10 spiking activity was translated into output motor commands (flexor-extensor motor control signals, M ¢
411 and M,) that constituted the cerebellar motor response to the sensory stimuli. Every neural layer was
412 divided in two microcomplexes [58]], being each microcomplex oriented to drive one of the two joints
413 (shoulder or elbow). Each microcomplex at the PC-CF-DCN loop was partitioned into two regions: ag-
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onist and antagonist. The agonist region operated the joint flexor muscles, whereas the antagonist region
operated the extensor muscles. This synergic agonist-antagonist (flexor-extensor) architecture allowed
the cerebellar model to regulate the spatiotemporal muscle activity patterns [45]], key for successful mo-
tor control [59]. See for a schematic representation of the cerebellar network, and for

network topology.
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Fig. 8. Cerebellum model. A) Neural layers, connections, input and output sensorimotor signals.
The input signals are conveyed by the mossy fibres (MFs), which project excitatory synapses to the
granule cells (GCs). These perform a recoding of the input signals, and project excitatory connections
through the parallel fibres (PFs) reaching Purkinje cells (PCs). PF-PC connections are endowed with
plasticity, balanced between the long-term potentiation (LTP) caused by the input PF spikes, and long-
term depression derived from the climbing fibres (CFs) activity reaching PCs. CFs convey the instructive
signal. Finally, PCs project inhibitory synapses towards the deep cerebellar nuclei (DCN), the output
layer of the cerebellar model, which also receives a baseline excitatory action from MFs and CFs. B)
Detailed schematic of the cerebellar connections. Each GC receives the input excitatory action from a
unique combination of four MFs. Each input signal (Q4, Q4, Qu, Q.), is codified by ten MFs, being only
one out of the ten MFs active at each time step. Hence, at each time step, four MFs will be active (one per
input signal). That unique combination of four input MFs excites one single GC, allowing to perform a
univocal representation of the sensory input at the granular layer. PCs then receive the excitatory action
from all GCs in the cerebellar model and only one CF, allowing to relate the joint-specific instructive
signal, to the global sensory state received from GCs. The PC-CF-DCN loop differentiates between
agonist and antagonist regions, thus allowing simultaneous control of both flexor and extensor muscles.

Table 1. Cerebellar neural topology. Dashed entries stand for not applicable.

Neurons Synapses
Pre-synaptic | Post-synaptic | Number Type | Initial Weight (nS) | Weight range (nS)
80 MFs 20x10% GCs 80x10®* | AMPA 0.18 -
80 MFs 200 DCN 16x103 | AMPA 0.3 -
20x103 GCs 200 PCs 4000x10° | AMPA 4.8 (0.0, 15.0]
200 PCs 200 DCN 200 GABA 1.0 -
200 CFs 200 PCs 200 AMPA 0.0 -
200 CFs 200 DCN 200 AMPA 0.5 -
200 CFs 200 DCN 200 NMDA 0.25 -
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419 Consistently with the Marr-Albus-Ito theory on cerebellar motor adaptation [60, 61} 62], our cere-
420 bellar SNN model was equipped with synaptic plasticity at the GC-PC synapses. The synaptic weights
a1 were adjusted by means of an STDP mechanism that correlated the sensory information (univocally
a2 coded at GCs and transferred to PCs through PFs) and the instructive signal (conveyed to PCs by CFs).
423 This STDP mechanism was a balanced process of long-term potentiation (LTP) and long-term depres-
s24 sion (LTD). Each time a PC neuron received a GC spike through a PF, that synapse was potentiated
425 (LTP) by a fixed amount as follows:

LT PAWGc,—pc (1) = a(6GCspike(t) * dt) (D

a6 where AWgc,— ch(t) stands for the synaptic weight change between GC i and PC j; @ = 0.006nS is the
427 synaptic weight increment; and dgcypike(?) is the Dirac delta function of a GC spike, received at PCs
a2 through PFs.

429 When the spiking activity of a CF conveyed an instructive signal to a PC neuron, the GC-PC con-
430 nection that was involved in that error generation was depressed (LTD) as described by:

ICFspike
LTDAWGc,—pc,(t) = B * f k(t = tcFspike) * 0GCspike(t) * dt (2)

a3t where 8 = —0.003nS stands for the synaptic weight decrement; and k(x) defines the integrative kernel
a2 with eligibility trace correlating past sensory inputs with the present instructive signal, i.e., the amount of
a3 LTD due to a CF spike depended on the previous GC activity received at PCs through PFs (see [[18][19]
s34 for a further description). A well-balanced LTP-LTD process changed the PF-PC synaptic weights, thus
a5 modifying the PCs output activity and the inhibitory action of PCs over DCN neurons, which ultimately
a3 varied the DCN output activity. Modulating the DCN activity allowed adaptation of the output motor
437 response to the input stimuli. An iterative exposure to the sensory patterns defining the desired motor
s task, allowed adapting the motor response for error reduction.

439 We used leaky integrate and fire (LIF) neurons (see Supporting Information (S1)) and EDLUT sim-
a0 ulator [63]] to build the cerebellar SNN model. Please see [18| [19]] for a further review of the STDP
a1 mechanism and cerebellar layers.

w2 4.2 Spinal cord model

a3 Our SC model integrated the descending control signals from the cerebellum and the direct muscle feed-
s back (Fig. 9A). The SC model allowed fast reflex response and muscle activity regulation by means of
a5 monosynaptic Ia stretch reflex and disynaptic reciprocal inhibition pathways between antagonist mus-
ss cles. The motoneuron (MN) of a given muscle received the following inputs: i) an excitatory connection
w7 conveying the cerebellar output signal (M or M., for flexor or extensor muscle); ii) an excitatory con-
48 nection from the Ia afferent fibre of the muscle (i.e., stretch reflex); iii) an inhibitory connection from the
a9 la interneuron (Ia IN) innervated by the Ia afferent of the antagonist muscle (i.e., reciprocal inhibition).
a0 The antagonist relation between the muscles of the upper limb model is detailed below. The neuron
a5t leaky integrate dynamics of the MN firing rate, r, were modelled as follows:

Ti(t) = =r(0) + o () wirdt = 1)) 3)

a2 where T = 1ms stands for the spinal neuron activation time constant; o(x) = m with D = 8,
ss3  emulating the on-off behaviour of neurons; i describes the MN input signals; w; is the synaptic weight of
454 the input connection, being 1 for excitatory synapses and 0.5 for the inhibitory; r; is the input activity;
a5 and 1; = 30ms stands for the stretch reflex response delay. Depending on neuron size, T can vary from

a6 1 to 10ms [64], we only considered fast-response neurons as in [28]]. For the upper limb, 7; is about
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a7 30ms [S5 156]. The output rates of the MNs are finally provided as muscle excitation signals to the
ass - musculoskeletal model through a sigmoid (u(t) = o(r(¢))), thus inducing movement. The dynamics of Ia
ss9  IN neurons followed the same description, with differing input activity including inhibitory connections

a0 between antagonist la IN (Fig. 9B).

A B
Cerebellum W, Wi

T Weee T
M(t) € [0,1] ( DELTpost )@--—-------- o  DELant )
: wy wr,
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Fig. 9. Spinal cord model. A) The spinal cord circuits were modelled as one motoneuron per muscle,
receiving an excitatory input control signal (M) from the cerebellum, an excitatory connection from the
Ia afferent fibre of the muscle (i.e., stretch reflex) and an inhibitory connection from the Ia interneuron (Ia
IN) innervated by the Ia afferent of the antagonist muscle (i.e., reciprocal inhibition). We also included
inhibitory connections between antagonist la interneurons. Each neuron is modelled with leaky integrate
dynamics. B) Antagonist relation between the 8 upper limb muscles: all the muscles shared the same
synaptic weight for the stretch reflex and reciprocal inhibition pathways, i.e., 1 for excitatory synapses
and 0.5 for the inhibitory.

461 We used Prochazka’s model for the Ia afferent feedback dynamics [65], with a mean firing rate of
w2 10Hz [28] 166, 67]:

ria(t) = 5gn(ln(®) * 43I +2(Ln(®) = lom) + 10 “)

w3 where I, and [, describes the muscle fibre length and velocity in mm and mm/s; and |x|+= max(|x|, 0.01).
se4  The output rate, ry,, was scaled by its maximum ry, gy to get a normalised value, i.e., r7,€[0, 1].
465 To model the SC we used FARMS Python library, developed at the BioRobotics laboratory.

ws 4.3 Musculoskeletal upper limb model

a7 We used a 2 DOF musculoskeletal upper limb model as the front-end body to be controlled. The model,
a8 adapted from [68]], included two flexion-extension joints: shoulder and elbow. The model was actuated
a9 by 8 Hill-based muscles [69], with the following joint distribution: i) for the shoulder, flexion was
a0 carried by the deltoid anterior and posterior (DELTant, DELTpost) and the biceps long (BIClong), and
471 extension was conducted by the triceps long (TRIlong); ii) for the elbow, flexion was provided by the
a2 biceps long and short (BICshort) and the brachialis (BRA), whilst extension was allowed by the triceps
473 long, lateral and medial (TRIlat, TRImed). Note that BIClong and TRIlong were bi-articular muscles, as
w74 they actuated both joints. The antagonist relation between muscles is depicted in[Fig. 9B. The Hill-based
475 muscle dynamics were the following:

{ i = (@ Sl lo) + (L) = cos6 5)

dt — t(u,A)
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76 with f, the muscle force, f, a combination of the force-length and force-velocity curves, f, the passive
a7 force-length curve, 6 the pennation angle, a the muscle activation (i.e., the concentration of calcium ions
a7s  within the muscle), and u the muscle excitation (i.e., the firing of the MN) [69]. We used OpenSim
479 physics engine to simulate the muscle and skeleton dynamics [70]]. To allow using kinematics and EMG
as0 from lab recordings, an OpenSim upper limb model was scaled to match the morphology of each lab
st participant. This scaling process was achieved using OpenPifPaf Human Pose Estimation algorithm [[71]]
ss2  during the static period and OpenSim scaling tool.

s 4.4 Benchmarking with various motor tasks

s« We used a set of different motor tasks to be performed by the spino-cerebellar and cerebellar models,
sss  differentiating between two scenarios: lab recorded and lab designed motor tasks.

486 For the lab recorded scenario, we used kinematics and EMG recordings from healthy participants
ss7  performing different arm movements. Experiments were approved by the CER-VD under the license
sss number 2017-02112 and performed in accordance with the Declaration of Helsinki in NeuroRestore
ss9 laboratory at Lausanne CHUV. Two participants, P1 and P2, were asked to perform planar reaching
a0 movements (flexion-extension) and continuous circular movements, both movements performed in the
a9 vertical plane and at various speeds (self-selected speeds). For flexion-extension movements both shoul-
a2 der and elbow moved in the same direction, whilst during the continuous circular movements the joints
s93  moved in opposite directions. Thus, our benchmark includes interaction torques both assisting and re-
a94  sisting the movement. The recorded kinematics (i.e., joint position and velocity) constituted the desired
495 motor state (Qg, Q) used as the control loop sensory input, whilst the EMG recordings supported model
a96 validation in muscle space. For each recorded motor task we ran the experimental setup with both the
a7 spino-cerebellar and cerebellar models, using an OpenSim upper limb model scaled to match the partic-
a9s ipant’s morphology. We then compared the models’ experimental performance to the lab recordings in
99 both joint and muscle spaces.

500 P1 and P2 movements were recorded using an RGB-D camera, and we used OpenPifPaf human pose
so1  estimation algorithm [[71]] to extract the 2D positions of the participant’s anatomical joints at a frame rate
sz of 25fps. Then 3D pose was deduced from the 2D pose, camera intrinsic, and depth information after
sos accounting for distortion. The occlusions were removed using specially designed filters that ensure co-
s04 herence in joint anatomy and time. We scaled an OpenSim upper limb musculoskeletal model to match
sos the participant’s morphology, and ran inverse kinematics (IK) over the body segment kinematics, thus
sos allowing the extraction of joint position and velocity from the participant’s motion. P1 generally per-
sz formed fast movements, and the kinematics recordings of his fast circular movements were too noisy to
s0s extract joint position, thus we excluded this scenario from our analysis. For muscle activity, we recorded
soo  EMG using Delsys system and Trigno Avanti and Trigno Quattro sensors with a acquisition frequency
sto - of 1259.3Hz. We aligned the EMG with the kinematics signals thanks to a trigger inducing a pulse in an
511 additional EMG channel and lightning a led in the camera range. We then computed the EMG envelopes
stz to compare with our models muscle activation signals. For each recorded signal, we removed the mean
53 and rectified the signal, which was then filtered using a low pass Butterworth filter with a 5SHz cutoff
st4 frequency. We applied the same processing steps to the maximal voluntary contraction (MVC) signal
st5  of each muscle (recorded at the beginning of the session), and used the maximal value of the processed
ste  MVC to normalise the corresponding muscle processed EMG signal.

517 For the lab designed scenario, we implemented a set of flexion-extension movements with different
sts  bell-shaped joint velocity profiles, characteristic of multi-joint arm reaching movements [40]. We then
s19 used the joint kinematics (Qy, Qg) as the desired motor state to be performed by the spino-cerebellar
s20 and cerebellar models (please see Supporting Information for a depiction of the bell-shaped trajectories
st (S10to S12 Fig.)). We broadened the benchmark by adding a perturbation study using these bell-shaped
s22  trajectories. After cerebellar learning consolidation, we applied a set of motor perturbations whilst the
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523 trajectories were being performed: SON for 30ms, applied to the hand in different directions and at dif-
s« ferent points along the flexion-extension movement. Each perturbation type was applied to 10 separate
s25  trials to get an average response, leaving 3 non-perturbed trials in between perturbed trials so that the
s26  model returned to its unperturbed state. Note that cerebellar learning was disabled during the perturba-
527 tion study, to avoid cerebellar adaptation to the external forces and focus on SC response.

528 Using this motor benchmark, and comparing the performance of the spino-cerebellar and cerebellar
529 models, we could evaluate the cerebellum and spinal cord integration in terms of: muscle activity, motor
s30 adaptation and joint space performance, synaptic adaptation, and response to motor perturbations, for
s31 various trajectories with different initial and final positions and speeds. Please see Supporting Informa-
s32  tion for a representation of the motor tasks joint kinematics (S1 to S12 Fig.).

s 4.5 Cerebellar instructive signal

s« The cerebellar instructive signal e(f) was obtained as the mismatch between the desired and actual joint
535 state, combining in a single value per joint both position and velocity errors as follows:

e(t) = Kp[Qa(t) — Qu(D] + Ky[Qua(t) — Qu(D)] (6)

ss6  where K, = 3 and K, = 1 are the position and velocity error gain, respectively. The trajectory error
sz signal in joint space can be derived from the proprioceptive and sensory information conveyed by the
s  spino-cerebellar tract from the muscle spindles (muscle length) and Golgi tendon organs (muscle force)
s39  to the cerebellum [72].

s0 4.6 Performance metrics
s41 4.6.1 Measuring kinematics performance

sz To evaluate the kinematic performance of the spino-cerebellar and cerebellar models, we defined a set
ssa  of metrics based on the mean absolute error (MAE) between the desired (Qy, Qy) and actual (Q,, Q)
544 motor state of the arm:

545

{ MAE po(1) = 5 371104, (1) = Qusj (1) o

MAE,(0) = 5 371104 (1) = Qasj ()]
546
se7 where N stands for the number of joints (2), and j for the joint index. We considered the position and
s4s  velocity MAE of each motor task trial to assess the performance accuracy:

549

{ MAEpos = %Z;T:O MAEpox(t) 8)

MAE,. = %Z[T:() MAE, (1)

sso - where T stands for the motor task period. We finally averaged these values over 200 trials and compared
ss1  the final performance of the two models with the final mean MAE,,; and MAE,,; (MAE pos,fs MAE vel,f)-
552 We also computed the standard deviation (std) and the T-test p-value between the two models’ results
sss - with a T-test for the means of two independent samples of values.

554 4.6.2 Measuring learning performance

55 ' To measure the learning convergence (i.e., number of trials required to reach a stable trajectory track-
56 ing), we used control chart metrics [39]. Throughout the MAE,,; and MAE,,; curve of each motor task
557 (all performed for a total of 2000 learning trials) we computed the mean (u) and standard deviation (o)
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sse - using a sample size of 200 trials, which provided the following performance stability limits:
559

Ll = MAE, € [u— o, u+ 0]

L2 = MAE, € [u—30,u—20]U[u + 20, u + 30] )

L3 = MAE, €] — oo, u — 30U [u + 30, +o0[
560
sst ~ We then checked the percentage of those 200 trials within each limit. As the limits were defined by
se2 the std, we also checked that the std value was below 0.012rad for position and 0.055rad/s for velocity.
ses Thus, at trial x, the behaviour was stable if the percentage of the 200 previous trials within each limit
se4 fulfilled the metrics defined in [Table 2| and the std was equal or below the aforementioned values.
ses By comparing the learning convergence of the spino-cerebellar and cerebellar models (i.e., number of
ses  trials required to reach a stable performance) we quantified the effect of the SC in the cerebellar motor
se7 adaptation process.
see  Additionally, we assessed the learning speed of the two models by considering the number of trials
seo required to reach a target MAE ), of 0.1rad and a target MAE,,; of 0.5rad/s. We defined the learning
s70 - speed metric as 1 over this number of trials (Nt‘”.lals).
sz Thus, we evaluated how long it took for the performance to stabilise (learning convergence) and how
s fast the performance approached accurate tracking (learning velocity).

Table 2. MAE convergence criteria from control chart

Stability limit MAE s | MAE,,

Ll =MAE, € [u—-o,u+0o] >78% | 273%

L2 =MAE, € [u—-30,u—-20U[u+ 20,1+ 30] <3% < 3%
L3 = MAE, €] — oo,y —30]U[u + 30, +oo[ <2% <2%

o <0.012 | <£0.055

573 4.6.3 Measuring cerebellar synaptic adaptation

s74  To study the effect of the SC in cerebellar synaptic adaptation we quantified the difference in the synaptic
575 weight distribution at GC-PC connections between the spino-cerebellar and cerebellar models. Each PC
s76  was innervated by all GCs in the model; i.e., a GC formed an excitatory synapse with each PC (total
s77 number of GCs in the model i = 20000; total number of PCs in the model j = 200). We stored the
s7s  synaptic weight of all GC-PC synapses in a matrix of size ixj:

579

Wil W12 ... Wl,j
wo,1 W2, ... W2,

W= W g (10)
Wit Wis2 .. Wi,j

580

ss1  where wy,, is the synaptic weight of the synapse between GC x and PC y.

sz We then represented the normalised weights stored in W, using i as the y-axis and j as the x-axis,
sss  providing a visual representation of the synaptic weight distribution (Fig. 5). To analyse the differences
ss4 between the synaptic patterns that were formed in each model, we applied to the images Shannon’s
sss  entropy from [73]], thus providing a quantitative measure of the complexity of the synaptic distribution.
sss The higher the entropy, the more heterogeneous the synaptic weights; i.e., more specialised GC-PC
ss7  connections were formed.
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sss 4.6.4 Measuring robustness against perturbations

sss To assess the robustness against perturbations, for each applied perturbation type we computed the mean
sso  MAE deviation from the no-perturbation scenario over the 10 perturbed trials as follow:

591

{ AMAEpos = % Z,‘lfllMAEpos,i - MAEpos,fI (11)

A1‘4AEvel = % Z}B”MAEvel,i - MAEvel,fl
592
s0s where MAE,; is the MAE resulting from the i perturbed trial and MAE, ¢ the final MAE for the
se4  corresponding no-perturbation scenario. We also computed the std and T-test p-value between the spino-
ses  cerebellar and cerebellar model results as above.

sis  4.6.5 Measuring muscle space performance

se7  We also evaluated performance in the muscle space using the lab recorded benchmark. Activation signals
ses  from models are commonly compared to EMG envelopes, but such comparisons are generally difficult
s99  to achieve due to scaling issues that hinder a direct analogy between the model and the real muscle
soo dynamics. To overcome this issue, we followed a more comprehensive approach by computing the cor-
ot relation between activation signals and EMG envelopes. We computed the EMG envelopes by rectifying
sz and low pass filtering the signals using a 5th order Butterworth filter with a cut-off frequency of 5Hz.
s0s We also recorded the maximal velocity contraction (MVC) signals for each participant, we processed
so4 them the same way and finally normalised the EMG signals by the maximum of the muscle MVC signal.
sos Then, for each movement type, we considered only the main activated muscles with clear activation pat-
eos terns during the recordings, i.e., DELTant, BIClong, BICshort, TRIlat and BRA for P1 flexion-extension
sz movements; DELTant, DELTpost, BIClong, TRIlat and BRA for P1 circular movements; DELTant, BI-
sos Clong, TRIlong and TRIlat for P2 flexion-extension movements; and DELTant, DELTpost, and BRA
sos for P2 circular movements. Thus, there is inter-participant variability in muscle patterns. A figure per
st0 participant displays all the recorded EMG and highlights these main patterns in Supporting Information
st1  (S13 and S14 Fig.). It is worth noting that P1 performed smaller shoulder flexion with larger elbow
s12 flexion during flexion-extension movements compared to P2, corresponding to additional BICshort and
s BRA activation without TRIlong activation. In our experimental setup, we computed the maximal cor-
s14 relation around lag O (on a window of one-fourth of the movement duration) for the 200 trials prior
st5s to reaching the learning convergence metric and extracted the mean, std and T-test p-value between the
st6 spino-cerebellar and cerebellar model results. Regarding the lab recorded data, we did not consider those
stz muscles that presented low and noisy EMG signals; however, those muscles were actually activated in
s18 our experimental simulations. Our musculoskeletal model indeed contained only 8 muscles, so that such
st9 overactivation may reproduce other non-modelled muscle recruitment.

620 To study our cocontraction hypothesis, we computed and compared the cocontraction index (CCI)
e2t  for each joint. From lab recordings or experimental simulations, we considered the average of EMG
s22 envelop or muscle activation signals, respectively, within each agonist and antagonist muscle group
623 (i.e, DELTant and BIClong for shoulder flexor muscles; DELTpost and TRIlong for shoulder extensors;
s2« BIClong, BICshort and BRA for elbow flexors; TRIlong and TRIlat for elbow extensors) and the CCI
e2s defined by [74] and assessed by [75]]:

EMG j)(t)

CCI(t) = ——L—~
i® EMG (1)

(EMG j)(t) + EMG (1)) (12)

s2c where EMG j; is the level of activity in the less active muscle group and EMG j, the level of activity
sz in the most active muscle group for each joint. As this index is also sensitive to scaling, we computed
e2s the maximal correlation around lag 0 (on a window of one-fourth of the movement duration) for the
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first 200 trials reaching our learning convergence metric (see Methods) and extracted the mean, std and
T-test p-value between the spino-cerebellar and cerebellar model results. We also computed the mean
joint CCI over each trajectory. A similar trend as that seen for the MAE,,.; was observed. We studied
this potential relationship through a linear regression over all P1 and P2 trajectories.

Data availability

For reproducibility and comparative purposes, the source code is available on Zenodo athttps://doi.
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