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While brain function is considered to be tightly supported by the underlying
structure, the connectome-based link estimated by current models is relatively
moderate, leaving the structure-function relationship an ongoing challenge in

neuroscience. Here, by proposing a novel mapping method based on network
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eigendecomposition, we present a concise and strong correspondence between
structure and function. We show that the explanation of functional connec-
tivity can be significantly improved by incorporating interactions between dif-
ferent structural eigenmodes, highlighting the potential importance of collec-
tive, higher-order coupling patterns between structure and function. We also
demonstrate the pronounced advantage of the present mapping in capturing
individual-specific information, and apply it to assess individual differences
of structure-function coupling across the lifespan. We find that structure-
function liberality weakens with age, which is driven by the decreases in func-
tional components that are less constrained by anatomy, while the magnitude
of structure-aligned components is preserved. Our results contribute to a more
refined understanding of structure-function coupling and how it evolves with

age.

Introduction

The human structural connectome promotes communication among distributed cortical regions,
giving rise to richly patterned neural synchrony that is thought to support a wide range of cogni-
tive functions and behaviors (/, 2). Characterizing the relationship between brain structure and
function is a fundamental question in neuroscience, which is instrumental for understanding
how cognitive processes emerge from the underlying anatomical pathways and for advancing
the treatments for neurological and psychiatric diseases (3). With the development of network
science and imaging techniques, brain structure-function relationships are increasingly investi-
gated using macroscale structural connectivity (SC) and functional connectivity (FC) networks,
which characterize the physical pathways and temporal synchrony between brain regions, re-

spectively (4). A number of studies (5-7) have shown that there exists a significant correlation
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between these two measures, where SC appears to act as a skeleton that constrains FC.

Multiple models have been proposed to explore how the FC network is coupled with the
SC network, ranging from the simplest one-to-one mapping (&) using statistical correlations to
more sophisticated biophysical models (9, 10) that derive functional connectivity from large-
scale simulations of neural activity dynamics. Communication models (71, 12) fall between
these two extremes, where functional connectivity is conceptualized as a weighted superposi-
tion of communication events over the structural network, with the forms of communication
ranging from the shortest path routing (centralized) to signal diffusion (decentralized) (/3).
This approach achieves higher accuracy than the direct correlation method and lower com-
plexity than the biophysical models, and as a result, becomes increasingly common in SC-FC
mapping studies. Besides, another appealing tool for SC-FC mapping is the eigenmode ap-
proach (14, 15). This approach exploits a simple linear model that represents the FC network as
a weighted combination of structural eigenmodes but achieves a high prediction accuracy com-
parable to sophisticated nonlinear models. These eigenmodes summarize structural connectiv-
ity into frequency-specific spatial patterns, opening a new avenue to explore structure-function
relationship by decomposing functional signals into the eigenspectrum of the structural connec-
tome (16, 17).

In addition to modeling advances, structure-function relationships have also been applied to
investigate the effects of cognitive tasks (18, 19), lesions (20, 21), neurological disease (22, 23),
development and aging (24-26). As one of the main goals of SC-FC mapping models is to
capture the essential principle of how structure and function are related, a natural expectation is
that the estimated structure-function relationships would have behavioral significance and could
reflect the effects of manipulations and perturbations (27). Indeed, some recent studies have
revealed associations between SC-FC correlations and various cognitive traits. One such study

shows that increased alignment between structure and function is related to better cognitive
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flexibility (/8). Other studies suggest that weaker SC-FC coupling is related to increasing
awareness levels (23) and better recovery after severe brain injury (27, 28). Moreover, the
strength of structure-function coupling is demonstrated to be heritable and to vary with subjects’
sex and age (24-26, 29).

Although SC-FC mapping has been fruitfully investigated and widely applied, the current
literature is subject to the relatively moderate correspondence between brain structure and func-
tion. SC rarely explains more than 50% of the variance in empirical FC (27), which implies
that, to a great extent, the mechanisms underlying the formation of functional connectivity re-
main elusive. In particular, recent work unifying various eigenmode approaches reports that
none of the individual-specific SC-FC mappings could outperform a reference mapping that
does not utilize structural information but just returns the group-average FC (/4), raising im-
portant concerns that individual variance in structure-function relationships may not be accu-
rately quantified. Another study comparing a large number of communication models shows
that whole-brain FC is poorly predicted from structure in individuals, irrespective of predic-
tors (26). As strong alignment between predicted and empirical functional networks appears
desirable to ensure the fidelity of the captured information, this modest explanatory power is
unfavorable for the refined investigation of structure-function relationships and for further ap-
plications to individual differences associated with behavior and cognition.

Why this imperfect link between SC and FC? There exist two intriguing hypotheses. The
first one is that SC and FC may be indeed decoupled to some extent, implying that function can-
not be completely predicted by structure alone. Several studies on regional structure-function
relationships have shown that structure and function are tightly coupled in primary sensorimo-
tor cortex but decoupled in polysensory association cortex (30, 31). This gradual divergence
closely follows representational and cytoarchitectonic hierarchies, in parallel to a functional

gradient (32) that associated cortical organization with a spectrum of increasingly abstract cog-
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nitive functions, raising a possibility that the observed structure-function divergence may be a
fundamental property of the brain organization. The alternative hypothesis is that SC and FC
may be tightly coupled but current models leave out information requisite for precise prediction.
Multiple studies have revealed the important roles of microstructural properties in functional in-
teractions (33-35), and the explanation of function is improved by incorporating information on
gene co-expression (36), raising the possibility that SC-FC correspondence could be enhanced
by more nuanced models that encompass biological details. Indeed, recent studies (37, 38), us-
ing the machine learning approach and high-frequency eigenmodes, have achieved substantially
higher structure-function prediction accuracy than previously suggested. Nevertheless, high ac-
curacies of these approaches often come with high execution time and model complexity, and
the essential principles of the FC organization are still unclear.

Therefore, whether, and if so, how to establish a simpler and tighter link between SC and
FC remain an important unsolved issue in the investigation of structure-function relationships.
Here, we attempt to shed light on this question with a novel mapping framework that interprets
the essential pattern of functional interactions in the context of the structural eigenspectrum.
Different from the previous SC-FC mappings that keep the interregional connectivity central,
our approach concentrates on the inherent patterns of brain functional interactions, which not
only effectively reduces the complexity of the mapping procedure but also may yield improved
robustness against weak spurious connections induced by noise (39). In this way, we aim to
provide a more concise and accurate quantification of brain structure-function relationships
and show how SC-FC coupling changes over the human lifespan by applying the captured
individual-specific information.

We first show that functional brain interaction patterns are dominated by a few functional
eigenmodes, and construct a link between structure and function by projecting the most con-

tributing functional mode into the eigenspectrum of the SC network. The mapping procedure,
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while simple and feasible easily, achieves significantly higher accuracy than the conventional
eigenmode approach and communication model, implying that structure-function coupling ap-
pears to be substantially tighter than previously suggested. Intriguingly, and reinforcing the idea
of regional heterogeneity in structure-function relationships, we also observe system-specific
effects in the predictability of FC in all three approaches, with primary sensory regions overall
exhibiting higher prediction accuracies than polysensory association regions. Next, to exam-
ine whether the present mapping is able to capture additional information not explained by the
mean, we benchmark it against a reference mapping that just returns the group-average FC net-
work. We find that the proposed mapping yields prediction accuracy comparable to the mean
mapping in an age-homogenous population (28.8 £ 9.1 years) while achieving improved accu-
racies in a population across the lifespan (35 £ 20 years). In contrast to that, the eigenmode
and communication models exhibit significantly worse prediction performance than the refer-
ence mapping in both populations. These findings demonstrate the unique capability of the
proposed mapping to capture individual-specific information on functional connectivity, which
holds great potential for a deeper understanding of individual variability in structure-function
relationships. Finally, we apply the proposed SC-FC mapping to explore the evolving properties
of structure-function relationships. We find that functional portions that deviate from structural
connections decrease with age while the structure-aligned portions are preserved, manifesting

as gradually weakened structure-function liberality across the human lifespan.

Results

Our analyses are organized as follows. We begin by presenting a simple and accurate SC-FC
mapping, analyzing both whole-brain and regional SC-FC coupling, and comparing the present
mapping to the eigenmode approach and communication model (the first two sections). We

then examine additional information not captured by the mean in terms of whether the subject-
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specific SC-FC mapping outperforms the mean FC mapping (the third section). Finally, we
analyze how SC-FC relationships evolve across the human lifespan (the fourth section). We
employ two independent datasets in this study. The first one comes from the Department of
Radiology, University Hospital Center and University of Lausanne (LAU), including structural
and functional data from 70 healthy young participants (28.8 £ 9.1 years). We quantify whole-
brain and regional SC-FC coupling, verify the performance of the proposed method and quantify
differences between different types of SC-FC mappings in this dataset. The second one is
the Nathan Kline Institute (NKI)/Rockland Sample public dataset, which includes 196 healthy
participants aged from 4 to 85 years. We exploit it to confirm the method’s reproducibility and
explore inter-individual variation in SC-FC relationships across the human lifespan. For details

of data processing and network reconstruction, see Materials and Methods.

SC-FC mapping through structural and functional modes

Accurate quantification of SC-FC relationships is imperative for understanding how interact-
ing brain circuits support cognitive functions and how structure-function relationships change
across developmental and aging stages. However, the correspondence between structure and
function is modest in current models, limiting the mechanistic insight into the tethering be-
tween the organization of physical connections and the pattern of functional interactions.

Here, we characterize a simple but strong structure-function relationship via the graph spec-
tra of SC and FC networks. As illustrated in Fig. 1, the eigendecomposition of the SC network
provides a set of eigenvectors sorted in decreasing order of their eigenvalues, representing dis-
tinct inherent modes of the structural connectome. The alignment of these eigenmodes with the
anatomical connections is measured by their eigenvalues (/8). Typically, the eigenvalue will
be positive if the corresponding structural mode is strictly constrained by the underlying struc-

tural connectivity and negative if the structural mode is misaligned with anatomy (Fig. 1a). We
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employ these mutually orthogonal eigenvectors as a parsimonious basis for the brain FC net-
work, which is also decomposed into its constituent eigenmodes with eigenvalues reflecting the
contribution of each mode (40). Larger eigenvalues indicate greater contributions of functional
modes to the FC network. As shown in Fig.1b and Supplementary Fig. S1, we find that the con-
tribution of functional modes to the formation of complex functional interactions is extremely
heterogeneous (Fig.1b), with just a few functional modes almost explaining the whole brain
functional connectivity (Supplementary Fig. S1). Accordingly, we project the functional mode
with the largest contribution into the eigenspectrum constituted by structural modes, providing
a simple mapping procedure to transform the SC network into the richly patterned functional
network. The predictors are structural eigenmodes. The observation is the whole FC network
that is approximated by the most contributing functional mode. Parameters can be easily com-
puted in closed form, see Materials and Methods for more details. Note that though we focused
on the largest functional mode in this paper, future work could naturally incorporate more func-
tional modes in SC-FC mapping and tune the balance of prediction accuracy and computational

complexity according to the tasks (Supplementary Fig. S2).

Enhanced explanation of the FC network

To assess the performance of the present method, we construct whole-brain SC-FC mapping for
each subject from the LAU dataset and compare its performance with the conventional eigen-
mode approach that utilizes the same predictors, i.e., structural eigenmodes. The Pearson corre-
lation coefficient R between the predicted and empirical FC networks is calculated to evaluate
the prediction performance and the strength of structure-function coupling. As shown in Fig.
2a, we find that the proposed method yields significantly higher prediction accuracy relative to
the eigenmode approach (proposed: R = 0.59 &£ 0.09, conventional: R = 0.21 £ 0.03, paired t-

test p < 1071%), demonstrating a substantially stronger structure-function correspondence than
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previously implied. Note that, while the number of parameters is the same in these two tech-
niques, the proposed SC-FC mapping could incorporate more information by introducing the
cross terms of the structural modes. Thus, these findings also suggest an important role of the
interaction between different structural modes in the FC formation, emphasizing the collective,
high-order relationship between structure and function that transcends a linear superposition of
structural eigenmodes.

We then consider the strength of regional SC-FC coupling, which is estimated as the cor-
relation between the same region’s predicted and empirical FC profiles. As shown in Fig. 2b
and c, we find that regional structure-function coupling varies considerably across the cortex
in both mapping approaches. In the proposed SC-FC mapping, regions with high prediction
accuracy are concentrated in visual cortex, supertemporal cortex, and somatomotor (preccen-
tral and postccentral) cortices, whereas regions in precuneus, cingulate, and prefrontal cortices
exhibit relatively low prediction accuracy. To further characterize these findings at the level of
functional systems, we aggregate accuracy R by seven resting-state networks proposed by Yeo
et al (47) and compare the network-specific mean R to those generated by spatially-constrained
permutation (spin test) (42). We find that FC profiles of regions in the somatomotor network are
better explained than the null distribution while FC profiles of regions in the frontoparietal and
default mode networks are worse explained than explained by chance (10,000 permutations;
all FDR-corrected p < 0.01). Such system-specific effects also appear in SC-FC coupling
estimated by the conventional eigenmode approach, with FC profiles of regions in the visual
network significantly better explained than those of other regions (10,000 permutations; FDR-
corrected p < 0.01). We further compare the regional R estimated by the proposed mapping
with that estimated by the previous eigenmode approach (Fig. 2d). We find that, while the
structural predictors and model complexity are identical in these two techniques, the proposed

method generally outperforms the eigenmode approach, with the FC profiles of 76 + 8% of re-
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gions being better explained by introducing the interactions between different structural modes.

Next and for completeness, we compare the proposed mapping with a communication model
that incorporates a large number of predictors characterizing the geometric, topological, and dy-
namic relationships between regions (Fig. 3a). Broadly, these structurally informed predictors
include flow graphs (parameterized at different timescales) (43), mean first passage times (44),
communicability (45, 46), matching index (47), path transitivity (parameterized at weight-to-
cost transformations) (/2), search information (parameterized at weight-to-cost transforma-
tions) (48), Euclidean distance, and the shortest path length. As shown in Fig. 3b, we find
that the prediction accuracy of the proposed method is significantly higher than that of the com-
munication model (communication: R = 0.30 & 0.04, paired t-test p < 107'Y), confirming the
strong explanatory power of the present SC-FC mapping. We also observe regional heterogene-
ity in structure-function coupling estimated by the communication model, with regions in the
visual network exhibiting higher prediction accuracy than regions in other functional systems
(10,000 spatially-constrained permutations, FDR-corrected p < 0.01; Fig. 3c). Furthermore,
we show that the present method yields higher prediction accuracy than the communication
model across a wide range of cortex, with FC profiles of 67 4+ 10% of brain regions being better
explained by the proposed mapping (Fig. 3d).

Collectively, these results confirm the validity of the proposed SC-FC mapping, providing
new evidence that brain structure-function correspondence is substantially stronger than pre-
viously implied. Interestingly, regional heterogeneity is preserved in this enhanced structure-
function relationship, closely aligned with the previous findings (30, 31) that primary sensory
regions overall exhibit tighter SC-FC coupling than polysensory association regions. Further-
more, as the present SC-FC mapping is constructed via the largest functional mode, our findings
also suggest the powerful role of functional modes as a highly effective tool for the dimension-

ality reduction of FC networks. The reproducibility of findings shown above are verified in an
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independently collected dataset (NKI; Supplementary Fig. S3 and S4).

Unique advantage in capturing individual-specific information

Having confirmed the effectiveness of the proposed method, we next seek to assess whether it
is able to characterize inter-individual variation in functional connectivity. To this end, we in-
troduce a reference mapping that simply returns the group-average FC network (Fig. 4a). This
mapping neither utilizes structural information nor preserves inter-individual variation, thereby
providing a benchmark against which the relative performance of individual-specific structure-
function mapping could be measured. The correlation coefficient R between the mean FC and
each individual’s empirical FC is computed, generating a null distribution for the prediction ac-
curacy of individual-specific mappings that utilize structural information. The accuracy R of the
proposed method, the eigenmode approach, and the communication model are then compared
to this null distribution via the paired t-test, with the t-statistic reflecting the significance of the
difference.

We employ two independent datasets to perform the comparison. The first one is the LAU
dataset, which consists of a homogeneous population of roughly the same age range (28.8 9.1
years). The second one is the NKI dataset, which comprises a relatively heterogeneous pop-
ulation across the human lifespan (35 £ 20 years). Interestingly, we find that not all SC-FC
mappings that utilize subject-specific structural information and preserve inter-individual vari-
ation outperform the mean mapping (Fig. 4b and c). Instead, in a homogeneous population,
the mean mapping appears to serve as an apparent glass ceiling for FC prediction, with the
accuracy R of both the eigenmode approach and the communication model significantly lower
than that of the reference mapping (reference: R = 0.58 & 0.06; paired t-test P < 10710).
One possible explanation may be that, in these mapping procedures, individual-specific infor-

mation introduced by structurally informed predictors may not be sufficient to overcome the
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noise introduced by high susceptibility artifacts in structural connectomes. Notably, the pro-
posed SC-FC mapping still performs well, achieving comparable prediction accuracies to the
mean mapping (paired t-test P=0.90). Furthermore, in a heterogeneous population, the pre-
diction accuracy of the present mapping is higher than that of the reference mapping whereas
the eigenmode and communication methods still fail to outperform the reference mapping (all
paired t-test P < 1071°), indicating the unique capability of the proposed method to capture
additional subject-specific information not explained by the mean.

Collectively, these results suggest that individual-specific SC-FC mapping appears to be
quite susceptible to noise in structural imaging data, resulting in a significant reduction in pre-
diction accuracies of previous mappings (eg., the eigenmode and communication approaches)
compared to that of the reference mapping. Nevertheless, the proposed SC-FC mapping over-

comes this potential pitfall to a great extent and even captures additional individual-specific in-

formation in a less homogeneous population, providing more accurate quantification of structure

function relationships at an individual level.

Weakened structure-function liberality across the human lifespan

The present mapping has shown pronounced advantages in characterizing individual-specific
information, which raises the prospect of a more nuanced investigation of individual differences
in structure-function coupling. In this section, we apply the proposed analytical framework to
provide insights into how structure-function relationships evolve with age using the NKI dataset
that comprises 196 healthy participants aged from 4 years to 85 years.

As the proposed SC-FC mapping is constructed via the functional mode with the largest
eigenvalue, we first assess whether and how its contribution to the FC network varies with age.
As shown in Fig. 5a, we find a weak but statistically significant increase in the contribution

of this largest functional mode (r=0.16, FDR-corrected p=0.04), suggesting that the pattern of
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interregional functional interactions is increasingly governed by this inherent mode with age.
As the first three functional modes almost explained the variance in empirical FC networks
(Supplementary Fig. S1B; R = 0.91 £ 0.03), we further assess age-related changes in the con-
tributions of functional modes with the second and third largest eigenvalues. As shown in Fig.
5b, we find that none of them increase across the lifespan (2nd mode, r=-0.07, FDR-corrected
p=0.36; 3rd mode, r=-0.16, FDR-corrected p=0.04). We also calculate the functional diver-
sity (FD) for each participant, which measures the dispersion of the contribution of different
functional modes (see Materials and Methods). Larger functional diversity indicates that the
pattern of functional interactions is governed to a greater extent by distinct functional modes,
whereby the distribution of functional modes’ contributions is closer to a uniform distribution.
As shown in Fig. Sc, we observed a statistically significant association between FD and age
(r=-0.15, p=0.03), indicating age-related decreases in functional diversity across the human
lifespan. Taken together, these findings suggest that the diversity of functional modes gradually
decreases with age, with the pattern of brain functional interactions increasingly dominated by
the most contributing functional mode.

We next examine how structure-function coupling relationships vary with age within the
proposed mapping framework. We utilize the structural eigenspectrum to decompose the func-
tional mode that captures the essence of the FC network into two separate components: one
is structure-aligned functional component, which potentially represents direct dependence on
physical connections, and the other is structure-deviated component, which potentially reflects
intermediate polysynaptic interactions in the structural network. (Fig. 5d; Materials and Meth-
ods). The norms of these two components quantify the extent to which functional interactions
are organized in an aligned or deviated manner atop the underlying structural connectome. To
investigate whether structure and function evolve synergistically or divergently throughout the

human lifespan, we introduce a liberal index, which is estimated as the energy ratio of functional
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components decoupled (deviation) versus coupled (alignment) with structure, and correlate the
values with the subjects’ ages. As shown in Fig. 5e, we observe a decline in the liberal index
(r = —0.18,p = 0.01), suggesting that the liberality between brain structure and function grad-
ually decreases with age. We also associate the magnitudes of functional alignment and func-
tional deviation with subjects’ ages and find that age-related alterations in structure-function
coupling relationships can be dissociable. We find that the magnitude of functional deviation
decreases throughout the lifespan (r = —0.18,p = 0.01) whereas variability in functional
alignment does not exhibit a statistically significant correlation with age (r = 0.08,p = 0.39).
This indicates that even though both types of coupling patterns contribute to functional inter-
actions, structure-deviated portions are the ones that reflect inter-individual variation during

human brain development and aging.

Discussion

Accurate quantification of structure-function relationships is imperative for understanding how
cognitive functions emerge from the anatomical substrate and how the interrelationship of struc-
tural and functional connectivity varies across individuals with different traits and phenotypes.
However, the connectome-based correspondence between structure and function is relatively
moderate, despite a variety of statistical models (8, 49), communication models (//, 12), and
biophysical models (9, 10). Emerging evidence suggests that biophysical models enriched with
regional heterogeneity can be better fitted to brain functional connectivity (27, 50). Indeed,
significantly higher prediction accuracies than previously implied have been achieved by the
machine learning approach (37) which focuses on optimizing its performance rather than pro-
viding any mechanistic insights. However, these studies have eschewed simple models in favor
of complex ones, and as a result, SC-FC mappings are constructed through time-consuming

simulations or training procedures, with the essential principles underlying structure-function
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coupling remaining elusive.

Here, inspired by the graph spectrum analyses, we propose a novel mapping method that
allows SC and FC networks to be tightly linked in a simple manner. Whereas most previous
studies estimate the structure-function relationship based on putative communication mecha-
nisms and neurophysiological processes, we simply exploit network constituent eigenmodes to
enhance our understanding of how neuronal coactivation patterns emerge from indirect, collec-
tive interactions among brain regions. Using the eigendecomposition of the FC network, we
first show that the essence of observed FC networks can be characterized by a just few inherent
modes, i.e., those that possess large eigenvalues. This observation demonstrates the utility of
eigenmodes for dimensionality reduction, which is key to establishing the proposed mapping
framework. Typically, the functional mode with the largest eigenvalue is of particular interest
in terms of its essential role in governing the formation of functional connectivity. By project-
ing this functional mode into the parsimonious basis formed by mutually orthogonal structural
eigenmodes, we establish a concise and strong link between brain structural and functional net-
works, whose prediction performance is verified on two independent datasets (LAU and NKI).

Analogous to the recent machine learning approach (37), our study suggests that brain struc-
ture and function are indeed inextricably linked, with the predictability of FC significantly im-
proved compared to those previously suggested by conventional eigenmode (/5) and commu-
nication (26) methods at both whole-brain and regional levels. The key property that makes
the proposed mapping stand out may be that our approach aims to capture the inherent patterns
of functional interactions rather than to accurately fit functional connectivity between each pair
of brain regions. This change yields a simple mapping procedure, where model parameters
are solved in a completely analytical manner, and potentially suppresses the interference of
spurious connections benefiting from the utilization of eigenmodes (39). Of note, although

the conventional eigenmode approach also uses structural eigenmodes as input, the proposed
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method effectively embodies the collective, high-order properties of structure-function rela-
tionships through the introduction of cross-terms that describes the interaction, which appears
to serve as the main contributors to the enhanced interpretation of FC networks. Intriguingly,
regional heterogeneity is preserved in this enhanced structure-function correspondence, exhibit-
ing a good agreement with the previous findings (30, 31) that structure and function are tightly
coupled in primary sensory regions but diverge in polysensory association regions. This obser-
vation raises the possibility that regionally heterogeneous structure-function relationships may
be an inherent brain property induced by hierarchical microscale organization, including cytoar-
chitecture (517), intracortical myelination (34), and laminar differentiation (35). One prominent
account posits that the rapid evolutionary expansion of cortical mantle effectively releases asso-
ciation areas from early sensory-motor hierarchies, resulting in great signal variance and weak
structure-function relationship in transmodal association cortex (52).

Importantly, we demonstrate that the proposed SC-FC mapping is sufficiently accurate to
capture subject-specific information not explained by the mean in a less homogenous popula-
tion, opening the possibility of a detailed investigation of individual differences in structure-
function relationships. Consider, for instance, the effects of development and aging. Prior
studies have reported age-related alterations in brain structural and functional connectomes,
which are considered to be associated with cognitive performance during development and
senescence (53—-56). However, less is known about how structural and functional brain net-
works evolve jointly, especially from the perspective of their inherent constituent patterns. The
proposed method provides an analytical framework in which we could explain the patterns of
interregional functional interactions in terms of distinct structure-informed modes. Here, we
focus on two typical functional components: one is constituted by structural modes with large
positive eigenvalues and organized in close relation to structural connectivity, underscoring

the direct dependence on anatomy; the other is represented by structural modes with negative
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eigenvalues and greatly untethered from the structural constraint, emphasizing the roles of in-
direct, high-order communication. By distinguishing the cases of ‘intermediate polysynaptic
interactions’ (deviation) versus simple ‘signaling along the physical connections’ (alignment),
we identify the age-sensitive components of functional connectivity. We find that structure-
deviated functional components weaken with age whereas the magnitude of structure-aligned
components is preserved with age, manifesting as gradually reduced structure-function liberal-
ity across the human lifespan. This observation is particularly interesting in the context of the
prior finding that key information for individual identification is found in the functional compo-
nent deviated from structure (57), implying that structure-function liberality may be an individ-
ually variable feature reflecting the inner workings of the brain. Furthermore, several previous
studies have demonstrated correlations between the structure-function coupling relationship and
inter-individual variability in cognitive traits (18, 58—-60). Stronger structure-function coupling
is found to be associated with better abilities of complex cognition, such as reasoning and cogni-
tive switching, which may benefit from reliable and efficient information transmission (/8, 61).
In contrast, other cognitive traits, such as the level of awareness and attention maintenance,
are considered to benefit from less alignment between structure and function, a configuration
that might be instrumental for information integration across the brain (23, 57). Combined with
these complementary roles of different degrees of structure-function alignment, our findings
of age-related decreases in structure-deviated functional components may promote mechanistic
insights concerning cognitive changes across the human lifespan. Our mapping framework also
provides analytical tools to detect potentially behavior-sensitive or stimulus-sensitive compo-
nents of functional interaction patterns, with significant implications in inferring physiological
processes of cognitive functions and informing the diagnosis and treatment of psychiatric dis-
orders.

There are several limitations and possible developments in this study. For example, while
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a concise and strong structure-function correspondence is established through the most con-
tributing functional eigenmode, other functional modes (e.g., modes with 2nd and 3rd largest
eigenvalues) also leave their signature on the formation of the FC network. Conceptually, future
research could incorporate these functional modes into the proposed SC-FC mapping frame-
work to obtain a more comprehensive understanding of how intricate functional connections
emerge from the underlying structural network. In addition, our structure-function mapping
does not embody the temporal fluctuations (62) or the regional heterogeneity (50) of the cou-
pling patterns. Thus, another direction for future research is to enrich network constructions
with dynamic interactions and microscale attributes, which would promote the richer interpre-
tation of functional interactions among brain regions.

In conclusion, we demonstrate a novel SC-FC mapping method by which the patterns of
functional interactions can be closely related to the organization of structural connections. The
methodology, while feasible easily, provides informative quantification of individual-level rela-
tionships between structure and function, achieving substantially greater explanatory power for
FC networks relative to previous mappings. It also offers a new avenue to understand how brain
structural and functional networks are intertwined in terms of their constituent eigenmodes,
holding great potential for an investigation of the evolving properties of the structure-function
relationship across the lifespan. Alterations due to cognitive tasks, lesions, and neurological
diseases might be another promising application of the proposed approach that would provide

valuable insights.

Materials and Methods

Data

In this study, we performed all analyses in two independent datasets. The first one was col-

lected by Department of Radiology, University Hospital Center and University of Lausanne
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(LAU) (63). This dataset included 70 healthy participants (27 females, 28.8+9.1 years old).
Informed consent approved by the Ethics Committee of Clinical Research of the Faculty of Bi-
ology and Medicine, University of Lausanne was obtained from all participants. Diffusion spec-
trum images (DSI) were acquired on a 3-Tesla MRI scanner (Trio, Siemens Medical, Germany)
using a 32-channel head-coil. The protocol was comprised of (1) a magnetization-prepared
rapid acquisition gradient echo (MPRAGE) sequence sensitive to white/gray matter contrast (1-
mm in-plane resolution, 1.2-mm slice thickness), (2) a DSI sequence (128 diffusion-weighted
volumes and a single b0 volume, maximum b-value 8,000 s/mm?2, 2.2x2.2x3.0 mm voxel size),
and (3) a gradient echo EPI sequence sensitive to blood oxygen level-dependent (BOLD) con-
trast (3.3-mm in-plane resolution and slice thickness with a 0.3-mm gap, TR 1,920 ms, resulting
in 280 images per participant). Gray matter was divided into 68 brain regions following De-
sikan—Killiany atlas (64) and further subdivided into 219 approximately equally sized nodes
according to the Lausanne anatomical atlas using the method proposed by (65). Individual
structural networks were constructed using deterministic streamline tractography, initiating 32
streamline propagations per diffusion direction for each white matter voxel (66). Functional
networks were reconstructed using fMRI data from the same individuals. fMRI volumes were
corrected for physiological variables, including regression of white matter, cerebrospinal fluid,
and motion. fMRI time series were lowpass filtered. The first four volumes were discarded and
motion “scrubbing” was performed (67). Functional connectivity matrices for individual partic-
ipants were constructed by estimating the Pearson correlation between the fMRI time series of
each pair of brain regions. More details regarding network construction can be obtained online
at the LAU website (https://zenodo.org/record/28726244 .X0JgE 99 fhmM).
The second one was the Nathan Kline Institute (NKI)/Rockland Sample public dataset.
This dataset consisted of 196 participants (82 females, age range=4-85). Informed consent

approved by the Institutional Review Board was obtained from all participants (informed con-
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sent was also obtained from child participants and their legal guardians). The scan was per-
formed in a Siemens Trio 3T scanner. The protocol consisted of: (1) 10-minute resting state
fMRI scan (R-fMRI), (2) 6-direction diffusion tensor imaging (DTI) scan, (3) 64-direction dif-
fusion tensor imaging scan (2mm isotropic), (4) MPRAGE anatomical scan, (5) MPRAGE
anatomical scan SHORTER sequence, (6)T2 weighted sequence, (7) A variety of psychiatric,
cognitive and behavioral assessments. The preprocessing contains head movement correc-
tion, denoising, and thresholding. The structural connectivity (SC) and functional connectivity
networks, composed of 188 ROIs based on the Craddock 200 atlas (68), were derived from
diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI), respec-
tively. A comprehensive description of the data can be obtained online at the NKI website

(http://fcon_1000.projects.nitrc.org/indi/pro/nki.html).

Structural and functional modes

Applying an eigendecomposition, the FC network can be decomposed as FC = UA/U7”
where the eigenvalues are represented by A/ = {)\Z }<i<n and eigenvectors are represented
by U = {U,},<;<n. N indicates the number of network nodes. Several negative eigenvalues
that may be induced by the noise were set to 0, which did not result in significant losses of
information on FC networks (69). According to the spectral graph theory (40), these mutually
orthogonal eigenvectors U can be interpreted as the N inherent constituent modes of the FC
network. As all eigenmodes are scaled to the unit norm, the magnitude of eigenvalues mir-
rors the contribution of the corresponding functional mode to the FC network. Typically, the
eigenmode with the largest eigenvalue represents the functional pattern that has the greatest
impact on the formation of functional connectivity. Conversely, eigenmodes with zero eigen-
values are considered to have no contribution to FC, i.e. the FC network does not possess that

functional mode. The alternative expression is FC = va Ui)\{ U7, representing the FC net-
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work as the linear superposition of N independent functional modes. Similarly, the SC network
can be decomposed as SC = VA*V”, with the eigenvalues A* = {\*}1<j<n quantifying the
smoothness (alignment) of the inherent modes specified by eigenvectors V. = {V; }1<j<n (I8).
The A} = 1, i,<n SCiyi, V;(i1) V;(i2) will be positive if the structural mode 'V is aligned
to the underlying connectivity (values of most connected nodes possess same signs) and will
be negative if the mode V; deviates from the connectivity (values of most connected nodes
possess different signs). We sorted these structural eigenvectors in descending order of eigen-
values, constructing an eigenspectrum spanning from structural modes closely aligned with SC

to modes deviated from SC.
SC-FC mapping

The link between brain structural and functional networks can be constructed by projecting
functional modes {U, }1<;<x into structural modes V = {V;};1<;<n:

N
U; =maVi+mipVa+ -+ minVy = Zmijvju

=1
where parameters {1 }1<; j<y can be computed as m;; = VI U;. As1 = UJ'U; = UiT(Zj m;;V;) =
> mi (ViU = Zévzl(mij)2, the magnitude of m;; can be used to reflect the contribution

of structural mode V; to functional mode U; (69).

The FC network can thus be represented as:

N
FC =) UNU/

3
_ f T
= E A; mijymij, Vi Vi,
ivjl 7j2

=> O Mmiymip,) Vi, Vi,

Ji.J2 4
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where 1 < 4, 71,72 < N. To avoid the overfitting issue, we only keep the functional mode
with the largest eigenvalue given its essential role in governing the formation of functional

connectivity. The estimation of the FC network is then simplified as:

FC ~ )\{UlUT = Z(A{mmmuz)v v,

J27
J1,J2

with the number of parameters is restricted to N. The parameters {mlj}lgjg N were estimated
as my; = VjTUl. This expression can be considered as a generalization of the conventional
eigenmode approach where the FC network is expressed as a weighted combination of structural
eigenvectors FC = Z;V h(V;VT) (14,15). h(-) represents a linear function. The important
difference is that the present approach introduces the interactions between different structural
modes, i.e. the cross terms V; VJQ, j1 # jo. Furthermore, more refined quantification of the
relationship between structure and function can be obtained by incorporating more functional

modes into this analytical framework.

Functional diversity

To measure the diversity of contributions of different functional modes, here called functional
diversity (FD), we estimated the similarity of the empirical distribution of functional eigenval-

ues to the uniform distribution:

FD=1- —

where M is the number of functional modes that the FC network possesses and Ny, = 2(M —
1)/M is a normalization factor that restricts the FD to the interval [0,1]. At one extreme where
the FD value equals 0, the FC network is completely governed by one inherent mode; at the
other extreme where the FD=1, all functional modes contribute equally to the formation of

functional interactions.
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Structure-function liberality

Within the present analytical framework, the inherent pattern of functional interactions can be
investigated in the context of a structural eigenspectrum spanning from modes closely aligned
to anatomical connections (those with positive structural eigenvalues) to modes deviated from
the anatomy (those with negative structural eigenvalues). Here, we exploite the Graph Fourier
Transform (GFT) (40) and spectral filtering to split the most contributing functional mode into
two separate components: one represented by the first L 4 structural modes, exhibiting tight
coupling with the structure, and the other represented by the last L, structural modes, exhibiting

flexible deviations from the structural substrate. That is,
Uf =my Vi +miaVo+---+mip, Vi,

D
Ul =min—rp+1VN-Lpt1 T +minVy,

where U#' and UP denote structure-aligned and structure-deviated components of the func-
tional mode, respectively. {m; }1<;j<y are parameters estimated in SC-FC mapping procedure.
Considering that there is no general method to determine the threshold L4 and Lp, we chose
a default value (L 4=Lp=10) following the previous literature (/8), and performed a sensitivity
analysis to confirm the robustness of results to threshold selection (Supplementary Fig. S5).
The intensity of the aligned and deviated portions was measured as the norms of U#' and UP.
We further introduce the structure-function liberality, which is estimated by the energy ratio be-
tween the structure-aligned and structure-deviated components, to identify to what degree the
functional interaction pattern is misaligned versus aligned with the structure. Correlating this
liberal index with the age, we could explore the evolving property of structure-function rela-
tionships across the human lifespan. There existed two distinct possibilities: (1) the structure-
function liberality was preserved with age; (2) the structure-function liberality exhibited age-

related change. The first one indicates that the structure-function relationship is preserved with
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age, implying that lifespan differences in FC networks may be simply induced by changes in
structural architecture. The second one suggests that SC and FC networks change divergently
with age, with increasing or decreasing liberality indicating that functional interaction patterns

are gradually untethered or tethered by structural constraints.
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Fig. 1. Method pipeline. Through the eigendecomposition of the structural network, we obtain
a series of eigenmodes sorted in decreasing order of eigenvalues. The magnitudes of eigenval-
ues indicate the degree to which structural modes align with the underlying anatomy, with the
large positive values corresponding to strict alignment and negative values corresponding to
the deviation from SC (a). These mutually orthogonal structural modes can be considered as
a parsimonious basis for the FC network which is also decomposed into its constituent eigen-
modes accompanied with eigenvalues reflecting their contributions (b). The structure-function
mapping is constructed by projecting the most contributing functional mode into the structural

eigenspectrum.
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Fig. 2. Whole-brain and regional performance of the proposed mapping. (a) The prediction
accuracy of the proposed method vs. the conventional eigenmode approach for all individual
subjects. In each violin plot, the box indicates the interquartile range and the empty circle
indicates the median value. (b) The spatial pattern of SC-FC coupling estimated by the pro-
posed method (upper panel) as well as the distribution of R over regions aggregated by seven
resting-state networks (RSNs) proposed by Yeo et al (lower panel; asterisks indicate statistical
significance). (¢) The spatial pattern of SC-FC coupling estimated by the conventional eigen-
mode approach (upper panel) as well as the distribution of R over regions aggregated by seven
RSNs (lower panel). (d) Regional differences between prediction accuracies of the proposed
and eigenmode methods. Seven RSNs include visual (vis), somatomotor (sm), dorsal attention

(da), ventral attention (va), limbic (lim), frontoparietal (fpn), default mode (dmn) networks.
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Fig. 3. Comparison with the communication model. (a) A communication model that
incorporates a large number of structurally informed predictors characterizing the geometric,
topological, and dynamic relationships between regions. (b) The prediction accuracy of the
proposed method vs. the communication model for all individual subjects. In each violin plot,
the box indicates the interquartile range and the empty circle indicates the median value. (c)
The spatial pattern of SC-FC coupling estimated by the communication model (upper panel)
as well as the distribution of R over regions aggregated by seven RSNs (lower panel; asterisks
indicate statistical significance). (d) Regional differences between prediction accuracies of the

proposed and communication methods.
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Fig. 4. Individual-specific mapping between structural and functional networks. (a) A
reference mapping that only returns the group-average FC network. (b) Comparison of different
mapping methods in the LAU dataset. Left panel: Prediction accuracies of individuals’ FC
networks through the proposed, reference, eigenmode, and communication methods. In each
boxplot, the box indicates the interquartile range and the empty circle indicates the median
value. Paired points in distinct boxplots connected by lines represent the same individual. Right
panel: Prediction accuracies of the three personalized mappings are benchmarked against the
reference mapping. (¢) Comparison of different mapping methods in the NKI dataset.
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Fig. 5. Age-related variations in SC-FC relationships within the proposed analytical
framework. (a) The contribution of the first functional mode to the FC network increases
with age. (b) Age-related variations in contributions of the 2nd or 3rd functional modes. (c¢)
Decreases in functional diversity across the lifespan. (d) The functional interaction pattern for
each subject is decomposed into structure-aligned and structure-deviated components using the
eigenspectrum of the SC network. The ratio between the norms of these two components is
used to measure structure-function liberality. (e) Reduced structure-function liberality across

the lifespan, which is predominantly driven by the weakened functional deviation.
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Supplementary Materials

Fig. S1. Prediction accuracy R as a function of the number of functional eigenmodes.
(a) R for all subjects in LAU dataset. (b) R for all subjects in NKI dataset. Note that the pre-
diction accuracy increases dramatically with the number of functional eigenmodes exploited in
the proposed mapping, and that the first three functional modes almost explain the variance in

the empirical FC networks (R = 0.86 = 0.04 in LAU and R = 0.91 £ 0.03 in NKI).
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Fig. S2. The prediction accuracy of the proposed mapping incorporating different num-
bers of functional modes. In each violin plot, the box indicates the interquartile range and the
empty circle indicates the median value. Points represent individual subjects. (a) Prediction
accuracy R for all subjects in LAU dataset. Specifically, R = 0.59 £+ 0.09 when incorpo-
rating the first one functional modes; R = 0.78 4 0.05 for the first two functional modes;
R = 0.86 + 0.03 for the first three functional modes. (b) Prediction accuracy R for all sub-
jects in NKI dataset. Specifically, & = 0.65 4= 0.09 when incorporating the first one functional
modes; R = 0.84 £ 0.05 for the first two functional modes; R = 0.91 £ 0.03 for the first three

functional modes.
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Fig. S3. The performance of the proposed model in NKI dataset. (a) The prediction ac-
curacy of the proposed method vs. the conventional eigenmode approach for all individual
subjects. In each violin plot, the box indicates the interquartile range and the empty circle in-
dicates the median value. (b) The spatial pattern of SC-FC coupling estimated by the proposed
method; R = 0.65 £ 0.09. (c¢) The spatial pattern of SC-FC coupling estimated by the eigen-
mode approach; R = 0.18 + 0.06. (d) Regional differences between prediction accuracies of
the proposed and eigenmode methods. 77 + 8% of brain regions are better explained by the
proposed mapping.
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Fig. S4. Comparison with the communication model in NKI dataset. (a) The prediction
accuracy of the proposed method vs. the communication model for all individual subjects.
In each violin plot, the box indicates the interquartile range and the empty circle indicates
the median value. (b) The spatial pattern of SC-FC coupling estimated by the communication
model; R = 0.33£0.05. (¢) Regional differences between prediction accuracies of the proposed

and communication methods. 70 + 10% of brain regions are better explained by the proposed
mapping.
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Fig. SS. Sensitivity analysis of threshold selection. The results in the main text are reported
with the threshold K; and Ky equal to 10, that is, we use the first 10 structural eigenmodes
to represent anatomy-aligned functional components and the last 10 structural eigenmodes to
represent anatomy-deviated functional components. To test the robustness of the results, we re-
peat analyses under values of K, and Ky from five below to five above the default values. (a)
The correlation matrices among functional alignment (left panel), functional deviation (middle
panel), and structure-function liberality (right panel) across different thresholds. We find these
measures exhibit high stability, with the correlation coefficient » = 0.92 + 0.06 for functional
deviation, » = 0.93 # 0.06 for functional alignment, and » = 0.94 4 0.05 for structure-function
liberality. (b) Age-related variations in functional alignment (left panel), functional deviation
(middle panel), and structure-function liberality (right panel) across the lifespan. The observa-

tions are robust to different choices of thresholds.
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