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Abstract (150/150 words):

While navigating a fundamentally uncertain world, humans and animals constantly produce
subjective confidence judgments, thereby evaluating the probability of their decisions, actions
or statements being correct. Confidence typically correlates with neural activity positively in a
ventromedial-prefrontal (VMPFC) network and negatively in a dorsolateral and dorsomedial
prefrontal network. Here, combining fMRI with a reinforcement-learning paradigm, we
leverage the fact that humans are more confident in their choices when seeking gains than
avoiding losses to reveal a functional dissociation: whereas the dorsal prefrontal network
correlates negatively with a condition-specific confidence signal, the VMPFC network
positively encodes task-wide confidence signal incorporating the valence-induced bias.
Challenging dominant neuro-computational models, we found that decision-related VMPFC
activity better correlates with confidence than with option-values inferred from reinforcement-
learning models. Altogether, these results identify the VMPFC as a key node in the neuro-
computational architecture that builds global feeling-of-confidence signals from latent decision

variables and contextual biases during reinforcement-learning.
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Introduction

Humans and animals seem to be constantly engaged in computing the subjective
probability of having made the right choice, having successfully memorized or recognized a
cue, having correctly executed the desired action or having endorsed the most truthful
statement—, thereby producing automatic confidence judgments (Fleming & Daw, 2017;
Fleming & Dolan, 2012; Lebreton et al., 2015; Pouget et al., 2016; Yeung & Summerfield,
2012). These metacognitive confidence judgments are increasingly considered as having a
critical functional role in (sequential) decision-making, controlling the integration of new
evidence (Desender et al., 2018), adjusting speed-accuracy trade-offs (van den Berg et al.,
2016), and triggering changes of mind (Fleming et al., 2018; Folke et al., 2016). Likewise, a
recent but increasing number of studies suggests that confidence could be a key variable to
understand human (reinforcement-) learning behaviour both at the normative and descriptive
levels (Boldt et al., 2019; Cortese et al., 2020; Hainguerlot et al., 2018; Heilbron & Meyniel,
2019; Meyniel, 2020; Vaghi et al., 2017).

At the neurobiological levels, the computation of confidence and the production of
confidence judgments has been consistently associated with neural activity in two main
prefrontal networks across a large variety of cognitive tasks: a negative prefrontal network,
encompassing dorsal anterior cingulate cortex (dACC), bilateral insula, dorso-medial and
dorsolateral prefrontal cortices, and a positive ventral network, mostly centered around the
ventromedial prefrontal cortex (Cortese, 2021; Morales et al., 2018; Rouault, Lebreton, et al.,
2022; Vaccaro & Fleming, 2018; White et al., 2014). For instance, dACC was originally
identified as a key centre for performance monitoring and error detection (Holroyd & Coles,
2002; Taylor et al., 2007) as well as for the computation of uncertainty-related variables
(Behrens et al., 2007), before being more generally integrated as a part of a large network
negatively correlating with confidence judgments (Bang & Fleming, 2018; Boldt & Yeung,
2015; Heereman et al., 2015; Morales et al., 2018; Rouault, Lebreton, et al., 2022). More
recently, BOLD activity in the ventromedial prefrontal cortex (VMPFC) and pregenual anterior
cingulate cortex (pgACC) has been positively associated with confidence and self-performance
evaluation, first in the context of value-based decision-making (De Martino et al., 2013), and
then more broadly in other contexts and tasks (Bang & Fleming, 2018; Gherman & Philiastides,
2018; Hoven, et al., 2022; Lebreton et al., 2015; Morales et al., 2018; Rouault et al., 2022).
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While both positive and negative prefrontal networks are omnipresent in the most-
recent meta-analyses and theories of confidence and metacognition judgments (Cortese, 2021;
Vaccaro & Fleming, 2018) there is, to date, very little empirical evidence to formally dissociate
the relative roles of those two networks in the computation of confidence — but see e.g. (Bang
& Fleming, 2018; Cortese, 2021). One promising hypothesis is that some of those network
elements could be involved in different stages of confidence processing, including computing
and integrating different confidence-building variables such as levels of uncertainty.
Uncertainty and confidence can indeed be distinguished at the theoretical and computational
levels: while confidence can be defined as the probability that a decision (or a proposition) is
correct given the evidence, (un)certainty refers to the encoding of all other probability
distributions over sensory and cognitive variables on which choices and confidence are
ultimately built (Cortese, 2021; Fleming & Daw, 2017; Pouget et al., 2016). Thereby, these
two quantities might be easily confoundable —potentially explaining why they have been
associated with similar brain regions and neural patterns of activity in previous studies— but
remain theoretically dissociable. Given the previous association of the negative network with
uncertainty and error detection (Yeung & Summerfield, 2012), and of the positive network
with affect and subjective valuation (Lieberman et al., 2019), one credible neurocomputational
architecture would ascribe to the negative network a role in representing objective uncertainty
—which often (negatively) correlates with confidence—, and to the VMPFC a role in aggregating
a composite variable corresponding to the subjective, phenomenological feeling of confidence,
from decision-related uncertainty variables and all other incidental signals influencing
confidence.

Here, to test this putative architecture, we leverage a reinforcement learning paradigm
that naturally orthogonalizes specific dimensions of difficulty and affective information
(Figure 1 A-B), by factorially manipulating two features of choice outcomes: their valence
(monetary gains or losses) and the quantity of information (partial versus complete feedback).
Our idea is to take advantage of the valence-induced bias in confidence judgments described
in the context of this task — i.e. the fact that participants are genuinely more confident in their
choices when seeking gains than avoiding losses, despite identical objective difficulty and
learning performance (Lebreton, et al., 2019; Salem-Garcia et al., 2021; Ting et al., 2020) —
Figure 1C. Considering the task features and the typical participant behavior, a brain region
encoding objective uncertainty should therefore correlate with confidence in all conditions, and
exhibit signal differences between complete and partial-information contexts, as the objective

uncertainty is higher in partial than complete-information contexts. On the other side of the
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spectrum, a brain region encoding task-wide confidence (corresponding to the reported,
absolute feeling of confidence) should correlate with confidence in all conditions, and exhibit
signal differences between gain and loss contexts, as participants report higher confidence in a
gain context (despite similar choice difficulty and performance observed in a loss context).
Finally, we also define a third variable, condition-specific confidence, which simply indexes
the relative increase of confidence in each learning context due to the incremental improvement
of choice accuracy caused by feedback-based learning. A brain region encoding condition-
specific confidence should therefore correlate with confidence in all contexts, but not exhibit

any signal difference due to our manipulation of valence and information (Figure 1D).
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Figure 1 | Experimental design and hypotheses. (A) Successive screens displayed during the learning
task. Durations are given in ms. (B) Illustration of two-by-two factorial design with outcome valance
(gain and loss) and information (partial and complete) manipulations. Each condition is consistently
associated with a pair of symbols in each run. Each symbol is consistently associated with a probability
(75% or 25%) of getting larger gains (€+1.0) and smaller gains (€+0.1) in the gain conditions and is
consistently associated with a probability of getting smaller losses (€-0.1) and larger losses (€-1.0) in
the loss conditions. In the outcome phase, the outcome from the chosen symbol is always displayed and
highlighted with two red bars regardless of the information condition. The outcome from the unchosen
option is absent in the partial information condition but is available in the complete information
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condition. (C) Evolution of average accuracy (upper panels) and confidence (bottom panels) across
trials from five instrumental learning tasks (N = 90), which were reanalyzed and reported in Salem-
Garcia et al., 2022. Different colors represent different contexts following the conventions from panel
A. (D) Qualitative predictions about the relationship between brain activation patterns (BOLD signal)
and confidence (e.g., the yellow line), for three possible confidence-related signals: uncertainty,
condition-specific confidence, and task-wide confidence. The relationships can be summarized with a
slope and an intercept (cue-evoked), across conditions. GP: gain/partial; LP: loss/partial; GC:
gain/complete; LC: loss/complete; Val.: Valence manipulation; Inf. Information manipulation. Vxl:
Valence and information interaction.

~:.05<P<.1; *: .001<P<.01; **: .01<P<.001; ***: P<.001

Following this reasoning, we recorded BOLD activity in participants while they
performed the reinforcement-learning task featuring manipulations of outcome valence and
information quality, paired with confidence elicitations. Behavioral analyses first confirmed
the presence of the valence-induced confidence bias. fMRI analyses showed that the confidence
was positively and negatively related to the activity in the prefrontal networks regardless of
affective information and task difficulty manipulations. Using theory-driven qualitative
patterns of activation as well as a quantitative model comparison exercise, our neuro-imaging
analyses then revealed a functional dissociation. On the one hand, neural activity in the
negative prefrontal network (i.e., DMPFC and DLPFC) correlated with a condition-specific
confidence signal that gradually builds up, independently in each learning context. On the other
hand, neural activity in the positive prefrontal network (i.e., VMPFC) additionally integrates
contextual effects such as the valence-induced confidence bias, thereby representing absolute,
task-wide confidence that mimics the feeling-of-confidence reported by participants. We
further verified the role of the positive network in reinforcement learning via model-based
fMRI analysis. In short, while VMPFC was also engaged in the computational process, the
activity in the VMPFC can be better explained by confidence than other ongoing computational

variables, including chosen option values and value differences.
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Results

Forty participants took part in our experiment and completed the instrumental learning
task in the MRI scanner. During the learning task (Figure 1A), participants repeatedly faced
pairs of abstract symbols (cues), that were probabilistically associated with monetary outcomes
(gains or losses). In each pair, also referred to as context, one cue was associated with a better
expected outcome (i.e., higher probability of gain or lower probability of loss), and the goal of
participants was to learn, by trial and error, to identify and preferentially choose this cue. Two
main contextual factors were orthogonally manipulated: outcome valence and outcome
information (Lebreton, et al., 2019; Palminteri et al., 2015; Ting et al., 2020). The valence
factor defines Gain and Loss contexts, which respectively only include cues probabilistically
associated with gains or losses (Figure 1B). The information factor defines Partial and
Complete information contexts, where feedback is respectively provided only for the chosen
cue, or for both the chosen and unchosen cues (Figure 1C). In addition, at each trial,
participants reported their confidence in their choice on a probabilistic scale as the subjective
probability of having made a correct choice from 50% indicating chance level to 100%
(indicating certainty). Those confidence judgments were incentivized using a matching
probability mechanism —see Methods and (Hollard et al., 2016; Schlag et al., 2015) for details.
Note that we decoupled the decision and response-related processes by delaying the mapping
between the cue and the motor response, so as to minimize the inherent correlation between
decision response times and confidence judgments —see Figure 1A, Methods and (Ting et al.,
2020) for details.


https://doi.org/10.1101/2023.03.08.531656
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.08.531656; this version posted March 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Reinforcement-learning behavior feature the valence-induced confidence
bias

Overall, participants’ choice accuracy (i.e., the average probability of choosing the better
symbol) is above guessing level (tsg= 17.78; P < .001; Supplementary Table S1), indicating
that they were able to identify and select the better symbols from the probabilistic outcomes,
by trial and error. We then evaluated the effects of our main experimental factors on the two
behavioral variables of interest: choice accuracy and confidence judgments (Figure 2).
Replicating previous reports (Fontanesi et al., 2019; Lebreton, et al., 2019; Palminteri et al.,
2015; Salem-Garcia et al., 2021; Ting et al., 2020), we confirmed that choice accuracy is
modulated by information but not valence (two-way repeated-measures ANOVA: valence F1 39
=0.00, P =.9666; information F139=22.05, P <.001; interaction: F139 = 0.01, P =.9056).
Again replicating previous reports (Lebreton, et al., 2019; Salem-Garcia et al., 2021; Ting et
al., 2020), our analysis confirmed that confidence, on the other hand, is additionally affected
by valence (valence: F1,39=36.56, P < .001; information: F139=6.76, P = .0131; interaction:
F139= 9.62, P =.0036). In addition to confidence being generally higher in gain than loss
contexts, this valence effect was larger in the partial than in the complete information condition
(post-hoc t-tests; partial: tzg = 6.93, P = 2.68x10%: complete: tsg = 4.55, P = 5.08x107;
difference: t3o = 3.10, P = .0451; Figure 2B). Overall, these results confirmed the presence of
a valence-induced bias in confidence judgments that is mitigated by complete information.
We also contrasted confidence and choice accuracy to properly characterize overconfidence
(or calibration). On average, calibration was non-significantly different from 0, indicating
neither over- nor under-confidence (t1,30=0.1883, P = .8516). Yet, replicating previous finding
(Lebreton, etal., 2019; Salem-Garcia et al., 2021) we found that participants were significantly
overconfident in the Gain-Partial context (t139 = 2.14, P = .0385), and that calibration was
significantly modulated by valence and information, with Losses and Complete information
improving calibration (valence: F139 = 12.28, P = .0012; information: F139 = 14.42, P <.001,;
interaction: Fy39 = 0.58, P =.4506; Figure 2C and Supplementary Table S2). These results
held when we tested generalized linear mixed-effect (GLME) models, in which we used trial-
by-trial data and included predictors accounting for valence, information, the session number,
and response times (Table S3).

Finally, response-times featured a small but significant residual effect of valence (valence: F1 39
=4.77, P = .0350; information: F1 39 = 0.31, P = .5782; interaction: F139 = 0.97, P =.3318), as
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well as a negative correlation with confidence judgments (Supplementary Table S2). Despite
the dissociation between decision and response processes, there was a significant correlation
between response times and confidence judgments (Supplementary Table S4). Nevertheless,
the valence-induced confidence bias and the valence-induced RT effect were not correlated at
the inter-individual level (robust regression slope: p = -0.01+ 0.01, P = .339). Moreover, an
interindividual regression analysis suggested the valence-induced confidence bias could be
observed in the absence of a valence-induced RT bias (robust regression intercept: g = 5.02 +
0.84; P <.001; Supplementary Table S5). These results are in line with our previous finding
that the valence-induced bias on confidence and on RTs are partially dissociable (Ting et al.,
2020).
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Figure 2 | The effect of outcome valence and information on learning and confidence. Left and
middle panels are trial-by-trial (A) percentage of correct responses, (B) Confidence rating, and (C)
overconfidence in the partial information (left panels) and complete information condition (middle
panels). Dots and error bars represent the trial-resolved mean + SEM of the participant data. Right
panels picture condition-specific averages. (A) percentage of correct responses, (B) confidence rating,
and (C) overconfidence across conditions at the individual level (colored dots) and group-level
(horizontal bars). The black error bars indicate the overall performance over conditions. The colored
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horizontal bar and error bar represent the mean and SEM, respectively. Val: Valence; Inf. Information.
VxI: interaction between Valence and Information.
~:.05<P<.1; *: .001<P<.01; **: .01<P<.001; ***: P<.001
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Confidence is encoded in a positive ventromedial-prefrontal and a negative

parieto-frontal network.

Our neuroimaging investigations focus on confidence signals that are elicited at the decision
stage (i.e., during symbol presentation, in which a motor response is not required). First, we
aimed to identify neural networks whose activity generally correlates with confidence
judgments during option evaluation across learning contexts. To do so, we designed a first
general linear model (GLM1), in which the cue presentation period was modelled separately
in each of the four contexts, and each of these events was modulated by the time series of
context-specific, trial-by-trial confidence judgments (see Methods and Table 1 for the
complete GLM1 specification). A random-effects analysis looking at BOLD signals that were
correlated with the confidence parametric modulators across contexts identified two main brain
networks (voxel-wise Puncorrected < .001; cluster-wise Prwe < .05; Figure 3A and
Supplementary Table S6-S7). On the one hand, neural activity in the VMPFC, pgACC,
precentral gyrus, and middle temporal gyrus correlated positively with confidence rating. On
the other hand, activity in large parieto-frontal network encompassing dorsolateral (bilateral
IFG and INS) and dorsomedial prefrontal clusters (JACC and DMPFC) correlated negatively
with confidence judgments. A small cluster in the left caudate also correlated negatively with
confidence (see Supplementary Table S7). At the whole brain level, no brain region exhibited
a valence or information effect on confidence encoding, nor an interaction between those
factors (rmANOVA and direct contrasts).

To better characterize the signal encoded in the confidence-encoding prefrontal regions, we
then regrouped the prefrontal clusters identified in our whole-brain analysis into three main
functional regions(/networks)-of interest (ROIs), respectively representative of ventromedial
(VMPEC), dorsolateral (DLPFC: union of bilateral INS and IFG) and dorsomedial (DMPFC,
dACC) prefrontal cortices. Then, we extracted, in these ROIs, the parametric confidence
regression coefficients for all four contexts. We first verified that our experimental
manipulations of outcome valence and outcome information did not impact this parametric
encoding of confidence (all Ps > 0.05/3; Figure S6B and Supplementary Table S6-S7). No
significant effect of those factors was found (Bonferroni-corrected for three comparisons).
Overall, these analyses confirmed that VMPFC on the one hand, and DLPFC and DMPFC one
the other hand, respectively constitute the positive and negative confidence-encoding networks,

and that they encode confidence similarly across the different context.
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Figure 3 | Model-free fMRI results for the learning task. (A) Results of whole-brain analysis. Brain
areas positively (left panels) and negatively (middle and right panels) correlate with confidence rating
during the symbol presentation phase. Significant voxels are displayed on the glass brains in a gray-to-
black gradient manner (Puncorear< .001, cluster size >47). The yellow areas in the anatomical brain are
ROIs (vmPFC, dmPFC, and IFG+INS), which are used in the following ROI analyses. (B) Violin plots
represent the sample distribution of fMRI regression coefficients of cue-evoked signals for the different
contexts (represented by different colors). Dots correspond to individual regression coefficients. Error
bars represent sample mean + SEM. GP: gain/partial; LP: loss/partial; GC: gain/complete; LC:
loss/complete. (C) Violin plots represent the sample distribution of fMRI regression coefficients for
native versus Z-scored confidence regression coefficients, respectively extracted from GM2wp and
GLM2spe. Dots correspond to individual regression coefficients.

~:.05<P<.1; *: .001<P<.01; **: .01<P<.001; ***: P<.001

Task-wide vs. condition-specific confidence in the brain

Next, we turned to our main question of interest, namely dissociating different types of
confidence and uncertainty signals, which we ultimately hoped could help in identifying
functionally dissociable brain networks. We defined three theoretical types of qualitative

patterns on those cue-evoked activities, that specifically characterize three confidence related
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neural signals: uncertainty, condition-specific confidence and task-wide confidence (Figure
1D). Essentially, statistical uncertainty corresponds to the objective difficulty of the choice,
that is ultimately revealed in choice accuracy. Accordingly, statistical uncertainty should be
higher in Partial than in Complete information contexts, but identical in Gain and Loss contexts,
given the similar objective difficulty and observed performance between these conditions
(Figure 1D). Condition-specific confidence simply tracks the subjective, relative improvement
within each context, and is reminiscent of the context value that tracks the choice-independent
expected value in each context (Palminteri et al., 2015; Palminteri & Lebreton, 2021). Thereby,
condition-specific confidence should be purely context dependent, hence not show any effect
of our factors (Figure 1D). Finally, task-wide confidence corresponds to the actual absolute,
phenomenological feeling of confidence that is reported as the confidence judgments. Task-
wide confidence should then be higher in Gain than Loss context, with potentially a mitigation
by information (Figure 1D). From those definitions, and given that our ROIs have already been
shown to encode confidence across contexts, one can simply ascribe those theoretical variables
to ROI activity, by testing the effect of valence and information on cue-evoked activity, as
modelled in GLM1 (Figure 1D). We found a significant valence effect (F1,37 = 8.99, P =.0048)
and marginal valence-information interaction in VMPFC (F1,37 = 4.22, P = .0532) (Figure 3B
and Supplementary Table S6). Mimicking the pattern of confidence judgments, the
difference between BOLD activity elicited in gain versus loss contexts was higher in the partial
than in the complete information context (partial: 0.62+0.18; complete: 0.14+0.16; t37 = 1.99,
P =.0532). In contrast, we did not find significant effects of the valence and information factors
on BOLD activity in either of the negative networks (Ps > 0.8). The results of this ROI analysis
tentatively ascribe task-wide confidence signals (including a valence effect) to the VMPFC and
condition-specific confidence (without valence nor information effects) to both DLPFC and
DMPFC. For completeness, we also tested for additional whole-brain activation for the positive
and negative effects of valence and information on cue-evoked activity. The result revealed
that only the Gain > Loss contrast elicited activations in a large brain network encompassing,
among other regions, the VMPFC (voxel-wise Puncorrected < .001; cluster-wise Prwe < .05;
Figure S6 and Supplementary Table S7). Finally, we performed a whole-brain conjunction
between regions correlating positively with confidence and regions positively encoding
valence (i.e., Gain > Loss). Again, we found that BOLD signal in the VMPFC jointly correlated
with valence and confidence, suggesting that it plays a key role in processing a global, task-

wide confidence signal (voxel-wise Pyncorrected < .001; cluster-wise Prwe < .05; Figure S6C).
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Quantitative assessment of confidence-related variable encoding

Although the analysis of the qualitative patterns of activations seem to clearly point to a
functional dissociation between the positive and negative prefrontal network in confidence
encoding, some aspects of the demonstration still have some weaknesses. For instance,
ascribing condition-specific rather than task-wide confidence signal to the negative network
entails accepting the null hypothesis — i.e. concluding that valence and information are not
statistically detectable in the negative network ROIs’ signal. Here, we propose a different set
of analyses to quantitively support this conclusion without relying on this statistical caveat. To
provide a fair comparison between task-wide and condition-specific confidence, we designed
two new GLMs (GLM2wip and GLM2spg), that concatenated all learning-contexts into one
single cue-evoked event (i.e., symbol presentation period). Then, in GLM2wp, this event was
modulated by the time series of all native confidence judgments (i.e., the absolute confidence
reports provided by our subjects on each trial). On the contrary, in GLM2seg, this event was
modulated by the time-series of all confidence judgments, but normalized (i.e. Z-scored) per
condition (i.e., reflecting variation around each condition mean). This way, the structure of
these two GLMs is identical, but the parametric modulators of confidence respectively
represent task-wide confidence (i.e., native, absolute confidence) and condition-specific
confidence. We then extracted the confidence regression coefficients from our ROIs, and
proceeded to two types of quantitative comparisons. First, we simply compared the GLM2spe
and GLM2wp regression coefficients (Figure 3C). In the VMPFC, activations related to native
confidence were significantly higher than to normalized confidence (t37 = 5.41, P <.001). In
total, this pattern was found in 30 out of 38 participants, further evidencing that activity in the
VMPFC better corresponds to task-wide than condition-specific confidence. However, the
same analysis was inconclusive for the regions of the negative network —although trending in
the direction of higher activations for condition-specific confidence for some regions (DMPFC:
ts37 =-1.40, P = .1670; IFG+INS: t37 = 0.43, P = .6684). Note that the underlying test that was
used to create ROIs, a grouping parametric effect of confidence from GLM1, was orthogonal
to the follow-up tests on task-wide and condition-specific confidence encoding, therefore these
analyses were not circular and did not advantage GLM2spe or GLM2wip (Kriegeskorte et al.,
2009). We then complemented analysis with a formal Bayesian Model Comparison (BMC; see
Supplementary Methods: Bayesian model comparison) between the GLM2spe and
GLM2wp in our ROIs, using the SPM-based MACS toolbox (Soch & Allefeld, 2018). This
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time, while the analysis was inconclusive in the VMPFC (GLM2wip vs GLM2spe; Exceedance
Probability EP: 48.69% vs 51.31%), it provided suggestive evidence that lateral and dorsal
parts of the negative network are better explained by condition-specific than task-wide
confidence (GLM2wip vs GLM2spe EP: DMPFC: 17.78% vs 82.22%; IFG+INS: 09.66% vs
90.34%). Overall, converging evidence from different models and statistical tools seem to

confirm our functional dissociation between the VMPFC and the negative network.

Computational models for learning and confidence judgments

The vast majority of past studies investigating neurocomputational models of reinforcement-
learning have focused on the neural representation of learning latent variables such as option
and action values, prediction errors, and various levels of (Bayesian) uncertainty. As a matter
of fact, the emerging consensus in the RL literature seems to indicate that neural signal in the
VMPFC is specifically linked to the representation of option values, from which decisions are
derived (Liu et al., 2011; Rushworth et al., 2011). Evaluating the relative merits of our current
hypothesis against this consensus, namely that VMPFC encodes confidence judgments rather
than values during RL, requires a computational model that faithfully captures our participants’
behavior and that can produce the desired latent variables. Following the rationale of a recent
study (Salem-Garcia et al., 2023), we proposed a combination of a RL model and of a
confidence regression, to jointly account for behavioral choices and confidence judgments
exhibited in the current experimental framework (i.e. in both the learning and transfer phases).
We factorially tested several families of RL model (Figure 4A and Methods), which built on
a basic Q-learning model (ABS), and modularly featured context-dependent learning
(RELATIVE family) as well as confirmatory updating (ASYMMETRIC family) — see also
(Palminteri & Lebreton, 2021, 2022). Replicating previous findings, we found that both
features were necessary to best account for our participant data, as revealed by a formal
Bayesian Model Selection (BMS) analysis (Figure 4B-C; winning model: RELASYM,;
protected Exceedance probability >99%). The RL model provided latent variables (i.e. option
Q-values and context-value V), from which we then built several confidence models (Figure
5A and Methods). Confidence models consisted in a logit-transformed multiple regressions
that included, as predictor variables, choice difficulty —proxied by the absolute difference
between option values (|Qc—Qu|)—, plus a biasing term accounting for the valence-induced bias

(for which we tested several variants: 0, 2Q, V, Qc; Figure 5A), and an autocorrelation term
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(i.e. confidence in the previous trial) that accounts for the tendency of confidence judgments
to exhibit serial dependency (Rahnev et al., 2015). A BMS revealed that the confidence model
that featured the value of the chosen option Qc as a biasing term (thereafter referred to as Qc-
REG) provides the best account of participants confidence judgments (protected Exceedance
probability >99%; Figure 5B-C). In the supplementary methods of the present paper
(Supplementary Figure S1-S5), we systematically apply the set of analyses underlying the
demonstration proposed in (Salem-Garcia et al., 2023) and compare its results to those obtained
in the present dataset (learning + transfer). This exercise confirmed that the combination of
RELASYM and Qc-REG models faithfully capture our participants’ behavior (choice and
confidence judgments) throughout our experimental framework (learning and transfer phase),
and that learning biases are fundamentally linked with confidence biases (Supplementary
Figure Sb).
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Figure 4 | Modeling choices in the learning phase (A) The learning model architecture to explain participants
choice data. Color panels represent different components of value updating rules. Gray panel: Absolute model
(ABS), which consists of basic Rescorla-Wagner (RW) update rule. This rule updates chosen and unchosen option
values via outcome directly. Blue panel: Relative model (REL), which consists context-dependent component and
updates option values by considering context value. Pink panel: Asymmetric updating model (ASYM), which
updates option values based on the valence of prediction error. Purple panel: relative-asymmetric model
(RELASYM), which is the combination of relative model and asymmetric updating model. The contextualization
panel is used to update unchosen option in the partial information condition. Specifically, X* is determined as the
unchosen option outcome (Ru) when the value is available in the complete information condition. When the
unchosen option outcome (Ru) is not available in the partial information condition, X* is hypothesized as none
(0), expected unchosen value (Qu), paired outcome (—R) and last seen outcome associated with the option (Ru—t).
(B) Left panels: Bayesian model comparison. X-axis represents the models with different hypothesized
contextualization values. Y-axis represents the value of three criteria, including exceedance probability (EP; grey
histograms), expected frequencies (EF; diamonds) and protected exceedance probability (pEP; line & dots) of
each model. The red dashed line represents the guessing level for EF. The blue dashed line represents the threshold
(95%) for the exceedance probability. Right panels: Estimated parameter values of the winning model
(RELASYM, X* = with =Rc). Dots represent individual data points. Error bars displayed within the violin plots
indicate the sample mean + SEM. The blue, dotted envelop represent the prior distribution. (C) Left: modelled
trial-by-trial percentage of correct responses. Dots and error bars represent the mean + SEM of the participant
data. Filled, shaded colored areas represent mean + SEM of the posterior predictive fits obtained from our winning
computational model (RELASYM, X* = with =Rc). Right: average percentage of correct responses across
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conditions at the individual level (colored dots) and group-level (horizontal bars). The black error bars indicate
the overall performance over conditions. The colored horizontal bar and error bar represent the mean and SEM,
respectively. The large with dot and corresponding error bar represent mean£SEM of the posterior predictive fits
obtained from our winning computational model (RELASY M, X* = with =Rc).

Qcuyr: value of the chosen/unchosen option at trial t. Re,,: outcome associated to the chosen/unchosen option. de:
prediction error for the chosen/unchosen option. oy.: learning rate for the chosen/unchosen option. ocontdisc:
learning rate for confirmatory/disconfirmatory information. V: context value; . prediction error for the context
value. ay: learning rate for the context value.
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Figure 5 | Modeling confidence in the learning phase (A) The confidence model architecture to explain
participants confidence judgment data. Color panels represent different components of the multiple regression
predicting confidence. In particular, the blue rectangle pictures the different hypotheses for the biasing term. (B)
Left panels: Bayesian model comparison. X-axis represents the models with different hypothesized valence biases.
Y-axis represents the value of three criteria, including exceedance probability (EP; grey histograms), expected
frequencies (EF; diamonds) and protected exceedance probability (pEP; line & dots) of each model. The red
dashed line represents the guessing level for EF. The blue dashed line represents the threshold (95%) for the
exceedance probability. Right panels: Estimated parameter values of the winning model (Qc-REG). Dots represent
individual data points. Error bars displayed within the violin plots indicate the sample mean = SEM. The blue,
dotted envelop represent the prior distribution. (C) Left: modelled trial-by-trial confidence judgments. Dots and
error bars represent the mean + SEM of the participant data. Filled, shaded colored areas represent mean + SEM
of the posterior predictive fits obtained from our winning model (Qc-REG). Right: average confidence across
conditions at the individual level (colored dots) and group-level (horizontal bars). The black error bars indicate
the overall performance average across conditions. The colored horizontal bar and error bar represent the mean
and SEM, respectively. . The large white dots and corresponding error bar represent mean = SEM of the posterior
predictive fits obtained from our winning computational model (Qc-REG). Qcu: value of the chosen/unchosen
option; V: context value; 2Q: sum of chosen and unchosen Q-values

BOLD activity in the positive and negative networks correlate with decision

values

Thanks to the latent variables estimated form our computational models, we next tested

whether activity in the prefrontal regions originally identified in our confidence analyses
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(Figure 3A; VMPFC; DMPFC; IFG+INS) could also be explained with the more traditional
learning and decision variables. We therefore designed a new GLM (i.e., GLM3, see Table 1)
for a model-based fMRI analysis, which comprised, as parametric regressors of the cue onset,
all value-related latent variables estimated by the RELASY M model: the chosen option value
(Qc), the unchosen option value (Qu), and the context value (V). We then extracted the
parametric regressors in the three main regions forming our confidence networks. Altogether,
and in line with previous findings (Liu et al., 2011; Palminteri et al., 2015; Rushworth et al.,
2011), we found that the chosen option values (Qc) correlated with BOLD activity positively
in the VMPFC (t37 = 3.26, P =.0023) and negatively in the DMPFC (t37 = -4.96, P <.001) and
IFG+INS (t37 = -4.43, P < .001) (Figure 6A). In addition, the unchosen option value (Qu),
correlated positively with BOLD activity in the DMPFC (t37 = 2.96, P = .0053) and IFG+INS
(ts7 = 2.75, P = .0091). At the whole-brain level (Pewe < 0.05 at the cluster level), only the
chosen option values (Qc) generated significant clusters of activations in the prefrontal regions,
in both the VMPFC (positive) and in the IFG+INS (Supplementary Table S8). Therefore, in
the context of reinforcement learning, neural activity in the ventral and dorsal prefrontal
cortices can be evenly ascribed to two very different cognitive processes: the computation of

decision values and/or the evaluation of confidence in the upcoming decision.
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Figure 6 | vmPFC is involved in value and confidence processing. Violin plots represent the sample
distribution of fMRI regression coefficients corresponding to several variable of interest included in
different GLMs, extracted from each ROI (left: VMPFC; middle: DMPFC; right: IFG+INS) at the
symbol presentation phase. (A) Regression coefficients for RL-derived value latent variable. Dots
correspond to individual regression coefficients. (B) Regression coefficients for confidence model latent
variables. ROIs were defined with confidence activations from GLM1 (A) or Qc-activations from
GLM3 (B). Dots correspond to individual regression coefficients. Dark gray and light gray indicate the
effect is significantly and insignificantly different from 0, respectively. Error bars represent sample
mean+SEM. Qc: parametric modulator of chosen option; Qu: parametric modulator of chosen option.;
V: parametric modulator of context value.; Diff.: parametric modulator of absolute value difference of
Qcand Qu. ~:.05<p<.1; *:.001<p<.01; **: .01<p<.001; ***: p<<.001

BOLD signal in the VMPFC correlates with confidence-building variables

To evaluate whether prefrontal activations with confidence could have been purely confounded
(i.e., explained) by their role in computing decision values (notably Qc, in the VMPFC), we
proceeded to a reverse double dipping exercise. We created a new GLM (i.e., GLM4), which
contained the three components of confidence suggested by the Qc-REG models (Qc, |Qc—Qu|,
and conf...1) as parametric regressors of the cue onset. We defined as our three prefrontal ROIs
the significant clusters revealed by the whole brain correlation with Qc in GLM3, and extracted
the parametric regressors of the confidence component estimated with GLM4. Critically, the
VMPFC ROI that was selected to be specifically associated with Qc also exhibited residual
correlations with the other confidence components (Figure 6B; Qc: t37 = 3.63, P < .001;
|Qc—Qu: t37 = -3.19, P =.0029; conf..1: t37 = -2.93, P = .0057). Note, however, that when the
different sources of confidence formation competed for the variance of BOLD signals, only Qc
elicits whole-brain significant activations in VMPFC (voxel-wise Puncorrected<.001; cluster-wise
Prwe <.05; Supplementary Table S9). Still, those analyses suggest that the VMPFC does not

simply encode Qc, but exhibit additional signatures of confidence signal.

BOLD signal in the VMPFC is better explained by confidence than decision

variables

A recent stream of studies has suggested that, in simple decision-making or judgment
situations, the VMPFC encodes a combination of both decision values and confidence (De
Martino et al., 2013; De Martino et al., 2017; Lebreton et al., 2015a; Lopez-Persem et al.,
2020). In this last section, to refine the characterization of VMPFC activity during human
reinforcement-learning, we estimated an fMRI model which included both Qc and confidence
judgments as parametric regressors (GLM5). Following the rationale of (Lebreton et al., 2015),

we designed value-related VMPFC ROIs, from the Qc-activations revealed in GLM3, and from
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a meta-analysis of fMRI activations value (Bartra et al., 2013). We then extracted regression
coefficients of Qc and confidence from the GLM5 model, so as to test for the presence of
confidence signals in those value-coding regions (Figure 7A). Despite the choice of our ROIs,
which should bias our analyses in favor of value activations, the Qc-related activations were
marginal to insignificant (Figure 7A, GLM3-ROI: P = .0553; Bartra ROI: P =.2324) in our
model in which value- and confidence-related parametric modulators compete for variance. On
the contrary, confidence-related activations were clearly significant in both ROIs (Figure 7A,
Ps<.0001), and significantly larger than Qc-related activations (Figure 7A, Ps<.05). Note that
a formal comparison between models featuring one (Qc or confidence) versus two (Qc and
confidence) using BMC failed to provide conclusive results. In the negative network (DMPFC,;
INS+IFG), the comparison of confidence and Qc-parametric regressors did not reach
significance, again suggesting a functional dissociation with its positive counterpart
(Supplementary Figure S7).

Finally, we considered the possibility that value and confidence signals dominate in different
sub-regions of the prefrontal cortex (Clairis & Pessiglione, 2022). Therefore, following the
rationale in (Clairis & Pessiglione, 2022; Hoven, et al., 2022), instead of averaging signal over
the entire ROI, we extracted regression coefficients in a large anatomical prefrontal ROI, and
marginalized those activations along the anterio-posterior (Y) and ventro-dorsal (Z) axes
(Figure 7B). This finer-grained analysis revealed that confidence activations dominate value-

activations over all portions of the medial prefrontal cortex.
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Figure 7 | value and confidence activations in the VMPFC (A) ROI analysis with Qc-related ROIs
identified in the present study (top-left; purple areas) and in an independent meta-analysis (bottom_left;
white area). Right: the regression coefficients corresponding to Qc and confidence in GLM5 were
summarized at the individual level (dots). Violin plots represent the sample distribution of fMRI
regression coefficients. Dots correspond to individual regression coefficients (B) Anatomical ROI of
mFPC. BOLD signal was extracted along y-dimension from posterior to anterior area and along z-
dimension from ventral to dorsal area (pictured slices are only illustrative, and do not indicate the actual
coordinate of the extracted signal). Voxel-wise t-values of Qc and confidence in GLMS5 were extracted
and averaged over two dimensions. Middle : average t-value along MNI y-coordinate. Right: average t-
value along MNI y-coordinate. Dots and error bars represent mean +SEM.

Qc: parametric modulator of chosen option; Conf.: parametric modulator of confidence ratings

~:.05<P<.1; *: .001<P<.01; **: .01<P<.001; ***: P<.,001
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Discussion

Decisions are usually accompanied by confidence judgements, which reflect subjective
(un)certainty about the choice being correct (Fleming & Dolan, 2012; Lebreton et al., 2015;
Pouget et al., 2016). This internal signal plays a crucial role in guiding behaviors and has been
associated with two main prefrontal networks: VMPFC and DMPFC (Bang & Fleming, 2018;
Rouault, Lebreton, et al., 2022; Vaccaro & Fleming, 2018). To date, though, the relative
contribution of those two networks in the mechanisms underlying confidence formation
remains unclear. To fill this gap, we combined fMRI and an adapted probabilistic
reinforcement learning task (Lebreton, et al., 2019; Palminteri et al., 2015; Ting et al., 2020),
in which we systematically manipulated two dimensions of the learning context: the valence
of the outcome (gain vs. loss) and the outcome information (partial vs. complete feedback). At
the behavioral level, we successfully replicated the valence effect on confidence judgments:
confidence is significantly higher when learning to gain rewards relative to learning to avoid
losses, despite participants learning equally well in both contexts (Lebreton, et al., 2019;
Salem-Garcia et al., 2021; Ting et al., 2020). At the neural level, we first replicated consensual
and established results: confidence was positively related to the activation in the VMPFC and
neighboring area pgACC (positive-confidence network) and negatively related to the activation
in the DMPFC, IFG, and INS (negative-confidence network) (Bang & Fleming, 2018; Rouault,
Lebreton, et al., 2022; Vaccaro & Fleming, 2018). Then, we uncovered two new key findings.
First, our analyses revealed that VMPFC activity represents a task-wide (subjective)
confidence signal as it tracks confidence within contexts together with the valence bias that
increases confidence in gain contexts. Activation in the negative-confidence network (DLPFC,
DMPFC), on the other hand, only tracks condition-specific confidence. Accordingly, we
speculated that the VMPFC is a key region involved in the valence-induced confidence bias
during reinforcement learning. Second, we found that, contrary to the current dominant view
in the field, the activation in the VMPFC can be better explained by confidence rather than
other value-related variables estimated by a RL model. In the following sections, we discuss

these new findings in more details.

The simultaneous neural representation of valence and confidence in the VMPFC suggests that
VMPFC integrates affective/motivational information with metacognition, and as such plays a
key role in the valence-induced confidence bias (De Martino et al., 2013; De Martino et al.,
2017; Flemingetal., 2012, 2014; Hoven, et al., 2022; Hoven, et al., 2022; Lebreton et al., 2015,
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2018). Contrary to our theoretical predictions, we did not identify a brain region that is sensitive
to confidence and to the information manipulation (i.e., partial and complete feedback). This
might be due to the low effect size of information on confidence (though effects on accuracy
are clear) or the fact that, as our modelling suggests, participants tend to infer the counterfactual
outcome when not observed — see Figure 4 and (Salem-Garcia et al., 2023; Ting et al., 2021).
Another possibility is that, while confidence-related variables are explicitly monitored by some
brain areas, uncertainty is implicitly encoded in the variance of neural populations, which our
current neuroimaging approach would fail to capture (Knill & Pouget, 2004; van Bergen et al.,
2015).

In addition, our results provide evidence for the co-existence of task-wide confidence
in VMPFC and condition-specific confidence in DMPFC. This functional difference confirms
that those two brain networks are not redundant in the way they process confidence-relevant
information (Bang & Fleming, 2018; Rouault, Lebreton, et al., 2022), but also raise legitimate
questions about the advantages of tracking both variables and the relation between them.
Naturally, access to task-wide (i.e. absolute) confidence is critical to compare (or even choose
between) different choice situations whose assessment regarding the probability of being
correct differ (de Gardelle & Mamassian, 2014). Task-wide confidence can be viewed as an
overarching estimate of confidence that enables to select situations in which we perform well,
and avoid situations in which we perform less well. Its role of monitoring confidence across
multiple contexts therefore places task-wide confidence in an advantageous position to solve
the explore exploit problem. Yet, evidence suggest that most neural and cognitive computations
are context-dependent (Carandini & Heeger, 2012; Louie & De Martino, 2014), notably in the
context of reinforcement learning (Hunter & Daw, 2021; Palminteri & Lebreton, 2021), such
that metacognition and confidence might not elude this general neurocomputational principle.
While our current results remain agnostic about the mechanistic interactions between task-wide
and condition-specific confidence, most models of confidence formation seem to assume that
local variables (e.g. uncertainty or condition-specific confidence) are precursors of more
general, absolute confidence judgments (Cortese, 2021; Pouget et al., 2016; Rouault et al.,
2019). In our case, this would imply that early, condition-specific signals in the negative
network (DMPFC, DLPFC) are then fed to the positive network (VMPFC), where a general,
task-wide confidence signal matches the report of participants which corresponds to the
subjective experience -i.e. phenomenological dimension- of the feeling of confidence (Bang &
Fleming, 2018; Lau et al., 2022) — but see (Gherman & Philiastides, 2018) for evidence of

opposite patterns. Finally, a couple of recent studies investigated how a global feeling of
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confidence (over a whole task) builds from multiple local signals (over trial-by-trial changes
in task difficulty and performance), and report that VMPFC tracks local confidence in a manner
that is sensitive to global self-performance estimations (Rouault et al., 2019; Rouault &
Fleming, 2020). Altogether these results seem to indicate that VMPFC aggregates a complex

confidence estimates over multiple layers of precursor variables.

Two main lines of arguments motivated us to complement our first set of neuroimaging
analyses focused on confidence signals with model-based assessments of value-related signals.
First, similarly to the decision-making literature, the reinforcement-learning literature has so
far mostly associated VMPFC with the processing of value — rather than confidence (Liu et al.,
2011; Rushworth et al., 2011). Second, we recently suggested that, during reinforcement-
learning, confidence builds notably on two variables estimated from learned option-values: the
choice difficulty (proxied by the absolute difference between the two available options values),
and the chosen option value (Qc) (Salem-Garcia et al., 2023). This leaves open the possibility
that the activations that we originally associated with confidence in VMPFC actually encode
the sources of confidence (i.e., value signals) rather than confidence per se. To address these
concerns, we used the same modelling strategy proposed in Salem-Garcia et al., (2023), and
first confirmed their conclusions regarding both learning and confidence models. Indeed, our
results showed that the participants choice behavior can be best explained by a reinforcement-
learning model featuring context-dependent learning, and confirmatory updating
(Supplementary Figure S1). Additionally, we did confirm that confidence judgments are best
explained by a linear combination of choice difficulty (proxied by the absolute difference
between the two available option values) and the chosen option value (Qc) as a biasing term —
akin to a choice-congruent evidence integration bias (Miyoshi & Lau, 2020; Peters et al., 2017;
Zylberberg et al., 2012). This model provides an excellent fit to participants’ choices and
confidence judgments in both learning and transfer phases, and generates key behavioral
patterns observed in our data, suggesting that it adequately tracks the cognitive operations
mobilized to solve our task. Thereby, the model-derived latent variables allow us to investigate
the neural correlate of valuation during learning (Collins & Shenhav, 2022). Note that contrary
to most previous studies, our design allowed the separation of option evaluation and motor
mapping, which minimizes the potential action-related effect on the correlation between BOLD
signal and decision-related variables such as values and confidence (Yoo & Hayden, 2018). In
this context, we confirmed that the value of the chosen option correlates positively with BOLD
signal in the VMPFC (Baram et al., 2021; Gershman et al., 2009; Glascher et al., 2009;

26


https://doi.org/10.1101/2023.03.08.531656
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.08.531656; this version posted March 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Skvortsova et al., 2014). More dorsal and lateral regions of the prefrontal cortex (DMPFC,
DLPFC) appear to encode with opposite signs the value of the chosen and unchosen options.
This pattern could be consistent with the idea that value comparison is effectuated in these
more dorsal prefrontal regions (Kolling et al., 2012, 2016; Rangel & Hare, 2010; Wunderlich
et al., 2009), and could provide an estimate of the value of control or of information (Klein-
Fligge et al., 2022; Shenhav et al., 2016).

To bridge these results on valuation in vmPFC with results suggesting confidence
encoding in the same region, we investigated whether VMPFC encode additional confidence
precursors (e.g. choice difficulty) in addition to Qc. ROI analyses revealed significant
correlations between the activation in the VMPFC and all three confidence precursors
identified by our confidence model, suggesting that VMPFC does not simply encode Qc.
Consolidating these results, we also found that the activation in the VMPFC can be better
explained by confidence than Qc when both variables are included in a single model, and this
is observed regardless of the level of granularity considered. Note that, to avoid the double-
dipping issue, we selected ROIs that are related to chosen option value from the present study
and an independent literature (Bartra et al., 2013), therefore favoring de-facto the opposite
hypothesis, namely that VMPFC would preferentially encode Qc. The fact that confidence
signals dominate value signals in the VMPFC clashes with the current understanding of its
functional role in reinforcement-learning task, which is almost exclusively restricted to option
valuation and representation of cognitive maps (Klein-Flugge et al., 2022).

There are at least three tentative explanations for this apparent discrepancy. First, our
results could be compatible with the idea that VMPFC does uniquely encode Qc (rather than
confidence), but this latent variable is not well estimated by the RL model to robustly capture
VMPFC signal variance. In our present modeling exercise as well as a previous modelling
paper (Salem-Garcia et al., 2023), we tried to nullify this possibility by going to great length to
show that our RL and confidence models can qualitatively and quantitatively account for choice
behavior and confidence judgment (Supplementary Figure S3). Interestingly, in the (possible)
case that a misfit persists and that Qc are mis-estimated, our present results suggest that eliciting
confidence judgments could help researchers to better identify the neural networks engaged in
value-based learning. Second, similarly to what has recently been shown in decision-making,
VMPFC might actually jointly represent decision values and confidence during reinforcement-
learning (De Martino et al., 2013; Lebreton et al., 2015a; Lopez-Persem et al., 2020). In our

data, only small portions of the VMPFC (anterior and ventral) still correlate positively with Qc
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when confidence is included in the model. Finally, it is possible that the presence of confidence
elicitation in the present study somewhat affects the other computations related to valuation
and decision. Although previous work suggests that value and confidence encoding in the
VMPFC are both automatic (Lebreton et al., 2009, 2015; Lopez-Persem et al., 2020; Shapiro
& Grafton, 2020), an increasing number of studies also reported that VMPFC (value) coding
depends on incidental emotional states, as well as specific goals and demands of the task at
hand (Cortese, 2021; Engelmann et al., 2015; Sepulveda et al., 2020). These last two
possibilities are consistent with the idea that the role of medial and orbital frontal cortex in
decision-making and flexible behavior is more complex than initially thought, and might
deserve further (re)investigations (Klein-Fliigge et al., 2022; Masset et al., 2020).

In the present study, confidence is non-instrumental, and only consists in a read-out of
the subjective choice accuracy. In numerous ecological contexts, confidence can be key to
monitor and adapt behavioral strategies. Given the multiple layers of confidence and
uncertainties uncovered here and the functional dissociations of their neural underpinnings,
future studies will need to consider which variable (objective uncertainty, condition-specific
confidence, task-wide confidence) and which (confidence) biases impact future behavior —and
how. This last point is critical for developing interventions targeting confidence biases,
especially as confidence dysfunctions are increasingly seen as relevant markers in clinical

applications (Hoven et al., 2019; Rouault, et al., 2022).
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Material and Methods

Participants

40 participants (female = 23; Age = 22.69+4.44) were recruited from the subject pool of the

behavioral science lab (https://www.lab.uva.nl/lab) and through poster adverts distributed on

the University of Amsterdam (UvA) campus. The ethical approval was obtained from the
Department of Psychology of the Faculty of Social and Behavioral Sciences, at UVA (reference
number: 2018-EXT-9205). Before the experiment, only participants that passed the
prescreening procedure (e.g., no claustrophobia, no metal in the body) were invited to come to
the MRI scanner and were sent an invitation email and detailed information about the
experiment and MRI. Participants were asked to arrive at the laboratory 30-min before the
experiment. Once participants arrived, they gave informed consent and read the instruction
again. Afterward, they experienced a 16-trial practice with the same learning task (but using

different symbols) as well as a lottery incentivize procedure outside of the MRI scanner.

The final payout was computed as follows: show-up fee (20€), accumulated outcome from the
learning task and bonus from the confidence incentivization procedure. The mean and standard
deviation of the payout was 32.18+3.46€. All the tasks were implemented usSing
MatlabR2015a® (MathWorks) and the COGENT toolbox.

Probabilistic instrumental-learning tasks

We adopted our previous instrumental reinforcement learning task (Lebreton, et al., 2019;
Palminteri et al., 2015; Ting et al., 2020) for fMRI by adding incentivized confidence ratings
and by separating symbol evaluation and motor response in each trial (see details below).
Participants were asked to maximize payoff during the learning task by choosing the symbol
with the higher expected value in a pair at each trial (Figure 1). In each run of 80 trials, four
fixed pairs of abstract symbols were used to represent four conditions in the two (feedback
valence: gain or loss) by two (information: partial or complete) within-subjects design (Figure
1B). Specifically, eight symbols were divided into four fixed combinations and are constantly
arranged to gain & partial (GP), loss & partial (LP), gain & complete (GC), and loss & complete
(LC) conditions. Each pair of symbols indicated a specific condition and possible outcomes.
For example, for gain contexts (i.e., GP and GC), the possible outcomes are +€1 or +€0.1.

Conversely, -€1 or -€0.1 are possible outcomes in the loss contexts (i.e., LP and LC). The

29


https://www.lab.uva.nl/lab
https://doi.org/10.1101/2023.03.08.531656
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.08.531656; this version posted March 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

probabilistic outcome of an option was determined by reciprocal but independent probabilities,
75% or 25% (Figure 1B). The symbol that enjoys a higher expected value (3 probability x
outcome) was defined as the correct option in each pair. Note that only the chosen outcome

was added to the final payoff in both the incomplete and complete feedback conditions.

All the participants completed three runs of 80 trials, such that each of the four condition (i.e.,
each pair of symbols) was repeated 20 times per run. In each trial (Figure 1A), the symbols
were presented first (1500-3500ms; mean = 2050ms). To avoid the potentially confounding
influence of motor responses during symbol evaluation, the symbols disappeared for a while
(500-3000ms; mean = 800ms) after symbol presentation. Afterward, two white bars appeared
on either right or left of the location of the invisible symbol to indicate which button should be
pressed to select the corresponding symbol (i.e., the right button: the white bar was on the right
side of the symbol). Once a decision was made, two red bars were displayed beside the chosen
symbol (500ms). Before seeing the outcome, participants were asked to state their confidence
about choosing the symbol that is better on average (i.e., with a higher expected value).
Confidence ratings were done on a scale ranging from 50% to 100% with incremental steps of
5%, and randomized starting points and without time constraints. At the end of each trial,
participants were shown the outcome from the chosen option only in the partial information
conditions (i.e., GP and LP) for 2000ms. Otherwise, both chosen and unchosen outcomes were

displayed in the complete information conditions (i.e., GC and LC. See Figure 1B).

In order to motivate participants to accurately report confidence, confidence judgments were
incentivized by a Matching Probabilities (MP) mechanism, a well-validated method from
behavioral economics adapted from the Becker-DeGroot-Marschak auction (Becker et al.,
1964; Ducharme & Donnell, 1973). Specifically, we randomly selected three trials from three
runs (i.e., one trial/ run) and then compared the confidence rating p at that trial with a random
number r (chosen from the range between 50% and 100%). If p > r, then participants won the
bonus of 5€ when the chosen symbol indeed had the higher expected value (i.e., the correct
one), otherwise, participants won nothing. If p < r, participants won the bonus of 5€ with a
probability of r, otherwise, won nothing with a probability of 1-r. The euros earned from the
game were exchanged for the actual money with a certain exchange rate (1 EU in game = 0.3
payouts EU). Again, all participants were informed about the rule of payout and experienced
practice trials in both the learning task and confidence incentivization before the real

experiment in the MRI scanner.
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Transfer task

After the learning task, participants left the scanner and were instructed to perform an
additional transfer task, where each symbol from the last run of the learning task was paired
with all other 7 symbols (i.e., forming 24 new and 4 original pairs). Participants were asked to
choose one symbol that can benefit them more, and rate their confidence in their choice. No
feedback and monetary incentives were offered in this task. However, participants were asked
to imagine that they were able to earn money from the chosen symbols. Because the present
study focuses on the neuroimaging data, which was only available for the learning task,
analyses of choices from the transfer task are not detailed in the Main Text (but see

Supplementary Figures S2, S4 and Sb).

Behavioral analyses

In this study, we mostly focused our analyses on three dependent variables of interest available
during the learning task: choice accuracy, reaction times, and confidence. The choice accuracy
referred to the probability of choosing the relatively better symbol in a pair of symbols (i.e.,
the one with a higher expected value). The reaction time was defined as the time between the
onset of the cues allowing response (referred to as the choice screen in Figure 1A) and the
actual (self-paced) choice. Confidence simply corresponded to the rating elicited in the
confidence judgment screen. To test for the effect of valence and information manipulations,
as well as their interaction, these measures were averaged over three runs for each condition
and participants and were then fed into two-way repeated-measures ANOVAs. The direction
of changes was analyzed by follow-up t-tests. In particular, one-sample t-tests were used when
comparing data to a reference value (e.g., guessing level: 50%), and paired t-tests were used to
compare responses across different conditions (e.g., gain vs. loss) and different measures (e.g.,
averaged learning performance vs. averaged confidence).

All statistical analyses were performed using MatlabR2021a® (MathWorks) and its built-in
functions (i.e., one-sample t-test: ttest; paired t-test: ttest2; repeated ANOVA: anovan;

Pearson’s correlation: corr).

31


https://doi.org/10.1101/2023.03.08.531656
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.08.531656; this version posted March 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Computational modelling - methods

Learning models — structure and model space

Participants’ choices from both learning task and transfer task were fitted with 10
reinforcement learning models (RL models) proposed in (Salem-Garcia et al., 2023). The
models in the model space can be categorized into four families: ABSOLUTE model (ABS),
RELATIVE models (REL), ASYMMETRIC models (ASYM), and RELATIVE-
ASYMMETRIC models (RELASYM).

The ABS model is the baseline model. Other models were built up based on the ABS model

and assumed other sources of information were integrated during learning (Figure 4A).

In the ABS model, in all learning contexts s, both chosen option value Q (s, ¢) and unchosen

option value Q (s, u) are updated through a delta-rule function at trials t:

Qe+1(s,¢) = Q¢(s,c) + a. X 6(s,¢)
Qes1(s,w) = Qc(s,u) + ay, X 8(s,u)

, Where a, and «,, are learning rates and & referred to the prediction error. The prediction error

is defined as the difference between the estimated option value Q and the real outcome R:

& = Rt(s» c) — Qt(S; c).
8y = Re(s,u) — Q¢(s,u)

The RELATIVE and RELATIVE-ASYMMETRIC families of models feature context-
dependent learning (Bavard et al., 2018; Palminteri et al., 2015; Palminteri & Lebreton, 2021).
Thereby, the prediction errors for chosen and unchosen options are corrected with the context

value V(s) as follows:

8¢ = Re(s,¢) = Vi(s) — Q¢(s, c)
8, = R:(s,u) — V.(s) — Q:(s,u)

, Where the context value is also updated through delta-rule with its own learning rate o, and

prediction error §(s, v):
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Vip1(s) = Vi(s) + ay x6(s, v).

When the counterfactual outcome is available (i.e., complete information conditions), the
prediction error for context value is computed as the difference between the estimated context

value and the average outcome values:
Sy = (Re(s,c) + R:(s,u))/2 — Vi(s).

When the outcome for the unchosen option was not available in context s (i.e., partial
information conditions), we assume participants infer an approximation of it X, and calculated

the prediction error for context value accordingly:
8y = (Re(s,¢) + X*)/2 = V,(s)

We tested four alternatives for this approximated inference X*, which were implemented in
different models. These four alternatives are 0, unchosen option value (Q:(s,u)), the last
experienced unchosen outcome for the unchosen option (R;_; (s, 1)), and weighted “imaginary
forgone outcome” (w X —1R;(s)). Following on our previous work (Salem-Garcia et al., 2023;
Ting et al., 2021), the imaginary forgone outcome is determined by the sign of context value

(V;) and the magnitude of the received outcome (R, (s, ¢)):

( 1if |R:(s,c)| = 0.1 and V,(s) >0
—1if |R:(s,c)| = 0.1 and V,(s) <0
—R.(s) =4 0.1if |R(s,c)| = 1and V,(s) >0
—0.1if |R;(s,c)| = 1and Vi, (s) <0

0if Vi(s)=0

=R, is multiplied by a weight parameter w (0 <w <1).

The ASYMMETRIC and RELATIVE-ASYMMETRIC families of models feature asymmetric
updating. This follows from previous studies, that demonstrated the presence of a choice-
confirmation bias in reinforcement-learning contexts (Lefebvre et al., 2017; Palminteri et al.,
2017; Palminteri & Lebreton, 2022). The models capture this bias by allowing two different
learning rates (i.e., acon and ap;s) to weight the prediction-error in the value-updating process,

depending on the sign of the prediction error. In particular, a.-oy (confirmatory learning rate)
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weights the positive prediction error for chosen option and the negative prediction error for
unchosen options. By contrast, ap;s (disconfirmatory learning rate) weights the negative

prediction error for chosen options and the positive prediction error for unchosen options.

Qt+1(s' C) = Qt(sf C) + Ocon X 6(51 C)r lf 6(5' C) >0

Chosen optlon{ Qr41(s,¢) = Q,(s,¢) + aps X 8(s, ¢), if 6(s,c) <0

Qr+1(s,u) = Q;(s,u) + acon X 6(s,u), if 6(s,u) <0

Unchosen o tion{ .
p Qr41(s,u) = Q:(s,u) + ap;s X 6(s,w), if 6(s,u)>0

Finally, choice probability between two options (A,B) of the same context s in the learning task

is computed with the softmax function:

Plearning(S'A) = (1 + exp (ﬁ (Qt(S,A) - (Qt(S, B)))>_1

The same softmax function and the same inverse temperature parameter  are applied to model
choices in the transfer task between two given options C and D belonging to learning contexts

Sc and sp:

Peransfer (s¢,sp,€) = (1+ exp (,3 (Qend(SC' C) - (Qend(sDr D)))>_1

, where Qend(Sc,C) and Qend(Sp,D) are the Q-values for options C and D estimated at the end of

the learning task in their respective learning contexts.

Learning models — model optimization and comparison
Parameter optimization was performed by minimizing the negative logarithm of the posterior
probability (nLPP) (Daw, 2014):

nLPP = —log(P(6y|D,M)) « —log(P(DIM,8,)) — log(P(8IM))

P(D|M, 8,,) refers to the likelihood of the observed data D (i.e., sequence of choices) given
the current model M and its parameters 8,,. P(6,,|M) refers to the prior probability of the

parameters.

We used broad priors based on the literature (Daw et al., 2011): The prior distributions of

learning rates (a) and weight (w) were defined as beta distributions (Beta(1.1, 1.1) in
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MATLAB), and the prior distribution of the inverse temperature parameter  was defined as a
gamma distribution (Gamma(1.2, 5) in MATLAB). Parameter search was initialized from
random starting points selected from certain ranges (i.e.,0 <a<1;0<w<1;0 < <) and

used an L-BFGS-B algorithm implemented via Matlab’s fmincon function (Byrd et al., 1996).

For model comparison, we calculated, for each individual, the Laplace approximation to the
model evidence (LAME), which penalizes model’s complexity (i.e., number of parameters) as

follow:
df 1
LAME = —nLPP + 7log(2n) — ElogIHI

, Where n is the number of trials, df is the number of free parameters and H is the determinant

of the Hessian.

Quantitative model comparison was performed via a formal Bayesian Model Selection (BMS)
random-effect procedure, as described in (Daunizeau et al., 2014) and implemented in the
mbb-vb-toolbox (http://mbb-team.github.io/VBA-toolbox/). This toolbox performs the

Bayesian model selection procedure and estimates two indicators: the expected frequencies
(EF) and the exceedance probability (EP) for each model. Specifically, the expected frequency
EF of a model quantifies the probability that the model generated the data for any randomly
selected subject. Note that the EF should be higher than chance level given number of models
in the model space. Exceedance probability (EP), on the other hand, quantified the belief that
the model is more likely than all the other models of the model-space.

Note that parameter recovery and model recovery for the learning models are detailed in
(Salem-Garcia et al., 2023).

Confidence models — structure and model space

Participants’ confidence ratings were separately fitted in the learning task and in the transfer
task with four confidence models proposed in (Salem-Garcia et al., 2023). Confidence models
are defined as logit-transformed multiple linear regression models that use the latent variables
estimated by the winning RL model (i.e., RELASYM) to predict confidence ratings (Figure

5A). Each model consists of one intercept and two predictors: (1) task difficulty, which is
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measured as absolute value difference between options (|Qc-Qul) and (2) a hypothesized source
of valence bias. We tested four hypothesized sources of valence bias: none (0), the summed
value of available options (£Q = Qc + Qu), the expected value of the chosen option (Qc), and
the context value (V). In the learning task, this latter was straightforwardly available as Vi(s).

In the transfer task, we generalized the idea of context value for choice between any two options

C and D, as V= Ve”d(SC):V"’”d(SD), where Vend(Sc) and Vend(Sp) are the (choice-independent)

values associated with the original contexts of options C and D estimated at the end of the
learning task. In addition to these two predictors, the models for the learning task contains an
additional predictor capturing the fact that confidence in the current trial are usually influenced
by confidence in the previous trial: an autocorrelation term Confw.1. Ultimately, confidence

models can be expressed as followed:

Learning task:y; = @(Bg+ Bjag| " AQ; + By bias; + Beonf(t-1) " Yi-1 + €),
Transfer task:y, = @(Bg + Bjqq|* AQ¢ + By - bias; + €)

, Where y refers to confidence ratings, bias can be either 0, £Q, Qc or V in different models,
and e is the error term (sampled from a Gaussian distribution with zero mean). ¢(x) is the

logistic link function ¢(x) = 1/(1 + e™).

Confidence models — model optimization and comparison

Confidence model parameters were estimated by fitting robust linear regression, via the
procedure of maximizing log-likelihood (LL), as implemented in MATLAB robustfit functions.
Considering that no principled priors for the confidence models are available, we used LL to

approximate model evidence for each subject and each model as the BIC (Bayesian information

criterion), defined as
BIC =nlog(m)— 2LL

, Where n is the number of parameters and m is the number of data points (trials). Similarly to
the learning models, we fed the BIC (from each subject in each model) to the random-effect
BMS routine implemented in the mbb-vb-toolbox (http://mbb-team.github.io/\VVBA-toolbox/;
Daunizeau et al., 2014).
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Note that parameter recovery and model recovery for the confidence models are also detailed
in (Salem-Garcia et al., 2023).

fMRI

fMRI acquisition

The fMRI data were acquired using a 3.0-Tesla Philip Achieva scanner with 32 channels head
array coil. We recorded both structural images and functional brain images. T1 weighted
structural scans were recorded with the following parameters: FOV (Field of View):
240x180x220 mm?3, Voxel size =1x1x1 mm3, TR = 8.2ms and TE = 3.7ms. Each T2*-weighted
functional scan consisted of 36 axial echo-planar images (EPI) acquired in ascending sequence
with voxel size of 3x3x3 mm3, slice gap = 0.3 mm, TR=2000ms, TE = 28ms and the flip angle
of 76°. Each subject completed 3 runs in a scanning session. Given the task was self-paced and
the fMRI scanner was manually terminated (i.e., ~10 seconds after the last feedback phase),
the total numbers of functional scans for each subject in each run were not the same. Most
participants completed the task in around 15 minutes. The field maps (i.e., magnetic field’s

inhomogeneity) were collected as well between the second and the third run.

fMRI preprocessing

The functional images were preprocessed using SPM12 (Wellcome Department of Imaging
Neuroscience, London) with the following steps: realignment and unwarp, co-registration,
segmenting anatomical images, normalization, and smoothing. To correct for potential head
movement during functional images collection, all functional volumes (from three runs) were
realigned to the first volume in the first run and were un-warped with collected field maps. To
improve the quality of the following normalization, the mean functional (the output from
realignment) and anatomical images were co-registered. The anatomical image from each
subject was segmented into six images (i.e., grey matter, white matter, cerebrospinal fluid, fat
tissue and air) using nonlinear deformation fields and SPM12’s Tissue Probability Maps
(TPMs). All segmented images were then normalized to the Montreal Neurological Institute
T1 template (i.e., MNI152) using forward deformation fields from the segmentation output.
Finally, the EPI images were normalized and smoothed with a full width half maximum
Gaussian kernel of 6-mm (2 times of voxel size of functional images) full-width at half

maximum (FWHM) isotropic Gaussian kernel.
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fMRI analysis: GLMs

Our fMRI analyses leveraged a total of 5 different GLMs (whose specificities are briefly
described below, and summarized in Table 1). All GLMs modelled separately the four main
events composing our prototypical trial: symbol presentation, choice, confidence rating,
outcome. These event-related regressors were modeled using boxcar functions with
corresponding durations. Across all models, the choice and confidence onsets were respectively
modulated with parametric modulators accounting for (1) choice (right or left), (2) the distance
between initial and final rating point for rating onset. Across all models, all parametric
modulators were z-scored to ensure results from different conditions and regressors were
comparable (Lebreton, et al., 2019). To allow different regressors to fairly compete in
explaining the same share of data variance, SPM serial orthogonalization was turned off. To
remove motion artifact and to improve the quality of fMRI results, all the GLMs also contained
six realignment parameters, which were created during preprocessing. Linear contrasts of
regression coefficients were designed at the individual level (first-level), and, unless otherwise
specified, taken to the group-level random-effect analysis (second-level). For whole brain
analyses, second-level analyses consisted in one-sample t-test, whose statistical significance
was defined with whole-brain cluster-defining height threshold at uncorrected p<.001 and
family-wise error (FWE)-corrected threshold of p<.05. For ROI analyses, the individual-level
averaged contrast values were extracted from the ROI using spm built-in function (i.e.,
spm_get_data.m). These values were than taken to second-level analyses, consisting in one-

sample or paired t-tests, as well as two-way repeated-measures ANOVAS.

GLML1 divided symbol onset and outcome onset into four conditions each (i.e., GP, LP, GC,
LC). These eight events of interest were enriched with parametric modulators accounting for
1) confidence ratings for each condition-specific symbol onset, 2) received outcome (coded as
1/ 0 for a relatively good /bad outcome) for each condition-specific outcome phase.

GLM2wip and GLM2spe featured a single regressor for the symbol and for the outcome events,
effectively concatenating all conditions. GLM2wip and GLM2spe only differed from each other
regarding the variable used as the confidence parametric modulator. In GLM2wp, confidence
consisted in the native ratings. In GLM2spe, confidence ratings were first z-scored per

condition and before being re-concatenated as a single variable.
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GLM3-5 implemented model-based fMRI, and leveraged the latent variables obtained from
our winning computational model see Methods and Figure 4A (see also Figure S1).Because
the computational variables are meant to capture the difference between conditions, these
GLMs also featured a single regressor for the symbol and for the outcome events. As is
customary in functional neuroimaging studies, and although beyond the scope of this
manuscript, all those GLMS featured the modelled prediction-error (PE) as a parametric
modulator of the outcome event.

In GLM3, the symbol presentation onset was modulated by Qc (chosen option value), Qu
(unchosen option value), and V (context value).

In GLM4, the symbol presentation onset was modulated by Qc (chosen option value), |[Qc-Qu|
(absolute value differences), and previous confidence (conft.1).

In GLMS5, the symbol presentation onset was modulated by confidence and Qc (chosen option

value.

ROI analyses

ROIs were created using the marsbar toolbox (Brett et al., 2002). A first family of ROIs was
built from the significant clusters from the GLM1 confidence activations (VMPFC, dmPFC,
Inferior Frontal Gyrus, and Insula)

Alternative VMPFC ROIs were also built from independent meta-analyses (Bartra et al., 2013)
and from significant clusters from other analyses of the resent study (e.g., voxels significantly
correlated to Qc in GLM3).

Bayesian model selection (fMRI)

Bayesian model selection (BMS) was effectuated using SPM’s toolbox: MACS (Soch &
Allefeld, 2018). In the first step (i.e., model assessment), the first-level GLMs of interest from
each subject were used to estimate voxel-wise cross-validated log model evidence (cvLME)
maps. The maps were generated for each GLM and each subject within the model space. In
the second step (i.e., model comparison and selection), the cvLME maps served as inputs for
the cross-validated Bayesian Model Selection (cvBMS) to compare GLMs within the model

space. Only voxels available in all participants were included in those analyses.
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symbols choice confidence  outcome

GLM1 GP_onset all_onsets all_onsets GP_onset
xGP_conf. xchoice (R/L) xdist. xGP_out.
LP_onset LP_onset
xLP_conf. xLP_out.
GC_onset GC_onset
xGC_conf. xGC_out
LC_onset LC_onset
xLC _conf. xLC out.

GLM2wip all_onsets all_onsets all_onsets all_onsets
xall_conf. (nat.) xchoice (R/L) xdist. xall_out.

GLM2spe  all_onsets all_onsets all_onsets all_onsets
xall_conf. (Z/cond) xchoice (R/L) xdist. xall_out.

GLM3 all_onsets all_onsets all_onsets all_onsets
xQc xchoice (R/L) xdist. xall_PE
xQu
xV

GLM4 all_onsets all_onsets all_onsets all_onsets
xQc xchoice (R/L) xdist. xall_PE
X|Qc-Qu.
xconf. 1.1

GLM5 all_onsets all_onsets all_onsets all_onsets
xQc xchoice (R/L) xdist. xall_PE
xconf.

Table 1. GLMSs’ structure. The table represents the four events of interest in a trial as columns, and
list for each GLM, the corresponding regressors and their respective parametric modulators (indicated

by a x sign).

GP: Gain-Partial; LP: Loss-Partial; GC: Gain-Complete; LC: Loss-Complete

conf: confidence; (R/L): choice coded as 1/-1 for right/left. dist.: distance (difference between the
starting point and final confidence rating); out.: outcome (coded 1/0 if the chosen outcome is the
best/worst potential outcome —i.e., 1 and -0.1 are encoded as 1 and 0.1 and -1 are encoded as -1).

Qc: chosen option values. Qu: unchosen option value. V: context value. PE: prediction error.
Parametric modulators, Qc, Qu, V, and PE, are estimated by the winning model.
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