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Abstract. The 20 short tandem repeat (STR) markers of the combined DNA index system 13 
(CODIS) are the basis of the vast majority of forensic genetics in the United States. One 14 
argument for permissive rules about the collection of CODIS genotypes is that the CODIS 15 
markers are thought to contain information relevant to identification only (such as a human 16 
fingerprint would), with little information about ancestry or traits. However, in the past 20 years, 17 
a quickly growing field has identified hundreds of thousands of genotype-trait associations. Here 18 
we conduct a survey of the landscape of such associations surrounding the CODIS loci as 19 
compared with non-CODIS STRs. We find that the regions around the CODIS markers are 20 
enriched for both known pathogenic variants (>90th percentile) and for SNPs identified as trait-21 
associated in genome-wide association studies (GWAS) (≥95th percentile in 10kb and 100kb 22 
flanking regions), compared with other random sets of autosomal tetranucleotide-repeat STRs. 23 
Although it is not obvious how much phenotypic information CODIS would need to convey to 24 
strain the “DNA fingerprint” analogy, the CODIS markers, considered as a set, are in regions 25 
unusually dense with variants with known phenotypic associations. 26 
 27 
Introduction 28 
 29 
 DNA evidence has played a crucial role in forensic investigations for over three decades 30 
(Butler, 2015; Jobling & Gill, 2004; Kayser & de Knijff, 2011; Roewer, 2013). Beginning in the 31 
mid-1980s (Gill et al., 1985), forensic practitioners realized that even small numbers of genetic 32 
markers—provided that they are sufficiently heterozygous—can provide a nearly unique 33 
identifier that rules out the vast majority of people as the source of an unidentified sample. Many 34 
governments worldwide began to collect genotypes from highly variable short tandem repeat 35 
(STR, also called microsatellite) markers for the purpose of assisting forensic investigations. 36 
STR alleles differ from each other by virtue of containing different numbers of repeats of a short 37 
(generally 1-6 base pairs) motif sequence (Gymrek, 2017). (STRs of the same length may also 38 
differ in their underlying sequence (Gettings et al., 2015), but distinct length classes are the 39 
basis for most forensic work.) Because many alleles are possible at an STR locus and STR 40 
mutation rates are high, STRs tend to be highly heterozygous (Willems et al., 2014). As a result, 41 
small sets of STRs—relatively easily genotyped using technology available in the 1990s—can 42 
provide enough information to identify a person from a high-quality single-source DNA sample. 43 
Small sets of STRs remain the standard for forensic practice in most countries. 44 
 45 
 In the United States (US), the Combined DNA Index System (CODIS) markers are the 46 
workhorse loci used in forensics. CODIS includes a set of 20 STR markers, 13 of which were 47 
established as the original set in the 1990s, and 7 of which were added in 2017 (Hares, 2015). 48 
Of the 20 CODIS STRs, 19 are tetranucleotide STRs (i.e. STRs with four-base-pair motifs), and 49 
one (D22S1045) is a trinucleotide STR. The X-linked Amelogenin locus is also recorded and 50 
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may be searched under more restricted circumstances. As of November 2022, CODIS 51 
genotypes from 21,791,620 people were accessible to law enforcement via the National DNA 52 
Index System (NDIS), and CODIS genotypes had been used as evidence in 622,955 53 
investigations (FBI, 2022). 54 
 55 
 The broad collection, storage, and use of CODIS genotypes is premised in part on the 56 
idea that collection of one’s CODIS genotypes entails only a minimal privacy incursion. When 57 
the CODIS markers were expanded from 13 to 20 markers, an explicit goal was to avoid 58 
including markers that would allow prediction of disease (Hares, 2012, 2015). The metaphor of 59 
a “DNA fingerprint,” sometimes used to describe a person’s CODIS genotypes, conveys this 60 
impression, and it has been invoked in legal decisions concerning the CODIS markers, for 61 
example the case of Maryland v. King, which permitted the collection of CODIS genotypes from 62 
arrestees (Maryland v. King, 2013). 63 
 64 

One piece of evidence that has been marshaled in defense of the claimed phenotypic 65 
irrelevance of the CODIS loci is that the CODIS markers themselves have not been associated 66 
with known traits. For example, ten years ago, Katsanis & Wagner (2013) scoured the literature 67 
and found no record of direct associations between the CODIS markers and any known 68 
phenotypes. However, they did note that several of the CODIS markers are intragenic in genes 69 
with known phenotypic associations. It is perhaps unreasonable to expect much direct evidence 70 
of CODIS-trait associations given that STR markers are seldom tested for association with 71 
phenotype directly (but see Wyner et al., 2020). However, our knowledge of phenotypic 72 
associations has grown tremendously in the decade since Katsanis & Wagner’s study, 73 
prompting a re-examination of their question, in line with calls for systematic reviews of trait 74 
information contained in CODIS loci (Kaye, 2014).   75 
 76 

Here, we carry out a similar exercise to Katsanis & Wagner, searching widely used 77 
genomic databases to characterize the genomic neighborhoods of the CODIS markers. In 78 
addition to providing an update to Katsanis & Wagner’s work, we extend it in four main ways. 79 
First, we examine the hundreds of thousands of known genotype-phenotype associations 80 
identified by genome-wide association study (GWAS) (Buniello et al., 2019; Visscher et al., 81 
2017), particularly those loci near the CODIS markers.  Second, we automate most of our 82 
procedures, facilitating replication of our work. Third, whereas Katsanis & Wagner considered 83 
only very short genomic regions around the CODIS markers (1 kilobase), we consider larger 84 
regions as well (10kb and 100kb). Though SNP-STR linkage disequilibrium (LD) tends to be 85 
smaller than SNP-SNP LD, SNP-STR LD nonetheless extends over these larger regions 86 
(Payseur et al., 2008; Willems et al., 2014), making them relevant for investigation. Finally, 87 
Katsanis & Wagner considered only the 13 original CODIS markers and 11 markers suggested 88 
for inclusion, seven of which were added in 2017. Here, we consider STR markers across the 89 
genome, aggregating data (available as supplementary material) from approximately 1.6 million 90 
STRs. We focus our comparisons on 224,092 autosomal tetranucleotide-repeat STRs, as 19 of 91 
the 20 CODIS STRs have tetranucleotide repeat motifs.  92 
 93 
Methods 94 
 95 
Data 96 
 97 
In January 2023, we downloaded the locations of ~1.6 million STR regions from the hipSTR 98 
reference (Willems et al., 2017; http://webstr.ucsd.edu/downloads, direct link 99 
https://github.com/HipSTR-Tool/HipSTR-100 
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references/blob/master/human/hg19.hipstr_reference.bed.gz). We also downloaded a set of 101 
genome-wide annotations from the UCSC Genome Browser (Lee et al., 2020) using the 102 
DataIntegrator tool. In particular, we downloaded coding gene locations (Genes and Gene 103 
Predictions > NCBI Refseq > RefSeq All and Genes and Gene Predictions > NCBI Refseq > 104 
RefSeq Select) from RefSeq (O’Leary et al., 2016), SNP allele frequencies from HapMap (Gibbs 105 
et al., 2003) CEU (Variation > HapMap SNPs… > HapMap SNPs CEU), common SNP locations 106 
from dbSNP 153 (Sherry et al., 2001) (Variation > dbSNP Archive - dbSNP 153… > Variants), 107 
locations of phenotypically relevant variants (Phenotype and Literature > ClinVar Variants… > 108 
ClinVar SNVs) from ClinVar (Landrum et al., 2016), trait-associated SNPs discovered in GWAS 109 
(Phenotype and Literature > GWAS Catalog) from the GWAS catalog (MacArthur et al., 2017), 110 
and the locations of DNase I hypersensitivity clusters (Regulation > ENCODE Regulation - 111 
DNase Clusters V3) from ENCODE (Abascal et al., 2020).  112 
 113 
All genomic locations were expressed in hg19 / GRCh37 coordinates. 114 
 115 
Data processing 116 
 117 
We sought to describe the genomic neighborhoods of all 1.6 million STR regions identified in 118 
the hipSTR reference in terms of their density of key annotated features–-in particular, of coding 119 
genes, common SNPs, trait-associated variants, and DNase I hypersensitivity sites. Before 120 
doing so, we preprocessed the feature data from UCSC in various ways.  121 
 122 
For coding gene locations, we used the RefSeq Select set, which contains one entry per 123 
curated coding gene (21,432 genes). We also located the transcription start site (TSS) of each 124 
gene as either the start or end coordinate of transcription, depending on whether the gene was 125 
annotated on the + (TSS = start) or - (TSS = end) strand. To identify SNPs common in people of 126 
European ancestries, heavily represented in GWAS (Martin et al., 2019; Popejoy & Fullerton, 127 
2016), we filtered to SNPs with minor allele frequency 1% or larger in the HapMap CEU data, 128 
reducing the number of variants from 4,029,798 to 2,705,918. We limited ClinVar variants to 129 
those classified as “Pathogenic,” reducing from 1,491,509 variants to 113,412. For DNase I 130 
hypersensitivity sites, we limited to sites with the highest signal level (score 1000/1000), 131 
reducing the number of sites from 1,949,038 to 160,870. 132 
 133 
For the GWAS catalog, we preprocessed in two distinct ways. The GWAS catalog contains one 134 
row per unique combination of SNP locus (rsid), study (PubMed ID), and trait, for a total of 135 
392,271 entries. To obtain information about the number of SNPs identified as trait-associated 136 
in any GWAS, we first filtered the GWAS catalog to contain only one row per SNP locus, 137 
reducing to 183,014 rows. Thus, for counts of numbers of GWAS hits, each SNP rsid counts 138 
only once, regardless of how many studies identified it, and regardless of how many traits it was 139 
associated with. Next, we sought to identify traits with nearby GWAS associations for each STR. 140 
The trait identifiers in the GWAS catalog are not standardized, and many similar traits receive 141 
distinct names (for example “HDL cholesterol” and “HDL cholesterol levels” or “Mean 142 
corpuscular hemoglobin” and “Mean corpuscular hemoglobin concentration”). To reduce this 143 
redundancy and focus on commonly studied traits when counting the number of distinct traits 144 
near each STR, we limited to traits with associations reported in at least three distinct studies 145 
with the exact same trait name. This reduced the number of traits from 10,399 to 493. 146 
 147 
For all features and all STRs, we recorded the distance of the nearest feature to the STR 148 
midpoint, and the number of features within 1kb, 10kb, and 100kb of the STR midpoint. For 149 
coding gene locations, we kept track of distance to the nearest gene (defined as the distance to 150 
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the start or end of transcription, whichever is shorter, or 0 if the STR is intragenic) and the 151 
nearest TSS separately. For the GWAS catalog, we kept track of the number of GWAS hits 152 
within each distance window as well as the number of distinct associated traits (where again, 153 
distinctness merely means a non-identical character string). Because of the large size of the 154 
dbSNP common variants catalog, we recorded these locations only for the 20 CODIS markers. 155 
Additionally, for the CODIS only, we recorded the names of the traits reported as associated in 156 
ClinVar and the GWAS catalog, as well as the names of nearby protein-coding genes. 157 
 158 
The data processing and analysis scripts, written in R (v. 4.1.2, R Core Team, 2021) and using 159 
the data.table package (Dowle et al., 2019), are available at 160 
https://github.com/edgepopgen/CODIS_proximity. The output files recording the features 161 
proximal to each STR are available in supplementary files. 162 
 163 
Results 164 
 165 
Genetic neighborhoods of the CODIS markers 166 
 167 
Table 1 shows the positions of the CODIS markers, the distance to the nearest gene, the names 168 
of genes within 100 kilobases (kb) of each marker, and the number of HapMap SNPs at minor 169 
allele frequency >1% in the CEU subset of the 1000 Genomes project within 10kb. Half of the 170 
20 CODIS markers are intragenic, as noted previously (Katsanis & Wagner, 2013). Of the 171 
remaining 10 markers, 5 have protein-coding genes within 100kb. The CODIS marker with by 172 
far the greatest distance to the nearest protein-coding gene in RefSeq Select is D13S317, which 173 
is approximately 1.7 megabases (Mb) from the nearest gene. All CODIS markers are within 174 
10kb of several SNPs common in people of European ancestries.  175 
 176 
Table 2 gives information about pathogenic variants identified in ClinVar and GWAS hits within 177 
10kb of each CODIS marker. Six of the ten intragenic CODIS markers are within 10kb of 178 
variants identified as pathogenic in ClinVar, ranging from two variants identified for CSF1PO to 179 
25 for TH01. Sixteen of the 20 CODIS markers are within 10kb of at least one SNP identified as 180 
a GWAS hit, with TH01 again recording the most trait-associated nearby variants, with 10. TH01 181 
is intragenic to the tyrosine hydroxylase gene TH, which plays an important role in synthesizing 182 
dopamine from its amino acid precursor, tyrosine (Nagatsu et al., 2019). 183 
 184 
Comparisons with other autosomal tetranucleotide-repeat STRs 185 
 186 
To place the properties of the CODIS markers in context, we compared them with the other 187 
224,092 autosomal, tetranucleotide-repeat STRs in the hipSTR reference (Willems et al., 2017). 188 
(Although one of the CODIS markers, D22S1045, is a trinucleotide-repeat locus, we focused our 189 
comparisons on tetranucleotide-repeat loci.) Figure 1 shows the distribution of the CODIS 190 
markers (orange) compared with non-CODIS autosomal tetranucleotide STRs (gray) with 191 
respect to their proximity to protein-coding genes, ClinVar pathogenic sites, GWAS hits, unique 192 
commonly-studied traits associated with nearby GWAS hits, and DNase I hypersensitivity sites. 193 
For four of these feature categories, we show the distance to the nearest feature and the count 194 
of features within 1kb, 10kb, and 100kb. For commonly studied GWAS traits, we do not show 195 
the distance to the nearest feature. The figures suggest that the CODIS STRs are not 196 
systematically less informative about traits than non-CODIS STRs in any category, and in fact, 197 
the 10kb and 100kb windows surrounding the CODIS markers appear to harbor more trait-198 
associated variants than average, as identified by ClinVar and the GWAS catalog. 199 
 200 
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Figure 2 shows, for the same features as in Figure 1, the mean of the CODIS markers (dashed 201 
orange line) compared with the mean of 10,000 random sets of 20 tetranucleotide markers. The 202 
percentiles at which the CODIS average falls on each of these distributions, along with the 203 
distributions for TSS and HapMap SNPs common in CEU, are shown in Table 3. Figure 2 and 204 
Table 3 confirm the visual impression from Figure 1. The CODIS markers, as a set, are 205 
unusually dense with nearby SNPs common in CEU, ClinVar variants marked pathogenic, and 206 
GWAS hits. For GWAS hits, the CODIS appear average in their number of hits within 1kb, but 207 
above the 90th percentile in the number of hits within 10kb or 100kb. At larger window sizes, the 208 
CODIS markers also appear to be in neighborhoods unusually dense in high-scoring DNase I 209 
hypersensitivity sites. 210 
 211 
Comparing the CODIS markers with sets of random autosomal STRs of irrespective of motif 212 
length from one to six (1,527,057 markers in the hipSTR reference) produces results very 213 
similar to those obtained for tetranucleotide-repeat STRs (Supplementary Table 1 and 214 
Supplementary Figure 1). 215 
 216 
We considered whether the unusually high number of GWAS hits and ClinVar pathogenic 217 
variants near the CODIS markers might be explained by other features of the CODIS markers. 218 
The CODIS markers are 50% intragenic (compared with 39% of non-CODIS tetranucleotide-219 
repeat STRs), and intragenic markers might be expected to be nearer trait-associated variants 220 
than intergenic markers. Further, the CODIS markers appear to be in genomic regions with 221 
unusually high numbers of SNPs common in people of European ancestry. Since such SNPs 222 
are the targets of association in GWAS studies, the high SNP density might explain the high 223 
density of GWAS hits. 224 
 225 
Table 4 shows Spearman correlations in the non-CODIS autosomal tetranucleotide STRs 226 
among intragenic status and the counts of the features in Table 3 (i.e. TSSs, genes, pathogenic 227 
variants, GWAS hits and traits, and DNase hypersensitivity sites) within 10kb. (Analogous 228 
information for 100kb windows is shown in Supplementary Table 2.) Although intragenic STRs 229 
have somewhat more ClinVar pathogenic variants and GWAS hits within 10kb, the correlations 230 
between intragenic status and these features are not large (max Spearman rho = 0.22 for 231 
ClinVar pathogenic variants). Moreover, comparing the CODIS means to 10,000 random sets of 232 
non-CODIS tetranucleotide STRs matched for intragenic frequency (50%) produces a table of 233 
percentiles extremely similar to Table 3 (Supplementary Table 3). The correlations between the 234 
number of nearby common SNPs and GWAS hits (or ClinVar pathogenic variants) are even 235 
smaller than those for intragenic status (Spearman’s rho < 0.1), and in fact, they are mostly 236 
negative for counts within 100kb (Supplementary table 1), suggesting that density of nearby 237 
SNPs does not explain the unusually high numbers of phenotypic associations near the CODIS 238 
markers. 239 
 240 
Discussion 241 
 242 
 We find that, in comparison with other autosomal tetranucleotide-repeat STRs, the 243 
CODIS loci are remarkably rich in nearby variants with known phenotypic associations. The 244 
most extreme example is TH01, which has the most known pathogenic variants within 10kb (25) 245 
and also the most SNPs within 10kb implicated in GWAS studies (10). Almost 20 years ago, 246 
John Butler (2006) wrote that “One core STR locus that has gotten a bad reputation over the 247 
years for supposed linkage to genetic diseases is TH01,” going on to note the inconsistent 248 
nature of association evidence at the time. Our results are apparently consistent with the 249 
reputation TH01 developed among forensic practitioners in the first decade of CODIS’s use. 250 
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After TH01, the markers with the most known pathogenic variants within 10kb were FGA (22) 251 
and vWA (17), and those with the most SNPs identified as trait-associated by GWAS within 252 
10kb were CSF1PO (7) and D16S539 (6).  253 
 254 

Although four of these five markers with most evidence of possible trait association (all 255 
but D16S539) are intragenic, the unusual proximity of the CODIS to phenotype-associated 256 
variants is not explained by the fact that 50% of the CODIS markers are in intragenic regions 257 
(compared with 39% of non-CODIS tetranucleotide-repeat STRs). It is also not easily explained 258 
by the CODIS markers’ closer proximity to SNPs with minor alleles common in people of 259 
European ancestries, since the density of such SNPs is not strongly associated with the 260 
presence of either known pathogenic variants or SNPs identified as trait-associated in GWAS.  261 
 262 
 These results do not constitute direct evidence that the CODIS markers themselves are 263 
associated with any phenotypes. However, some degree of correlation (i.e. linkage 264 
disequilibrium (LD)) is expected between STRs and SNP markers over these genomic distances 265 
(Payseur et al., 2008; Willems et al., 2014). Although the high mutation rates of STRs reduce 266 
their LD with surrounding SNPs, genetic drift continually generates LD that is slow to be 267 
removed by recombination or nullified by back mutations (Payseur et al., 2008). Direct evidence 268 
of whether the CODIS markers (or other STRs) are associated with, or causal for, phenotypes 269 
of interest is starting to appear (Gymrek, 2017). We emphasize, however, that from the 270 
perspective of phenotype prediction, whether the CODIS markers are causal is not the central 271 
concern; any reproducible associations, even if they stem from LD with other causal markers, 272 
would still have some predictive utility.  273 
 274 
 These results add to other lines of evidence suggesting that the CODIS markers are not 275 
completely free of phenotypic or other genetic information. For example, the CODIS markers, on 276 
closer analysis, turn out to contain substantial ancestry information, despite their low values of 277 
FST (Algee-Hewitt et al., 2016). Further, because the CODIS markers are correlated with—i.e. in 278 
LD with—surrounding single nucleotide polymorphism (SNP) markers, it is sometimes possible 279 
to identify CODIS and genome-wide SNP genotypes as coming from the same individual, even 280 
when the sets of markers in the two datasets are disjoint (Edge et al., 2017; Kim et al., 2018). 281 
Most recently, direct examination of the CODIS markers provides suggestive evidence that 282 
some of them are associated with gene expression levels in some tissues (Bañuelos et al., 283 
2022).  284 
 285 
 To be clear, the accuracy of phenotype predictions from the CODIS markers is not 286 
expected to be high in absolute terms for most phenotypes. The ability to predict a trait from 287 
genotype is limited by the trait’s heritability (Visscher et al., 2008), and for a wide range of 288 
complex traits, the best current predictions from genome-wide SNP data are not particularly 289 
accurate (Thompson et al., 2022). A small set of STRs will not outperform genome-wide SNPs 290 
at phenotype prediction except in rare cases. In general, whether the phenotype predictions 291 
developed directly from CODIS represent privacy incursions will depend on at least (a) the 292 
standard for how accurate prediction needs to be to be considered a privacy incursion, (b) the 293 
number and effect sizes of causal alleles in or near the CODIS markers, and (c) the degree to 294 
which a trait is associated with ancestry, which can be noisily reconstructed from CODIS 295 
genotypes (Algee-Hewitt et al., 2016). What is clear is that the CODIS markers are not likely to 296 
be less informative about phenotypes than other, similar loci. This statement is analogous to the 297 
one made by Algee-Hewitt et al. (2016), who found that the CODIS markers are no less 298 
informative about ancestry than comparison markers. 299 
 300 
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 It is not clear why the regions around the CODIS markers are unusually dense with 301 
phenotypic associations. The GWAS era had not yet begun at the time when the CODIS 302 
markers were selected. One possibility is simply bad luck—the original architects of the CODIS 303 
system happened to choose sites that would later be identified as near phenotype-associated 304 
sites. Another possibility is that there is some other feature or set of features of the CODIS 305 
markers that led to both their being considered favorably by the designers of CODIS and that 306 
also meant they would be near sites with trait associations, or at least sites that were liable to be 307 
discovered as trait-associated. Future work may consider this possibility. 308 
 309 

It is not clear why the regions around the CODIS markers are unusually dense with 310 
phenotypic associations. The GWAS era had not yet begun at the time when the CODIS 311 
markers were selected. One possibility is simply bad luck—the original architects of the CODIS 312 
system happened to choose sites that would later be identified as near phenotype-associated 313 
sites. Another possibility is that there is some other feature or set of features of the CODIS 314 
markers that led to their being considered favorably by the designers of CODIS and that also 315 
meant they would be near sites with trait associations, or at least sites that were liable to be 316 
discovered as trait-associated. One clue may be the enrichment of high-signal DNase I 317 
hypersensitivity sites near the CODIS markers that we observed. DNase I sites are a hallmark 318 
of accessible chromatin, and have been relied upon in searches for regulatory elements, 319 
including enhancers and promoters (Chen et al., 2018). Chromatin accessibility may also 320 
influence the ease of PCR amplification of STRs. Because ease of genotyping by PCR was a 321 
factor in the initial selection of the CODIS markers (Butler, 2006), it is possible that the CODIS 322 
markers are more likely to be near regulatory elements. Future work may consider this 323 
possibility. 324 
 325 
 In Maryland v. King (2013), Justice Kennedy wrote for the majority that the CODIS loci 326 
“come from noncoding parts of the DNA that do not reveal the genetic traits of the arrestee.” 327 
This statement was part of the majority’s argument that CODIS genotypes can be thought of as 328 
a “DNA fingerprint,” a piece of information useful for identification but not informative about any 329 
of a person’s traits or medical information. It followed for the majority that collection and storage 330 
of CODIS genotypes, like that of fingerprints, is an appropriate part of a routine pre-trial booking 331 
procedure. It is not obvious how much information about other traits the CODIS markers would 332 
need to convey in order to invalidate the Court’s premise, nor is it yet clear how much 333 
information they actually do convey. At the same time, it appears that any attempt to choose 334 
markers for CODIS that convey unusually small amounts of information about phenotypes 335 
compared with other STRs does not seem to have been successful.  336 
 337 

An acknowledgment that CODIS genotypes may be more revealing than previously 338 
assumed may prompt rethinking of the patchwork of highly variable local practices governing 339 
CODIS genotype collection, storage, and access (Joh, 2015; Murphy & Tong, 2020; Roth, 2019) 340 
and influence considerations regarding universal forensic DNA databases (Miller & Smith, 341 
2022). We advocate, along with Kaye (2014), that biomedical literature continue to be monitored 342 
in order to ascertain the phenotypic information accessible to a person with access to CODIS 343 
profiles (Bañuelos et al., 2022; Wyner et al., 2020). More generally, we advocate that practices 344 
surrounding CODIS profiles should be informed by a framework that considers CODIS 345 
genotypes not as isolated pieces of information but as components of a genome connected via 346 
linkage disequilibrium produced by recombination, mutation, and our shared evolutionary history 347 
(Edge et al., 2017; Kim et al., 2018). 348 
 349 
Limitations of the study 350 
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 351 
 This study is limited by ascertainment biases present in the various databases we 352 
considered. To take one example, the GWAS catalog is a function of the actual associations 353 
identified in GWAS, which means that associations with widely studied traits, with SNPs 354 
included in or well imputed by genotyping arrays commonly used for GWAS, and associations 355 
that are more easily detectable in people of European ancestries are more likely to be included. 356 
Our data processing procedures, which aimed mainly to arrive at simple summaries of high-357 
confidence features, may also have introduced additional ascertainment biases. Another 358 
limitation is that we cannot estimate the actual association between STRs and traits, merely the 359 
positions of trait-associated variants nearby. 360 
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Figure 1. The values of the CODIS loci (orange histogram) compared with non-CODIS 517 
autosomal tetranucleotide-repeat STRs (grey) on variables relating to their proximity to 518 
phenotype-relevant features. The first column shows distance to the nearest feature, and the 519 
second through fourth columns show the number of features within 1kb, 10kb, and 100kb. The 520 
rows, in order, show genes included in the RefSeq Select set, variants annotated as pathogenic 521 
in ClinVar, SNPs identified as trait-associated in GWAS studies, traits included in at least 3 522 
GWAS studies with associated variants nearby, and DNase I Hypersensitivity sites. The 523 
horizontal axes are displayed on a log scale; we added one to all values to avoid taking the 524 
logarithm of zero. 525 

 526 
 527 
 528 
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Figure 2. The mean of the 20 CODIS markers (dashed orange line) compared with random sets 529 
of 20 non-CODIS autosomal tetranucleotide-repeat loci. The variables shown are the same as 530 
in Figure 1. 531 

 532 
 533 
 534 
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Table 1. Locations of the CODIS markers 536 
marker chr Start position 

(approximate 
MB, hg19) 

Distance to 
nearest 
protein-
coding gene 
(0 = 
intragenic) 

Protein-coding 
genes w/in 100kb, in 
proximity order 

Common SNPs in 
Hapmap CEU w/in 
10kb 

D1S1656 1 230.9 0 CAPN9, AGT, 
C1orf198, COG2 

58 

TPOX 2 1.5 0 TPO 22 

D2S441 2 68.2 29,159 C1D 22 

D2S1338 2 218.9 11,910 TNS1, RUFY4 11 

D3S1358 3 45.6 0 LARS2, LIMD1 7 

FGA 4 155.5 0 FGA, FGB, FGG, 
PLRG1, DCHS2 

16 

D5S818 5 123.1 158,529 
 

24 

CSF1PO 5 149.5 0 CSF1R, HMGXB3, 
PDGFRB, TIGD6, 
SLC26A2, CDX1 

36 

D7S820 7 83.8 0 SEMA3A 19 

D8S1179 8 125.9 78,404 ZNF572 19 

D10S1248 10 131.1 172,971 
 

39 

TH01 11 2.2 0 TH, INS, IGF2, 
ASCL2 

21 

vWA 12 6.1 0 VWF, ANO2 33 

D12S391 12 12.5 28,998 MANSC1, LRP6, 
BORCS5 

32 

D13S317 13 82.7 1,729,158 
 

21 

D16S539 16 86.4 157,803 
 

59 

D18S51 18 60.9 0 BCL2, KDSR 25 

D19S433 19 30.4 15,972 URI1 22 

D21S11 21 20.6 778,252 
 

22 

D22S1045 22 37.5 0 IL2RB, TMPRSS6, 
C1QTNF6, SSTR3, 
KCTD17, RAC2 

38 
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Table 2. Phenotypic associations within 10kb of the CODIS markers from ClinVar and the 538 
GWAS catalog 539 
marker ClinVar 

variants 
ClinVar traits GWA

S hits 
GWAS commonly studied 
traits 

D1S1656 0 
 

0 
 

TPOX 12 Deficiency of iodide 
peroxidase; 
Neurodevelopmental disorder 

2 
 

D2S441 0 
 

1 
 

D2S1338 0 
 

1 Height 

D3S1358 0 
 

0 
 

FGA 22 Hepatocellular carcinoma; 
Congenital afibrinogenemia; 
Familial visceral 
amyloidosis,Ostertag type; 
Hypofibrinogenemia; Familial 
hypodysfibrinogenemia; 
Familial dysfibrinogenemia; 
Dysfibrinogenemia; Abnormal 
bleeding 

4 Fibrinogen; Height; Ischemic 
stroke; Stroke; Venous 
thromboembolism 

D5S818 0 
 

3 Amyotrophic lateral sclerosis; 
Total body bone mineral density 

CSF1PO 2 Brain abnormalities, 
neurodegeneration, and 
dysosteosclerosis 

7 Aspartate aminotransferase 
levels; Monocyte count; Serum 
total protein level 

D7S820 0 
 

1 Obesity-related traits 

D8S1179 0 
 

3 Platelet count 

D10S124
8 

0 
 

0 
 

TH01 25 Permanent neonatal diabetes 
mellitus; not specified; 
Autosomal recessive DOPA 
responsive dystonia; Inborn 
genetic diseases; Dystonic 
disorder 

10 Cystatin C levels; Height; 
Hematocrit; Hemoglobin; 
Hemoglobin concentration; Type 
1 diabetes; Type 2 diabetes 

vWA 17 von Willebrand disorder; von 
Willebrand disease type 3; 
Abnormality of coagulation; von 
Willebrand disease type 1 

1 
 

D12S391 0 
 

1 
 

D13S317 0 
 

2 Hippocampal volume 

D16S539 0 
 

6 Appendicular lean mass; Optic 
cup area; Response to statin 
therapy 

D18S51 0 
 

2 Heel bone mineral density 

D19S433 0 
 

1 
 

D21S11 0 
 

0 
 

D22S104
5 

4 Ichthyosis; Immunodeficiency 
63 with lymphoproliferation and 
autoimmunity 

4 Asthma; Eosinophil counts; 
Rheumatoid arthritis; 
Tuberculosis 

 540 
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Table 3. Percentiles of the CODIS markers as a set compared with 10,000 random sets of 20 541 
tetranucleotide autosomal STRs  542 
 Proximity to 

nearest* 
w/in 1kb w/in 10kb w/in 100kb 

RefSeq Select TSS 50.5 96.9 77.4 67.1 
RefSeq Select gene 26.2 86.1 57.7 54.2 
HapMap common SNPs in 
CEU 

99.9 97.2 99.7 99.0 

ClinVar pathogenic 
variants 

96.1 97.0 97.4 92.2 

GWAS hits 98.9 48.6 94.7 96.7 
GWAS well-studied traits - 22.7 87.7 95.6 
DNase I Hypersensitivity 
sites 

16.1 62.8 85.2 96.0 

*”Proximity” percentile is 100 minus the “distance” percentile. 543 
 544 

545 
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Table 4. Spearman correlations among key measurements for non-CODIS tetranucleotide 546 
STRs (within 10kb) 547 

 IG SNPs TSS Genes CV 
vars 

GWAS 
hits 

GWAS 
traits 

Intragenic status 1       

HapMap common SNPs in CEU -.05 1      
RefSeq Select TSS .06 -.16 1     

RefSeq Select genes .77 -.13 .47 1    
ClinVar pathogenic variants .22 -.05 .16 .29 1   

GWAS hits .09 .08 .13 .16 .10 1  

GWAS well-studied traits .09 .01 .15 .18 .10 .80 1 

DNase I Hypersensitivity sites .06 -.05 .35 .24 .10 .21 .22 

  548 
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Figure S1. The mean of the 20 CODIS markers (dashed orange line) compared with random 549 
sets of 20 non-CODIS autosomal STR loci with repeat lengths from one to six. The variables 550 
shown are the same as in Figure 1. 551 

 552 
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Supplementary Table 1. Percentiles of the CODIS markers as a set compared with 10,000 554 
random sets of 20 autosomal STRs with repeat motif lengths ranging from 1-6 555 
 Proximity to 

nearest* 
w/in 1kb w/in 10kb w/in 100kb 

RefSeq Select TSS 47.5 96.6 74.2 65.2 
RefSeq Select gene 23.2 77.0 46.0 51.3 
HapMap common SNPs in 
CEU 

99.9 98.0 99.8 99.2 

ClinVar pathogenic 
variants 

95.4 96.0 96.5 96.4 

GWAS hits 99.0 48.6 95.5 96.4 
GWAS well-studied traits - 21.6 88.0 95.2 
DNase I Hypersensitivity 
sites 

16.6 62.8 86.6 96.4 

*”Proximity” percentile is 100 minus the “distance” percentile. 556 
  557 
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Supplementary Table 2. Spearman correlations among key measurements for non-CODIS 558 
tetranucleotide STRs (within 100kb) 559 

 IG SNPs TSS Genes CV 
vars 

GWAS 
hits 

GWAS 
traits 

Intragenic status 1       

HapMap common SNPs in CEU -.11 1      
RefSeq Select TSS .19 -.36 1     

RefSeq Select genes .34 -.35 .91 1    

ClinVar pathogenic variants .22 -.21 .48 .53 1   

GWAS hits .13 .01 .37 .39 .29 1  

GWAS well-studied traits .15 -.10 .41 .43 .31 .89 1 

DNase I Hypersensitivity sites .15 -.15 .56 .56 .35 .49 .52 

  560 
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Supplementary Table 3. Percentiles of the CODIS markers as a set compared with 10,000 561 
random sets of 20 tetranucleotide autosomal STRs, matched for intragenic fraction (50%) 562 
 Proximity to 

nearest* 
w/in 1kb w/in 10kb w/in 100kb 

RefSeq Select TSS 41.8 96.6 74.6 62.7 
RefSeq Select gene 13.8 76.9 23.7 47.1 
HapMap common SNPs in 
CEU 

99.9 97.4 99.8 99.2 

ClinVar pathogenic 
variants 

94.1 95.9 96.2 91.3 

GWAS hits 98.9 47.7 94.1 96.3 
GWAS well-studied traits - 21.2 86.2 94.6 
DNase I Hypersensitivity 
sites 

13.3 62.0 84.3 94.8 

*”Proximity” percentile is 100 minus the “distance” percentile. 563 
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