

1 **Microsatellites used in forensics are located in regions unusually rich in trait-associated
2 variants**

3
4 Vivian Link^{†,1}, Yuómi Jhony A. Zavaleta^{†,2}, Rochelle-Jan Reyes², Linda Ding¹, Judy Wang¹, Rori
5 V. Rohlf^{s*}^{,2,3}, & Michael D. Edge^{*1}

6
7 [†]=co-first author

8 *=corresponding author (RVR: rori@oregon.edu; MDE: edgem@usc.edu)

9 ¹=Department of Quantitative and Computational Biology, University of Southern California

10 ²=Department of Biology, San Francisco State University

11 ³=Department of Computer Science and Institute of Ecology and Evolution, University of Oregon

12
13 **Abstract.** The 20 short tandem repeat (STR) markers of the combined DNA index system
14 (CODIS) are the basis of the vast majority of forensic genetics in the United States. One
15 argument for permissive rules about the collection of CODIS genotypes is that the CODIS
16 markers are thought to contain information relevant to identification only (such as a human
17 fingerprint would), with little information about ancestry or traits. However, in the past 20 years,
18 a quickly growing field has identified hundreds of thousands of genotype-trait associations. Here
19 we conduct a survey of the landscape of such associations surrounding the CODIS loci as
20 compared with non-CODIS STRs. We find that the regions around the CODIS markers are
21 enriched for both known pathogenic variants (>90th percentile) and for SNPs identified as trait-
22 associated in genome-wide association studies (GWAS) (\geq 95th percentile in 10kb and 100kb
23 flanking regions), compared with other random sets of autosomal tetranucleotide-repeat STRs.
24 Although it is not obvious how much phenotypic information CODIS would need to convey to
25 strain the “DNA fingerprint” analogy, the CODIS markers, considered as a set, are in regions
26 unusually dense with variants with known phenotypic associations.

27
28 **Introduction**

29
30 DNA evidence has played a crucial role in forensic investigations for over three decades
31 (Butler, 2015; Jobling & Gill, 2004; Kayser & de Knijff, 2011; Roewer, 2013). Beginning in the
32 mid-1980s (Gill et al., 1985), forensic practitioners realized that even small numbers of genetic
33 markers—provided that they are sufficiently heterozygous—can provide a nearly unique
34 identifier that rules out the vast majority of people as the source of an unidentified sample. Many
35 governments worldwide began to collect genotypes from highly variable short tandem repeat
36 (STR, also called microsatellite) markers for the purpose of assisting forensic investigations.
37 STR alleles differ from each other by virtue of containing different numbers of repeats of a short
38 (generally 1-6 base pairs) motif sequence (Gymrek, 2017). (STRs of the same length may also
39 differ in their underlying sequence (Gettings et al., 2015), but distinct length classes are the
40 basis for most forensic work.) Because many alleles are possible at an STR locus and STR
41 mutation rates are high, STRs tend to be highly heterozygous (Willems et al., 2014). As a result,
42 small sets of STRs—relatively easily genotyped using technology available in the 1990s—can
43 provide enough information to identify a person from a high-quality single-source DNA sample.
44 Small sets of STRs remain the standard for forensic practice in most countries.

45
46 In the United States (US), the Combined DNA Index System (CODIS) markers are the
47 workhorse loci used in forensics. CODIS includes a set of 20 STR markers, 13 of which were
48 established as the original set in the 1990s, and 7 of which were added in 2017 (Hares, 2015).
49 Of the 20 CODIS STRs, 19 are tetranucleotide STRs (i.e. STRs with four-base-pair motifs), and
50 one (D22S1045) is a trinucleotide STR. The X-linked Amelogenin locus is also recorded and

51 may be searched under more restricted circumstances. As of November 2022, CODIS
52 genotypes from 21,791,620 people were accessible to law enforcement via the National DNA
53 Index System (NDIS), and CODIS genotypes had been used as evidence in 622,955
54 investigations (FBI, 2022).

55
56 The broad collection, storage, and use of CODIS genotypes is premised in part on the
57 idea that collection of one's CODIS genotypes entails only a minimal privacy incursion. When
58 the CODIS markers were expanded from 13 to 20 markers, an explicit goal was to avoid
59 including markers that would allow prediction of disease (Hares, 2012, 2015). The metaphor of
60 a "DNA fingerprint," sometimes used to describe a person's CODIS genotypes, conveys this
61 impression, and it has been invoked in legal decisions concerning the CODIS markers, for
62 example the case of *Maryland v. King*, which permitted the collection of CODIS genotypes from
63 arrestees (*Maryland v. King*, 2013).

64
65 One piece of evidence that has been marshaled in defense of the claimed phenotypic
66 irrelevance of the CODIS loci is that the CODIS markers themselves have not been associated
67 with known traits. For example, ten years ago, Katsanis & Wagner (2013) scoured the literature
68 and found no record of direct associations between the CODIS markers and any known
69 phenotypes. However, they did note that several of the CODIS markers are intragenic in genes
70 with known phenotypic associations. It is perhaps unreasonable to expect much direct evidence
71 of CODIS-trait associations given that STR markers are seldom tested for association with
72 phenotype directly (but see Wyner et al., 2020). However, our knowledge of phenotypic
73 associations has grown tremendously in the decade since Katsanis & Wagner's study,
74 prompting a re-examination of their question, in line with calls for systematic reviews of trait
75 information contained in CODIS loci (Kaye, 2014).

76
77 Here, we carry out a similar exercise to Katsanis & Wagner, searching widely used
78 genomic databases to characterize the genomic neighborhoods of the CODIS markers. In
79 addition to providing an update to Katsanis & Wagner's work, we extend it in four main ways.
80 First, we examine the hundreds of thousands of known genotype-phenotype associations
81 identified by genome-wide association study (GWAS) (Bunielo et al., 2019; Visscher et al.,
82 2017), particularly those loci near the CODIS markers. Second, we automate most of our
83 procedures, facilitating replication of our work. Third, whereas Katsanis & Wagner considered
84 only very short genomic regions around the CODIS markers (1 kilobase), we consider larger
85 regions as well (10kb and 100kb). Though SNP-STR linkage disequilibrium (LD) tends to be
86 smaller than SNP-SNP LD, SNP-STR LD nonetheless extends over these larger regions
87 (Payseur et al., 2008; Willems et al., 2014), making them relevant for investigation. Finally,
88 Katsanis & Wagner considered only the 13 original CODIS markers and 11 markers suggested
89 for inclusion, seven of which were added in 2017. Here, we consider STR markers across the
90 genome, aggregating data (available as supplementary material) from approximately 1.6 million
91 STRs. We focus our comparisons on 224,092 autosomal tetranucleotide-repeat STRs, as 19 of
92 the 20 CODIS STRs have tetranucleotide repeat motifs.

93
94 **Methods**

95
96 *Data*

97
98 In January 2023, we downloaded the locations of ~1.6 million STR regions from the hipSTR
99 reference (Willems et al., 2017; <http://webstr.ucsd.edu/downloads>, direct link
100 <https://github.com/HipSTR-Tool/HipSTR->

101 [references/blob/master/human/hg19.hipstr_reference.bed.gz](https://references.blob/master/human/hg19.hipstr_reference.bed.gz)). We also downloaded a set of
102 genome-wide annotations from the UCSC Genome Browser (Lee et al., 2020) using the
103 DataIntegrator tool. In particular, we downloaded coding gene locations (Genes and Gene
104 Predictions > NCBI Refseq > RefSeq All and Genes and Gene Predictions > NCBI Refseq >
105 RefSeq Select) from RefSeq (O'Leary et al., 2016), SNP allele frequencies from HapMap (Gibbs
106 et al., 2003) CEU (Variation > HapMap SNPs... > HapMap SNPs CEU), common SNP locations
107 from dbSNP 153 (Sherry et al., 2001) (Variation > dbSNP Archive - dbSNP 153... > Variants),
108 locations of phenotypically relevant variants (Phenotype and Literature > ClinVar Variants... >
109 ClinVar SNVs) from ClinVar (Landrum et al., 2016), trait-associated SNPs discovered in GWAS
110 (Phenotype and Literature > GWAS Catalog) from the GWAS catalog (MacArthur et al., 2017),
111 and the locations of DNase I hypersensitivity clusters (Regulation > ENCODE Regulation -
112 DNase Clusters V3) from ENCODE (Abascal et al., 2020).

113
114 All genomic locations were expressed in hg19 / GRCh37 coordinates.

115
116 *Data processing*

117
118 We sought to describe the genomic neighborhoods of all 1.6 million STR regions identified in
119 the hipSTR reference in terms of their density of key annotated features—in particular, of coding
120 genes, common SNPs, trait-associated variants, and DNase I hypersensitivity sites. Before
121 doing so, we preprocessed the feature data from UCSC in various ways.

122
123 For coding gene locations, we used the RefSeq Select set, which contains one entry per
124 curated coding gene (21,432 genes). We also located the transcription start site (TSS) of each
125 gene as either the start or end coordinate of transcription, depending on whether the gene was
126 annotated on the + (TSS = start) or - (TSS = end) strand. To identify SNPs common in people of
127 European ancestries, heavily represented in GWAS (Martin et al., 2019; Popejoy & Fullerton,
128 2016), we filtered to SNPs with minor allele frequency 1% or larger in the HapMap CEU data,
129 reducing the number of variants from 4,029,798 to 2,705,918. We limited ClinVar variants to
130 those classified as “Pathogenic,” reducing from 1,491,509 variants to 113,412. For DNase I
131 hypersensitivity sites, we limited to sites with the highest signal level (score 1000/1000),
132 reducing the number of sites from 1,949,038 to 160,870.

133
134 For the GWAS catalog, we preprocessed in two distinct ways. The GWAS catalog contains one
135 row per unique combination of SNP locus (rsid), study (PubMed ID), and trait, for a total of
136 392,271 entries. To obtain information about the number of SNPs identified as trait-associated
137 in any GWAS, we first filtered the GWAS catalog to contain only one row per SNP locus,
138 reducing to 183,014 rows. Thus, for counts of numbers of GWAS hits, each SNP rsid counts
139 only once, regardless of how many studies identified it, and regardless of how many traits it was
140 associated with. Next, we sought to identify traits with nearby GWAS associations for each STR.
141 The trait identifiers in the GWAS catalog are not standardized, and many similar traits receive
142 distinct names (for example “HDL cholesterol” and “HDL cholesterol levels” or “Mean
143 corpuscular hemoglobin” and “Mean corpuscular hemoglobin concentration”). To reduce this
144 redundancy and focus on commonly studied traits when counting the number of distinct traits
145 near each STR, we limited to traits with associations reported in at least three distinct studies
146 with the exact same trait name. This reduced the number of traits from 10,399 to 493.

147
148 For all features and all STRs, we recorded the distance of the nearest feature to the STR
149 midpoint, and the number of features within 1kb, 10kb, and 100kb of the STR midpoint. For
150 coding gene locations, we kept track of distance to the nearest gene (defined as the distance to

151 the start or end of transcription, whichever is shorter, or 0 if the STR is intragenic) and the
152 nearest TSS separately. For the GWAS catalog, we kept track of the number of GWAS hits
153 within each distance window as well as the number of distinct associated traits (where again,
154 distinctness merely means a non-identical character string). Because of the large size of the
155 dbSNP common variants catalog, we recorded these locations only for the 20 CODIS markers.
156 Additionally, for the CODIS only, we recorded the names of the traits reported as associated in
157 ClinVar and the GWAS catalog, as well as the names of nearby protein-coding genes.
158

159 The data processing and analysis scripts, written in R (v. 4.1.2, R Core Team, 2021) and using
160 the data.table package (Dowle et al., 2019), are available at
161 https://github.com/edgepopgen/CODIS_proximity. The output files recording the features
162 proximal to each STR are available in supplementary files.

163
164 **Results**

165
166 *Genetic neighborhoods of the CODIS markers*

167 Table 1 shows the positions of the CODIS markers, the distance to the nearest gene, the names
168 of genes within 100 kilobases (kb) of each marker, and the number of HapMap SNPs at minor
169 allele frequency >1% in the CEU subset of the 1000 Genomes project within 10kb. Half of the
170 20 CODIS markers are intragenic, as noted previously (Katsanis & Wagner, 2013). Of the
171 remaining 10 markers, 5 have protein-coding genes within 100kb. The CODIS marker with by
172 far the greatest distance to the nearest protein-coding gene in RefSeq Select is D13S317, which
173 is approximately 1.7 megabases (Mb) from the nearest gene. All CODIS markers are within
174 10kb of several SNPs common in people of European ancestries.
175

176 Table 2 gives information about pathogenic variants identified in ClinVar and GWAS hits within
177 10kb of each CODIS marker. Six of the ten intragenic CODIS markers are within 10kb of
178 variants identified as pathogenic in ClinVar, ranging from two variants identified for CSF1PO to
179 25 for TH01. Sixteen of the 20 CODIS markers are within 10kb of at least one SNP identified as
180 a GWAS hit, with TH01 again recording the most trait-associated nearby variants, with 10. TH01
181 is intragenic to the tyrosine hydroxylase gene *TH*, which plays an important role in synthesizing
182 dopamine from its amino acid precursor, tyrosine (Nagatsu et al., 2019).
183

184
185 *Comparisons with other autosomal tetranucleotide-repeat STRs*

186 To place the properties of the CODIS markers in context, we compared them with the other
187 224,092 autosomal, tetranucleotide-repeat STRs in the hipSTR reference (Willems et al., 2017).
188 (Although one of the CODIS markers, D22S1045, is a trinucleotide-repeat locus, we focused our
189 comparisons on tetranucleotide-repeat loci.) Figure 1 shows the distribution of the CODIS
190 markers (orange) compared with non-CODIS autosomal tetranucleotide STRs (gray) with
191 respect to their proximity to protein-coding genes, ClinVar pathogenic sites, GWAS hits, unique
192 commonly-studied traits associated with nearby GWAS hits, and DNase I hypersensitivity sites.
193 For four of these feature categories, we show the distance to the nearest feature and the count
194 of features within 1kb, 10kb, and 100kb. For commonly studied GWAS traits, we do not show
195 the distance to the nearest feature. The figures suggest that the CODIS STRs are not
196 systematically less informative about traits than non-CODIS STRs in any category, and in fact,
197 the 10kb and 100kb windows surrounding the CODIS markers appear to harbor more trait-
198 associated variants than average, as identified by ClinVar and the GWAS catalog.
199

200

201 Figure 2 shows, for the same features as in Figure 1, the mean of the CODIS markers (dashed
202 orange line) compared with the mean of 10,000 random sets of 20 tetranucleotide markers. The
203 percentiles at which the CODIS average falls on each of these distributions, along with the
204 distributions for TSS and HapMap SNPs common in CEU, are shown in Table 3. Figure 2 and
205 Table 3 confirm the visual impression from Figure 1. The CODIS markers, as a set, are
206 unusually dense with nearby SNPs common in CEU, ClinVar variants marked pathogenic, and
207 GWAS hits. For GWAS hits, the CODIS appear average in their number of hits within 1kb, but
208 above the 90th percentile in the number of hits within 10kb or 100kb. At larger window sizes, the
209 CODIS markers also appear to be in neighborhoods unusually dense in high-scoring DNase I
210 hypersensitivity sites.

211
212 Comparing the CODIS markers with sets of random autosomal STRs of irrespective of motif
213 length from one to six (1,527,057 markers in the hipSTR reference) produces results very
214 similar to those obtained for tetranucleotide-repeat STRs (Supplementary Table 1 and
215 Supplementary Figure 1).

216
217 We considered whether the unusually high number of GWAS hits and ClinVar pathogenic
218 variants near the CODIS markers might be explained by other features of the CODIS markers.
219 The CODIS markers are 50% intragenic (compared with 39% of non-CODIS tetranucleotide-
220 repeat STRs), and intragenic markers might be expected to be nearer trait-associated variants
221 than intergenic markers. Further, the CODIS markers appear to be in genomic regions with
222 unusually high numbers of SNPs common in people of European ancestry. Since such SNPs
223 are the targets of association in GWAS studies, the high SNP density might explain the high
224 density of GWAS hits.

225
226 Table 4 shows Spearman correlations in the non-CODIS autosomal tetranucleotide STRs
227 among intragenic status and the counts of the features in Table 3 (i.e. TSSs, genes, pathogenic
228 variants, GWAS hits and traits, and DNase hypersensitivity sites) within 10kb. (Analogous
229 information for 100kb windows is shown in Supplementary Table 2.) Although intragenic STRs
230 have somewhat more ClinVar pathogenic variants and GWAS hits within 10kb, the correlations
231 between intragenic status and these features are not large (max Spearman rho = 0.22 for
232 ClinVar pathogenic variants). Moreover, comparing the CODIS means to 10,000 random sets of
233 non-CODIS tetranucleotide STRs matched for intragenic frequency (50%) produces a table of
234 percentiles extremely similar to Table 3 (Supplementary Table 3). The correlations between the
235 number of nearby common SNPs and GWAS hits (or ClinVar pathogenic variants) are even
236 smaller than those for intragenic status (Spearman's rho < 0.1), and in fact, they are mostly
237 negative for counts within 100kb (Supplementary table 1), suggesting that density of nearby
238 SNPs does not explain the unusually high numbers of phenotypic associations near the CODIS
239 markers.

240
241 **Discussion**

242
243 We find that, in comparison with other autosomal tetranucleotide-repeat STRs, the
244 CODIS loci are remarkably rich in nearby variants with known phenotypic associations. The
245 most extreme example is TH01, which has the most known pathogenic variants within 10kb (25)
246 and also the most SNPs within 10kb implicated in GWAS studies (10). Almost 20 years ago,
247 John Butler (2006) wrote that “One core STR locus that has gotten a bad reputation over the
248 years for supposed linkage to genetic diseases is TH01,” going on to note the inconsistent
249 nature of association evidence at the time. Our results are apparently consistent with the
250 reputation TH01 developed among forensic practitioners in the first decade of CODIS’s use.

251 After TH01, the markers with the most known pathogenic variants within 10kb were FGA (22)
252 and vWA (17), and those with the most SNPs identified as trait-associated by GWAS within
253 10kb were CSF1PO (7) and D16S539 (6).

254

255 Although four of these five markers with most evidence of possible trait association (all
256 but D16S539) are intragenic, the unusual proximity of the CODIS to phenotype-associated
257 variants is not explained by the fact that 50% of the CODIS markers are in intragenic regions
258 (compared with 39% of non-CODIS tetranucleotide-repeat STRs). It is also not easily explained
259 by the CODIS markers' closer proximity to SNPs with minor alleles common in people of
260 European ancestries, since the density of such SNPs is not strongly associated with the
261 presence of either known pathogenic variants or SNPs identified as trait-associated in GWAS.

262

263 These results do not constitute direct evidence that the CODIS markers themselves are
264 associated with any phenotypes. However, some degree of correlation (i.e. linkage
265 disequilibrium (LD)) is expected between STRs and SNP markers over these genomic distances
266 (Payseur et al., 2008; Willems et al., 2014). Although the high mutation rates of STRs reduce
267 their LD with surrounding SNPs, genetic drift continually generates LD that is slow to be
268 removed by recombination or nullified by back mutations (Payseur et al., 2008). Direct evidence
269 of whether the CODIS markers (or other STRs) are associated with, or causal for, phenotypes
270 of interest is starting to appear (Gymrek, 2017). We emphasize, however, that from the
271 perspective of phenotype prediction, whether the CODIS markers are causal is not the central
272 concern; any reproducible associations, even if they stem from LD with other causal markers,
273 would still have some predictive utility.

274

275 These results add to other lines of evidence suggesting that the CODIS markers are not
276 completely free of phenotypic or other genetic information. For example, the CODIS markers, on
277 closer analysis, turn out to contain substantial ancestry information, despite their low values of
278 F_{ST} (Algee-Hewitt et al., 2016). Further, because the CODIS markers are correlated with—i.e. in
279 LD with—surrounding single nucleotide polymorphism (SNP) markers, it is sometimes possible
280 to identify CODIS and genome-wide SNP genotypes as coming from the same individual, even
281 when the sets of markers in the two datasets are disjoint (Edge et al., 2017; Kim et al., 2018).
282 Most recently, direct examination of the CODIS markers provides suggestive evidence that
283 some of them are associated with gene expression levels in some tissues (Bañuelos et al.,
284 2022).

285

286 To be clear, the accuracy of phenotype predictions from the CODIS markers is not
287 expected to be high in absolute terms for most phenotypes. The ability to predict a trait from
288 genotype is limited by the trait's heritability (Visscher et al., 2008), and for a wide range of
289 complex traits, the best current predictions from genome-wide SNP data are not particularly
290 accurate (Thompson et al., 2022). A small set of STRs will not outperform genome-wide SNPs
291 at phenotype prediction except in rare cases. In general, whether the phenotype predictions
292 developed directly from CODIS represent privacy incursions will depend on at least (a) the
293 standard for how accurate prediction needs to be to be considered a privacy incursion, (b) the
294 number and effect sizes of causal alleles in or near the CODIS markers, and (c) the degree to
295 which a trait is associated with ancestry, which can be noisily reconstructed from CODIS
296 genotypes (Algee-Hewitt et al., 2016). What is clear is that the CODIS markers are not likely to
297 be less informative about phenotypes than other, similar loci. This statement is analogous to the
298 one made by Algee-Hewitt et al. (2016), who found that the CODIS markers are no less
299 informative about ancestry than comparison markers.

300

301 It is not clear why the regions around the CODIS markers are unusually dense with
302 phenotypic associations. The GWAS era had not yet begun at the time when the CODIS
303 markers were selected. One possibility is simply bad luck—the original architects of the CODIS
304 system happened to choose sites that would later be identified as near phenotype-associated
305 sites. Another possibility is that there is some other feature or set of features of the CODIS
306 markers that led to both their being considered favorably by the designers of CODIS and that
307 also meant they would be near sites with trait associations, or at least sites that were liable to be
308 discovered as trait-associated. Future work may consider this possibility.
309

310 It is not clear why the regions around the CODIS markers are unusually dense with
311 phenotypic associations. The GWAS era had not yet begun at the time when the CODIS
312 markers were selected. One possibility is simply bad luck—the original architects of the CODIS
313 system happened to choose sites that would later be identified as near phenotype-associated
314 sites. Another possibility is that there is some other feature or set of features of the CODIS
315 markers that led to their being considered favorably by the designers of CODIS and that also
316 meant they would be near sites with trait associations, or at least sites that were liable to be
317 discovered as trait-associated. One clue may be the enrichment of high-signal DNase I
318 hypersensitivity sites near the CODIS markers that we observed. DNase I sites are a hallmark
319 of accessible chromatin, and have been relied upon in searches for regulatory elements,
320 including enhancers and promoters (Chen et al., 2018). Chromatin accessibility may also
321 influence the ease of PCR amplification of STRs. Because ease of genotyping by PCR was a
322 factor in the initial selection of the CODIS markers (Butler, 2006), it is possible that the CODIS
323 markers are more likely to be near regulatory elements. Future work may consider this
324 possibility.
325

326 In *Maryland v. King* (2013), Justice Kennedy wrote for the majority that the CODIS loci
327 “come from noncoding parts of the DNA that do not reveal the genetic traits of the arrestee.”
328 This statement was part of the majority’s argument that CODIS genotypes can be thought of as
329 a “DNA fingerprint,” a piece of information useful for identification but not informative about any
330 of a person’s traits or medical information. It followed for the majority that collection and storage
331 of CODIS genotypes, like that of fingerprints, is an appropriate part of a routine pre-trial booking
332 procedure. It is not obvious how much information about other traits the CODIS markers would
333 need to convey in order to invalidate the Court’s premise, nor is it yet clear how much
334 information they actually do convey. At the same time, it appears that any attempt to choose
335 markers for CODIS that convey unusually small amounts of information about phenotypes
336 compared with other STRs does not seem to have been successful.
337

338 An acknowledgment that CODIS genotypes may be more revealing than previously
339 assumed may prompt rethinking of the patchwork of highly variable local practices governing
340 CODIS genotype collection, storage, and access (Joh, 2015; Murphy & Tong, 2020; Roth, 2019)
341 and influence considerations regarding universal forensic DNA databases (Miller & Smith,
342 2022). We advocate, along with Kaye (2014), that biomedical literature continue to be monitored
343 in order to ascertain the phenotypic information accessible to a person with access to CODIS
344 profiles (Bañuelos et al., 2022; Wyner et al., 2020). More generally, we advocate that practices
345 surrounding CODIS profiles should be informed by a framework that considers CODIS
346 genotypes not as isolated pieces of information but as components of a genome connected via
347 linkage disequilibrium produced by recombination, mutation, and our shared evolutionary history
348 (Edge et al., 2017; Kim et al., 2018).
349

350 **Limitations of the study**

351 This study is limited by ascertainment biases present in the various databases we
352 considered. To take one example, the GWAS catalog is a function of the actual associations
353 identified in GWAS, which means that associations with widely studied traits, with SNPs
354 included in or well imputed by genotyping arrays commonly used for GWAS, and associations
355 that are more easily detectable in people of European ancestries are more likely to be included.
356 Our data processing procedures, which aimed mainly to arrive at simple summaries of high-
357 confidence features, may also have introduced additional ascertainment biases. Another
358 limitation is that we cannot estimate the actual association between STRs and traits, merely the
359 positions of trait-associated variants nearby.
360

361 **Acknowledgments**

362 MDE is funded by NIH grant R35 GM137758. Y.J.A.Z. was supported by the NIH Bridges
363 Fellowship (R25-GM048972) and a Genentech Foundation Fellowship. We thank Andy Clark for
364 suggesting chromatin accessibility as a hypothesis for the co-occurrence of CODIS loci and
365 phenotype-associated variants.
366

367 **Author contributions**
368 Conceptualization, MDE and RVR; Methodology, MDE and RVR; Software, MDE, YJAZ, and
369 LD; Data Analysis, MDE, VL, YJAZ, R-JR, and JW; Writing - Original Draft, MDE; Writing -
370 Review and Editing VL, YJAZ, R-JR, JW, LD; Visualization, MDE and RVR; Supervision MDE,
371 RVR, and VL.
372

373 **Declaration of interests**
374 The authors declare no competing interests.
375

376 **References**
377
378 Abascal, F., Acosta, R., Addleman, N. J., Adrian, J., Afzal, V., Ai, R., Aken, B., Akiyama, J. A.,
379 Jammal, O. A., Amrhein, H., Anderson, S. M., Andrews, G. R., Antoshechkin, I., Ardlie,
380 K. G., Armstrong, J., Astley, M., Banerjee, B., Barkal, A. A., Barnes, I. H. A., ... The
381 ENCODE Project Consortium. (2020). Expanded encyclopaedias of DNA elements in
382 the human and mouse genomes. *Nature*, 583(7818), 699–710.
383 <https://doi.org/10.1038/s41586-020-2493-4>
384 Algee-Hewitt, B. F. B., Edge, M. D., Kim, J., Li, J. Z., & Rosenberg, N. A. (2016). Individual
385 Identifiability Predicts Population Identifiability in Forensic Microsatellite Markers. *Current
386 Biology*, 26(7), 935–942. <https://doi.org/10.1016/j.cub.2016.01.065>
387 Bañuelos, M. M., Zavaleta, Y. J. A., Roldan, A., Reyes, R.-J., Guardado, M., Chavez Rojas, B.,
388 Nyein, T., Rodriguez Vega, A., Santos, M., Huerta-Sanchez, E., & Rohlf, R. V. (2022).
389 Associations between forensic loci and expression levels of neighboring genes may
390 compromise medical privacy. *Proceedings of the National Academy of Sciences*,
391 119(40), e2121024119. <https://doi.org/10.1073/pnas.2121024119>
392 Buniello, A., MacArthur, J. A. L., Cerezo, M., Harris, L. W., Hayhurst, J., Malangone, C.,
393 McMahon, A., Morales, J., Mountjoy, E., Sollis, E., Suveges, D., Vrousgou, O., Whetzel,
394 P. L., Amode, R., Guillen, J. A., Riat, H. S., Trevanion, S. J., Hall, P., Junkins, H., ...
395 Parkinson, H. (2019). The NHGRI-EBI GWAS Catalog of published genome-wide
396 association studies, targeted arrays and summary statistics 2019. *Nucleic Acids
397 Research*, 47(D1), D1005–D1012. <https://doi.org/10.1093/nar/gky1120>
398

400 Butler, J. M. (2006). Genetics and Genomics of Core Short Tandem Repeat Loci Used in
401 Human Identity Testing. *Journal of Forensic Sciences*, 51(2), 253–265.
402 <https://doi.org/10.1111/j.1556-4029.2006.00046.x>

403 Butler, J. M. (2015). The future of forensic DNA analysis. *Philosophical Transactions of the
404 Royal Society B: Biological Sciences*, 370(1674), 20140252.
405 <https://doi.org/10.1098/rstb.2014.0252>

406 Chen, A., Chen, D., & Chen, Y. (2018). Advances of DNase-seq for mapping active gene
407 regulatory elements across the genome in animals. *Gene*, 667, 83–94.
408 <https://doi.org/10.1016/j.gene.2018.05.033>

409 Dowle, M., Srinivasan, A., Gorecki, J., Chirico, M., Stetsenko, P., Short, T., Lianoglou, S.,
410 Antonyan, E., Bonsch, M., & Parsonage, H. (2019). *Package ‘data.Table’: Extension of
411 ‘data.Frame’*.

412 Edge, M. D., Algee-Hewitt, B. F. B., Pemberton, T. J., Li, J. Z., & Rosenberg, N. A. (2017).
413 Linkage disequilibrium matches forensic genetic records to disjoint genomic marker sets.
414 *Proceedings of the National Academy of Sciences*, 114(22), 5671–5676.
415 <https://doi.org/10.1073/pnas.1619944114>

416 FBI. (2022). *CODIS ND/S Statistics*. <https://le.fbi.gov/science-and-lab-resources/biometrics-and-fingerprints/codis/codis-ndis-statistics>

417 Gettings, K. B., Aponte, R. A., Vallone, P. M., & Butler, J. M. (2015). STR allele sequence
418 variation: Current knowledge and future issues. *New Trends in Forensic Science
419 Genetics*, 18, 118–130. <https://doi.org/10.1016/j.fsigen.2015.06.005>

420 Gibbs, R. A., Belmont, J. W., Hardenbol, P., Willis, T. D., Yu, F., Yang, H., Ch'ang, L.-Y.,
421 Huang, W., Liu, B., Shen, Y., Tam, P. K.-H., Tsui, L.-C., Waye, M. M. Y., Wong, J. T.-F.,
422 Zeng, C., Zhang, Q., Chee, M. S., Galver, L. M., Kruglyak, S., ... Methods Group.
423 (2003). The International HapMap Project. *Nature*, 426(6968), 789–796.
424 <https://doi.org/10.1038/nature02168>

425 Gill, P., Jeffreys, A. J., & Werrett, D. J. (1985). Forensic application of DNA ‘fingerprints.’
426 *Nature*, 318(6046), 577–579. <https://doi.org/10.1038/318577a0>

427 Gymrek, M. (2017). A genomic view of short tandem repeats. *Molecular and Genetic Bases of
428 Disease*, 44, 9–16. <https://doi.org/10.1016/j.gde.2017.01.012>

429 Hares, D. R. (2012). Expanding the CODIS core loci in the United States. *Forensic Science
430 International: Genetics*, 6(1), e52–e54. <https://doi.org/10.1016/j.fsigen.2011.04.012>

431 Hares, D. R. (2015). Selection and implementation of expanded CODIS core loci in the United
432 States. *Forensic Science International: Genetics*, 17, 33–34.
433 <https://doi.org/10.1016/j.fsigen.2015.03.006>

434 Jobling, M. A., & Gill, P. (2004). Encoded evidence: DNA in forensic analysis. *Nature Reviews
435 Genetics*, 5(10), 739–751. <https://doi.org/10.1038/nrg1455>

436 Joh, E. E. (2015). Myth of Arrestee DNA Expungement, The. *U. Pa. L. Rev. Online*, 164, 51.

437 Katsanis, S. H., & Wagner, J. K. (2013). Characterization of the Standard and Recommended
438 CODIS Markers*. *Journal of Forensic Sciences*, 58(s1), S169–S172.
439 <https://doi.org/10.1111/j.1556-4029.2012.02253.x>

440 Kaye, David H. (2014). “Open to Dispute”: CODIS STR Loci as Private Medical Information.
441 *Penn State Law Research Paper No. 23-2014*.

442 Kayser, M., & de Knijff, P. (2011). Improving human forensics through advances in genetics,
443 genomics and molecular biology. *Nature Reviews Genetics*, 12(3), 179–192.
444 <https://doi.org/10.1038/nrg2952>

445 Kim, J., Edge, M. D., Algee-Hewitt, B. F. B., Li, J. Z., & Rosenberg, N. A. (2018). Statistical
446 Detection of Relatives Typed with Disjoint Forensic and Biomedical Loci. *Cell*, 175(3),
447 848-858.e6. <https://doi.org/10.1016/j.cell.2018.09.008>

448 Landrum, M. J., Lee, J. M., Benson, M., Brown, G., Chao, C., Chitipiralla, S., Gu, B., Hart, J.,
449 Hoffman, D., Hoover, J., Jang, W., Katz, K., Ovetsky, M., Riley, G., Sethi, A., Tully, R.,

451 Villamarin-Salomon, R., Rubinstein, W., & Maglott, D. R. (2016). ClinVar: Public archive
452 of interpretations of clinically relevant variants. *Nucleic Acids Research*, 44(D1), D862–
453 D868. <https://doi.org/10.1093/nar/gkv1222>

454 Lee, C. M., Barber, G. P., Casper, J., Clawson, H., Diekhans, M., Gonzalez, J. N., Hinrichs, A.
455 S., Lee, B. T., Nassar, L. R., Powell, C. C., Raney, B. J., Rosenbloom, K. R., Schmelter,
456 D., Speir, M. L., Zweig, A. S., Haussler, D., Haeussler, M., Kuhn, R. M., & Kent, W. J.
457 (2020). UCSC Genome Browser enters 20th year. *Nucleic Acids Research*, 48(D1),
458 D756–D761. <https://doi.org/10.1093/nar/gkz1012>

459 MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., Jenkins, H., McMahon, A.,
460 Milano, A., Morales, J., Pendlington, Z. M., Welter, D., Burdett, T., Hindorff, L., Flieck, P.,
461 Cunningham, F., & Parkinson, H. (2017). The new NHGRI-EBI Catalog of published
462 genome-wide association studies (GWAS Catalog). *Nucleic Acids Research*, 45(D1),
463 D896–D901. <https://doi.org/10.1093/nar/gkw1133>

464 Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M., & Daly, M. J. (2019). Clinical
465 use of current polygenic risk scores may exacerbate health disparities. *Nature Genetics*,
466 51(4), 584–591. <https://doi.org/10.1038/s41588-019-0379-x>

467 Maryland v. King, (2013).

468 Miller, S., & Smith, M. (2022). Quasi-Universal Forensic DNA Databases. *Criminal Justice
469 Ethics*, 41(3), 238–256. <https://doi.org/10.1080/0731129X.2022.2141021>

470 Murphy, E., & Tong, J. H. (2020). The racial composition of forensic DNA databases. *Calif. L.
471 Rev.*, 108, 1847.

472 Nagatsu, T., Nakashima, A., Ichinose, H., & Kobayashi, K. (2019). Human tyrosine hydroxylase
473 in Parkinson's disease and in related disorders. *Journal of Neural Transmission*, 126(4),
474 397–409. <https://doi.org/10.1007/s00702-018-1903-3>

475 O'Leary, N. A., Wright, M. W., Brister, J. R., Ciuffo, S., Haddad, D., McVeigh, R., Rajput, B.,
476 Robbertse, B., Smith-White, B., Ako-Adjei, D., Astashyn, A., Badretdin, A., Bao, Y.,
477 Blinkova, O., Brover, V., Chetvernin, V., Choi, J., Cox, E., Ermolaeva, O., ... Pruitt, K. D.
478 (2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic
479 expansion, and functional annotation. *Nucleic Acids Research*, 44(D1), D733–D745.
480 <https://doi.org/10.1093/nar/gkv1189>

481 Payseur, B. A., Place, M., & Weber, J. L. (2008). Linkage Disequilibrium between STRPs and
482 SNPs across the Human Genome. *The American Journal of Human Genetics*, 82(5),
483 1039–1050. <https://doi.org/10.1016/j.ajhg.2008.02.018>

484 Popejoy, A. B., & Fullerton, S. M. (2016). Genomics is failing on diversity. *Nature*, 538(7624),
485 161–164. <https://doi.org/10.1038/538161a>

486 R Core Team. (2021). *R: A language and environment for statistical computing*. R Foundation for
487 Statistical Computing. <https://www.R-project.org/>

488 Roewer, L. (2013). DNA fingerprinting in forensics: Past, present, future. *Investigative Genetics*,
489 4(1), 22. <https://doi.org/10.1186/2041-2223-4-22>

490 Roth, A. (2019). "Spit and Acquit." *California Law Review*, 107(2), 405–458. JSTOR.

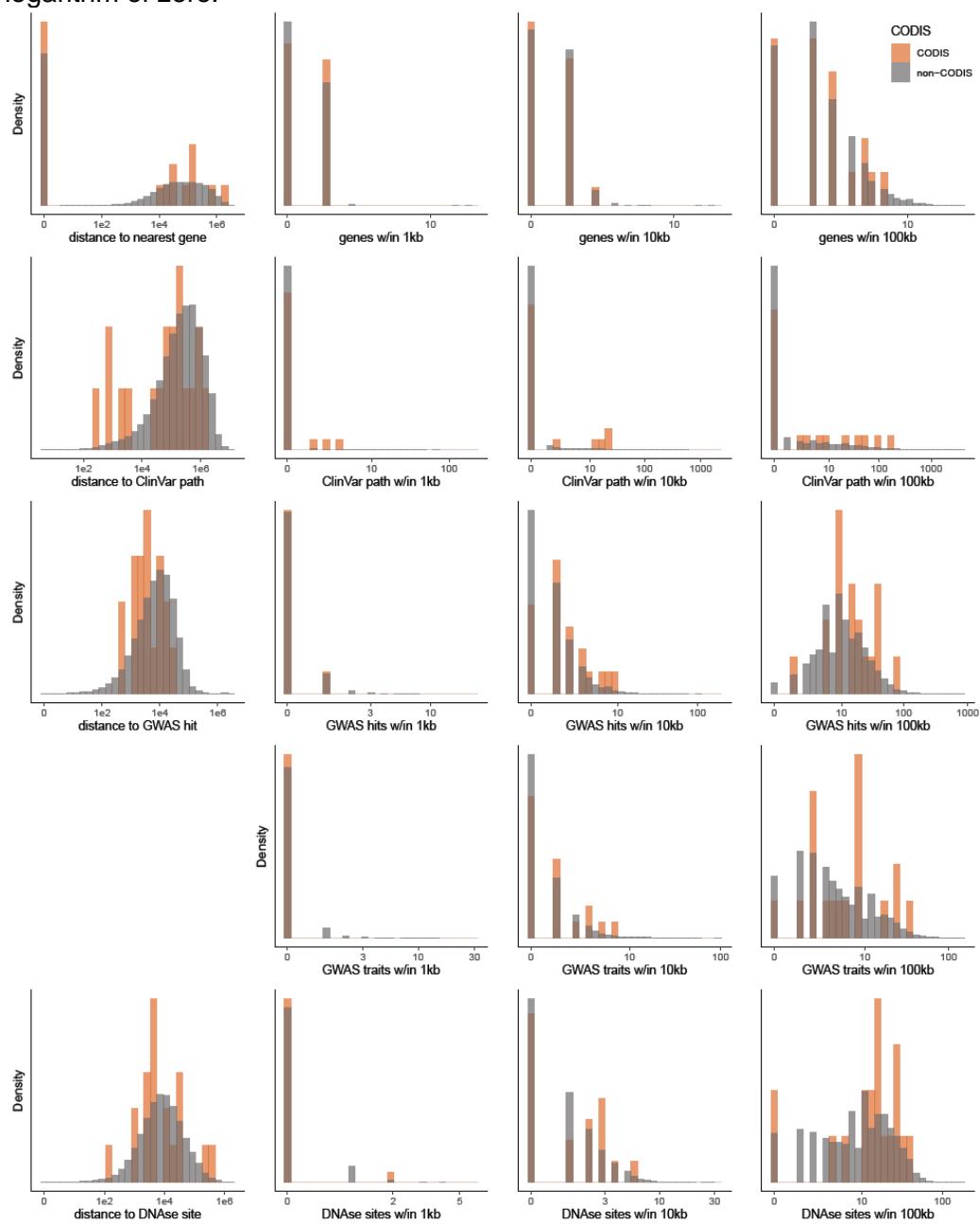
491 Sherry, S. T., Ward, M.-H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotnik, K.
492 (2001). DbSNP: the NCBI database of genetic variation. *Nucleic Acids Research*, 29(1),
493 308–311. <https://doi.org/10.1093/nar/29.1.308>

494 Thompson, D. J., Wells, D., Selzam, S., Peneva, I., Moore, R., Sharp, K., Tarran, W. A., Beard,
495 E. J., Riveros-Mckay, F., Giner-Delgado, C., Palmer, D., Seth, P., Harrison, J., Futema,
496 M., McVean, G., Plagnol, V., Donnelly, P., & Weale, M. E. (2022). UK Biobank release
497 and systematic evaluation of optimised polygenic risk scores for 53 diseases and
498 quantitative traits. *MedRxiv*, 2022.06.16.22276246.
499 <https://doi.org/10.1101/2022.06.16.22276246>

500 Visscher, P. M., Hill, W. G., & Wray, N. R. (2008). Heritability in the genomics era—Concepts
501 and misconceptions. *Nature Reviews Genetics*, 9(4), 255–266.
502 <https://doi.org/10.1038/nrg2322>

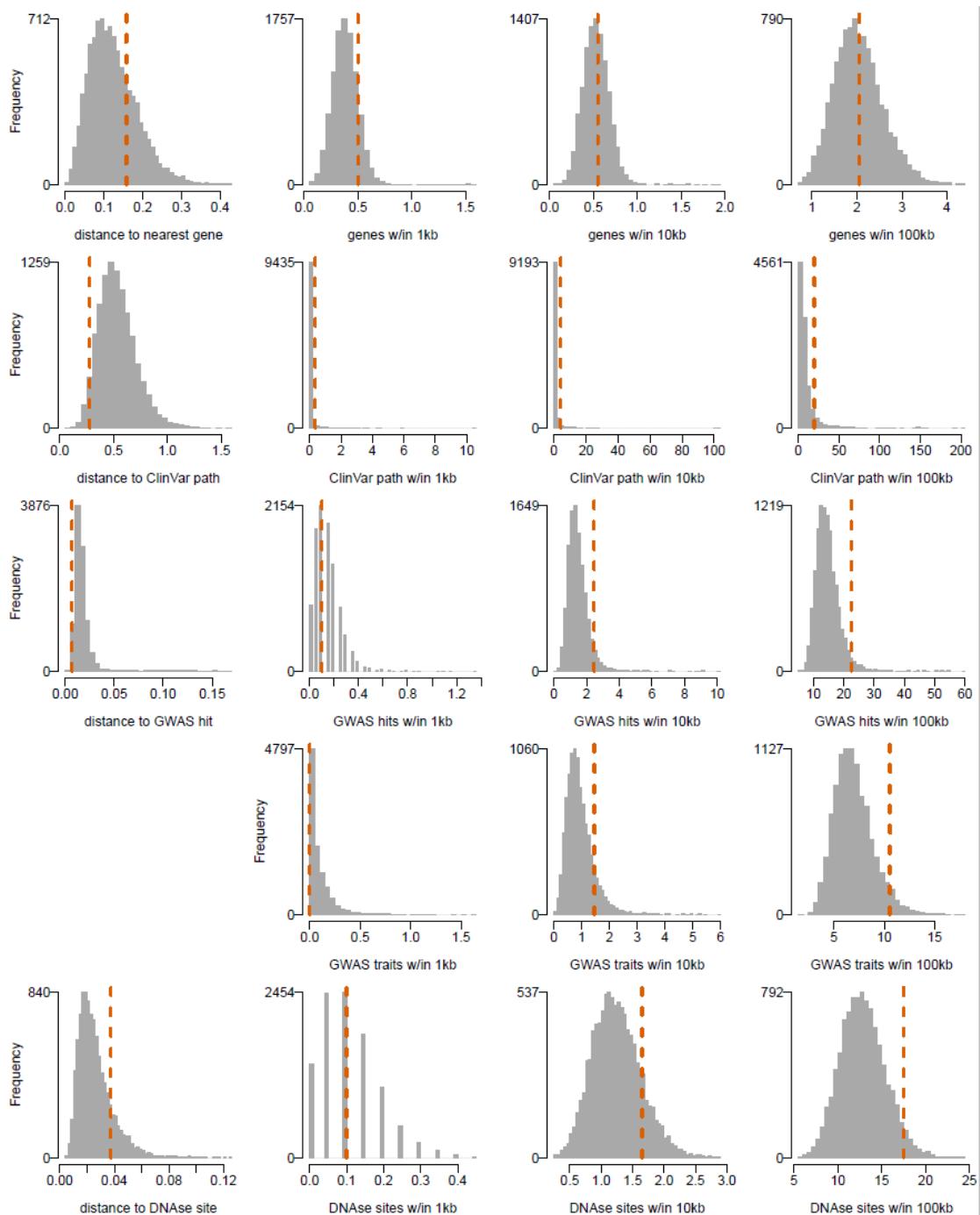
503 Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & Yang, J.
504 (2017). 10 Years of GWAS Discovery: Biology, Function, and Translation. *The American
505 Journal of Human Genetics*, 101(1), 5–22. <https://doi.org/10.1016/j.ajhg.2017.06.005>

506 Willems, T., Gymrek, M., Highnam, G., The 1000 Genomes Project Consortium, Mittelman, D.,
507 & Erlich, Y. (2014). The landscape of human STR variation. *Genome Research*, 24(11),
508 1894–1904. <https://doi.org/10.1101/gr.177774.114>


509 Willems, T., Zielinski, D., Yuan, J., Gordon, A., Gymrek, M., & Erlich, Y. (2017). Genome-wide
510 profiling of heritable and de novo STR variations. *Nature Methods*, 14(6), 590–592.
511 <https://doi.org/10.1038/nmeth.4267>

512 Wyner, N., Barash, M., & McNevin, D. (2020). Forensic Autosomal Short Tandem Repeats and
513 Their Potential Association With Phenotype. *Frontiers in Genetics*, 11.
514 <https://www.frontiersin.org/articles/10.3389/fgene.2020.00884>

515


516

517 **Figure 1.** The values of the CODIS loci (orange histogram) compared with non-CODIS
518 autosomal tetranucleotide-repeat STRs (grey) on variables relating to their proximity to
519 phenotype-relevant features. The first column shows distance to the nearest feature, and the
520 second through fourth columns show the number of features within 1kb, 10kb, and 100kb. The
521 rows, in order, show genes included in the RefSeq Select set, variants annotated as pathogenic
522 in ClinVar, SNPs identified as trait-associated in GWAS studies, traits included in at least 3
523 GWAS studies with associated variants nearby, and DNase I Hypersensitivity sites. The
524 horizontal axes are displayed on a log scale; we added one to all values to avoid taking the
525 logarithm of zero.

526
527
528

529 **Figure 2.** The mean of the 20 CODIS markers (dashed orange line) compared with random sets
530 of 20 non-CODIS autosomal tetranucleotide-repeat loci. The variables shown are the same as
531 in Figure 1.

532
533
534
535

536

Table 1. Locations of the CODIS markers

marker	chr	Start position (approximate MB, hg19)	Distance to nearest protein- coding gene (0 = intragenic)	Protein-coding genes w/in 100kb, in proximity order	Common SNPs in Hapmap CEU w/in 10kb
D1S1656	1	230.9	0	<i>CAPN9, AGT, C1orf198, COG2</i>	58
TPOX	2	1.5	0	<i>TPO</i>	22
D2S441	2	68.2	29,159	<i>C1D</i>	22
D2S1338	2	218.9	11,910	<i>TNS1, RUFY4</i>	11
D3S1358	3	45.6	0	<i>LARS2, LIMD1</i>	7
FGA	4	155.5	0	<i>FGA, FGB, FGG, PLRG1, DCHS2</i>	16
D5S818	5	123.1	158,529		24
CSF1PO	5	149.5	0	<i>CSF1R, HMGXB3, PDGFRB, TIGD6, SLC26A2, CDX1</i>	36
D7S820	7	83.8	0	<i>SEMA3A</i>	19
D8S1179	8	125.9	78,404	<i>ZNF572</i>	19
D10S1248	10	131.1	172,971		39
TH01	11	2.2	0	<i>TH, INS, IGF2, ASCL2</i>	21
vWA	12	6.1	0	<i>VWF, ANO2</i>	33
D12S391	12	12.5	28,998	<i>MANSC1, LRP6, BORCS5</i>	32
D13S317	13	82.7	1,729,158		21
D16S539	16	86.4	157,803		59
D18S51	18	60.9	0	<i>BCL2, KDSR</i>	25
D19S433	19	30.4	15,972	<i>URI1</i>	22
D21S11	21	20.6	778,252		22
D22S1045	22	37.5	0	<i>IL2RB, TMPRSS6, C1QTNF6, SSTR3, KCTD17, RAC2</i>	38

537

538 **Table 2.** Phenotypic associations within 10kb of the CODIS markers from ClinVar and the
539 GWAS catalog

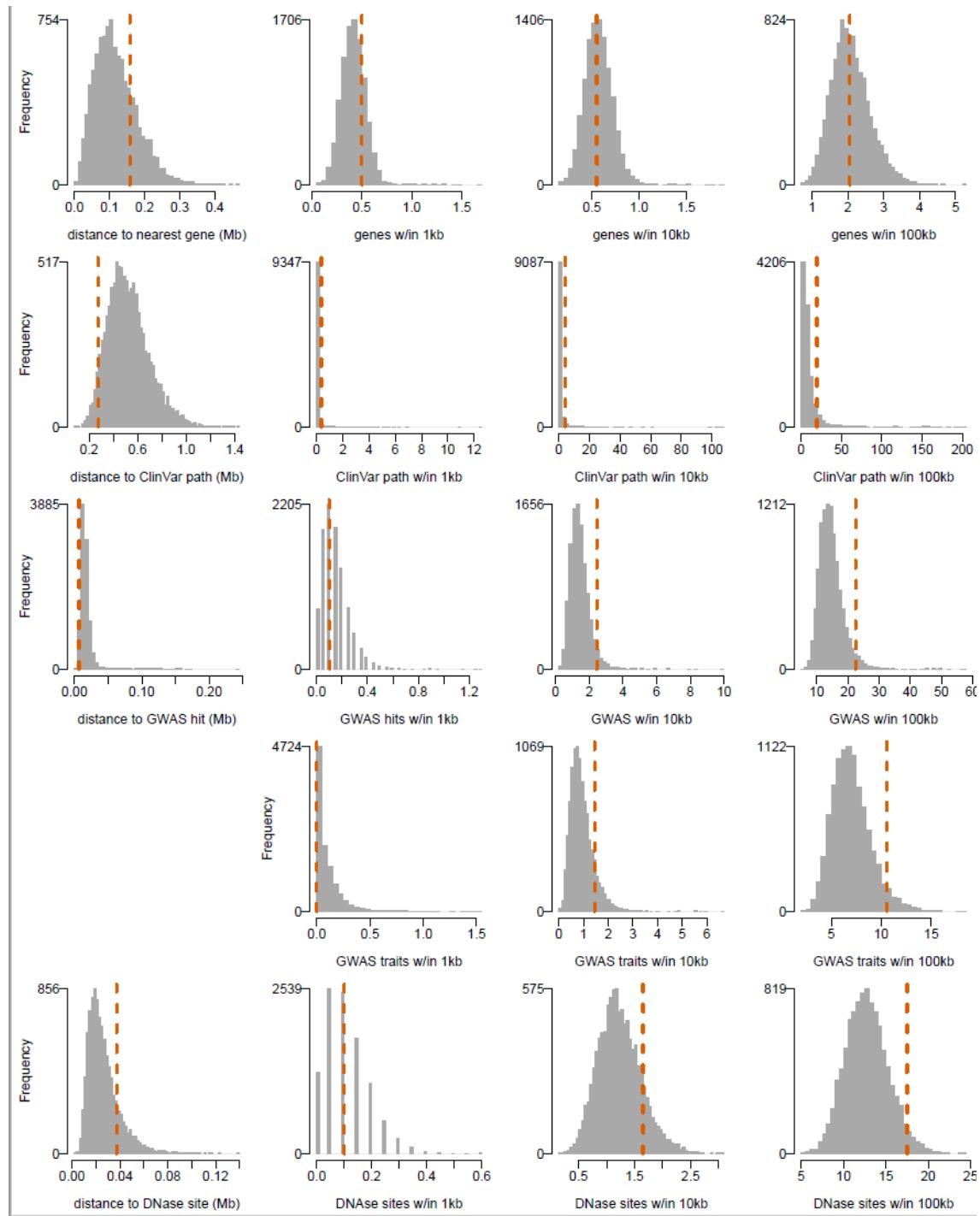
marker	ClinVar variants	ClinVar traits	GWA S hits	GWAS commonly studied traits
D1S1656	0		0	
TPOX	12	Deficiency of iodide peroxidase; Neurodevelopmental disorder	2	
D2S441	0		1	
D2S1338	0		1	Height
D3S1358	0		0	
FGA	22	Hepatocellular carcinoma; Congenital afibrinogenemia; Familial visceral amyloidosis, Ostertag type; Hypofibrinogenemia; Familial hypodysfibrinogenemia; Familial dysfibrinogenemia; Dysfibrinogenemia; Abnormal bleeding	4	Fibrinogen; Height; Ischemic stroke; Stroke; Venous thromboembolism
D5S818	0		3	Amyotrophic lateral sclerosis; Total body bone mineral density
CSF1PO	2	Brain abnormalities, neurodegeneration, and dysosteosclerosis	7	Aspartate aminotransferase levels; Monocyte count; Serum total protein level
D7S820	0		1	Obesity-related traits
D8S1179	0		3	Platelet count
D10S124	0		0	
8				
TH01	25	Permanent neonatal diabetes mellitus; not specified; Autosomal recessive DOPA responsive dystonia; Inborn genetic diseases; Dystonic disorder	10	Cystatin C levels; Height; Hematocrit; Hemoglobin; Hemoglobin concentration; Type 1 diabetes; Type 2 diabetes
vWA	17	von Willebrand disorder; von Willebrand disease type 3; Abnormality of coagulation; von Willebrand disease type 1	1	
D12S391	0		1	
D13S317	0		2	Hippocampal volume
D16S539	0		6	Appendicular lean mass; Optic cup area; Response to statin therapy
D18S51	0		2	Heel bone mineral density
D19S433	0		1	
D21S11	0		0	
D22S104	4	Ichthyosis; Immunodeficiency 63 with lymphoproliferation and autoimmunity	4	Asthma; Eosinophil counts; Rheumatoid arthritis; Tuberculosis
5				

541 **Table 3.** Percentiles of the CODIS markers as a set compared with 10,000 random sets of 20
542 tetranucleotide autosomal STRs

	Proximity to nearest*	w/in 1kb	w/in 10kb	w/in 100kb
RefSeq Select TSS	50.5	96.9	77.4	67.1
RefSeq Select gene	26.2	86.1	57.7	54.2
HapMap common SNPs in CEU	99.9	97.2	99.7	99.0
ClinVar pathogenic variants	96.1	97.0	97.4	92.2
GWAS hits	98.9	48.6	94.7	96.7
GWAS well-studied traits	-	22.7	87.7	95.6
DNase I Hypersensitivity sites	16.1	62.8	85.2	96.0

543 *Proximity percentile is 100 minus the “distance” percentile.

544


545

546 **Table 4.** Spearman correlations among key measurements for non-CODIS tetranucleotide
547 STRs (within 10kb)

	IG	SNPs	TSS	Genes	CV vars	GWAS hits	GWAS traits
Intragenic status	1						
HapMap common SNPs in CEU	-.05	1					
RefSeq Select TSS	.06	-.16	1				
RefSeq Select genes	.77	-.13	.47	1			
ClinVar pathogenic variants	.22	-.05	.16	.29	1		
GWAS hits	.09	.08	.13	.16	.10	1	
GWAS well-studied traits	.09	.01	.15	.18	.10	.80	1
DNase I Hypersensitivity sites	.06	-.05	.35	.24	.10	.21	.22

548

549 **Figure S1.** The mean of the 20 CODIS markers (dashed orange line) compared with random
550 sets of 20 non-CODIS autosomal STR loci with repeat lengths from one to six. The variables
551 shown are the same as in Figure 1.

552
553

554 **Supplementary Table 1.** Percentiles of the CODIS markers as a set compared with 10,000
555 random sets of 20 autosomal STRs with repeat motif lengths ranging from 1-6

	Proximity to nearest*	w/in 1kb	w/in 10kb	w/in 100kb
RefSeq Select TSS	47.5	96.6	74.2	65.2
RefSeq Select gene	23.2	77.0	46.0	51.3
HapMap common SNPs in CEU	99.9	98.0	99.8	99.2
ClinVar pathogenic variants	95.4	96.0	96.5	96.4
GWAS hits	99.0	48.6	95.5	96.4
GWAS well-studied traits	-	21.6	88.0	95.2
DNase I Hypersensitivity sites	16.6	62.8	86.6	96.4

556 *Proximity percentile is 100 minus the “distance” percentile.

557

558 **Supplementary Table 2.** Spearman correlations among key measurements for non-CODIS
559 tetranucleotide STRs (within 100kb)

	IG	SNPs	TSS	Genes	CV vars	GWAS hits	GWAS traits
Intragenic status	1						
HapMap common SNPs in CEU	-.11	1					
RefSeq Select TSS	.19	-.36	1				
RefSeq Select genes	.34	-.35	.91	1			
ClinVar pathogenic variants	.22	-.21	.48	.53	1		
GWAS hits	.13	.01	.37	.39	.29	1	
GWAS well-studied traits	.15	-.10	.41	.43	.31	.89	1
DNase I Hypersensitivity sites	.15	-.15	.56	.56	.35	.49	.52

560

561 **Supplementary Table 3.** Percentiles of the CODIS markers as a set compared with 10,000
562 random sets of 20 tetranucleotide autosomal STRs, matched for intragenic fraction (50%)

	Proximity to nearest*	w/in 1kb	w/in 10kb	w/in 100kb
RefSeq Select TSS	41.8	96.6	74.6	62.7
RefSeq Select gene	13.8	76.9	23.7	47.1
HapMap common SNPs in CEU	99.9	97.4	99.8	99.2
ClinVar pathogenic variants	94.1	95.9	96.2	91.3
GWAS hits	98.9	47.7	94.1	96.3
GWAS well-studied traits	-	21.2	86.2	94.6
DNase I Hypersensitivity sites	13.3	62.0	84.3	94.8

563 *Proximity percentile is 100 minus the “distance” percentile.