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Abstract. The 20 short tandem repeat (STR) markers of the combined DNA index system
(CODIS) are the basis of the vast majority of forensic genetics in the United States. One
argument for permissive rules about the collection of CODIS genotypes is that the CODIS
markers are thought to contain information relevant to identification only (such as a human
fingerprint would), with little information about ancestry or traits. However, in the past 20 years,
a quickly growing field has identified hundreds of thousands of genotype-trait associations. Here
we conduct a survey of the landscape of such associations surrounding the CODIS loci as
compared with non-CODIS STRs. We find that the regions around the CODIS markers are
enriched for both known pathogenic variants (>90th percentile) and for SNPs identified as trait-
associated in genome-wide association studies (GWAS) (295th percentile in 10kb and 100kb
flanking regions), compared with other random sets of autosomal tetranucleotide-repeat STRs.
Although it is not obvious how much phenotypic information CODIS would need to convey to
strain the “DNA fingerprint” analogy, the CODIS markers, considered as a set, are in regions
unusually dense with variants with known phenotypic associations.

Introduction

DNA evidence has played a crucial role in forensic investigations for over three decades
(Butler, 2015; Jobling & Gill, 2004; Kayser & de Knijff, 2011; Roewer, 2013). Beginning in the
mid-1980s (Gill et al., 1985), forensic practitioners realized that even small numbers of genetic
markers—provided that they are sufficiently heterozygous—can provide a nearly unique
identifier that rules out the vast majority of people as the source of an unidentified sample. Many
governments worldwide began to collect genotypes from highly variable short tandem repeat
(STR, also called microsatellite) markers for the purpose of assisting forensic investigations.
STR alleles differ from each other by virtue of containing different numbers of repeats of a short
(generally 1-6 base pairs) motif sequence (Gymrek, 2017). (STRs of the same length may also
differ in their underlying sequence (Gettings et al., 2015), but distinct length classes are the
basis for most forensic work.) Because many alleles are possible at an STR locus and STR
mutation rates are high, STRs tend to be highly heterozygous (Willems et al., 2014). As a result,
small sets of STRs—relatively easily genotyped using technology available in the 1990s—can
provide enough information to identify a person from a high-quality single-source DNA sample.
Small sets of STRs remain the standard for forensic practice in most countries.

In the United States (US), the Combined DNA Index System (CODIS) markers are the
workhorse loci used in forensics. CODIS includes a set of 20 STR markers, 13 of which were
established as the original set in the 1990s, and 7 of which were added in 2017 (Hares, 2015).
Of the 20 CODIS STRs, 19 are tetranucleotide STRs (i.e. STRs with four-base-pair motifs), and
one (D22S1045) is a trinucleotide STR. The X-linked Amelogenin locus is also recorded and
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51 may be searched under more restricted circumstances. As of November 2022, CODIS

52  genotypes from 21,791,620 people were accessible to law enforcement via the National DNA
53 Index System (NDIS), and CODIS genotypes had been used as evidence in 622,955

54  investigations (FBI, 2022).

55

56 The broad collection, storage, and use of CODIS genotypes is premised in part on the
57 idea that collection of one’s CODIS genotypes entails only a minimal privacy incursion. When
58 the CODIS markers were expanded from 13 to 20 markers, an explicit goal was to avoid

59 including markers that would allow prediction of disease (Hares, 2012, 2015). The metaphor of
60 a “DNA fingerprint,” sometimes used to describe a person’s CODIS genotypes, conveys this

61  impression, and it has been invoked in legal decisions concerning the CODIS markers, for

62 example the case of Maryland v. King, which permitted the collection of CODIS genotypes from
63  arrestees (Maryland v. King, 2013).

64

65 One piece of evidence that has been marshaled in defense of the claimed phenotypic
66 irrelevance of the CODIS loci is that the CODIS markers themselves have not been associated
67  with known traits. For example, ten years ago, Katsanis & Wagner (2013) scoured the literature
68 and found no record of direct associations between the CODIS markers and any known

69  phenotypes. However, they did note that several of the CODIS markers are intragenic in genes
70  with known phenotypic associations. It is perhaps unreasonable to expect much direct evidence
71  of CODIS-trait associations given that STR markers are seldom tested for association with

72 phenotype directly (but see Wyner et al., 2020). However, our knowledge of phenotypic

73  associations has grown tremendously in the decade since Katsanis & Wagner’s study,

74  prompting a re-examination of their question, in line with calls for systematic reviews of trait

75 information contained in CODIS loci (Kaye, 2014).

76

77 Here, we carry out a similar exercise to Katsanis & Wagner, searching widely used

78 genomic databases to characterize the genomic neighborhoods of the CODIS markers. In

79  addition to providing an update to Katsanis & Wagner’s work, we extend it in four main ways.
80  First, we examine the hundreds of thousands of known genotype-phenotype associations

81 identified by genome-wide association study (GWAS) (Buniello et al., 2019; Visscher et al.,

82  2017), particularly those loci near the CODIS markers. Second, we automate most of our

83  procedures, facilitating replication of our work. Third, whereas Katsanis & Wagner considered
84  only very short genomic regions around the CODIS markers (1 kilobase), we consider larger

85 regions as well (10kb and 100kb). Though SNP-STR linkage disequilibrium (LD) tends to be

86  smaller than SNP-SNP LD, SNP-STR LD nonetheless extends over these larger regions

87  (Payseur et al., 2008; Willems et al., 2014), making them relevant for investigation. Finally,

88 Katsanis & Wagner considered only the 13 original CODIS markers and 11 markers suggested
89 for inclusion, seven of which were added in 2017. Here, we consider STR markers across the
90 genome, aggregating data (available as supplementary material) from approximately 1.6 million
91 STRs. We focus our comparisons on 224,092 autosomal tetranucleotide-repeat STRs, as 19 of
92 the 20 CODIS STRs have tetranucleotide repeat motifs.

93

94 Methods
95

96 Data

97

98 In January 2023, we downloaded the locations of ~1.6 million STR regions from the hipSTR
99 reference (Willems et al., 2017; http://webstr.ucsd.edu/downloads, direct link
100  https://github.com/HipSTR-Tool/HipSTR-
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101 references/blob/master/human/hgl9.hipstr_reference.bed.gz). We also downloaded a set of
102  genome-wide annotations from the UCSC Genome Browser (Lee et al., 2020) using the

103  Datalntegrator tool. In particular, we downloaded coding gene locations (Genes and Gene

104  Predictions > NCBI Refseq > RefSeq All and Genes and Gene Predictions > NCBI Refseq >
105 RefSeq Select) from RefSeq (O’Leary et al., 2016), SNP allele frequencies from HapMap (Gibbs
106  etal., 2003) CEU (Variation > HapMap SNPs... > HapMap SNPs CEU), common SNP locations
107  from dbSNP 153 (Sherry et al., 2001) (Variation > dbSNP Archive - dbSNP 153... > Variants),
108 locations of phenotypically relevant variants (Phenotype and Literature > ClinVar Variants... >
109  ClinvVar SNVs) from ClinVar (Landrum et al., 2016), trait-associated SNPs discovered in GWAS
110  (Phenotype and Literature > GWAS Catalog) from the GWAS catalog (MacArthur et al., 2017),
111 and the locations of DNase | hypersensitivity clusters (Regulation > ENCODE Regulation -

112  DNase Clusters V3) from ENCODE (Abascal et al., 2020).

113

114  All genomic locations were expressed in hgl9 / GRCh37 coordinates.
115

116  Data processing

117

118  We sought to describe the genomic neighborhoods of all 1.6 million STR regions identified in
119  the hipSTR reference in terms of their density of key annotated features—in particular, of coding
120 genes, common SNPs, trait-associated variants, and DNase | hypersensitivity sites. Before

121  doing so, we preprocessed the feature data from UCSC in various ways.

122

123 For coding gene locations, we used the RefSeq Select set, which contains one entry per

124  curated coding gene (21,432 genes). We also located the transcription start site (TSS) of each
125 gene as either the start or end coordinate of transcription, depending on whether the gene was
126  annotated on the + (TSS = start) or - (TSS = end) strand. To identify SNPs common in people of
127  European ancestries, heavily represented in GWAS (Martin et al., 2019; Popejoy & Fullerton,
128  2016), we filtered to SNPs with minor allele frequency 1% or larger in the HapMap CEU data,
129  reducing the number of variants from 4,029,798 to 2,705,918. We limited ClinVar variants to
130 those classified as “Pathogenic,” reducing from 1,491,509 variants to 113,412. For DNase |

131  hypersensitivity sites, we limited to sites with the highest signal level (score 1000/1000),

132 reducing the number of sites from 1,949,038 to 160,870.

133

134  For the GWAS catalog, we preprocessed in two distinct ways. The GWAS catalog contains one
135  row per unique combination of SNP locus (rsid), study (PubMed ID), and trait, for a total of

136 392,271 entries. To obtain information about the number of SNPs identified as trait-associated
137  in any GWAS, we first filtered the GWAS catalog to contain only one row per SNP locus,

138  reducing to 183,014 rows. Thus, for counts of numbers of GWAS hits, each SNP rsid counts
139  only once, regardless of how many studies identified it, and regardless of how many traits it was
140  associated with. Next, we sought to identify traits with nearby GWAS associations for each STR.
141  The trait identifiers in the GWAS catalog are not standardized, and many similar traits receive
142  distinct names (for example “HDL cholesterol” and “HDL cholesterol levels” or “Mean

143 corpuscular hemoglobin” and “Mean corpuscular hemoglobin concentration”). To reduce this
144  redundancy and focus on commonly studied traits when counting the number of distinct traits
145 near each STR, we limited to traits with associations reported in at least three distinct studies
146  with the exact same trait name. This reduced the number of traits from 10,399 to 493.

147

148  For all features and all STRs, we recorded the distance of the nearest feature to the STR

149 midpoint, and the number of features within 1kb, 10kb, and 100kb of the STR midpoint. For

150 coding gene locations, we kept track of distance to the nearest gene (defined as the distance to
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151  the start or end of transcription, whichever is shorter, or 0O if the STR is intragenic) and the

152  nearest TSS separately. For the GWAS catalog, we kept track of the number of GWAS hits
153  within each distance window as well as the number of distinct associated traits (where again,
154  distinctness merely means a non-identical character string). Because of the large size of the
155  dbSNP common variants catalog, we recorded these locations only for the 20 CODIS markers.
156  Additionally, for the CODIS only, we recorded the names of the traits reported as associated in
157  ClinVar and the GWAS catalog, as well as the names of nearby protein-coding genes.

158

159  The data processing and analysis scripts, written in R (v. 4.1.2, R Core Team, 2021) and using
160 the data.table package (Dowle et al., 2019), are available at

161  https://github.com/edgepopgen/CODIS_proximity. The output files recording the features

162  proximal to each STR are available in supplementary files.

163

164  Results

165

166  Genetic neighborhoods of the CODIS markers
167

168  Table 1 shows the positions of the CODIS markers, the distance to the nearest gene, the names
169  of genes within 100 kilobases (kb) of each marker, and the number of HapMap SNPs at minor
170  allele frequency >1% in the CEU subset of the 1000 Genomes project within 10kb. Half of the
171 20 CODIS markers are intragenic, as noted previously (Katsanis & Wagner, 2013). Of the

172 remaining 10 markers, 5 have protein-coding genes within 100kb. The CODIS marker with by
173  far the greatest distance to the nearest protein-coding gene in RefSeq Select is D13S317, which
174  is approximately 1.7 megabases (Mb) from the nearest gene. All CODIS markers are within

175  10kb of several SNPs common in people of European ancestries.

176

177  Table 2 gives information about pathogenic variants identified in ClinVar and GWAS hits within
178  10kb of each CODIS marker. Six of the ten intragenic CODIS markers are within 10kb of

179  variants identified as pathogenic in ClinVar, ranging from two variants identified for CSF1PO to
180 25 for THO1. Sixteen of the 20 CODIS markers are within 10kb of at least one SNP identified as
181 a GWAS hit, with THO1 again recording the most trait-associated nearby variants, with 10. THO1
182 s intragenic to the tyrosine hydroxylase gene TH, which plays an important role in synthesizing
183  dopamine from its amino acid precursor, tyrosine (Nagatsu et al., 2019).

184

185  Comparisons with other autosomal tetranucleotide-repeat STRs

186

187  To place the properties of the CODIS markers in context, we compared them with the other

188 224,092 autosomal, tetranucleotide-repeat STRs in the hipSTR reference (Willems et al., 2017).
189 (Although one of the CODIS markers, D22S1045, is a trinucleotide-repeat locus, we focused our
190 comparisons on tetranucleotide-repeat loci.) Figure 1 shows the distribution of the CODIS

191  markers (orange) compared with non-CODIS autosomal tetranucleotide STRs (gray) with

192  respect to their proximity to protein-coding genes, ClinVar pathogenic sites, GWAS hits, unique
193 commonly-studied traits associated with nearby GWAS hits, and DNase | hypersensitivity sites.
194  For four of these feature categories, we show the distance to the nearest feature and the count
195 of features within 1kb, 10kb, and 100kb. For commonly studied GWAS traits, we do not show
196 the distance to the nearest feature. The figures suggest that the CODIS STRs are not

197  systematically less informative about traits than non-CODIS STRs in any category, and in fact,
198  the 10kb and 100kb windows surrounding the CODIS markers appear to harbor more trait-

199  associated variants than average, as identified by ClinvVar and the GWAS catalog.

200
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201  Figure 2 shows, for the same features as in Figure 1, the mean of the CODIS markers (dashed
202  orange line) compared with the mean of 10,000 random sets of 20 tetranucleotide markers. The
203  percentiles at which the CODIS average falls on each of these distributions, along with the

204  distributions for TSS and HapMap SNPs common in CEU, are shown in Table 3. Figure 2 and
205  Table 3 confirm the visual impression from Figure 1. The CODIS markers, as a set, are

206  unusually dense with nearby SNPs common in CEU, ClinVar variants marked pathogenic, and
207  GWAS hits. For GWAS hits, the CODIS appear average in their number of hits within 1kb, but
208 above the 90th percentile in the number of hits within 10kb or 100kb. At larger window sizes, the
209  CODIS markers also appear to be in neighborhoods unusually dense in high-scoring DNase |
210  hypersensitivity sites.

211

212 Comparing the CODIS markers with sets of random autosomal STRs of irrespective of motif
213  length from one to six (1,527,057 markers in the hipSTR reference) produces results very

214  similar to those obtained for tetranucleotide-repeat STRs (Supplementary Table 1 and

215  Supplementary Figure 1).

216

217  We considered whether the unusually high number of GWAS hits and ClinVar pathogenic

218  variants near the CODIS markers might be explained by other features of the CODIS markers.
219  The CODIS markers are 50% intragenic (compared with 39% of non-CODIS tetranucleotide-
220 repeat STRs), and intragenic markers might be expected to be nearer trait-associated variants
221  than intergenic markers. Further, the CODIS markers appear to be in genomic regions with

222 unusually high numbers of SNPs common in people of European ancestry. Since such SNPs
223 are the targets of association in GWAS studies, the high SNP density might explain the high
224  density of GWAS hits.

225

226  Table 4 shows Spearman correlations in the non-CODIS autosomal tetranucleotide STRs

227  among intragenic status and the counts of the features in Table 3 (i.e. TSSs, genes, pathogenic
228  variants, GWAS hits and traits, and DNase hypersensitivity sites) within 10kb. (Analogous

229  information for 100kb windows is shown in Supplementary Table 2.) Although intragenic STRs
230 have somewhat more ClinVar pathogenic variants and GWAS hits within 10kb, the correlations
231  between intragenic status and these features are not large (max Spearman rho = 0.22 for

232 ClinVar pathogenic variants). Moreover, comparing the CODIS means to 10,000 random sets of
233  non-CODIS tetranucleotide STRs matched for intragenic frequency (50%) produces a table of
234 percentiles extremely similar to Table 3 (Supplementary Table 3). The correlations between the
235  number of nearby common SNPs and GWAS hits (or ClinVar pathogenic variants) are even
236  smaller than those for intragenic status (Spearman’s rho < 0.1), and in fact, they are mostly

237  negative for counts within 100kb (Supplementary table 1), suggesting that density of nearby
238  SNPs does not explain the unusually high numbers of phenotypic associations near the CODIS
239  markers.

240

241 Discussion

242

243 We find that, in comparison with other autosomal tetranucleotide-repeat STRs, the

244  CODIS loci are remarkably rich in nearby variants with known phenotypic associations. The

245  most extreme example is THO1, which has the most known pathogenic variants within 10kb (25)
246 and also the most SNPs within 10kb implicated in GWAS studies (10). Almost 20 years ago,
247  John Butler (2006) wrote that “One core STR locus that has gotten a bad reputation over the
248  years for supposed linkage to genetic diseases is THO1,” going on to note the inconsistent

249  nature of association evidence at the time. Our results are apparently consistent with the

250 reputation THO1 developed among forensic practitioners in the first decade of CODIS’s use.
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251  After THO1, the markers with the most known pathogenic variants within 10kb were FGA (22)
252  and VWA (17), and those with the most SNPs identified as trait-associated by GWAS within

253  10kb were CSF1PO (7) and D16S539 (6).

254

255 Although four of these five markers with most evidence of possible trait association (all
256  but D16S539) are intragenic, the unusual proximity of the CODIS to phenotype-associated

257  variants is not explained by the fact that 50% of the CODIS markers are in intragenic regions
258  (compared with 39% of non-CODIS tetranucleotide-repeat STRS). It is also not easily explained
259 by the CODIS markers’ closer proximity to SNPs with minor alleles common in people of

260  European ancestries, since the density of such SNPs is not strongly associated with the

261  presence of either known pathogenic variants or SNPs identified as trait-associated in GWAS.
262

263 These results do not constitute direct evidence that the CODIS markers themselves are
264  associated with any phenotypes. However, some degree of correlation (i.e. linkage

265  disequilibrium (LD)) is expected between STRs and SNP markers over these genomic distances
266  (Payseur et al., 2008; Willems et al., 2014). Although the high mutation rates of STRs reduce
267  their LD with surrounding SNPs, genetic drift continually generates LD that is slow to be

268  removed by recombination or nullified by back mutations (Payseur et al., 2008). Direct evidence
269  of whether the CODIS markers (or other STRs) are associated with, or causal for, phenotypes
270  of interest is starting to appear (Gymrek, 2017). We emphasize, however, that from the

271  perspective of phenotype prediction, whether the CODIS markers are causal is not the central
272 concern; any reproducible associations, even if they stem from LD with other causal markers,
273 would still have some predictive utility.

274

275 These results add to other lines of evidence suggesting that the CODIS markers are not
276  completely free of phenotypic or other genetic information. For example, the CODIS markers, on
277  closer analysis, turn out to contain substantial ancestry information, despite their low values of
278  Fst (Algee-Hewitt et al., 2016). Further, because the CODIS markers are correlated with—i.e. in
279 LD with—surrounding single nucleotide polymorphism (SNP) markers, it is sometimes possible
280 to identify CODIS and genome-wide SNP genotypes as coming from the same individual, even
281  when the sets of markers in the two datasets are disjoint (Edge et al., 2017; Kim et al., 2018).
282  Most recently, direct examination of the CODIS markers provides suggestive evidence that

283  some of them are associated with gene expression levels in some tissues (Bafiuelos et al.,

284  2022).

285

286 To be clear, the accuracy of phenotype predictions from the CODIS markers is not

287  expected to be high in absolute terms for most phenotypes. The ability to predict a trait from
288  genotype is limited by the trait’s heritability (Visscher et al., 2008), and for a wide range of

289  complex traits, the best current predictions from genome-wide SNP data are not particularly
290 accurate (Thompson et al., 2022). A small set of STRs will not outperform genome-wide SNPs
291  at phenotype prediction except in rare cases. In general, whether the phenotype predictions
292  developed directly from CODIS represent privacy incursions will depend on at least (a) the

293  standard for how accurate prediction needs to be to be considered a privacy incursion, (b) the
294  number and effect sizes of causal alleles in or near the CODIS markers, and (c) the degree to
295  which a trait is associated with ancestry, which can be noisily reconstructed from CODIS

296  genotypes (Algee-Hewitt et al., 2016). What is clear is that the CODIS markers are not likely to
297  be less informative about phenotypes than other, similar loci. This statement is analogous to the
298 one made by Algee-Hewitt et al. (2016), who found that the CODIS markers are no less

299 informative about ancestry than comparison markers.

300
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301 It is not clear why the regions around the CODIS markers are unusually dense with

302  phenotypic associations. The GWAS era had not yet begun at the time when the CODIS

303  markers were selected. One possibility is simply bad luck—the original architects of the CODIS
304 system happened to choose sites that would later be identified as near phenotype-associated
305 sites. Another possibility is that there is some other feature or set of features of the CODIS

306  markers that led to both their being considered favorably by the designers of CODIS and that
307 also meant they would be near sites with trait associations, or at least sites that were liable to be
308 discovered as trait-associated. Future work may consider this possibility.

309

310 It is not clear why the regions around the CODIS markers are unusually dense with

311  phenotypic associations. The GWAS era had not yet begun at the time when the CODIS

312  markers were selected. One possibility is simply bad luck—the original architects of the CODIS
313  system happened to choose sites that would later be identified as near phenotype-associated
314  sites. Another possibility is that there is some other feature or set of features of the CODIS

315  markers that led to their being considered favorably by the designers of CODIS and that also
316 meant they would be near sites with trait associations, or at least sites that were liable to be
317  discovered as trait-associated. One clue may be the enrichment of high-signal DNase |

318  hypersensitivity sites near the CODIS markers that we observed. DNase | sites are a hallmark
319  of accessible chromatin, and have been relied upon in searches for regulatory elements,

320 including enhancers and promoters (Chen et al., 2018). Chromatin accessibility may also

321 influence the ease of PCR amplification of STRs. Because ease of genotyping by PCR was a
322  factor in the initial selection of the CODIS markers (Butler, 2006), it is possible that the CODIS
323  markers are more likely to be near regulatory elements. Future work may consider this

324  possibility.

325

326 In Maryland v. King (2013), Justice Kennedy wrote for the majority that the CODIS loci
327  “come from noncoding parts of the DNA that do not reveal the genetic traits of the arrestee.”
328  This statement was part of the majority’s argument that CODIS genotypes can be thought of as
329 a “DNA fingerprint,” a piece of information useful for identification but not informative about any
330 of a person’s traits or medical information. It followed for the majority that collection and storage
331  of CODIS genotypes, like that of fingerprints, is an appropriate part of a routine pre-trial booking
332  procedure. It is not obvious how much information about other traits the CODIS markers would
333  need to convey in order to invalidate the Court’s premise, nor is it yet clear how much

334 information they actually do convey. At the same time, it appears that any attempt to choose
335 markers for CODIS that convey unusually small amounts of information about phenotypes

336 compared with other STRs does not seem to have been successful.

337

338 An acknowledgment that CODIS genotypes may be more revealing than previously

339 assumed may prompt rethinking of the patchwork of highly variable local practices governing
340 CODIS genotype collection, storage, and access (Joh, 2015; Murphy & Tong, 2020; Roth, 2019)
341  and influence considerations regarding universal forensic DNA databases (Miller & Smith,

342  2022). We advocate, along with Kaye (2014), that biomedical literature continue to be monitored
343  in order to ascertain the phenotypic information accessible to a person with access to CODIS
344  profiles (Bafiuelos et al., 2022; Wyner et al., 2020). More generally, we advocate that practices
345  surrounding CODIS profiles should be informed by a framework that considers CODIS

346  genotypes not as isolated pieces of information but as components of a genome connected via
347 linkage disequilibrium produced by recombination, mutation, and our shared evolutionary history
348 (Edge et al., 2017; Kim et al., 2018).

349

350 Limitations of the study
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351

352 This study is limited by ascertainment biases present in the various databases we

353 considered. To take one example, the GWAS catalog is a function of the actual associations
354  identified in GWAS, which means that associations with widely studied traits, with SNPs

355 included in or well imputed by genotyping arrays commonly used for GWAS, and associations
356 that are more easily detectable in people of European ancestries are more likely to be included.
357  Our data processing procedures, which aimed mainly to arrive at simple summaries of high-
358 confidence features, may also have introduced additional ascertainment biases. Another

359 limitation is that we cannot estimate the actual association between STRs and traits, merely the
360 positions of trait-associated variants nearby.
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517  Figure 1. The values of the CODIS loci (orange histogram) compared with non-CODIS

518 autosomal tetranucleotide-repeat STRs (grey) on variables relating to their proximity to

519  phenotype-relevant features. The first column shows distance to the nearest feature, and the
520 second through fourth columns show the number of features within 1kb, 10kb, and 100kb. The
521  rows, in order, show genes included in the RefSeq Select set, variants annotated as pathogenic
522 in ClinVar, SNPs identified as trait-associated in GWAS studies, traits included in at least 3

523  GWAS studies with associated variants nearby, and DNase | Hypersensitivity sites. The

524  horizontal axes are displayed on a log scale; we added one to all values to avoid taking the

525 logarithm of zero.
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Figure 2. The mean of the 20 CODIS markers (dashed orange line) compared with random sets

of 20 non-CODIS autosomal tetranucleotide-repeat loci. The variables shown are the same as

in Figure 1.
T2 ]
]
]
=
g2
%
g
w
D_
00 01 02 03 04

distance to nearest gene

1258 |
1
1
g t
El [
g M
D_ B
T 11
0.0 05 1.0 1.5
distance to ClinVar path
387
S
2
o
3
g
000 005 010 048
distance to GWAS hit
a4 1
1
1
o) 1
El 1
g
0.00 0.04 0.08 0.12
distance to DNAse site

1757 1 1407 790
1
1
D_I T T 1 u_l T T . B
1 1 1
00 05 10 15 00 05 10 15 20 1 2 3 4
genes wiin 1kb genes wiin 10kb genes wiin 100kb
9435 9193+ 45614
o — - o — ~ o ——
—r1r 1T 1 T 1 1 1 1T T 1
o 2 4 G 8 10 0 20 40 60 80 100 0 50 100 150 200
ClinVar path wiin 1kb ClinVar path wiin 10kb Clinvar path wiin 100kb
2154 1645 | 1219 1
1
1
1
1
1
| | l
D_ |IIII.-._..__ — u_ - D_ ————————
T T T T T 11 A S —— R AR N —
0.0 04 0.8 1.2 0 2 4 6 8 10 10 20 30 40 50 60
GWAS hits wfin 1kb GWAS hits wiin 10kb GWAS hits wfin 100kb
4797 1060 1 1127
1
]
) '
£l [
E L
o — - o — o
| P r—
0.0 0.5 10 15 01 2 3 4 5 6 5
GWAS traits w/in 1kb GWAS traits wfin 100kb
2454 792
o ‘ I I I = . o

— 1T 1T T 1

00 01 02 03 04

DNAse sites wiin 1kb

T T T T T 1
05 10 15 20 25 30
DNAse sites wiin 10kb

DNAse sites wiin 100kb

13


https://doi.org/10.1101/2023.03.07.531629
http://creativecommons.org/licenses/by-nc-nd/4.0/

536

537

available under aCC-BY-NC-ND 4.0 International license.

Table 1. Locations of the CODIS markers
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marker chr  Start position Distance to Protein-coding Common SNPs in
(approximate nearest genes w/in 100kb, in  Hapmap CEU w/in
MB, hg19) protein- proximity order 10kb
coding gene
(0=
intragenic)
D1S1656 1 230.9 0 CAPNS9, AGT, 58
Clorf198, COG2
TPOX 2 15 0 TPO 22
D2S441 2 68.2 29,159 CiD 22
D2S1338 2 218.9 11,910 TNS1, RUFY4 11
D3S1358 3 45.6 0 LARS2, LIMD1 7
FGA 4 155.5 0 FGA, FGB, FGG, 16
PLRG1, DCHS2
D5S818 5 123.1 158,529 24
CSF1PO 5 149.5 0 CSF1R, HMGXB3, 36
PDGFRB, TIGDS,
SLC26A2, CDX1
D7S820 7 83.8 0 SEMA3A 19
D8S1179 8 125.9 78,404 ZNF572 19
D10S1248 10 131.1 172,971 39
THO1 11 2.2 0 TH, INS, IGF2, 21
ASCL2
VWA 12 6.1 0 VWF, ANO2 33
D12S391 12 125 28,998 MANSC1, LRPS6, 32
BORCS5
D13S317 13 827 1,729,158 21
D16S539 16 86.4 157,803 59
D18S51 18 60.9 0 BCL2, KDSR 25
D19S433 19 304 15,972 URI1 22
D21S11 21  20.6 778,252 22
D22S1045 22 375 0 IL2RB, TMPRSSS6, 38

C1QTNF6, SSTR3,
KCTD17, RAC2
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Table 2. Phenotypic associations within 10kb of the CODIS markers from ClinVar and the
GWAS catalog
marker Clinvar ClinVar traits GWA  GWAS commonly studied
variants S hits  traits
D1S1656 O 0
TPOX 12 Deficiency of iodide 2
peroxidase;
Neurodevelopmental disorder
D25441 0 1
D25S1338 O 1 Height
D3S1358 O 0
FGA 22 Hepatocellular carcinoma; 4 Fibrinogen; Height; Ischemic
Congenital afibrinogenemia; stroke; Stroke; Venous
Familial visceral thromboembolism
amyloidosis,Ostertag type;
Hypofibrinogenemia; Familial
hypodysfibrinogenemia;
Familial dysfibrinogenemia;
Dysfibrinogenemia; Abnormal
bleeding
D5S818 0 3 Amyotrophic lateral sclerosis;
Total body bone mineral density
CSF1PO 2 Brain abnormalities, 7 Aspartate aminotransferase
neurodegeneration, and levels; Monocyte count; Serum
dysosteosclerosis total protein level
D75820 0 1 Obesity-related traits
D8S1179 O 3 Platelet count
D10S124 O 0
8
THO1 25 Permanent neonatal diabetes 10 Cystatin C levels; Height;
mellitus; not specified; Hematocrit; Hemoglobin;
Autosomal recessive DOPA Hemoglobin concentration; Type
responsive dystonia; Inborn 1 diabetes; Type 2 diabetes
genetic diseases; Dystonic
disorder
VWA 17 von Willebrand disorder; von 1
Willebrand disease type 3;
Abnormality of coagulation; von
Willebrand disease type 1
D12S391 O 1
D13Ss317 O 2 Hippocampal volume
D16S539 O 6 Appendicular lean mass; Optic
cup area; Response to statin
therapy
D18S51 0 2 Heel bone mineral density
D19S433 O 1
D21S11 0 0
D22S104 4 Ichthyosis; Immunodeficiency 4 Asthma; Eosinophil counts;
5 63 with lymphoproliferation and Rheumatoid arthritis;

autoimmunity

Tuberculosis
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541  Table 3. Percentiles of the CODIS markers as a set compared with 10,000 random sets of 20
542  tetranucleotide autosomal STRs

Proximity to w/in 1kb w/in 10kb w/in 100kb
nearest*
RefSeq Select TSS 50.5 96.9 77.4 67.1
RefSeq Select gene 26.2 86.1 57.7 54.2
HapMap common SNPs in  99.9 97.2 99.7 99.0
CEU
Clinvar pathogenic 96.1 97.0 97.4 92.2
variants
GWAS hits 98.9 48.6 94.7 96.7
GWAS well-studied traits - 22.7 87.7 95.6
DNase | Hypersensitivity 16.1 62.8 85.2 96.0
sites
543  *"Proximity” percentile is 100 minus the “distance” percentile.
544
545
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Table 4. Spearman correlations among key measurements for non-CODIS tetranucleotide

STRs (within 10kb)

IG SNPs TSS Genes CV GWAS GWAS
vars hits traits
Intragenic status 1
HapMap common SNPs in CEU -.05 1
RefSeq Select TSS .06 -.16 1
RefSeq Select genes a7 -.13 A7 1
ClinvVar pathogenic variants 22 -.05 .16 .29 1
GWAS hits .09 .08 13 .16 .10 1
GWAS well-studied traits .09 .01 15 .18 .10 .80 1
DNase | Hypersensitivity sites .06 -.05 .35 .24 .10 21 22
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549  Figure S1. The mean of the 20 CODIS markers (dashed orange line) compared with random
550 sets of 20 non-CODIS autosomal STR loci with repeat lengths from one to six. The variables
551  shown are the same as in Figure 1.
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554  Supplementary Table 1. Percentiles of the CODIS markers as a set compared with 10,000
555  random sets of 20 autosomal STRs with repeat motif lengths ranging from 1-6

Proximity to w/in 1kb w/in 10kb w/in 100kb
nearest*
RefSeq Select TSS 47.5 96.6 74.2 65.2
RefSeq Select gene 23.2 77.0 46.0 51.3
HapMap common SNPs in  99.9 98.0 99.8 99.2
CEU
Clinvar pathogenic 95.4 96.0 96.5 96.4
variants
GWAS hits 99.0 48.6 95.5 96.4
GWAS well-studied traits - 21.6 88.0 95.2
DNase | Hypersensitivity 16.6 62.8 86.6 96.4
sites
556  *"Proximity” percentile is 100 minus the “distance” percentile.

557
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Supplementary Table 2. Spearman correlations among key measurements for non-CODIS

tetranucleotide STRs (within 100kb)

IG SNPs TSS Genes CV GWAS GWAS
vars hits traits
Intragenic status 1
HapMap common SNPs in CEU -11 1
RefSeq Select TSS 19 -.36 1
RefSeq Select genes .34 -.35 91 1
Clinvar pathogenic variants .22 -.21 .48 .53 1
GWAS hits A3 .01 .37 .39 .29 1
GWAS well-studied traits 15 -.10 A1 43 31 .89 1
DNase | Hypersensitivity sites 15 -.15 .56 .56 .35 49 .52
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561  Supplementary Table 3. Percentiles of the CODIS markers as a set compared with 10,000
562  random sets of 20 tetranucleotide autosomal STRs, matched for intragenic fraction (50%)

Proximity to w/in 1kb w/in 10kb w/in 100kb
nearest*
RefSeq Select TSS 41.8 96.6 74.6 62.7
RefSeq Select gene 13.8 76.9 23.7 47.1
HapMap common SNPs in  99.9 97.4 99.8 99.2
CEU
Clinvar pathogenic 94.1 95.9 96.2 91.3
variants
GWAS hits 98.9 47.7 94.1 96.3
GWAS well-studied traits - 21.2 86.2 94.6
DNase | Hypersensitivity 13.3 62.0 84.3 94.8
sites

563  *"Proximity” percentile is 100 minus the “distance” percentile.
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