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ABSTRACT 40 

To better understand the pattern of primate genome structural variation, we sequenced and 41 

assembled using multiple long-read sequencing technologies the genomes of eight nonhuman 42 

primate species, including New World monkeys (owl monkey and marmoset), Old World 43 

monkey (macaque), Asian apes (orangutan and gibbon), and African ape lineages (gorilla, 44 

bonobo, and chimpanzee). Compared to the human genome, we identified 1,338,997 lineage-45 

specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 46 

regulatory elements, including the most complete set of human-specific fixed differences. 47 

Across 50 million years of primate evolution, we estimate that 819.47 Mbp or ~27% of the 48 

genome has been affected by SVs based on analysis of these primate lineages. We identify 49 

1,607 structurally divergent regions (SDRs) wherein recurrent structural variation contributes 50 

to creating SV hotspots where genes are recurrently lost (CARDs, ABCD7, OLAH) and new 51 

lineage-specific genes are generated (e.g., CKAP2, NEK5) and have become targets of rapid 52 

chromosomal diversification and positive selection (e.g., RGPDs). High-fidelity long-read 53 

sequencing has made these dynamic regions of the genome accessible for sequence-level 54 

analyses within and between primate species for the first time.  55 

  56 
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INTRODUCTION 57 

An early and still unmet grand challenge of the Human Genome Project has been to 58 

reconstruct the evolutionary history of every base pair of the human reference sequence1-5. 59 

To do so requires both a diverse sampling of nonhuman primate (NHP) genomes but also a 60 

more complete assembly of those genomes so that all forms of variation can be assessed 61 

without bias introduced from a superior quality reference6-13. Early attempts to sequence 62 

closely related ape species focused primarily on characterizing simpler forms of variation 63 

(e.g., single-nucleotide variants, (SNVs)) from portions of the genome that could be readily 64 

aligned to human7-10,13. As long-read sequence assemblies began to emerge, our ability to 65 

catalog larger forms of structural variation significantly improved resulting in a series of 66 

more contiguous NHP genomes. These new references, however, represented “squashed” 67 

assemblies where allelic variation was collapsed and the most complex forms of gene-rich 68 

structural variants (SVs) were still not resolved, including recently duplicated sequence14-19. 69 

Advances in long-read sequencing technology over the last three years now allow for most of 70 

these regions to be accurately sequenced and assembled to a degree where both paralogous 71 

and allelic variation can be readily distinguished20-23. Numerous studies focused on the 72 

human lineage have shown that such regions are incubators for the emergence of new genes, 73 

adaptive evolution while also contributing to disease, and disease susceptibility24-26. 74 

 75 

To better characterize SVs and these complex genic SV regions, we generated genome 76 

assemblies of eight NHP genomes using two long-read sequencing platforms. Our plan was 77 

twofold: First, we wanted to broaden the phylogenetic diversity by sequencing additional 78 

NHP genomes using the same sequencing platform (in this case continuous long-read 79 

sequencing or PacBio CLR) that had been initially applied to the other ape references to 80 

minimize sequencing technology biases. This included sequence and assembly of primate 81 

genomes representing gibbon (Nomascus leucogenys), marmoset (Callithrix jacchus), and 82 

one owl monkey (Aotus nancymaae) (Table 1). Second, we wanted to leverage the higher 83 

accuracy and assembly contiguity of HiFi (high-fidelity) sequencing data by sequence and 84 

assembly of all NHP genomes where haplotypic differences could be distinguished. These 85 

served as a means to validate all fixed structural variation events as well as provide complete 86 

haplotype-resolved access to any particular regions of interest without the need to construct 87 

and annotate these different NHP genomes for yet a third time. 88 

 89 

 90 
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RESULTS 91 

Genome assembly of NHP genomes 92 

Building on our previous analysis of African great ape genomes14,17,19, we first sequenced 93 

and assembled three additional female NHP genomes using CLR sequencing, namely, white-94 

cheeked gibbon (Nomascus leucogenys), the common marmoset (Callithrix jacchus), and 95 

owl monkey (Aotus nancymaae). Each genome was sequenced to high depth (>56-fold 96 

coverage), assembled, and error corrected as described previously14,16,17,19 (Supplementary 97 

Figure 1 and Supplementary Table 1). We generated highly contiguous (contig N50=9.9 to 98 

25 Mbp) squashed assemblies of ~2.84-2.9 Gbp with an overall sequence accuracy of 99 

>99.98% (Table 1 and Supplementary Table 1). Next, to further reduce sequencing error and 100 

increase our ability to investigate more complex regions, we sequenced the same eight NHP 101 

samples using PacBio HiFi sequencing17,27 (Table 1; Supplementary Figure 2 and 102 

Supplementary Table 1). We used hifiasm to produce haplotype-resolved genomes that were 103 

substantially smaller among monkeys (5.84 to 6.23 Gbp, diploid) when compared to 104 

nonhuman apes21 (6.12 to 6.98 Gbp). These HiFi assemblies are estimated to be more 105 

accurate (QV=42 to 58 or 99.9937% to 99.9998% accuracy) and significantly more 106 

contiguous (contig N50=19 to 104 Mbp) when compared to the CLR draft genome 107 

assemblies (Table 1 and Supplementary Figure 3).  108 

 109 

NHP sequence divergence and incomplete lineage sorting (ILS)  110 

As a baseline for sequence divergence among the lineages, we mapped the HiFi sequence 111 

data from each NHP back to human and computed single-nucleotide divergence (Methods). 112 

The mean autosomal sequence divergence ranged from 1.3% to 9.83%, consistent with the 113 

expected phylogeny, and was predictably higher than that of the X chromosome (0.99% to 114 

8.24%; Figure 1a and 1b, Supplementary Table 2). We note that these estimates are also 115 

slightly higher than earlier reports likely because a great fraction of repetitive DNA is being 116 

included among NHPs8,19. For example, among the apes ~92% of the human genome is 117 

aligned in contrast to the New World monkey lineages where 64% and 59.7% of the 118 

sequence from owl monkey and marmoset are unambiguously aligned (Supplementary Table 119 

3). An assembly-based comparison yields similar results but involves a smaller fraction of 120 

the genome due to extensive and more complex forms of structural variation (Supplementary 121 

Figure 4 and Supplementary Table 3).  122 

 123 
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We used these data to generate a time-calibrated phylogeny for the nine primate species, 124 

including human (Figure 1a and 1b; Supplementary Tables 4-6). We constructed more than 125 

one million complete multiple sequence alignments (MSAs) at a resolution of 500 bp (518.9 126 

Mbp of aligned sequence). While the majority of trees (52.7%) are consistent with the 127 

generally accepted phylogeny, the fraction of alternate topologies is, once again, greater than 128 

previous estimates9,13,17,28 (Figure 1c, Supplementary Table 4). Most of the difference can be 129 

attributed to potential ILS during African ape or great ape speciation as gene tree 130 

concordance factors show the lowest values in these two nodes (gene tree concordance=64.3 131 

and 62, respectively)29. Lineage-specific branch lengths are generally balanced with one 132 

notable exception: the owl monkey branch length is significantly shorter and divergence to 133 

human significantly lower when compared to marmoset (Figure 1a). An analysis of 16,244 134 

gene trees using human as an outgroup to both owl monkey and marmoset shows that the owl 135 

monkey evolves significantly slower (p=0 autosome, p=6.8510-185 for the X chromosome) 136 

(Supplementary Figure 5). Excluding potential sites of ILS, we estimated split times of the 137 

species and find that mean split times of the apes better match the lower bounds of previous 138 

estimates30-36 (Supplementary Table 7). 139 

 140 

Primate lineage-specific versus shared SVs 141 

We applied a three-pronged approach to discover and validate SVs (≥50 bp) mapping to the 142 

euchromatic portion of the primate lineages37,38. Using read-based and assembly-based 143 

callers (pbsv, Sniffles and PAV), we first compared the eight NHP genomes against the 144 

human reference genome, including three additional human genomes (CHM13, HG00733 145 

and NA19240) to mitigate the effect of human polymorphism and missing variants in a 146 

particular reference (Supplementary Table 8). In total, we identified 2.23 million putative 147 

insertions and 1.89 million deletions in these nine lineages. Using both HiFi sequence data 148 

and genome assemblies, we validated 1.85 million insertions and 1.63 million deletions 149 

(mean validation rate: 86.79% and 89.37%, respectively) (Supplementary Table 9). We note 150 

that genome-based HiFi and CLR SV calling are highly congruent (>95%) although HiFi 151 

tended to recover larger insertions (Supplementary Figure 6). Finally, we generated Oxford 152 

Nanopore Technologies (ONT) data from the same primate DNA samples and manually 153 

inspected a subset (900 SV events) for confirmation using this orthogonal sequencing 154 

platform estimating a false positive rate and a false negative rate of ~2.6% and 11.4%, 155 

respectively (Supplementary Table 10).  156 
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To distinguish fixed from polymorphic events, we further genotyped (Methods) the validated 157 

SVs against Illumina whole-genome sequence (WGS) data from a panel of 120 genomes (30 158 

humans and 90 NHPs, Supplementary Table 11)39-43. We projected the 1,338,997 fixed 159 

events (441,453 deletions and 897,544 insertions) onto the primate phylogeny (Figure 2a; 160 

Supplementary Tables 12 and 13) classifying events as shared or lineage-specific17 161 

(Methods). The number of SV events correlates strongly with evolutionary genetic distances 162 

separating species (Figure 2b) with characteristic insertion peaks at ~6 kbp and 300 bp—full-163 

length L1 and Alu mobile element insertions (Supplementary Figure 7 and Supplementary 164 

Table 14). Remarkably, we estimate that 27.2% of the genome (819.47 Mbp) has been 165 

subjected to structural variation across these nine lineages with fixed insertions 166 

outnumbering deletions approximately two to one (the total length of shared and lineage-167 

specific insertions is ~524.8 Mbp versus ~294.68 Mbp of deletions) (Figure 2a). The excess 168 

of insertions is greatest for the ancestral ape and African great ape lineages (~2- to 3-fold) 169 

(Figure 2a and Supplementary Table 13) and this twofold excess is still observed when 170 

calibrating for the number of fixed SNV differences44,45 (Figure 2b; Supplementary Figures 8 171 

and 9). 172 

 173 

A small fraction of fixed primate SVs affect genes (~18.78 Mbp of deletions and ~1.31 Mbp 174 

insertions). Using human gene annotation as a guide, we annotated the fixed SVs against the 175 

human gene models (GRCh38, RefSeq) and the regulatory element database (ENCODE V3) 176 

with Variant Effect Predictor (VEP)46,47. These fixed SVs intersect 6,067 genes, including 177 

1,561 protein-coding genes, and 136,932 regulatory elements. The latter includes 2,389 178 

promoter-like (PLS) and 16,455 proximal enhancer-like signatures (pELS) potentially 179 

disrupted by 16,671 fixed SVs (Supplementary Table 15). We estimate that 244 genes and 180 

1,759 regulatory elements are novel and several are likely to confer functional effect 181 

(Supplementary Figures 10 and 11). Such is the case for the 3,741 bp L1PA5 insertion shared 182 

in apes mapping to the last exon of the neuronal-function gene, astrotactin 2 (ASTN2), which 183 

encodes a glycoprotein that guides neuronal migration during the development of the central 184 

nervous system48,49. The insertion creates a novel transcript isoform resulting in a new exon 185 

in human (NM_1884735) and this innovation is accompanied by a 1 base-pair deletion in this 186 

exon, which in gibbon, orangutan, and gorilla is incapable of read-through due to a 187 

frameshift from the reciprocal 1 bp insertion (Figure 2c and Supplementary Figure 12). 188 

Similarly, the Aggrecan (ACAN) gene, important in stature and brachydactyly in humans50, 189 

has been altered in the great ape lineage by a 60 bp deletion, which eliminates part of the 190 
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chondroitin sulfate attachment domain (Supplementary Figure 13). In gibbons, we identify a 191 

large ~42.7 kbp deletion of the neurogenesis-associated gene, trace-amine associated 192 

receptor 2, (TAAR2) along with seven of its enhancers (Figure 2d and Supplementary Figure 193 

14). Loss of this brain-expressed gene in knockout mice has been shown to result in higher 194 

levels of dopamine and lower levels of norepinephrine in the striatum and hippocampus 195 

respectively51. A complete list of these gene and gene-regulatory fixed SVs is provided along 196 

with additional discussion (e.g., AR, SPATA1, ELN, and MAGEB16) (Supplementary Tables 197 

16 and 17, Supplementary Figures 15-18, and Supplementary Discussion). 198 

 199 

We also reassessed human-specific changes and the effect of potential reference biases in 200 

discovery. Importantly, 7,169 human-specific SVs have been reclassified, in part, because of 201 

the inclusion of more outgroup species in addition to the use of more accurate sequence 202 

aligner (minimap2 vs. blasr) that improves alignment within repetitive regions such as 203 

subtelomeres52,53 (Supplementary Figures 19 and 20). Nevertheless, we identified 13 204 

additional genes and 252 additional regulatory elements as potentially disrupted compared to 205 

our previous report19 (Supplementary Figures 21 and 22). This includes, for example, a 90-206 

base pair deletion within the third exon of N-acetyltransferase 16 (NAT16) resulting in 30 207 

amino acid loss in human lineage with respect to all other NHPs. The event was confirmed in 208 

all humans by genotyping and by full-length transcript sequencing (Figure 2e and 209 

Supplementary Figure 23). NAT16 is highly expressed in the brain and pituitary and is 210 

responsible for Nα-acetylhistidine synthesis, but its biological function remains unknown.  211 

 212 

To assess the effect of using a human reference genome to classify such events, we repeated 213 

ape-specific SV analyses using an assembled African human genome and the orangutan ape, 214 

instead as the reference genomes to base the comparison. As expected, the analyses 215 

reclassified approximately 34 gene-disruption events and led to a reduction of SVs most 216 

notably with respect to insertions (Supplementary Figure 24). For example, using orangutan 217 

as a reference reduces the number of lineage-specific insertions in orangutan (56,389 vs. 218 

77,933), chimpanzee (2,020 vs. 4,471), bonobo (3,108 vs. 5,886), and human (13,446 vs. 219 

16,696) lineage-specific insertions (Supplementary Figures 25 and 26, Supplementary Table 220 

18). The intersect of these two sets provides the most conservative set of lineage-specific 221 

changes on each branch. Consistent with the previous analyses, we find that the number of 222 

insertions is ~2-3 times than that of deletions. 223 

 224 
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Structurally Divergent Regions (SDRs) 225 

In addition to increased accuracy and haplotype resolution, another major advantage of HiFi-226 

based assemblies is their 4- to 6-fold increase in sequence contiguity (Table 1). During our 227 

comparison of monkey and ape chromosomes, we identified much larger, structurally 228 

divergent regions (SDRs) that had been missed or incompletely assayed by our standard SV 229 

analyses (Supplementary Figures 27 and 28). These regions were often gene-rich but had 230 

eluded complete characterization due to their sequence divergence and/or structural 231 

complexity54. We, therefore, developed a graph-based approach to more systematically 232 

identify such regions (>10 kbp in length) in apes and macaques that could not be readily 233 

mapped to the complete human genome (T2T-CHM13) with >85% sequence identity55. We 234 

identified 1,704 SDRs and validated 1,607 SDRs using two independent approaches56 235 

(validation rate: 94.3%; Methods) (Supplementary Tables 19 and 20). SDRs were large 236 

(average 127.4 kbp, Supplementary Figure 28) and enriched 3.6-fold for large segmental 237 

duplications (SDs) (Supplementary Figure 29; p=0). Specifically, 423 SDRs (26.3%) contain 238 

at least 10 kbp of annotated SDs while 1,184 appeared to map to relatively unique regions of 239 

the genome (Supplementary Tables 19 and 20), although subsequent sequence analysis 240 

identified 2.2% of these (1.07 Mbp) as lineage-specific SDs not present in human SD 241 

annotations. 242 

  243 

Similar to the SVs, we genotyped all SDRs using Illumina WGS from primate population 244 

samples39-43 and successfully assigned 1,050 of the SDRs to lineage-specific branches on the 245 

primate phylogeny (Supplementary Figure 30). However, 557 SDRs show evidence of 246 

recurrent or serial SVs among multiple NHP lineages and the majority (62.3% or 347/557) 247 

associate with SD sequences (Supplementary Table 19). We constructed a null model for the 248 

distribution of SDRs and identified 184 distinct hotspot regions where we predict significant 249 

large-scale and recurrent structural variation among different primate lineages (331 recurrent 250 

SDRs) (Figure 3a and Supplementary Table 21). Of these, 88% (162/184) harbor SDs and 251 

56% (103/184) of these hotspots correspond to 631 genes, including many known medically 252 

relevant regions such as CFHR, RHD, LPA, APOL, AMY1 and the Major histocompatibility 253 

complex (MHC) locus (such as MICA/MICB and the complement C4/C3 genes)57-60 (Figure 254 

3a and Supplementary Figures 31-33). Others are completely novel or have been partially 255 

described based on analyses of specific primate genomes57-60. A gene ontology analysis 256 

predicts an expected enrichment for the known widespread loss of olfactory receptors in 257 

primates (p=310-85) but also genes associated with other biological processes, including 258 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2023. ; https://doi.org/10.1101/2023.03.07.531415doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.07.531415
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

thiol-dependent ubiquitinyl hydrolase activity (p=1.910-24), antimicrobial activity (p=2.210-259 

5), innate immune response (p=510-5), neurotransmitter receptor activity (p=2.510-4), etc. 260 

(Supplementary Table 22). Notably, most of these enrichments are associated with core 261 

duplicons including DEFBs, NPIPs, RGPDs, CYPs, NBPFs, GOLGAs, UGTs, RHDs, and 262 

USPs60,61 (Supplementary Table 23).  263 

 264 

A few examples of these hotspot regions are illustrative. We confirmed, for example, that the 265 

CARD18 (caspase recruitment domain family member 18) was lost in the ancestral Pan 266 

lineage by ~60 kbp deletion event7. We identified, however, a larger and independent 267 

deletion of ~190 kbp in the gibbon lineage that completely removes the entire gene cluster—268 

CARD16 (pLI=0.04), CARD17 (pLI=0), and CARD18 (pLI=0.05). A third independent 269 

deletion of ~150 kbp removed yet another member, CARD17, in the owl monkey suggesting 270 

that this entire gene family has been under relaxed selection during primate evolution (Figure 271 

3b and Supplementary Figure 34). Other hotspots are more complex, such as the OLAH-272 

ACBD7 region showing evidence of both gain and loss of genes (Figure 3c). In gorilla, 273 

OLAH (pLI=0) is deleted by a ~32 kbp deletion (Supplementary Figure 35) whereas in 274 

macaque the locus has been the target of ~190 kbp duplication that truncates OLAH in that 275 

lineage but also creates a new copy of ACBD7, which is actively transcribed as a fusion gene 276 

(Figure 3c). In Pan, the same region has been the target of a ~250 kbp SD that originated 277 

from chromosome 12 and produces a Pan-specific transcript with an open-reading frame 278 

(ORF) of 97 amino acids whose promoter region is hypomethylated (Figure 3d, 279 

Supplementary Figure 36). This large insertion of an SD in the Pan lineage also had the 280 

benefit of removing one of two directly orientated duplications flanking MEIG 281 

(meiosis/spermiogenesis associated 1), theoretically eliminating recurrent 282 

microdeletion/microduplication of MEIG1 in the Pan lineage (Figure 3d and 3e). A 28 kbp 283 

genomic duplication region has been depleted in orangutans, but this has not resulted in any 284 

alteration of gene content (Supplementary Figure 37). MEIG1 (pLI=0.05) is a 285 

spermiogenesis-related gene and MEIG1 deficiency severely disrupts mouse spermatogenesis 286 

and is potentially associated in human infertility62-64.  287 

 288 

In order to test the potential for SDRs to serve as cradles for gene innovation, we repeated 289 

our SDR analysis in a more distantly related primate. Using our graph-based approach, we 290 

compared human and marmoset and identified 697 SDRs (~38.45 Mbp) that could not be 291 
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orthologously aligned to the complete human reference genome. Next, we manually 292 

clustered them into 270 distinct SDR events since these two genomes are too divergent 293 

(Supplementary Table 24). For the purpose of gene discovery, we also generated ~5.13 294 

million full-length cDNA transcripts from 10 distinct primary tissues from the common 295 

marmoset (Table 1 and Supplementary Table 25). We identified five regions that showed 296 

evidence of novel or structurally divergent transcripts that lacked orthologous counterparts in 297 

the human genome (Supplementary Figure 38 and Supplementary Table 24). Of particular 298 

interest was a gene-rich region of human chromosome 13 that had been subject to a series of 299 

inversions and duplications increasing by ~350 kbp in size and adding nine putative 300 

marmoset-specific genes (Figure 4a). We searched for gene expression using the marmoset 301 

Iso-Seq transcript resource and confirmed expression for five of these—VPS36, UTP14C, 302 

NEK5, THSD1, and CKAP2 broadly in the brain as well as other tissues (Figures 4b, 303 

Supplementary Figure 39 and Supplementary Table 26). In addition, our phylogenetic 304 

analysis estimates that the marmoset-specific duplication of the THSD-NEK region occurred 305 

~11.9 million years ago (mya) and these duplicated genes maintain a protein-encoding ORF 306 

with numerous amino acid replacements as well as changes in gene structure when compared 307 

to progenitor copies (Supplementary Figure 40).  308 

 309 

Recurrent RGPD duplications and restructuring of ape chromosome 2 310 

Our SDR analysis of apes identified five SDRs on human chromosome 2 associated with a 311 

single core duplicon: RGPD (chr2:105859737-114023252, p=0) (Figure 5a). Core duplicons 312 

were previously described as actively transcribed gene families associated with the 313 

expansion of interspersed SDs in the human–ape lineage61. In particular, RGPD is a fusion 314 

gene/transcript formed by the duplication and juxtaposition of the two ancestral genes 315 

RANBP2 and GCC2 less than 15 mya65. Given the contiguity of the HiFi genome assemblies, 316 

we focused on a detailed reconstruction of the evolutionary history of this gene family across 317 

a ~7 Mbp region of chromosome 2 relating its expansion to large-scale structural changes 318 

and potential gene innovation associated with the SDRs in humans (Supplementary Figures 319 

41 and 42). No evidence of RGPD genes exist in macaques, marmosets, or owl monkeys 320 

where only the ancestral RANBP2 and GCC2 genes are found syntenically among all 321 

primates (Supplementary Figure 42). Phylogenetic analyses confirm its formation and 322 

general expansion in copy number in the ancestral ape lineage (Supplementary Figure 43). 323 

Both the phylogeny and the sites of integration, however, reveal that most interspersed 324 

duplications are independent—the result of recurrent SDs or gene conversion events (Figure 325 
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5a and 5b, Supplementary Figure 43). For example, none of the gibbon or orangutan 326 

duplicate copies map syntenically to each other or other African great apes—thus, although 327 

orangutan has multiple RGPDs, all originated independently and none have orthologs among 328 

the other apes and group as distinct clade within the tree (Figure 5b and Supplementary 329 

Figure 43). We identify only one paralogous gene, hRGPD2, that is syntenic and orthologous 330 

among the African great apes. Within the five different ape lineages, we estimate ~20 331 

independent mutation events (total length: ~1.2 Mbp) representing one of the most extreme 332 

examples of homoplasy (Figure 5a and Supplementary Figure 42).  333 

 334 

Most of the RGPD interspersed SDs were accompanied by both local restructuring of the 335 

duplication blocks as well as larger scale structural rearrangements of the chromosome 2 336 

flanking sequence especially in association with large-scale inversions in different NHP 337 

lineages (Figure 5c and Supplementary Figure 44). Haplotype-resolved sequence assemblies 338 

allowed the origin and spread of lineage-specific copies to be distinguished phylogenetically 339 

(Figure 5b). Human RGPD3 and RGPD4 are not phylogenetically, for example, orthologs of 340 

chimpanzee RGDP3 and RGPD4 even though they appear syntenic (Figure 5b and 341 

Supplementary Figure 43) suggesting potential gene conversion. In addition, the emergence 342 

of many RGPDs in apes appears to have been driven by recurrent large-scale inversions, 343 

duplicative transpositions, and deletions within a ~7 Mbp genomic region over the last 15 344 

million years of evolution creating unique configurations and distinct copies in each ape 345 

lineage (Supplementary Figure 44). 346 

 347 

RGPD1 is a human-specific paralog predicted to have arisen ~570 thousand years ago (kya) 348 

within the Homo lineage at ~0.57 mya (Figure 5b). This specific copy has several amino acid 349 

replacements at the protein N-terminus with respect to all other human RGPDs—this change 350 

is predicted to alter the protein structure between hRGPD1 and its antecedent hRGPD266 351 

(Figure 5d). In this regard, it is interesting that the hRGPD1 genomic region shows a dearth 352 

of genetic diversity based on the analysis of Human Pangenome Reference Consortium 353 

(HPRC) haplotype-resolved assemblies (pi value=4.65•10-5, p<0.05, TajimaD= -1.98) 354 

(Figure 5e and Supplementary Figure 45) consistent with the region potentially being 355 

subjected to a selective sweep specifically and recently in the human lineage. 356 

 357 

In comparison to human, most of the copies mapping to bonobo and chimpanzee 358 

chromosome 2 represent independent expansions from ancestral RANBP2 that also gave rise 359 
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to human RGPD5, RGPD6, and RGPD8 (Supplementary Figure 43). Of note, RGDP6 is a 360 

human-specific gene copy that arose via segmental duplication or gene conversion from 361 

human RGPD5 most recently (~5.2 kya, 95% CI [0.002,16.08]) (Figure 5b). The interval 362 

between these human-specific copies, which includes NPHP1, is subjected to both inversion 363 

toggling and microdeletion associated with Joubert syndrome and juvenile nephronophthisis 364 

as a result of nonallelic homologous recombination (NAHR) between inverted and directly 365 

orientated duplications67-69, respectively (Figure 5f and Supplementary Figure 46). We 366 

examined 94 human phased haplotypes from the HPRC and Human Genome Structural 367 

Variation Consortium38,69-71 and identified 11 distinct structural configurations—four 368 

predisposing to microdeletion (Figure 5g; Supplementary Figures 46-50 and Supplementary 369 

Table 27). We also identified as single pathogenic allele deleting NPHP1 (HG00733) and 370 

confirmed maternal transmission (Supplementary Figures 51-53). A maximum likelihood 371 

phylogenetic analysis identified the most closely related (non-deleted) haplotype and 372 

breakpoint analysis confirms that the deleted allele arose from one of the haplotypes 373 

predisposing to microdeletion (Supplementary Figure 51). Given the recent evolutionary 374 

restructuring of this region of chromosome 2, it follows that this predisposition to 375 

microdeletion is specific to the human lineage.  376 

 377 

DISCUSSION 378 

Using three long-read sequencing platforms across multiple primate genera, we present a 379 

comprehensive analysis of SVs within euchromatic DNA of the primate order15,19. The use of 380 

HiFi data and inclusion of additional NHP species as well as genotyping in population 381 

samples significantly improves earlier surveys of fixed SV events39-43 and extends the 382 

analysis deeper within the primate phylogeny. Among the great apes for example, we 383 

identify 13 genes and 1,759 regulatory elements not previously reported19 (Supplementary 384 

Figures 21 and 22). The addition of other primate genomes identified lineage-specific SDR 385 

events in the gibbon (n=680), macaque (n=219), and marmoset (n=697) lineages 386 

(Supplementary Figure 30). Similarly, while we identify all 16 previously identified ape-387 

specific genic SVs; 13/16 are no longer classified as (great) ape-specific SVs (Supplementary 388 

Table 28) due to the inclusion of other NHP lineages15. Finally, the use of a highly 389 

contiguous orangutan genome as an alternate reference, helped reduce earlier human genome 390 

reference biases by refining and polarizing the set of fixed SVs that occurred specifically 391 

since humans diverged from the other ape lineages (Supplementary Table 18). Among the 392 

6,067 genes (both coding and noncoding) and 136,932 regulatory DNA associated with fixed 393 
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SVs, we find a significant enrichment in transcription regulation (p=1.110-9), sensory 394 

transduction (p=6.310-3), cell division (p=2.310-2), and vocal learning (3.410-3) 395 

(Supplementary Table 29). These data serve as a rich resource for the characterization of 396 

gene expression differences and candidate mutations for adaptation among NHPs. 397 

 398 

The overall topology of the primate phylogenetic tree is consistent with previous 399 

expectations with the proportion of ILS generally increasing as more of the repetitive content 400 

is accessed by long-read sequencing technology17 (Figure 1). Our comparison of two New 401 

World monkeys lineages, however, reveals significant acceleration of the marmoset SNV 402 

branch length when compared to that of the owl monkey (branch length: 0.024 vs. 0.017). 403 

This finding is also consistent with the shorter blocks of synteny in the marmoset lineage 404 

when compared to the human genome (only 102 regions >500 kbp compared to 169 regions 405 

>500 kbp in the owl monkey) and the significant increase in the number of recent SDs (165.7 406 

Mbp in marmoset vs. 125.7 Mbp in owl monkey) (Supplementary Table 30). The slower 407 

evolution of the owl monkey lineage compared to marmoset may simply be a consequence of 408 

differences in reproductive longevity as has been proposed40 or changes in the generation 409 

time of the two lineages during evolution. The three major clades of New World monkeys, 410 

however, are thought to have diverged over a short time frame (19-24 mya)35,36,72,73 (Figure 411 

1a). Studying multi-generational pedigrees, Thomas and colleagues showed a 32.5% 412 

reduction in the rate of de novo mutation in owl monkey when compared to that of apes with 413 

an overall mutation rate of 0.8110-8 per site per generation40. Our results suggest that this 414 

reduced mutation rate may be longstanding property of the Aotinae with the net consequence 415 

that the owl monkey genome is less derived when compared to marmoset. These findings 416 

have some practical considerations regarding the use of these different New World monkeys 417 

as models for human disease74-76. 418 

 419 

The greater accuracy afforded by HiFi sequencing allowed more complex regions of genetic 420 

variation to be assembled contiguously across the primates (e.g., MHC). We developed a 421 

graph-based approach to systematically identify 1,604 SDRs among apes and macaque 422 

(Figure 3) of which a third (n=557) showed evidence of recurrent structural variation and 423 

were enriched for SDs. We hypothesize that these hotspots of recurrent structural variation 424 

and their associated 631 genes (mean pLI=0.133) demarcate either regions of the ape genome 425 

no longer under selection (e.g., CARD18, OLAH, etc.) or regions where rapid structural 426 
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diversification has facilitated the emergence of new genes showing signatures of positive 427 

selection (e.g., RGPD, NPIP, NPF)77-79 (Figure 5) and/or important for adaptive 428 

specializations in different primate lineages24,80,81. Ironically, the innovations often come at a 429 

cost with respect to fitness as the SDRs are associated with human disease susceptibility 430 

regions (e.g., 1q22.3, 2q13, 16p11.2, 10p13), such as the human-specific duplication of 431 

RGPD5 and Joubert syndrome deletion alleles (Figure 5).  432 

 433 

Our analysis also suggests that SDRs are common in the primate genome though with few 434 

exceptions these regions have not been considered as part of previous large-scale sequencing 435 

efforts because of 1) difficulties in their assembly and 2) challenges they pose in alignment 436 

even among closely related species when fully resolved. We identified, for example, SDRs in 437 

marmoset compared to owl monkey giving rise to marmoset-specific duplicate genes (Figure 438 

4). Using our resource of ~5.13 million full-length transcripts, we show that these duplicate 439 

genes are expressed in the brain, maintain an ORF, and emerged specifically since marmoset 440 

diverged from other owl monkey ~20 mya (Supplementary Figure 54). The ancestral genes 441 

have critical functions: NEK5, for example, is member of NimA family of serine/threonine 442 

protein kinases involved in cell differentiation while CKAP2 (cytoskeleton associated protein 443 

2) is involved in cell division82,83. These findings caution against simply using human gene 444 

models to annotate NHP genomes or to assess NHP gene expression differences from single-445 

cell RNA sequencing experiments. Understanding the gene innovations in such previously 446 

inaccessible complex regions of primate genomes will be critical to realizing the full 447 

potential of these species as models of human genetic disease74-76.  448 

 449 

Materials and Methods 450 

We sequenced and assembled eight NHP reference genomes using long-read PacBio HiFi 451 

and ONT sequencing chemistry and the hifiasm genome assembler21. All samples, with one 452 

exception, were female and correspond to the same samples used in previous studies as 453 

references, namely; Central chimpanzee (Clint)7, bonobo (Mhudiblu)17, Western gorilla 454 

(Kamilah)13, Sumatran orangutan (Susie)8, Northern white-cheeked gibbon (Asia)10, rhesus 455 

macaque (AG07107)16, common marmoset (CJ1700), and owl monkey (86718) (Table 1). 456 

We used pbsv, Sniffles, and PAV to characterize SVs and merged SVs using the SVPOP 457 

pipeline37,38. The merged calls were validated with HiFi sequencing data and assembly of 458 

select regions; ONT sequence data from the same specimens were used to calculate the false 459 

positive rate and validate assembly of select regions in our data set. The validated SVs were 460 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2023. ; https://doi.org/10.1101/2023.03.07.531415doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.07.531415
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

genotyped by Paragraph using Illumina WGS data from 120 population samples16,39-43,84. 461 

VEP was used to annotate the functional disruption of SVs46. In addition to SVs (<20 kbp) 462 

identified by the three callers, we used a graph-based aligner (Mashmap) to identify large 463 

structural changes across apes and Old World monkey55, defined here as SDRs. SDR 464 

validation was based on haplotype-resolved assemblies and ONT data. The ONT data also 465 

were used to call methylation by Guppy85. We also generated full-length Iso-Seq data 466 

specifically from 10 diverse marmoset tissues and from a gibbon immortalized lymphoblast 467 

line. In the case of the marmoset, full-length RNA was prepared from 10 distinct tissues 468 

obtained upon necropsy from a different specimen (Callthrix jacchus). Genomic divergence 469 

analyses were based on HiFi sequencing data and genomes, respectively. Syntenic regions 470 

across New World monkey to apes and MSAs were constructed with minimap2 and 471 

mafft53,86. The phylogenetic analyses were performed using TREEasy, IQTREE, and 472 

BEAST287-89. 473 
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Table 1. Primate genome sequence and assembly 713 

  714 

Common 

name 

Scientific 

name 

Individual 

ID 

S 

e 

x 

CLR raw data and 

assembly 

HiFi raw data and 

assembly 
Iso-

Seq 
(Gbp) 

ONT 
(Gbp) 

reads 

(cove
rage) 

assembly 
(contig 

N50, 
Mbp) 

QV 

reads 

(cove
rage) 

assembly 
(contig 

N50, 
Mbp) 

QV 

hap1/
hap2 

Chimpanzee 

Pan 
troglodytes 

(common 

chimpanzee) 

Clint_PTR M 117 12.27 39.19 37 
66.89 

/49.98* 
45/44 1.94 

294 

(178*) 

Bonobo 

Pan paniscus 

(pygmy 

chimpanzee) 

Mhudiblu_PP
A 

F 74 15.06 39.25 39 
50.45 

/36.22* 
47/47 1.38 124* 

Gorilla 

Gorilla 

gorilla gorilla 

(western 

lowland 
gorilla) 

Kamilah_GGO F 84.3 9.52 38.72 31 
38.19 

/37.87* 
46/46 1.84 264* 

Orangutan 

Pongo abelii 

(Sumatran 

orangutan) 

Susie_PAB F 94.9 11.07 34.83 43 
62.38/ 
58.39* 

42/42 1.09 
272 

(126*) 

Gibbon 

Nomascus 

leucogenys 

(northern 

white-cheeked 
gibbon) 

Asia_NLE F 92.5* 12.78* 38.65 31* 
44.67 

/34.99* 
43/43 

15.25
* 

97* 

Macaque 

Macaca 
mulatta 

(Rhesus 

monkey) 

AG07107_M
MU 

F 66 46.61 36.18 29 
18.81 

/19.01* 
51/52 

104.5
8 

329 
(231*) 

Marmoset 

Callithrix 

jacchus 

(white-tufted-

ear 
marmoset) 

CJ1700_CJA F 66* 25.23* 
42.95

* 
39* 

103.97 
/87.06* 

58/58 
18.43

* 
NA 

Owl 
monkey 

Aotus 

nancymaae 
86718_ANA F 56.3* 9.85* 37.4* 31* 

55.92 
/44.99* 

57/57 NA 91* 

* New data in this study  715 
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Figures 716 

 717 

Figure 1. Primate phylogeny and SNV divergence between NHPs and humans. (a) A 718 

primate time-calibrated phylogeny was constructed from a multiple sequence alignment 719 

(MSA) of 81.63 Mbp of autosomal sequence from nine genomes. The estimated species 720 

divergence time (above node) with 95% confidence interval (CI, horizontal blue bar) was 721 

calculated using BEAST2. All nodes have 100% posterior possibility support, and the gene 722 

tree concordance factor (gCF) is indicated (below node). The inset (gray) depicts a maximum 723 

likelihood phylogram generated using IQ-TREE2, which reveals a significantly shorter 724 

branch length in owl monkey, with respect to marmoset. (b) SNV divergence calculated by 725 

mapping HiFi sequence reads to human GRC38 separately for autosomes and the X 726 

chromosome (excluding pseudoautosomal regions). Approximately 85% of the genome was 727 

aligned for Old World monkey and apes and ~60% for New World monkey. The owl 728 

monkey shows significantly less divergence compared to human than the marmoset 729 

(Wilcoxon rank sum test). An analysis using 20 kbp nonoverlapping segments from the 730 

assembly gives almost identical results (Supplementary Figure 4). (c) The percent of trees 731 

showing an alternate tree topology are indicated (percentages are drawn from a total of 732 

302,575 gene trees): 159,546 (52.7%) support the primate topology depicted in panel a.  733 
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 735 

Figure 2. Primate genome structural variation. (a) The number of fixed structural variants 736 

(SVs) including deletions (red) and insertions (blue) are shown for each branch of the 737 

primate tree (number of events above the line and number of Mbp below). The number of 738 

“disrupted” protein-coding genes based on human RefSeq models are also indicated (black 739 

oval) with the total number of events (first number) and the subset specific to each lineage 740 

(second number). (b) The number of fixed SVs correlates with the accumulation of SNVs in 741 

each lineage (comparison to GRCh38) for both deletions (red) and insertions (blue). (c) An 742 

ape-specific fixed L1 insertion (shown with a red dashed line box) in the human genome but 743 

not in the macaque genome (Miropeats alignment) serves as an exapted exon of the short 744 

isoform of astrotactin 2, ASTN2, in human. The coding sequences of the exon are shown in 745 

the bottom panel. The red triangles represent 1 bp insertion resulting in a frameshift in 746 

gorilla, orangutan, and gibbon. The red box represents the stop codon. (d) A 42.7 kbp 747 

lineage-specific deletion in the gibbon genome (red dashed line) deletes TAAR2 and seven 748 

enhancers (shown in orange) compared to the human (GRCh38) (Miropeats comparison). 749 

(e) A 90 bp deletion (30 amino acids) human-specific deletion of NAT16 (NM_001369694) 750 

removes 30 amino acids in humans compared to all other NHPs.   751 
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 752 

Figure 3. Structurally divergent regions (SDRs) of the primate genome. (a) A schematic 753 

of human chromosomes (T2T-CHM13) depicts SDR hotspots where recurrent 754 

rearrangements occur in excess. Heat map indicates significance based on simulation model 755 

(dark (p=0) to light red (p=0.05)). Centromeres are depicted in purple. Enumerated regions 756 

identify specific gene families or regions of biomedical interest (1: UPRT, 2: RGPDs, 3: 757 

USP41, 4: ZNFs, 5. IL3RA_2, 6: CARDs, 7: OLAH, and 8: MHC). (b) Recurrent deletion of 758 

the caspase recruitment domain (CARD) gene family. SafFire plot 759 

(https://github.com/mrvollger/SafFire) shows a ~58 kbp deletion of CARD18 (orange) in the 760 

Pan lineage, multiple deletions (~190 kbp total) in gibbon of CARD16 (blue), CARD17 (red) 761 

and CARD18, and multiple deletions ~150 kbp, including CARD17 (red), in marmoset. 762 

(c) SafFire plot of SDR mapping to genes OLAH, MEIG1, and ABCD7 in human shows a 763 

large ~250 kbp insertion of segmental duplications (SDs; colored arrowheads) in chimpanzee 764 

within the intergenic region between MEIG1 and OLAH. OLAH is deleted in gorilla by an 765 

independent lineage-specific deletion (~30 kbp). Multiple independent insertion events in 766 

macaque add ~190 kbp of sequence, including a duplication of OLAH in macaque. Full-767 

length transcript sequencing of macaque using Iso-Seq supports the formation of five novel 768 

transcripts, including four OLAH-ABCD fusion events and a derived ABCD7 (macaque gene 769 

models below). (d) The chimpanzee-specific 250 kbp SD from chromosome 12 creates a 770 

novel multi-exonic gene model supported by Iso-Seq transcript sequencing in chimpanzee 771 

(upper panel) with an unmethylated promoter (Supplementary Figure 36). The insertion 772 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2023. ; https://doi.org/10.1101/2023.03.07.531415doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.07.531415
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

simultaneously deletes one of two directly orientated (DO) SDs in chimpanzee. (e) In 773 

humans, the DO repeats associate with the breakpoints of recurrent deletions and 774 

duplications of the spermiogenesis gene MEIG1. Two females carrying a deletion and a 775 

duplication (as measured by sequence read depth) are depicted from a population sample of 776 

19,584 genomes (CCDG, https://ccdg.rutgers.edu/). The carrier frequencies for microdeletion 777 

and microduplication in control samples are 0.026% and 0.189%, respectively. 778 

 779 

 780 

Figure 4. Marmoset-specific genes in a SDR. (a) SafFire plot comparing the organization 781 

of a gene-rich region of ~1.1 Mbp in human (middle), owl monkey (top), and marmoset 782 

(bottom) genomes. Human and marmoset differ mainly by a large 250 kbp inversion (orange) 783 

associated with the addition of 150 kbp of SD at the boundary of the inversion in humans 784 

(colored arrowheads). The corresponding region in marmoset has expanded by ~400 kbp due 785 

to inversion and marmoset-specific SDs creating marmoset-specific paralogs (red arrows) of 786 

CCDC70, TMEM272, DHRS12, UTP14C, THSD1, VPS36, NEK5 and CKAP2. (b) Iso-Seq 787 

full-length non-chimeric transcript sequencing from 10 marmoset primary tissues confirms 788 

transcription of 8/10 of the paralogous copies and the maintenance of an open-reading frame 789 

in at least six of these marmoset-specific gene candidates.  790 
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 792 

Figure 5. Evolution, selection, and disease susceptibility of the RGPD gene family. 793 

(a) Schematic depicting RGPD genes (red dots) compared to its progenitor gene RANBP2 794 

(orange dot) in human, chimpanzee, gorilla, orangutan, and gibbon. Shared ancestral copies 795 
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among the lineages are indicated (vertical arrows) in contrast to lineage-specific duplications 796 

(black) or gene conversion events (blue dashed arced arrow). The majority of copies have 797 

expanded in a lineage-specific fashion in each ape lineage. (b) A maximum likelihood tree 798 

based on a 58.98 kbp MSA of 40 RGPD great ape copies outgrouped with a sole gibbon 799 

copy. Nodes are dated with BEAST2 with the mean age of divergence shown above the node 800 

(95% CI blue bar) for human (H), bonobo (B), chimpanzee (C), gorilla (G), orangutan (O), 801 

and gibbon (Gib) copies. The analysis confirms lineage-specific expansion with all nodes 802 

receiving 100% posterior possibility. (c) A comparison of ~7 Mbp on chromosome 2 among 803 

ape genomes showing that large breakpoints in synteny (colored rectangles) often correspond 804 

to sites of RGPD SD insertions (blue arrows). (d) Human genetic diversity (pi) calculated in 805 

20 kbp windows (slide 10 kbp) from 94 haplotype-resolved human genomes (HPRC) for a 806 

700 kbp region of chromosome 2. A segment mapping to the human-specific gene RGPD1 807 

shows the lowest genetic diversity on chromosome 2 (top panel, red arrow) in haplotypes of 808 

both African (red) and non-African (blue) descent. The data suggest that the RGPD1 region 809 

may have been under recent selection in the ancestral human population. (e) AlphaFold 810 

predictions of the protein N-terminus structure RANBP2 (blue), hRGPD1 (pink), and 811 

hRGPD2 (green) predict that differences in amino acid composition alter the secondary 812 

structure of two alpha helices (α1 and α2) in the human-specific RGPD1 copy. The X-ray 813 

crystal protein structure of hRANBP2 (Nup358, PDB: 4GA0) confirms that the α1 and α2 814 

interface is maintained as a result of critical hydrophobic amino acids located in the N-815 

terminus. Specific amino acid changes in hRGPD1 break the hydrophobic interface between 816 

α1 and α2 but not in the ancestral hRGPD2 or RANBP2 predicting the emergence of a 817 

human-specific protein structure. (f) SafFire plot (top panel) comparing the chimpanzee 818 

genome and human highlights the formation of a 350 kbp human-specific duplication 819 

creating RGPD6 (red shading). (g) Analysis of 94 human haplotypes shows that the RGPD6 820 

locus is largely fixed among all humans but that the organization of the flanking SDs differs 821 

significantly. We identify 11 distinct structural haplotypes in the human population 822 

predicting both disease susceptibility as well as protective haplotypes for nonallelic 823 

homologous recombination (NAHR). NAHR between inverted repeats (large black arrows) 824 

predisposes to recurrent inversion of the region while NAHR between directly orientated 825 

repeats (red arrows) deletes the NPHP1 allele creating the pathogenic allele associated with 826 

juvenile nephronophthisis and milder forms of Joubert syndrome67. This predisposition to 827 

disease, thus, arose as a result of the emergence of human-specific duplication of the RGPD 828 

gene family.  829 
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