

1 **Virus diversity and activity is driven by snowmelt and host dynamics in a high-altitude  
2 watershed soil ecosystem**

3

4 **Clement Coclet<sup>1</sup>, Patrick O. Sorensen<sup>2</sup>, Ulas Karaoz<sup>2</sup>, Shi Wang<sup>2</sup>, Eoin L. Brodie<sup>2,3</sup>, Emiley  
5 A. Eloe-Fadrosh<sup>1</sup>, Simon Roux<sup>1\*</sup>**

6

7 **Affiliations**

8 <sup>1</sup> DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA

9 <sup>2</sup> Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA

10 <sup>3</sup> Department of Environmental Science, Policy and Management, University of California, Berkeley,  
11 Berkeley, CA.

12 \* Correspondence to: [sroux@lbl.gov](mailto:sroux@lbl.gov)

13

14 **Keywords**

15 Phages; Viruses; Metagenomics and metatranscriptomics; Virus activity; Virus-host interactions;

16 Mountainous watershed; Soils; Seasonal dynamics

17 **ABSTRACT**

18 Viruses, including phages, impact nearly all organisms on Earth, including microbial communities and their  
19 associated biogeochemical processes. In soils, highly diverse viral communities have been identified, with  
20 a global distribution seemingly driven by multiple biotic and abiotic factors, especially soil temperature and  
21 moisture. However, our current understanding of the stability of soil viral communities across time, and  
22 their response to strong seasonal change in environmental parameters remains limited. Here, we  
23 investigated the diversity and activity of environmental DNA and RNA viruses, including phages, across  
24 dynamics seasonal changes in a snow-dominated mountainous watershed by examining paired  
25 metagenomes and metatranscriptomes. We identified a large number of DNA and RNA viruses  
26 taxonomically divergent from existing environmental viruses, including a significant proportion of RNA  
27 viruses target fungal hosts and a large and unsuspected diversity of positive single-stranded RNA phages  
28 (*Leviviricetes*), highlighting the under-characterization of the global soil virosphere. Among these, we were  
29 able to distinguish subsets of active phages which changed across seasons, consistent with a “seed-bank”  
30 viral community structure in which new phage activity, for example replication and host lysis, is  
31 sequentially triggered by changes in environmental conditions. Zooming in at the population level, we  
32 further identified virus-host dynamics matching two existing ecological models: “Kill-The-Winner” which  
33 proposes that lytic phages are actively infecting abundant bacteria, and “Piggyback-The-Persistent” which  
34 argues that when the host is growing slowly it is more beneficial to remain in a lysogenic state. The former  
35 was associated with summer months of high and rapid microbial activity, and the latter to winter months of  
36 limited and slow host growth. Taken together, these results suggest that the high diversity of viruses in soils  
37 is likely associated with a broad range of host interaction types each adapted to specific host ecological  
38 strategies and environmental conditions. Moving forward, while as our understanding of how  
39 environmental and host factors drive viral activity in soil ecosystems progresses, integrating these viral  
40 impacts in complex natural microbiome models will be key to accurately predict ecosystem  
41 biogeochemistry.

## 42 INTRODUCTION

43 Soil microbiomes represent a major reservoir of microbial diversity on Earth, and provide many critical  
44 ecosystem services such as driving major the major transformation of carbon, and other nutrients and  
45 sustaining plant growth<sup>1</sup>. Soil ecosystems, found across a large range of environments including deserts,  
46 wetlands, forests, and mountains, are vulnerable to climate change<sup>2-5</sup>. Mountainous ecosystems in particular  
47 are impacted by unprecedented snowpack reductions and earlier spring snowmelt, which can trigger rapid  
48 collapse of the microbial biomass and abrupt changes in the composition and functioning of soil  
49 microbiomes<sup>6</sup>. However, predicting the impact of environmental changes on soil microbiomes remains  
50 challenging<sup>2,3,5</sup>, and holistic studies, including soil virus-microbes interactions, are needed to elucidate the  
51 ecological consequences of climate change on these ecosystems.

52

53 Viruses are commonly found in every biome<sup>7</sup>, from the human gut to the ocean, and in many different soil  
54 types including agricultural soils<sup>8-10</sup>, grasslands<sup>11-16</sup>, and deserts<sup>17-19</sup>. The complexity of habitats and  
55 heterogeneity of microorganisms in soils, spanning protozoa, algae, fungi, bacteria, and archaea, provide  
56 an environment where viruses are highly diverse and may play essential roles in microbe functions<sup>20-22</sup>.

57 Viruses infecting bacteria and archaea (hereafter referred to as phages) are the most common and diverse  
58 group of viruses identified in soil<sup>19-22</sup>, and can harbor various virion morphologies and genome types  
59 including double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), single-stranded RNA (ssRNA),  
60 and double-stranded RNA (dsRNA) genomes<sup>25</sup>. Soil viruses are highly abundant and diverse, however  
61 current public databases still capture only a fraction of this diversity (mainly dsDNA viruses)<sup>7,27-29</sup>, due to  
62 a combination of biological biases and methodological limitations. Virus genome representation in public  
63 database is also biased towards dsDNA phages, which represent the overwhelming majority of viruses  
64 reported in soil to date<sup>21,22</sup>, while our current knowledge of the diversity and ecological role of soil RNA  
65 and ssDNA viruses remains limited<sup>12,13,30-32</sup>.

66

67 Previous soil viral ecology studies based on viral particle counts and/or multi-omics analyses have  
68 suggested that soil warming, permafrost thaw, and shifts in soil moisture directly and/or indirectly  
69 influenced soil viral diversity<sup>12,33,34</sup>. Overall, spatiotemporal patterns in soil viral community composition  
70 could be associated with abiotic (soil temperature and depth, pH, and moisture)<sup>8,12,29,31,34-39</sup> and biotic factors  
71 such as host community composition<sup>35,40,41</sup>. Viruses may impact soil ecosystem functioning especially  
72 through viral infections of key biogeochemical-cycling microbes, and these viral-host dynamics may  
73 change with environmental conditions<sup>35-37</sup>. Additionally, growing evidence of viral populations carrying  
74 auxiliary metabolic genes, i.e. viral-encoded metabolic genes that could provide a fitness advantage to their  
75 hosts, provide a complementary way by which viruses likely influence soil biogeochemical cycling<sup>12,34</sup>.

76 While these studies of soil viral ecology have highlighted the potential influence of viruses on host  
77 community structure, nutrient cycling, and other ecosystem processes, major gaps remain in our  
78 understanding of soil viral ecology, especially in mountainous environments where abrupt seasonal changes  
79 occur. In particular, the global diversity of phages in mountainous soils, especially of ssDNA and RNA  
80 phages, remains poorly constrained, and the activity and dynamics of phages across seasons is poorly  
81 understood. Additionally, the ecological models that describe phage-bacteria interactions, i.e., lytic  
82 predation according to classical predator-prey Kill-the-Winner (KTW) dynamics and temperate infection  
83 according to Piggyback-the-Winner (PTW) appear to be conflicting hypotheses as they both occur in same  
84 types of environments but have opposite results, and the mechanisms that trigger the lytic-lysogenic switch  
85 remain mostly unknown<sup>42,43</sup>. Thus, the direct and indirect impacts of climate change on mountainous soil  
86 viruses, and the subsequent repercussions on soil microbiome and metabolic processes, are currently  
87 unknown.

88

89 Here, we aimed to address how early snowmelt and, more globally, seasonal disturbances might influence  
90 the diversity, composition, and activity of mountainous soil viromes. To this end, we leveraged existing  
91 metagenomic and metatranscriptomic data from soil samples collected over a year-long time-course in high-  
92 altitude mountainous soils of the East River Watershed (ERW), Colorado, United States<sup>44</sup>. This study site  
93 was specifically developed as a testbed to develop coordinated and multiscale research that integrate  
94 hydrological, biogeochemical, and microbiological studies, and includes previous investigation of resident  
95 bacterial, archaeal, and fungi communities<sup>6</sup>. Here, we further explored these soil microbiomes by  
96 identifying virus sequences across metagenomes and metatranscriptomes, and connecting the diversity and  
97 activity of both DNA and RNA viruses to changes in major biotic and abiotic parameters. Taken together,  
98 these analyses shed light on the contrasted dynamics and potentially different infection strategies of  
99 different groups of viruses across seasons, paving the way towards a better understanding of virus impacts  
100 on soil microbiomes and a robust integration of virus types and strategies into ecosystem biogeochemical  
models.

102 **RESULTS**

103 ***High diversity of DNA and RNA phages in the East River Watershed soil dataset***

104 To characterize the soil viral diversity in the East River Watershed (ERW), we analyzed 47 and 43 paired  
105 metagenomes and metatranscriptomes, respectively, obtained from samples collected in hillslope locations  
106 at three depths over four dates from March 2017 to June 2017 (**Figure 1A, and Supplementary Table 1**  
107 **and 2**). Using established protocols combining virus sequence detection with VirSorter2<sup>42</sup>, refinement with  
108 CheckV<sup>43</sup>, and clustering into non-redundant vOTU<sup>44</sup>, we recovered 4,047 and 5,032 non-redundant DNA  
109 and RNA viral genomes, respectively (**Supplementary Table 3 and 4**). Similar to previous soil viromics  
110 studies, representative contigs from DNA vOTU included a mix of (near-)complete genomes and genome  
111 fragments, with nearly 23% (907) longer than 10 kbp, and 101 identified as high-quality (>90% complete)  
112 (**Figure 1B, 1C**). Meanwhile, because RNA virus genomes are typically shorter, a larger proportion  
113 (n=1,870, 37%) were identified as high-quality (>90% complete) genomes (**Figure 1B, 1C and 1D**).

114

115 A marker gene taxonomic classification performed using GeNomad<sup>48</sup> suggested that the vast majority (>  
116 90%) of classified DNA vOTUs were bacteriophages from the *Caudoviricetes* class, i.e., tailed dsDNA  
117 bacteriophages typically identified in soil metagenomes (**Figure 1C and Supplementary Table 3**).  
118 Meanwhile, ~ 50% of RNA vOTUs were classified into the *Leviviricetes* bacteriophage class, while the  
119 remaining 44.6% of vOTUs were assigned across all five recognized phyla of RNA viruses (i.e.,  
120 *Lenarviricota* outside of the *Leviviricetes* class, *Pisuviricota*, *Kitrinoviricota*, *Duplornaviricota*, and  
121 *Negarnaviricota*) (**Figure 1D and Supplementary Table 4**). About 5% of RNA vOTUs were not assigned  
122 to known RNA virus phyla. To refine this marker-based affiliation of RNA viruses, we performed a  
123 phylogenetic analysis of RNA viruses based on the RdRP marker gene (RNA-dependent RNA  
124 polymerase)<sup>12,29,30,45</sup>. After clustering ERW RdRP sequences with reference and previously published  
125 datasets obtained from soil metatranscriptomes at 50% average amino acid identity (AAI), each cluster  
126 representative was assigned to a phylum, and a phylogeny was built for each phylum. Consistent with the  
127 marker gene geNomad classification, most of the ERW RdRP grouped within the positive-sense single-  
128 stranded *Lenarviricota* (75%), followed by the *Kitrinoviricota* (6.7%) and *Pisuviricota* (5.6%) (**Figure 2A**).  
129 The phylogenetic tree of phylum *Lenarviricota* could be further divided into four subclades; the first one  
130 corresponds to sequences branching within the *Leviviricetes* class (35.8%), the second and third to  
131 sequences branching next to the *Ourlivirales* (11.6%) and *Cryppavirales* (8.8%) orders, while the fourth  
132 group represented novel clade with no closely related sequence within the *Wolframvirales* (4.5%) order  
133 (**Figure 2B and Supplementary Table 5**). Among the other phyla, *Picornavirales* (2.5%), *Tolivirales*  
134 (2.3%) and *Martellivirales* (1.3%) were the most represented orders (**Supplementary Figure 1A to 1D and**

135 **Supplementary Table 6 to 9**). Taken together, these results highlight the high diversity of both DNA and  
136 RNA viral communities in ERW, with an unsuspected high richness of RNA phages in ERW soils.

137

138 ***Ecological distribution of ERW soil virus diversity and host connections***

139 We next compared this ERW viral diversity to reference viruses and soil virus metagenomic datasets using  
140 either genome-based (vContact2<sup>46</sup>, for dsDNA phages  $\geq 10\text{kb}$ ) or gene-based clustering (RdRP, 50% AA,  
141 for RNA viruses). While these analyses included  $> 12,000$  soil DNA phages and 613,000 RNA virus  
142 sequences, 20% of the ERW dsDNA phages (**Supplementary Table 10**) and 37% of the ERW RNA viruses  
143 were found in clusters composed only of ERW samples (**Figure 1C and 1D**). In particular, the majority of  
144 ERW vOTUs assigned to the RNA virus families *Narnaviridae* (98.0%), *Botourmiaviridae* (84.2%), and  
145 *Cryppavirales* (56.4%) within the *Lenarviricota* phylum were found in ERW-specific clusters, suggesting  
146 that the diversity of soil viruses within these three families may be largely under-characterized (**Figure 2B**).  
147 Another 36.4% (for DNA phages) and 41% (for RNA viruses) were only clustered with other metagenome-  
148 derived virus genomes sampled from soil- and/or plant-related samples, and only 11 DNA and 220 RNA  
149 vOTUs were clustered with viruses from RefSeq database. Overall, these results indicate that the ERW  
150 phages and viruses are mostly novel compared to isolated references, but display some similarity to other  
151 uncultivated soil viruses, consistent with the existence of a “global soil virosphere” still only partially  
152 sampled<sup>28</sup>. This was confirmed for RNA viruses via UNIFRAC analyses of the different phylum-wide  
153 phylogenies, which indicated that ERW sequences overall were more closely related to sequences from  
154 other soil samples rather than sequences from other environments or references (**Figure 2B and 2C, and**  
155 **Supplementary Table 11**).

156

157 Applying a new integrated phage-host prediction method (iPHoP<sup>51</sup>) which relies on an ensemble of phage-  
158 based and host-based approaches, 1,529 (37.8%) DNA vOTUs could be associated with a host genus or  
159 family (**Figure 1C and Supplementary Table 3**). Most of the predicted hosts were assigned to  
160 *Actinomycetia* (n = 618, 15.3%), *Alphaproteobacteria* (n = 506, 12.5%), and *Gammaproteobacteria* (n =  
161 92, 2.27%), representing ~80% of the total predicted hosts. On the other hand, the same approach (iPHoP)  
162 did not yield reliable host predictions for most RNA viruses, as this tool was primarily designed for DNA  
163 bacteriophages and archaeoviruses. Instead, we leveraged the RdRP phylogenies (see above) to identify  
164 putative hosts for RNA viruses, especially between bacteria and major divisions of eukaryotes. Overall,  
165 2,449 (48.7%) RdRP branched within the *Leviviricetes* class and were assigned to prokaryote hosts, along  
166 with the 9 RdRP branching within the *Cystoviridae* family (**Figure 1D and Supplementary Table 4**). 723  
167 RdRP branched within clades associated with fungal hosts (14.4%), including 31 (59.6%) and 41 (36.0%)  
168 clades in the *Duplornaviricota* and *Negarnaviricota* phyla, respectively (**Figure 1D, Figure 2B and**

169 **Supplementary Figure 1A to 1D).** Finally, the rest of the RdRP were found in clades associated with  
170 various eukaryotic hosts (30%), or without any isolate representative (6.8%), highlighting the vast extent  
171 of soil RNA virus diversity still to be characterized.

172

173 ***Contrasted dynamics of DNA and RNA viruses across seasons***

174 We next investigated the dynamics of both DNA and RNA viral communities across seasons, depths and  
175 locations, using both presence/absence and nMDS ordination analyses based on estimated relative  
176 abundances (RPKM). Overall, 2,758 (68.2%) and 1,238 (24.6%) DNA and RNA viruses, respectively, were  
177 found at least in one sample of each season (**Figure 3A**). Conversely, 373 (9.2%) and 1,208 (24%) DNA  
178 and RNA viruses, respectively, were only found in a specific season (**Supplementary Figure 2A and 2B**),  
179 indicating that both communities may exhibit seasonal dynamics, although of different magnitude. These  
180 patterns were confirmed by nMDS ordination analyses showing that both RNA (PERMANOVA;  $R^2 = 0.19$ ;  
181  $p < 0.001$ ) and DNA (PERMANOVA;  $R^2 = 0.17$ ;  $p < 0.01$ ) viral community differed significantly by season  
182 (**Figure 3B and 3C**), while depth had only a marginal effect on the DNA viral community (PERMANOVA;  
183  $R^2 = 0.11$ ;  $p < 0.01$ ) and soil location had no significant effect on both communities (PERMANOVA;  $p >$   
184 0.05) (**Supplementary Table 12**). Bray-Curtis dissimilarities between months across successive seasons  
185 were also systematically significantly higher for the RNA viral community than for the DNA one,  
186 suggesting that RNA viruses underwent a higher rate of turnover between seasons (ANOVA;  $p < 0.001$ )  
187 (**Supplementary Figure 2C**). Finally, given the relative “stability” of the DNA virus community observed  
188 in metagenomes, we performed the same analysis for DNA vOTUs based on RPKM from  
189 metatranscriptomes, reasoning that transcriptional activity rather than relative abundance from  
190 metagenomes may uncover stronger seasonal patterns. Indeed, an nMDS ordination based on DNA vOTUs  
191 metatranscriptome RPKM was strongly structured by season (PERMANOVA;  $R^2 = 0.34$ ;  $p < 0.001$ )  
192 (**Figure 3D**). Altogether, these results indicate that both DNA and RNA virus communities are dynamic  
193 throughout the year, reflected primarily by a strong turnover for RNA viruses and changes in which subset  
194 of the community is transcriptionally active for the dsDNA phages.

195

196 Some of these seasonal dynamics can be further explained by grouping vOTUs based on their predicted  
197 hosts. Throughout the year, the RNA virus community was characterized by an increased relative abundance  
198 of phages (mainly *Leviviricetes*; *Timlovirales*) in May during the snowmelt period, followed by an increase  
199 in relative abundance for plant-infecting viruses in June when the perennial plants emerge from dormancy,  
200 and for fungi-infecting viruses (*Cryppavirales*) in September (**Figure 3E and Supplementary Table 13**)  
201 following plant senescence and litter accumulation. When grouping DNA phages only a low proportion of  
202 phages predicted to infect *Thermoleophilia*, *Chloroflexota Ellin6529*, *Vicinamibacteria*, and

203 *Verrucomicrobiae* bacterial hosts displayed a significant seasonal turnover (ANOVA;  $p < 0.001$ ) (**Figure 3F and Supplementary Table 13**). Meanwhile, other groups of DNA phages found in both metagenome  
204 and metatranscriptome samples showed a significant seasonal dynamic based on their metatranscriptome  
205 RPKM, with a higher proportion of phages predicted to infect *Alphaproteobacteria*, *Acidimicrobia*,  
206 *Verrucomicrobiae*, *Nitrospiria*, and *Actinomycetia* showing the highest change in activity over season  
207 (ANOVA;  $p < 0.001$ ) (**Figure 3G and Supplementary Table 13**). These suggested that different types of  
208 virus-host interactions and ecological successions coexist in ERW soils. For example, broadly present and  
209 seasonally active viruses strongly influence the host community dynamics and structure. By contrast,  
210 seasonally dynamic but mostly inactive viruses do not affect host community structure, but are likely to be  
211 replicating alongside the host cell as part of lysogenic and/or chronic infections.  
212

213

#### 214 *Increased activity of DNA and RNA viruses after snowmelt*

215 Because the viral populations were detected from bulk soil samples, they presumably represent a mixture  
216 of proviruses (i.e., integrated or extrachromosomal viruses that reside within their host cell), actively  
217 replicating viruses, and some extracellular viral particles<sup>8</sup>. Metatranscriptomes offer a unique opportunity  
218 to further understand which soil viruses are active, where, and when. To evaluate DNA viral activity at the  
219 vOTU level, metatranscriptomic libraries were used to identify expressed genes in each viral DNA genome,  
220 and viruses for which at least one expressed gene was detected were classified as active (**Figure 4A**).  
221 Among these, viral genomes that expressed genes related to virion structure, encapsidation, and/or lysis  
222 functions were classified as undergoing a lytic infection. The same approach is not possible for RNA viruses  
223 given their RNA-based genome, however for the dominant RNA viruses (the ssRNA *Lenarviricota* phylum),  
224 we instead leveraged strand-specific mapping information to identify actively replicating viruses based on  
225 the detection of both coding and non-coding genome strands (**Figure 4B**). This enabled a comparative  
226 analysis of activity levels for DNA and RNA viruses in ERW.  
227

228 Overall, 8,937 genes (31.5%) were identified as expressed in DNA viral genomes, including 1,101  
229 functionally annotated (**Figure 4C and Supplementary Table 14**). A total of 2,926 (72.3%) DNA viral  
230 vOTUs were detected as active in at least one sample, and 535 (13.2%) were classified as active lytic viruses  
231 based on functional annotation (**Figure 4D and Supplementary Figure 3**). Meanwhile, for RNA viruses  
232 among the *Lenarviricota* phylum, 24.5% (600 vOTUs) of the *Leviviricetes* (**Figure 4E**) and 18.7% (294  
233 vOTUs) of the eukaryote-infecting viruses (**Figure 4F**) were detected as active in at least one sample.  
234 Across seasons, the overall proportion of active DNA viruses significantly increased from September  
235 (25.6%) to June (52.8%). A similar overall pattern was recovered for both RNA bacteriophages  
236 (*Leviviricetes*) and other eukaryote-infecting *Lenarviricota*, with significant increases in activity from

237 September (2.6% and 4.4%) to June (14.9% and 11.3%), suggesting that similar large-scale seasonal  
238 variations, here in particular the snowmelt followed by subsequent plant growth season, likely shape the  
239 activity of both DNA and RNA viral communities. Within this overall increase however, the highest increase  
240 in numbers of both active DNA and RNA phages occurred between March and May (peak snow to snowmelt  
241 period), while the largest increase in active RNA eukaryote-infecting viruses occurred between May and  
242 June (plant emergence post snowmelt), suggesting a delayed response to snowmelt for some eukaryotic  
243 viruses compared to phages.

244

245 ***Active phages are driving the bacterial community structure in ERW soils***

246 The increased activity observed for DNA phages throughout the year combined with the strong seasonal  
247 effect observed from metatranscriptome RPKM but not metagenome RPKM for the same DNA phages  
248 suggest that the ERW DNA phage community may be structured as a ‘seed-bank’. This ‘seed-bank’ is likely  
249 composed by a large group of persistent and mostly inactive phages residing in soils or in their host, and a  
250 different subset actively replicating and lysing their host across seasons, in particular following and/or  
251 concomitant with host growth/bloom.

252

253 To better characterize the relationship between host growth and viral activity, we first used similarity  
254 percentage breakdown (SIMPER)<sup>52</sup> analyses to identify which DNA phage vOTUs were differentially  
255 active across seasons. Overall, 144 (5%) active DNA phages exhibited significant and clear differential  
256 abundance patterns in metatranscriptomes across seasons (ANOVA, Effect size > 0.3, adjusted  $P < 0.05$ ),  
257 and could each be associated to a specific “high activity season” (**Figure 5A and Supplementary Table**  
258 **15**). Further, 41.7% of these representative phages were assigned to a host taxon that was previously  
259 associated by Sorensen et al.<sup>6</sup> to a specific ecological strategy (i.e., Winter-adapted, Snowmelt-specialist,  
260 and Spring-adapted taxa), which allowed us to explore the dynamics of active phage-host interactions across  
261 seasons (**Figure 5B and Supplementary Table 16**). In a somewhat counter-intuitive manner, DNA phages  
262 infecting both winter-adapted and snowmelt-specialist bacteria were least active when their predicted  
263 bacteria host would be growing, i.e., in March and May, respectively (**Figure 5A**). Conversely, DNA phages  
264 infecting spring-adapted bacteria were most active during the expected growth period of their hosts,  
265 between June and September. Phage-host interactions in the ERW thus appear to follow at least two distinct  
266 patterns: for the limited diversity of bacteria adapted to “slow” growth under snow or immediately upon  
267 snowmelt, the majority of DNA phage activity seems to be delayed compared to this initial seasonal growth  
268 of the host. On the other hand, the growth of a diverse community of bacteria in Spring following snowmelt  
269 seems to be associated with concomitant DNA phage activity. This suggests that the optimal infection  
270 strategy for soil bacteriophages may be, at least partially, driven by the ecological and growth strategy of

271 their host. Finally, DNA phage activity may also respond directly to soil temperature variations across  
272 seasons, as soil temperatures may be near or above 0°C under snow cover and jump to 4°C in a short time  
273 period during the snowmelt period<sup>6</sup>.

274 **DISCUSSION**

275 Leveraging a data set of paired metagenomic and metatranscriptomic libraries from mountainous soil  
276 samples across seasons, we identified thousands of DNA and RNA viruses and assessed their diversity,  
277 community structure, and activity patterns. These data contribute to a better characterization of soil virus  
278 phylogenetic and genomic diversity, and suggest that soil virome composition and activity is affected by  
279 both their host metabolism and by ecological features of their local sampling environment. The ERW soils  
280 sampled in this study were characterized by a dominance of bacteriophages with two types of population:  
281 a large group of inactive phages residing in soils or in their hosts, and a smaller group of (often temporarily)  
282 active phages. The persistence of inactive viruses across seasons could have been facilitated by the  
283 continuous presence of putative hosts<sup>32</sup>, and/or low soil temperatures preventing viral inactivation<sup>53</sup>,  
284 especially under snow. Alternatively, it is possible that some of these persistent viruses maintain a low level  
285 of activity throughout the year not detectable in the current data. Regardless of the underlying mechanism  
286 of persistence, these phages likely represent a “seed-bank” from past lytic events that may serve as a  
287 reservoir for new infections to emerge when conditions become advantageous<sup>54</sup>. Given the abundance and  
288 diversity of hosts infected by these active viruses, the proliferation of these active and lytic phages will very  
289 likely have substantial impacts on the microbial communities, and thus on the soil biogeochemical cycling.  
290

291 Phages are becoming increasingly recognized for their essential ecological roles, especially as they can  
292 control host population dynamics<sup>26,43,55</sup>. During lytic phases, virulent phages invade, replicate in and  
293 eventually kill their hosts, which can result in a substantial reduction in the relative abundances of the  
294 dominant microbial community members, as illustrated by the “Kill-The-Winner” (KtW) model<sup>11,12,56-59</sup>. In  
295 soils, temperate phages are considered to be more common, and have an opportunity to reside in their hosts  
296 via lysogenic infections rather than lysing them. This led to alternative virus-host dynamic models, such as  
297 for instance “Piggyback-The-Winner” (PtW), which predicts that phages integrate into their hosts’ genomes  
298 as prophages when microbial abundances and growth rates are high<sup>55</sup>. Finally, the factors determining the  
299 lytic to lysogenic switch in complex soil microbial communities remain poorly understood. In the ERW  
300 soils, lytic infection of active hosts seemed favored in spring and early summer (May / June), consistent  
301 with KtW interactions. This model is expected to occur under favorable conditions, such as a nutrient  
302 enrichment or wetting soils, generating high bacterial diversity<sup>32</sup> and favoring lytic over lysogenic  
303 infections<sup>60</sup>, which is consistent with conditions during the plant-growing season in ERW soils. Conversely,  
304 the temporal delay between the activity of phages and the growing period of their hosts under snow  
305 conditions or upon snowmelt associated to the low diversity of hosts may be best described by a third model,  
306 recently proposed: “Piggyback-The-Loser” (PtL)<sup>61</sup> or “Piggyback-The-Persistent” (PtP)<sup>62</sup>, that suggests the  
307 opposite of the PtW model. This hypothesis argues that when the host is growing slowly, it is more

308 beneficial to remain in a lysogenic state, as it is less likely that the phages produced through lysis will find  
309 a new host<sup>42</sup>. Consistently, PtL or PtP was described in some regions of the deep sea or polar marine  
310 regions<sup>61,63</sup>; and the dynamics observed in ERW during March and May suggest that comparable infection  
311 strategies also occur in soils. Furthermore, the sequential identification of different infection dynamics  
312 across seasons suggest that environmental conditions and host growth strategies may likely be an important  
313 factor driving the selection for one strategy or the other.

314

315 In terms of community diversity, while only few RNA bacteriophages have been experimentally  
316 characterized so far, we found a large number of RNA phages belonging to the *Leviviricetes* class in the  
317 ERW soils, including potentially novel phages associated with a wide range of bacteria inhabiting soils. In  
318 combination with recent investigations of *Leviviricetes* in terrestrial ecosystems, our study emphasizes the  
319 underappreciation of RNA phages in soils relative to DNA ones. This can be explained by the difficulties  
320 to recover RNA from soil because it is more easily degraded than DNA and/or because RNA viruses are  
321 not detected in metagenomes. We also identified a significant part of the RNA phage community as actively  
322 replicating, and given that all known RNA phages are virulent, we hypothesize that these significantly  
323 contribute to overall bacterial death in ERW<sup>43</sup>. By partially driving the turnover of bacteria, the diverse,  
324 abundant and active RNA phages recovered in this study are expected to impact soil microbiomes and  
325 associated biogeochemical cycling. Nevertheless, because of the limited availability of host predictions for  
326 RNA phages and the difficulties in linking them to even a high-order host taxon (e.g., a bacterial phylum  
327 or class), their impact on host communities in soil ecosystems remain difficult to evaluate more precisely.  
328 Further studies of global RNA phage diversity along with the development of new model systems,  
329 especially the cultivation of both RNA phages and their hosts, is now critical to understand the impact of  
330 these RNA phages on soil ecology<sup>30,64</sup>.

331

332 Finally, beyond the apparent dominance of ssRNA *Leviviricetes* bacteriophages in ERW soils, our  
333 phylogenetic analysis suggests that a significant number of RNA viruses detected in this work infect fungal,  
334 plant and animal hosts. Among these, most of them display some similarity to other uncultivated soil viruses,  
335 with no match with isolated references, consistent with the existence of a “global soil virosphere” still only  
336 partially sampled<sup>21,29</sup>. Interestingly, most of these viruses were predicted to infect fungal hosts, suggesting  
337 that the diversity of these mycoviruses may also be largely under-characterized<sup>65</sup>. Like the DNA and RNA  
338 phages, the eukaryotic-infecting RNA viruses seem to broadly follow their host dynamics, exhibiting a  
339 delayed peak of activity in comparison to phages. These results suggest that RNA viruses are an integral  
340 component of global soil ecosystems, with a diversity and activity driven by the growth of their hosts and  
341 the environmental parameters which affect them<sup>66</sup>. Altogether, our work demonstrates temporal viral

342 activity dynamics, with time-shifted host-virus interactions depending of host strategies, viral resistance  
343 and coevolution<sup>67</sup>, highlighting the need to consider expanded models of host-virus interactions in further  
344 characterization and modeling of viral diversity, activity, and host impact in soil ecosystems.

345 **MATERIALS AND METHODS**

346 ***Field site description***

347 The East River Watershed is located in Gunnison County, Colorado near the town of Crested Butte (38°57.5' N, 106°59.3' W) and is the location of the Rocky Mountain Biological Laboratory. Elevations within the 348 East River watershed range from 2750 to 4000 m. Snow cover in winter typically persists 4 to 6 months 349 (e.g., November through May) followed by an arid summer with intermittent, monsoonal rain events that 350 occur from July through September. Minimum annual daily air temperature occurs in January (-14 ± 3° C), 351 whereas the maximum daily air temperature typically occurs in July (23.5 ± 3° C). Plant composition at this 352 location is a mixed, montane meadow community comprised of perennial bunchgrasses (e.g., *Festuca* 353 *arizonica*), forbs (e.g., *Lupinus* spp., *Potentilla gracilis*, *Veratrum californicum*), and shrubs (*Artemesia* 354 *tridentata*). 355

356

357 ***Soil sampling***

358 Soils were sampled from an upland hillslope location that was adjacent to the main stem of the East River 359 (elevation ~2775 m). Soil samples were collected using a 4 cm diameter soil bulk density corer on four 360 dates starting at maximum winter snow depth (March 7, 2017), during the peak snowmelt period (May 9, 361 2017), during the plant growing season after the complete loss of snowpack (June 9, 2017), and lastly in 362 autumn after plant senescence (September 16, 2017) (**Supplementary Table 1 and 2**). When there was no 363 snowpack (September and June), soil samples were collected from 6 locations separated by approximately 364 10-meters. We dug three snow pits to the soil surface in March (approximately 1.5 meters of snowpack) 365 and May (30 cm of snowpack) at locations adjacent to previous sampling sites. Two replicate soil cores 366 separated by 1 meter were sampled from each snowpit as described above. All soil samples were split into 367 three discrete depth increments; 0 to 5 cm, 5 to 15 cm, and 15 cm + below the soil surface. A ~10 g 368 subsample from each soil core at each depth was frozen immediately on dry ice in the field and archived at 369 -80 °C for metagenome and metatranscriptome analyses (described below). 370

370

371 ***Nucleic Acid Extraction***

372 Nucleic acids were extracted on ice from 5 to 7 technical replicates of each soil sample by adding 0.5 mL 373 phenol:chloroform:isoamyl alcohol (25:24:1) (Sigma-Aldrich, St. Louis, MO, USA) to 0.5 g of soil in a 2 374 ml Lysing Matrix E tube (MP Biomedicals, Solon, OH, USA), followed by addition of 0.5 mL of CTAB 375 buffer (5% CTAB, 0.25M phosphate buffer pH 8.0, 0.3M NaCl) and 50 µL of 0.1M aluminum ammonium 376 sulfate. The samples were homogenized at 5.5 m/s for 30 s in a FastPrep-24 instrument (MP Biomedicals, 377 Solon, OH, USA), then centrifuged at 16K g for 5 min at 4°C. The aqueous phase was removed and 378 transferred to MaxTract High Density 2 mL tubes (Qiagen Inc, Valencia, CA, USA). Samples were then

379 extracted a second time as described above and the aqueous phase from the repeated extractions for each  
380 sample were combined. Sodium acetate (3M sodium acetate, 1/10<sup>th</sup> volume of total aqueous phase) and ice-  
381 cold ethanol (100%, 2X volume of total aqueous phase) were added, the samples were vortexed briefly, and  
382 a crude nucleic acid pellet was precipitated overnight at -20 °C. Following overnight precipitation, technical  
383 replicates for each soil sample were combined, then separation of DNA and RNA was completed using the  
384 AllPrep DNA/RNA Mini Kit (Qiagen Inc, Valencia, CA, USA). The amount of DNA or RNA extracted was  
385 quantified using the Qubit 1X dsDNA Broad Range Kit or Qubit RNA High Sensitivity Kit, respectively  
386 (ThermoFisher Scientific). DNA and RNA quality were assessed using a 2100 Bioanalyzer instrument  
387 (Agilent Technologies, Santa Clara, USA). DNA and RNA was stored at -80 °C prior to metagenome and  
388 metatranscriptome analyses (described below).

389

#### 390 ***Library preparation and sequencing***

391 Sequence data was generated at the DOE Joint Genome Institute (JGI) using Illumina technology. For  
392 metagenomes, library preparation for Illumina sequencing was performed using the Kapa Biosystems  
393 library preparation kit. Briefly, DNA was sheared using a Covaris LE220 focused-ultrasonicator. The  
394 sheared DNA fragments were size selected by double-SPRI and then the selected fragments were end-  
395 repaired, A-tailed, and ligated with Illumina compatible sequencing adaptors from IDT containing a unique  
396 molecular index barcode for each sample library. The prepared libraries were quantified using KAPA  
397 Biosystems' next-generation sequencing library qPCR kit and run on a Roche LightCycler 480 real-time  
398 PCR instrument. Sequencing of the flowcell was performed on the Illumina NovaSeq sequencer using  
399 NovaSeq XP V1 reagent kits, S4 flowcell, following a 2x151 indexed run recipe. For metatranscriptomes,  
400 rRNA was depleted using the Illumina's Ribo-Zero rRNA Removal Kit (Bacteria), and stranded cDNA  
401 libraries were generated using the Illumina TruSeq Stranded Total RNA kit. Briefly, the rRNA-depleted  
402 RNA was fragmented and reversed transcribed using random hexamers and SSII (Invitrogen) followed by  
403 second strand synthesis. The fragmented cDNA was treated with end-pair, A-tailing, adapter ligation, and  
404 10 cycles of PCR. qPCR was used to determine the concentration of the libraries. The prepared libraries  
405 were quantified using KAPA Biosystems' next-generation sequencing library qPCR kit and run on a Roche  
406 LightCycler 480 real-time PCR instrument. Sequencing of the flowcell was performed on the Illumina  
407 NovaSeq sequencer using NovaSeq XP V1 reagent kits, S4 flowcell, following a 2x151 indexed run recipe.

408

#### 409 ***Assembly and annotation of metagenomes and metatranscriptomes***

410 Metagenome libraries were filtered and assembled using the DOE JGI Metagenome Workflow<sup>68</sup>. Briefly,  
411 BBduk (version 38, <https://jgi.doe.gov/data-and-tools/bbtools/>) was used to remove contaminants via k-  
412 mer matching, trim reads that contained adapter sequence, right quality trim reads where quality drops to

413 0, and remove reads that contained 4 or more 'N' bases or had an average quality score across the read less  
414 than 3 or had a minimum length  $\leq$  51 bp or 33% of the full read length. Reads aligned with BBMap  
415 (<https://jgi.doe.gov/data-and-tools/bbtools/>) to masked human, cat, dog and mouse references at 93%  
416 identity or to common microbial contaminants were excluded from downstream analyses. Specific  
417 commands and options used for read filtering are available for each library on the JGI Data portal  
418 (<https://data.jgi.doe.gov>). Filtered reads were error-corrected using bfc (version r181) with " bfc -1 -s 10g -  
419 k 21 -t 10<sup>69</sup>, and then assembled with metaSPAdes<sup>70,71</sup> version 3.13.0 using the "metagenome" flag, running  
420 the assembly module only (i.e., without error correction) with kmer sizes of 33, 55, 77, 99, and 127. Contigs  
421 larger or equal to 200 bp were then annotated using the IMG pipeline v.4.16.4<sup>72</sup>. Briefly, protein-coding  
422 genes were predicted with Prodigal v2.6.3<sup>73</sup> and prokaryotic GeneMark.hmm v2.8<sup>74</sup>, and compared to COG  
423 2003<sup>75</sup>, Pfam v30<sup>76</sup>, and IMG-NR 20180530<sup>68</sup> using HMMER 3.1b2<sup>77</sup> and lastal 914<sup>78</sup> for taxonomic and  
424 functional annotation. Predicted protein-coding genes are also assigned to KEGG Orthology (KO) terms<sup>79</sup>  
425 and Enzyme Commission (EC) numbers based on similarity to reference sequences in the IMG-NR  
426 20180530 database<sup>68</sup>.

427

428 In addition to these individual assemblies of metagenome libraries, a combined assembly of the 48  
429 metagenome libraries was performed using MetaHipmer<sup>80</sup>. Filtered reads from the 48 libraries were pooled  
430 and used as input for metagenome assembly with MetaHipmer v1, using default parameters. Contigs larger  
431 or equal to 500bp were then submitted to IMG for a similar functional and taxonomic annotation as  
432 previously described, using the IMG annotation pipeline v.5.0.23<sup>68,81</sup>.

433

434 Metatranscriptome libraries were similarly processed using the default JGI workflow. BBDuk (version 38,  
435 <https://jgi.doe.gov/data-and-tools/bbtools/>) was used to remove contaminants and ribosomal RNA via k-  
436 mer matching, trim reads that contained adapter sequence, right quality trim reads where quality drops to  
437 0, and remove reads that contained 1 or more 'N' bases, had an average quality score across the read less  
438 than 10 or had a minimum length  $\leq$  51 bp or 33% of the full read length. Reads aligned with BBMap  
439 (<https://jgi.doe.gov/data-and-tools/bbtools/>) to masked human, cat, dog and mouse references at 93%  
440 identity, to common microbial contaminants, or to ribosomal RNA sequences were excluded from  
441 downstream analyses. Filtered reads were then de novo assembled with MEGAHIT v1.1.2<sup>82</sup>, using k-mer  
442 sizes of 23, 43, 63, 83, 103, and 123. Contigs larger or equal to 200bp were then submitted to IMG for  
443 annotation as previously described, using the IMG annotation pipeline v4.16.5<sup>72</sup>.

444

445 ***Viral sequence detection and annotation***

446 All contigs from the individual assemblies of metagenomes and metatranscriptomes and from the combined  
447 assembly of metagenomes were processed with VirSorter2 (v2.0.beta) for virus sequence detection<sup>45</sup>. These  
448 predictions were then further refined by identifying and removing potential host contaminants using  
449 CheckV v0.8.1<sup>46</sup>, inspecting all predicted proviruses, i.e. cases in which a contig is predicted to harbor both  
450 host and viral region(s) to refine provirus boundaries, and removing if necessary all predicted viral  
451 sequences with similarity to Type VI Secretion Systems. CheckV v0.8.1<sup>46</sup> was then used to estimate the  
452 completeness of all filtered predicted viral sequences, and only sequences larger or equal to 5kb or estimated  
453 to be at least 50% complete (AAI-based completeness) were retained. For metatranscriptomes, contigs  
454 detected as likely RNA viruses based on a custom identification of RdRP genes<sup>30</sup> were added to the filtered  
455 dataset obtained from the VirSorter 2 analysis.

456

457 The full dataset of predicted viral sequences was clustered into vOTUs following standard guidelines<sup>47</sup> at  
458 95% ANI and 85% AF using Mummer 4.0.0b2<sup>83</sup>, and the longest sequence was selected as the representative  
459 for each vOTU. To complement the IMG functional annotation, predicted protein-coding genes from  
460 selected representatives were compared to proteins from RefSeq Virus r2016<sup>84</sup> using Diamond 0.9.24<sup>85</sup>  
461 (minimum score of 50), to the VOGdb v205 (<https://vogdb.org>) using HMMER 3.3.2<sup>77</sup> (minimum score of  
462 30), and to the Pdb70 v190918<sup>86</sup>, Pfam v32<sup>87</sup>, and SCOPe70 v1.75<sup>88</sup> databases (database package  
463 downloaded in Feb. 2019 from the HH-Suite website) using Hhblits 3.1.0<sup>89</sup> (minimum probability of 90).  
464 Selected representatives were then further refined to identify and remove sequences only encoding putative  
465 Insertion Sequences based on annotation keywords “Transposase”, “insertion sequence”, and “insertion  
466 element”, as well as sequences without any annotated gene (i.e., only composed of predicted cds without  
467 any significant hit to any database). This led to a final dataset of 9,321 vOTUs.

468

#### 469 ***Estimation of the relative abundances of vOTUs***

470 To evaluate vOTU and individual gene coverage, reads from individual metagenome and metatranscriptome  
471 libraries were mapped to the vOTU representative sequences with BBMap v38 (default parameters,  
472 <https://jgi.doe.gov/data-and-tools/bbtools/>). For metatranscriptomes, samtools v1.13<sup>90</sup> and bedtools  
473 v2.30.0<sup>91</sup> were used to calculate strand-specific coverage for both full sequences and individual genes. All  
474 reads mapped to vOTUs were used to calculate the RPKM (Reads Per Kilobase per Million mapped reads)  
475 value of each vOTU after normalizing by the sequence depth (per million reads) and the length of the contig  
476 (in kilobase).

477

#### 478 ***Phylogenetic analyses, taxonomic assignment and host prediction***

479 GeNomad v1.0.0beta (<https://github.com/apcamargo/genomad>) was used for taxonomic classification  
480 (default parameters) of each vOTU<sup>48</sup>. iPHoP v0.9beta<sup>51</sup> was used to predict the host family of each vOTU  
481 using a minimum score of 75, default parameters otherwise, and with the prediction with the highest score  
482 selected for each vOTU.

483

484 To refine the taxonomic classification and the host prediction of RNA vOTUs, phylogenetic analysis was  
485 performed using RdRP sequences. Previously published multiple sequence alignments of RdRPs<sup>49,92</sup> were  
486 used to search for RdRP sequences using HMMER 3.3.2<sup>77</sup> on ERW viral contigs, recovered as described  
487 above, and on contigs produced by previous studies<sup>13,24,49,92</sup>. We supplemented the data set with RdRP  
488 sequences collected from NCBI RefSeq Virus database r2016<sup>84</sup> and group II intron reverse transcriptases  
489 (RT), used as an outgroup. Acceptance criteria for the RdRP profiles searches were E-value  $\leq 1e-12$  and  
490 score  $\geq 50$ . This analysis identified 28,916 non-redundant contigs encoding predicted proteins with  
491 significant amino acid sequence similarity to previously identified RdRP. The extracted RdRP sequences  
492 were broadly assigned to the five major branches of RdRPs based on the best hit to the RdRP profiles<sup>49</sup>,  
493 and clustered using MMseqs2 v14<sup>93</sup> with sequence similarity threshold of 0.5 and a coverage threshold of  
494 80%. The representative sequences of each cluster were aligned using MAFFT v7.505<sup>94</sup> (default  
495 parameters). All alignments were trimmed using TrimAl v1.3<sup>95</sup> with the -gappyout option, and used to  
496 reconstruct maximum likelihood trees using FastTree v2.3<sup>96</sup>, and rooted by RT sequences. When visualizing  
497 phylogenetic trees, all branches with support values lower than 50 were collapsed.

498

499 The procedure to establish the RNA vOTU features (taxonomic affiliation and host prediction) across the  
500 trees (i.e., clades) relies on the tree topology and leverages existing taxonomic and host prediction  
501 information from RefSeq Virus r2016: all sequences belonging to a monophyletic clade in which all  
502 reference sequences are affiliated to a single taxon *T* or connected to a single host *H* were also assigned to  
503 the same taxon *T* or host *H*. A custom *perl* script was used to apply this logic based on the reference  
504 taxonomy and the host information for each phylogeny.

505

### 506 ***Ecological distribution analyses***

507 For DNA phages, a network analysis using vContact v2.0<sup>50</sup> with “-rel-mode Diamond”, “-vcs-mode  
508 ClusterONE”, and all other settings set to default was used to compare the  $\geq 10$ kb DNA ERW virus genomes,  
509 prokaryotic virus genomes from NCBI RefSeq Virus database (v94) r2016<sup>97</sup> and more than 12,000 viral  
510 genomes from the viral database PIGEON v1.0<sup>29</sup>. ERW viral genomes were assigned into viral clusters  
511 (VCs) when clustering was significant ( $p < 0.05$ ) and classified as outliers when clustering was non-  
512 significant. All unclustered viral genomes were classified as singletons.

513

514 For RNA viruses, previously identified ERW RdRP sequences and RdRP sequences from a custom database  
515 containing more than 613,000 RNA virus genomes from environmental metatranscriptomic studies and  
516 Refseq prokaryotic virus genomes (see above) were clustered using MMseqs2 v14<sup>93</sup> with sequence  
517 similarity threshold of 0.5 to identify clusters unique to ERW or shared with other datasets. To complement  
518 this gene-based clustering analysis, generalized unweighted UNIFRAC distances were calculated using  
519 *GUniFrac* package on R, with  $\alpha = 0.5$  (parameter controlling weight on abundant lineages) to evaluate the  
520 distance between datasets based on the sequences included in the RdRP phylogeny analyses described  
521 above.

522

#### 523 ***Viral genome annotation, activity and infection cycle prediction***

524 Genes were predicted and annotated using Prokka v1.14.6<sup>98</sup> from viral genomes by aligning them against  
525 the PHROGS v4 database, with an e-value cut-off of 1E-6. To evaluate DNA viral activity,  
526 metatranscriptomic libraries were used to identify expressed genes in each viral DNA genome. A gene was  
527 considered as expressed if the coding strand had  $\geq 50\%$  of its positions covered and  $> 0$  median coverage  
528 depth. DNA vOTUs for which at least one expressed gene was detected were classified as active. Based on  
529 the genome annotation described above, active DNA vOTUs that expressed genes related to virion structure,  
530 encapsidation, and/or lysis functions were classified as undergoing a lytic infection while the other active  
531 DNA genomes were considered as possibly lysogenic or chronic infections, and broadly classified as  
532 “Active - Other”. Additionally, for DNA vOTUs identified in known bacteriophage/archaeovirus taxa,  
533 BacPhlib v0.9.6<sup>99</sup> was used to predict lifestyle (i.e. temperate or lytic) based on the vOTU representative  
534 sequences.

535

536 While the same approach of identifying expressed genes in metatranscriptomes is not possible for RNA  
537 viruses given their RNA-based genome, we still evaluated the activity of the dominant ssRNA *Lenarviricota*  
538 viruses using the strand-specific mapping information of metatranscriptomes. The rationale was that, while  
539 these genomes are expected to be single-stranded, their replication intermediary should be double-stranded.  
540 Hence, RNA vOTUs with  $\geq 50\%$  of the genome covered at 1x or more on the coding strand with a  $> 0$  median  
541 coverage depth was considered as detected, while RNA vOTUs for which both strands were covered for  $\geq$   
542 50% at 1x or more were classified as detected and active.

543

#### 544 ***Statistical analyses***

545 All statistical analysis and figures were performed in R (CRAN)<sup>100</sup> and Rstudio using the *vegan*, *ggplot2*  
546 and *ComplexUpset* packages, and STAMP (Statistical Analysis of Metagenomic Profiles) software v

547 2.1.3<sup>101</sup>. Non-metric multidimensional scaling (nMDS) ordination and Hierarchical clustering analysis  
548 based on Bray-Curtis dissimilarity matrices, using the *vegan* package, was used to visualize sample  
549 comparisons. Bray-Curtis dissimilarity matrices were also generated for both DNA and RNA viral  
550 communities to visualize the similarity between and within months. Analyses of variance (ANOVA) and  
551 permutational multiple analysis of variance (PERMANOVA) tests were used to identify significant  
552 differences in viral community composition between dates, depths, and locations. Finally, we tested the  
553 significance of changes in active DNA vOTU abundance between months with a multiple group statistic  
554 test (ANOVA), a post-hoc test (Tukey-Kramer) to identify which pairs of months differ from each other,  
555 and a multiple test correction (Storey's FDR) to control false discovery rate, using STAMP. Post-hoc plots  
556 generated by STAMP show the results of each significant test (corrected p-value < 0.01), and provide an  
557 effect size measure for each pair of months. Based on the STAMP analyses, we then plotted the temporal  
558 dynamics (z-score of RPKM) of each active DNA vOTUs exhibiting significant changes in abundance  
559 between months based on the “ecological strategy” of the assigned host, using the iPHoP analyses (see  
560 above). Based on Sorensen et al.<sup>6</sup>, each host were associated to an “ecological strategy” depending on the  
561 month (or season) a given host was most abundant. All active DNA vOTUs without assigned host or  
562 assigned to a host without a clear ecological strategy were plotted in a separated panel.

563

#### 564 ***Data availability***

565 All available metagenomic and metatranscriptomic data, are available through the IMG/M portal  
566 (assemblies) and NCBI SRA (reads). IMG/M and SRA identifiers of all metagenomes and  
567 metatranscriptomes, along with detailed information for each sample, are available in Supplementary Table  
568 1 and 2.

569 **DECLARATION**

570 ***Acknowledgements.***

571 We wish to thank Jenny Reithel and Shannon Sprott at Rocky Mountain Biological Laboratory (RMBL)  
572 for their general assistance at the field site.

573

574 ***Author contributions.*** PS, and EB designed the overall study, which is a contribution to the Watershed  
575 Function Scientific Focus Area lead by Hubbard S. Susan. SR and CC designed the virus-specific study.  
576 Data collection was performed by PS (primarily) and SW, UK, and EB. CC, and SR performed the  
577 bioinformatic analyses, CC, SR, and EE-F wrote the manuscript. All authors contributed to revising the  
578 manuscript, and approved the final manuscript.

579

580 ***Funding information.*** A portion of this research was performed under the Facilities Integrating  
581 Collaborations for User Science (FICUS) program and used resources at the DOE Joint Genome Institute  
582 and the Environmental Molecular Sciences Laboratory (grid.436923.9), which are DOE Office of Science  
583 User Facilities. Both facilities are sponsored by the Biological and Environmental Research program and  
584 operated under Contract Nos. DE-AC02-05CH11231 (JGI, <https://ror.org/04xm1d337>) and DE-AC05-  
585 76RL01830 (EMSL, <https://ror.org/04rc0xn13>). This material is based upon work supported as part of the  
586 Watershed Function Scientific Focus Area funded by the U.S. Department of Energy, Office of Science,  
587 Office of Biological and Environmental Research under Award Number DE-AC02-05CH11231. Rocky  
588 Mountain Biological Laboratory (RMBL) lab spaces and equipment are funded in part by the RMBL  
589 Equipment (Understanding Genetic Mechanisms) Grant, DBI-1315705. This work was supported by the  
590 U.S. Department of Energy, Office of Science, Biological and Environmental Research, Early Career  
591 Research Program awarded under UC-DOE Prime Contract DE-AC02-05CH11231.

592

593 ***Conflicting interests.*** The authors declare that they have no conflict of interest.

594 REFERENCES

- 595 1. Schirpke, U. *et al.* Multiple ecosystem services of a changing Alpine landscape: past, present  
596 and future. *Int. J. Biodivers. Sci. Ecosyst. Serv. Manag.* **9**, 123–135 (2013).
- 597 2. Pederson, G. T. *et al.* The Unusual Nature of Recent Snowpack Declines in the North  
598 American Cordillera. *Science* **333**, 332–335 (2011).
- 599 3. Broadbent, A. A. D. *et al.* Climate change alters temporal dynamics of alpine soil microbial  
600 functioning and biogeochemical cycling via earlier snowmelt. *ISME J.* **15**, 2264–2275  
601 (2021).
- 602 4. Garcia, M. O. *et al.* Soil Microbes Trade-Off Biogeochemical Cycling for Stress Tolerance  
603 Traits in Response to Year-Round Climate Change. *Front. Microbiol.* **11**, 616 (2020).
- 604 5. Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome.  
605 *Nat. Rev. Microbiol.* **15**, 579–590 (2017).
- 606 6. Sorensen, P. O. *et al.* The Snowmelt Niche Differentiates Three Microbial Life Strategies  
607 That Influence Soil Nitrogen Availability During and After Winter. *Front. Microbiol.* **11**, 871  
608 (2020).
- 609 7. Paez-Espino, D. *et al.* Uncovering Earth's virome. *Nature* **536**, 425–430 (2016).
- 610 8. Santos-Medellin, C. *et al.* Viromes outperform total metagenomes in revealing the  
611 spatiotemporal patterns of agricultural soil viral communities. *ISME J.* **15**, 1956–1970  
612 (2021).
- 613 9. Bi, L. *et al.* Diversity and potential biogeochemical impacts of viruses in bulk and  
614 rhizosphere soils. *Environ. Microbiol.* **23**, 588–599 (2021).
- 615 10. Sorensen, J. W. & Zinke, L. A. DNase Treatment Improves Viral Enrichment in Agricultural  
616 Soil Viromes. *mSystems* **6**, 15 (2021).

617 11. Albright, M. B. N. *et al.* Experimental evidence for the impact of soil viruses on carbon  
618 cycling during surface plant litter decomposition. *ISME Commun.* **2**, 24 (2022).

619 12. Wu, R. *et al.* Moisture modulates soil reservoirs of active DNA and RNA viruses. *Commun.*  
620 *Biol.* **4**, 992 (2021).

621 13. Hillary, L. S., Adriaenssens, E. M., Jones, D. L. & McDonald, J. E. RNA-viromics reveals  
622 diverse communities of soil RNA viruses with the potential to affect grassland ecosystems  
623 across multiple trophic levels. *ISME Commun.* **2**, 34 (2022).

624 14. Durham, D. M. *et al.* Substantial differences in soil viral community composition within and  
625 among four Northern California habitats. *BioRxiv* (2022).

626 15. Santos-Medellín, C. *et al.* Spatial turnover of soil viral populations and genotypes overlain  
627 by cohesive responses to moisture in grasslands. *BioRxiv* (2022)  
628 doi:10.1101/2022.03.24.485562.

629 16. Wu, R. *et al.* DNA Viral Diversity, Abundance, and Functional Potential Vary across  
630 Grassland Soils with a Range of Historical Moisture Regimes. *mBio* **12**, e02595-21 (2021).

631 17. Adriaenssens, E., van Zyl, L., Cowan, D. & Trindade, M. Metaviromics of Namib Desert  
632 Salt Pans: A Novel Lineage of Haloarchaeal Salterproviruses and a Rich Source of ssDNA  
633 Viruses. *Viruses* **8**, 14 (2016).

634 18. Hwang, Y., Rahlf, J., Schulze-Makuch, D., Schloter, M. & Probst, A. J. Diverse Viruses  
635 Carrying Genes for Microbial Extremotolerance in the Atacama Desert Hyperarid Soil.  
636 *mSystems* **6**, 17 (2021).

637 19. Busse, L., Tisza, M. & DiRuggiero, J. Viruses Ubiquity and Diversity in Atacama Desert  
638 Endolithic Communities. *Viruses* **14**, 1983 (2022).

639 20. Pratama, A. A. & van Elsas, J. D. The ‘Neglected’ Soil Virome – Potential Role and Impact.

640 *Trends Microbiol.* **26**, 649–662 (2018).

641 21. Roux, S. & Emerson, J. B. Diversity in the soil virosphere: to infinity and beyond? *Trends*

642 *Microbiol.* S0966842X22001159 (2022) doi:10.1016/j.tim.2022.05.003.

643 22. Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in Soil

644 Ecosystems: An Unknown Quantity Within an Unexplored Territory. *Annu. Rev. Virol.* **4**,

645 201–219 (2017).

646 23. Al-Shayeb, B. *et al.* Clades of huge phages from across Earth’s ecosystems. *Nature* **578**,

647 425–431 (2020).

648 24. Callanan, J. *et al.* Expansion of known ssRNA phage genomes: From tens to over a thousand.

649 *Sci. Adv.* **6**, eaay5981 (2020).

650 25. Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. *Nat. Rev.*

651 *Microbiol.* **18**, 125–138 (2020).

652 26. Jansson, J. K. & Wu, R. Soil viral diversity, ecology and climate change. *Nat. Rev. Microbiol.*

653 (2022) doi:10.1038/s41579-022-00811-z.

654 27. Nayfach, S. *et al.* A genomic catalog of Earth’s microbiomes. *Nat. Biotechnol.* **39**, 499–509

655 (2021).

656 28. Camargo, A. P. *et al.* IMG/VR v4: an expanded database of uncultivated virus genomes

657 within a framework of extensive functional, taxonomic, and ecological metadata. *Nucleic*

658 *Acids Res.* gkac1037 (2022) doi:10.1093/nar/gkac1037.

659 29. ter Horst, A. M. *et al.* Minnesota peat viromes reveal terrestrial and aquatic niche partitioning

660 for local and global viral populations. *Microbiome* **9**, 233 (2021).

661 30. Neri, U. *et al.* Expansion of the global RNA virome reveals diverse clades of bacteriophages.

662 *Cell* **34** (2022).

663 31. Starr, E. P., Nuccio, E. E., Pett-Ridge, J., Banfield, J. F. & Firestone, M. K.

664 Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon

665 cycling in soil. *Proc. Natl. Acad. Sci.* **116**, 25900–25908 (2019).

666 32. Muscatt, G. *et al.* Crop management shapes the diversity and activity of DNA and RNA

667 viruses in the rhizosphere. *BioRxiv* (2022) doi:10.1101/2022.04.22.488307.

668 33. Wu, R. *et al.* RNA Viruses Linked to Eukaryotic Hosts in Thawed Permafrost. *mSystems* **7**,

669 e00582-22 (2022).

670 34. Trubl, G. *et al.* Active virus-host interactions at sub-freezing temperatures in Arctic peat soil.

671 *Microbiome* **9**, 208 (2021).

672 35. Emerson, J. B. *et al.* Host-linked soil viral ecology along a permafrost thaw gradient. *Nat.*

673 *Microbiol.* **3**, 870–880 (2018).

674 36. Van Goethem, M. W., Swenson, T. L., Trubl, G., Roux, S. & Northen, T. R. Characteristics of

675 Wetting-Induced Bacteriophage Blooms in Biological Soil Crust. *mBio* **10**, e02287-19

676 (2019).

677 37. Lee, S. *et al.* Methane-derived carbon flows into host–virus networks at different trophic

678 levels in soil. *Proc. Natl. Acad. Sci.* **118**, e2105124118 (2021).

679 38. Adriaenssens, E. M. *et al.* Environmental drivers of viral community composition in

680 Antarctic soils identified by viromics. *Microbiome* **5**, 83 (2017).

681 39. Trubl, G. *et al.* Soil Viruses Are Underexplored Players in Ecosystem Carbon Processing.

682 *mSystems* **3**, e00076-18 (2018).

683 40. Liang, X. *et al.* Lysogenic reproductive strategies of viral communities vary with soil depth  
684 and are correlated with bacterial diversity. *Soil Biol. Biochem.* **144**, 107767 (2020).

685 41. Chen, M.-L. *et al.* Viral Community and Virus-Associated Antibiotic Resistance Genes in  
686 Soils Amended with Organic Fertilizers. *Environ. Sci. Technol.* **55**, 13881–13890 (2021).

687 42. Inglis, L. K. & Edwards, R. A. How Metagenomics Has Transformed Our Understanding of  
688 Bacteriophages in Microbiome Research. *Microorganisms* **10**, (2022).

689 43. Brown, T. L., Charity, O. J. & Adriaenssens, E. M. Ecological and functional roles of  
690 bacteriophages in contrasting environments: marine, terrestrial and human gut. *Curr. Opin.*  
691 *Microbiol.* **70**, 102229 (2022).

692 44. Hubbard, S. S. *et al.* The East River, Colorado, Watershed: A Mountainous Community  
693 Testbed for Improving Predictive Understanding of Multiscale Hydrological–  
694 Biogeochemical Dynamics. *Vadose Zone J.* **17**, 1–25 (2018).

695 45. Guo, J. *et al.* VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA  
696 and RNA viruses. *Microbiome* **9**, 37 (2021).

697 46. Nayfach, S. *et al.* CheckV assesses the quality and completeness of metagenome-assembled  
698 viral genomes. *Nat. Biotechnol.* **39**, 578–585 (2021).

699 47. Roux, S. *et al.* Minimum Information about an Uncultivated Virus Genome (MIUViG). *Nat.*  
700 *Biotechnol.* **37**, 29–37 (2019).

701 48. Camargo, A. apcamargo/genomad: geNomad v1.1.0. (2022) doi:10.5281/zenodo.7015982.

702 49. Wolf, Y. I. *et al.* Origins and Evolution of the Global RNA Virome. *mBio* **9**, e02329-18  
703 (2018).

704 50. Bin Jang, H. *et al.* Taxonomic assignment of uncultivated prokaryotic virus genomes is  
705 enabled by gene-sharing networks. *Nat. Biotechnol.* **37**, 632–639 (2019).

706 51. Roux, S. *et al.* iPHoP: an integrated machine-learning framework to maximize host  
707 prediction for metagenome-assembled virus genomes. *BioRxiv* (2022)  
708 doi:10.1101/2022.07.28.501908.

709 52. Clarke, K. R. Non-parametric multivariate analyses of changes in community structure.  
710 *Austral Ecol.* **18**, 117–143 (1993).

711 53. Jończyk, E., Kłak, M., Międzybrodzki, R. & Górska, A. The influence of external factors on  
712 bacteriophages—review. *Folia Microbiol. (Praha)* **56**, 191–200 (2011).

713 54. Breitbart, M. & Rohwer, F. L. Here a virus, there a virus, everywhere the same virus? *Trends*  
714 *Microbiol.* **13**, (2005).

715 55. Knowles, B. *et al.* Lytic to temperate switching of viral communities. *Nature* **531**, 466–470  
716 (2016).

717 56. Andersson, A. F. & Banfield, J. F. Virus Population Dynamics and Acquired Virus Resistance  
718 in Natural Microbial Communities. *Science* **320**, 1047–1050 (2008).

719 57. Thingstad, T. F. Elements of a theory for the mechanisms controlling abundance, diversity,  
720 and biogeochemical role of lytic bacterial viruses in aquatic systems. *Limnol. Oceanogr.* **45**,  
721 1320–1328 (2000).

722 58. Wang, S. *et al.* Experimental evidence for the impact of phages on mineralization of soil-  
723 derived dissolved organic matter under different temperature regimes. *Sci. Total Environ.*  
724 **846**, 157517 (2022).

725 59. Chevallereau, A., Pons, B. J., van Houte, S. & Westra, E. R. Interactions between bacterial  
726 and phage communities in natural environments. *Nat. Rev. Microbiol.* **20**, 49–62 (2022).

727 60. Liao, H. *et al.* Response of soil viral communities to land use changes. *Nat. Commun.* **13**,  
728 6027 (2022).

729 61. Silveira, C. B., Luque, A. & Rohwer, F. The landscape of lysogeny across microbial  
730 community density, diversity and energetics. *Environ. Microbiol.* **23**, 4098–4111 (2021).

731 62. Paterson, J. S. *et al.* A hydrocarbon-contaminated aquifer reveals a Piggyback-the-Persistent  
732 viral strategy. *FEMS Microbiol. Ecol.* **95**, fiz116 (2019).

733 63. Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time  
734 bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. *ISME J.* **10**,  
735 437–449 (2016).

736 64. Zayed, A. A. *et al.* Cryptic and abundant marine viruses at the evolutionary origins of Earth's  
737 RNA virome. *Science* **376**, 156–162 (2022).

738 65. Sutela, S., Poimala, A. & Vainio, E. J. Viruses of fungi and oomycetes in the soil  
739 environment. *FEMS Microbiol. Ecol.* **95**, fiz119 (2019).

740 66. Chen, Y.-M. *et al.* RNA viromes from terrestrial sites across China expand environmental  
741 viral diversity. *Nat. Microbiol.* **7**, 1312–1323 (2022).

742 67. Koonin, E. V. & Wolf, Y. I. Evolution of the CRISPR-Cas adaptive immunity systems in  
743 prokaryotes: models and observations on virus–host coevolution. *Mol. Biosyst.* **11**, 20–27  
744 (2015).

745 68. Clum, A. *et al.* DOE JGI Metagenome Workflow. *mSystems* **6**, e00804-20 (2021).

746 69. Li, H. BFC: correcting Illumina sequencing errors. *Bioinformatics* **31**, 2885–2887 (2015).

747 70. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile  
748 metagenomic assembler. *Genome Res.* **27**, 824–834 (2017).

749 71. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.  
750 *EMBnet.journal* **17**, 10–12 (2011).

751 72. Chen, I.-M. A. *et al.* IMG/M v.5.0: an integrated data management and comparative analysis  
752 system for microbial genomes and microbiomes. *Nucleic Acids Res.* **47**, D666–D677 (2019).

753 73. Hyatt, D. *et al.* Prodigal: prokaryotic gene recognition and translation initiation site  
754 identification. *BMC Bioinformatics* **11**, 119 (2010).

755 74. Lukashin, A. GeneMark.hmm: new solutions for gene finding. *Nucleic Acids Res.* **26**, 1107–  
756 1115 (1998).

757 75. Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded microbial genome  
758 coverage and improved protein family annotation in the COG database. *Nucleic Acids Res.*  
759 **43**, D261–D269 (2015).

760 76. Finn, R. D. *et al.* The Pfam protein families database: towards a more sustainable future.  
761 *Nucleic Acids Res.* **44**, D279–D285 (2016).

762 77. Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology  
763 search: HMMER3 and convergent evolution of coiled-coil regions. *Nucleic Acids Res.* **41**,  
764 e121–e121 (2013).

765 78. Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic  
766 sequence comparison. *Genome Res.* **21**, 487–493 (2011).

767 79. Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for  
768 understanding genome variations in KEGG. *Nucleic Acids Res.* **47**, D590–D595 (2019).

769 80. Hofmeyr, S. *et al.* Terabase-scale metagenome coassembly with MetaHipMer. *Sci. Rep.* **10**,  
770 10689 (2020).

771 81. Chen, I.-M. A. *et al.* The IMG/M data management and analysis system v.6.0: new tools and  
772 advanced capabilities. *Nucleic Acids Res.* **49**, D751–D763 (2021).

773 82. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node  
774 solution for large and complex metagenomics assembly via succinct de Bruijn graph.  
775 *Bioinformatics* **31**, 1674–1676 (2015).

776 83. Delcher, A. L., Salzberg, S. L. & Phillippy, A. M. Using MUMmer to Identify Similar  
777 Regions in Large Sequence Sets. *Curr. Protoc. Bioinforma.* **00**, 10.3.1-10.3.18 (2003).

778 84. Hatcher, E. L. *et al.* Virus Variation Resource – improved response to emergent viral  
779 outbreaks. *Nucleic Acids Res.* **45**, D482–D490 (2017).

780 85. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using  
781 DIAMOND. *Nat. Methods* **12**, 59–60 (2015).

782 86. Sussman, J. L. *et al.* Protein Data Bank (PDB): Database of Three-Dimensional Structural  
783 Information of Biological Macromolecules. *Acta Crystallogr. D Biol. Crystallogr.* **54**, 1078–  
784 1084 (1998).

785 87. El-Gebali, S. *et al.* The Pfam protein families database in 2019. *Nucleic Acids Res.* **47**,  
786 D427–D432 (2019).

787 88. Chandonia, J.-M., fox, N. K. & Brenner, S. E. SCOPe: Manual Curation and Artifact  
788 Removal in the Structural Classification of Proteins - extended Database. *J. Mol. Biol.* **429**,  
789 348–355 (2017).

790 89. Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein  
791 sequence searching by HMM-HMM alignment. *Nat. Methods* **9**, 173–175 (2012).

792 90. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–  
793 2079 (2009).

794 91. Quinlan, A. R. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. *Curr. Protoc.*  
795 *Bioinforma.* **47**, 11.12.1-11.12.34 (2014).

796 92. Wolf, Y. I. *et al.* Doubling of the known set of RNA viruses by metagenomic analysis of an  
797 aquatic virome. *Nat. Microbiol.* **5**, 1262–1270 (2020).

798 93. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the  
799 analysis of massive data sets. *Nat. Biotechnol.* **35**, 1026–1028 (2017).

800 94. Katoh, K. MAFFT: a novel method for rapid multiple sequence alignment based on fast  
801 Fourier transform. *Nucleic Acids Res.* **30**, 3059–3066 (2002).

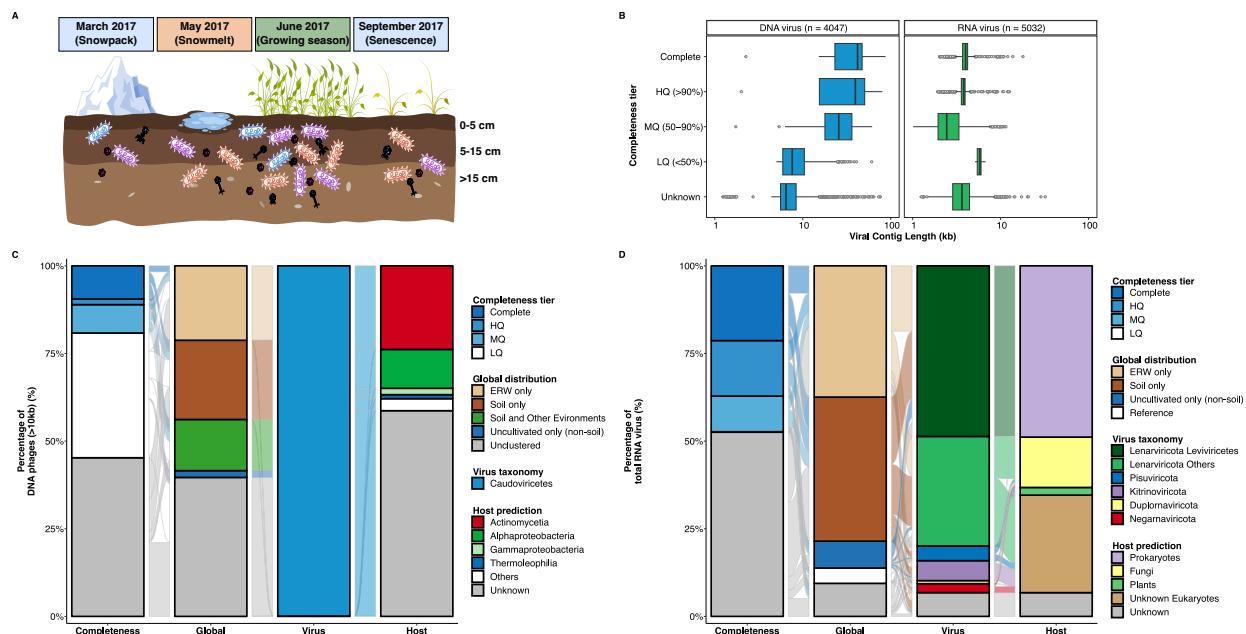
802 95. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated  
803 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972–1973  
804 (2009).

805 96. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately Maximum-Likelihood  
806 Trees for Large Alignments. *PLoS ONE* **5**, e9490 (2010).

807 97. O’Leary, N. A. *et al.* Reference sequence (RefSeq) database at NCBI: current status,  
808 taxonomic expansion, and functional annotation. *Nucleic Acids Res.* **44**, D733–D745 (2016).

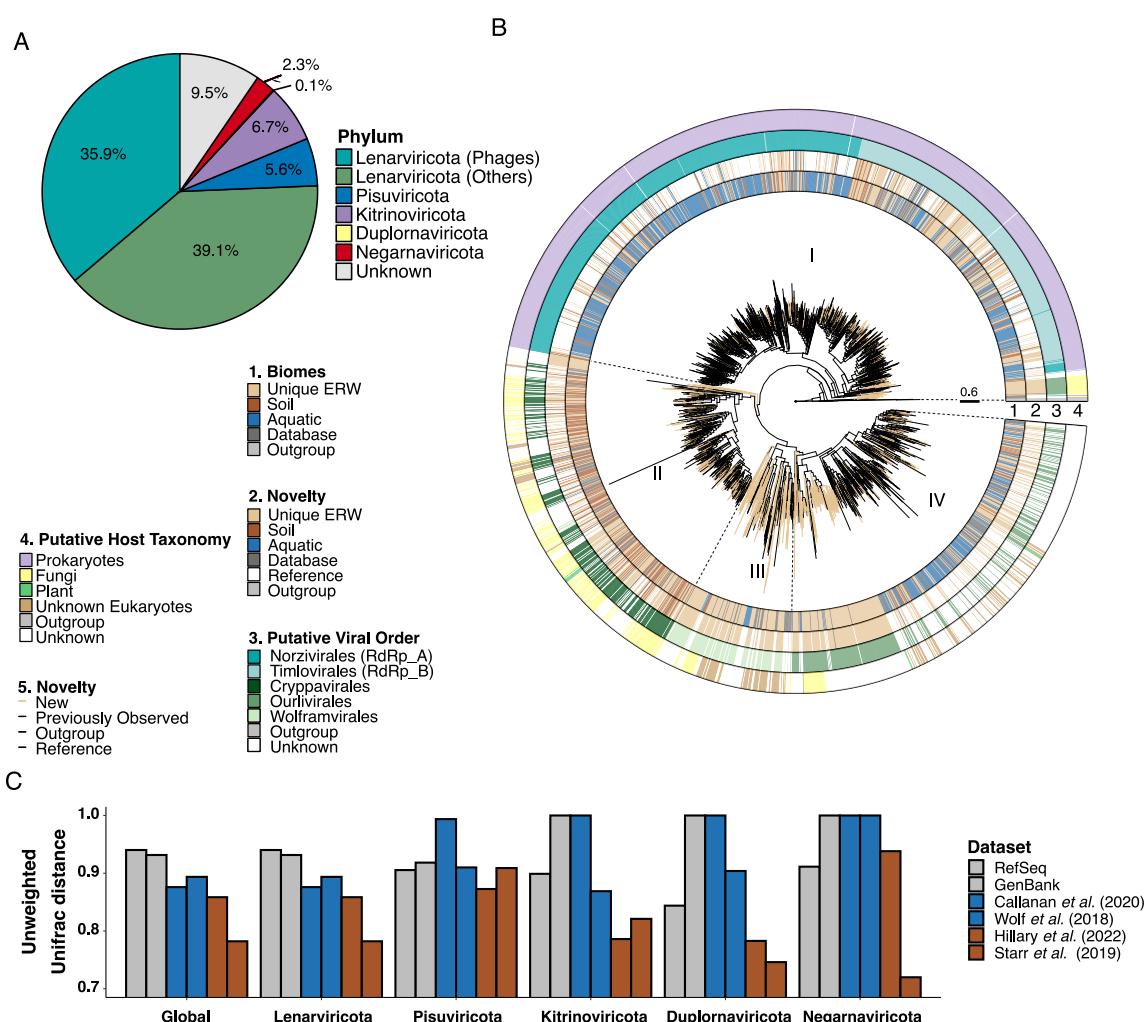
809 98. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068–2069  
810 (2014).

811 99. Hockenberry, A. J. & Wilke, C. O. BACPHLIP: predicting bacteriophage lifestyle from  
812 conserved protein domains. *PeerJ* **9**, e11396 (2021).


813 100. R Core Team. R: A language and environment for statistical computing. <https://www.r-project.org/> (2018).

814 101. Parks, D. H. & Beiko, R. G. Identifying biologically relevant differences between  
816 metagenomic communities. *Bioinformatics* **26**, 715–721 (2010).

817


818 **FIGURES**

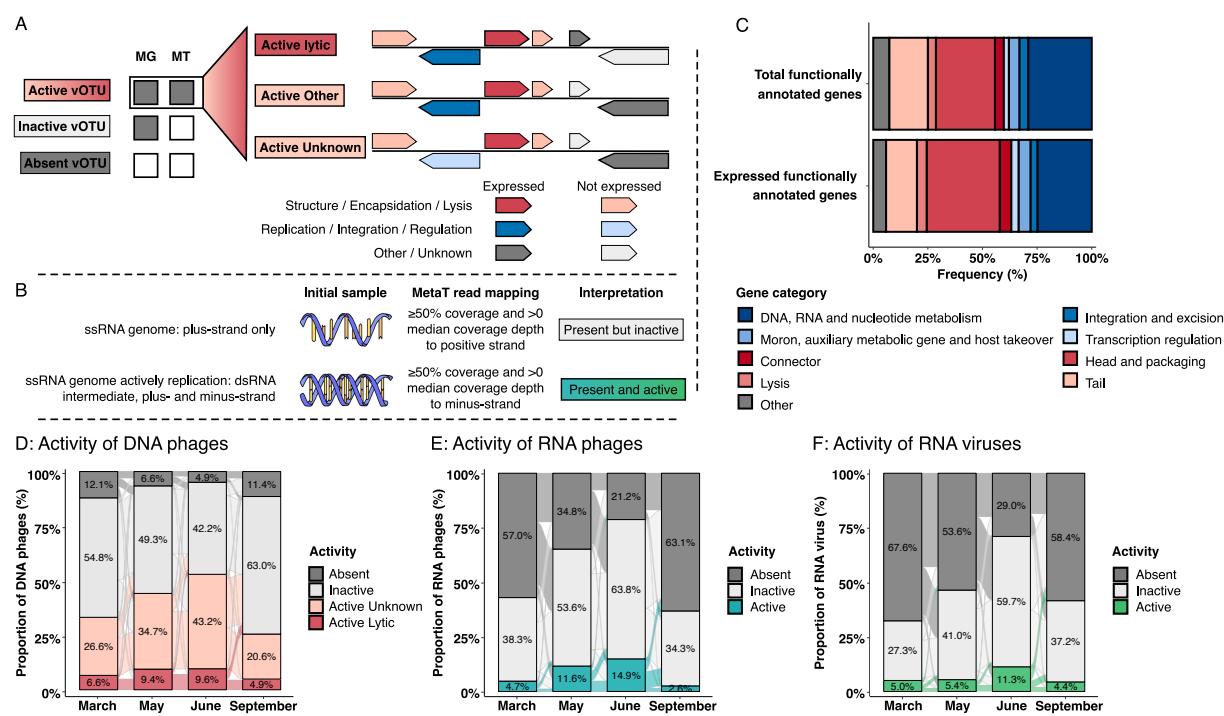
819 **Figure 1. Overview of sampling strategy, and general features of East River Watershed (ERW) DNA**  
 820 **and RNA viruses. A.** Visual schematic of the sampled mountainous ERW soils. Samples were collected  
 821 from bulk soils in the East River Watershed, Colorado on four dates, starting first at peak winter snow depth  
 822 (March 7, 2017), during the snowmelt period (May 9, 2017), following the complete loss of snow and the  
 823 start of the plant growing season (June 9, 2017), and finishing in autumn after plant senescence (September  
 824 15, 2017). Soil cores from discrete locations were subsampled and split into three discrete depth increments;  
 825 0 to 5 cm, 5 to 15 cm, and 15 cm + below the soil surface. Sample distribution. During snow-free times of  
 826 the year (i.e., September and June), soils were collected at the upslope and downslope while during periods  
 827 of winter snow cover (i.e., March and May), snow-pits were dug down to the soil surface in order to sample  
 828 soils from beneath the snowpack, generating 46 and 43 metagenomic and metatranscriptomic samples,  
 829 respectively. More information on individual samples is available on ESS-DIVE (<https://ess-dive.lbl.gov>)  
 830 using accession numbers listed in Supplementary Table. **B.** Length distribution of the different quality tiers  
 831 of DNA (blue) and RNA (green) vOTUs, based on their estimated completeness assessed by CheckV. HQ:  
 832 High-quality ( $\geq 90\%$  complete), MQ: Medium-quality ( $\geq 50\%$  complete). LQ: Low-quality ( $< 50\%$   
 833 complete). **C.** Completeness, global distribution, virus taxonomy, and host taxonomy for DNA vOTUs  
 834  $\geq 10\text{kb}$ . Global distribution is based on shared clusters from a vContact2 analysis, virus and host taxonomy  
 835 are based on GeNomad and iPHoP tools, respectively (see Methods). **D.** Completeness, global distribution,  
 836 virus taxonomy, and host taxonomy for RNA vOTUs. Global distribution is assessed by genome-based  
 837 clustering, virus and host taxonomy are based on GeNomad and iPHoP and refined using phylogenetic  
 838 analyses of the RNA virus marker gene RdRP (RNA-dependent RNA polymerase, see Methods).



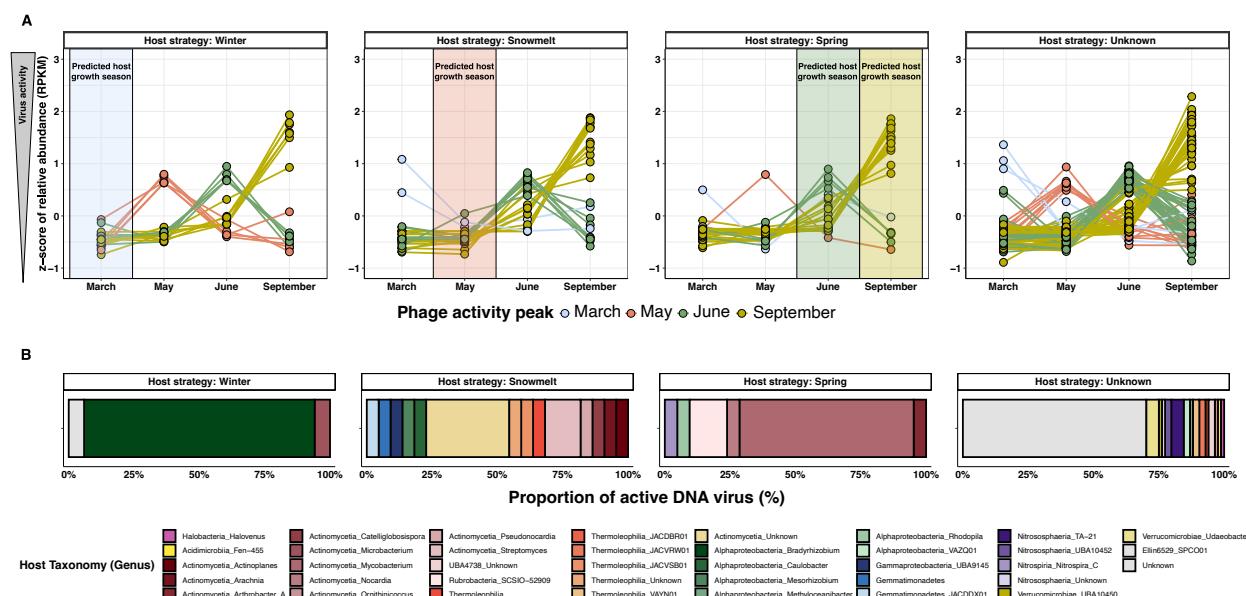


841 **Figure 2. Diversity and phylogenetic analyses of ERW RNA viral communities.** **A.** Distribution of RNA  
842 viral phyla, based on putative taxonomic assignments for RdRP sequences (derived from viral taxonomy  
843 of known RdRP sequences in RefSeq). The *Lenarviricota* phylum is divided between bacteria-infecting  
844 viruses ("phages") and eukaryote-infecting viruses. **B.** Rooted phylogenetic tree of RdRP sequences  
845 belonging to the ssRNA *Lenarviricota* phylum. The tree is rooted using reverse transcriptases as an  
846 outgroup and visualized with *ggtree*. The tree contains 1,331 cluster representatives from ERW soil samples  
847 (ring 1, light brown), aligned with those used to construct the RNA global phylogeny from previous  
848 metatranscriptomic studies and public databases. Clusters composed exclusively of ERW sequences are  
849 colored in brown (ring 2) with branches leading to these clusters highlighted in light brown in the tree,  
850 while clusters composed of ERW sequences and existing virus sequences are colored by the environment  
851 type of the study (soil: dark brown, aquatic: blue, public databases: dark grey). Virus taxonomy (ring 3) and  
852 host (ring 4) are predicted based on the position of reference sequences from the RefSeq database in the  
853 tree (see Methods). **C.** Unweighted UNIFRAC distances between RdRP sequences identified in this study  
854 and previously published collections of environmental RNA viruses<sup>13,24,31,49</sup>. UNIFRAC distances were  
855 calculated and are presented separately for each of the 5 RNA virus phyla, with the average distance  
856 presented in the first "Global" column. Reference databases are colored in grey, studies from aquatic  
857 environments in blue and soils in dark brown. A distance close to 0 means that the two datasets are  
858 phylogenetically similar.




859

860


861 **Figure 3. Overview of the temporal dynamics of total and active DNA and RNA viral communities.**  
862 **A.** Distribution of all DNA (blue) and RNA (green) vOTUs across metagenome and metatranscriptome  
863 datasets. The vOTUs and samples are clustered based on vOTU relative abundances (log-transformed  
864 RPKM). Color bars above the heatmap indicate the location, depth, season, and type of each dataset. The  
865 left bar (STAMP) indicates the vOTUs with significant differences in relative abundance between seasons  
866 ( $p < 0.05$ ). **B to G.** Beta-diversity of total RNA (B), total DNA (C) and active DNA (D) viral communities  
867 across the 4 seasons. For each group of viruses, non-metric multidimensional scaling (NMDS) ordination  
868 plots, representing the (dis)similarities between samples based on vOTU relative abundance, are presented  
869 in the left panels (B, C, and D). Individual samples are colored based on season: September (Yellow), March  
870 (Blue), May (Red), and June (Green). Stress values associated with two-dimensional ordination and  
871 PERMANOVA results describing the variance in community composition explained by season are reported  
872 for each plot. The relative abundance of RPKM of total RNA (E), total DNA (F) and active DNA (G) vOTUs  
873 predicted to infect putative host groups (for RNA vOTUs) or bacterial class (for DNA vOTUs) is indicated  
874 for each. “Other” represents remaining host classes (representing less than 0.1% of hosts). For “active”  
875 DNA, only vOTUs identified as active were considered (see Methods), and the RPKM from  
876 metatranscriptome read mapping was used as estimation of the relative abundance instead of RPKM from  
877 metagenome read mapping.



879 **Figure 4. Functional annotation and activity of DNA and RNA viruses. A.** Schematic representation of  
 880 the framework used for assessing the activity, including infection stage, of DNA phages. Metatranscriptome  
 881 read mapping is used to identify expressed genes in each viral DNA vOTU, and the number and annotation  
 882 of these genes is then used to determine the activity and the infection stage of each DNA vOTU. **B.**  
 883 Schematic representation of the framework used for assessing the activity of ssRNA viruses. Based on  
 884 metatranscriptome read mapping, ssRNA viruses are classified as actively replicating if both coding and  
 885 non-coding genome strands are detected, and considered as “present” if only the coding strand is detected.  
 886 **C.** Proportion of total and expressed annotated genes based on functional annotation using Prokka v1.14.6  
 887 from DNA viral genomes by aligning them against PHROGS v4 database, with an e-value cut-off 1E-6.  
 888 Functional categories associated with lytic infections, i.e., categories associated with virion production and  
 889 host cell lysis, are colored in red, and the other major phage functional categories are colored in blue. Only  
 890 genes that were annotated are included in the figure, and the proportion of annotated genes over all genes  
 891 in the (active) DNA vOTUs is indicated next to each bar chart. **D.** Proportion of active (dark and light red),  
 892 inactive (light grey), and absent (dark grey) DNA phages across months. Within DNA vOTUs identified as  
 893 active, the ones likely engaged in active lytic infection was identified based on the functional annotation of  
 894 expressed genes, while other active vOTUs are identified as “Active - Unknown”. **E and F.** Proportion of  
 895 active (blue and green), inactive (light grey), and absent (dark grey) RNA phages (E) and RNA viruses (F)  
 896 across months. A vOTU is considered as active when it is detected as active in at least one sample. The  
 897 proportion of active vOTUs for each month is the sum of all active vOTUs for a given month.



900 **Figure 5. Temporal dynamics of virus-host relationships.** **A.** Temporal dynamics of active DNA phages  
 901 exhibiting a significant of changes in active DNA vOTU abundance between months (n = 144). The  
 902 significance of changes in abundance between months was tested with a multiple group statistic test  
 903 (ANOVA), a post-hoc test (Tukey-Kramer) to identify which pairs of months differ from each other and a  
 904 multiple test correction (Storey's FDR) to control false discovery rate, using STAMP. The seasonal  
 905 dynamics of each active DNA vOTUs exhibiting significant changes in abundance between months was  
 906 plotted using the mean of RPKM transformed in z-score. Each vOTU was associated to a specific season  
 907 based on its peak of activity (colored lines). Finally, vOTUs' dynamics are grouped by panel, depending of  
 908 the “ecology strategy” of their assigned host (see Methods). Each host were associated to an “ecological  
 909 strategy” depending to the month (or season) a given host was supposed to be growing<sup>6</sup>, represented by  
 910 colored boxes in each panel. Finally, all active DNA vOTUs without assigned host or host without a clear  
 911 ecological strategy were plotted in the last panel. **B.** Proportion of active DNA vOTUs exhibiting a  
 912 significant of changes in active DNA vOTU abundance between months determined by STAMP, and  
 913 colored by their putative host.

