

1 Identification of a carbohydrate-recognition motif of 2 purinergic receptors

3 Lifen Zhao^a, Fangyu Wei^{a,b}, Xinheng He^{a,b}, Hualiang Jiang^{a,b,c}, Liuqing Wen^{a,b,*} Xi
4 Cheng^{a,b,c,*}

5

6 ^aState Key Laboratory of Drug Research and Carbohydrate-Based Drug Research Center,

7 Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China;

8 ^bUniversity of Chinese Academy of Sciences, Beijing, China;

9 ^cSchool of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced
10 Study, Hangzhou, China

11

12 ***For correspondence:**

13 xicheng@simm.ac.cn, lwen@simm.ac.cn

14 Abstract

15 As a major class of biomolecules, carbohydrates play indispensable roles in various
16 biological processes. However, it remains largely unknown how carbohydrates directly
17 modulate important drug targets, such as G-protein coupled receptors (GPCRs). Here, we
18 employed P2Y purinoceptor 14 (P2Y14), a drug target for inflammation and immune
19 responses, to uncover the sugar nucleotide activation of GPCRs. Integrating molecular
20 dynamics simulation with functional study, we identified the uridine diphosphate (UDP)-
21 sugar-binding site on P2Y14, and revealed that a UDP-glucose might activate the receptor
22 by bridging the transmembrane helices (TM) 2 and 7. Between TM2 and TM7 of P2Y14,
23 a conserved salt bridging chain ($K^{2.60}$ - $D^{2.64}$ - $K^{7.35}$ - $E^{7.36}$, KDKE) was identified to
24 distinguish different UDP-sugars, including UDP-glucose, UDP-galactose, UDP-
25 glucuronic acid and UDP-N-acetylglucosamine. We identified the KDKE chain as a
26 conserved functional motif of sugar binding for both P2Y14 and P2Y purinoceptor 12
27 (P2Y12), and then designed three sugar nucleotides as agonists of P2Y12. These results
28 not only expand our understanding for activation of purinergic receptors but also provide
29 insights for the carbohydrate drug development for GPCRs.

30 **Introduction**

31 As significant components of the organism, carbohydrates play indispensable roles in
32 energy supply, cell signaling and immune responses (*Gagneux & Varki, 1999*).
33 Dysregulation of carbohydrates has been proved to be associated with the development of
34 various diseases (*Reily et al, 2019*). However, it is still elusive how carbohydrates directly
35 act on major therapeutic targets, including G-protein coupled receptors (GPCRs) (*Cheng*
36 *& Jiang, 2019; Hauser et al, 2017*). P2Y purinoceptor 14 (P2Y14) represents an
37 outstanding model system for understanding carbohydrate-modulation of GPCRs. It
38 belongs to P2Y purinoceptor subfamily, consisting of receptors responding to nucleotides,
39 including adenosine diphosphate (ADP) and uridine diphosphate (UDP) (*Ralevic &*
40 *Burnstock, 1998*). Distinct from the other purinoceptors, P2Y14 is potently activated by
41 UDP and a class of carbohydrates, i.e., UDP-sugars (*Abbracchio et al, 2006; Jacobson et*
42 *al, 2020*). UDP-sugars activate P2Y14 with a relative potency order of UDP-glucose
43 (UDP-Glc), UDP-galactose (UDP-Gal), UDP-glucuronic acid (UDP-GlcA) and UDP-N-
44 acetylglucosamine (UDP-GlcNAc) (*Chambers et al, 2000; Hamel et al, 2011; Ko et al,*
45 *2009; Ko et al, 2007*). These sugar nucleotides act as important signaling molecules via
46 P2Y14 to mediate many physiological processes (*Amison et al, 2017; Breton & Brown,*
47 *2018; Ferreira et al, 2017; Lazarowski, 2010; Muller et al, 2005; Sesma et al, 2016*).
48 Particularly, UDP-Glc regulates immune responses and associate with asthma, kidney
49 injury, and lung inflammation (*Amison et al., 2017; Breton & Brown, 2018; Ferreira et*
50 *al., 2017; Muller et al., 2005; Sesma et al., 2016*). As an isomer of UDP-Glc, UDP-Gal is
51 present in various cell models, including physiologically relevant primary cultures of

52 human bronchial epithelial cells (*Lazarowski, 2010*). It remains unknown how these sugar
53 nucleotides are recognized by P2Y14.

54

55 As the closest homolog to P2Y14, P2Y purinoceptor 12 (P2Y12) has not been reported
56 to be activated by any sugar nucleotide (*Jacobson et al., 2020; Ralevic & Burnstock, 1998*).
57 P2Y12 is potently activated ADP. The reported agonist-bound structures of P2Y
58 purinoceptor 12 (P2Y12) provide insights to understand the nucleotide activation of P2Y
59 purinoceptors. The crystal structures of P2Y12 show that a full agonist 2-methylthio-
60 adenosine-59-diphosphate (2MeSADP, a close analogue of ADP) binds to an extracellular
61 pocket consisting of transmembrane (TM) helices (*Zhang et al, 2014a*). Since P2Y12 is
62 highly similar to P2Y14 with 45.67% amino acid sequence identity, it would be interesting
63 to investigate whether this receptor is also sensible to sugar nucleotides.

64

65 Here, we combined molecular docking, molecular dynamics (MD) simulations and
66 functional study to reveal the molecular mechanism how P2Y14 is activated by a sugar
67 nucleotide. The ligand-binding models of different UDP-sugars (UDP-Glc, UDP-Gal,
68 UDP-GlcA and UDP-GlcNAc) were quantitatively characterized to identify the sugar-
69 recognition site of P2Y14. Both P2Y14 and P2Y12 were employed to unveil a conserved
70 sugar-binding motif. Multiple carbohydrates were designed and validated as their agonists
71 targeting the conserved functional motif.

72 **Results**

73 **Identification of sugar-binding site in P2Y14**

74 Both UDP and UDP-Glc potently activate P2Y14 with EC₅₀ values of 50.9 ± 6.1 nM and
75 40.3 ± 1.5 nM, respectively (**Figure 1 A-C**). Compared with UDP, UDP-Glc showed an
76 increased potency on P2Y14 at high concentration (**Figure 1B-C**), suggesting that the sugar
77 moiety of UDP-Glc contributes to activating P2Y14. To investigate how UDP-Glc
78 regulates the P2Y14 via its sugar moiety, we used molecular docking to construct UDP-
79 Glc-bound models of P2Y14 and compared them with UDP-bound P2Y14 models (**Figure**
80 **1D-G**). Because the protein structure of P2Y14 is unrevealed, we employed the X-ray
81 structures of P2Y12 (*Zhang et al., 2014a*) as templates to constructed homology models of
82 human P2Y14. The molecular docking showed both UDP and UDP-Glc bind to an
83 extracellular pocket consisting of transmembrane (TM) helices 2-7 and extracellular loop
84 (ECL) 2 (**Figure 1D**), which is corresponding to a known agonist binding pocket of P2Y12
85 (*Zhang et al., 2014a*). The docking score of UDP-Glc is -9.3 kcal/mol, which is 0.8
86 kcal/mol lower than that of UDP (docking score = -8.5 kcal/mol), indicating that both UDP
87 and UDP-Glc stably bind to P2Y14.

88

89 Compared with the UDP-bound receptor model (**Figure 1E**), the UDP-Glc-bound
90 model showed extra interactions between the glucose-moiety and the TM2, TM3, TM7 and
91 ECL2 of P2Y14 (**Figure 1F**), enhancing the binding of UDP-Glc. Based on these
92 molecular docking models, we further decomposed the ligand-binding energy to each
93 receptor residue (**Figure 1G**). Five residues ($K77^{2.60}$, $D81^{2.64}$, $N90^{3.21}$, $I170^{ECL2}$ and
94 $E278^{7.36}$; superscript indicates Ballesteros-Weinstein residue numbering (*Ballesteros*,

95 1995)) were predicted to stabilize UDP-Glc binding (**Figure 1F, G**), while they made few
96 energetic contributions (van der Waals energy > -0.25 Rosetta energy unit) to UDP binding
97 (**Figure 1E, G**). As shown in Fig 1E, F, two sub-pockets of P2Y14 were unveiled for ligand
98 binding. The sub-pocket 1 is formed by 16 residues of TMs 3-7 and ECL2 (**Figure 1G**,
99 **Figure 1—Figure supplement 1A, B**) and binds to the nucleotide moiety of the agonist,
100 i.e., UDP. The sub-pocket 2 is the specific sugar-binding site involving K77^{2.60}, D81^{2.64},
101 N90^{3.21}, I170^{ECL2} and E278^{7.36} (**Figure 1F, G**). These residues are primarily charged or
102 polar amino acids, which could make hydrogen bonds with the glucose hydroxyl groups of
103 UDP-Glc (**Figure 1F**). To validate the proposed sugar-binding sites, we designed single-
104 point mutations of these five residues (K77A, D81A, N90A, I170A and E278A). Among
105 these mutants, D81A and E278A showed significantly reduced activities by UDP-Glc
106 compared with the wild-type (WT) group (**Figure 1H**). However, substitution of D81^{2.64}
107 or E278^{7.36} by alanine did not significantly affect the receptor activities by UDP (**Figure**
108 **1H**). Interestingly, K77A mutation diminished both UDP-Glc- and UDP-induced calcium
109 mobilization (**Figure 1H**), but it showed greater impact on UDP-Glc-induced receptor
110 responses than UDP-induced ones (**Figure 1H, I**), suggesting extra interactions between
111 K77^{2.60} and sugar-moiety of UDP-Glc. Two mutations on TM3 and ECL2 (N90A and
112 I170A) did not significantly affect the receptor responses by UDP or UDP-Glc (**Figure**
113 **1—Figure supplement 1C, D**). These findings indicate that sub-pocket 2 residues of TM2
114 and TM7 provide major contributes to stabilizing the sugar moiety of UDP-Glc.

115

116 **UDP-Glc as a “glue” for P2Y14 activation**

117 The molecular docking employs rigid side chains of the receptor and does not include the
118 influence of explicit environment on molecular interactions. To investigate how UDP-Glc
119 interacts with P2Y14, we performed all-atom MD simulations of the P2Y14 receptor with
120 and without UDP-Glc (**Figure 2A**). We used the molecular docking model of P2Y14 to
121 construct the simulation systems. Apo P2Y14 and UDP-Glc-bound P2Y14 simulation
122 models showed different conformations in TM6 and TM7 (**Figure 2A, B**). In UDP-Glc-
123 bound P2Y14 simulations, the extracellular tip of TM6 shifted over 3 Å and TM7 over 4
124 Å towards the receptor core, compared with the apo P2Y14 simulations (**Figure 2A, B**).
125 This inward shift of TM6 and TM7 allowed formation of polar and ionic interactions with
126 the UDP-Glc (**Figure 2B, C**). During UDP-Glc-bound P2Y14 simulations, two charged
127 residues K277^{7.35} and E278^{7.36} formed hydrogen bonds with the glucose 6' hydroxyl group
128 of UDP-Glc to keep TM7 close to the receptor core (**Figure 2B, C**), and an arginine residue
129 (R253^{6.55}) formed a salt bridge with the phosphate group of UDP-Glc to stabilize the
130 inward shift of TM6 (**Figure 2B, C**). Consistently, compared with WT group (EC50 of
131 40.3 ± 1.5 nM), single-point mutations (R253A and E278) of TM6 and TM7 helices
132 resulted to diminished UDP-Glc-induced calcium mobilization (EC50 of 808.6 ± 43.6 nM
133 for R253A and 60.2 ± 3.6 nM for E278) (**Figure 1H, Figure 2D**). In addition, at the
134 extracellular side, the distance between TM5 and TM6 of UDP-Glc-bound P2Y14 was 5.9
135 Å shorter than that in the apo system (**Figure 2—Figure supplement 1A, B**). Y189^{5.41} and
136 T257^{6.59} made stable hydrophobic interactions to maintain the tight compact between TM5
137 and TM6 in UDP-Glc-bound-P2Y14 simulations, while TM6 did not interact with TM5 at
138 the extracellular side in the apo simulations (**Figure 2—Figure supplement 1A, B**).

139 Compared with WT group (EC50 of 40.3 ± 1.5 nM), a mutation of TM6 (T257A) showed
140 significantly reduced UDP-Glc-induced responses (EC50 of 504.9 ± 15.9 nM) (**Figure 2**—
141 **Figure supplement 1C**), fully agreeing with our simulation models. Collectively, these
142 data suggest UDP-Glc might serve as intramolecular “glue” to make a tight helical bundle
143 of P2Y14, involving TM6 and TM7.

144

145 **Molecular recognition of P2Y14 via sugar-binding site**

146 P2Y14 could be activate by different UDP-sugars with distinct potencies. With only one
147 group substitution at the sugar moiety, UDP-Glc induced stronger activity on P2Y14 (EC50
148 = 40.3 ± 1.5 nM) than the other UDP-sugars, i.e., UDP-Gal (EC50 = 78.3 ± 9.2 nM), UDP-
149 GlcA (EC50 = 59.9 ± 4.8 nM) and UDP-GlcNAc (EC50 = 184.4 ± 11.8 nM) (**Figure 3A**,
150 **B**). To investigate how P2Y14 recognizes different sugar moieties, we performed MD
151 simulations of the human P2Y14 receptor complex with UDP-Gal, UDP-GlcA and UDP-
152 GlcNAc, respectively, and compared them with the UDP-Glc-bound P2Y14 simulations.
153 We observed that UDP-Gal, UDP-GlcA and UDP-GlcNAc bound to P2Y14 at the same
154 pocket as UDP-Glc. Similar to UDP-Glc, their uridine groups occupied the sub-pocket 1
155 of P2Y14, while their sugar moieties bound to the sub-pocket 2 during simulations (**Figure**
156 **3C-F**). At the sub-pocket 2, a stable salt bridging chain formed by four charged residues
157 ($K77^{2.60}$, $D81^{2.64}$, $K277^{7.35}$ and $E278^{7.36}$) were observed in all systems (**Figure 3C-F**). The
158 negative charged glutamic acid residue $E278^{7.36}$ linked TM2 and TM7 helices by forming
159 salt bridges with $K77^{2.60}$ and $K277^{7.35}$, while the other negative charged residue $D81^{2.64}$
160 forming a salt bridge with $K77^{2.60}$ to further stabilize these ionic interactions (**Figure 3C-F**).

162 In simulations, different sugar moieties bound to the K77^{2.60}-D81^{2.64}-K277^{7.35}-E278^{7.36}
163 salt bridging chain with distinct binding modes (**Figure 3C-F, Figure 3—Figure**
164 **supplement 1**). For UDP-Glc, both K277^{7.35} and E278^{7.36} could form hydrogen bonds with
165 the glucose 6' hydroxyl group to keep TM7 close to the receptor core (**Figure 3C, Figure**
166 **3—Figure supplement 2A**). However, in UDP-GlcA-bound P2Y14 simulations, at the
167 corresponding position, the 5' carboxyl group of the sugar moiety repelled the negatively
168 charged E278^{7.36} (**Figure. 3D, Figure 3—Figure supplement 2B**). Compared with that of
169 WT group (EC50 = 59.9 ± 4.8 nM), the single-point mutation of E278A significantly
170 enhanced the UDP-GlcA-induced calcium mobilization with a EC50 of 38.2 ± 2.2 nM
171 (**Figure 3G**). These experimental results support with the proposed sugar-binding model
172 (**Figure 3D**) and suggest that the reduced interactions of UDP-GlcA with TM7 (E278^{7.36})
173 might contributed to its weak potency on P2Y14. Substitution of 2' hydroxyl group by an
174 acetamido group led to a rotation of the sugar moiety of UDP-GlcNAc in simulations
175 (**Figure 3E**). Consequentially, the 6' hydroxyl of N-acetylglucosamine group flipped to
176 form hydrogen bonds with K77^{2.60} and D81^{2.64} instead of K277^{7.35} and E278^{7.36} (**Figure**
177 **3E, Figure 3—Figure supplement 2C**). Consistently, single-point mutation of D81A made
178 more significant effect to reduce the UDP-GlcNAc-induced receptor activities, compared
179 with that of E278A (**Figure 3H**). Compared with the other three UDP-sugars, UDP-Gal
180 has a different orientation of 4' hydroxyl group. The 4' hydroxyl group of galactose formed
181 a stable hydrogen bond with K77^{2.60} and disrupted the interaction between 6' hydroxyl
182 group with E278^{7.36} (**Figure 3F, Figure 3—Figure supplement 2D**). Compared with
183 UDP-Glc, UDP-Gal had more interactions with TM2 and less interactions with TM7
184 (E278^{7.36}). Substitute of E278^{7.36} by alanine did not significantly affect the UDP-Gal-

185 induced receptor response (**Figure 3I**), agreeing with the proposed UDP-Gal-binding
186 model (**Figure 3F**). For all UDP-sugars, at least three residues of K77^{2.60}, D81^{2.64}, K277^{7.35}
187 and E278^{7.36} participated in ligand binding (**Figure 2**, **Figure 3**). Both computational
188 models and experimental data indicate the K77^{2.60}-D81^{2.64}-K277^{7.35}-E278^{7.36} salt bridging
189 chain as a sugar-binding site of P2Y14, which can recognize different sugar moieties. The
190 interactions of ligands with the TM7 might determine the ligand potency on P2Y14.

191

192 **Conserved sugar-binding motif for P2Y12 and P2Y14**

193 In previous sections, we have identified K77^{2.60}-D81^{2.64}-K277^{7.35}-E278^{7.36} salt bridging
194 chain as an important functional site for sugar moiety recognition and UDP-sugar
195 activation of P2Y14. These four residues (K^{2.60}, D^{2.64}, K^{7.35} and E^{7.36}) are conserved
196 between P2Y14 and its closest homolog, i.e., P2Y12 (**Figure 4A**, **Figure 4—supplement**
197 **1A**). Therefore, we assumed P2Y12 also can be activated by carbohydrate ligands. P2Y12
198 is activated by ADP (*Herbert & Savi, 2003*), but it has not been reported to be activated by
199 any carbohydrate. To validate our assumption, we designed and synthesized three ADP-
200 sugars, i.e., ADP-glucose (ADP-Glc), ADP-glucuronic acid (ADP-GlcA) and ADP-
201 mannose (ADP-Man), and then tested whether they can activate P2Y12 (**Figure 4B, C**).
202 We docked ADP-Glc and ADP-Man to the X-ray structure of P2Y12 (*Zhang et al., 2014a*).
203 The docking scores are -9.4 kcal/mol for ADP-Glc, for -10.0 kcal/mol for ADP-GlcA and
204 -9.3 kcal/mol for ADP-Man (**Figure 4—supplement 1B**), suggesting they stably bound to
205 P2Y12. Consistently, in calcium mobilization assays, ADP-Glc, ADP-GlcA and ADP-Man
206 activated P2Y12 with EC₅₀ values of 3.4 ± 0.4 μM, 1.3 ± 0.1 μM and 12.3 ± 0.9 μM,
207 respectively (**Figure 4C**). Single-point mutations of K80^{2.60}, D84^{2.64}, K280^{7.35} and E281^{7.36}

208 significantly diminished ADP-Glc-, ADP-GlcA- and ADP-Man-induced responses,
209 compared with WT P2Y12 (**Figure 4C**). These findings not only validate our assumption
210 that P2Y12 can be activated by sugar nucleotides, but also indicate the conserved K^{2.60}-
211 D^{2.64}-K^{7.35}-E^{7.36} (KDKE) salt bridging chain as a functional motif for sugar binding.

212

213 Discussion

214 Mediated by UDP-sugars, P2Y14 plays an important role in immune responses and
215 inflammation (Arase *et al*, 2009; Barrett *et al*, 2013; Breton & Brown, 2018; Ferreira *et*
216 *al.*, 2017; Muller *et al.*, 2005; Sesma *et al*, 2012; Sesma *et al.*, 2016), and possibly insulin
217 resistance (Wang *et al*, 2008). Breton *et al.* found that kidney collecting duct intercalated
218 cells present high levels of P2Y14, which is activated by UDP-Glc to promote neutrophil
219 infiltration and renal inflammation (Breton & Brown, 2018). Exerting excessive P2Y14-
220 mediated inflammatory reactions, high concentration of UDP-sugars was observed in
221 extracellular tissue surrounding airway epithelial cells and lung secretions of cystic fibrosis
222 patients (Ferreira *et al.*, 2017; Muller *et al.*, 2005; Sesma *et al.*, 2016). UDP-Glc is also
223 released from liver cells in obese states, possibly via hepatocellular apoptosis, leading to
224 liver inflammation and insulin resistance (Wang *et al.*, 2008). All these results indicate
225 importance of UDP-sugar regulation of P2Y14 in pathological progresses.

226

227 In this work, we built the molecular model of UDP-Glc-bound P2Y14 to answer the
228 long-standing question of sugar nucleotide-regulation of the purinergic receptor. Binding
229 to an extracellular pocket involving TMs 2 and 7 (**Figure 1**), the UDP-Glc might serve as
230 intramolecular “glue” attaching to TM6 and TM7 to activate P2Y14 (**Figure 2**). The

231 agonist-induced remarkable conformational changes of TM6 and TM7 are also reported
232 for P2Y12 (*Zhang et al., 2014a*). Compared with the AZD1283-bound (antagonist-bound)
233 P2Y12 structure (*Zhang et al, 2014b*), the extracellular part of TM6 in the 2MeSADP-
234 bound (agonist-bound) P2Y12 structure shifts over 10 Å and TM7 over 5 Å towards the
235 center of TM helix bundle (*Zhang et al., 2014a*). The close parallel of P2Y12 and P2Y14
236 in the agonist-induced conformational changes indicates a common ligand-induced
237 activation mechanism shared by purinergic receptors. In addition, in the studies involving
238 the other UDP-sugars, we also found that the interactions between sugar-moieties of
239 agonists with TM7 (E278^{7.36}) is determinant for UDP-sugars' potencies (**Figure 3**).
240

241 The carbohydrate-binding site has not been fully characterized for GPCRs. Except for
242 P2Y14, it has not been reported that the other members of P2Y12-like subfamily can be
243 directly activated by carbohydrates. Integrated computational modeling with mutagenesis
244 study, we identified a conserved carbohydrate-binding motif (KDKE) for both P2Y14 and
245 P2Y12 (**Figure 4**). The KDKE motif not only participates in receptor activation by
246 bridging TM2 and TM7 (K77^{2.60}, D81^{2.64}, K277^{7.35} and E278^{7.36}) (**Figure 2**), but also
247 recognize different sugar moieties, including glucose, galactose, glucuronic acid and N-
248 acetylglucosamine groups (**Figure 3**, **Figure 4**). Remarkably, this KDKE motif can
249 distinguish isomers as UDP-Glc and UDP-Gal. Our MD simulations showed that KDKE
250 motif attracted the 6' hydroxyl group of glucose but the 4' hydroxyl group of galactose
251 (**Figure 3C, F**). Consistent with our observations, a previous structure-activity relationship
252 study revealed that selective mono-fluorination of the 6' hydroxyl group of the glucose
253 moiety results to 4-fold less potency on P2Y14 (*Ko et al., 2009*). As another member of

254 P2Y12-like subfamily, P2Y13 also has the conserved K^{2.60}-D^{2.64}-K^{7.35}-E^{7.36} site (**Figure**
255 **4—supplement 2**), suggesting it might be regulated by carbohydrates. GPR87 is a close
256 homolog of P2Y14 with the sequence identity of 44.94%. GPR87 has K/R^{2.60}, D^{2.64}, K/E^{7.35}
257 and E^{7.36} at the corresponding positions of the KDKE sugar-binding motif, indicating
258 varied carbohydrate-sensitivities of this receptor in different species (**Figure 4—**
259 **supplement 3**). Similar to the KDKE motif of the receptors, the UDP-sugar-binding sites
260 consisting of charged residues have been discovered for sugar transferases (*Gerlach et al,*
261 *2018; Hao et al, 2021*). In typical glycosylation transfers as TarP and SseK3, two aspartic
262 acids and one positively charged residue (arginine or lysine) participate in recognition of
263 3' or 4' hydroxyl groups of GlcNAc or GalNAc moiety (*Gerlach et al., 2018; Hao et al.,*
264 *2021*). However, a salt bridging chain has not been observed in these sugar-binding sites.
265 The different arrangements of UDP-sugar-binding sites between P2Y14 and these sugar
266 transferases might be determinant to their sugar selectivity.

267

268 In conclusion, we revealed a conserved carbohydrate binding motif in both P2Y12 and
269 P2Y14, extending our understanding how carbohydrates regulate GPCRs. Our molecular
270 models of different sugar nucleotides provide great details for carbohydrate-activation and
271 recognition of these receptors, which would inspire further carbohydrate drug development
272 for GPCRs. Whether the other carbohydrate-binding motifs exist in GPCRs is currently
273 unknown. Further investigations focused on carbohydrate-regulation of GPCRs will
274 continue to add both new concepts and physiological understanding to the field.

275

276 **Materials and Methods**

277 **Chemicals**

278 UDP-GlcNAc was prepared from D-GlcNAc as reported previously (*Zheng et al, 2022*).
279 UDP-Glc and UDP-GlcA were prepared from Sucrose (*Wang et al, 2022*). UDP-Gal was
280 prepared from D-Gal (*Muthana et al, 2012*). ADP-Man was synthesized by a two-step
281 strategy. In detail, Man-1-p was firstly synthesized from D-Man using NahK from
282 *Bifidobacterium longum* (*Nishimoto & Kitaoka, 2007*) and ATP as phosphorylation donor.
283 Man-1-p was purified from the reaction mixture by the silver nitrate precipitation method
284 (*Liuqing et al, 2016; Wen et al, 2015*). Then, ADP-Man was synthesized from Man-1-p
285 and ATP by a GDP-mannose pyrophosphorylase from *Pyrococcus furiosus*, which could
286 take ATP as substrate.

287

288 **Cell culture and transient transfections**

289 HEK293 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 10%
290 fetal bovine serum (FBS). All cells were maintained at 37°C in humidified incubators with
291 5% CO₂ and 95% air. Human P2Y14 or P2Y12 receptors and G protein α -subunit (G α _{q/11})
292 were transiently co-transfected into HEK293 cells using PolyJet In Vitro DNA
293 Transfection Reagent (SignaGen) according to manufacturer's instructions. Thus, a
294 mixture of 1 μ g of receptor DNA and 1 μ g of G α _{q/11} DNA was used to transfected into the
295 6-well plate cells at 90% confluency. Transiently transfected HEK293 cells were
296 subsequently in Ca²⁺ assays at 48-hour post-transfection.

297

298 **Cell surface expression**

299 Human P2Y14 or P2Y12 was cloned into a pcDNA3 vector with HA tag for expression in
300 HEK293 cells. Mutants of P2Y14 or P2Y12 were constructed according to Fast
301 Mutagenesis System (TransGen). Cell surface expression of P2Y14 or P2Y12 was
302 analyzed by flow cytometry. HEK293 cells were transfected with pCDNA3-HA-P2Y14 or
303 P2Y12 in 6-well plate overnight. After having been incubated with rabbit anti-HA primary
304 antibody (1:800, CST) for 1 hour at 4 °C, the cells were incubated with goat anti-rabbit
305 IgG(H+L) FITC conjugate secondary antibody (1:200, TransGen) for 50 minutes at 4 °C.
306 Data were collected with a flow cytometer (FACS Calibur, BD) and analyzed with FlowJo
307 software.

308

309 **Intracellular Ca²⁺ mobilization**

310 Intracellular Ca²⁺ assays were carried out as follows. HEK293 cells were seeded (80000
311 cells/well) into Matrigel-coated 96-well plate 24 hour prior to assay. The cells were
312 incubated with 2 μM Fluo-4 AM (Invitrogen) diluted in HBSS solution (0.4 gL⁻¹ KCl, 0.12
313 gL⁻¹ Na₂HPO₄·12H₂O, 0.06 g L⁻¹ KH₂PO₄, 0.35 gL⁻¹ NaHCO₃, 0.14 gL⁻¹ CaCl₂, 0.10 g
314 L⁻¹ MgCl₂·6H₂O, 0.05 g L⁻¹ MgSO₄, and 8.0 g L⁻¹ NaCl) at 37 °C for 50 minutes. After
315 dye loading, the cells were treated with the compounds of interest. Then, calcium response
316 (relative fluorescence unit, RFU) was measured using Flexstation 3 (Molecular Device)
317 with fluorescence excitation made at 485 nm and emission at 525 nm.

318

319 **Molecular modeling, docking and energy decomposition**

320 Using the crystal structures of agonist-bound P2Y12 (PDB codes 4PXZ, 4PY0) (*Zhang et*
321 *al., 2014a*) as templates, we employed Modeller (*Sali & Blundell, 1993*) to construct the
322 human P2Y14 models. The human P2Y12 models are also built using these P2Y12 crystal
323 structures (PDB codes 4PXZ, 4PY0) (*Zhang et al., 2014a*). The models with the lowest
324 root mean square deviations from their template structures were selected for further
325 analysis. A ligand was docked to the receptor using Schodinger Glide software in SP mode
326 with default parameters (*Friesner et al, 2004*). A pocket binding to the ligand with Glide
327 G-scores below -6.5 kcal/mol were considered as a possible ligand-binding pocket. To
328 involve receptor flexibility, we used RosettaLigand (*Davis & Baker, 2009*) to generate
329 representative ligand-bound receptor models. After Rosetta-based docking, the top 1,000
330 models with lowest binding energy score were selected. Then, they were further scored
331 with the ligand-binding energy between ligand and receptor. The top 10 models with the
332 lowest ligand-binding energy were selected for energy decomposition. The van der Waals
333 energy of ligand binding was mapped to each receptor residue by
334 residue_energy_breakdown utility (*Davis & Baker, 2009*). The model with the lowest
335 ligand binding energy was used as the representative model.

336

337 **Modeling and simulations**

338 To build a simulation system, we place the molecular model into a 1-palmitoyl-2-oleoyl-
339 sn-glycero-3-phosphocholine lipid bilayer. The lipid embedded complex model was
340 solvated in periodic boundary condition box (80 Å x 80 Å x 120 Å) filled with TIP3P water
341 molecules and 0.15 M KCl using CHARMM-GUI (*Wu et al, 2014*). Each system was

342 replicated to performed three independent simulations. On the basis of the CHARMM36m
343 all-atom force field (*Guvenc et al, 2011; Huang et al, 2017; MacKerell et al, 1998*),
344 molecular dynamics simulations were conducted using GROMAS 5.1.4 (*Hess et al, 2008*;
345 *Van Der Spoel et al, 2005*). After 100 ns equilibration, a 500-ns production run was carried
346 out for each simulation. All productions were carried out in the NPT ensemble at
347 temperature of 303.15 K and a pressure of 1 atm. Temperature and pressure were controlled
348 using the velocity-rescale thermostat (*Bussi et al, 2007*) and the Parrinello-Rahman
349 barostat with isotropic coupling (*Aoki & Yonezawa, 1992*), respectively. Equations of
350 motion were integrated with a 2 fs time step, the LINCS algorithm was used to constrain
351 bond length (*Hess, 2008*). Non-bonded pair lists were generated every 10 steps using
352 distance cut-off of 1.4 nm. A cut-off of 1.2 nm was used for Lennard-Jones (excluding
353 scales 1-4) interactions, which were smoothly switched off between 1 and 1.2 nm.
354 Electrostatic interactions were computed using particle-mesh-Ewald algorithm with a real-
355 space cutoff of 1.2 nm. The last 200 ns trajectory of each simulation was used to calculate
356 average values.

357

358 **Sequence analysis**

359 To analyze the conservation of residual sites, we collected sequences of receptors from
360 UniProt database involving 379 species. See *Supplementary file 3* for species repertoire
361 information. The multiple sequence alignments were performed using Clustal Omega.
362 Logoplots generated for these alignments by WebLog. In each logplot, the height of a letter
363 is proportional to the information content of an amino acid in bits, which was calculated
364 by equation (1) as follows.

$$365 \quad I = \log_2 N - \sum p_i \log_2 p_i \quad (1)$$

366 where N was the number of all sequences, and pi is the probability of the amino acid in all
367 sequences. A large value of the unit bits indicates a high conservation of a particular site.

368

369 **Statistics**

370 Statistical analyses were performed using GraphPad Prism 6 (GraphPad Software). EC50
371 values for compounds were obtained from concentration-response curves by nonlinear
372 regression analysis. Comparison of two compounds or two constructs was analyzed by
373 unpaired t test to determine statistical difference. All statistical data are given as mean \pm
374 SEM of at least three independent experiments performed duplicate or triplicate.

375

376 **Acknowledgments**

377 This work was partially supported by Shanghai Municipal Science and Technology Major
378 Project (to X.C., W.Q. and L.W.), Lingang Laboratory grant (LG202102-01-01 to X.C.,
379 LG-QS-202206-08 to L.W.), and National Natural Science Foundation of China
380 (22007092 to L.W.).

381 **Additional information**

382 **Competing interests**

383 The authors declare no conflict of interest.

384

385 **Author Contributions**

386 Lifen Zhao, Methodology, Validation, Investigation, Writing – original draft preparation;
387 Fangyu Wei, Methodology; Xinheng He, Methodology, Visualization; Hualiang Jiang,
388 Resources, Supervision, Writing – review & editing; Liuqing Wen, Conceptualization,
389 Methodology, Supervision, Writing – review & editing; Xi Cheng, Conceptualization,
390 Funding acquisition, Investigation, Methodology, Project administration, Writing – review
391 & editing.

392

393 **Additional files**

394 **Supplementary files**

395 • Supplementary file 1. Expression of mutants in HEK293.
396 • Supplementary file 2. Computational characterization of conformational changes and
397 pairwise interactions of simulation models.
398 • Supplementary file 3. Species repertoire information for receptors.

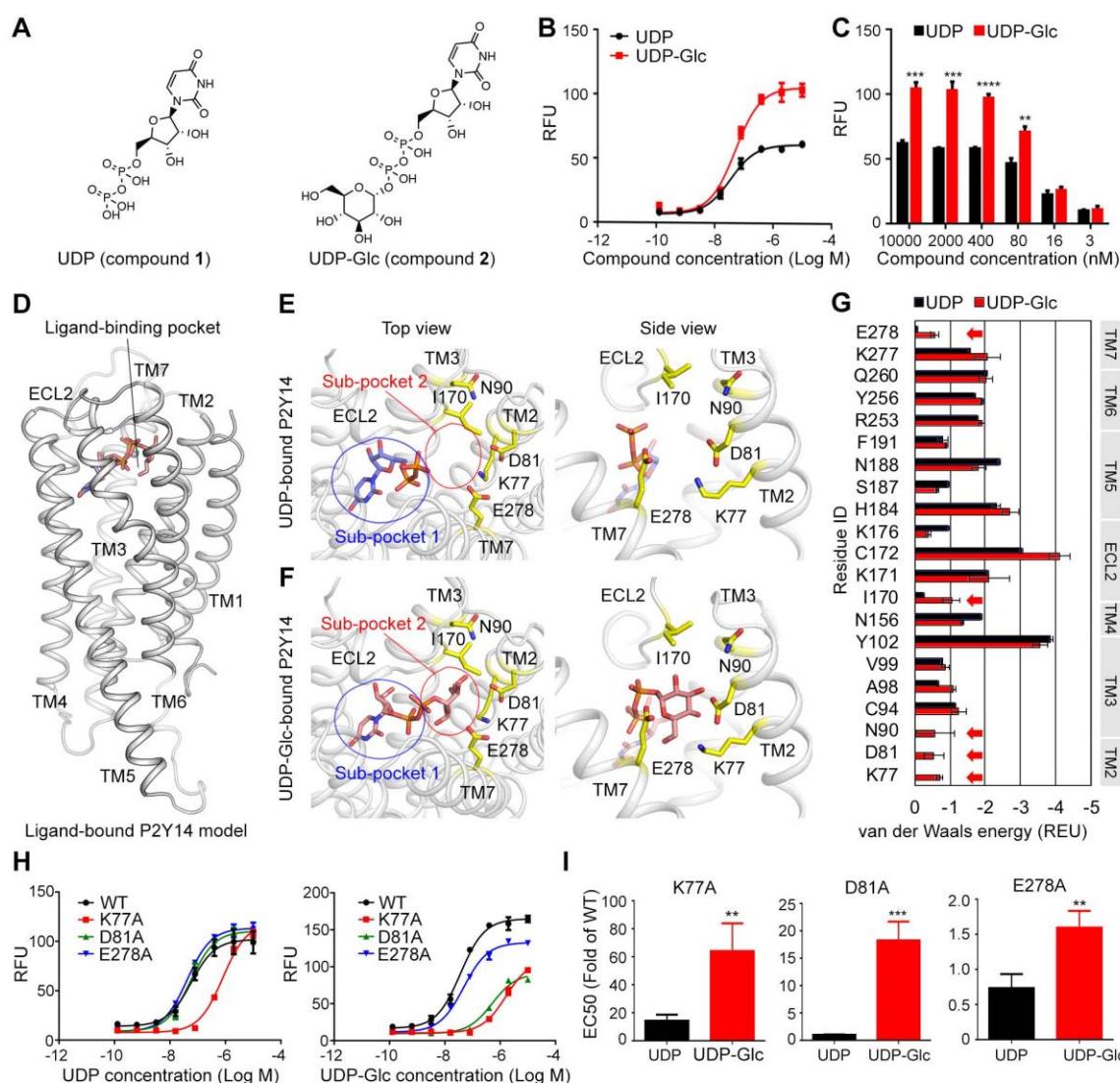
399

400 **Data availability**

401 All data generated or analyzed during this study are included in the manuscript and
402 supporting file.

403

404 **References**


- 405 Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C,
406 Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA. 2006.
407 International union of pharmacology LVIII: update on the P2Y G protein-coupled
408 nucleotide receptors: from molecular mechanisms and pathophysiology to therapy.
409 *Pharmacol Rev* **58**: 281-341. DOI: <https://doi.org/10.1124/pr.58.3.3>, PMID:
410 16968944
- 411 Amison RT, Arnold S, O'Shaughnessy BG, Cleary SJ, Ofoedu J, Idzko M, Page CP,
412 Pitchford SC. 2017. Lipopolysaccharide (LPS) induced pulmonary neutrophil
413 recruitment and platelet activation is mediated via the P2Y1 and P2Y14 receptors in
414 mice. *Pulm Pharmacol Ther* **45**: 62-68. DOI:
415 <https://doi.org/10.1016/j.pupt.2017.05.005>, PMID: 28487256
- 416 Aoki KM, Yonezawa F. 1992. Constant-pressure molecular-dynamics simulations of the
417 crystal-smectic transition in systems of soft parallel spherocylinders. *Phys Rev A* **46**:
418 6541-6549. DOI: <https://doi.org/10.1103/physreva.46.6541>, PMID: 9907963
- 419 Arase T, Uchida H, Kajitani T, Ono M, Tamaki K, Oda H, Nishikawa S, Kagami M,
420 Nagashima T, Masuda H, Asada H, Yoshimura Y, Maruyama T. 2009. The UDP-
421 glucose receptor P2RY14 triggers innate mucosal immunity in the female
422 reproductive tract by inducing IL-8. *J Immunol* **182**: 7074-7084. DOI:
423 <https://doi.org/10.4049/jimmunol.0900001>, PMID: 19454705
- 424 Ballesteros JA, Weinstein, H. 1995. Integrated methods for the construction of three-
425 dimensional models and computational probing of structure-function relations in G
426 protein-coupled receptors. *Methods Neurosci* **25**: 366-428. DOI:
427 <http://doi.org/10.1063/1.3129711>(05)80049-7
- 428 Barrett MO, Sesma JI, Ball CB, Jayasekara PS, Jacobson KA, Lazarowski ER, Harden
429 TK. 2013. A selective high-affinity antagonist of the P2Y14 receptor inhibits UDP-
430 glucose-stimulated chemotaxis of human neutrophils. *Mol Pharmacol* **84**: 41-49.
431 DOI: <https://doi.org/10.1124/mol.113.085654>, PMID: 23592514
- 432 Breton S, Brown D. 2018. Novel Proinflammatory Function of Renal Intercalated Cells.
433 *Ann Nutr Metab* **72 Suppl 2**: 11-16. DOI: <https://doi.org/10.1159/000488303>,
434 PMID: 29925073
- 435 Bussi G, Donadio D, Parrinello M. 2007. Canonical sampling through velocity rescaling.
436 *J Chem Phys* **126**: 014101. DOI: <https://doi.org/10.1063/1.2408420>, PMID:
437 17212484
- 438 Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ, Zhu Y,
439 McLaughlin MM, Murdock P, McMillan L, Trill J, Swift A, Aiyar N, Taylor P,
440 Vawter L, Naheed S, Szekeres P, Hervieu G, Scott C, Watson JM, Murphy AJ,
441 Duzic E, Klein C, Bergsma DJ, Wilson S, Livi GP. 2000. A G protein-coupled
442 receptor for UDP-glucose. *J Biol Chem* **275**: 10767-10771. DOI:
443 <https://doi.org/10.1074/jbc.275.15.10767>, PMID: 10753868
- 444 Cheng X, Jiang H. 2019. Allostery in Drug Development. *Adv Exp Med Biol* **1163**: 1-23.
445 DOI: https://doi.org/10.1007/978-981-13-8719-7_1, PMID: 31707697
- 446 Davis IW, Baker D. 2009. RosettaLigand docking with full ligand and receptor
447 flexibility. *J Mol Biol* **385**: 381-392. DOI:
448 <https://doi.org/10.1016/j.jmb.2008.11.010>, PMID: 19041878

- 449 Ferreira MA, Jansen R, Willemsen G, Penninx B, Bain LM, Vicente CT, Revez JA,
450 Matheson MC, Hui J, Tung JY, Baltic S, Le Souef P, Montgomery GW, Martin NG,
451 Robertson CF, James A, Thompson PJ, Boomsma DI, Hopper JL, Hinds DA,
452 Werder RB, Phipps S, Australian Asthma Genetics Consortium C. 2017. Gene-based
453 analysis of regulatory variants identifies 4 putative novel asthma risk genes related
454 to nucleotide synthesis and signaling. *J Allergy Clin Immunol* **139**: 1148-1157. DOI:
455 <https://doi.org/10.1016/j.jaci.2016.07.017>, PMID: 27554816
- 456 Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP,
457 Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS. 2004. Glide: a
458 new approach for rapid, accurate docking and scoring. *J Med Chem* **47**: 1739-1749.
459 DOI: <https://doi.org/10.1021/jm0306430>, PMID: 15027865
- 460 Gagneux P, Varki A. 1999. Evolutionary considerations in relating oligosaccharide
461 diversity to biological function. *Glycobiology* **9**: 747-755. DOI:
462 <https://doi.org/10.1093/glycob/9.8.747>, PMID: 10406840
- 463 Gerlach D, Guo Y, De Castro C, Kim SH, Schlatterer K, Xu FF, Pereira C, Seeberger PH,
464 Ali S, Codee J, Sirisarn W, Schulte B, Wolz C, Larsen J, Molinaro A, Lee BL, Xia
465 G, Stehle T, Peschel A. 2018. Methicillin-resistant *Staphylococcus aureus* alters cell
466 wall glycosylation to evade immunity. *Nature* **563**: 705-709. DOI:
467 <https://doi.org/10.1038/s41586-018-0730-x>, PMID: 30464342
- 468 Guvench O, Mallajosyula SS, Raman EP, Hatcher E, Vanommeslaeghe K, Foster TJ,
469 Jamison FW, 2nd, Mackerell AD, Jr. 2011. CHARMM additive all-atom force field
470 for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-
471 protein modeling. *J Chem Theory Comput* **7**: 3162-3180. DOI:
472 <https://doi.org/10.1021/ct200328p>, PMID: 22125473
- 473 Hamel M, Henault M, Hyjazie H, Morin N, Bayly C, Skorey K, Therien AG, Mancini J,
474 Brideau C, Kargman S. 2011. Discovery of novel P2Y14 agonist and antagonist
475 using conventional and nonconventional methods. *J Biomol Screen* **16**: 1098-1105.
476 DOI: <https://doi.org/10.1177/1087057111415525>, PMID: 21821827
- 477 Hao Y, Crequer-Grandhomme A, Javier N, Singh A, Chen H, Manzanillo P, Lo MC,
478 Huang X. 2021. Structures and mechanism of human glycosyltransferase beta1,3-N-
479 acetylglucosaminyltransferase 2 (B3GNT2), an important player in immune
480 homeostasis. *J Biol Chem* **296**: 100042. DOI:
481 <https://doi.org/10.1074/jbc.RA120.015306>, PMID: 33158990
- 482 Hauser AS, Attwood MM, Rask-Andersen M, Schiøth HB, Gloriam DE. 2017. Trends in
483 GPCR drug discovery: new agents, targets and indications. *Nat Rev Drug Discov* **16**:
484 829-842. DOI: <https://doi.org/10.1038/nrd.2017.178>, PMID: 29075003
- 485 Herbert JM, Savi P. 2003. P2Y12, a new platelet ADP receptor, target of clopidogrel.
486 *Semin Vasc Med* **3**: 113-122. DOI: <https://doi.org/10.1055/s-2003-40669>, PMID:
487 15199474
- 488 Hess B. 2008. P-LINCS: A parallel linear constraint solver for molecular simulation. *J
489 Chem Theory Comput* **4**: 116-122. DOI: <https://doi.org/10.1021/ct700200b>, PMID:
490 26619985
- 491 Hess B, Kutzner C, van der Spoel D, Lindahl E. 2008. GROMACS 4: Algorithms for
492 highly efficient, load-balanced, and scalable molecular simulation. *J Chem Theory
493 Comput* **4**: 435-447. DOI: <https://doi.org/10.1021/ct700301q>, PMID: 26620784

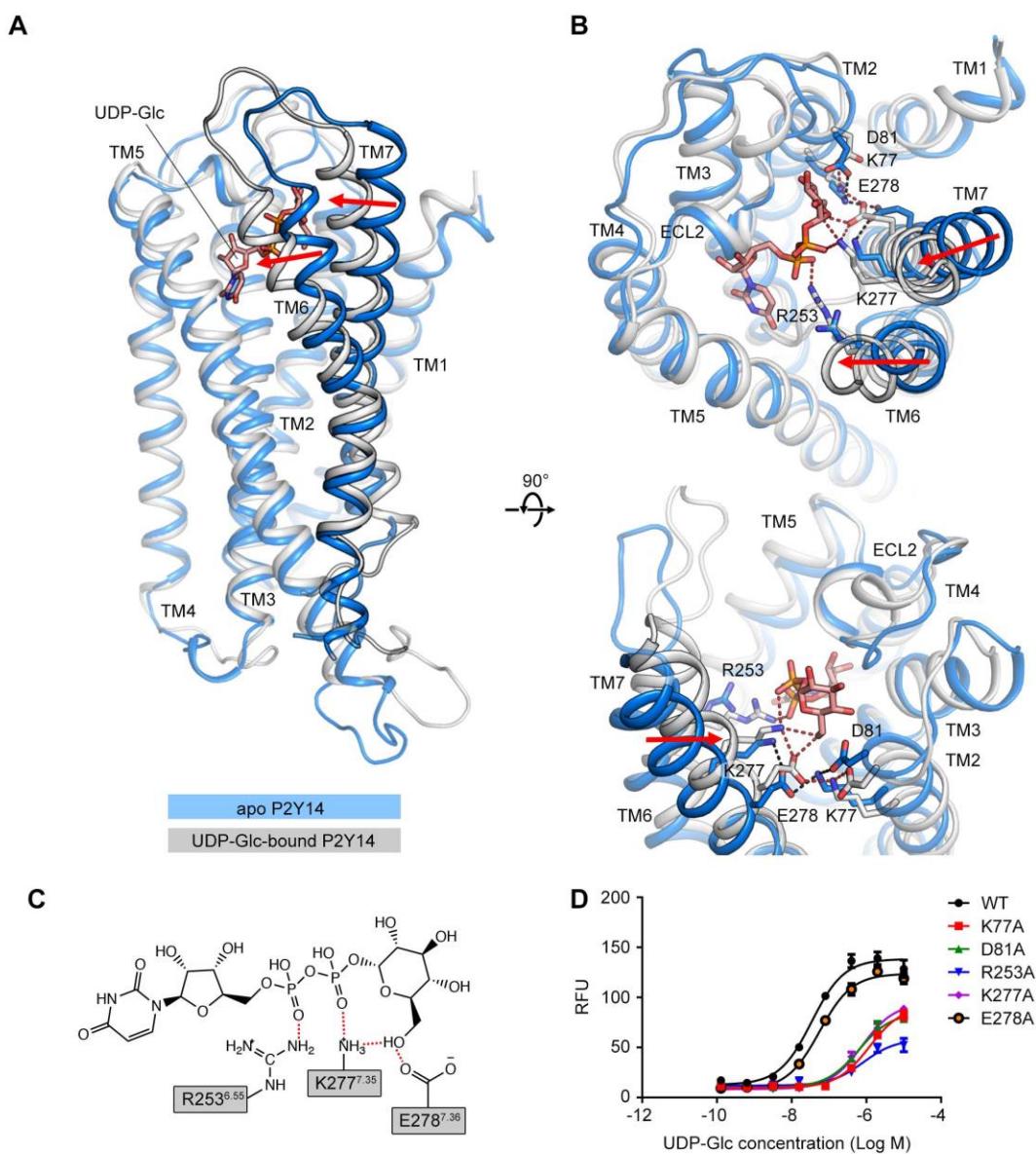
- 494 Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmuller H,
495 MacKerell AD, Jr. 2017. CHARMM36m: an improved force field for folded and
496 intrinsically disordered proteins. *Nat Methods* **14**: 71-73. DOI:
497 <https://doi.org/10.1038/nmeth.4067>, PMID: 27819658
- 498 Jacobson KA, Delicado EG, Gachet C, Kennedy C, von Kugelgen I, Li B, Miras-Portugal
499 MT, Novak I, Schoneberg T, Perez-Sen R, Thor D, Wu B, Yang Z, Muller CE.
500 2020. Update of P2Y receptor pharmacology: IUPHAR Review 27. *Br J Pharmacol*
501 **177**: 2413-2433. DOI: <https://doi.org/10.1111/bph.15005>, PMID: 32037507
- 502 Ko H, Das A, Carter RL, Fricks IP, Zhou Y, Ivanov AA, Melman A, Joshi BV, Kovac P,
503 Hajduch J, Kirk KL, Harden TK, Jacobson KA. 2009. Molecular recognition in the
504 P2Y(14) receptor: Probing the structurally permissive terminal sugar moiety of
505 uridine-5'-diphosphoglucose. *Bioorg Med Chem* **17**: 5298-5311. DOI:
506 <https://doi.org/10.1016/j.bmc.2009.05.024>, PMID: 19502066
- 507 Ko H, Fricks I, Ivanov AA, Harden TK, Jacobson KA. 2007. Structure-activity
508 relationship of uridine 5'-diphosphoglucose analogues as agonists of the human
509 P2Y14 receptor. *J Med Chem* **50**: 2030-2039. DOI:
510 <https://doi.org/10.1021/jm061222w>, PMID: 17407275
- 511 Lazarowski ER. 2010. Quantification of extracellular UDP-galactose. *Anal Biochem* **396**:
512 23-29. DOI: <https://doi.org/10.1016/j.ab.2009.08.022>, PMID: 19699703
- 513 Liuqing, Wen, Kenneth, Huang, Yunpeng, Liu, Peng, George, Wang. 2016. Facile
514 enzymatic synthesis of phosphorylated ketopentoses. *ACS Catalysis* **6**: 1649-1654.
515 DOI: <http://doi.org/10.1002/anie.201505714>, PMID: 26275233
- 516 MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S,
517 Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FT, Mattos C,
518 Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M,
519 Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus
520 M. 1998. All-atom empirical potential for molecular modeling and dynamics studies
521 of proteins. *J Phys Chem B* **102**: 3586-3616. DOI:
522 <https://doi.org/10.1021/jp973084f>, PMID: 24889800
- 523 Muller T, Bayer H, Myrtek D, Ferrari D, Sorichter S, Ziegenhagen MW, Zissel G,
524 Virchow JC, Jr., Luttmann W, Norgauer J, Di Virgilio F, Idzko M. 2005. The P2Y14
525 receptor of airway epithelial cells: coupling to intracellular Ca²⁺ and IL-8 secretion.
526 *Am J Respir Cell Mol Biol* **33**: 601-609. DOI: <https://doi.org/10.1165/rcmb.2005-0181OC>, PMID: 16109883
- 527 Muthana MM, Qu J, Li Y, Zhang L, Yu H, Ding L, Malekan H, Chen X. 2012. Efficient
528 one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar
529 pyrophosphorylase from *Bifidobacterium longum* (BLUSP). *Chemical
530 Communications* **48**: 2728-2730. DOI: <https://doi.org/10.1039/c2cc17577k>, PMID:
531 22306833
- 532 Nishimoto M, Kitaoka M. 2007. Identification of N-acetylhexosamine 1-kinase in the
533 complete lacto-N-biose I/galacto-N-biose metabolic pathway in *Bifidobacterium
534 longum*. *Appl Environ Microbiol* **73**: 6444-6449. DOI:
535 <https://doi.org/10.1128/AEM.01425-07>, PMID: 17720833
- 536 Ralevic V, Burnstock G. 1998. Receptors for purines and pyrimidines. *Pharmacol Rev*
537 **50**: 413-492. PMID: 9755289

- 539 Reily C, Stewart TJ, Renfrow MB, Novak J. 2019. Glycosylation in health and disease.
540 *Nat Rev Nephrol* **15**: 346-366. DOI: <https://doi.org/10.1038/s41581-019-0129-4>,
541 PMID: 30858582
- 542 Sali A, Blundell TL. 1993. Comparative protein modelling by satisfaction of spatial
543 restraints. *J Mol Biol* **234**: 779-815. DOI: <https://doi.org/10.1006/jmbi.1993.1626>,
544 PMID: 8254673
- 545 Sesma JI, Kreda SM, Steinckwich-Besanon N, Dang H, Garcia-Mata R, Harden TK,
546 Lazarowski ER. 2012. The UDP-sugar-sensing P2Y(14) receptor promotes Rho-
547 mediated signaling and chemotaxis in human neutrophils. *Am J Physiol Cell Physiol*
548 **303**: C490-498. DOI: <https://doi.org/10.1152/ajpcell.00138.2012>, PMID: 22673622
- 549 Sesma JI, Weitzer CD, Livraghi-Butrico A, Dang H, Donaldson S, Alexis NE, Jacobson
550 KA, Harden TK, Lazarowski ER. 2016. UDP-glucose promotes neutrophil
551 recruitment in the lung. *Purinergic Signal* **12**: 627-635. DOI:
552 <https://doi.org/10.1007/s11302-016-9524-5>, PMID: 27421735
- 553 Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. 2005.
554 GROMACS: fast, flexible, and free. *J Comput Chem* **26**: 1701-1718. DOI:
555 <https://doi.org/10.1002/jcc.20291>, PMID: 16211538
- 556 Wang S, Zhang J, Wei F, Li W, Wen L. 2022. Facile synthesis of sugar nucleotides from
557 common sugars by the cascade conversion strategy. *J Am Chem Soc* **144**: 9980-
558 9989. DOI: <https://doi.org/10.1021/jacs.2c03138>, PMID: 35583341
- 559 Wang Y, Ausman LM, Russell RM, Greenberg AS, Wang XD. 2008. Increased apoptosis
560 in high-fat diet-induced nonalcoholic steatohepatitis in rats is associated with c-Jun
561 NH₂-terminal kinase activation and elevated proapoptotic Bax. *J Nutr* **138**: 1866-
562 1871. DOI: <https://doi.org/10.1093/jn/138.10.1866>, PMID: 18806094
- 563 Wen L, Huang K, Wei M, Meisner J, Liu Y, Garner K, Zang L, Wang X, Li X, Fang J,
564 Zhang H, Wang PG. 2015. Facile enzymatic synthesis of ketoses. *Angew Chem Int
565 Ed Engl* **54**: 12654-12658. DOI: <https://doi.org/10.1002/anie.201505714>, PMID:
566 26275233
- 567 Wu EL, Cheng X, Jo S, Rui H, Song KC, Davila-Contreras EM, Qi Y, Lee J, Monje-
568 Galvan V, Venable RM, Klauda JB, Im W. 2014. CHARMM-GUI membrane
569 builder toward realistic biological membrane simulations. *J Comput Chem* **35**: 1997-
570 2004. DOI: <https://doi.org/10.1002/jcc.23702>, PMID: 25130509
- 571 Zhang J, Zhang K, Gao ZG, Paoletta S, Zhang D, Han GW, Li T, Ma L, Zhang W,
572 Muller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC,
573 Wu B, Zhao Q. 2014a. Agonist-bound structure of the human P2Y12 receptor.
574 *Nature* **509**: 119-122. DOI: <https://doi.org/10.1038/nature13288>, PMID: 24784220
- 575 Zhang K, Zhang J, Gao ZG, Zhang D, Zhu L, Han GW, Moss SM, Paoletta S, Kiselev E,
576 Lu W, Fenalti G, Zhang W, Muller CE, Yang H, Jiang H, Cherezov V, Katritch V,
577 Jacobson KA, Stevens RC, Wu B, Zhao Q. 2014b. Structure of the human P2Y12
578 receptor in complex with an antithrombotic drug. *Nature* **509**: 115-118. DOI:
579 <https://doi.org/10.1038/nature13083>, PMID: 24670650
- 580 Zheng Y, Zhang J, Meisner J, Li W, Luo Y, Wei F, Wen L. 2022. Cofactor-driven
581 cascade reactions enable the efficient preparation of sugar nucleotides. *Angew Chem
582 Int Ed Engl* **61**: e202115696. DOI: <https://doi.org/10.1002/anie.202115696>, PMID:
583 35212445
- 584

585 **Figures**

586

587 **Figure 1.** Identification of sugar-binding sites in P2Y14. **(A)** Chemical structures of UDP
 588 and UDP-Glc. **(B)** Concentration-response curves of calcium mobilization for UDP or
 589 UDP-Glc in HEK293 cells transiently co-transfected with human P2Y14 and $G\alpha_{q/11}$. Data
 590 are shown as mean \pm SEM ($n = 3$). See also **Figure 1—source data 1** and **Supplementary**
 591 **file 1**. **(C)** Concentration-dependent comparison of calcium mobilization for UDP and
 592 UDP-Glc in HEK293 cells transiently co-transfected with human P2Y14 and $G\alpha_{q/11}$ ($n = 3$);
 593 $**P < 0.01$, $***P < 0.001$, $****P < 0.0001$. **(D)** Ligand-bound model of P2Y14. Protein

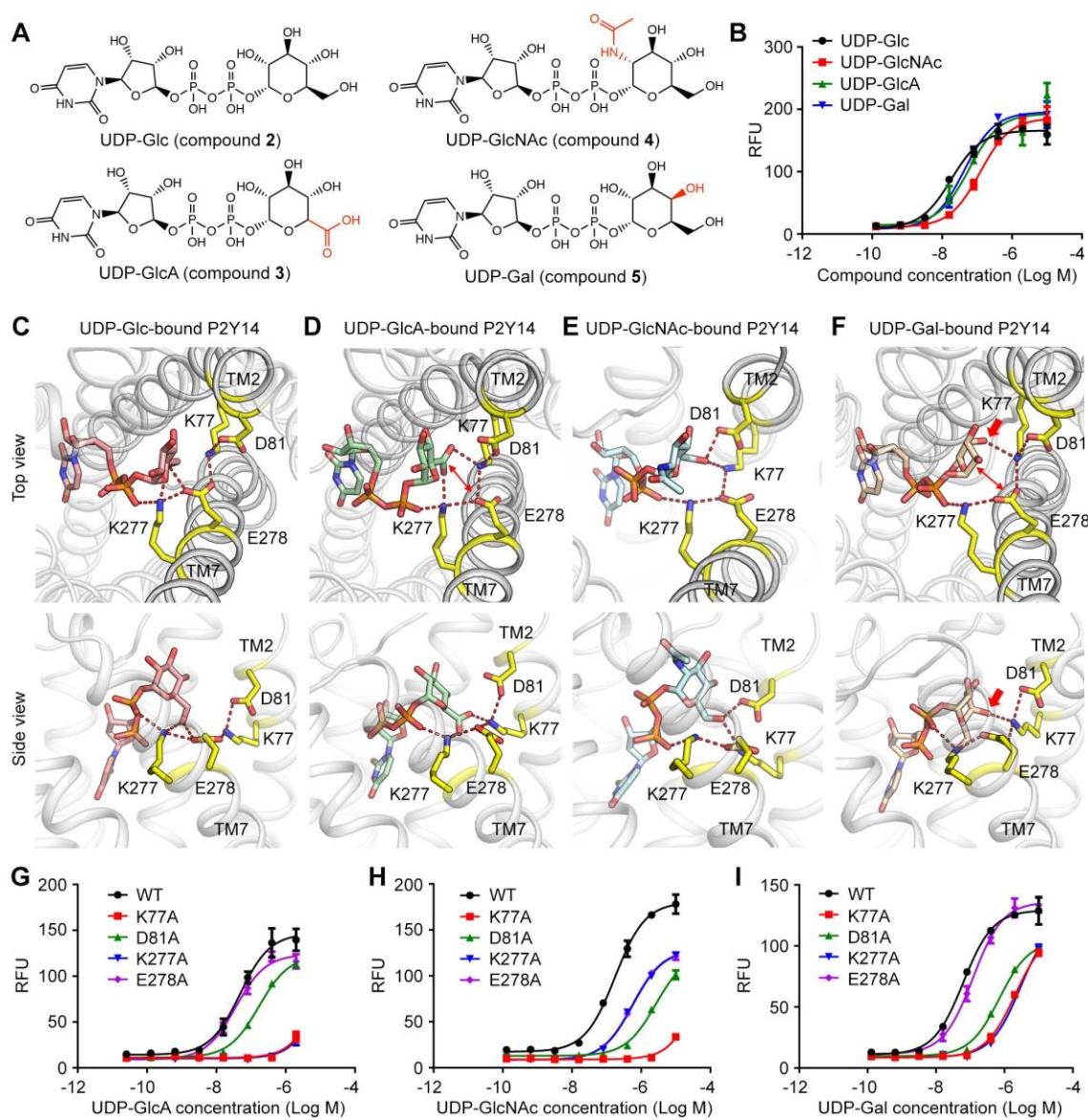

594 and compound are shown in cartoon and stick representations. (E, F) Docking models of
595 UDP (E) and UDP-Glc (F) to P2Y14. Key residues are highlighted in yellow. Two sub-
596 pockets for ligand binding are marked with circles. (G) Decomposition of ligand-binding
597 energy for each receptor residue ($n = 10$). (H) Calcium mobilization concentration-
598 response curves for UDP or UDP-Glc in HEK293 expressing P2Y14 WT and mutants (n
599 = 3). See also **Figure 1—source data 2** and **Supplementary file 1**. (I) Comparation of
600 EC50s for UDP-Glc and UDP in HEK293 cells expressing P2Y14 mutants in calcium
601 mobilization assay ($n = 3$); ** $P < 0.01$, *** $P < 0.001$. See also **Figure 1—source data 3**.

602 **Source data 1.** Potency of UDP or UDP-Glc in HEK293 cells expressing P2Y14.

603 **Source data 2.** Potency of UDP or UDP-Glc in HEK293 cells expressing P2Y14 WT and
604 mutants.

605 **Source data 3.** Comparation of EC50s for UDP-Glc and UDP in HEK293 cells expressing
606 P2Y14 mutants.

607 **Figure supplement 1.** The sub-pocket 1 of P2Y14 for UDP and UDP-Glc.


608

609 **Figure 2.** Comparison of the apo P2Y14 and UDP-Glc-bound P2Y14 simulation systems.

610 **(A-B)** Side (A) and top (B) views of representative models of apo P2Y14 and UDP-Glc-
611 bound P2Y14. Receptor is shown as cartoon. Ligand and key residues are shown as sticks.
612 Movement of the extracellular tips of TM6 and TM7 towards the receptor core is shown
613 by arrows. See *Supplementary file 2* for computational characterization of conformational
614 changes. **(C)** Key interactions between P2Y14 and UDP-Glc. Hydrogen bonds and salt
615 bridges are displayed as red dashed lines. See *Supplementary file 2* for pairwise interaction

616 details. **(D)** Concentration-response curves of calcium mobilization for UDP-Glc in
617 HEK293 expressing P2Y14 WT and mutants. Data are shown as mean \pm SEM ($n = 3$). See
618 also *Figure 2—source data 1* and *Supplementary file 1*.

619 **Source data 1.** Potency of UDP-Glc in HEK293 expressing P2Y14 WT and mutants.
620 **Figure supplement 1.** TM6 orientation in apo P2Y14 and UDP-Glc-bound P2Y14
621 simulation systems.

622

623 **Figure 3.** Sugar moiety recognition of P2Y14. **(A)** Chemical structures of UDP-Glc, UDP-
 624 GlcA, UDP-GlcNAc and UDP-Gal. **(B)** Concentration-response curves of calcium
 625 mobilization for different UDP-sugars in HEK293 cells transiently co-transfected with
 626 human P2Y14 and G α q5. Data are shown as mean \pm SEM ($n = 3$). See also **Figure 3—**
 627 **source data 1.** **(C-F)** Molecular recognition of P2Y14 for UDP-Glc **(C)**, UDP-GlcA **(D)**,
 628 UDP-GlcNAc **(E)** and UDP-Gal **(F)**. Receptor, ligands and key residues are shown in
 629 cartoon and stick representations. Hydrogen bonds and salt bridges are displayed as red

630 dashed lines. See **Supplementary file 2** for pairwise interaction details. **(G-I)**

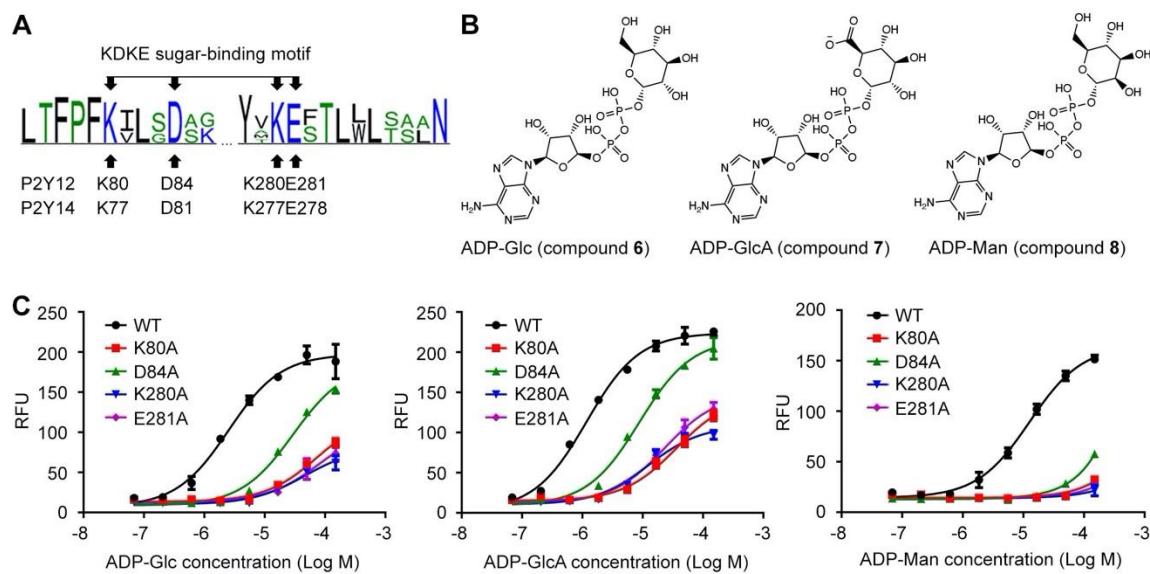
631 Concentration-response curves of calcium mobilization for UDP-GlcA **(G)**, UDP-GlcNAc

632 **(H)** and UDP-Gal **(I)** in HEK293 expressing P2Y14 WT and mutants. Data are shown as

633 mean \pm SEM ($n = 3$). See also **Figure 3—source data 2**.

634 **Source data 1.** Potency of UDP-GlcA, UDP-GlcNAc and UDP-Gal in HEK293 expressing

635 P2Y14.


636 **Source data 2.** Potency of UDP-GlcA, UDP-GlcNAc and UDP-Gal in HEK293 expressing

637 P2Y14 WT and mutants.

638 **Figure supplement 1.** Key interactions between P2Y14 and a UDP-sugar in simulations.

639 **Figure supplement 2.** Interactions between a key residue of P2Y14 and a UDP-sugar in

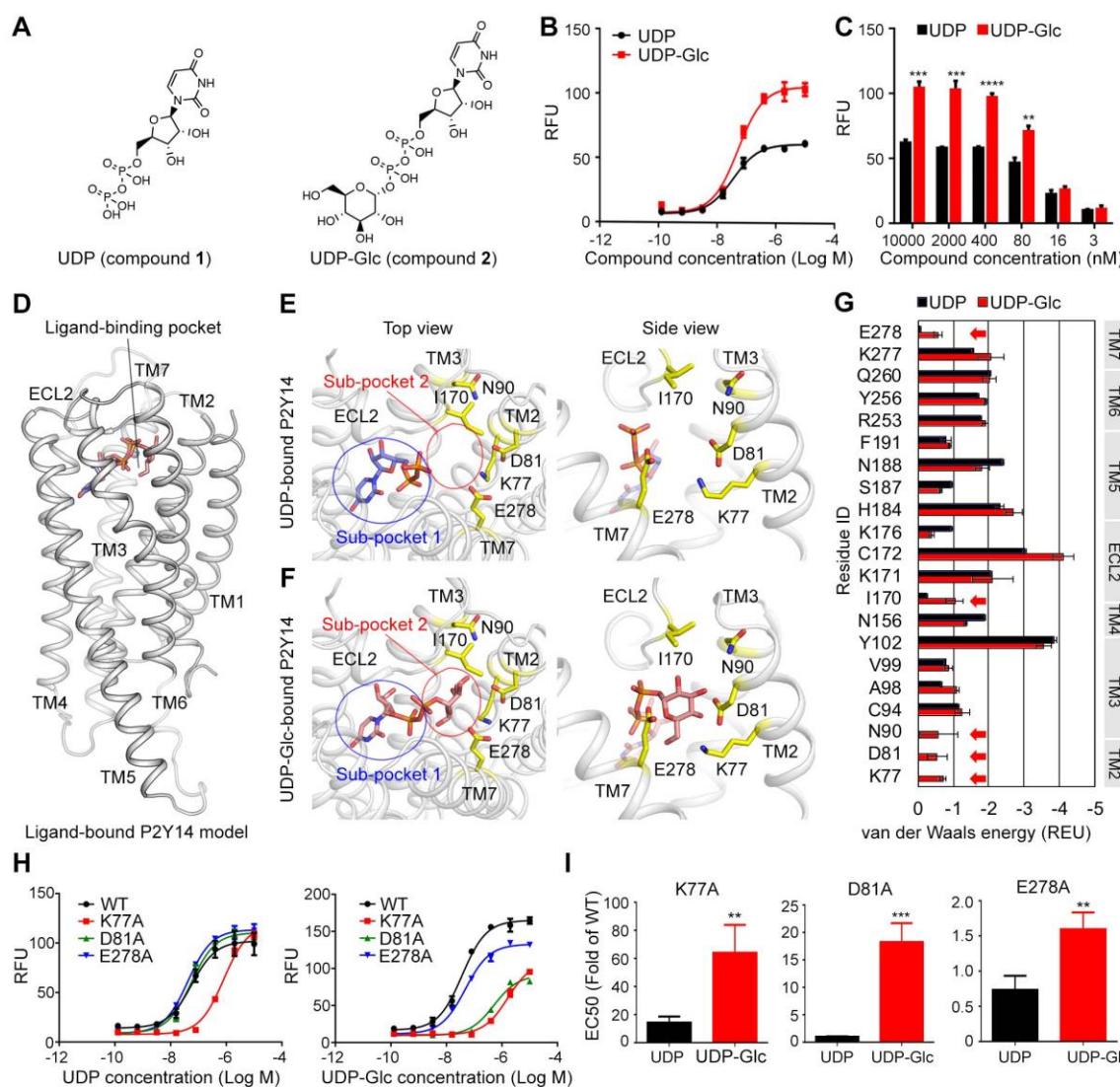
640 simulations.

641

642 **Figure 4.** ADP-sugars binding to P2Y12. (A) Sequence log of the alignment between
643 P2Y12 and P2Y14. Sequences of P2Y12 and P2Y14 involving 379 species were collected
644 for making sequence alignments. See *Supplementary file 3* for species repertoire
645 information. The height of a letter is proportional to the relative frequency of that residue
646 at a particular site. Four residues of KDKE sugar-binding motif are marked by arrows, with
647 the corresponding residues in P2Y12 and P2Y14. (B) Chemical structure of ADP-Glc,
648 ADP-GlcA and ADP-Man. (C) Calcium mobilization concentration-response curves for
649 ADP-Glc, ADP-GlcA and ADP-Man in HEK293 expressing P2Y12 WT and mutants. Data
650 are shown as mean \pm SEM ($n = 3$). See also **Figure 4—source data 1** and *Supplementary*
651 *file 1*.

652 **Source data 1.** Potency of ADP-Glc, ADP-GlcA and ADP-Man in HEK293 expressing
653 P2Y12 WT and mutants.

654 **Figure supplement 1.** Conserved sugar-binding site on P2Y12.


655 **Figure supplement 2.** Conservation of each residue on P2Y13.

656 **Figure supplement 3.** Conservation of each residue on GPR87.

Figures and figure supplements

Identification of a carbohydrate-recognition motif of purinergic receptors

Lifen Zhao *et al.*

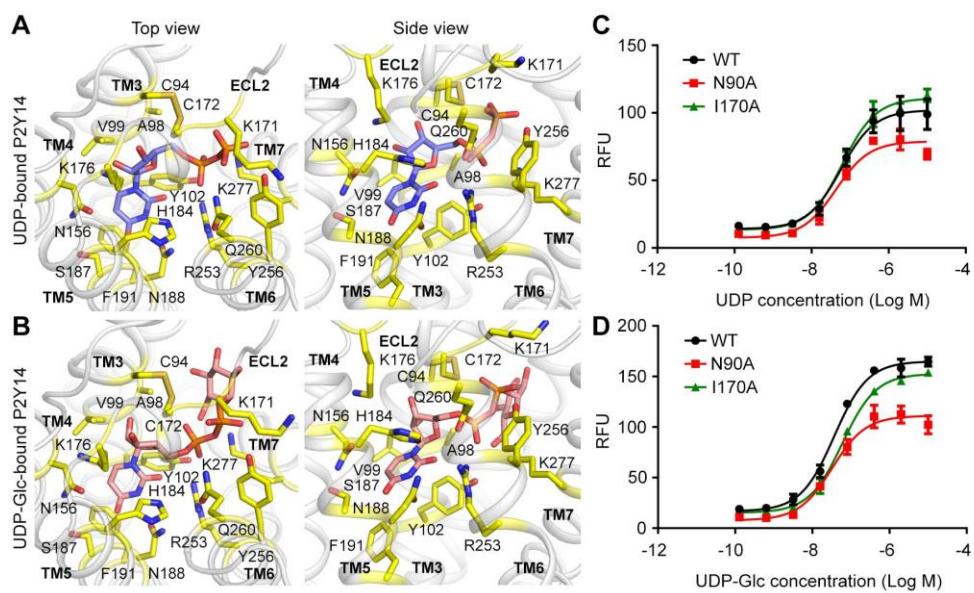
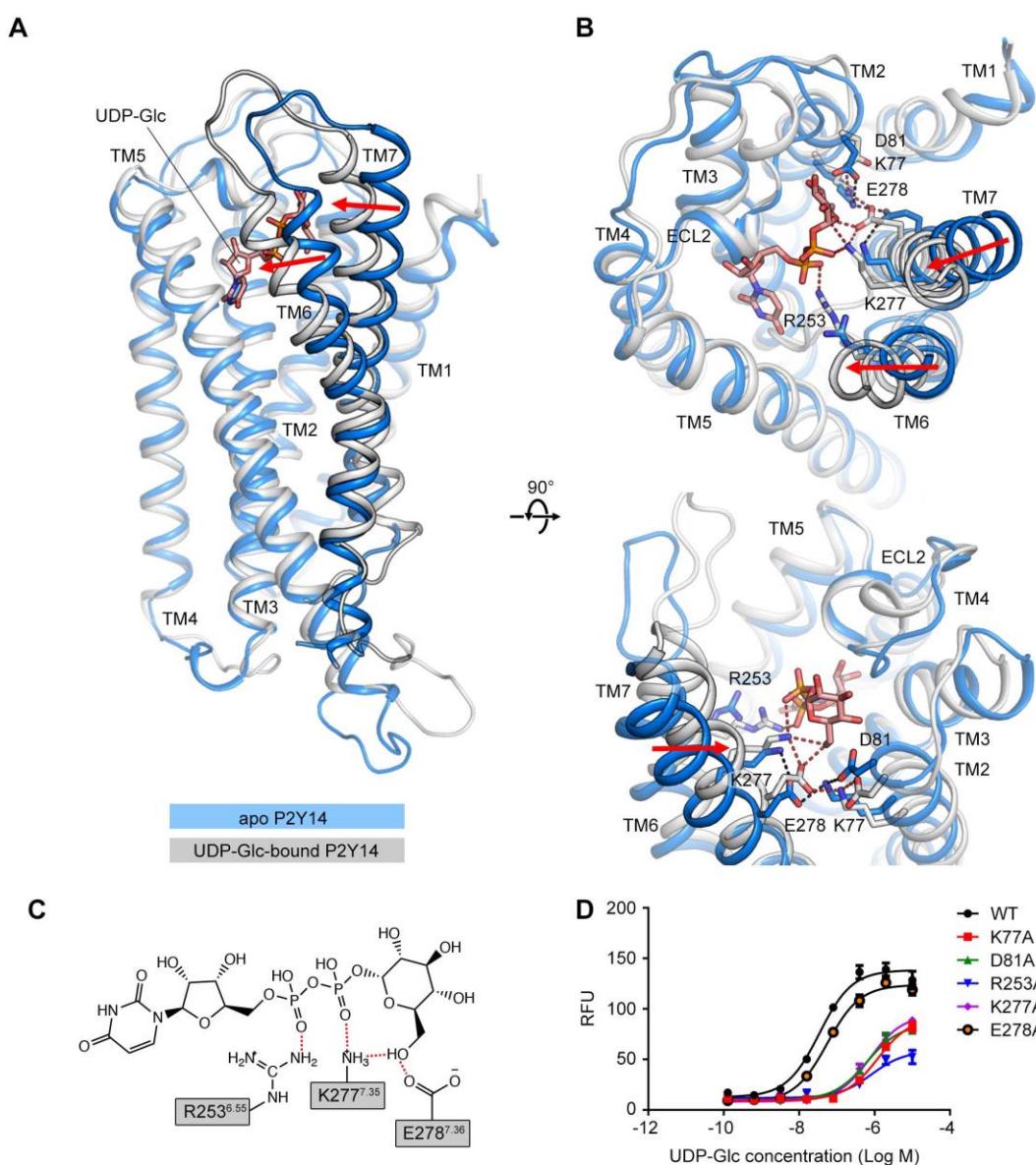


Figure 1. Identification of sugar-binding sites in P2Y14. (A) Chemical structures of UDP and UDP-Glc. (B) Concentration-response curves of calcium mobilization for UDP or UDP-Glc in HEK293 cells transiently co-transfected with human P2Y14 and $\text{G}\alpha_{q/11}$. Data are shown as mean \pm SEM ($n = 3$). See also **Figure 1—source data 1** and **Supplementary file 1**. (C) Concentration-dependent comparison of calcium mobilization for UDP and UDP-Glc in HEK293 cells transiently co-transfected with human P2Y14 and $\text{G}\alpha_{q/11}$ ($n = 3$); ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$. (D) Ligand-bound model of P2Y14. Protein and compound are shown in cartoon and stick representations. (E, F) Docking models of UDP (E) and UDP-Glc (F) to P2Y14. Key residues are highlighted in yellow. Two sub-pockets for ligand binding are marked with circles. (G) Decomposition of ligand-binding energy for each receptor residue ($n = 10$). (H) Calcium mobilization concentration-response curves for UDP or UDP-Glc in HEK293 expressing P2Y14 WT and mutants ($n = 3$). See also **Figure 1—source data 2** and **Supplementary file 1**. (I) Comparison of EC50s for UDP-Glc and UDP in HEK293 cells expressing P2Y14 mutants in calcium mobilization assay ($n = 3$); ** $P < 0.01$, *** $P < 0.001$. See also **Figure 1—source data 3**.


Source data 1. Potency of UDP or UDP-Glc in HEK293 cells expressing P2Y14.

Source data 2. Potency of UDP or UDP-Glc in HEK293 cells expressing P2Y14 WT and mutants.

Source data 3. Comparison of EC50s for UDP-Glc and UDP in HEK293 cells expressing P2Y14 mutants.

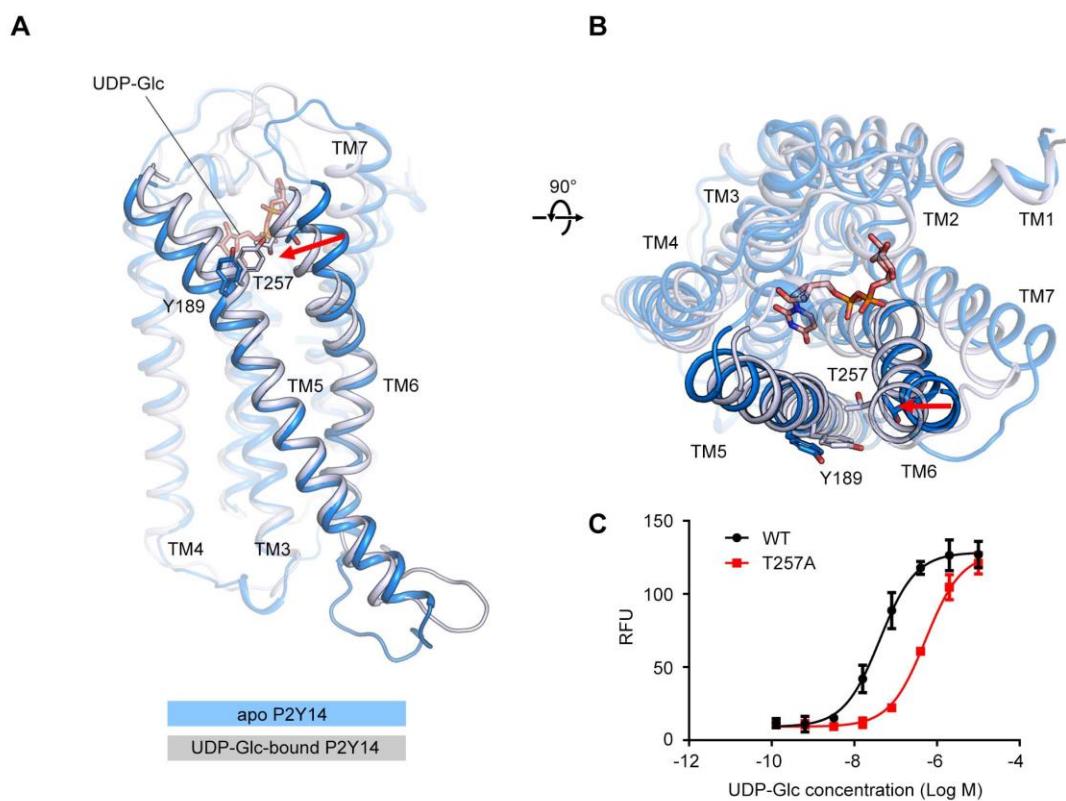


Figure 1—figure supplement 1. The sub-pocket 1 of P2Y14 for UDP and UDP-Glc. **(A, B)** Docking models of UDP **(A)** and UDP-Glc **(B)** to P2Y14 showing binding sites for UDP moieties. Protein is shown in cartoon representation. UDP (blue), UDP-Glc (salmon) and key residues (yellow) are shown in stick representation. **(C, D)** Calcium mobilization concentration-response curves for UDP **(C)** or UDP-glucose **(D)** in HEK293 expressing P2Y14 WT and mutants. Data are shown as mean \pm SEM ($n = 3$). See also **Figure 1—source data 2**.

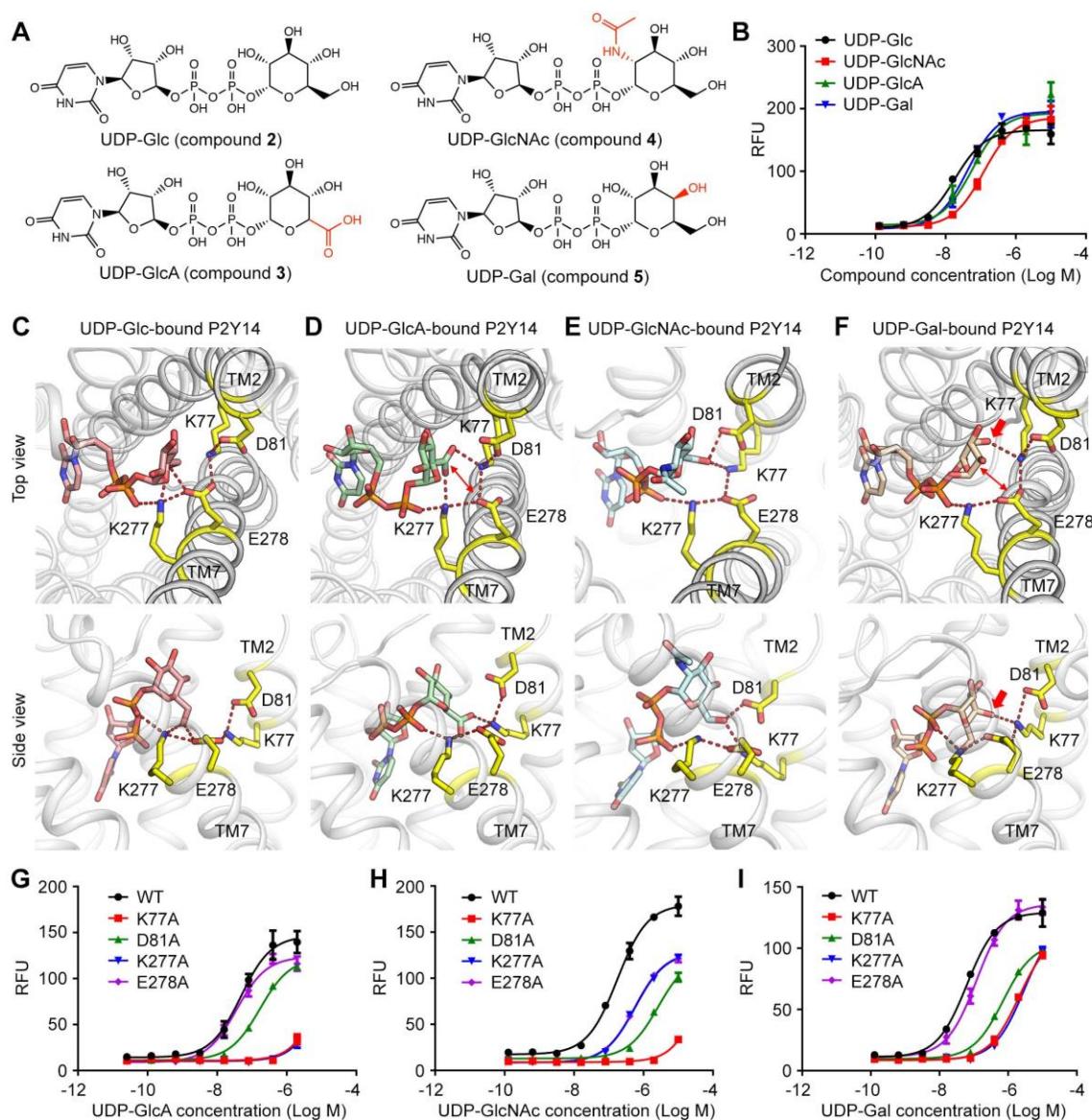
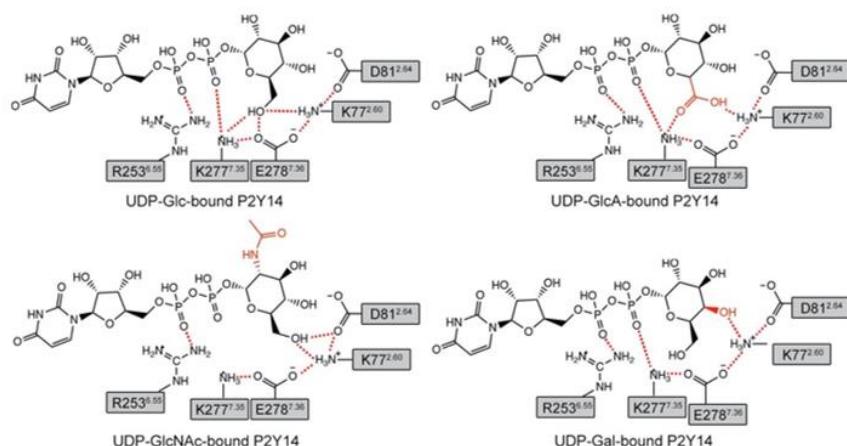
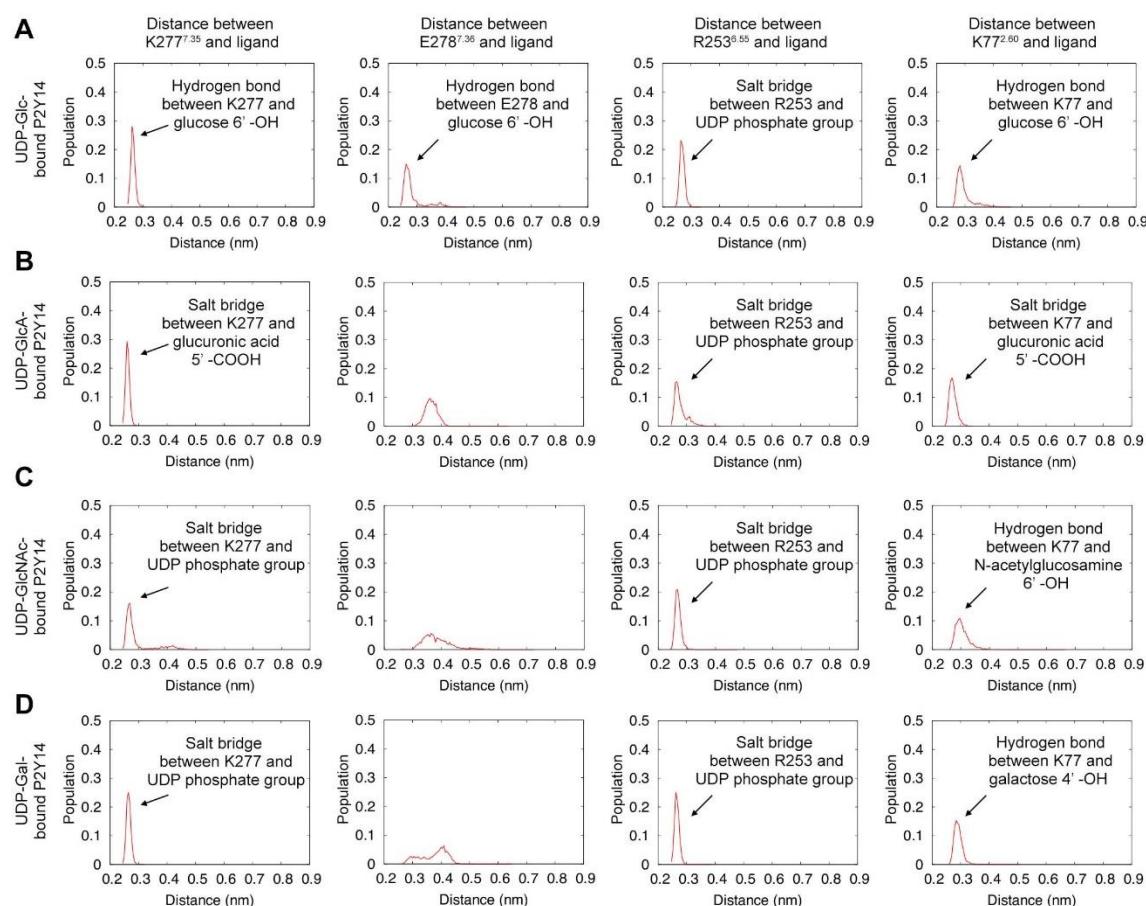


Figure 2. Comparison of the apo P2Y14 and UDP-Glc-bound P2Y14 simulation systems. (A-B) Side (A) and top (B) views of representative models of apo P2Y14 and UDP-Glc-bound P2Y14. Receptor is shown as cartoon. Ligand and key residues are shown as sticks. Movement of the extracellular tips of TM6 and TM7 towards the receptor core is shown by arrows. See *Supplementary file 2* for computational characterization of conformational changes. (C) Key interactions between P2Y14 and UDP-Glc. Hydrogen bonds and salt bridges are displayed as red dashed lines. See *Supplementary file 2* for pairwise interaction details. (D) Concentration-response curves of calcium mobilization for UDP-Glc in HEK293 expressing P2Y14 WT and mutants. Data are shown as mean \pm SEM ($n = 3$). See also **Figure 2—source data 1** and *Supplementary file 1*.

Source data 1. Potency of UDP-Glc in HEK293 expressing P2Y14 WT and mutants.


Figure 2—figure supplement 1. TM6 orientation in apo P2Y14 and UDP-Glc-bound P2Y14 simulation systems. (A-B) Side (A) and top (B) views of representative models of apo P2Y14 and UDP-Glc-bound P2Y14. Receptor is shown as cartoon. Ligand and key residues are shown as sticks. Movement of the extracellular tip of TM6 towards TM5 is shown by arrows. See *Supplementary file 2* for pairwise interaction details. (C) Concentration-response curves of calcium mobilization for UDP-Glc in HEK293 expressing P2Y14 WT and T257A mutant. Data are shown as mean \pm SEM ($n = 3$). See also **Figure 2—source data 1** and *Supplementary file 1*.


Figure 3. Sugar moiety recognition of P2Y14. (A) Chemical structures of UDP-Glc, UDP-GlcA, UDP-GlcNAc and UDP-Gal. (B) Concentration-response curves of calcium mobilization for different UDP-sugars in HEK293 cells transiently co-transfected with human P2Y14 and G α q/5. Data are shown as mean \pm SEM ($n = 3$). See also **Figure 3—source data 1**. (C-F) Molecular recognition of P2Y14 for UDP-Glc (C), UDP-GlcA (D), UDP-GlcNAc (E) and UDP-Gal (F). Receptor, ligands and key residues are shown in cartoon and stick representations. Hydrogen bonds and salt bridges are displayed as red dashed lines. See **Supplementary file 2** for pairwise interaction details. (G-I) Concentration-response curves of calcium mobilization for UDP-GlcA (G), UDP-GlcNAc (H) and UDP-Gal (I) in HEK293 expressing P2Y14 WT and mutants. Data are shown as mean \pm SEM ($n = 3$). See also **Figure 3—source data 2**.

Source data 1. Potency of UDP-GlcA, UDP-GlcNAc and UDP-Gal in HEK293 expressing P2Y14.

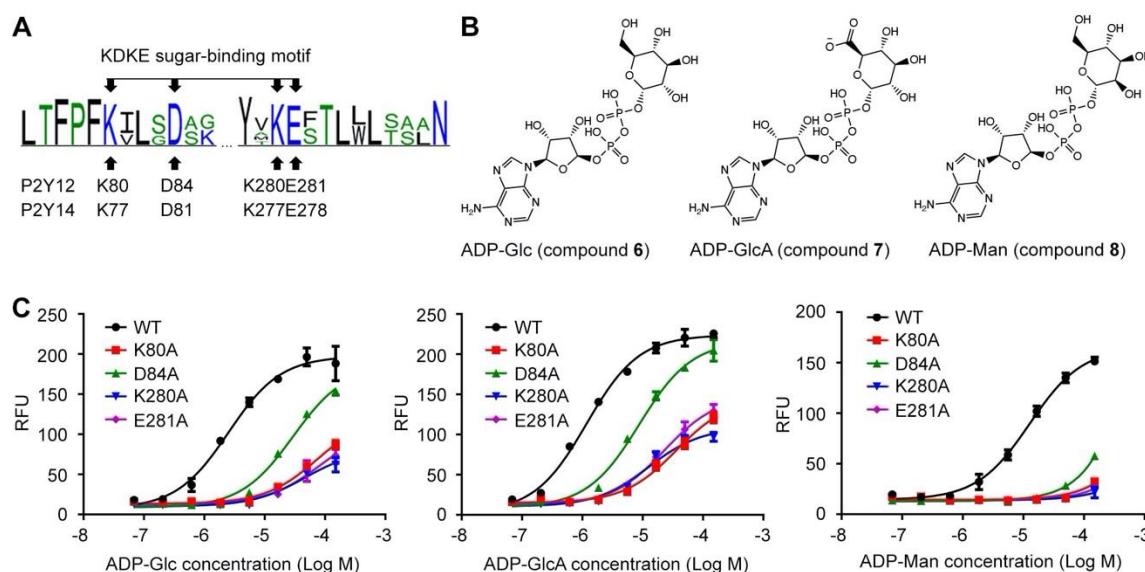

Source data 2. Potency of UDP-GlcA, UDP-GlcNAc and UDP-Gal in HEK293 expressing P2Y14 WT and mutants.

Figure 3—figure supplement 1. Key interactions between P2Y14 and a UDP-sugar in simulations. Putative hydrogen bonds and salt bridges are displayed as red dashed lines.

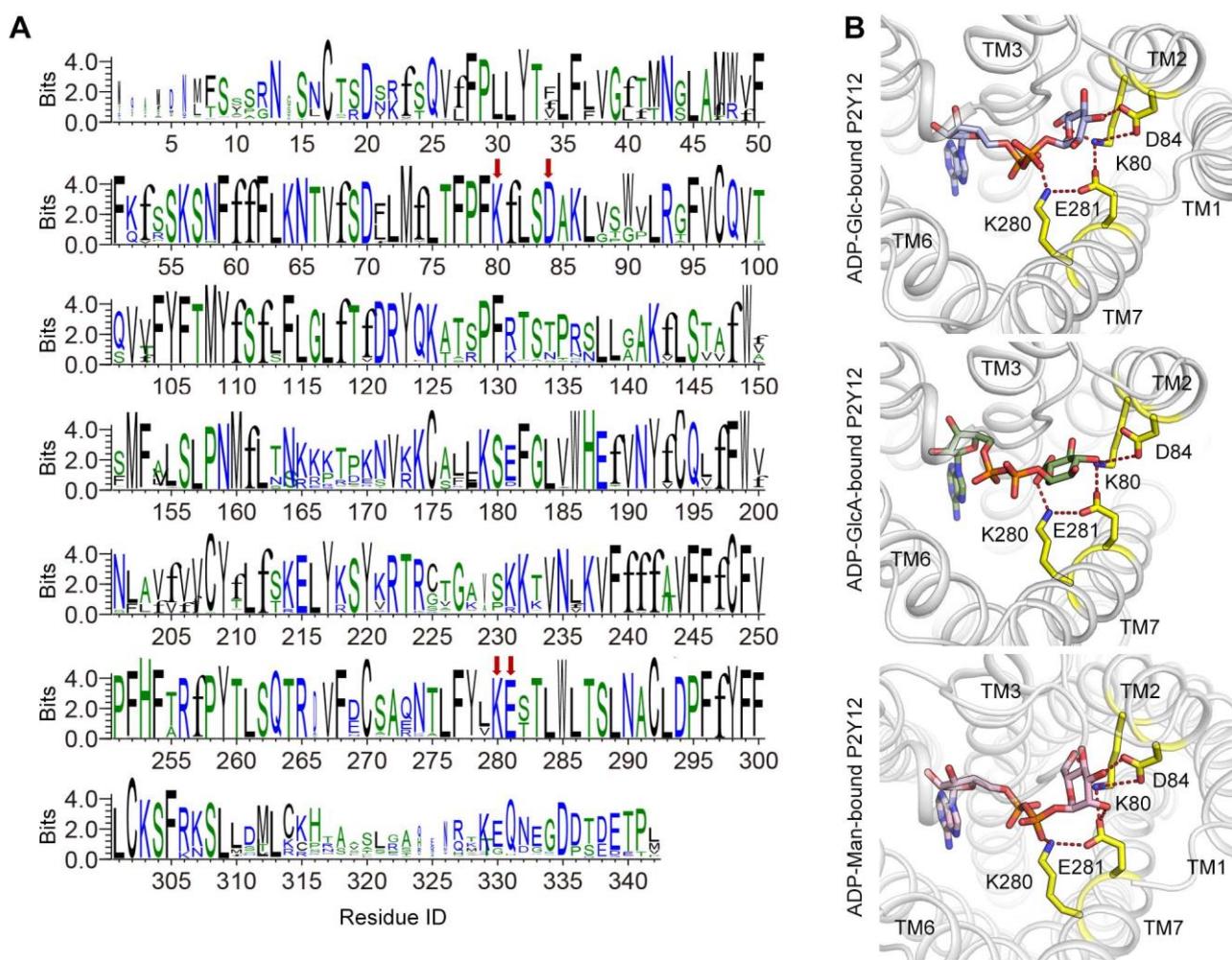


Figure 3—figure supplement 2. Interactions between a key residue of P2Y14 and a UDP-sugar in simulations. (A-D) Distribution of distance between key residues (K277, E278, R253 and K77) and a group of UDP-Glc (A), UDP-GlcA (B), UDP-GlcNAc (C) or UDP-Gal (D) in simulations.

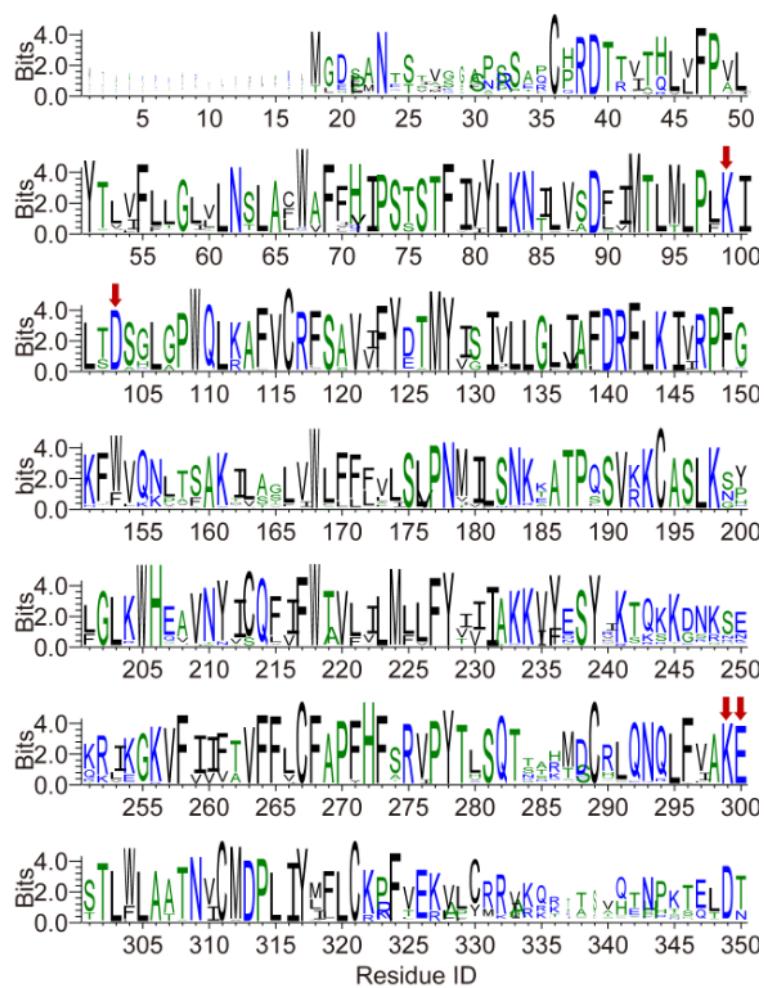


Figure 4. ADP-sugars binding to P2Y12. **(A)** Sequence log of the alignment between P2Y12 and P2Y14. Sequences of P2Y12 and P2Y14 involving 379 species were collected for making sequence alignments. See *Supplementary file 3* for species repertoire information. The height of a letter is proportional to the relative frequency of that residue at a particular site. Four residues of KDKE sugar-binding motif are marked by arrows, with the corresponding residues in P2Y12 and P2Y14. **(B)** Chemical structure of ADP-Glc, ADP-GlcA and ADP-Man. **(C)** Calcium mobilization concentration-response curves for ADP-Glc, ADP-GlcA and ADP-Man in HEK293 expressing P2Y12 WT and mutants. Data are shown as mean \pm SEM ($n = 3$). See also **Figure 4—source data 1** and *Supplementary file 1*.

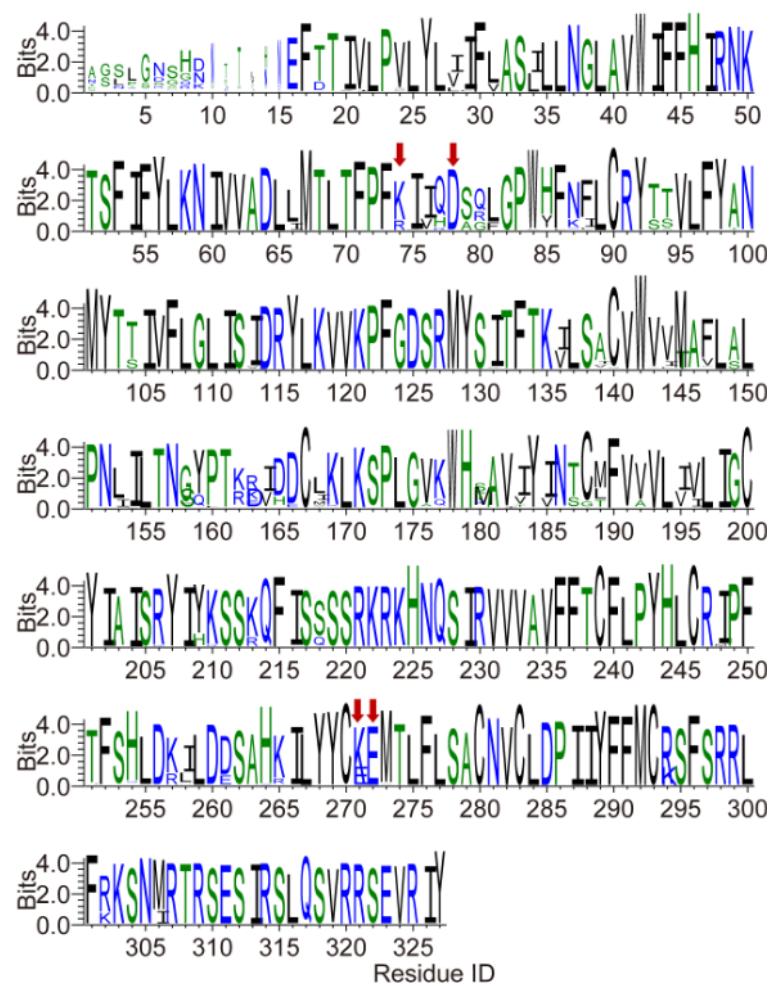

Source data 1. Potency of ADP-Glc, ADP-GlcA and ADP-Man in HEK293 expressing P2Y12 WT and mutants.

Figure 4—figure supplement 1. Conserved sugar-binding site on P2Y12. **(A)** Conservation of each residue on P2Y12. The height of a letter is proportional to the relative frequency of that residue at a particular site. Residues of KDKE sugar-binding motif are labeled with red arrows. See *Supplementary file 3* for species repertoire information. **(B)** Docking models of ADP-sugars to P2Y12. Receptor is shown as cartoon. Ligands and key residues are shown as sticks. Residues of KDKE sugar-binding motif are highlighted in yellow. Putative salt bridges are showed as red dash lines.

Figure 4—figure supplement 2. Conservation of each residue on P2Y13. The height of a letter is proportional to the relative frequency of that residue at a particular site. Residues of K^{2.60}, D^{2.64}, K^{7.35} and E^{7.36} sites are labeled with red arrows. See *Supplementary file 3* for species repertoire information.

Figure 4—figure supplement 3. Conservation of each residue on GPR87. The height of a letter is proportional to the relative frequency of that residue at a particular site. Residues of K/R^{2.60}, D^{2.64}, K/E^{7.35} and E^{7.36} sites are labeled with red arrows. See *Supplementary file 3* for species repertoire information.