

1 **FRONT MATTER**

2 **The phenuivirus Toscana virus makes an atypical use of vacuolar acidity to enter host cells**

3 **Authors**

4 Jana Koch^{1,2,3}, Qilin Xin³, Martin Obr⁴, Alicia Schäfer^{1,2}, Nina Rolfs^{1,2}, Holda Anagho^{1,2},
5 Aiste Kudulyte^{1,2}, Lea Woltreck^{1,2}, Susann Kummer^{1†}, Joaquin Campos⁵, Zina M.
6 Uckeley^{1,2}, Lesley Bell-Sakyi⁶, Hans-Georg Kräusslich¹, Florian KM Schur⁴, Claudio
7 Acuna⁵, Pierre-Yves Lozach^{1,2,3,*}

8 **Affiliations**

9 ¹Center for Integrative Infectious Diseases Research (CIID), University Hospital
10 Heidelberg, 69120 Heidelberg, Germany.

11 ²CellNetworks – Cluster of Excellence, 69120 Heidelberg, Germany.

12 ³Univ. Lyon, INRAE, EPHE, IVPC, 69007 Lyon, France.

13 ⁴Institute of Science and Technology Austria, Klosterneuburg, Austria (ISTA).

14 ⁵Chica and Heinz Schaller Research Group, Institute of Anatomy and Cell Biology,
15 Heidelberg University, Heidelberg, Germany.

16 ⁶Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L3 5RF
17 Liverpool, United-Kingdom.

18 [†]current affiliation: Center for Biological Threats and Special Pathogens, Robert Koch
19 Institute, 13353 Berlin, Germany.

20 ^{*}Correspondence: pierre-yves.lozach@inrae.fr

21 **Abstract**

22 Toscana virus is a major cause of arboviral disease in humans in the Mediterranean basin
23 during summer. However, early virus-host cell interactions and entry mechanisms remain
24 poorly characterized. Investigating iPSC-derived human neurons and cell lines, we found
25 that virus binding to the cell surface was specific but inefficient, and 50% of bound virions
26 were endocytosed within 10 min. Virions entered Rab5a+ early endosomes and,
27 subsequently, Rab7a+ and LAMP-1+ late endosomal compartments. Penetration required
28 intact late endosomes and occurred within 30 min following internalization. Virus entry
29 relied on vacuolar acidification, with an optimal pH for viral membrane fusion at pH 5.5.
30 The pH threshold increased to 5.8 with longer pre-exposure of virions to the slightly acidic
31 pH in early endosomes. Strikingly, the particles remained infectious after entering late
32 endosomes with a pH below the fusion threshold. Overall, our study establishes Toscana
33 virus as a late-penetrating virus and reveals an atypical use of vacuolar acidity by this virus
34 to enter host cells.

35
36
37

38 **MAIN TEXT**

39 **Introduction**

40 Toscana virus (TOSV) is a re-emerging sand fly-borne pathogen of the *Phenuiviridae*
41 family (genus *Phlebovirus*, order *Bunyavirales*) that is responsible for neuro-invasive
42 infections in humans and causes meningitis and meningoencephalitis in most severe cases
43 (1, 2). The virus was first isolated from the phlebotomine sand flies *Phlebotomus*
44 *perniciosus* and *Phlebotomus perfoliwei* in Tuscany, central Italy, in 1971 (3). Nowadays,
45 TOSV is widely spread in North Africa and southern Europe, including Greece, Italy,
46 southern France and Spain (1, 2, 4). TOSV is currently a primary cause of arthropod-borne
47 viral disease in humans in Mediterranean countries during summer (2). However, until now,
48 no vaccines or antiviral treatments are approved for human use.

49 TOSV has a tri-segmented, single-stranded RNA genome of predominantly negative
50 polarity that replicates exclusively in the cytosol of infected cells (5). The larger segment
51 (L) codes for the RNA-dependent RNA polymerase that is required to initiate virus
52 replication after release of the viral genome into the cytosol. The medium segment (M)
53 encodes a polyprotein precursor, the proteolytic cleavage of which results in a non-structural
54 protein, NSm, and two envelope glycoproteins, Gn and Gc. The smallest genomic segment
55 (S) codes for the non-structural protein NSs, and for the nucleoprotein N which associates
56 with the RNA genome and constitutes, together with the viral polymerase, the
57 ribonucleoproteins (RNPs) (6). Viral particles are believed to assemble and acquire their
58 lipid envelope in the endoplasmic reticulum or Golgi network, from where newly-formed
59 viral particles leave infected cells.

60 TOSV has so far not been visualized, and hence the morphology, size and structural
61 organization of virions remain to be determined. Other phenuiviruses are enveloped,
62 roughly spherical, and about 100 nm in diameter (7). While viral RNPs are inside the viral
63 particles, the two envelope glycoproteins Gn and Gc decorate the outer surface and allow
64 virus binding to host cells and acid-activated penetration into the cytosol. Cryo-electron
65 tomography revealed that most regular phenuiviral particles have protrusions of about ten
66 nanometers forming an icosahedral lattice with an atypical T=12 triangulation (8, 9).
67 Structural studies of Rift Valley fever virus (RVFV), Dabie virus (DABV) and Heartland
68 virus (HRTV) revealed that the phenuiviral Gc belongs to the group of class-II membrane
69 fusion proteins (10-12).

70 The tropism, receptors, cellular factors and pathways used by TOSV to enter and infect host
71 cells are largely unidentified and poorly characterized. The virus was shown to subvert
72 heparan sulfates and the C-type lectins DC-SIGN and L-SIGN to attach to the cell surface
73 (13-15). A few phenuiviruses have been shown to depend on endocytic internalization and
74 vacuolar acidification for infectious entry (7). As with other class-II fusion proteins, acidic
75 pH is thought to trigger multiple conformational changes in phenuiviral glycoproteins that
76 lead to the insertion of the viral fusion unit into endosomal membranes (16). Foldback of
77 the viral fusion protein follows and then the formation of a fusion pore allows the release of
78 the virus genome into the cytosol.

79 Here, we analyzed the entry of TOSV into induced pluripotent stem cell (iPSC)-derived
80 human neurons and other tissue culture cells. To this end, we developed sensitive
81 fluorescence-based approaches to examine and quantify TOSV infection, binding,
82 internalization, intracellular trafficking and membrane fusion. The results showed that
83 TOSV shares with other phenuiviruses a dependence on the degradative branch of the
84 endocytic machinery for penetration of host cells by acid-activated membrane fusion. TOSV

85 made atypical use of endosomal acidity to find its way through endosomal vesicles and enter
86 the cytosol.

87 **Results**

88 **TOSV infects human iPSC-derived neurons**

89 TOSV causes meningoencephalitis in the most severe cases. Therefore, we sought to test
90 the sensitivity of brain cells to TOSV infection. To this end, functional, human
91 glutamatergic neurons were generated from iPSCs through expression of the transcription
92 factor neurogenin-2 (17) and exposed to different multiplicities of infection (MOIs) of
93 TOSV for 48 h. The susceptibility of cells was assessed by flow cytometric analysis after
94 immunofluorescence staining with antibodies (Abs) directed against all TOSV structural
95 proteins, *i.e.*, the nucleoprotein N and the glycoproteins Gn and Gc. Nearly 70% of the
96 neuronal cells were infected at the highest MOI (Fig. 1A). The percentage of infected cells
97 increased over time and reached a plateau within 16 h post-infection (hpi) (Fig. 1B),
98 indicating that the fluorescence signal detected in this assay corresponded to viral
99 replication and not to the input virions.

100 Several cell types of various species have been reported to support productive TOSV
101 infection (5, 14), suggesting broad host range potential and wide tissue tropism of the virus.
102 We evaluated 18 further cell lines from different arthropod and vertebrate species and found
103 that 16 were susceptible and permissive to infection and seven of eight tested cell lines
104 produced infectious viral particles, as determined by our flow cytometric and plaque-
105 forming unit (pfu) assays (Table S1 and Fig. S1A and S1B). Of note, myeloid or lymphatic
106 lineages were poorly infected, if at all. The three sand fly cell lines allowed a complete viral
107 cycle, but their sensitivity to virus infection was low compared to that of most of the
108 mammalian cells.

109 To evaluate the production and release of infectious viral particles, we infected A549 cells
110 at low MOIs and quantified virus infection and production up to 48 hpi (Fig. S1C to S1E).
111 Infectious progeny was found to be released from infected cells as early as 9-16 hpi.
112 Collectively, our analysis indicated that TOSV completes one round of infection, from virus
113 binding and penetration to replication and release of infectious progeny within 9 h in A549
114 cells. Similar results were obtained in other cell lines tested (Table S1). As we aimed to
115 analyze TOSV entry mechanisms and restrict infection to a single round in the selected cell
116 lines, we limited our assays to 6 hpi in all further experiments. In addition, we used MOIs
117 for each cell line allowing the infection of approximately 20% of cells. This range of
118 infection generally avoids saturation of infection in cells and thus, allows the detection of
119 potential inhibitory or enhancing effects of a perturbant.

120 **TOSV infection relies on vacuolar acidification**

121 To examine whether the acidic pH in endosomal vesicles is important in TOSV infection,
122 the virus was added to neurons and A549 cells in the presence of agents that neutralize
123 vacuolar pH. The lysosomotropic weak bases ammonium chloride (NH₄Cl) and chloroquine
124 induced a dose-dependent inhibition of TOSV infection (Fig. 1C and 1D). In these
125 experiments, we monitored and regulated the medium for a pH above 7.0 ensuring
126 effectiveness of the base. Two inhibitors of vacuolar-type H⁺-ATPases, bafilomycin A1
127 and concanamycin B, gave similar results (Fig. 1E and 1F). Taken together, these
128 experiments showed that TOSV depends on vacuolar acidification for infection in both
129 neurons and A549 cells. These results also suggest that TOSV enters host cells by
130 endocytosis, as reported for the other phenuiviruses analyzed for entry (7).

131 Together, this series of data indicates that TOSV efficiently infects human neurons and
132 various mammalian cell lines. Regardless of cell type, infection required endosomal
133 acidification. To further examine TOSV entry and the role of endosomal maturation and
134 vacuolar acidification, we, therefore, selected three productive cell lines representing
135 rodent, monkey and human cells, namely BHK-21, Vero and A549 cells. In most of the
136 following experiments, we opted to use these cell lines as they are easier to handle than the
137 complex iPSC-derived neuron system.

138 **Labeling of TOSV with fluorescent dyes**

139 To visualize and quantify the early stages of TOSV entry, we purified and labeled the virus
140 chemically with fluorescent probes. Hydroxysuccinimidyl (NHS) ester dyes with an
141 excitation wavelength of 488 nm (Alexa Fluor [AF] 488) or 647 nm (ATTO647N) were
142 coupled to free lysines in the glycoproteins Gn and Gc at a dye-to-glycoprotein ratio
143 between 1:1 and 2:1. At this ratio, we assumed that all virions were labeled. Alternatively,
144 TOSV was labeled with the lipid dye R18 primarily for the analysis of viral fusion. A high
145 concentration of R18 molecules in viral envelopes results in autoquenching of the
146 fluorescence signal (18). Viral fusion allows the release of R18 into the target cell
147 membranes leading to the dilution of the dye, and, thus, dequenching of the fluorescence.

148 Characterization of the fluorescent virions is shown in Figure S2. Briefly, labeled particles
149 were purified through a sucrose gradient so that unbound dyes were removed (Fig. S2A).
150 Analysis by SDS-PAGE and Coomassie blue staining showed that the purity of the labeled
151 TOSV preparations was greater than 90% (Fig. S2B). The only proteins labeled with NHS
152 ester dyes were Gn and Gc (Fig. S2B). The observation that N was not labeled demonstrated
153 that the viral envelope was intact during the labeling procedure. The different labeled
154 particles could be visualized as single spots by confocal microscopy and super-resolution
155 stimulated emission depletion (STED) microscopy (Fig. S2C). We did not notice significant
156 impact of labeling on TOSV infectivity. The titers were similar to those of non-labeled
157 particles (Fig. S2D).

158 TOSV particles were then imaged by cryo-electron microscopy (EM) after fixation with
159 paraformaldehyde and vitrification (Fig. 2A). Virions appeared roughly spherical with a
160 diameter of 121 ± 11 nm ($n = 96$) and protrusions of 9 ± 2 nm ($n = 96$) (Fig. 2B). The
161 measured roundness coefficient of virions was close to 1, *i.e.*, the ratio between their
162 perpendicular width and length was of 0.9 ± 0.1 ($n = 96$) (Fig. 2B). This reflected the nearly
163 spherical shape of the viral particles. Overall, TOSV particles displayed the typical
164 morphology known for other phenuiviruses such as RVFV and Uukuniemi virus (UUKV)
165 (8, 9).

166 **TOSV binding to cells is specific but rather inefficient**

167 To evaluate TOSV binding to cells, R18-labeled virions were first allowed to bind to A549
168 cells in suspension at 4 °C for 90 min. The unbound virions were washed away, and the
169 remaining cell-associated, fluorescent viral particles were determined with a fluorimeter.
170 The results showed that the fraction associated with the cells was about 25% of the virus
171 input (Fig. 2C), indicating rather inefficient binding of TOSV to cells. After binding of
172 ATTO647N-labeled particles to A549 cells at 4 °C, virus particles were imaged by confocal
173 microscopy and could be detected on the cell surface (Fig. 2D). That the spots had varied
174 sizes suggested that not only individual virions were attached to cells. The largest clusters
175 were probably formed by 2-3 virions but were only seen as a single spot due to the limitation
176 of confocal resolution. The fact that the number of spots per cell was 10.5 ± 8.5 ($n = 151$)
177 at MOI only 1, *i.e.*, one infectious virion initially added per cell, indicated that the ratio
178 between infectious and noninfectious bound virions was around 1:10.

179 Flow cytometry analysis allowed detection and quantification of TOSV-AF488 from MOI
180 3 and above (Fig. 2E). Binding of TOSV-AF488 was observed to be abrogated by pre-
181 binding of non-labeled TOSV in a dose-dependent manner (Fig. 2F). A 33-fold higher
182 concentration of non-labeled virions reduced TOSV-AF488 binding by one-fourth.
183 Complete inhibition was not achieved because the necessary concentrations of non-labeled
184 virus were not reached under our experimental settings. However, the pre-binding of
185 Semliki Forest virus (SFV) did not affect TOSV-AF488 binding under the same conditions.
186 Combined, these data indicated that TOSV binding to cells is relatively inefficient and likely
187 involves one or more specific attachment factors or receptors.

188 **TOSV enters early and late endosomal compartments**

189 We next aimed to determine whether TOSV is internalized and sorted into early endosomes
190 (EEs) following virus binding to the cell surface. To analyze TOSV internalization by
191 fluorescence microscopy, we first allowed TOSV-AF488 to bind to A549 cells on ice at
192 high MOI (~10). The cells were then rapidly warmed to 37 °C to trigger endocytosis and
193 placed back on ice after 30 min to stop further endocytosis. To discriminate between
194 internalized and surface-bound virions, cells were treated with trypan blue for 10 sec before
195 imaging or flow cytometry analysis. Trypan blue is a membrane-impermeable dye that
196 quenches green-emitting dyes such as AF488 and thus quenches the fluorescence emitted
197 by TOSV-AF488 particles exposed on the cell surface while leaving intracellular virions
198 unquenched (Fig. 2G and 2H). Time-course analysis of the generation of trypan blue-
199 resistant fluorescence of cell-associated TOSV-AF488 revealed that internalization into
200 A549 cells started within the first 5 min and increased over time to reach the half-maximal
201 level ($t_{1/2}$) within 9 ± 2 min and the plateau 10 min later (Fig. 2I). Evidently, TOSV uptake
202 occurred rather synchronously.

203 To assess whether internalization leads to the sorting of viral particles into EEs, we used
204 A549 cells transiently expressing the small GTPase Rab5a, a marker of EEs, tagged with a
205 monomeric enhanced green fluorescent protein (EGFP). After synchronization of TOSV-
206 ATTO647N binding to A549 cells expressing EGFP-Rab5a on ice, the temperature was
207 rapidly shifted to 37 °C for periods of up to 40 min. Confocal microscopy showed TOSV
208 co-localizing with EGFP-Rab5a-positive (+) vesicles 5 min post-warming (Fig. 3A). The
209 amount of co-localizing virions reached a maximum within 5-10 min post-warming and
210 decreased thereafter (Fig. 3B). In live A549 cells, confocal microscopy showed that TOSV-
211 ATTO647N moved together within EGFP-Rab5a+ endosomal vacuoles (Movie S1).

212 In addition, TOSV was observed within vesicles containing the late endosomal markers
213 Rab7a and LAMP-1 tagged with EGFP (EGFP-Rab7a and LAMP-1-EGFP) but at later time
214 points. Co-localization and coordinated motion with EGFP-Rab7a+ endosomes in live A549
215 cells were maximal 20-40 min after uptake (Fig. 3C and 3D and Movie S2). Co-localization
216 with the lysosome marker LAMP-1 (LAMP-1-EGFP) was somewhat delayed (Fig. 3E and
217 3F). Of note, some virions were located in the middle of the vesicles and had probably not
218 yet undergone fusion with the limiting endosomal membrane. Overall, the temporal overlap
219 of co-localizations with Rab7 and LAMP-1 suggested that viral particles reach late
220 endosomes (LEs) rather than lysosomes.

221 **TOSV depends on the passage through EEs and LEs for infectivity**

222 To examine whether passage through the endosomal compartments was required for
223 infectivity, we first assessed TOSV internalization and infection in A549 cells transfected
224 with DNA plasmids to express a constitutively-active mutant of Rab5a tagged with EGFP
225 (EGFP-Rab5a Q79L). The expression of this mutant typically results in the enlargement of
226 EEs (Fig. 4A), compromising the maturation of LEs and transport of cargo to lysosomes

227 (19). Infection was measured in populations of cells expressing identical levels of EGFP as
228 selected by flow cytometry. Expression of EGFP-Rab5a Q79L reduced TOSV infection by
229 80% in comparison to EGFP-Rab5a wild type (wt) (Fig. 4B). In contrast to EGFP-Rab5a,
230 the number of virions co-localizing with EGFP-Rab5a Q79L+ vacuoles remained high even
231 after 20-40 min (Fig. 3B). Expression of the dominant-negative mutant Rab5a S34N (EGFP-
232 Rab5a S34N), which abrogates the maturation of newly-formed EEs (20), also resulted in a
233 large decrease in infection, *i.e.*, more than 60% (Fig. 4B). Altogether, these results indicated
234 that the infectious entry pathway involves the passage of TOSV in Rab5a+ EEs, though the
235 transport to downstream endosomal vesicles is also needed for productive infection.

236 As a block in the maturation of EEs to LEs impeded infection, TOSV potentially needs to
237 pass through LEs for its productive entry into the cytosol. To test this possibility, we
238 evaluate the role of the small GTPase Rab7a in TOSV infection. Rab7a is a key player in
239 LE maturation and functions (21). When A549 cells transiently expressed an EGFP-tagged
240 dominant negative mutant of Rab7a (EGFP-Rab7a T22N), TOSV infection was severely
241 impaired, but not when the cells expressed the constitutively active Q67L mutant of Rab7a
242 (Fig. 4C). In some cell types, LE maturation relies on microtubule (MT)-mediated transport
243 of endosomes to the perinuclear region of cells and on free cytosolic ubiquitin (22, 23).
244 Treatment of neurons and A549 cells with either nocodazole or colcemid, two drugs that
245 hamper MT polymerization, resulted in a 40-60% decrease in infection (Fig. 4D to 4G).
246 When free ubiquitin was depleted by the proteasome inhibitor MG-132, TOSV infection
247 was reduced in a dose-dependent manner in both neurons and A549 cells (Fig. 4H and 4I).
248 Conversely, taxol, an MT-stabilizing drug, did not affect the infection of A549 cells (Fig.
249 4J). Taken together, these experiments show that the transport of virions to LEs is required
250 for infectivity.

251 **Low pH is sufficient and necessary for TOSV fusion**

252 The observation that TOSV requires vacuolar acidification for infection suggests that the
253 virus penetrates host cells by acid-activated membrane fusion. To define the pH threshold
254 and to link fusion with infection, we tested the capacity of TOSV to fuse at the plasma
255 membrane of cells as originally described for SFV (24). In such a scenario, the virus
256 bypasses the need for endocytosis during productive infection. Briefly, TOSV was bound
257 to A549 cells at MOI 10 at 4 °C, the temperature was rapidly elevated to 37 °C for 1.5 min
258 in buffers with different pH values, and NH₄Cl-containing medium at neutral pH was then
259 added for the remaining period of infection to prevent further infection through endosomes.
260 The bypass resulted in efficient infection at pH values of 5.7 and below (Fig. 5A). 50% of
261 the maximal infection was reached at a pH of 5.6. These data demonstrated that a reduction
262 in pH is sufficient to trigger infectious penetration of viral RNPs from the plasma membrane
263 to the cytosol. Additional processing of the viral glycoproteins Gn and Gc in the endocytic
264 machinery were apparently not needed to activate fusion and infection by TOSV.

265 **Acid-activated penetration occurs in late endosomal compartments**

266 To determine the timing of the acid-requiring step following virus internalization, we took
267 advantage of the fact that the rise in endosomal pH is almost instantaneous when NH₄Cl is
268 added to the extracellular medium (25). Virus particles were first allowed to bind to neurons
269 and A549 cells on ice at MOIs of 15 and 1, respectively. Virus entry was then synchronized
270 by rapid warming to 37 °C, and NH₄Cl was added at different times following the
271 temperature switch. A concentration of 50 mM was used to ensure that infection was
272 completely abolished after adding NH₄Cl. Infectious penetration started after a 5-min delay
273 in A549 cells and reached a $t_{1/2}$ within 15 min and a plateau 25-45 min later (Fig. 5B). It
274 was apparent that individual viral particles had completed the NH₄Cl-sensitive step non-

275 synchronously in neurons, most likely due to the heterogeneity of cell preparations typical
276 of iPSC-derived neurons (Fig. 5C).

277 To further analyze acid-activated membrane fusion in late endosomal vacuoles, we relied
278 on TOSV-R18 to monitor viral fusion in living cells with a fluorimeter. In this assay, the
279 increase in fluorescence signal results from dequenching of the fluorescence lipid dye R18
280 upon activation of viral fusion. Though the subsequent release of the dye into the target cell
281 membranes corresponds to the hemi-fusion mixture of outer leaflets and not to fusion pore
282 formation, it is a good correlate for fusion. TOSV-R18 was bound to A549 cells on ice, and
283 virus endocytosis was synchronized by switching the cells rapidly to 37 °C (Fig. 5D). The
284 kinetics measured in this assay were very similar to those determined with the above
285 procedure based on NH₄Cl addition. The fluorescence signal started to increase after a 6
286 min lag and reached a t_{1/2} within 18 min ± 2 min post-warming with a plateau value about
287 20 min later.

288 The kinetics of penetration closely resembled the time course of endolysosomal maturation,
289 which usually lasts 30-60 min (22). To challenge the hypothesis that TOSV penetration
290 occurs in LEs, we examined the temperature dependence of entry. The transport of cargo
291 from EEs to LEs is known to be inhibited at temperatures below 20 °C (26). TOSV binding
292 to A549 cells was synchronized on ice, and cells rapidly warmed to different temperatures
293 for 1 h before incubation at 37 °C for 6 h in the presence of NH₄Cl to prevent further
294 penetration. The infection was greatly reduced at 30 °C and below (Fig. 5E). In contrast to
295 TOSV, a temperature of 30 °C had no noticeable effect on infection by SFV, which is acid-
296 activated in EEs (27). SFV infection was still detected at temperatures as low as 16 °C.

297 To rule out that the fusion process was altered by temperature, we also analyzed the
298 temperature dependence of TOSV fusion using the bypass protocol described above. At 25
299 °C, fusion corresponded to 40% of the 37 °C control, whereas infection via the normal route
300 was lowered by 85% (Fig. 5E and 5F). At 21 °C, fusion was still 10% of the 37 °C control,
301 whereas infection via the normal route could no longer be detected. As expected of a virus
302 capable of replicating in insect hosts, this suggested that fusion was not a bottleneck for
303 penetration at lower temperatures. Most likely the viral particles did not infect at 25 °C and
304 below because they did not reach a compartment with low enough pH.

305 Next, we analyzed the dynamics of viral fusion. To this end, we forced fusion of TOSV-
306 R18 at the plasma membrane of cells, as described in the bypass assay, but instead measured
307 the increase in fluorescence associated with the dequenching of R18 dye in real-time. In
308 brief, R18-labeled virions were first allowed to attach to A549 cells on ice and viral fusion
309 was then triggered by the addition of buffer at pH ~5.0. We found that the release of R18
310 molecules into target cell membranes reached a t_{1/2} of 27 ± 16 sec and was completed 25-50
311 sec later (Fig. 5G). Almost two-thirds of the plasma membrane-bound virions entered the
312 cells and fused (Fig. 5H). Together, our data indicate that acid-activated penetration of
313 TOSV involves most cell surface-bound virions and is achieved through a fast and efficient
314 fusion process from late endosomal compartments.

315 The TOSV envelope glycoprotein Gc is a class-II fusion protein

316 A growing body of evidence suggests that the Gc envelope glycoprotein of phenuiviruses
317 belongs to the group of class-II membrane fusion proteins (7). As a result, phenuiviruses
318 are thought to follow an acid-activated penetration process in line with this class of fusion
319 proteins (28, 29). No structural data are currently available for TOSV glycoproteins, but
320 others have resolved the crystal structure of RVFV Gc (10). Analysis of the M polypeptide
321 sequence with the blastp algorithm showed that TOSV Gc shares about 48% amino acid
322 identity and 67% similarity with RVFV Gc (Fig. 6A). The fusion domain of RVFV reaches

323 83% amino acid identity with the corresponding sequence in TOSV Gc. This high degree
324 of conservation suggests a fairly recent evolutionary divergence between TOSV and RVFV.

325 The level of identity and similarity in amino acids supports the idea that the Gc
326 glycoproteins of TOSV and RVFV resemble each other structurally. To further test this
327 possibility, we utilized AlphaFold to predict the structure of TOSV Gc ectodomain based
328 on the information available for the RVFV Gc structure. A bent conformation was obtained
329 by comparison with intact RVFV virions (Protein Data Bank [PDB, 6F9F]) (16), likely
330 corresponding to the canonical pre-fusion orientation of the glycoprotein (Fig. 6B). The Gc
331 AlphaFold prediction exhibited domains I, II and III typical of its phenuivirus orthologs and
332 other viral class-II fusion proteins. The acid-activated conformation of TOSV Gc was
333 predicted using the X-ray post-fusion structure of RVFV Gc (PDB, 6EGT) (30) (Fig. 6C).
334 The extent of confidence in the modeling was assessed using an average predicted local
335 distance difference test (pLDDT). The closer the value is to 100, the more likely the
336 prediction is to be close to the real structure. A value below 50 is categorized as low
337 confidence. Both structural models of TOSV Gc achieved a high overall confidence score,
338 with pLDDT values higher than 90 for the individual domains I, II and III.

339 The AlphaFold pre-fusion conformation of TOSV Gc was virtually identical to the
340 experimentally-resolved pre-fusion structure for RVFV Gc, except for a 19-degree greater
341 angle between domains I and II (Fig. 6D). This difference could be due to the preference of
342 AlphaFold for more energetically stable conformations and not to the original pre-fusion
343 Gc structure itself. The post-fusion Gc forms of the two viruses differed further. The
344 position of A₀B₀ and C₀D₀ strands in domain I did not undergo major changes after TOSV
345 Gc activation (Fig. 6E and Movie S3). Both A₀B₀ and C₀D₀ strands had deviations of 101
346 and 34 degrees, respectively, from the same strands in the RVFV Gc post-fusion structure.
347 A second distinction was the barrel sheet in domain III, which was lower in position for
348 TOSV than for RVFV, and third difference was the presence of an isoleucine residue (I967)
349 in the fusion loop instead of a tryptophan (W821). This latter difference is consistent with
350 the observation made by others that isoleucine at this position allows the distinction between
351 phenuiviruses transmitted by sand flies and ticks and other phenuiviruses (30). Overall, our
352 computational approaches showed that TOSV Gc can be confidently considered a viral
353 class-II fusion protein.

354 **TOSV remains infectious even after acid exposure below the fusion threshold**

355 The activation and priming of class-II viral fusion proteins are described as irreversible
356 steps, and viral fusion proteins act only once (29). To check whether TOSV fusion is an
357 irreversible process, we first evaluated the possibility of inactivating the virus, by applying
358 acidic buffers in the absence of target-cell membranes, before infection under neutral-pH
359 conditions. In such an assay, the virus undergoes a transition toward the post-fusion state at
360 the optimal pH. If the transition is irreversible, the fusion protein is no longer able to fuse
361 with target-cell membranes and, thus, the viral particles are rendered noninfectious. Using
362 this approach, we did not observe any negative effect on TOSV infectivity in A549 cells of
363 exposing virions to buffers ranging from pH ~5.0 to 7.5 for 5 min (Fig. 7A). Infection was
364 even greater when the viral particles were subjected to buffers at pH ~6.0 and 6.5.

365 To determine whether low pH resistance is a hallmark of TOSV or has larger implications,
366 we expanded our study to related and unrelated viruses with class-I or class-II fusion
367 proteins. Briefly, RVFV, Germiston virus (GERV) and UUKV are bunyaviruses, thus all
368 with a class-II fusion protein and related to TOSV. In addition, SFV is an alphavirus with a
369 class-II membrane fusion protein, and the unrelated influenza A virus (IAV) has a class-I
370 fusion protein (29). SFV enters host cells from EEs with a fusion threshold at pH ~6.2 while

371 the others are late-penetrating viruses (L-PV) with a pH-activation threshold ranging from
372 5.0 to 6.0 depending on the virus species (19, 31-34). Like TOSV, we found that the three
373 other bunyaviruses remained infectious in A549 and BHK-21 cells after exposure to buffers
374 of different pH values (Fig. 7B to 7D). In contrast to bunyaviruses, the infectivity of SFV
375 and IAV was dampened by 90-95% after exposure to pH below 6.0 (Fig. 7D and 7E). We
376 noted that although TOSV infectivity appeared to be lower in BHK-21 cells after exposure
377 to pH ~5.5 and below, 20-30% of virions remained infectious (Fig. 7D).

378 To investigate whether the fusion process as such was affected by greater virus binding to
379 cells following exposure to low pH, ATTO647N-TOSV was first subjected to buffers
380 ranging in pH from 5.0 to 7.4. The fluorescently-labeled virions were then allowed to attach
381 to A549, BHK-21 and Vero cells under neutral pH conditions on ice for 1.5 h before imaging
382 (Fig. 7F). Lowering the pH to 6.0 in the binding medium resulted in a higher efficiency of
383 virion attachment to most cell lines, from ~10 to ~20 virions per cell (Fig. 7G). Similar
384 results were obtained when UUKV binding to BHK-21 cells was analyzed by flow
385 cytometry (Fig. 7H). More acidic pH probably caused the unmasking of epitopes in viral
386 glycoproteins that promote interactions with one or more cell attachment factors or
387 receptors. The number of cell-bound virions decreased slightly at the lowest pH, *i.e.*, 5-10
388 virions per cell at pH ~5.0. Overall, virus binding could not account for enhanced fusion at
389 pH ~5.5 and below. Combined, the results indicated that TOSV is not inactivated at pH
390 values below the fusion threshold. This suggested that virions remain infectious in late
391 endosomal vacuoles even when the intraluminal acidity was inferior to the fusion threshold.

392 **Mildly acidic environment primes low-pH-activation of TOSV fusion in LEs**

393 To further examine the effect of pH on TOSV activation and fusion, we forced TOSV-R18
394 fusion on the A549 cell surface with buffers ranging in pH from 5.0 to 5.8 as described
395 above and monitored the dye dequenching in real-time. Viral fusion could be detected for
396 pH as high as 5.8 and the lower the activation pH, the faster the fusion dynamics (Fig. 8A).
397 In the pH range of 5.0 to 5.5, half of the bound virions had completed fusion within 27-57
398 sec (Fig. 8B). At pH of 5.8, $t_{1/2}$ was reached within 164 sec, *i.e.*, the process took longer than
399 at lower pH values. When TOSV was first pre-exposed to mildly acidic pH values such as
400 those prevalent in EEs, we found that virions were then able to fuse markedly faster at a pH
401 of 5.8 (Fig. 8C), a pH value typically found in LEs at the beginning of their maturation. The
402 $t_{1/2}$ of the fusion decreased from 168 to 62 sec, which is somewhat similar to the result
403 obtained with an activation pH of 5.5 without pretreatment. Overall, the data demonstrated
404 that TOSV can achieve fusion at higher pHs when exposed to mildly acidic pH for longer
405 periods. The passage through EEs and exposure to a mildly acidic environment most likely
406 favor the activation of TOSV fusion at lower pHs in LEs.

407 **TOSV remains acid-activable in endosomal vesicles for long periods**

408 The resistance of TOSV to low acidity and the ability of virions to fuse at various pHs values
409 led us to postulate that the virus is less prone to inactivation in the endocytic machinery. To
410 examine how long TOSV remains acid-activable in endosomal vesicles, we reversed the
411 approach of adding NH₄Cl. Virus binding to A549 cells was synchronized on ice, and cells
412 were rapidly warmed in the presence of NH₄Cl before the weak base was washed out at
413 different times. This assay relies on the fact that the neutralization of endosomal pH by
414 NH₄Cl is reversible after washing. In other words, we determined the time at which TOSV
415 acid activation was no longer possible. In A549 cells, infection decreased by 60% during
416 the first 30 min and then more slowly until it reached an 80% decrease after 80 min (Fig.
417 8D). Altogether, these experiments indicated that TOSV infectivity remains high in
418 endosomal vesicles if the virus is not allowed to enter the cytosol after a long period.

419 Together, our results showed that TOSV resembles late-penetrating viruses in that its entry
420 depends on a normal maturation of LEs. It is transported from EEs to LEs, and its pH of
421 fusion corresponds to that prevailing in LEs. It cannot infect cells in which cargo transport
422 into the degradative branch of the endocytic pathway is blocked. TOSV, and possibly other
423 bunyaviruses, differs markedly from other acid-activated viruses in its use of endosomal
424 pH as a cue to enter host cells.

425 **Discussion**

426 TOSV is a re-emerging human pathogen in southern Europe and northern Africa with more
427 than 250 million people potentially exposed and up to 50% seroprevalence in some areas of
428 the Mediterranean basin (2). The TOSV life cycle is however, poorly characterized, and
429 overall, this virus remains neglected. Here, we developed reliable and accurate assays to
430 study the early steps of TOSV infection in both human cell lines and human iPSCs-derived
431 brain cells, which are targeted in the late stages of infection (35). We applied flow
432 cytometry, fluorescence microscopy and fluorimetry to analyze each stage of the TOSV
433 entry program, from virus binding and uptake to intracellular trafficking and membrane
434 fusion. To track single viral particles, we labeled TOSV with fluorescent amine-reactive
435 dyes and took advantage of the free amine residues in the viral glycoproteins Gn and Gc. In
436 addition, we relied on the autoquenching property of the lipid dye R18 at high
437 concentrations to examine the acid-activated membrane fusion of virions.

438 Cryo-electron microscopy images of TOSV showed roughly round particles, homogeneous
439 in size with an average diameter of 103 nm and spike-like projections of 9 nm, quite similar
440 to other phenuiviruses such as UUKV and RVFV (8, 9). Our computer-based analysis
441 showed that TOSV Gc shares with RVFV Gc similar molecular weight and 48% homology
442 in amino acid sequence. As expected, the AlphaFold algorithm predicted that Gc structure
443 in TOSV resembles RVFV, with an organization typical of a class-II viral fusion protein.
444 Still, further experimental work is needed to solve the X-ray structure of both TOSV Gn
445 and Gc glycoproteins and to determine whether TOSV particles have the same atypical
446 T=12 symmetry as UUKV and RVFV (8, 9).

447 The binding of TOSV to the cell surface was specific but rather inefficient, *i.e.*, one-quarter
448 of the total input virus. Internalization of virions was completed within 15 min after virus
449 binding and involved about three-quarters of the surface-bound viral particles or less than
450 20% of the total input virus. In comparison, about 60% of surface-bound viruses fused in
451 intracellular organelles, amounting to nearly 80% of endocytosed virions. One reason for
452 low binding efficiency of the input viral particles to host cells is likely related to the
453 biochemical and biophysical properties of TOSV receptors, the identity of which remains
454 largely undetermined. Similar observations have been made for other phenuiviruses, such
455 as UUKV (19). Strikingly, once bound to the cell surface, most viral particles were
456 internalized and trafficked until they reached the appropriate endosomal vesicles to fuse and
457 enter the cytosol.

458 Confocal microscopy images showed that the number of bound virions per cell was
459 significantly higher than the MOI. This result indicated that a large fraction of viral particles
460 in the virus stocks was noninfectious. Although most surface-bound virions penetrated cells,
461 only one virion every 10 was infectious. Still, the ratio of infectious to noninfectious viral
462 particles was high compared to that of other phenuiviruses, *e.g.*, the ratio in UUKV
463 infectivity is lower than 1:1,000 (19). Altogether our results are consistent with a recent
464 study showing that two distinct incomplete phenuivirus populations, which are unable to
465 spread autonomously due to the lack of one or more genome segments, can cooperatively
466 support infection and spread (36).

467 The penetration of enveloped viruses relies on the fusion between the virion envelope and
468 cell membranes. In most cases, fusion is triggered in endosomes after the acid activation of
469 viral glycoproteins. The first observation that TOSV follows the same strategy was the
470 sensitivity of infection to agents that elevate endosomal pH, as is typical for other
471 phenuiviruses (19, 31, 37). Using NH₄Cl, we showed that the first incoming, infectious
472 particles reached the acid-dependent step 5 min after cell warming, and that half had
473 completed this step within 15 min. Another indication was the capacity of cell-bound viruses
474 to fuse to the plasma membrane after exposure to a pH of 5.5 and below. These pH values
475 are consistent with penetration from late endosomal compartments.

476 From our results, it is furthermore clear that TOSV depends for infection on endocytosis
477 and membrane transport within the classical endocytic machinery. After endocytic uptake,
478 TOSV was observed by confocal microscopy in Rab5a+ EEs. Expression of Rab5a S34N,
479 which inhibits EE maturation and homotypic EE fusion, reduced TOSV intracellular
480 trafficking and infection. Rab5a Q79L, which provokes expansion of EEs and prevents
481 proper LE maturation, also hampered TOSV. Similar observations have been reported for
482 UUKV (19). One can conclude that TOSV passes through Rab5a-positive EEs, but to be
483 infectious the virus must reach more acidic downstream organelles, most probably late
484 endosomal compartments.

485 The hypothesis that the acid-activated step for TOSV occurred in LEs was further supported
486 by the time course and values of pH activation that resemble those of viruses penetrating
487 from LEs such as UUKV and IAV (38). These viruses pass the acid-sensitive step typically
488 with a $t_{1/2}$ of 15-20 min and are activated at pH below 6.0. For comparison, viruses fusing in
489 EEs, such as SFV or vesicular stomatitis virus, become NH₄Cl insensitive within 3-5 min
490 as their internalization is almost instantaneously followed by acid activation (39). Other
491 indications were the inhibition of infection observed when LE maturation was hampered at
492 temperatures below 25 °C, after free ubiquitin depletion, and after MT depolymerization.
493 Expression of the inactive mutant Rab7a T22N also impaired TOSV infection. More
494 directly, confocal microscopy coinciding roughly with the time of acid activation showed
495 TOSV in Rab7a+ and LAMP1+ LEs.

496 Maturing endosomes provide a milieu in which the decreasing pH provides a convenient
497 cue for virus activation (38). The TOSV-cell fusion demonstrated that low pH is sufficient
498 to trigger fusion. Proteolytic processing in endosomal vacuoles as observed, *e.g.*, for Ebola
499 virus and SARS-CoV-2 was apparently not needed (23, 40). Acid activation occurred in less
500 than 30 sec, consistent with pH-triggered kinetics observed for other acid-dependent viruses
501 (41). TOSV most likely follows a fusion process similar to that of RVFV and other
502 phenuiviruses (16), the details of which remain to be elucidated to understand what exactly
503 happens in terms of structure of Gn and Gc and mechanisms upon acidification and
504 membrane fusion. More functional investigations will be required to determine whether
505 receptors play a role in these mechanisms.

506 The fusion process was optimal at a pH below 5.5 but also possible at higher pH despite
507 being delayed by ~100 seconds. Presumably, TOSV can enter the cytosol from endosomes
508 further upstream in late endocytosis pathways, before reaching appropriate LEs for rapid
509 fusion. In this scenario, TOSV could infect tissues and organs devoid of cellular factors
510 necessary for very late virus penetration. The possibility that the virus penetrates earlier may
511 explain the low efficacy of some perturbants of LE maturation in blocking infection by not
512 only TOSV but also other L-PVs. Typically, drugs such as nocodazole and colcemid
513 interfere with the integrity of MT on which LE depends for maturation (22) but have a weak
514 ability to prevent L-PV infection in general (38). Nevertheless, whether delayed fusion at

515 suboptimal pH is a specificity of TOSV or a generality among L-PVs remains to be
516 determined.

517 Another observation supports the notion that infectious entry depends on late endosomal
518 vesicles in their early stages of maturation. The optimal pH for fusion increased from 5.5 to
519 5.8 when virions were pre-exposed to a mild acidity typical of EEs. Passage through
520 classical EEs was evidently a necessary step for TOSV to reach LEs. Our data indicate that
521 EEs not only play a role in sorting virions in the degradative pathway of the endocytic
522 machinery but are also important in priming the viral fusion that subsequently occurs in
523 later endosomes. These results suggest that Gn and Gc glycoproteins undergo incremental
524 conformational changes during virion trafficking, *i.e.*, before the membrane fusion process
525 itself. Other phenuiviruses and class-II viruses need to be added to this investigation.
526 However, it is tempting to propose a model in which class-II fusion viruses do not depend
527 solely on a narrow pH threshold for acid-activated penetration, but on the progressive
528 decrease of acidity in maturing endosomes. In this model, the pH gradient in the endocytosis
529 pathways would activate multiple successive steps in the viral fusion process as virions
530 travel through the endocytic machinery.

531 It appears from our data that endosomal acidity triggers viral fusion. However, TOSV, as
532 well as RVFV, UUKV and GERV, remain infectious in the endocytic machinery long after
533 activation. Our results contrast with the widely-accepted view that activation and priming
534 of class-II membrane fusion proteins are irreversible steps and that these fusion proteins act
535 only once (29). The fusion of phenuiviruses and some other bunyaviruses may specifically
536 involve intermediate steps that are fully or partially reversible; similar mechanisms have
537 been described for class-III fusion proteins (42). The process likely involves other factors
538 than the Gc glycoprotein, such as Gn on the particle surface or proteins and lipids in cellular
539 target membranes. Although probably not a universal approach, as illustrated by the acid-
540 inactivation of SFV, we cannot exclude that some unrelated class-II fusion proteins follow
541 the same strategy. Reports of class-II fusion proteins are essentially based on structural
542 approaches and out-of-cell context assays, whereas TOSV and other bunyaviruses allowed
543 us the real-time analysis of viral fusion only minutes after virion binding and uptake.

544 Acid-activated membrane fusion and late penetration appear to be features shared by many
545 phenuiviruses and other bunyaviruses (7, 43, 44). Our results indicate that TOSV differs
546 from other phenuiviruses in that its penetration seems to rely on LEs in their early stages of
547 maturation, whereas RVFV and UUKV must reach later endosomal compartments and
548 possibly endolysosomes (19). TOSV showed great resistance to the degradative branch of
549 the endocytic machinery, remaining infectious for a long time after internalization. The
550 remarkable adaptability of TOSV and other bunyaviruses to endosomal acidity certainly
551 confers to these viruses the advantage of trial and error in endocytosis pathways until they
552 reach endosomes suitable for viral fusion, the detailed structural biology of which remains
553 a challenge for future work. As such, bunyaviruses have likely found a way to expand their
554 possibilities of entering and infecting host cells, and in turn, facilitating their propagation.

555 Materials and Methods

556 Cell lines

557 All reagents used for cell culture were obtained from Thermo Fisher Scientific or Merck.
558 Briefly, human A549 and HeLa epithelial cells, HEK293T embryonic kidney cells, Huh-7
559 hepatocellular carcinoma cells and U87 glioblastoma cells as well as chicken DF-1
560 embryonic fibroblast cells, murine L929 fibroblast cells, canine MDCK kidney epithelial
561 cells and African green monkey Vero kidney epithelial cells were grown in Dulbecco's
562 modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS). In

563 addition, 1X non-essential amino acids were added in the culture medium of A549 cells.
564 Baby hamster kidney BHK-21 cells were cultured in Glasgow's minimal essential medium
565 (GMEM) supplemented with 10% tryptose phosphate broth and 5% FBS. Human Jurkat
566 and SUP-T1 T lymphoblast cells, raji B cells and THP-1 monocyte cells were grown in
567 Roswell Park Memorial Institute (RPMI 1640) containing 10% FBS and the human SH-
568 SY5Y neuroblast cell line in Minimum Essential Medium (MEM)/F12 (Ham's F12)
569 supplemented with 10% serum. The sand fly cells LLE/LULS40 and LLE/LULS45 were
570 derived from embryos of *Lutzomyia longipalpis* and PPL/LULS49 from *Phlebotomus*
571 *papatasi*. All sand fly cells were cultured in an L-15-based medium in sealed, flat-sided
572 tubes (Nunc) in ambient air at 28 °C as reported elsewhere (45, 46). All cell lines were
573 grown in the presence of 100 units.mL⁻¹ penicillin and 100 mg.mL⁻¹ streptomycin.

574 **iPSC-derived neurons**

575 Human induced pluripotent stem cells (iPSCs) derived from a healthy donor (HD6,
576 Heidelberg University) were cultured on Matrigel-coated (Corning) dishes in mTeSR plus
577 medium (STEMCELL Technologies) at 37 °C with 5% CO₂. Cells were split after 3–5 d,
578 depending on colony size, using EDTA (Sigma). Colonies were scraped off and transferred
579 to Matrigel-coated dishes. The medium was changed every other day. Primary mouse glial
580 cells were prepared as described by Patzke and colleagues (47). Briefly, newborn (p0)
581 mouse cortices were isolated and digested with papain for 20 min, cells were dissociated by
582 trituration using a thin pipette tip and passed through a cell strainer. Cells were then plated
583 onto T75 flasks in DMEM supplemented with 10% FBS. Upon reaching confluence, glial
584 cells were trypsinized and re-seeded twice to remove potential trace amounts of mouse
585 neurons before the glial cell cultures were used for co-culture with induced neuron cells.
586 All procedures involving animals were approved by the Governmental Council Karlsruhe,
587 Germany, and were carried out in strict compliance with German Animal Protection Law
588 (TierSCHG) at the Heidelberg University, Germany. Induced human glutamatergic neurons
589 were generated from HD6 iPSCs as previously described (17). Briefly, iPSCs were treated
590 with Accutase (Sigma), plated and simultaneously infected with two lentiviruses: one
591 designed to express rtTA driven by the ubiquitin promoter and another one designed to
592 express, in an inducible manner, NGN2 and puromycin driven by the rtTA promoter. One
593 day later, doxycycline was added to the medium at a concentration of 2 µg.mL⁻¹ to drive
594 NGN2 and puromycin expression. Two days later, 1 µg.mL⁻¹ puromycin was added to the
595 medium during 24h for selection. After selection, the remaining cells were detached with
596 Accutase and re-plated on Matrigel-coated coverslips along with mouse glia. Half of the
597 medium was then changed every second day for eight days, and 2.5% FBS was added to
598 support astrocyte viability. After day 10, induced neurons were cultured in B27/Neurobasal
599 medium containing Glutamax (Gibco) and 5% FBS for a minimum of 21 days before
600 infection with TOSV.

601 **Viruses**

602 TOSV strain H4906 (lineage B) (5), recombinant RVFVΔNSs:EGFP (48, 49), GERV (34),
603 UUKV strain S23 (50), SFV (32) and IAV strain PR/8/34 (51) have all been described
604 previously.

605 **Antibodies**

606 Polyclonal antibody against TOSV structural proteins N, Gn and Gc was a generous gift
607 from R.B. Tesh (University of Texas, Galveston, Texas, USA) (13). The mouse monoclonal
608 antibody (mAb) against SFV glycoprotein E2 was kindly provided by Prof. Margaret
609 Kielian (Albert Einstein College of Medicine, USA). The polyclonal guinea pig antibody
610 GR1 against N, Gn and Gc structural proteins of GERV was recently described (34). The

611 mouse mAb 8B11A3, which targets a linear epitope in the UUKV nucleoprotein N, is a kind
612 gift from Ludwig Institute for Cancer Research (Stockholm, Sweden) (19). The mouse mAb
613 that detects the IAV nucleoprotein was purchased from Merck (MAB8257). Secondary
614 antibodies conjugated to AF405 and AF488 were purchased from Molecular Probes.

615 **Plasmids and reagents**

616 The plasmids encoding Rab5a, Rab7a and LAMP1 wt and mutant molecules tagged with
617 EGFP have all been described previously (19). Stock solutions of chloroquine diphosphate
618 (Sigma) and ammonium chloride (NH₄Cl, Sigma) stocks were prepared in dH₂O at
619 concentrations of 19 mM and 1 M, respectively. Bafilomycin A1 (BioViotica), colcemid
620 (Cayman Chemical), concanamycin B (BioViotica), MG-132 (Selleck Chemicals),
621 nocodazole (Merck) and taxol (Merck) were all dissolved in 100% dimethyl sulfoxide
622 (DMSO) to prepare stock solutions at 100 μ M, 10 mM, 50 μ M, 40 mM, 20 mM and 10 mM,
623 respectively. Stock solutions of all drugs were diluted in DMEM at the indicated doses
624 (Figures 1 and 4), which are known not to cause cytotoxicity (23, 34). Both dH₂O and
625 DMSO were included as solvent controls. The hydroxysuccinimidyl (NHS) ester dyes
626 AF488 (Thermo Fisher Scientific) and ATTO647N (Atto-Tec) were dissolved in DMSO
627 (10 and 5 mg.mL⁻¹, respectively) while octadecyl rhodamine B chloride (R18, Thermo
628 Fisher Scientific) was dissolved in ethanol (10 mM).

629 **Virus production, labeling, purification and titration**

630 TOSV, GERV, UUKV and SFV were produced in BHK-21 cells in serum-free medium
631 whereas RVFV Δ NSs:EGFP was produced in Vero cells in 2%-containing medium and IAV
632 in MDCK cells in serum-free medium (13, 23, 34, 51). All viruses were purified through a
633 sucrose cushion and then titrated. TOSV, GERV, UUKV and SFV were titrated on BHK-
634 21 cells and IAV on MDCK cells using a pfu assay following procedures established in the
635 laboratory (51, 52). The titer of RVFV Δ NSs:EGFP was determined in A549 cells by
636 quantifying EGFP-positive cells 7 hpi by flow cytometry using a protocol derived from the
637 approach developed by Barrigua and colleagues (53). The MOIs are therefore given
638 according to the titers determined in BHK-21 cells for TOSV, GERV, UUKV and SFV, in
639 A549 cells for RVFV Δ NSs:EGFP and in MDCK cells for IAV. TOSV was fluorescently
640 labeled using a previously-described method (52) in which one and two molecules of AF488
641 and ATTO647N NHS ester dye, respectively, are conjugated to one molecule of the viral
642 glycoproteins for one of the viral glycoproteins. UUKV was labeled following the same
643 method but with three molecules of AF647 (14). Alternatively, TOSV (3 \times 10⁹ pfu.mL⁻¹) was
644 labeled with the lipophilic dye R18 (25 μ M) (52).

645 **Virus binding and internalization**

646 Virions were allowed to bind to pre-cooled cells in DMEM containing 0.2% BSA and 20
647 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) at pH ~7.4 (binding
648 buffer) on ice for 90 min at indicated MOIs. Where indicated, virions were first buffered to
649 different pH values in 100 mM citric acid (pH < 5.5), 2-(N-morpholino)-ethanesulfonic acid
650 (MES) (5.5 < pH < 6.5), or HEPES (6.5 < pH < 7.4) for 5 min at 37 °C before being returned
651 to pH ~7.4 and allowed to bind to cells. For internalization assays, cells were rapidly
652 warmed to 37 °C and incubated for the indicated periods. Both virus binding and
653 internalization were analyzed by flow cytometry, confocal microscopy and fluorimetry as
654 described below. To discriminate between internalized and external virions, trypan blue
655 (Sigma) was added to a concentration of 0.01% before the analysis. In flow cytometry- and
656 fluorimetry-based assays, cells were detached from culture plastic by incubation with 0.5
657 mM EDTA, and virus binding and internalization were performed with cells in suspension
658 in phenol-free binding buffer. In binding competition experiments, cells were first exposed

659 to the indicated amounts of unlabeled TOSV or SFV for 45 min at 4 °C and then to AF488-
660 TOSV at a concentration of 15 nM viral glycoproteins for an additional hour in the presence
661 of unlabeled viruses on ice.

662 **Infection assay**

663 Cells were exposed to viral particles at the indicated MOIs in the respective medium without
664 serum for 1 h at 37 °C. Virus inoculum was then replaced by the respective complete
665 medium, and infection was allowed for an additional 5 h for TOSV and 7 h for RVFV,
666 GERV, UUKV, SFV and IAV, if not indicated otherwise. Where mentioned, virions were
667 buffered to the indicated pH values as described in the Virus binding and internalization
668 section before the infection of cells. For inhibition experiments, cells were pretreated for 30
669 min at 37 °C, except for colcemid, nocodazole and taxol. For these three drugs, cells were
670 exposed for 3 h at 4 °C before infection was carried out at 37 °C. For all the drugs, cells
671 were infected in the continuous presence of the inhibitors. To assess the dependence of
672 TOSV entry on temperature, virus entry was first synchronized on ice. Infected cells were
673 then incubated for 50 min at the indicated temperatures before warming to 37 °C in the
674 respective complete medium containing 50 mM NH₄Cl and buffered with 20 mM HEPES
675 for 6 h. For NH₄Cl add-in time courses, virus binding to cells was synchronized on ice. Cells
676 were then rapidly warmed to 37 °C, and NH₄Cl (50 mM) was added at the indicated times.
677 Cells were subsequently incubated at 37 °C and harvested 6-8 h after the initial warm shift.
678 In the reverse approach, virus binding to cells was synchronized on ice, and cells rapidly
679 warmed to 37 °C in the presence of NH₄Cl (50 mM) before the weak base was washed out
680 at the indicated times. Cells were then incubated for an additional 6 h at 37 °C. Virus
681 infection was monitored by flow cytometry.

682 **Flow cytometry**

683 Infection was monitored by flow cytometry as previously described (19). Briefly, infected
684 cells were fixed and permeabilized by 0.1% saponin before the immunofluorescence
685 staining of newly-produced viral proteins with respective primary antibodies against TOSV,
686 GERV, UUKV, SFV or IAV at concentrations of 2.5 µg.mL⁻¹, 1:16,000, 1:1,000, 1:400 and
687 1:250, respectively. Cells were then washed and exposed to anti-guinea pig or anti-mouse
688 AF405- or AF488-conjugated secondary antibodies (1:500, Thermo Fisher Scientific) for
689 one hour. Alternatively, cells infected with RVFVΔNSs: EGFP were assayed for the EGFP
690 signal, and in binding and internalization experiments, AF488-labeled virions were directly
691 measured. Infection was quantified with a Celesta flow cytometer (Becton Dickinson) and
692 FlowJo software v10.6.2 (TreeStar).

693 **Viral protein analysis**

694 Purified virus stocks were diluted in lithium dodecyl sulfate (LDS) sample buffer (Thermo
695 Fisher Scientific) and separated by SDS-PAGE (NuPAGE Novex 10% Bis-Tris gel, Thermo
696 Fisher Scientific) as previously described (5). Viral proteins were either stained with
697 Coomassie blue or analyzed by fluorography using an LI-COR Odyssey CLx scanner and
698 ImageJ v1.53c [National Institute of Health (NIH), US].

699 **Cryo-electron microscopy**

700 Sucrose gradient-purified virus particles were washed in a buffer containing 10 mM
701 HEPES, 150 mM NaCl, 1 mM EDTA, pH ~7.3, pelleted by ultracentrifugation, and fixed
702 with 4% paraformaldehyde. Subsequently, 2.5 µL of the fixed virion solution was applied
703 to degassed Quantifoil R2/2 Cu grids that were discharged at 30 mA for 2 min before sample
704 application. The sample was vitrified in liquid ethane using a Leica EM GP2 plunge freezer
705 at 4 °C and 90% humidity, and sensor blotting from the reverse side for 3 sec. Data were

706 acquired using SerialEM software on a Thermo Fisher Scientific Glacios transmission
707 electron microscope operated at 200 kV and equipped with a Falcon 3 direct electron
708 detector. Before data acquisition, the microscope was adjusted by a comma-free alignment
709 in SerialEM and the gain reference was determined. Regions of interest were identified in
710 low-magnification setups. For high-resolution data acquisition, the nominal magnification
711 was 73,000, resulting in a pixel spacing of 2.019 Å. The camera was operated in linear mode
712 with a dose rate of 16 e-/s/pixel. The total dose was 19.6 e-/Å² and was divided into 22
713 dose-fractions that were aligned and gain-corrected in SerialEM. Cryo-EM micrographs
714 were analyzed using ImageJ v1.53c (NIH). The length and width of a viral particle were
715 determined by measuring the largest and smallest distances between peaks in density profile
716 or membranes on the opposite side of the viral particle.

717 **Fluorescence microscopy**

718 Cells that were exposed to fluorescently labeled virions were mounted with Mowiol
719 (Merck), and if indicated, nuclei were stained with Hoechst 33258 (0.5 µg.mL⁻¹, Thermo
720 Fisher Scientific). Live cell imaging was performed in the continuous presence of viral
721 particles. Both fixed and live samples were imaged with a Leica TCS SP8 confocal
722 microscope equipped with an HC PL APO CS2 63x/1.4 N.A. oil immersion objective. In
723 addition, super resolution microscopy was used to image ATTO647N-TOSV mounted in
724 Mowiol on PEI-coated coverslips with a 2-color-STED microscope (Abberior instruments
725 GmbH) as described by Kummer and colleagues (51). The STED microscope was equipped
726 with an x100 Olympus UPlanSApo (NA 1.4) oil immersion objective, and the pixel size
727 was set to 60 nm (confocal) and 15 nm (non-diffracted), respectively. Minor contrast and
728 brightness adjustments of images and Richardson–Lucy deconvolution (regularization
729 parameter of 10⁻³, stopped after 30 iterations) were carried out using Imspector software
730 16.1.7098 (Abberior instruments). Images were analyzed with ImageJ v1.53c software
731 (NIH) and the Imspector software (Abberior Instruments GmbH).

732 **DNA transfection**

733 A549 cells (8x10⁴) were transfected with 500 ng of plasmids encoding Rab5a, Rab7a and
734 LAMP1 wt and mutant molecules tagged with EGFP using Lipofectamine 2000 (Thermo
735 Fisher Scientific) according to the manufacturer's recommendations. Supernatants were
736 replaced by fresh medium 5 h after transfection, and the cells were incubated for an
737 additional 17 h before exposure to TOSV.

738 **Flow cytometry-based plasma membrane virus fusion**

739 TOSV was forced to fuse with the plasma membrane as previously described (24). Briefly,
740 TOSV binding to cells at the indicated MOIs was synchronized on ice, and cells were
741 subsequently exposed to buffers of different pH values as indicated for 90 sec at 37 °C.
742 Infected cells were then washed extensively and incubated in complete medium at pH ~7.4
743 supplemented with NH₄Cl (50 mM) for 7 h. Infection was quantified by flow cytometry
744 following the immunostaining of TOSV structural proteins.

745 **R18-based virus fusion**

746 The fusion of R18-TOSV with host cell membranes was performed as previously described
747 (34). Briefly, cells were detached from the culture surface using 0.5 mM EDTA, and binding
748 of R18-TOSV at MOI 10 to cells in suspension was synchronized on ice in a phenol-free
749 medium at pH ~7.4 for 90 min. To determine the kinetics of virus penetration, virus-bound
750 cells were rapidly warmed in an FP-8500 fluorometer (Jasco) to 37 °C, and the emission of
751 fluorescence was measured over 90 min. For virus fusion with cell membranes, virus-bound
752 cells were rapidly warmed inside the fluorometer to 37 °C, and the fusion was triggered

753 with buffers of varying pHs as indicated. The fluorescence was measured for 600 sec. Where
754 indicated, virions were pre-exposed to buffers at pH ~7.4 or 6.0 as described in the Virus
755 binding and internalization section.

756 **Structural modeling of TOSV Gc**

757 The amino acid sequences of the M segment of TOSV and RVFV, strains H4906 and 35/74,
758 respectively, were first aligned and analyzed with blastp suite-2sequences using a
759 BLOSUM62 matrix and Multiple Sequence Alignment Viewer 1.22.2. ColabFold v1.5.2,
760 an algorithm that combines MMseqs2 with AlphaFold2 (54), was then used to predict the
761 structure of TOSV Gc strain H4906 in pre- and post-fusion conformation. For this analysis,
762 the default settings were applied, and the pre- and post-fusion structures of RVFV (PDB,
763 6F9F (16), and PDB, 6EGT (30), respectively) served as models. The AlphaFold predictions
764 for TOSV Gc were visualized with the PyMOL Molecular Graphics System, v2.5.4
765 Schrödinger, LLC. Structural comparisons with RVFV Gc were achieved using UCSF
766 ChimeraX, “matchmaker” plugin to align the models and “morph” plugin to generate
767 conformation change trajectory (55). PDB files of TOSV Gc pre- and post-fusion models
768 are available upon request.

769 **Statistical analysis**

770 Graph plotting and statistics were achieved with Prism v8.0.1 (GraphPad Software). The
771 data shown are representative of at least three independent experiments. Values are
772 presented as the means of triplicate experiments \pm standard deviation if not stated
773 differently.

774 **References**

1. R. N. Charrel *et al.*, Neglected vector-borne bacterial diseases and arboviruses in the Mediterranean area. *New Microbes New Infect* **26**, S31-S36 (2018).
2. M. Moriconi *et al.*, Phlebotomine sand fly-borne pathogens in the Mediterranean Basin: Human leishmaniasis and phlebovirus infections. *PLoS Negl Trop Dis* **11**, e0005660 (2017).
3. P. Verani *et al.*, [Ecological and epidemiological studies of Toscana virus, an arbovirus isolated from Phlebotomus]. *Ann Ist Super Sanita* **18**, 397-399 (1982).
4. N. Ayhan, R. N. Charrel, An update on Toscana virus distribution, genetics, medical and diagnostic aspects. *Clin Microbiol Infect* **26**, 1017-1023 (2020).
5. F. Woelfl *et al.*, Novel Toscana Virus Reverse Genetics System Establishes NSs as an Antagonist of Type I Interferon Responses. *Viruses* **12**, (2020).
6. D. Olal *et al.*, Structural insights into RNA encapsidation and helical assembly of the Toscana virus nucleoprotein. *Nucleic Acids Res* **42**, 6025-6037 (2014).
7. J. Koch, Q. Xin, N. D. Tischler, P. Y. Lozach, Entry of Phenuiviruses into Mammalian Host Cells. *Viruses* **13**, (2021).
8. A. N. Freiberg, M. B. Sherman, M. C. Morais, M. R. Holbrook, S. J. Watowich, Three-dimensional organization of Rift Valley fever virus revealed by cryoelectron tomography. *J Virol* **82**, 10341-10348 (2008).
9. A. K. Overby, R. F. Pettersson, K. Grunewald, J. T. Huisken, Insights into bunyavirus architecture from electron cryotomography of Uukuniemi virus. *Proceedings of the National Academy of Sciences of the United States of America* **105**, 2375-2379 (2008).
10. M. Dessau, Y. Modis, Crystal structure of glycoprotein C from Rift Valley fever virus. *Proceedings of the National Academy of Sciences of the United States of America* **110**, 1696-1701 (2013).

799 11. S. Halldorsson *et al.*, Structure of a phleboviral envelope glycoprotein reveals a
800 consolidated model of membrane fusion. *Proceedings of the National Academy of
801 Sciences of the United States of America* **113**, 7154-7159 (2016).

802 12. Y. Zhu *et al.*, The Postfusion Structure of the Heartland Virus Gc Glycoprotein Supports
803 Taxonomic Separation of the Bunyaviral Families Phenuiviridae and Hantaviridae. *J Virol*
804 **92**, (2018).

805 13. P. Leger *et al.*, Differential Use of the C-Type Lectins L-SIGN and DC-SIGN for
806 Phlebovirus Endocytosis. *Traffic* **17**, 639-656 (2016).

807 14. P. Y. Lozach *et al.*, DC-SIGN as a receptor for phleboviruses. *Cell host & microbe* **10**, 75-
808 88 (2011).

809 15. A. Pietrantoni, C. Fortuna, M. E. Remoli, M. G. Ciufolini, F. Superti, Bovine lactoferrin
810 inhibits Toscana virus infection by binding to heparan sulphate. *Viruses* **7**, 480-495
811 (2015).

812 16. S. Halldorsson *et al.*, Shielding and activation of a viral membrane fusion protein. *Nat
813 Commun* **9**, 349 (2018).

814 17. Y. Zhang *et al.*, Rapid single-step induction of functional neurons from human pluripotent
815 stem cells. *Neuron* **78**, 785-798 (2013).

816 18. R. Meier *et al.*, Genome-wide small interfering RNA screens reveal VAMP3 as a novel
817 host factor required for Uukuniemi virus late penetration. *J Virol* **88**, 8565-8578 (2014).

818 19. P. Y. Lozach *et al.*, Entry of bunyaviruses into mammalian cells. *Cell host & microbe* **7**,
819 488-499 (2010).

820 20. H. Stenmark, Rab GTPases as coordinators of vesicle traffic. *Nat Rev Mol Cell Biol* **10**,
821 513-525 (2009).

822 21. T. Wang, Z. Ming, W. Xiaochun, W. Hong, Rab7: role of its protein interaction cascades
823 in endo-lysosomal traffic. *Cell Signal* **23**, 516-521 (2011).

824 22. J. Huotari, A. Helenius, Endosome maturation. *EMBO J* **30**, 3481-3500 (2011).

825 23. J. Koch *et al.*, TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to
826 infect host cells. *EMBO J* **40**, e107821 (2021).

827 24. J. White, K. Matlin, A. Helenius, Cell fusion by Semliki Forest, influenza, and vesicular
828 stomatitis viruses. *The Journal of cell biology* **89**, 674-679 (1981).

829 25. S. Ohkuma, B. Poole, Fluorescence probe measurement of the intralysosomal pH in living
830 cells and the perturbation of pH by various agents. *Proceedings of the National Academy
831 of Sciences of the United States of America* **75**, 3327-3331 (1978).

832 26. W. A. Dunn, A. L. Hubbard, N. N. Aronson, Jr., Low temperature selectively inhibits
833 fusion between pinocytic vesicles and lysosomes during heterophagy of ¹²⁵I-asialofetuin
834 by the perfused rat liver. *J Biol Chem* **255**, 5971-5978 (1980).

835 27. M. Marsh, E. Bolzau, A. Helenius, Penetration of Semliki Forest virus from acidic
836 prelysosomal vacuoles. *Cell* **32**, 931-940 (1983).

837 28. P. Guardado-Calvo, F. A. Rey, The Envelope Proteins of the Bunyavirales. *Adv Virus Res*
838 **98**, 83-118 (2017).

839 29. S. C. Harrison, Viral membrane fusion. *Virology* **479-480**, 498-507 (2015).

840 30. P. Guardado-Calvo *et al.*, A glycerophospholipid-specific pocket in the RVFV class II
841 fusion protein drives target membrane insertion. *Science* **358**, 663-667 (2017).

842 31. S. M. de Boer *et al.*, Acid-activated structural reorganization of the Rift Valley fever virus
843 Gc fusion protein. *J Virol* **86**, 13642-13652 (2012).

844 32. A. Helenius, J. Kartenbeck, K. Simons, E. Fries, On the entry of Semliki forest virus into
845 BHK-21 cells. *The Journal of cell biology* **84**, 404-420 (1980).

846 33. A. Singanayagam, M. Zambon, W. S. Barclay, Influenza Virus with Increased pH of
847 Hemagglutinin Activation Has Improved Replication in Cell Culture but at the Cost of
848 Infectivity in Human Airway Epithelium. *J Virol* **93**, (2019).

849 34. S. Windhaber *et al.*, The Orthobunyavirus Germiston Enters Host Cells from Late
850 Endosomes. *J Virol*, jvi0214621 (2022).

851 35. J. Depaquit, M. Grandadam, F. Fouque, P. E. Andry, C. Peyrefitte, Arthropod-borne
852 viruses transmitted by Phlebotomine sandflies in Europe: a review. *Euro Surveill* **15**,
853 19507 (2010).

854 36. E. Bermudez-Mendez *et al.*, Incomplete bunyavirus particles can cooperatively support
855 virus infection and spread. *PLoS biology* **20**, e3001870 (2022).

856 37. J. Liu *et al.*, Single-Particle Tracking Reveals the Sequential Entry Process of the
857 Bunyavirus Severe Fever with Thrombocytopenia Syndrome Virus. *Small* **15**, e1803788
858 (2019).

859 38. P. Y. Lozach, J. Huotari, A. Helenius, Late-penetrating viruses. *Current opinion in*
860 *virology* **1**, 35-43 (2011).

861 39. H. K. Johannsdottir, R. Mancini, J. Kartenbeck, L. Amato, A. Helenius, Host cell factors
862 and functions involved in vesicular stomatitis virus entry. *J Virol* **83**, 440-453 (2009).

863 40. R. L. Kaletsky, G. Simmons, P. Bates, Proteolysis of the Ebola virus glycoproteins
864 enhances virus binding and infectivity. *J Virol* **81**, 13378-13384 (2007).

865 41. L. Wessels, M. W. Elting, D. Scimeca, K. Weninger, Rapid membrane fusion of
866 individual virus particles with supported lipid bilayers. *Biophys J* **93**, 526-538 (2007).

867 42. A. Abou-Hamdan, L. Belot, A. Albertini, Y. Gaudin, Monomeric Intermediates Formed
868 by Vesiculovirus Glycoprotein during Its Low-pH-induced Structural Transition. *J Mol*
869 *Biol* **430**, 1685-1695 (2018).

870 43. A. Albornoz, A. B. Hoffmann, P. Y. Lozach, N. D. Tischler, Early Bunyavirus-Host Cell
871 Interactions. *Viruses* **8**, (2016).

872 44. S. Windhaber, Q. Xin, P. Y. Lozach, Orthobunyaviruses: From Virus Binding to
873 Penetration into Mammalian Host Cells. *Viruses* **13**, (2021).

874 45. L. Bell-Sakyi, A. Darby, M. Baylis, B. L. Makepeace, The Tick Cell Biobank: A global
875 resource for in vitro research on ticks, other arthropods and the pathogens they transmit.
876 *Ticks Tick Borne Dis* **9**, 1364-1371 (2018).

877 46. L. Bell-Sakyi *et al.*, Isolation in Natural Host Cell Lines of Wolbachia Strains wPip from
878 the Mosquito Culex pipiens and wPap from the Sand Fly Phlebotomus papatasii. *Insects*
879 **12**, (2021).

880 47. C. Patzke *et al.*, Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in
881 Human Synapses. *Cell* **179**, 498-513 e422 (2019).

882 48. P. Leger *et al.*, NSs amyloid formation is associated with the virulence of Rift Valley
883 fever virus in mice. *Nat Commun* **11**, 3281 (2020).

884 49. A. Billecocq *et al.*, RNA polymerase I-mediated expression of viral RNA for the rescue of
885 infectious virulent and avirulent Rift Valley fever viruses. *Virology* **378**, 377-384 (2008).

886 50. M. Mazelier *et al.*, Uukuniemi Virus as a Tick-Borne Virus Model. *J Virol* **90**, 6784-6798
887 (2016).

888 51. S. Kummer, O. Avinoam, H. G. Krausslich, IFITM3 Clusters on Virus Containing
889 Endosomes and Lysosomes Early in the Influenza A Infection of Human Airway
890 Epithelial Cells. *Viruses* **11**, (2019).

891 52. A. B. Hoffmann, M. Mazelier, P. Leger, P. Y. Lozach, Deciphering Virus Entry with
892 Fluorescently Labeled Viral Particles. *Methods Mol Biol* **1836**, 159-183 (2018).

893 53. G. P. Barriga *et al.*, A rapid method for infectivity titration of Andes hantavirus using flow
894 cytometry. *J Virol Methods* **193**, 291-294 (2013).

895 54. M. Mirdita *et al.*, ColabFold: making protein folding accessible to all. *Nat Methods* **19**,
896 679-682 (2022).

897 55. T. D. Goddard *et al.*, UCSF ChimeraX: Meeting modern challenges in visualization and
898 analysis. *Protein Sci* **27**, 14-25 (2018).

899 **Acknowledgments**

900 We acknowledge Elodie Chatre and the Imaging Platform Platim, SFR Biosciences, Lyon,
901 as well as Vibor Laketa and the Infectious Diseases Imaging Platform (IDIP) at the Center
902 for Integrative Infectious Disease Research (CIID) Heidelberg. The sand fly cell lines were
903 supplied by the Tick Cell Biobank at the University of Liverpool.

904 **Funding:** This work was supported by CellNetworks Research Group funds and Deutsche
905 Forschungsgemeinschaft (DFG) funding (grant number LO-2338/3-1) and the Agence
906 Nationale de la Recherche (ANR) funding (grant numbers ANR-21-CE11-0012 and ANR-
907 22-CE15-0034), all awarded to P.-Y.L. This work was also supported by the LABEX
908 ECOFECT (ANR-11-LABX-0048) of Université de Lyon (UDL), within the program
909 “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the ANR and by the
910 RESPOND program of the UDL. The Chinese Scholarship Council contributed to support
911 this study through a fellowship (CSC; no. 201904910701) granted to Q.X. C.A. was
912 supported by the Chica and Heinz Schaller Research Group funds, NARSAD 2019 award,
913 a Fritz Thyssen Research Grant and the SFB1158-S02 grant and J.C. by a DAAD/ANID
914 (57451854/62180003) fellowship. L.B-S. is supported by the United Kingdom
915 Biotechnology and Biological Sciences Research Council grant no. BB/P024270/1 and the
916 Wellcome Trust grant no. 223743/Z/21/Z. F.K.M.S acknowledges support from the
917 Austrian Science Fund (FWF) grant P31445 and the Scientific Service Units (SSUs) of
918 ISTA through resources provided by the Electron Microscopy Facility (EMF). S.K. was
919 support by the SFB 1129. H.A was supported by the Rufus A. Kellogg Fellowship from
920 Amherst College, Massachusetts, USA, for study in Germany.

921 **Author contributions:**

922 Conceptualization: JK, PYL

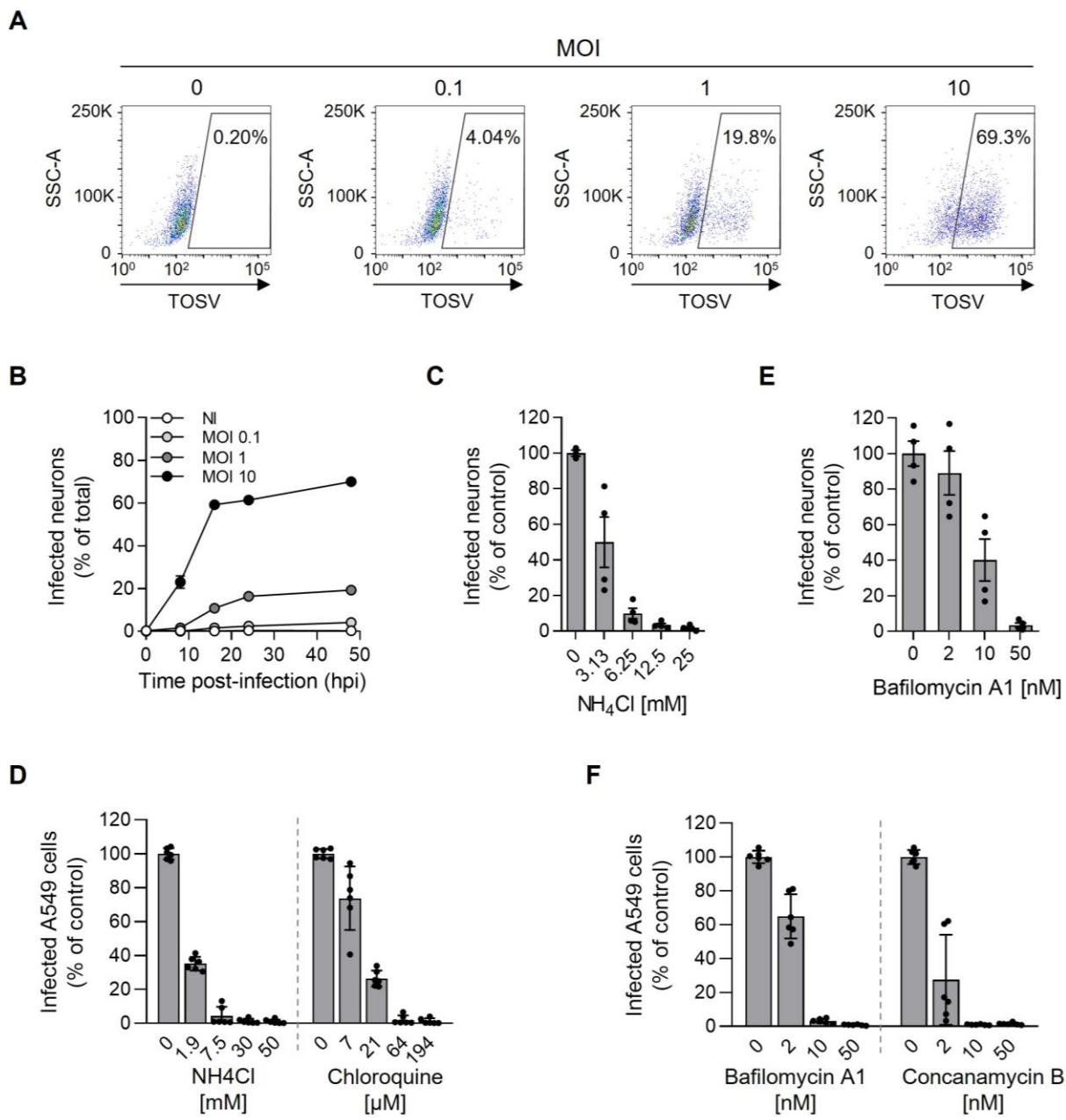
923 Methodology: JK, QX, MO, SK, JC

924 Investigation: JK, MO, AS, NR, HA, AK, LW, SK

925 Visualization: JK, QX, PYL

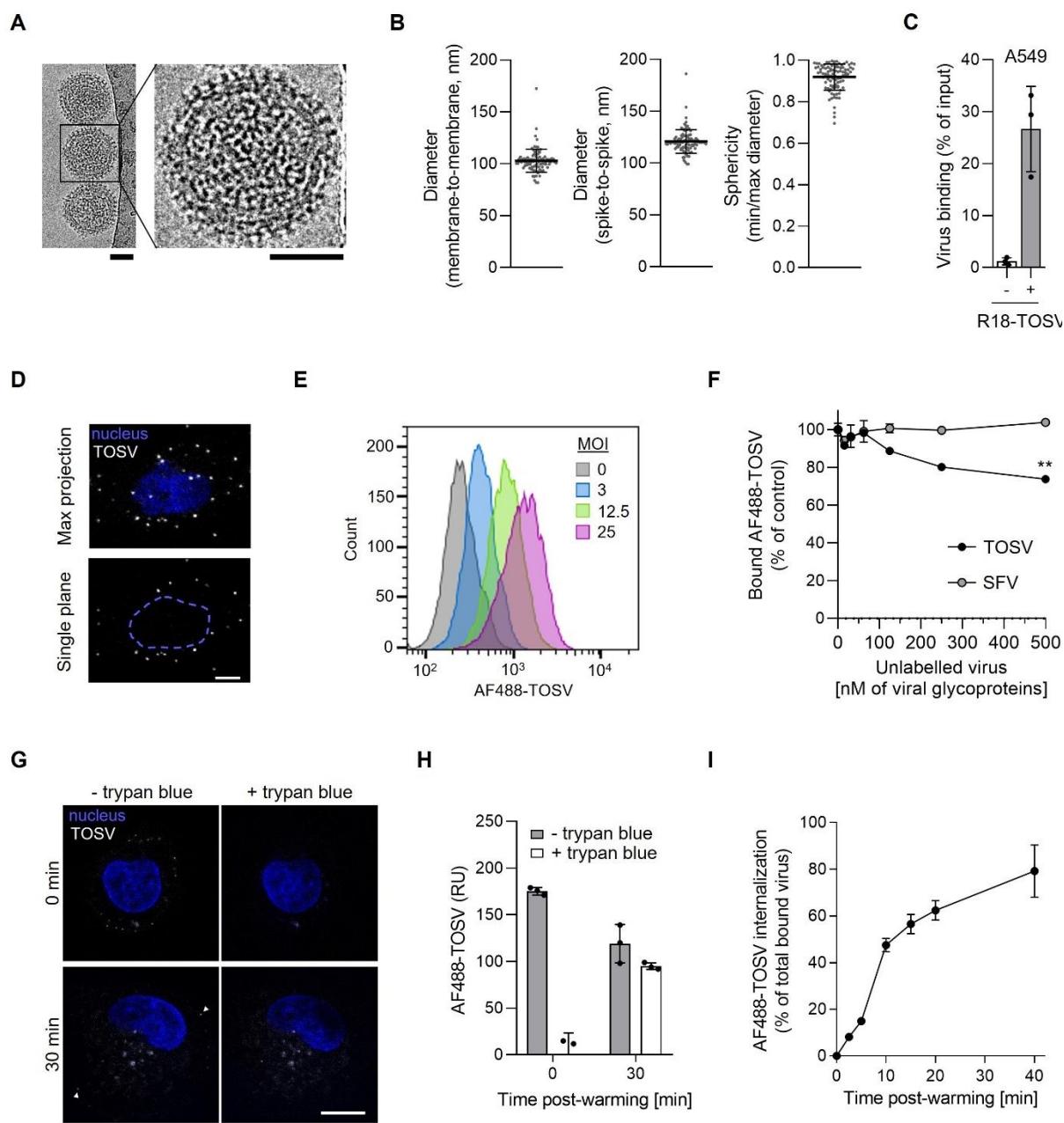
926 Supervision: JK, ZMU, HGK, FKMS, CA, PYL

927 Writing – original draft: JK, PYL


928 Writing – review & editing: JK, QX, MO, AS, HA, SK, ZMU, LBS, FKMS, CA, PYL

929 **Competing interests:** Authors declare that they have no competing interests.

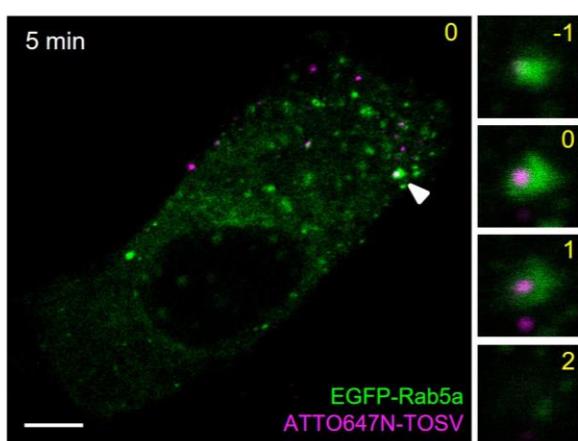
930 **Data and materials availability:** All data are available in the main text or the
931 supplementary materials or upon demand within a reasonable time frame.


932

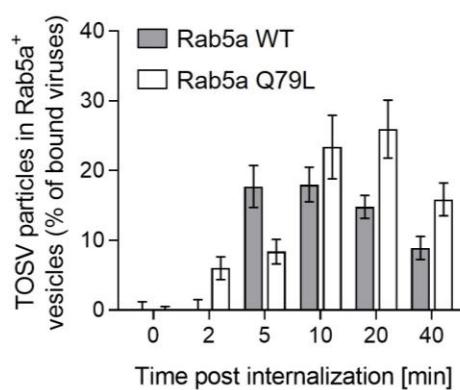
Figures and Tables

933
934
935
936
937
938
939
940
941
942
943
944
945
946
947

Fig. 1. Toscana virus (TOSV) entry into iPSC-derived human neurons depends on endosomal acidification. (A) Induced human pluripotent stem cell (iPSC)-derived neurons were exposed to TOSV at the indicated multiplicities of infection (MOIs) and harvested 48 h later. After fixation and permeabilization, infected cells were stained with a polyclonal antibody against the TOSV structural proteins N, Gn and Gc. Infection was then quantified by flow cytometry. (B) iPSC-derived neurons were infected with TOSV at the indicated MOIs, and infection was monitored over 48 h using the flow cytometry-based assay described in panel A. (C to F) iPSC neurons (C and E) and A549 cells (D and F) were pretreated with agents that elevate endosomal pH at the indicated concentrations and were infected with TOSV at MOI 10 for 8 h and MOI 2 for 6 h, respectively, in the continuous presence of ammonium chloride (NH₄Cl) (C and D), chloroquine (D), bafilomycin A1 (E and F) and concanamycin B (F). Infection was analyzed by flow cytometry as described in Fig. 1A. Data were normalized to those of control samples without inhibitor treatment.

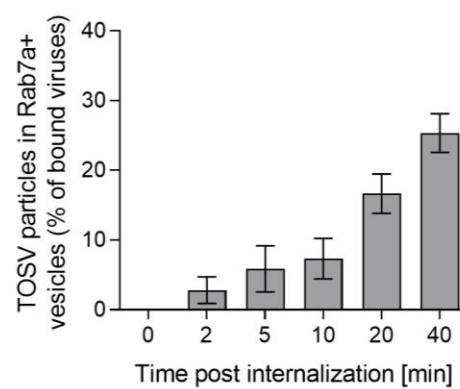


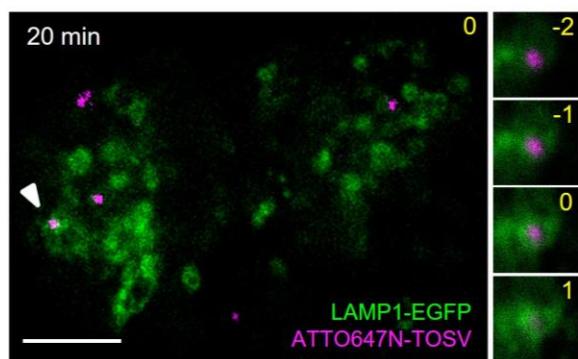
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964

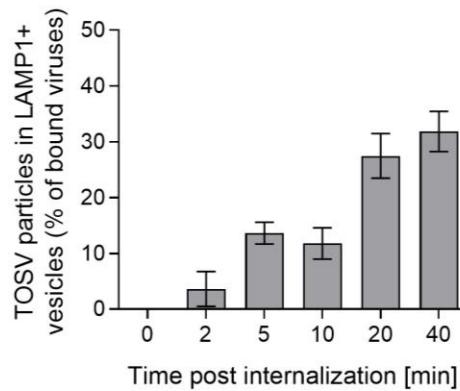

Fig. 2. Binding of Toscana virus (TOSV) to human A549 cells is inefficient and internalization slow. (A) TOSV virions were purified, fixed with paraformaldehyde, vitrified and imaged by cryo-electron microscopy (EM). Scale bar, 50 nm. (B) The membrane-to-membrane and spike-to-spike diameter of virions was measured from EM images. The sphericity of each TOSV particle was determined as the ratio of the width to the perpendicular length (n = 96). (C) R18-labeled TOSV (+) or no virus (-) was bound to A549 cells on ice at MOI 10 for 90 min. Virus binding was analyzed with a spectrofluorometer after extensive washing of the cells to remove unbound viruses. The virus input was measured in cell-free suspension before binding. The data correspond to the fraction of the virus input bound to cells, *i.e.*, the ratio of fluorescence associated with cells following virus binding to that measured in the virus input. (D) ATTO647N-labeled TOSV was bound to A549 cells at MOI 1 on ice, fixed, and nuclei were stained with Hoechst before imaging with a confocal microscope. The upper panel shows cell-associated virions (white spots) seen in maximum z-projection images acquired in the 647-nm channel, while the bottom image shows one focal plane with virions in white and

965 nuclei indicated by a blue dashed line. Scale bar, 5 μ m. (E) AF488-labeled TOSV
966 (AF488-TOSV) was bound to A549 cells on ice at the indicated MOIs for 1.5 h
967 before fixation and analysis by flow cytometry. (F) A549 cells in suspension were
968 first exposed to increasing amounts of unlabeled TOSV and Semliki Forest virus
969 (SFV) on ice for 45 min and then to AF488-TOSV (15 nM of glycoproteins) for an
970 additional hour on ice. Cells were washed and virus binding was measured by flow
971 cytometry. Data were normalized to those in cells not pre-exposed to the unlabeled
972 virus. T-test with Welch's correction was applied. **, p<0.01. (G) AF488-TOSV
973 (white) was bound to A549 cells on ice at MOI 10 for 1.5 h before warming to 37
974 $^{\circ}$ C for 30 min. Cells were then washed, fixed and treated with trypan blue before
975 confocal imaging. Nuclei were stained with Hoechst (blue). Arrowheads show some
976 fluorescent particles at the cell surface that are quenched upon trypan blue addition.
977 Scale bar, 10 μ m. (H) AF488-TOSV was bound to A549 cells in suspension at MOI
978 10 at 4 $^{\circ}$ C before warming to 37 $^{\circ}$ C for 30 min. Cells were treated with trypan blue
979 before analysis by flow cytometry. RU, relative unit. (I) AF488-TOSV was bound
980 to A549 cells in suspension at 4 $^{\circ}$ C and rapidly warmed to 37 $^{\circ}$ C to allow virus
981 uptake for up to 40 min. Endocytic internalization of virions was determined by flow
982 cytometry after trypan blue treatment. Internalization is given as the percentage of
983 fluorescence quantified in samples treated with trypan blue compared to that in
984 untreated samples. The fluorescence signal measured in cells not exposed to AF488-
985 TOSV was considered as the background signal and subtracted from the other
986 values.

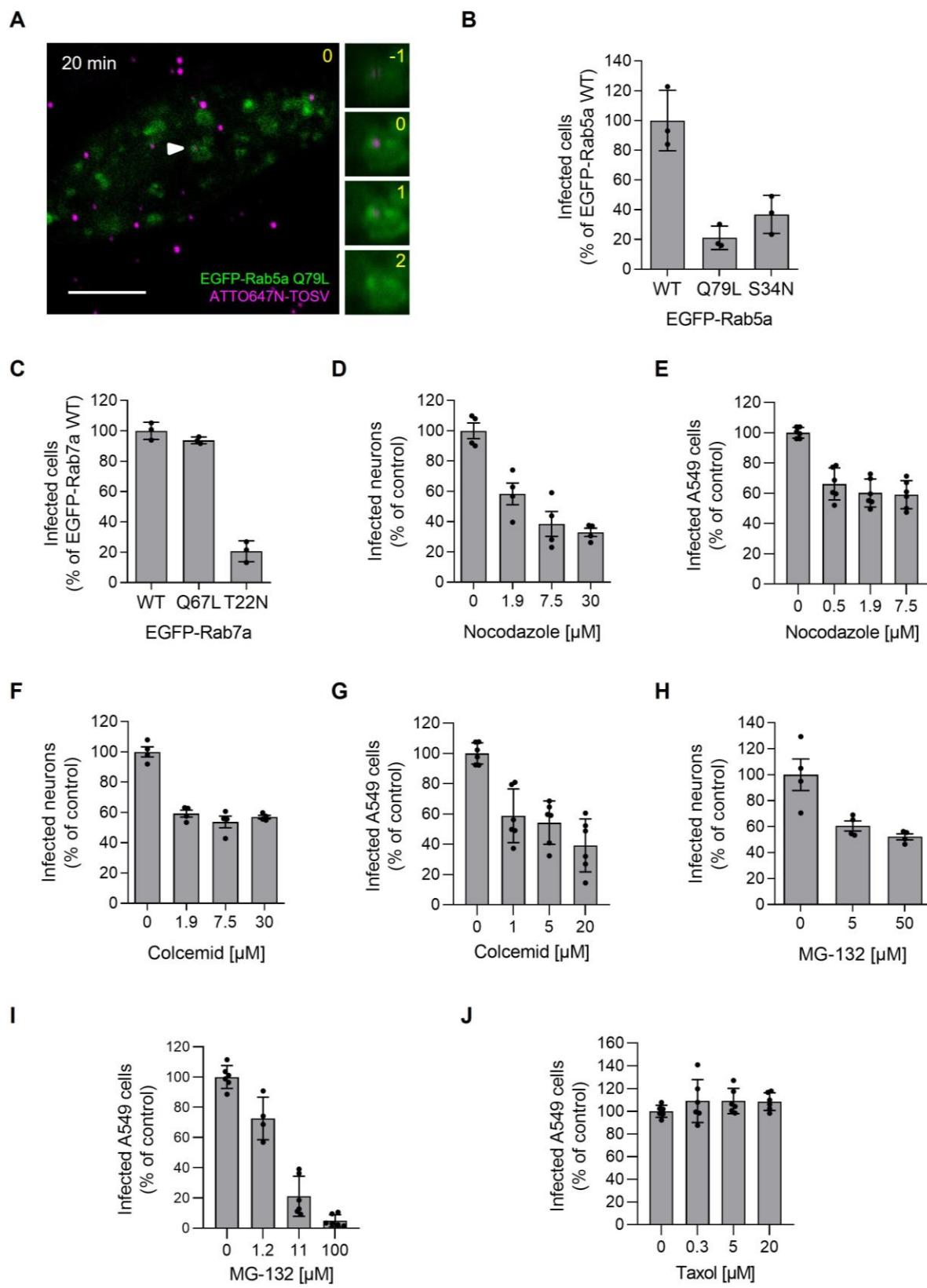
A


B


C


D

E


F

987
988 **Fig. 3: Toscana virus (TOSV) enters early endosomes and then late endosomal**
989 **organelles.** (A) A549 cells transiently expressing EGFP-Rab5a were exposed to
990 ATTO647N-TOSV at MOI 1 for 90 min on ice and then rapidly warmed for 5 min
991 at 37 °C to allow the internalization of virions. Cells were subsequently washed and
992 fixed. TOSV (magenta) and Rab5a (green) were imaged by confocal microscopy.
993 One focal plane is shown. Higher magnifications of association between TOSV and
994 Rab5a-positive (+) vesicles (white arrowhead) are shown on the right side as a z-
995 stack series. Yellow numbers indicate the position of the stack in the series, and the
996 original plane is marked with 0. Scale bar, 5 μm. (B) Internalization of ATTO647N-
997 TOSV was monitored in cells transiently expressing EGFP-Rab5a wild-type (WT)

998
999
1000
1001
1002
1003
1004

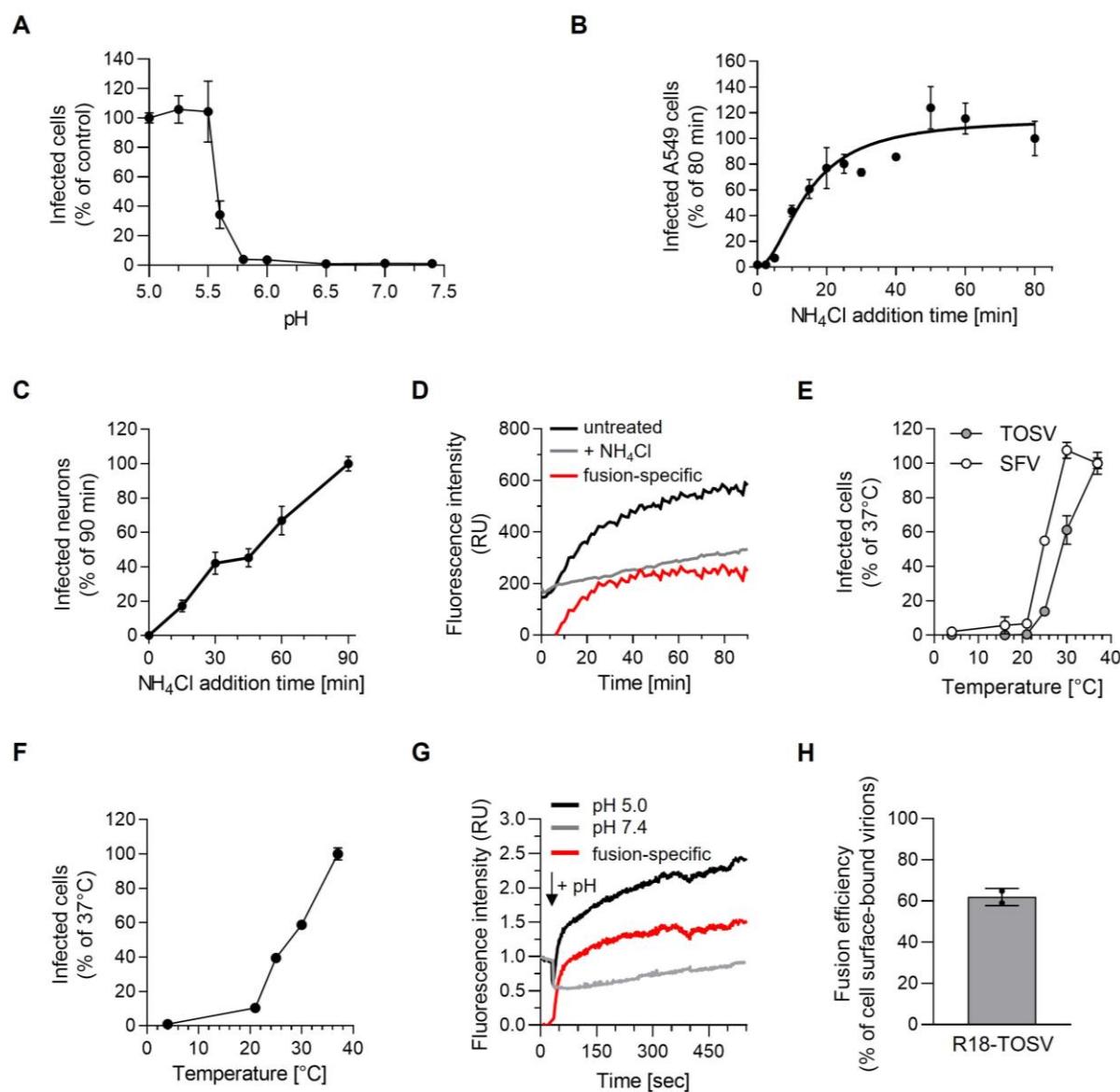

or its constitutively active mutant Q79L over a time span of 40 min as described in A. Co-localization is expressed as the percentage of bound TOSV associated with Rab5a+ vesicles at different times post-warming. A minimum of 6 cells were analyzed per time point. (C to F) Prebound ATTO647N-TOSV was internalized into A549 cells transiently expressing EGFP-Rab7a (C and D) or LAMP1-EGFP (E and F) for up to 40 min before confocal microscopy and image-based quantification as described in A and B. At least 9 cells were analyzed per condition. Scale bar, 5 μ m.

Fig. 4: Toscana virus (TOSV) relies on late endosomal maturation for infectious entry.

(A) ATTO647N-TOSV at MOI 1 was allowed to enter A549 cells transiently expressing the constitutively active mutant Q79L of EGFP-Rab5a as described in Fig. 3. Internalization of virions was allowed for 20 min at 37 °C, and cells imaged by confocal microscopy. TOSV is seen in magenta and EEs containing EGFP-Rab5a

1011 Q79L are in green. Scale bar, 5 μ m. **(B)** EGFP-Rab5 WT, its constitutively active
1012 mutant Q79L and its dominant-negative mutant S34N were transiently expressed in
1013 A549 cells. Transfected cells were then challenged with TOSV at MOI 4 for 6 h.
1014 Cell populations with a similar level of Rab5a expression were selected with a flow
1015 cytometer, and each population was analyzed for infection. Infection was
1016 normalized to that in the cell population expressing EGFP-Rab5 WT. **(C)** A549 cells
1017 transiently expressing EGFP-Rab7a WT, its constitutively active mutant Q67L, or
1018 its dominant-negative mutant T22N were challenged with TOSV for 6 h before flow
1019 cytometry analysis following the approach used in the panel B. **(D to J)** iPSC-
1020 derived neurons (D, F and H) and A549 cells (E, G, I and J) were pretreated with
1021 nocodazole (D and E), colcemid (F and G), MG-132 (H and I), or taxol (J) at
1022 indicated concentrations, and then infected with TOSV at MOI 10 (iPSC neurons)
1023 and 2 (A549) in the continuous presence of inhibitors for 8 h and 6 h, respectively.
1024 Infection was quantified by flow cytometry, and data were normalized to those in
1025 control samples without inhibitor treatment.

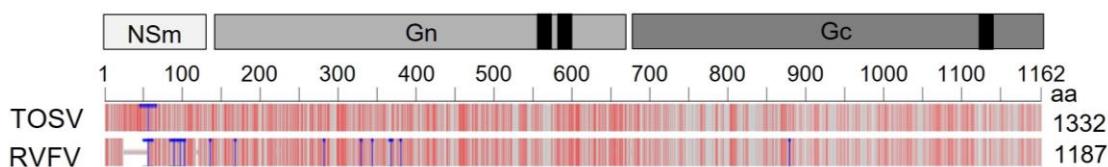
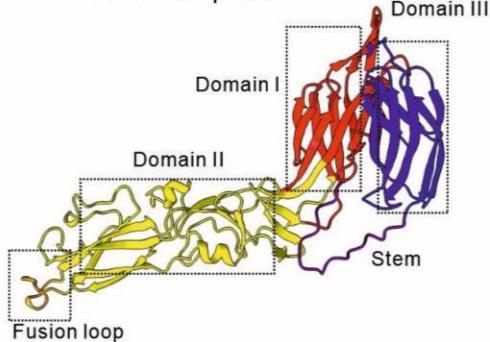
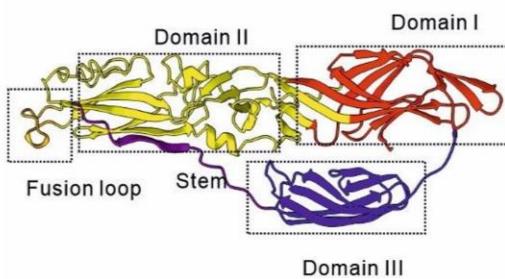


Fig. 5: Toscana virus (TOSV) penetrates host cells by acid-activated membrane fusion.

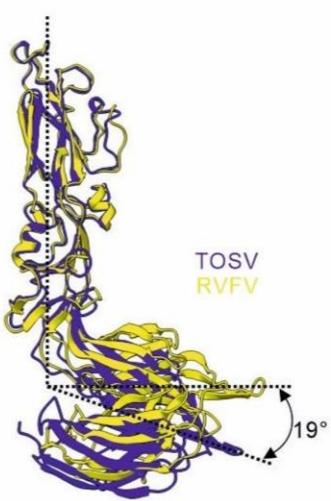
(A) TOSV was bound at MOI 10 to A549 cells for 1.5 h on ice. Subsequently, cells were washed and subjected to the indicated pH values at 37 °C for 90 sec to trigger the virus fusion at the plasma membrane. Infected cells were then incubated for 7 h at 37 °C in the presence of 50 mM NH₄Cl to prevent viral penetration from endosomes, and thereby only monitor the release of viral genomes from the plasma membrane. Infection was quantified by flow cytometry, and the data were normalized to those from samples where the infection was triggered with a buffer at pH 5.0. (B and C) TOSV particles were bound to A549 cells (B) and iPSC-derived neurons (C) at MOIs 1 and 15, respectively, on ice for 90 min and then rapidly shifted to 37 °C to allow virus internalization. 50 mM NH₄Cl was added at the indicated times to block further viral penetration. Infected cells were quantified by flow cytometry, and data were normalized to the samples where NH₄Cl was added 80 min (B) and 90 min (C) post-warming, respectively. (D) R18-TOSV was bound at MOI 10 to A549 cells on ice and rapidly warmed to 37 °C for 90 min. The increase in fluorescence resulted from the dequenching of the lipid dye R18 after virus fusion with cell membranes in living cells and was measured with a spectrofluorometer. NH₄Cl was used to block virus fusion by neutralizing endosomal pH and, thus, to


1045 define the fluorescence background due to spontaneous translocation of the R18
1046 dyes between the viral envelope and the neighboring cell membrane (grey line). The
1047 red line shows the virus fusion-specific R18 release, *i.e.*, black line (fusion + free
1048 diffusion) minus grey line (free diffusion). RU, relative unit. (E) TOSV and Semliki
1049 Forest virus (SFV) were bound to A549 cells on ice, and samples were shifted to
1050 indicated temperatures for 50 min. Infected cells were subsequently incubated at 37
1051 °C for 6 h in the presence of NH₄Cl to block further viral penetration. Infection was
1052 analyzed by flow cytometry and normalized to that in samples incubated throughout
1053 at 37 °C. (F) TOSV fusion efficiency was assessed at the indicated temperatures
1054 using the plasma membrane-virus fusion assay described in panel A. Data were
1055 normalized to those of samples incubated throughout at 37 °C. (G) R18-TOSV
1056 binding to A549 cells at MOI 10 was synchronized on ice for 90 min. Infected cells
1057 were then placed in a spectrofluorometer, the temperature warmed to 37 °C, and the
1058 fluorescence signal was monitored over 550 sec. “+pH” indicates when a buffer at
1059 pH 5.0 (black line) or 7.4 (grey line) was added to the samples to trigger virus fusion
1060 at the plasma membrane, *i.e.*, 30 sec later, once the temperature reached 37 °C. Data
1061 were normalized to those at the time point 0. The red line shows the virus fusion-
1062 specific R18 release at pH ~5.0, *i.e.*, black line (fusion at pH ~5.0 + free diffusion)
1063 minus grey line (free diffusion at pH ~7.4). RU, relative unit. (H) The protocol
1064 described in D was used to record real-time penetration of R18-TOSV into A549
1065 cells at MOI 10 for 90 min. Triton X-100 was then added to the samples to induce
1066 the dequenching of all R18 molecules, allowing the measure of total fluorescence in
1067 the cells that correlated with all bound and internalized virions. The data show the
1068 fraction of plasma membrane-bound viruses that had fused in the cells, *i.e.*, the ratio
1069 of the fluorescence associated with the viral fusion to that associated with all virions
1070 in the cells.

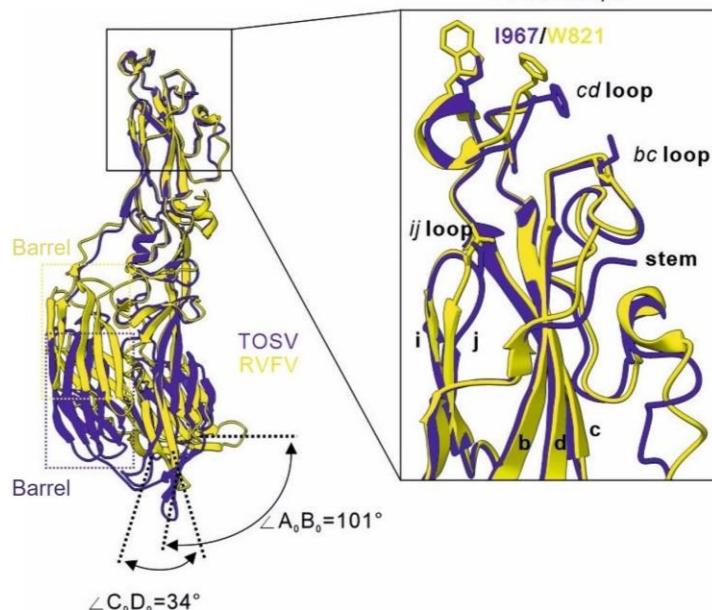
A


B

TOSV Gc prefusion


C

TOSV Gc postfusion


D

Gc prefusion

E

Gc postfusion

1071

1072

Fig. 6: Toscana virus (TOSV) Gc belongs to the group of class-II fusion proteins. (A)

The M polyproteins of TOSV (strain H4906) and Rift Valley fever virus (RVFV) (strain 35/74) were aligned with blastp suite-2sequences and Multiple Sequence Alignment Viewer. The black boxes indicate the transmembrane domains and the blue lines indicate the insertions into TOSV and RVFV M polyproteins. The grey lines correspond to identical amino acids, the light red lines to similar amino acids and the dark red lines to different amino acids. (B and C) Pre- (B) and post-fusion (C) conformations of TOSV Gc were predicted using ColabFold, an algorithm primarily based on AlphaFold2, and the Gc structures available for RVFV as modeling models (PDB, 6F9F and 6EGT). The structural predictions were then visualized using PyMOL. Domains I, II and III, typical of class-II membrane fusion

1073

1074

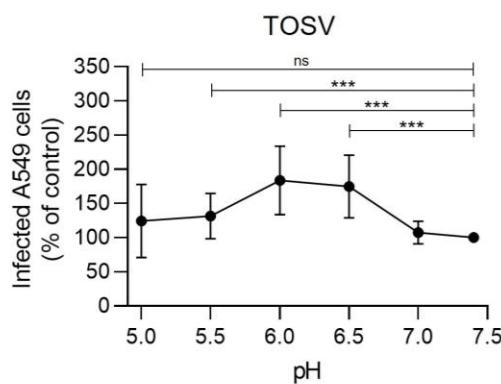
1075

1076

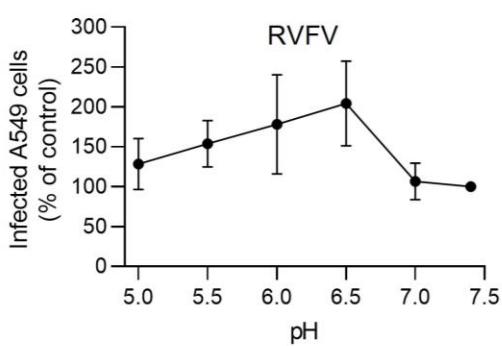
1077

1078

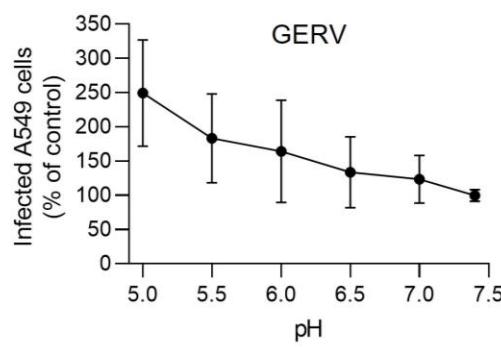
1079

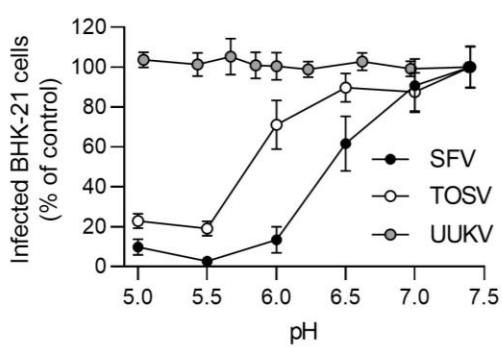

1080

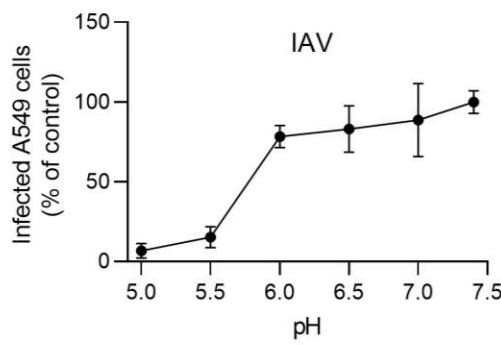
1081

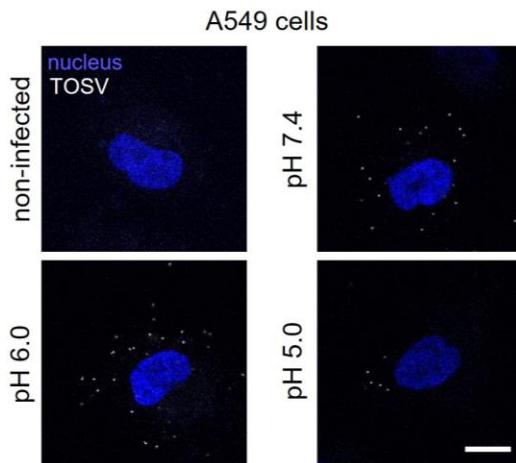

1082

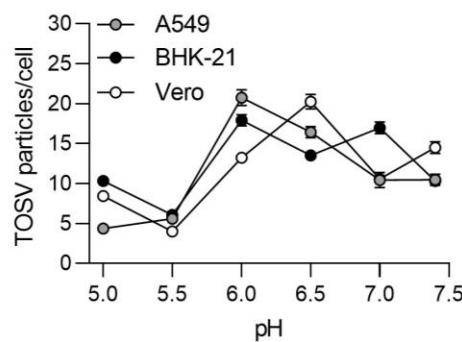
1083 proteins with the fusion loop at the end of domain II, appear in red, yellow and blue,
1084 respectively. Flexible stem-loops are shown in purple. (D and E) Pre- (D) and post-
1085 fusion (E) conformations of TOSV Gc (blue) were compared with those of RVFV
1086 Gc (yellow, PDB, 6F9F and 6EGT) using UCSF ChimeraX. The right box in E
1087 shows a magnification of the fusion unit with corresponding loops and amino acids.

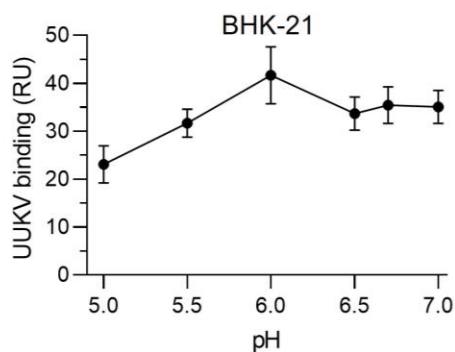

A


B

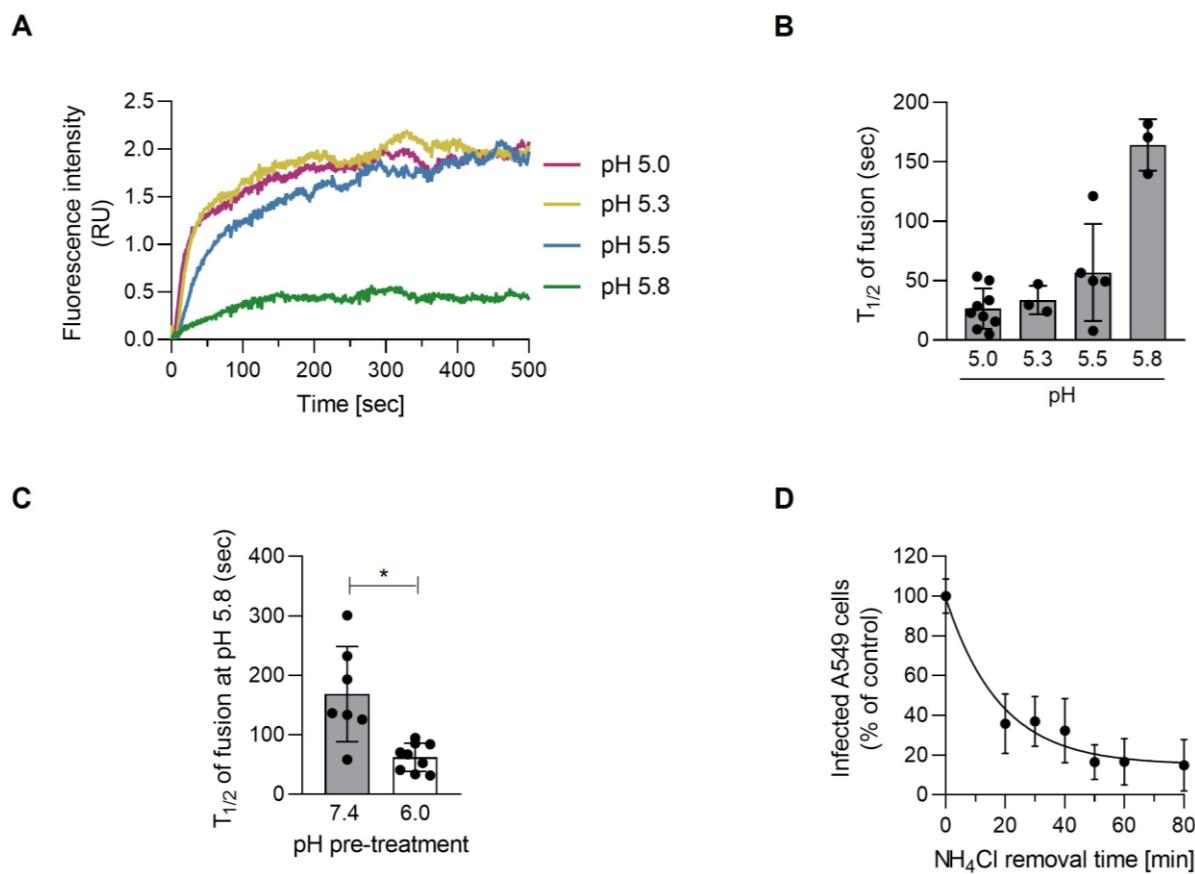

C


D

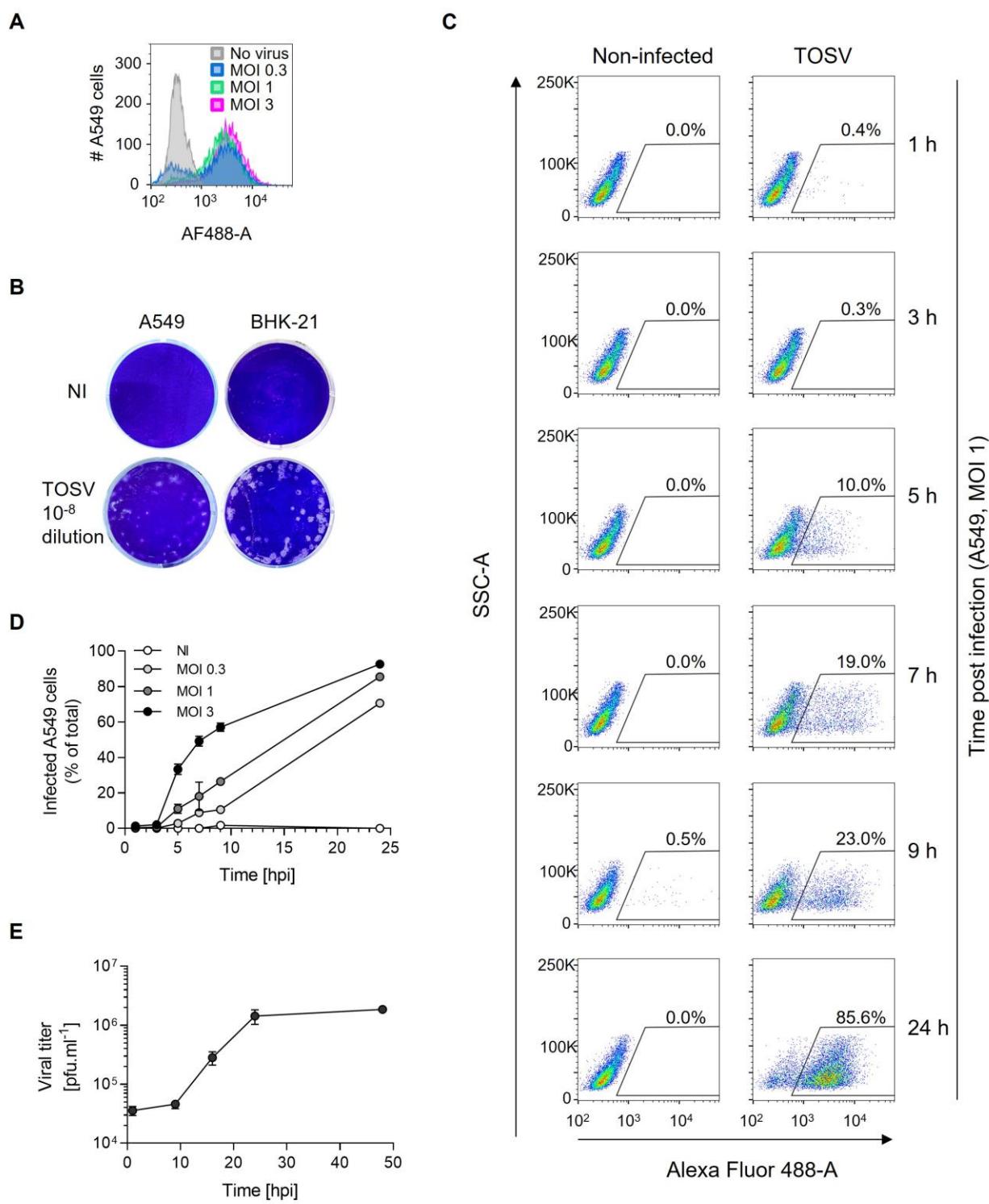

E


F

G

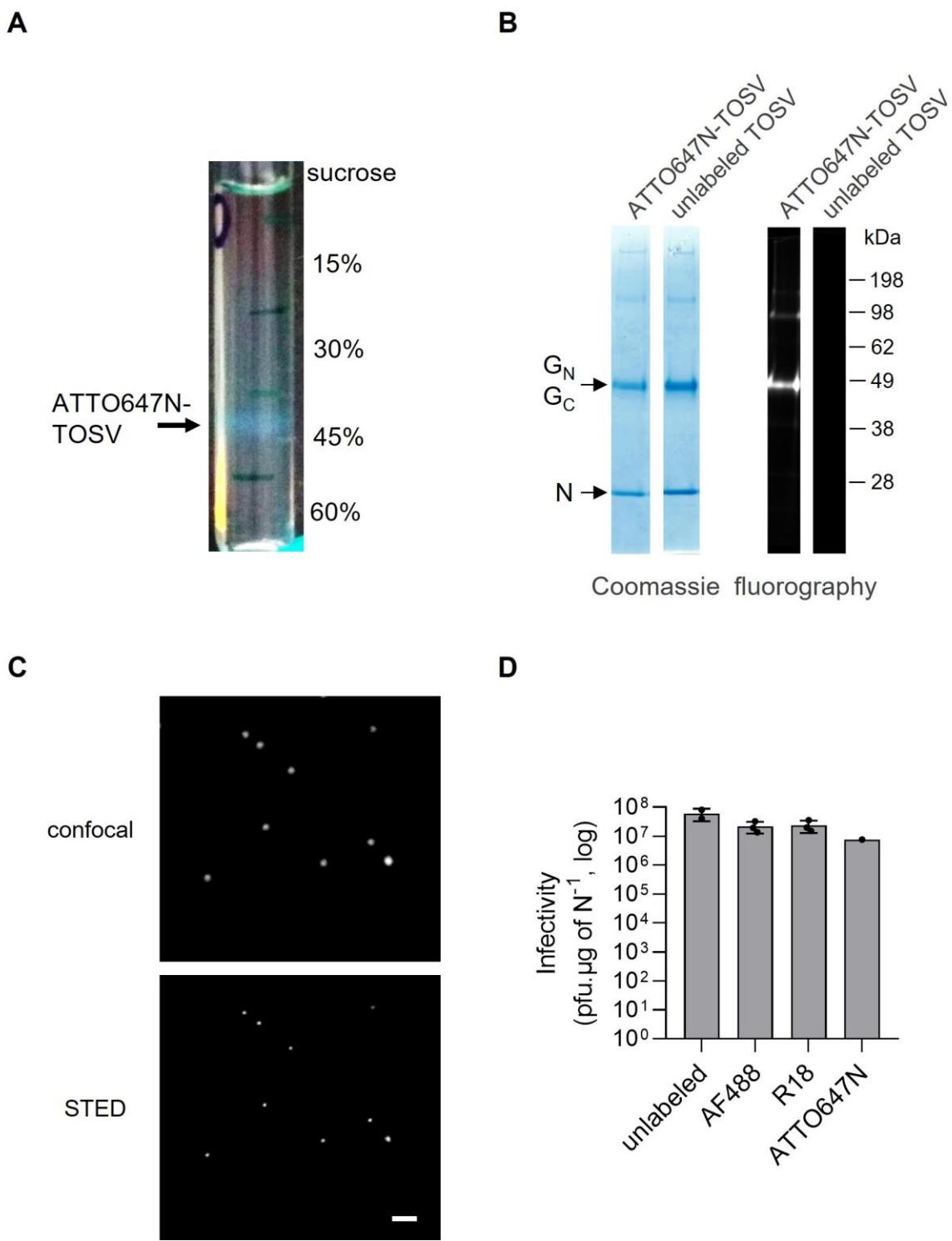


H



1089
1090 **Fig. 7: Low pH does not inactivate Toscana virus (TOSV) or other bunyaviruses. (A)**

1091 TOSV was first pretreated at the indicated pH for 5 min at 37 °C. The virus was then
1092 neutralized, buffered at pH 7.4 and allowed to infect A549 cells at MOI 2 for 6 h.
1093 Infection was quantified by flow cytometry following immunostaining against
1094 TOSV structural proteins. Data were normalized to that of samples pretreated at pH
1095 7.4. T-test with Welch's correction was applied. ***, p<0.001; ns, nonsignificant.
1096 (B to E) A549 cells (B, C and E) and BHK-21 cells (D) were exposed to Rift Valley
1097 fever virus (RVFV) construct RVFV Δ NSs:EGFP (B), Germiston virus (GERV, C),
1098 Semliki Forest virus (SFV) (D), Uukuniemi virus (UUKV, D), TOSV (D) and
1099 influenza A virus (IAV, E) pretreated at the indicated pH and analyzed for infection
1100 as described in A. (F) ATTO647N-TOSV (white) at MOI 1 was pretreated as
1101 described in A and then allowed to bind to A549 cells on ice for 90 min before
1102 fixation and imaging by confocal microscopy. Nuclei were stained by Hoechst
1103 (blue). Scale bar, 10 μ m. (G) Depicted is the quantification of viral particles bound
1104 to A549, BHK-21 and Vero cells as described in F. n > 124 cells. (H) Alexa Fluor
1105 647-labelled UUKV was first pretreated at the indicated pH for 5 min at 37 °C, then
1106 neutralized with buffer at pH 7.4 and finally allowed to bind to BHK-21 cells at MOI
1107 0.3 on ice for 2 h. Virus binding was quantified by flow cytometry, and data were
normalized to samples pretreated at pH 7.0.



1108
1109 **Fig. 8: Toscana virus (TOSV) shows remarkable adaptability to the endosomal**
1110 **environment to penetrate cells. (A)** R18-TOSV binding to A549 cells at MOI 10
1111 was synchronized on ice for 90 min and cells rapidly warmed to 37 °C in a
1112 spectrofluorometer. Virus fusion was triggered at the cell surface by adding buffer
1113 at the indicated pH, and the fluorescence signal was recorded over 500 sec. The virus
1114 fusion-specific R18 release is shown as the result of the values at the indicated pH
1115 subtracted from the values corresponding to free diffusion at pH~7.4. Data were
1116 normalized to those at the time point 0. RU, relative unit. **(B)** The half-maximal
1117 fluorescence intensity ($t_{1/2}$) was measured in the series of data obtained in A. n > 3.
1118 **(C)** R18-TOSV particles were pretreated at pH 6.0 or 7.4 and then neutralized as
1119 described in Fig. 7A before being assessed and analyzed as in panel A. The $t_{1/2}$ of
1120 fusion was calculated from n > 7. T-test with Welch's correction was applied. *,
1121 p<0.05. **(D)** After the synchronization of TOSV binding at MOI 1 on ice for 90 min,
1122 A549 cells were rapidly warmed to 37 °C in the presence of NH₄Cl (50 mM). NH₄Cl
1123 was then washed out at the indicated times to allow endosomal acidification and the
1124 acid-activated penetration of infectious TOSV particles. Samples were harvested 6
1125 h later, and infection was analyzed by flow cytometry. Values were normalized to
1126 those from samples for which NH₄Cl was removed at t0.

Fig. S1. Quantification of Toscana virus (TOSV) infection. (A) TOSV was allowed to infect A549 cells at the indicated multiplicities of infection (MOIs) for 24 h. Cells were then fixed and permeabilized, and infection was monitored by flow cytometry after immunostaining against all TOSV structural proteins, i.e., N, Gn and Gc. (B) The titer of TOSV stock produced on BHK-21

cells was assessed on A549 cells and BHK-21 cells by a plaque-forming unit (pfu) assay. An example is given here for a 10^{-8} dilution of the virus production. **(C)** A549 cells were exposed to TOSV at MOI 1 for up to 24 h. Infection was monitored by flow cytometry as described in the panel A. **(D)** A549 cells were infected with TOSV at the indicated MOIs over the period of 24 h and analyzed for infection as described in panel C. **(E)** A549 cells were infected with TOSV at MOI 2, and the supernatant from infected cells was collected at time points up to 48 h and analyzed by the pfu assay described in panel B.

Fig. S2. Fluorescence labeling of Toscana virus (TOSV). (A) The picture shows a linear sucrose gradient after ultracentrifugation with unbound ATTO647N dye on the top and a band that corresponds to ATTO647N-TOSV particles at a density between 40 and 45% sucrose. (B) Fluorescent particles (ATTO647N-TOSV) and unlabeled TOSV were analyzed by nonreducing SDS-PAGE with fluorography (right panel) and then Coomassie blue staining (left panel). (C)

ATTO647N-TOSV particles were imaged by confocal microscopy (top panel) and STED microscopy (bottom panel). Scale bar, 1 μ m. **(D)** Fluorescently labeled TOSV particles were analyzed by the pfu assay shown in Fig. S1B, and the titers were normalized to the amount of the viral nucleoprotein N.

Cell Line	Species	Tissue	Sensitivity to TOSV infection ^a	Production of new viral particles ^b	Original reference
A549	Human	Lung epithelial	+++	+++	(1)
HEK293T	Human	Embryonic kidney	+	n.d.	(2)
HeLa	Human	Cervix epithelial	+	+++	(3)
Huh-7	Human	Liver epithelial	+++	++	(4)
iPSC-derived neurons	Human	Neurons	++	n.d.	(5)
Jurkat	Human	T lymphoblast	-	n.d.	(6)
Raji	Human	B lymphocyte	+	n.d.	(7)
SUP-T1 ^{R5}	Human	T lymphoblast	-	n.d.	(8, 9)
SH-SY5Y	Human	Neuroblast	+++	n.d.	(10, 11)
THP-1	Human	Monocyte	-	n.d.	(12)
U87 ⁴⁴	Human	Glial cells	++	n.d.	(13-15)
BHK-21	Hamster	Kidney fibroblast	+++	+++	(16)
DF-1	Chicken	Embryonic fibroblast	+	++	(17)
L929	Mouse	Fibroblast	+	-	(18, 19)
MDCK	Dog	Kidney epithelial	+	++	(20, 21)
Vero E6	Monkey	Kidney epithelial	+++	++	(22, 23)
LLE/LULS40	Sand fly	Embryonic	+	n.d.	(24)
LLE/LULS45	Sand fly	Embryonic	+	n.d.	(25)
PPL/LULS49	Sand fly	Larva	++	n.d.	(25)

Table S1. Susceptibility of different mammalian and sand fly cell lines to Toscana virus (TOSV).

^aCells were infected with TOSV at MOI 1 for 18 h, fixed, permeabilized and immunofluorescently stained against all TOSV structural proteins. Infection was quantified by flow cytometry, and the sensitivity of cells to TOSV infection (percentage of infected cells) was given as follows: +++ greater than 30%, ++ from 10% to 30%, + from 1% to 10%, - less than 1%.

^bThe production of viral progeny was assessed by pfu titration assay and is given according to the size of plaques 72 hpi as follows: +++ greater than 1 mm, ++ from 0.5 to 1 mm, + less than 0.5 mm, - no plaques. n.d., not determined.

References

1. D. J. Giard *et al.*, In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. *J Natl Cancer Inst* **51**, 1417-1423 (1973).

2. F. L. Graham, J. Smiley, W. C. Russell, R. Laird, Characteristics of a human cell line transformed by DNA from human adenovirus type 5. *The Journal of general virology* **36**, 59-74 (1977).
3. W. F. Scherer, J. T. Syverton, G. O. Gey, Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. *The Journal of experimental medicine* **97**, 695-710 (1953).
4. H. Nakabayashi, K. Taketa, K. Miyano, T. Yamane, J. Sato, Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. *Cancer Res* **42**, 3858-3863 (1982).
5. Y. Zhang *et al.*, Rapid single-step induction of functional neurons from human pluripotent stem cells. *Neuron* **78**, 785-798 (2013).
6. U. Schneider, H. U. Schwenk, G. Bornkamm, Characterization of EBV-genome negative "null" and "T" cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. *Int J Cancer* **19**, 621-626 (1977).
7. J. V. Pulvertaft, Cytology of Burkitt's Tumour (African Lymphoma). *Lancet* **1**, 238-240 (1964).
8. S. D. Smith, R. Morgan, M. P. Link, P. McFall, F. Hecht, Cytogenetic and immunophenotypic analysis of cell lines established from patients with T cell leukemia/lymphoma. *Blood* **67**, 650-656 (1986).
9. R. E. Means *et al.*, Ability of the V3 loop of simian immunodeficiency virus to serve as a target for antibody-mediated neutralization: correlation of neutralization sensitivity, growth in macrophages, and decreased dependence on CD4. *J Virol* **75**, 3903-3915 (2001).
10. J. L. Biedler, L. Helson, B. A. Spengler, Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. *Cancer Res* **33**, 2643-2652 (1973).
11. R. A. Ross, B. A. Spengler, J. L. Biedler, Coordinate morphological and biochemical interconversion of human neuroblastoma cells. *J Natl Cancer Inst* **71**, 741-747 (1983).
12. S. Tsuchiya *et al.*, Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). *Int J Cancer* **26**, 171-176 (1980).
13. J. Ponten, E. H. Macintyre, Long term culture of normal and neoplastic human glia. *Acta Pathol Microbiol Scand* **74**, 465-486 (1968).
14. J. Fogh, W. C. Wright, J. D. Loveless, Absence of HeLa cell contamination in 169 cell lines derived from human tumors. *J Natl Cancer Inst* **58**, 209-214 (1977).
15. A. Bjorndal *et al.*, Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype. *J Virol* **71**, 7478-7487 (1997).
16. I. Macpherson, M. Stoker, Polyoma transformation of hamster cell clones--an investigation of genetic factors affecting cell competence. *Virology* **16**, 147-151 (1962).
17. M. Himly, D. N. Foster, I. Bottoli, J. S. Iacovoni, P. K. Vogt, The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. *Virology* **248**, 295-304 (1998).
18. W. R. Earle, in *JNCI: Journal of the National Cancer Institute*. (1943).
19. K. K. Sanford, W. R. Earle, G. D. Likely, The growth in vitro of single isolated tissue cells. *J Natl Cancer Inst* **9**, 229-246 (1948).
20. I. J. Green, Serial propagation of influenza B (Lee) virus in a transmissible line of canine kidney cells. *Science* **138**, 42-43 (1962).

21. C. R. Gaush, W. L. Hard, T. F. Smith, Characterization of an established line of canine kidney cells (MDCK). *Proc Soc Exp Biol Med* **122**, 931-935 (1966).
22. E. J. Earley, K.M., The lineage of the Vero, Vero 76 and its clone C1008 in the United States. (1988).
23. P. J. Price, E. A. Gregory, Relationship between in vitro growth promotion and biophysical and biochemical properties of the serum supplement. *In Vitro* **18**, 576-584 (1982).
24. L. Bell-Sakyi, A. Darby, M. Baylis, B. L. Makepeace, The Tick Cell Biobank: A global resource for in vitro research on ticks, other arthropods and the pathogens they transmit. *Ticks Tick Borne Dis* **9**, 1364-1371 (2018).
25. L. Bell-Sakyi *et al.*, Isolation in Natural Host Cell Lines of Wolbachia Strains wPip from the Mosquito *Culex pipiens* and wPap from the Sand Fly *Phlebotomus papatasii*. *Insects* **12**, (2021).

Legends for Movies S1 to S3

Movie S1. Coordinated motion of Toscana virus (TOSV) with Rab5a+ endosomal vesicles. A549 cells stably expressing EGFP-Rab5a were exposed to ATTO647N-TOSV at MOI 10 and imaged every 15 sec at 37 °C by confocal microscopy for 25 min. TOSV particles (magenta) are seen moving with EGFP-Rab5a+ vesicles (green) approximately 11 min post-warming.

Movie S2. Coordinated motion of Toscana virus (TOSV) with Rab7a+ endosomal vesicles. A549 cells stably expressing EGFP-Rab7a were exposed to ATTO647N-TOSV at MOI 10 and imaged every 15 sec at 37 °C by confocal microscopy for 25 min. TOSV particles (magenta) are seen moving with EGFP-Rab7a+ vacuoles (green) approximately 24 min post-warming.

Movie S3. Conformational transition from the pre- to the post-fusion state of Toscana virus (TOSV) Gc. The structural models of the pre- and post-fusion ectodomains predicted with ColabFold in Figures 6B and 6C were first adjusted for position, and 120 images were then generated to obtain the morph trajectory using UCSF ChimeraX and the “morph” plugin with the wrap parameter set as true. The final movie was recorded at 25 FPS.