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ABSTRACT

The mammalian brain is composed of millions to billions of cells that are organized into
numerous cell types with specific spatial distribution patterns and structural and functional
properties. An essential step towards understanding brain function is to obtain a parts list, i.e., a
catalog of cell types, of the brain. Here, we report a comprehensive and high-resolution
transcriptomic and spatial cell type atlas for the whole adult mouse brain. The cell type atlas was
created based on the combination of two single-cell-level, whole-brain-scale datasets: a single-
cell RNA-sequencing (SCRNA-seq) dataset of ~7 million cells profiled, and a spatially resolved
transcriptomic dataset of ~4.3 million cells using MERFISH. The atlas is hierarchically
organized into five nested levels of classification: 7 divisions, 32 classes, 306 subclasses, 1,045
supertypes and 5,200 clusters. We systematically analyzed the neuronal, non-neuronal, and
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immature neuronal cell types across the brain and identified a high degree of correspondence
between transcriptomic identity and spatial specificity for each cell type. The results reveal
unique features of cell type organization in different brain regions, in particular, a dichotomy
between the dorsal and ventral parts of the brain: the dorsal part contains relatively fewer yet
highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types
that are more closely related to each other. We also systematically characterized cell-type
specific expression of neurotransmitters, neuropeptides, and transcription factors. The study
uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide
expression and co-expression patterns in different cell types across the brain, suggesting they
mediate a myriad of modes of intercellular communications. Finally, we found that transcription
factors are major determinants of cell type classification in the adult mouse brain and identified a
combinatorial transcription factor code that defines cell types across all parts of the brain. The
whole-mouse-brain transcriptomic and spatial cell type atlas establishes a benchmark reference
atlas and a foundational resource for deep and integrative investigations of cell type and circuit
function, development, and evolution of the mammalian brain.

INTRODUCTION

The mammalian brain is arguably the most complex system in life, controlling a wide variety of
organism’s activities including vitality, homeostasis, sleep, consciousness, sensation, innate
behavior, goal-directed behavior, emotion, learning, memory, reasoning, and cognition. These
activities are governed by highly specialized yet intricately integrated neural circuits in the brain.
These circuits are composed of millions to billions of neurons and non-neuronal cells
interconnected through a vast array of synaptic and non-synaptic intercellular communication
machineries and molecules. These brain cells can be classified into numerous cell types based on
various phenotypic measurements®®. To understand how the variety of brain functions emerge
from this complex system, it is essential to gain comprehensive knowledge about the cell types
and circuits that constitute the molecular and anatomical architecture of the brain.

The anatomical architecture of the mammalian brain has been defined by its developmental plan
and cross-species evolutionary ontology®®. The entire brain is composed of telencephalon,
diencephalon, mesencephalon (midbrain, MB), and rhombencephalon (hindbrain, HB).
Telencephalon consists of five major brain structures: isocortex, hippocampal formation (HPF),
olfactory areas (OLF), cortical subplate (CTXsp) and cerebral nuclei (CNU). The first four brain
structures, isocortex, HPF, OLF and CTXsp, constitute the developmentally derived pallium
structure and are also collectively called cerebral cortex, whereas CNU derives from subpallium
and is further divided into striatum (STR) and pallidum (PAL). Diencephalon consists of
thalamus (TH) and hypothalamus (HY). Together telencephalon and diencephalon are also
collectively referred to as forebrain. Hindbrain (HB) is divided into pons (P), medulla (MY), and
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cerebellum (CB). Within each of these major brain structures, there are multiple regions and
subregions, each comprising many cell types.

Functionally, the mammalian brain is organized into four major systems: sensory, motor,
cognitive and behavioral state®. Each of these systems contains multiple subsystems, which are
organized in parallel and/or hierarchical manner across the above brain structures. The sensory
system receives and processes sensory information from the periphery via multiple parallel
ascending subsystems specific to different sensory modalities, i.e., visual, auditory, olfactory,
taste, somatic, visceral, hormonal, and nociceptive. The motor system controls body function
through the somatic, autonomic, and neuroendocrine subsystems. The motor system is generally
organized in a hierarchical manner, with pools of motor neurons as the outputs that are controlled
by several levels of central pattern generators, initiators, and controllers across the upstream
regions of the brain. The cognitive system drives thinking and voluntary control of behaviors. It
is also hierarchically organized, with cerebral cortex at the top followed by striatum and
pallidum, all three levels interconnected via sequential descending projections. The cerebral
cortex consists of multiple functionally specialized areas that form parallel circuit pathways with
downstream regions. The behavioral state system comprises a series of localized cell groups,
distributed in the ventral parts of the brain from cerebral nuclei to medulla, that control sleep and
wakefulness and modulate behavioral states, often through the release of modulatory
neurotransmitters and neuropeptides.

Cell types are considered the basic functional units of metazoan organs including the brain?, and
they exhibit extraordinary diversity in their molecular, anatomical, physiological and functional
properties. Significant progress has been made in characterizing these cellular properties and
using them to classify cell types throughout the brain®3°1°, Efforts have been dramatically
accelerated by the advance of high-throughput single-cell genomics technologies over the past
decade*®. Single-cell transcriptomics by single-cell or single-nucleus RNA sequencing (SCRNA-
seq or SnRNA-seq) provides unprecedented depth of profiling and scalability, enabling
comprehensive quantitative analysis and classification of cell types at scale*>113, This approach
has been used to categorize cell types from many different regions of the mouse nervous system,
such as cortex, hippocampus, striatum, thalamus, hypothalamus, cerebellum, spinal cord, and
retina*2°, and increasingly more in human and non-human primate brains®®*, The BRAIN
Initiative Cell Census Network (BICCN) and the Human Cell Atlas (HCA) are representative
community efforts using single-cell transcriptomics to create cell type atlases for the brain and
body of human and other mammalst?3°-42,

These studies have revealed important organizing principles of cell types in different parts of the
brain, such as the hierarchical organization of cell types and the coexistence of discrete and
continuous variation**, as well as key gene networks related to cell type identities and
structural/functional properties. In many cases, these studies have recapitulated previous sporadic
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knowledge about specific cell types, and further organized cell type information in an unmatched
systematic and comprehensive manner. Furthermore, single-cell transcriptomic studies carried
out in developing brains**-2 and in different species®323:53-5" have demonstrated that the
transcriptomic cell type framework is a strong basis for elucidating the relationships between cell
types that are rooted in their developmental and evolutionary origins.

An essential next step is to create a comprehensive and high-resolution transcriptomic cell type
atlas for the entire adult brain from a single mammalian species. The mouse (Mus musculus) is
the most widely used mammalian model organism and therefore a natural first choice for a
comprehensive definition of mammalian brain composition and architecture. To define the
anatomical context for cell types, another critical requirement is to obtain the precise spatial
location of each cell type using single-cell-level spatial transcriptomics analysis®®-® covering the
entire mouse brain. In addition to describing a complete, brain-wide cell type atlas of a
mammalian brain, this analysis will provide essential knowledge about the cell type composition
of different regions and circuits of the brain. The result is a foundational resource for conducting
connectional and functional studies to understand how cell types interact to form neural circuits
and what functional roles these cell types play, and for building additional cell type atlases across
lifespan and for other species including human, to unravel the developmental and evolutionary
bases of cell type organization and function.

As part of the BRAIN Initiative Cell Census Network (BICCN, www.biccn.org), we set out to
build a comprehensive, high-resolution transcriptomic cell type atlas for the whole adult mouse
brain, as a reference brain cell atlas for the neuroscience community. We generated a large-scale
scRNA-seq dataset, with ~7 million cells profiled across the entire mouse brain using the 10x
Genomics Chromium platform, and several multiplexed error-robust fluorescence in situ
hybridization (MERFISH)®? datasets covering the whole mouse brain. We conducted large-scale
computational analysis of these datasets and derived a transcriptomic cell type taxonomy and
atlas with ~5,200 clusters organized into a hierarchical tree. The spatial locations of all the cell
types were mapped in a cell atlas registered to the 3D Allen Mouse Brain Common Coordinate
Framework version 3 (CCFv3)® (Supplementary Table 1 provides the anatomical ontology
with full names and acronyms of all brain regions). We systematically characterized the
distributions and relationships of all neuronal and non-neuronal cell types, identifying a high
degree of correspondence between cell-type molecular profiles and their spatial distribution
patterns. An investigation of transcription factor genes and related modules with specific
expression at different hierarchical levels revealed their importance in defining cell types®465.

RESULTS

Creation of a high-resolution whole mouse brain transcriptomic cell type atlas
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To create a high-resolution transcriptomic and spatial cell type atlas covering the entire mouse
brain, we systematically generated two types of large-scale single-cell-resolution transcriptomic
datasets for all mouse brain regions, by single-cell RNA-sequencing (SCRNA-seq) and by
MERFISH®2, a spatially resolved transcriptomic method. We used the scRNA-seq datasets to
generate a transcriptomic cell type taxonomy, and the MERFISH datasets to visualize and
annotate the spatial location of each cluster in this taxonomy.

We first generated 781 scRNA-seq libaries (using 10x Genomics Chromium v2 or v3) from
anatomically defined, CCFv3-guided (Supplementary Table 1) tissue microdissections
(Methods), resulting in a dataset of ~7.0 million single-cell transcriptomes (Supplementary
Table 2, 3). We developed a set of stringent quality control (QC) metrics guided by pilot
clustering results that informed us on characteristics of low-quality single-cell transcriptomes
(Methods, Supplementary Table 4, Extended Data Figure 1a-c). We then conducted iterative
clustering analysis on ~4.3 million QC-qualified cells using custom software (scrattch.bigcat
package developed in-house). The 10xv3 and 10xv2 cells were first clustered separately, and
then integrated with methods we developed previously?, resulting in an initial joint
transcriptomic cell type taxonomy with 5,283 clusters (Extended Data Figure 1a).

By performing all pair-wise cluster comparisons in this initial transcriptomic taxonomy, we
derived 8,108 differentially expressed genes (DEGs, Supplementary Table 5) differentiating all
pairs of clusters. We then designed two sets of gene panels for the generation of MERFISH data,
with each gene panel containing a selected set of marker genes with the greatest combinatorial
power to discriminate among all clusters. The first gene panel contained 1,147 genes and was
used by the Zhuang lab to generate MERFISH datasets from several male and female mouse
brains (see companion manuscript Zhang et al. for details) using a custom imaging platform. The
second gene panel contained 500 genes (Supplementary Table 6) and was used to generate a
MERFISH dataset from one male mouse brain at the Allen Institute for Brain Science (AIBS)
using the Vizgen MERSCOPE platform (Extended Data Figure 2). The AIBS MERFISH
dataset contained 59 serial full coronal sections at 200-pum intervals spanning the entire mouse
brain, with a total of ~4.3 million segmented and QC-passed cells (Extended Data Figure 2),
subsequently registered to the Allen CCFv3 (Methods).

To hierarchically organize the transcriptomic cell type taxonomy and better delineate the
relationship between clusters, we computationally grouped the clusters into 306 subclasses
(Methods). We used the AIBS MERFISH dataset and one of Zhuang lab’s MERFISH datasets to
annotate the spatial location of each subclass and each cluster. To do this, we first mapped each
MERFISH cell to the transcriptomic taxonomy and assigned the best matched cluster identity
along with a correlation score to each MERFISH cell (Methods). The spatial location of each
cluster was subsequently obtained by the collective locations of majority of the cells assigned to
that cluster with high correlation scores. We annotated each subclass with its most representative
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anatomical region(s) and incorporated these annotations into subclass nomenclature for easier
recognition of their identities. In this way, the high-level distribution of cell types across the
entire mouse brain is described. As the anatomical annotations at subclass level are largely
consistent between the Zhuang lab and the AIBS MERFISH datasets, in the subsequent sections
of this manuscript, the AIBS MERFISH dataset is used to illustrate our results and findings.

To finalize the transcriptomic cell type taxonomy and atlas, we conducted detailed annotation
and analysis of all the subclasses and clusters. During this process, we identified and removed an
additional set of ‘noise’ clusters (usually doublets or mixed debris, see Methods) that had
escaped the initial QC process, resulting in a final set of 5,200 high-quality clusters containing a
total of ~4.1 million high-quality single-cell transcriptomes (Extended Data Figure 1a,d,e).
Thorough analysis revealed extraordinarily complex relationships among transcriptomic clusters
and their associated regions. Thus, to organize these complex molecular relationships, we
derived a hierarchical representation of transcriptomic cell types (Methods). Overall, we defined
a high-resolution transcriptomic and spatial cell type atlas for the whole mouse brain with 5
nested levels of classification: 7 divisions, 32 classes, 306 subclasses, 1,045 supertypes, and
5,200 clusters/types (Table 1, Figure 1, Extended Data Figure 3). Supplementary Table 7
provides the cluster annotation, including the identity of the division, class, subclass and
supertype assignment for each cluster, as well as full names of all levels of cell types and various
metadata information. We provide several representations of this atlas for further analysis: a) a
dendrogram at subclass resolution along with bar graphs displaying various metadata
information (Figure la, Extended Data Figure 3d), b) UMAPSs at single-cell resolution colored
with different types of metadata information (Figure 1b-e, Extended Data Figure 3c), and c) a
constellation diagram at subclass resolution to depict multi-dimensional relationships among
different subclasses (Extended Data Figure 4).

The high quality of the sScRNA-seq data included in the final taxonomy is indicated by the high
gene and UMI counts across the cell divisions (Extended Data Figure 3a,b). To test the
robustness of the clustering results, we first performed 5-fold cross-validation using all 8,108
markers as features for classification to assess how well the cells could be mapped to the cell
types they were originally assigned to. The median classification accuracy is 0.86 £ 0.10 (median
+ SD) and 0.97 = 0.03 for all clusters and all subclasses respectively. Next, we evaluated the
integration between 10xv2 and 10xv3 transcriptomes. The UMAP shows good inter-mixing of
10xv2 and 10xv3 transcriptomes overall (Extended Data Figure 5a-c). For cell types/clusters
containing many cells, we observed separation of 10xv2 and 10xv3 data in the UMAP space, but
not at the cluster level. For each of the 5,383 marker genes shared between 10xv2 and 10xv3
datasets, we computed the Pearson correlation of its average expression in each cluster for all
overlapping clusters between the 10xv2 and 10xv3 data (Extended Data Figure 5d). The
median correlation is 0.89 + 0.09, suggesting a majority of the marker genes show consistent
relative expression levels across clusters between the two 10x platforms. We manually inspected
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several genes with poor correlation and found them to have poor gene annotation or show
relatively small variations across clusters. Lastly, we examined consistency of gene expression
between 10xv3 and MERFISH data in corresponding cell types in a similar way and found high
median Pearson correlation at 0.91 + 0.15 (Extended Data Figure 5d). Most genes with low
correlations are *Rik genes that are more likely to be poorly annotated, and the MERFISH
probes selected for them might not work well. The MERFISH dataset can resolve the vast
majority of clusters due to strong correlation of DEG expression between 10xv3 and MERFISH
clusters (Extended Data Figure 5e-g). On the other hand, a few hundred pairs of clusters with
fewer than two DEGs on the MERFISH gene panel remain unresolvable in the MERFISH data,
and they are usually sibling clusters with indistinguishable spatial distribution.

Organization of neuronal cell types across the mouse brain

Neuronal cell types constitute a large proportion of the whole brain cell type atlas, including 4
divisions, 27 classes (84%), 283 subclasses (92%), 1,000 supertypes (95%) and 5,101 clusters
(98%; Table 1, Supplementary Table 7). Neuronal types are distributed across all major brain
structures, have high regional specificity, and exhibit highly variable degrees of similarities and
differences amongst each other. Of the 4 neuronal divisions, glutamatergic neurons from all
pallium structures, including isocortex, hippocampal formation (HPF), olfactory areas (OLF) and
cortical subplate (CTXsp), form a distinct “Pallium glutamatergic” division (Table 1, Figure 1a,
Extended Data Figure 4). Similarly, a set of developmental subpallium-derived GABAergic
neuronal subclasses, including all GABAergic neurons found in pallium structures and those in
the subpallial cerebral nuclei (CNU), including dorsal and ventral striatum (STRd and STRv),
lateral septal complex (LSX), and dorsal, ventral and medial pallidum (PALd, PALv and
PALm), form a second “Subpallium GABAergic” division (Table 1, Figure 1a, Extended Data
Figure 4). We also identified a variety of distinct neuronal subclasses, including those from the
main olfactory bulb (MOB) and cerebellar cortex (CBX), and tentatively grouped them into a
mixed “CBX-MOB-other neuronal” division (Table 1, Figure 1a, Extended Data Figure 4).
Interestingly, in contrast to these highly distinct neuronal subclasses, the large set of remaining
neuronal subclasses spanning the middle parts of the brain, including the striatum-like amygdala
nuclei (SAMY) and pallidum (PAL) parts of CNU, thalamus (TH), hypothalamus (HY'), midbrain
(MB) and hindbrain (HB), exhibit a high degree of similarity and continuity, and hence were
grouped into a single large “PAL-sAMY-TH-HY-MB-HB neuronal” division (Table 1, Figure
la, Extended Data Figure 4).

To further investigate the neuronal diversity within each major brain structure, we generated re-
embedded UMAPs for subsets of neuronal types within divisions and brain structures. The
process of subdivision and UMAP re-embedding (in 2D and 3D) was iteratively applied at more
detailed levels to reveal fine-grained relationships between neuronal types within and between
brain regions. We name the various re-embedded groups of cell types ‘neighborhoods’ and use
them for visualization and analysis purposes. The results shown in Figure 2 reveal a striking
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correspondence between transcriptomic specificity and relatedness and spatial specificity and
relatedness among the different neuronal subclasses.

In the Pallium glutamatergic division (subclasses 1-35, total 494 clusters), each neuronal
subclass exhibits layer and/or region specificity (Figure 2a,f). We found that the homologous
relationships of the different subclasses of glutamatergic neurons between isocortex and HPF we
had reported previously?® extended to other pallium structures, i.e., OLF and CTXsp. We also
observed that the NP-CT-L6b-like (NP: near-projecting, CT: corticothalamic, L6b: layer 6b)
subclasses emerged as a group highly distinct from the IT-ET-like (IT: intratelencephalic, ET:
extratelencephalic) subclasses?>2"283° Thus, we defined two classes, IT-ET and NP-CT-L6b, for
this division.

Based on the molecular signature and regional specificity of each subclass, the Subpallium
GABAergic division (subclasses 36-62, total 565 clusters) was divided into four classes that are
likely related to their distinct developmental origins®®®” (Figure 2b,g): CGE GABA (containing
cortical/pallial GABAergic neurons derived from the caudal ganglionic eminence), MGE GABA
(containing cortical/pallial GABAergic neurons derived from the medial ganglionic eminence),
CNU GABA (containing striatal/pallidal GABAergic neurons derived from the lateral ganglionic
eminence, LGE, as well as from MGE and the embryonic preoptic area), and LSX GABA
(containing lateral septum GABAergic neurons derived from the embryonic septum®®).

We divided the large PAL-SAMY-TH-HY-MB-HB neuronal division (containing subclasses 63-
262 and 282, excluding 77, total 3873 clusters) into several neighborhoods to illustrate cell type
organization in each major brain structure. The PAL-sAMY-HY neighborhood contains a set of
closely related neuronal subclasses from the entire hypothalamus?*®°, as well as the SAMY and
caudal PAL regions of CNU that are also known as the extended amygdala (Figure 2c,h). Both
glutamatergic and GABAergic neuronal subclasses in this neighborhood exhibit a gradual
anterior-to-posterior transition, and thus were grouped into five classes: CNU-HYa GABA, HY
GABA, CNU-HYa Glut, HY Glut and HY MM Glut (MM standing for medial mammillary
nucleus). Neuronal types in the most anterior part of HY, i.e., the preoptic area, are highly
similar to neuronal types in SAMY and PAL. Some of the CNU-HYa GABA subclasses are also
included in the Subpallium GABA neighborhood to show their relatedness and continuity with
the striatal/pallidal types (Figure 2b,g). On the other hand, the more posterior HY GABA class
also includes GABAergic neurons from the thalamic reticular nucleus (RT; subclass 81) and the
ventral part of the lateral geniculate complex (LGv; subclass 126), which are closely related to
zona incerta (ZI) neurons in HY (subclass 111), revealing a relationship of GABAergic types
between hypothalamus and thalamus.

The TH-EPI neighborhood (Figure 2d,i) contains all glutamatergic neuronal subclasses from the
thalamus, as well as the medial and lateral habenula (MH and LH) which collectively compose
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the epithalamus (EPI). These subclasses were grouped correspondingly into TH Glut and MH-
LH Glut classes, except for one subclass with neurons found in several posterior thalamic nuclei,
159 SPA-SPFmM-SPFp-POL-PIL-PoT Glut, which belongs to the MB Glut class, revealing a
relationship of glutamatergic types between thalamus and midbrain.

Finally, we show an example large neighborhood (Figure 2e,j) containing all the glutamatergic
and GABAergic neuronal subclasses from MB and HB, which contains pons (P), medulla (MY)
and cerebellum (CB; thus also including the CBX subclasses from the CBX-MOB-other
neuronal division). In this highly complex neighborhood, we defined the following 10 classes
based on transcriptomic relatedness and regional specificity: MB Glut, P Glut, MY Glut, MB
GABA, P GABA, MY GABA, MB dopa, MB-HB Sero, CB GABA and CB Glut
(Supplementary Table 7). We found that the glutamatergic and GABAergic subclasses, 189 and
220, from the cerebellar nuclei (CBN) are more closely related to those from the medulla than
those from the cerebellar cortex.

The analysis presented thus far provides a high-level overview of the extraordinary complexity
of neuronal cell types across the brain. These data and the whole brain atlas will allow for more
in-depth analyses to understand the relationship of neuronal types in different brain structures.
Here, we also highlight a small set of remarkable neuronal types (defined at subclass level) that
are transcriptomically highly distinct from all the other subclasses (Extended Data Figure 6,
also marked with orange dots in Figure 1a and with red circles in Extended Data Figure 4).
These highly distinct neuronal subclasses are found in all parts of the brain, each at a very
specific anatomical location (Extended Data Figure 6). For example, subclass 21 is a L4
neuronal type with mixed IT and ET transcriptomic signatures in the retrosplenial cortex (RSP).
Subclass 35 is a highly distinct IT-ET type located in the nucleus of the lateral olfactory tract
(NLOT). Subclass 79 is located in the triangular nucleus of septum (TRS) specifically. Subclass
125 is located in the lateral hypothalamic area (LHA) and specifically expresses the neuropeptide
gene Pmch. Subclass 230 is a superior colliculus (SC) glutamatergic type highly distinct from all
the other SC neuronal types. Subclasses 234 and 235 are located in the posterodorsal tegmental
nucleus (PDTQ) specifically. Subclass 238 is primarily located in interpeduncular nucleus (IPN).
Subclass 252 is specific to inferior olivary complex (10). Subclass 263 is predominantly located
in pontine gray (PG). Subclass 271 is the hypothalamic Gnrhl neuronal type developmentally
originated from the embryonic olfactory epithelium™. Subclass 281 is the cerebellar Purkinje
neurons.

Neurotransmitter identities and neuropeptide expression patterns in neuronal cell types
We systematically assigned neurotransmitter identity to each cell cluster based on the expression
of canonical neurotransmitter transporter genes (Figure 3, Extended Data Figure 3c-d,
Supplementary Table 7), i.e., Slc17a7 (also known as Vglutl), Slc17a6 (Vglut2) and Slc17a8
(Vglut3) for glutamatergic, Slc32al (Vgat) for GABAergic, Slc6a5 for glycinergic, Slc18a3
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(Vacht) for cholinergic, Slc6a3 (Dat) for dopaminergic, Slc6a4 (Sert) for serotonergic, and
Slc6a2 (Net) for noradrenergic. The only exception was the use of the Hdc gene to identify
histaminergic cells since there is no known high-affinity reuptake system for histamine’*. We
used a stringent expression threshold of log(CPM) > 3.5 of these genes to assign
neurotransmitter identity to each cluster. We also used two commonly used marker genes, Chat
for cholinergic neurons and Dbh for noradrenergic neurons, to further qualify or disqualify the
assignments. For example, we found a few clusters that are Slc6a2-positive but Dbh-negative,
and thus did not assign them the noradrenergic identity.

Based on these marker genes, the majority of neuronal clusters express a single neurotransmitter,
either glutamate or GABA. Many GABAergic neuronal clusters in MB and HB co-express
glycine. We identified 49 clusters with glutamate-GABA dual-transmitters (Glut-GABA), most
of which utilize Slc17a6 or Slc17a8 as the glutamate transporter (Supplementary Table 7,
Figure 3a-d,i,j). These clusters are widely distributed in different parts of the brain. They
include 4 clusters in the isocortex and hippocampus and 3 clusters in globus pallidus, internal
segment (GPi), which likely correspond to previously well-characterized glutamate-GABA co-
releasing neuronal types in these regions’?"3. They also include a few clusters each in the cortical
amygdala areas, STRv, ventral PAL, posterior HY, several MB areas including the ventral
tegmental area (VTA), pedunculopontine nucleus (PPN) and interpeduncular nucleus (IPN),
areas in pons such as superior central nucleus raphe (CS), nucleus raphe pontis (RPO) and
laterodorsal tegmental nucleus (LDT), etc. (Figure 3a-d,i,j). Interestingly, except for the 3
glutamate-GABA clusters that form an exclusive subclass in GPi, the other Glut-GABA clusters
are present in subclasses that also contain closely related single-neurotransmitter (glutamate or
GABA) clusters (Figure 3a-d, Supplementary Table 7), and our QC process determined that
this was not due to data quality issues (doublets or low-quality cells).

We also systematically identified all clusters producing modulatory neurotransmitters (Figure
3e-j, Supplementary Table 7). Cholinergic neurons’*" are found mainly in subclass 49 in the
ventral PAL (10 clusters), but also include 1 cluster in LSX, 7 clusters in MH, 6 clusters in PPN
and cuneiform nucleus (CUN), 6 clusters in dorsal motor nucleus of the vagus nerve (DMX), and
3 clusters scattered in other subclasses in MY. We also found Slc18a3 expression in several
clusters in the Vip GABA subclass, but its expression at cluster level did not cross our threshold
to label these clusters as cholinergic. Cholinergic neurons often co-express glutamate (18 out of
34 clusters) or sometimes GABA (5 out of 34).

Dopaminergic neurons'® are found predominantly in subclass 250, which is the sole member of
the MB Dopa class, located in substantia nigra, compact part (SNc), VTA and midbrain raphe
nuclei (RAmDb) areas. This subclass displays the most heterogeneous neurotransmitter content,
consistent with previous findings’®. It contains 34 dopaminergic clusters, as well as 9
glutamatergic, GABAergic or dual glutamate-GABA clusters. Some (18) of the 34 dopaminergic
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clusters also co-express glutamate, or GABA, or both glutamate and GABA. Dopaminergic
neurons are also found in 6 clusters in arcuate hypothalamic nucleus (ARH) and ventral
premammillary nucleus (PMv) of HY (co-expressed with GABA or glutamate) and in 4 clusters
in MOB (co-expressed with GABA).

Serotonergic neurons®® all belong to the distinct MB-HB Sero class, which contains a single
subclass, 146. This subclass consists of 19 serotonergic clusters and 13 glutamatergic (Slc17a8)
clusters that are all closely related to each other. Some (14) of the 19 serotonergic clusters also
co-express glutamate (Slc17a8). All these clusters reside in the various raphe nuclei within MB
or MY. Thus, the serotonergic neuron class/subclass is highly heterogeneous in both
neurotransmitter content and spatial localization.

Noradrenergic neurons’”’® are mainly found in subclass 247. This subclass contains 9
noradrenergic clusters and 16 glutamatergic clusters, with all but one of the noradrenergic
clusters also co-expressing glutamate (Slc17a6). All but two clusters in this subclass are located
in the nucleus of the solitary tract (NTS), whereas the two exceptions (one noradrenergic and one
glutamatergic cluster) are located in locus ceruleus (LC). Histaminergic neurons are found
exclusively in the tuberomammillary nucleus, dorsal and ventral parts (TMd and TMv) of HY (5
clusters), two of which co-express GABA'L. We found that ependymal and hypendymal cells, as
well as monocytes may also be histaminergic (Extended Data Figure 3d).

Overall, an intriguing pattern emerged where nearly all subclasses with a dominant modulatory
neurotransmitter contain clusters expressing glutamate and/or GABA only, as well as various
forms of co-expression, indicating a high degree of heterogeneity in neurotransmitter release and
co-release among closely related neuronal types that may have common developmental origins.
Again, our QC process excluded the possibility of doublet or low-quality cell contamination.
While many of these transmitter co-release patterns had been documented previously’®®8° our
study defined a comprehensive set of cell types with unique and differing neurotransmitter
content that can be tracked with marker genes.

Neuropeptides are also major agents for intercellular communications in the brain®-82, We
examined cell type-specific expression patterns of dozens of main neuropeptide genes and their
receptors in our datasets (Supplementary Table 7). We measured the cell type specificity of
expression of these genes using the Tau score® and found a wide range of variation (Extended
Data Figure 7a-b). Some neuropeptides are widely expressed in many cell types/clusters and at
high levels (e.g., Cck, Adcyapl, Pnoc, Penk, Sst and Tacl), some are expressed at high levels in
a moderate number of clusters (e.g., Cartpt, Nts, Pdyn, Gal, Tac2, Grp, Vip, Crh, Trh and Cort),
whereas others are highly expressed specifically in only one or few clusters (e.g., Avp, Agrp,
Pomc, Pmch, Oxt, RIn3, Npw, Nps, Ucn, Hcrt, Gnrhl, Gecg and Pyy; Extended Data Figure 7c-
). More than 80% of all clusters express at least one neuropeptide gene, and there are numerous
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co-expression combinations of different neuropeptides in many clusters, with high degrees of
variations within subclasses (Supplementary Table 7). Our datasets provide a rich resource for
the exploration of neuropeptide ligand/receptor interactions across the entire brain. However, we
also note that the relationships between mRNA levels, the post-translationally processed peptide
levels, and the functional levels are unknown for most neuropeptides, thus, it is difficult to
predict what mRNA levels would lead to sufficient functional expression of a given neuropeptide
(Extended Data Figure 7c-d).

Non-neuronal cell types and immature neuron types across the mouse brain

The whole-brain transcriptomic cell type atlas describes the taxonomy of non-neuronal cell
types, classifying them into 3 divisions (Neuroglial, Vascular and Immune), 5 classes, 23
subclasses, 45 supertypes and 99 clusters (Table 1, Supplementary Table 7), which can be
distinguished by highly specific marker genes at all levels of hierarchy (Figure 1a, Figure 4a-b,
Extended Data Figure 8a-f). The Neuroglial division comprises three classes, Astro-Epen,
Oligo and OEG. The Astro-Epen class is the most complex, containing ten subclasses, four of
which represent astrocytes that are specific to different brain regions: Astro-OLF, Astro-TE (for
telencephalon), Astro-NT (for non-telencephalon) and Astro-CB, while the other six subclasses
are astrocyte-related cell types: astroependymal cells, ependymal cells, tanycytes, hypendymal
cells, choroid plexus (CHOR) cells, and Bergmann glia (Figure 4a-d). The Oligo class contains
two subclasses, oligodendrocyte precursor cells (OPC) and oligodendrocytes (Oligo). The Oligo
subclass is further divided into four supertypes corresponding to different stages of
oligodendrocyte maturation: committed oligodendrocyte precursors (COP), newly formed
oligodendrocytes (NFOL), myelin-forming oligodendrocytes (MFOL), and mature
oligodendrocytes (MOL) (Extended Data Figure 8h). The OEG class corresponds to olfactory
ensheathing glia (OEG). The Vascular division (and class) consists of five subclasses: arachnoid
barrier cells (ABC), vascular leptomeningeal cells (VLMC), pericytes (Peri), smooth muscle
cells (SMC), and endothelial cells (Endo). The Immune division (and class) is composed of five
subclasses: microglia, border-associated macrophages (BAM), monocytes, dendritic cells (DC),
and lymphoid cells, which contains B cells, T cells, NK cells and innate lymphoid cells (ILC).

We identified transcription factors (TFs) that potentially serve as master regulators for many of
these non-neuronal cell types (Figure 4a, Extended Data Figure 8d), many of which were well
documented in the literature?®®+88, For example, Sox2, a well-known radial glia marker, is
widely expressed in neuroglia, Sox9 is specific to the Astro-Epen class, Sox10 is specific to the
Oligo class, Foxd3 and Hey?2 are specific to OEG, Foxcl is specific to the Vascular division, and
Ikzf1 is specific to the Immune division. Within each division and class, additional TFs mark
finer groupings?® (Extended Data Figure 8d-f). For example, Astro-TE cells express Foxgl and
Emx2, which are key regulators of neurogenesis in the telencephalon®®. Likewise, Astro-CB
cells express Pax3, which is also highly expressed in the CB GABAergic neurons. These
observations are consistent with the notion that astrocytes and neurons are derived from common
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regionally distinct progenitors and share the common TFs for spatial patterning. Among other
astrocyte-related subclasses, Nkx2-2 is specific to Bergmann glia, Rax to tanycytes, Myb to
ependymal cells, Spdef to hypendymal cells, and Lefl to CHOR. Some TFs are widely expressed
but display specific expression patterns among related cell types. For example, Tshz2 has much
higher expression in Astro-OLF than in other astrocytes (Extended Data Figure 8d).

The spatial distribution of all non-neuronal cell types in the mouse brain was confirmed and
further refined by the MERFISH data. For example, we observed an inside-outside spatial
gradient in MOB among the four OEG clusters (Extended Data Figure 8g). In addition to being
widely distributed across the brain, oligodendrocytes are also highly concentrated in white-
matter fiber tracts (Extended Data Figure 8h-j). In contrast, the 1024 OPC NN_2 supertype is
found mostly in gray-matter areas (Extended Data Figure 8i).

Of all the non-neuronal cell types, the Astro-Epen class exhibits the most diverse spatial
patterns®:%2, Region-specific astrocytes Astro-OLF, Astro-TE, Astro-NT and Astro-CB are
arranged in the UMAP in an anterior-to-posterior order (Figure 4c), consistent with their spatial
patterning. Astro-TE cluster 5115, located in the lateral ventricle bordering rostral dorsal
striatum, and clusters belonging to the Astro-OLF subclass (5119, 5120, 5118, 5116 and 5117)
match the path of the rostral migratory stream (RMS)%*°. The trajectory of these astrocyte
clusters on the UMAP matches well with the corresponding spatial gradients. Astro-TE cluster
5110 is located at the pia of telencephalon (Figure 4c) and has high expression of Gfap
(Extended Data Figure 8e), consistent with the definition of interlaminar astrocytes (ILA)%.
Other clusters (5104, 5105, 5106, 5107) in the Astro-NT subclass are also localized at the pia
with high expression of Gfap, which we hypothesize to be ILAs outside telencephalon. Besides
Gfap, these clusters also have specific expression of Atoh8 and Myoc (Extended Data Figure
8e). Other astrocyte-related subclasses, Astroependymal, Tanycyte, Hypendymal, Ependymal,
and CHOR, line different parts of the ventricles throughout the brain (Figure 4d).

VLMC types?®® also show highly specific spatial and colocalization patterns. Clusters 5174,
5175, 5176 and 5177 are located at the pia, in contrast to clusters 5179 and 5178 which are
scattered widely in the brain (Figure 4e). Interestingly, we found highly specific spatial
colocalization between VLMC cluster 5181 and Tanycyte clusters (Figure 4f), between VLMC
cluster 5180 and Ependymal/CHOR clusters (Figure 4g), and between pia specific VLMC
clusters and ILAs (Figure 4h). Marker genes for VLMC clusters are enriched in extracellular
matrix components and transmembrane transporters, including collagens and solute carriers with
distinct cell type specificity (Extended Data Figure 8f). Interactions between various VLMC
and astroependymal cell clusters, together with arachnoid barrier cells (ABC), likely regulate the
movement of nutrients across the blood brain barrier®”. The tanycyte-interacting VLMC cluster
5181 does not express many markers present in other VLMC types but has specific expression of
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transmembrane genes Tenm4 and Tmtc2. This interaction may play roles in the brain-
cerebrospinal fluid (CSF) barrier at the median eminence (ME)%,

Cell proliferation and neuronal differentiation continue in adulthood only in restricted areas of
the brain®®. The two main adult neurogenic niches are the dentate gyrus (DG) and the
subventricular zone (SVZ) lining the lateral ventricles. The first gives rise to the excitatory DG
granule cells, whereas the second produces migrating cells that follow the rostral migratory
stream (RMS) and in the MOB differentiate into inhibitory granule cells®1%%101 We identified
two subclasses of immature neurons, 278 MOB-STR-CTX Inh IMN and 279_DG-PIR Ex IMN,
and grouped them with GABAergic neuron subclasses in MOB%? and glutamatergic granule
cells in DG to form the MOB-DG-IMN class (Table 1, Supplementary Table 7, Extended
Data Figure 4). We also uncovered relatedness between the Cajal-Retzius (CR) cells mostly
found in HPF (subclass 280) and the MOB glutamatergic subclass (subclass 77) which are likely
mitral and tufted cells'%2, and grouped them into the MOB-CR Glut class (Table 1,
Supplementary Table 7, Extended Data Figure 4).

The scRNA-seq data show a trajectory from immature neurons to mature neurons in DG, and the
MERFISH data corroborate that the immature neurons are located in the subgranular zone of
DG, whereas the mature neurons reside in the dentate granular cell layer (Figure 4i,j). It seems,
however, that the SCRNA-seq data might not have captured all cell states along the maturation
trajectory based on the gaps between clusters in the UMAP. Various studies have tried to capture
the transitional states between neural stem and neuronal progenitor cells in the DG with most
making use of transgenic mice to isolate specific states'%104,

The migrating neurons in the RMS are separated from the parenchyma by astrocytes that form
tunnels through which the cells migrate®1%. RMS astrocytes (Figure 4c, cluster 5115 and the
Astro-OLF subclass identified here) are molecularly distinct — they create a migration-permissive
environment by providing soluble and non-soluble cues to the migrating neurons®*%. In this
well-orchestrated process, the neuroblasts, in turn, prevent astrocytic processes from invading the
RMS by secreting Slit1, which acts on astrocytic Robo receptors to repel astrocytic processes out
of the migratory path®. Our data showed two main cell populations arising from RMS into
MOB; clusters that populate the inner granule and mitral cell layers (Figure 4i,k, trajectory 2),
and clusters that populate the outer glomerular layer (Figure 4i,1, trajectory 3). Immature
neurons in the SVZ and RMS are marked by the expression of cell cycle-associated genes like
Top2a and Mki67 (Extended Data Figure 9). As the MOB neurons exit the RMS, they express
markers like Sox11 and S100a6 genes'®, whereas the mature neurons in the MOB are marked by
the expression of Frmd7.

Transcription factor modules across the whole mouse brain
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Transcription factors are considered key regulators of cell type identity®*®®. To evaluate the
correspondence of TF expression to transcriptomic cell types, we calculated the number of
differentially expressed (DE) TFs between each pair of divisions, classes, subclasses, or pairs of
clusters within a subclass (Figure 5a). We then compared cross-validation accuracy of class,
subclass and cell type recall using classifiers built based on all 8,108 DEGs, randomly selected
499 DEGs, or 499 TF marker genes (Supplementary Table 8, Figure 5b). The median cluster
recall accuracy of cross-validation with TFs is between that of all DEGs and the random subset
of DEGs. The cross-validation accuracy of subclass recall with TFs is 0.93, which is very similar
to the accuracy with all DEGs (0.97), whereas the accuracy using the random subset of DEGs is
much lower. The confusion matrix between the assigned and predicted subclasses in cross
validation using classifiers trained on the 499 TF markers shows a high degree of concordance
(Figure 5c). These results quantify the strong role of TFs in determining cell type identities.

We identified a large set of TF co-expression modules (Methods) that are selectively expressed
in specific groups of cell types at all hierarchical levels and hence may define identities of these
groups of cell types (Figure 5d,e, Supplementary Table 8). A pallium glutamatergic specific
module includes Tbrl and Satb2. Immediate early genes Egr3 and Nr4al are also highly
expressed in pallium glutamatergic neurons, while Fos and Fosb have more uniform expression.
The bHLH transcription factors including Neurodl1, Neurod2, Neurod6 and Bhlhe22 are widely
expressed in many types of neurons but have highest expression in pallium glutamatergic cells.
The DIx1, DIx2, DIx5, DIx6, Arx, Sp8 and Sp9 module is specific to GABAergic neurons in
telencephalon, while the Gata3, Gata2 and Tall module is specific to GABAergic neurons in
MB and pons. Interestingly, the latter gene module is best known as master regulator of
hematopoietic development'%’, and is an example of re-purposing the same transcription factor
module for specifying cell types in different systems. Gbx2, Shox2 and Tcf712 are highly
expressed in thalamus glutamatergic neurons, while Shox2 and Tcf712 are also expressed in MB.
Hox genes are specific to MY GABAergic and glutamatergic neurons. We also identified a TF
module for the Astro-Epen cell class, including Sox9, Gli2, Gli3, and Rfx4, and several distinct
modules for other non-neuronal cell subclasses.

For most other modules, each module consisted of a few TFs that are homologs, e.g., Nfia/b/x,
the Zic family, the Irx family, the Ebf family, En1/2, Lhx6/8, Six3/6, and Pou4f1/2/3. Some of
these homologs are located next to each other on the same chromosome, such as DIx1/2, DIxX5/6,
Irx1/2, Irx3/5, Zicl/4, Zic2/5, and Hoxb2-8. These homologs are likely located within the same
chromatin domains, regulated by the same enhancers, and have highly similar expression
patterns. Many co-expressed homologs show subtle but interesting distinctions. Consistent with
the well-studied roles of Hox genes in regulating A-P Axis in development!®®, Hoxb2/3 have
broader expression than Hoxb4/5, and Hoxb8 has the most restricted expression pattern in
posterior lateral MY, in the order that is consistent with their locations on the chromosome.
While not very close on the chromosomes, Nfia/b/x regulate cell type differentiation in many
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tissues'®11! function as homo- or hetero-dimers, and bind to largely common targets!*?. Similar
interactions between homologs have been reported for many other families, such as Ebf!*® and
Irx!*4, Finally, we identified a set of TFs such as Meis1/2 and Nr2f1/2 that are widely expressed
but delineate neighboring subclasses and clusters and show local spatial gradients.

We further identified specific TFs that could define each node and branch in the dendrogram.
Most subclasses could be uniquely specified by a combination of TFs located at all upper-level
nodes, and some nodes and branches could be defined by one or just a few TFs (Extended Data
Figure 10a). For example, transcription factor Otp marks several distinct populations in CNU,
HY, MB and HB. We identified additional TFs to further distinguish these populations
(Extended Data Figure 10b). Otp+ subclasses express Foxgl in CNU and anterior HY, Ebf1,
Ebf2, Irx2, Enl and En2 in various MB areas, and Pax3 in HB areas (Extended Data Figure
10c). Additional TFs provide finer separation. For example, subclasses 200/201 both express
Enl/2, but Pax7 specifically in 201 and Pax8 in 202. Both subclasses are located at ventral MB
bordering pons, but 201 is more lateral, consistent with the spatial expression pattern of Pax7
and Pax8. Similarly, subclasses 194/195 both express Ebf1/2, but St18 specifically in 195 and
Evx2 in 194. Subclass 195 is located posteriorly at gigantocellular reticular nucleus (GRN) in
MY while 194 is located more anteriorly at pontine reticular nucleus (PRNr) in pons. Together,
these TF combinations delineate all the Otp+ subclasses.

While many TF homologs are co-expressed (Figure 5e), they can also show distinct expression
patterns. We studied systematically the expression patterns of several TF families (Extended
Data Figure 11), including forkhead box (Fox), Krippel-like factor (KIf), LIM Homeobox
(Lhx), NKX-homeodomain (Nkx), Nuclear Receptors (Nr), Paired box (Pax), POU domain
(Pou), Positive Regulatory Domain (Prdm), SRY-related HMG-box (Sox), and T-box (Tbx), all
of which have been shown to play important roles in spatial patterning, cell type specification
and differentiation during development®'5-122, In each family, only the TF markers identified in
this study are included here. Members of the same TF family evolved from common ancestors,
have strong sequence conservation, and very similar DNA binding motifs. Revealing their
distinct cell type specificity provides deeper insights into the evolution of these TF families.
Particularly intriguing is the LIM Homeobox family, which can be split into multiple groups
with complementary expression patterns that together cover most cell types in the brain. Lhx2
and Lhx9 are co-expressed in TH and MB glutamatergic types, but Lhx2 is also specifically
expressed in the pallium IT-ET types. Lhx6 and Lhx8 are co-expressed in some CNU/HY
GABAergic types, but Lhx6 is also specifically in MGE types. Lhx1 and Lhx5 are co-expressed
in HY MM, MB and HB cell types, and much more highly in GABAergic than glutamatergic
types. Lmxla and Lmx1b are co-expressed in HB glutamatergic and MB dopaminergic cell types,
but Lmx1b is also specifically in MB/HB serotonergic types. Lhx3 and Lhx4 are co-expressed in
very specific glutamatergic types in pons and pineal gland. Isl1 is widely expressed in HY/CNU,
and much more highly in GABAergic than glutamatergic types. Interestingly, the grouping of
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Lhx members based on the gene expression patterns exactly matches their phylogeny tree based
on their coding sequences'? and aligns with the sub-family definition.

Brain region-specific cell type features

Characterizing the global features of cell type composition of regions across the brain
complements our study of cell type diversity. We found that the numbers of cell types/clusters
identified in different regions do not correlate with the numbers of cells profiled (Figure 6a).
Rather, region-specific characteristics dominate. The hypothalamus, midbrain and hindbrain
regions contain the largest numbers of clusters, indicating a high degree of cell type complexity,
consistent with these regions having many small and heterogeneous subregions. Thalamus and
cerebellum, on the other hand, contain the smallest numbers of clusters, suggesting lower
complexity. Surprisingly, despite orders of magnitude more cells profiled in the pallium due to
the many subregions contained within it (including isocortex, HPF, OLF and CTXsp, each
containing multiple subregions) and its overall 4-15x larger volume compared to other major
brain structures (Supplementary Table 1), we found an intermediate number of clusters for the
entire pallium, similar to the other telencephalic structure, the subpallial CNU (Figure 6a).

The numbers of all genes or all transcription factors detected above a threshold per neuronal
cluster are similar across all brain structures. However, when examining the homeobox TF gene
family specifically, more homeobox TFs per neuronal cluster are detected in HB compared to all
other structures, consistent with the unique roles these TFs play in hindbrain development!®®
(Figure 6b). We calculated the numbers of DEGs between each pair of clusters within a brain
region, divided the numbers into nine quantiles based on similarities (i.e., higher similarity
would yield fewer number of DEGs) and plotted their distribution by quantiles (Figure 6c).
Interestingly, we found that in regions with larger numbers of clusters, i.e., HY, MB and HB,
their clusters are more similar to each other within each region, suggesting that cell types in these
regions have lower diversity and are less hierarchical. In contrast, in regions with smaller
numbers of clusters, i.e., CB, TH and Pall, there are wide differences in similarities between cell
types, thus, cell types in these regions may be more diverse and hierarchical. CNU exhibits an
intermediate level of diversity. The results show that HY, MB and HB have more numerous cell
types, but the cell types are more like each other. We also calculated the 3D spatial span of each
cluster based on the MERFISH dataset and aggregated the spans of all clusters within each brain
region (Figure 6d). Each region shows its own unique characteristics, with clusters in pallium
having much larger spans suggesting sharing across subregions, and clusters in HY having much
smaller spans suggesting more restricted localization.

In addition to regional specificity of cell types, we also observed continuity across major brain
regions by identifying a specific set of cell types that are shared or transitioning between brain
regions (Figure 6e-g). For example, cells belonging to glutamatergic subclasses 12, 98 and 99
are found in both pallial OLF (e.g., cortical amygdala area, COA) and subpallial SAMY (e.g.,
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medial amygdala nucleus, MEA) regions. The GABAergic subclass 46 contains neurons in both
isocortex (the Sst Chodl cells?>?8) and dorsal and ventral striatum (STRd and STRv). Subclass 54
is shared between STR and PAL. Subclass 56 is a transitional type between LSX and PAL.
Subclasses 86 and 92 are shared between SAMY and PAL. GABAergic subclasses 102-105 and
glutamatergic subclasses 128 and 129 are shared between PAL and anterior HY. Subclass 149 is
transitional between HY and MB. Glutamatergic subclasses 158 and 159 and GABAergic
subclasses 213 and 214 are transitional between TH and MB. Glutamatergic subclasses 153 and
154 and GABAergic subclasses 201, 209, 210, 223 and 237 are transitional between MB and
pons.

We investigated sex differences in the whole mouse brain transcriptomic cell type atlas. We
identified 28 clusters across 13 subclasses with a skewed distribution of cells derived from the
two sexes (Figure la, Supplementary Table 7). Of these, 5 are small, sex-specific clusters:
clusters 211, 1402, 2536 and 2538 are male-specific and cluster 2207 is female-specific. The 23
sex-dominant clusters include 1404, 2058, 2062, 2065, 2088, 2089, 2154, 2196, 2204 and 3612,
which contain mostly cells from female donors, and clusters 1396, 1407, 1409, 1781, 1843,
2048, 2057, 2061, 2150, 2195, 3359, 3716 and 3952, which contain mostly cells from male
donors. Based on the MERFISH data, these clusters mostly reside in specific regions of PAL,
SAMY, HY and HB.

Within the whole mouse brain sScRNA-seq dataset, we also collected a complete subset of data
covering all brain regions from the dark phase of the circadian cycle (Supplementary Table 2,
total 1,121,542 10xv3 cells). All the dark-phase transcriptomes were included in the overall
clustering analysis. In all but one subclass, they are found commingled with the corresponding
light-phase transcriptomes (the exception being subclass 253, with only 22 cells that are all from
the light phase) (Extended Data Figure 3, Supplementary Table 7). Out of all 5,200 clusters,
there are 271 clusters that do not contain dark-phase cells, while none contain dark-phase cells
only. Detailed gene expression analysis at class and subclass levels revealed widespread
expression differences of canonical circadian clock genes between the light and dark phases
(Extended Data Figure 12). Across many neuronal and non-neuronal classes and subclasses
throughout the brain, nearly all clock genes show consistently higher expression levels in the
dark phase than the light phase, except for Arntl which displays an opposite pattern.
Interestingly, the 283_Pineal Crx Glut subclass, which is found located in the dorsal part of the
third ventricle and on top of superior colliculus (SC) in the MERFISH data and likely represents
the pinealocytes that evolved from photoreceptor cells and secret melatonin®?3, has particularly
robust circadian gene expression fluctuations (Extended Data Figure 12b,c). Furthermore, in
the 82_SCH Gaba subclass, which is specific to the suprachiasmatic nucleus (SCH), the
circadian pacemaker of the brain, most clock genes (e.g., Perl, Per3, Dbp, Nrldl, Nr1d2) have
higher levels of expression in the light phase than the dark phase, suggesting that the pacemaker
cells are at a different phase of the circadian cycle of gene expression from the rest of the brain,
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consistent with previous findings*?* (Extended Data Figure 12b,c). Intriguingly, the vascular
297 _ABC NN subclass also displays a similar phase shift. These results suggest that our whole
mouse brain transcriptomic cell type atlas also captured circadian state-dependent gene
expression changes. While supervised analysis can reveal these changes, our cell type
classification is not significantly affected by the different circadian states.

DISCUSSION

In this study, we created a comprehensive, high-resolution transcriptomic cell type atlas for the
whole adult mouse brain based on the combination of two whole-brain-scale datasets: a SCRNA-
seq dataset of ~7 million cells and a MERFISH dataset of a similar scale (~4.3 million cells from
the AIBS MERFISH brain). We used ~4.1 million high-quality single-cell transcriptomes after
stringent QC to create a transcriptomic cell type taxonomy. We used the MERFISH data, which
were generated using marker genes derived from the whole-brain transcriptomic taxonomy, to
annotate the spatial location of each subclass and each cluster in the taxonomy. We then built a
hierarchically organized transcriptomic and spatial cell type atlas with five nested levels: 7
divisions, 32 classes, 306 subclasses, 1,045 supertypes and 5,200 clusters (Figure 1). The
neuronal cell type composition in each major brain structure were systematically analyzed
(Figure 2) and distinct features in different brain structures identified (Figure 6). We discovered
many sets of neuronal types with varying degrees of similarity with each other, including
transitional neuronal types across regions as well as highly distinct neuronal types. We also
systematically analyzed all divisions of non-neuronal cell types as well as immature neuronal
types present in the adult brain, and identified their unique spatial distribution and spatial
interaction patterns (Figure 4). Finally, we systematically characterized cell-type specific
neurotransmitters, neuropeptides, and transcription factors, and discovered unique characteristics
for each as discussed below. This large-scale study allowed us to delineate several principles
regarding cell type organization across the whole mouse brain. It provides a benchmark reference
cell type atlas as a resource for the community that will enable many more discoveries in the
future.

One of the most striking findings from our study is the high degree of correspondence between
transcriptomic identity and spatial specificity. Every subclass (and all supertypes and many
clusters within each) has a unique and specific spatial localization pattern within the brain.
Furthermore, the relative relatedness between transcriptomic types (as revealed in 2D and 3D
UMAPs) is strongly correlated with the spatial relationship between them. Transcriptomically
related cell types are often found in the same region, or in some cases in related regions that have
a common developmental origin. Transitioning cell types in the transcriptomic space are also
found crossing regional boundaries. We believe that the strong correspondence between
transcriptomic and spatial specificity and relatedness indicates the importance of anatomic
specialization of cell types and lends strong support to the robustness and validity of our
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transcriptomics-based cell type classification. Given that spatial organization of the brain is laid
out during development, we further hypothesize that developmental origins and relationships
may be inferred from the adult stage transcriptomic profiles of the cell types.

Another striking finding is the distinct features of cell type organization between the major brain
structures (Figure 6). The anterior and dorsal brain structures, including olfactory areas,
isocortex, hippocampal formation, dorsal striatum, thalamus, and cerebellum, contain cell classes
and types that are highly distinct from the other parts of the brain. Cell types in these structures
also tend to be more widely distributed, often shared between neighboring regions or subregions.
In contrast, cells from the ventral part of the brain, including striatum-like amygdala nuclei,
ventral pallidum, hypothalamus, midbrain, pons and medulla, form numerous small clusters that
are closely related to each other. And these cell types often have restricted spatial localization,
forming the small nuclei characteristic of these regions. This dichotomy between the roughly
dorsal and ventral parts of the brain may reflect the different evolutionary histories of these brain
structures.

There are several remarkable differences between neuronal and non-neuronal cell types. While
neuronal types constitute the vast majority of cell types in the brain and exhibit high regional
specificity, non-neuronal types are generally more widely distributed, except for astrocytes
which have multiple subclasses with regional specificity. However, even for those widely
distributed non-neuronal types, at the cluster level we observed a great degree of spatial
specificity, especially for astrocytes, ependymal cells, tanycytes and VLMCs, indicating specific
neuron-glia and glia-vasculature interactions (Figure 4a-h). We also identified several groups of
immature neuronal types and could infer their trajectories to mature neuronal types in olfactory
bulb and dentate gyrus based on their spatial localization and transitioning gene signatures
(Figure 4i-I).

As example case studies, we examined the discovered diversity in neurotransmitter and
neuropeptide expression in cell types across the brain. We found a diverse set of neuronal
clusters with glutamate-GABA dual transmitters from many brain regions (Figure 3a-d). We
identified all cell types expressing different modulatory neurotransmitters and found that they
often co-release glutamate and/or GABA. Intriguingly, the neuromodulatory cell types are
usually not completely segregated from other neuronal types, but often have closely related
glutamatergic and/or GABAergic clusters within the same subclass, showing a high degree of
heterogeneity in neurotransmitter content in these cell populations (Figure 3e-h). Our
assignment of neurotransmitter types based on the most specific transporter genes is
conservative; there may be even more diversity in neurotransmitter co-release patterns if
alternative transmitter release routes are considered’®"°#°, Similarly, there is a wide spectrum of
expression patterns among the different neuropeptide genes, some widely expressed in many cell
types while others highly specific to one or few cell types (Extended Data Figure 7).
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Furthermore, there are myriad co-expression combinations of two or more neuropeptide genes in
many neuronal clusters (Supplementary Table 7). These results support the extraordinary
diversity in intercellular communications in the brain.

We found that transcription factors are highly predictive in determining cell type classification.
Transcription factors are known to play major roles in patterning brain regions, defining neural
progenitor domains and specifying cell type identities during development. Here, we found that
in the adult mouse brain, transcription factors also are major determinants in defining cell types
across all regions of the brain. Out of the 8,108 marker genes we identified for the 5,200 cell
clusters, 499 are TF genes. In cross-validation tests, the 499 TF genes predicted cell subclass and
cluster identities nearly as well as all the marker genes together (Figure 5a-c). A hierarchical
tree derived from hierarchical clustering using the 499 TF genes alone better recapitulated the
existing knowledge about cell types and their spatial relationships at class and subclass levels
than using all the marker genes, and thus we used the TF-derived tree to represent the cell type
taxonomy (Figure 1a). We identified TF genes and co-expression modules specific to top
hierarchical levels and most branches of the cell type taxonomy (Figure 5e, Extended Data
Figure 10, 11). We also found several different modes of coordination among TFs. The first
mode is the coordinated expression of different TFs (often pairs of TFs) within the same TF gene
family in specific cell types. The second is the combination of TFs at different hierarchical
branch levels to collectively define the identity of the leaf-node subclasses. The third represents
the intersection between different sets of TFs that define molecular identity or spatial specificity,
respectively, within a cell type. These findings reveal how transcription factors form the
combinatorial code to lay out the highly complex cell type landscape.

We must also emphasize the great computational challenges in analyzing these large and highly
complex datasets and the two main caveats for the results presented here. First, due to the
difficulty in dissociating and isolating intact cells from the adult brain tissue, especially in highly
myelinated areas, our SCRNA-seq dataset contains many kinds of low-quality cells, including
damaged cells, debris, doublets or mixed debris of various cell type combinations. These low-
quality transcriptomes could be mistaken for real cell types, part of a cell type continuum, or
transitional cell types in clustering results. They could also lead to wrong mapping of MERFISH
cells as we discovered in our analysis. To generate a high-quality transcriptomic cell type atlas
with precise spatial annotation, we developed a set of QC metrics that are more stringent than
those widely used in the field and therefore we failed a high proportion of cells from our sSCRNA-
seq dataset (Extended Data Figure 1). During this process, it is likely that some cell types were
more selectively depleted than others, especially large neurons that are more vulnerable to
damage during tissue dissociation, e.g., Purkinje cells and large motor neurons in the midbrain
and hindbrain. Thus, cell types in the midbrain and hindbrain may not be fully represented or
fully resolved in our whole mouse brain transcriptomic cell type atlas. We observed that many of
the QC-failed transcriptomes resemble single-nucleus transcriptomes; they might be still useful
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for specific analysis purposes and could be rescued from our dataset to recover certain cell types
in the future. These observations highlight the importance of collecting very large multimodal
datasets in constructing cell type atlases that are complete, accurate, and permanent.

Second, although we only used the selected high-quality single-cell transcriptomes to construct
the cell atlas, the relationships between the large number of cell types across the entire brain are
still highly complex and impossible to be fully captured by a one-dimensional hierarchical tree or
two-dimensional UMAPs. The transcriptomic profile of each cell is multi-dimensional,
containing not only information about the cell type identity, but also information about many
other aspects of the cellular properties such as spatial location, connectivity, function, or a
particular cell state. We conducted extensive iterative clustering to resolve all dimensions of
variation at the cluster level. Thus, not every cluster may represent a true cell type; our
categorization scheme may not be perfectly reflecting the brain-wide cell type organization either
and will need to be revised in the future with better computational methods and/or more
experimental evidence (especially developmental data). Finally, due to the sheer scale of the
atlas, we have not extensively searched and utilized the vast amount of existing data and
knowledge about cell types in many parts of the brain to help better annotate our cell type atlas.
Moving forward, it will be critical to engage the neuroscience community to collectively
annotate, refine and enhance this whole mouse brain cell type atlas, and an online platform to
facilitate this will be needed.

In conclusion, the whole-brain transcriptomic and spatial cell type atlas establishes a foundation
for deep and integrative investigations of cell type and circuit function, development, and
evolution of the brain, akin to the reference genomes for studying gene function and genomic
evolution. The atlas provides baseline gene expression patterns that allow investigation of the
dynamic changes in gene expression and cellular function in different physiological and diseased
conditions. It enables creation of cell type-targeting tools for labeling and manipulating specific
cell types to probe and modify their functions in vivo. The atlas provides a foundational
framework for organizing and integrating the vast knowledge about the brain structure and
function, facilitating the extraction of new principles from the extraordinarily complex cell type
and circuit landscape. It provides a starting point for generating similarly comprehensive and
detailed cell type atlases for other species as well as across developmental times, enabling cross-
species comparative studies and gaining mechanistic insights on the genesis of cell types and
circuits in the mammalian brain. Understanding the conservation and divergence of cell types
between human and model organisms will have profound implications for the study of human
brain function and diseases.
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METHODS

Mouse breeding and husbandry

All procedures were carried out in accordance with Institutional Animal Care and Use
Committee protocols at the Allen Institute for Brain Science. Mice were provided food and water
ad libitum and were maintained on a regular 14:10 hour day/night cycle at no more than five
adult animals of the same sex per cage. Mice were maintained on the C57BL/6J background. We
excluded any mice with anophthalmia or microphthalmia.

We used 95 mice (41 female, 54 male) to collect 2,492,084 cells for 10xv2 and 222 mice (112
female, 110 male) to collect 4,466,283 cells for 10xv3. Animals were euthanized at P53-59 (n =
141), P50-52 (n = 3), or P60-71 (n = 173). No statistical methods were used to predetermine
sample size. All donor animals used in this study are listed in Supplementary Table 2.

Transgenic driver lines were used for fluorescence-positive cell isolation by FACS to enrich for
neurons. Most cells were isolated from the pan-neuronal Snap25-IRES2-Cre line crossed to the
Ail4-tdTomato reporter?>126 (279 out of 317 donors) (Supplementary Table 2). A small
number of Gad2-IRES-Cre/wt;Ail4/wt (6 donors) and Slc32al-IRES-Cre/wt;Ail4/wt mice (4
donors) were used for fluorescence-positive cell isolation to enrich for the sampling of
GABAergic neurons in HIP, OLF and CB. For unbiased sampling without FACS, we used either
Snap25-IRES2-Cre/wt;Aild/wt or Aild/wt mice.

The number of mice contributing to each cluster varies between 2 and 266, with an average of 19
and median of 14. There are 19 clusters that have fewer than 4 donor animals each. Thus,
individual mouse variability should not affect cell type identities (Extended Data Figure 3).

For cell collection during the dark phase of the circadian cycle, mice were randomly assigned to
circadian time groups at time of weaning and housed on the reversed 12:12 hour light/dark cycle.
Brain dissections for all groups took place in the morning. From 267 donors, 5,836,825 cells
were collected during the light phase of the light-dark cycle. For 50 donors, 1,121,542 cells
across the whole brain were collected during the dark phase of the light-dark cycle
(Supplementary Table 2).

Single-cell RNA-sequencing

Single-cell isolation

We used the Allen Mouse Brain Common Coordinate Framework version 3 (CCFv3; RRID:
SCR_002978) ontology®® (http://atlas.brain-map.org/, Supplementary Table 1) to define brain
regions for profiling and boundaries for dissection. We covered all regions of the brain using
sampling at top-ontology level with judicious joining of neighboring regions (Supplementary
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Table 3, Extended Data Figure 1d-e). These choices were guided by the fact that
microdissections of small regions were difficult. Therefore, joint dissection of neighboring
regions was sometimes necessary to obtain sufficient numbers of cells for profiling.

Single cells were isolated by adapting previously described procedures?®1%’. The brain was
dissected, submerged in ACSF, embedded in 2% agarose, and sliced into 350-um coronal
sections on a compresstome (Precisionary Instruments). Block-face images were captured during
slicing. Regions of interest (ROIs) were then microdissected from the slices and dissociated into
single cells as previously described?®. Fluorescent images of each slice before and after ROI
dissection were taken at the dissection microscope. These images were used to document the
precise location of the ROIs using annotated coronal plates of CCFv3 as reference.

Dissected tissue pieces were digested with 30 U/ml papain (Worthington PAP2) in ACSF for 30
minutes at 30°C. Due to the short incubation period in a dry oven, we set the oven temperature to
35°C to compensate for the indirect heat exchange, with a target solution temperature of 30°C.
Enzymatic digestion was quenched by exchanging the papain solution three times with
quenching buffer (ACSF with 1% FBS and 0.2% BSA). Samples were incubated on ice for 5
minutes before trituration. The tissue pieces in the quenching buffer were triturated through a
fire-polished pipette with 600-um diameter opening approximately 20 times. The tissue pieces
were allowed to settle and the supernatant, which now contained suspended single cells, was
transferred to a new tube. Fresh quenching buffer was added to the settled tissue pieces, and
trituration and supernatant transfer were repeated using 300-pum and 150-pm fire polished
pipettes. The single cell suspension was passed through a 70-pum filter into a 15-ml conical tube
with 500 pl of high BSA buffer (ACSF with 1% FBS and 1% BSA) at the bottom to help
cushion the cells during centrifugation at 100 x g in a swinging bucket centrifuge for 10 minutes.
The supernatant was discarded, and the cell pellet was resuspended in the quenching buffer. We
collected 1,508,284 cells without performing FACS. The concentration of the resuspended cells
was quantified, and cells were immediately loaded onto the 10x Genomics Chromium controller.

To enrich for neurons or live cells, cells were collected by fluorescence-activated cell sorting
(FACS, BD Aria 1) using a 130-um nozzle. Cells were prepared for sorting by passing the
suspension through a 70-um filter and adding Hoechst or DAPI (to a final concentration of 2
ng/ml). Sorting strategy was as previously described?®, with most cells collected using the
tdTomato-positive label. 30,000 cells were sorted within 10 minutes into a tube containing 500
pl of quenching buffer. We found that sorting more cells into one tube diluted the ACSF in the
collection buffer, causing cell death. We also observed decreased cell viability for longer sorts.
Each aliquot of sorted 30,000 cells was gently layered on top of 200 ul of high BSA buffer and
immediately centrifuged at 230 x g for 10 minutes in a centrifuge with a swinging bucket rotor
(the high BSA buffer at the bottom of the tube slows down the cells as they reach the bottom,
minimizing cell death). No pellet could be seen with this small number of cells, so we removed
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the supernatant and left behind 35 pul of buffer, in which we resuspended the cells. Immediate
centrifugation and resuspension allowed the cells to be temporarily stored in a high BSA buffer
with minimal ACSF dilution. The resuspended cells were stored at 4°C until all samples were
collected, usually within 30 minutes. Samples from the same ROI were pooled, cell
concentration quantified, and immediately loaded onto the 10x Genomics Chromium controller.

cDNA amplification and library construction

For 10x v2 processing, we used Chromium Single Cell 3° Reagent Kit v2 (120237, 10x
Genomics). We followed the manufacturer’s instructions for cell capture, barcoding, reverse
transcription, cDNA amplification, and library construction®?®, We targeted sequencing depth of
60,000 reads per cell; the actual average achieved was 54,379 + 34,845 (mean * SD) reads per
cell across 299 libraries.

For 10x v3 processing, we used the Chromium Single Cell 3’ Reagent Kit v3 (1000075, 10x
Genomics). We followed the manufacturer’s instructions for cell capture, barcoding, reverse
transcription, cDNA amplification and library construction'?®. We targeted a sequencing depth of
120,000 reads per cell; the actual average achieved was 83,190 * 85,142 reads per cell across
482 libraries.

Sequencing data processing and QC

Processing of 10x Genomics libraries was performed as described previously?. Briefly, libraries
were sequenced on the Illumina NovaSeq6000, and sequencing reads were aligned to the mouse
reference transcriptome (M21, GRCm38.p6) using the 10x Genomics CellRanger pipeline
(version 6.1.1) with default parameters.

To remove low quality cells, we developed a stringent QC process. Cells were first classified
into broad cell classes after mapping to an existing, preliminary version of taxonomy, and cell
quality was assessed based on gene detection, gc score, and doublet score. The qc score was
calculated by summing the log transformed expression of a set of genes whose expression level
is decreased significantly in poor quality cells. These are housekeeping genes that are strongly
expressed in nearly all cells with a very tight co-expression pattern that is anti-correlated with the
nucleus localized gene Malatl (Supplementary Table 4). Out of the 62 such genes chosen, 30
are annotated as mitochondrial inner membrane category based on GO ontology cellular
component, although they are not located on the mitochondrial chromosome. Some evidence
suggests the mRNAs of some of these genes or their homologs are translocated to the
mitochondrial surface'3%!3!, We used this qc score to quantify the integrity of cytoplasmic
mMRNA content, which tended to show bimodal distribution. Cells at the low end were very
similar to single nuclei, which we removed for downstream analysis. Doublets were identified
using a modified version of the DoubletFinder algorithm®? and removed when doublet score >
0.3. Using thresholds that were tailored to different cell classes, we filtered out 43% and 29% of
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cells and kept 2,546,319 cells and 1,769,304 cells for 10xv3 and 10xv2 data, respectively
(Extended Data Figure 1). Threshold parameters and number of cells filtered are summarized in
Supplementary Table 4.

Clustering single cell RNA-seq data

Clustering for both 10xv2 and 10xv3 datasets was performed independently using the in-house
developed R package scrattch.bigcat (available via github
https://github.com/Alleninstitute/scrattch.bigcat ), which is a scaled-up version of R package
scrattch.hicat??® to deal with the increased size of datasets. Scrattch.bigcat adopted the parquet
file format for storing sparse matrix, which allows for manipulation of matrices that are too large
to fit in memory through memory mapping to files on disk. The whole gene count matrices were
chunked to smaller parquet files with bin size of 50,000 for cells, and 500 for genes, which could
be loaded efficiently and concurrently using the arrow package
(https://github.com/apache/arrow/, https://arrow.apache.org/docs/r/).

We provide utility functions to convert and concatenate sparse matrices in R to this format, and
functions for conversion between this format and other commonly used file formats such as h5,
h5ad and Zarr. We also provide a function that loads any sub-matrix into the memory given the
cell IDs and gene IDs. The choice of parquet format is based on its great performance in R,
which allows continual usage of our legacy codebase. The major functions of scrattch.hicat
package were rewritten and made available in scrattch.bigcat. We used the automatic iterative
clustering method, iter_clust_big, which performed clustering in top down manner into cell types
of increasingly finer resolution without any human intervention, while ensuring that all pairs of
clusters, even at the finest level, were separable by stringent differential gene expression criteria
as follows: for 10v2, q1.th = 0.4, q.diff.th = 0.7, de.score.th = 150, min.cells = 10; for 10xv3,
gl.th = 0.5, q.diff.th = 0.7, de.score.th = 150, min.cells = 4. These criteria translated to at least 8
binary DEGs between any pair of clusters (each DEG’s contribution to de.score was capped at
20, so at least 8 genes were needed to exceed de.score.th of 150). Binary DEGs were defined as
genes expressed in at least 40% cells in the foreground cluster in 10xv2, and 50% in 10xv3
(91.th parameter), log2FC > 1, adj Pval < 0.01, and difference between the fraction of cells
expressing the gene in foreground and background divided by the foreground fraction was
greater than 0.7 (qg.diff.th parameter).

To enhance scalability, a randomly subsampled set of cells to be clustered were loaded into
memory to compute high variance genes and perform PCA, then projected to all the cells to
obtain their reduced dimensions. Then Jaccard-Leiden clustering proceeded as before?®.

Differential gene expression analysis
We performed differential gene expression both at the clustering step for each iteration, and after
clustering between all pairs of clusters. In our original scrattch.hicat package, we applied limma
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package!® to perform this analysis. Given the significant increase of data size and complexities
of the taxonomy, we re-implemented this method that provides essentially identical results, but
drastically improves performance and scalability. The method first scanned the whole log
transformed cell-by-gene matrix once to compute, for each cluster and each gene, the average
expression, the fraction of cells expressing the gene, and the sum of square of gene expression of
all the cells within the cluster. These cluster level summary statistics were then used in the linear
model equivalent to the one used in limma to compute the pvalue, adjusted pvalue, log fold
change, and the contrast between foreground and background based on the fraction of cells
expressing the gene. This process was massively parallelized. Clusters were grouped into bins,
and the DEG analysis results were stored on disk in chunked parquet files, split based on which
bin the foreground and background clusters belonged to. In this way, we were able to compute
DEGs between ~13.5 million pairs of clusters within a day on a single Linux server. Using the
arrow package, we were able to query DEGs between any pairs of clusters very efficiently.

Excluding noise clusters

Before proceeding with integration between 10xv2 and 10xv3 datasets, we first needed to
remove noise clusters. The presence of such clusters can confuse the integration algorithm and
reduce the cell type resolution. There are two main categories of noise clusters: clusters with
significantly lower gene detection due to extensive drop out, and clusters due to doublets or
contamination.

We first identified doublet clusters based on the co-expression of any pair of broad class marker
genes using find_doublet_by marker function in scrattch.bigcat package. To identify other
doublet clusters, we searched for triplets of clusters A, B and C, wherein A was the putative
doublet cluster, such that up-regulated genes of A relative to B largely overlapped with up-
regulated genes in C relative to B, and up-regulated genes in A relative to C largely overlapped
with up-regulated genes of B relative to C. This criterion ensured that A included the most
distinguished signature of B and C. To rule out the possibility that A was a transitional type
between B and C, we required that B and C could not be closely related types based on the
correlation of their average gene expression of marker genes. After we systematically produced
the list of all the candidate triplet clusters, the final determination was an iterative process that
involved setting different thresholds and manual inspection of borderline cases.

After removing all doublet clusters, we then identified clusters with lower gene detection. To do
that, we identified pairs of clusters such that one cluster with at least 50% fewer UMIs or >100
lower QC score, smaller size, and no more than one up-regulated gene relative to another cluster
was identified as the low-quality cluster. In these cases, one cluster was a degraded version of
another cluster and therefore removed.
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We identified 933 noise clusters with 153,598 cells in 10xv3, and 201 noise clusters with 38,073
cells in 10xv2. 10xv3 noise clusters were removed from integration analysis but 10xv2 noise
clusters were included accidentally. Fortunately, most of the cells from 10xv2 noise clusters
were excluded in further QC steps after integration.

Joint clustering 10xv2 and 10xv3 datasets

To provide one consensus cell type taxonomy based on both 10xv2 and 10xv3 datasets of ~2M
cells each, we scaled up the integrative clustering method?® and made it available via
scrattch.bigcat package which extends the clustering pipeline described above to integrate
datasets collected by different transcriptomic platforms. Analysis was performed as described
before?® with minor modifications. To build the common graph that incorporates samples from
all the datasets, both 10xv2 and 10xv3 were used as the reference datasets. The key steps in the
pipeline are: 1) select anchor cells for each reference dataset, 2) select high variance genes in
each reference dataset, prioritizing shared high variance genes, 3) compute K nearest neighbors
(KNN) both within modality and cross modality, 4) compute Jaccard similarity based on shared
neighbors, 5) perform Leiden clustering based on Jaccard similarity, 6) merge clusters based on
total number and significance of conserved DEGs across modality between similar cell types, 7)
repeat steps 1-6 for cells within a cluster to gain finer-resolution clusters until no clusters can be
found, 8) concatenate all the clusters from all the iterative clustering steps and perform final
merging as in step 6. For step 6, if one cluster had fewer than the minimal number of cells in a
dataset (4 cells for 10xv3 and 10 cells for 10xv2), then this dataset was not used for DE gene
computation for all pairs involving the given cluster. This step allows detection of unique
clusters only present in some data types.

Compared to the previous version, the key improvement is step 3 for computing KNN. We used
BiocNeighbor package (https://github.com/LTLA/BiocNeighbors) for computing KNN using
Euclidean distance within modality and Cosine distance across modality using the Annoy
algorithm (https://github.com/spotify/annoy). The Annoy index was built based on anchor cells
for the reference dataset, and KNNs were computed in parallel for all the query cells. Due to
significantly increased dataset sizes, the Jaccard similarity graph can be extremely large,
impossible to fit in memory. The method down-samples the datasets based on a user specified
parameter, and if the cluster membership of each modality is provided as input for integration
algorithm, we down-sample cells by within-modality clusters, ensuring preservation of rare cell
types. All the anchor cells were added to the down-sampled datasets. The Jaccard-Leiden
clustering was performed on the down-sampled datasets, and the cluster membership of other
cells were imputed based on KNNs computed in step 3.

The integration algorithm generated 5,283 clusters, which were used to build cell type taxonomy.
During this process, additional noise clusters were identified by manual inspection, which
exhibited abnormal QC statistics, abnormal expression of canonical markers, or absence in
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MERFISH dataset. Most of these clusters were very small, likely doublets of damaged cells.
After removing these additional noise clusters, the final taxonomy had 5,200 clusters with
4,058,049 cells.

Marker gene selection

For each pair of clusters, we computed conserved DEGs (at least significant in one dataset, and
at least 2-fold change in the same direction in the other datasets). We selected the top 15 DEGs
in each direction and pooled such genes from all pairwise comparisons to generate a total of
8,108 gene markers (Supplementary Table 5).

Assessing concordance of joint clustering between 10xv2 and 10xv3

We first compared the joint clustering result with the independent clustering result from each
dataset. We then calculated the cluster means of marker genes for each dataset. For each marker
gene, we computed the Pearson correlation between its average expression for each cluster
across two different datasets to quantify the consistency of its expression at the cluster level
between datasets (Extended Data Figure 5d). We performed a similar analysis between 10xv3
and MERFISH datasets.

Imputation

To facilitate direct comparisons, we projected gene expression of the 10xv2 dataset to the 10xv3
dataset using the impute_knn_global function in the scrattch.bigcat package?®. To achieve this,
we leveraged the KNN matrices computed iteratively at each level of the cell type hierarchy.
During each iteration of the joint clustering, we used the average gene expression of the K
nearest neighbors among the 10xv3 anchor cells as the imputed expression for each 10xv2 cell.
At the top-level clustering, we imputed the expression for all genes. For each following iteration,
we only imputed the expression of the DEGs computed for the cells involved in the given
iteration. We used this iterative approach for imputation because the nearest neighbors, based on
the genes chosen at the top level, may not reflect the distinction between the finer types, and the
imputed values for the DEGs that define the finer types consequently are not accurate based on
these nearest neighbors. Therefore, we deferred imputation of the DEGs between the finer types
to the iteration when these types were defined. The key improvement of this function is
parallelization of KNN computation and storing the output imputed matrix as file backed matrix
(FBM) for scalability.

UMAP projection

We performed PCA based on the imputed gene expression matrix of 8,108 marker genes using
the 10xv3 reference. We down-sampled up to 100 cells per cluster, and further down-sampled up
to 250K cells if the total exceeded this number, so that PCA could proceed without any memory
issues. Again, the PCs based on sampled cells were projected to the whole datasets. We selected
the top 100 PCs, then removing one PC with more than 0.7 correlation with the technical bias
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vector, defined as log2(gene count) for each cell. We used the remaining PCs as input to create
2D and 3D UMAPs'®* using parameters nn.neighbors = 25 and md = 0.4. To prevent some of
the big clusters taking up too much space, we down sampled up to 1000 cells per cluster to build
the UMAP and impute the UMAP coordinates of the other cells based on KNN neighbors among
the sampled cells in the PCA space.

Building cell type hierarchy

To make the cell type complexity tractable at each level, we organized the 5,200 clusters into a
hierarchy with 5 levels: division, class, subclass, supertype and cluster. After clusters were
computed as descripted in Joint clustering section, we first defined subclasses by clustering the
clusters. This was performed by Jaccard-Leiden clustering using the average expression of 499
TF marker genes of all the cells in each cluster, using 5 K nearest neighbors, and varying the
resolution index of Leiden algorithm at 0.1, 0.2, 1, 5, and 8. We tried clustering using either all
8,108 marker genes or 499 TF marker genes only, and found the result based on TF marker list
recapitulate existing knowledge of cell types including spatial distribution and lineage
relationships better. The Leiden algorithm generated 32 groups at resolution index 0.2, which
generated the initial version of “classes”, and 195 groups at resolution index 8, which generated
the initial version of “subclasses”.

The initial fully automatically generated versions of classes and subclasses were visualized
together with all the other metadata on UMAPs and on MERFISH sections using the single-cell
data visualization tool cirrocumulus (https://cirrocumulus.readthedocs.io/en/latest/) for manual
examination. We finetuned the borderline cases, and further split or merged some putative
subclasses to reach the final definition of subclasses. We applied a similar process to define
classes, and to achieve strict hierarchy, assigned all the clusters in one subclass to the same class.
The classes were then grouped into divisions, informed by prior knowledge and the subclass
taxonomy tree (see below). Finally, we applied the same Jaccard-Leiden algorithm to all the
clusters within each subclass separately to define supertypes, using the union of the top 20 DEGs
between all pairs of clusters within the subclass as features. Again, they were adjusted based on
manual inspection of UMAPs and MERFISH sections after visualization on cirrocumulus to
increase the consistency of supertype definitions between subclasses.

Building subclass taxonomy tree

We built the subclass taxonomy tree using the average expression of 499 TF marker genes at
subclass level, using the build_dend function in the scrattch.bigcat package as described
previously?. Branches with length < 0.01 were removed from the tree, and the children of any
removed node were re-assigned as children of the parent of the removed node. The tree captured
relationships between closely related subclasses, but the hierarchy is not fully consistent with the
“class” definition, as hierarchical clustering is not capable of capturing the continuous variations
in multi-dimensional space. We used the cell type hierarchy, the taxonomy tree, the 2D and 3D
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UMAPs and the constellation plot all together to understand the overall cell type landscape and
relationships between cell types.

Constellation plot

The global relatedness between cell types was visualized using a constellation plot (Extended
Data Figure 4). To generate the constellation plot, each transcriptomic subclass was represented
by a node (circle), whose surface area reflected the number of cells within the subclass in log
scale. The position of nodes was based on the centroid positions of the corresponding subclasses
in UMAP coordinates. The relationships between nodes were indicated by edges that were
calculated as follows. For each cell, 15 nearest neighbors in reduced dimension space were
determined and summarized by subclass. For each subclass, we then calculated the fraction of
nearest neighbors that were assigned to other subclasses. The edges connected two nodes in
which at least one of the nodes had > 5% of nearest neighbors in the connecting node. The width
of the edge at the node reflected the fraction of nearest neighbors that were assigned to the
connecting node and was scaled to node size. For all nodes in the plot, we then determined the
maximum fraction of “outside” neighbors and set this as edge width = 100% of node width. The
function for creating these plots, plot_constellation, is included in scrattch.bigcat.

Defining neighborhoods

We identified highly prevalent transitions between cell types at almost all levels. To study these
transitions not captured by the strict hierarchical 5-level taxonomy, we defined multiple
overlapping neighborhoods. For example, the transition cell types between CNU and Pallium
Glut cell types were included in both Pallium Glut neighborhood and PAL-SAMY-HY
neighborhood.

Assigning subclass, supertype and cluster names

We first annotated each subclass with its most representative anatomical region(s) and named the
subclass using the combination of its representative region(s), major neurotransmitter, and in
some cases one or two marker genes. We then ordered the subclasses based on the taxonomy tree
and assigned subclass IDs accordingly. Supertype names within each subclass were defined by
combining the subclass name and the grouping numbers of supertypes within the subclass.
Supertype IDs were assigned sequentially based on the taxonomy tree order of subclasses and the
group order of supertypes within each subclass. Cluster IDs were also assigned sequentially
based on the ordering of subclasses and supertypes. And the final cluster names were assigned by
combining each cluster’s ID with the name of the supertype the cluster belongs to. Based on the
Allen Institute proposal for cell type nomenclature®®, we also assigned accession numbers to cell
types, as included in Supplementary Table 7.

Assigning cell type identities within a modality (for cross validation) and across modalities


https://doi.org/10.1101/2023.03.06.531121
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.06.531121; this version posted March 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

We performed 5-fold cross validation using different sets of marker genes: all 8,108 marker
genes (Marker gene selection section), 499 TF marker genes, and 20 sets of 499 randomly
sampled marker genes from the 8,108-marker list. We defined the cluster centroid in each
modality as the average gene expression for all the training cells within the cluster and built the
Annoy KNN indices based on user specified distance metrics (cosine by default) using the
chosen marker list. For the testing cells in each modality, we assigned their cell type identities by
mapping them to the nearest cluster centroid using the corresponding Annoy index. This process
is implemented in map_cells_knn_big function from scrattch.bigcat package, and mapping can
be performed very efficiently by massive parallelization. We also used this approach for
assigning cell type identities for MERFISH or any external datasets to the 10xv3 dataset as
reference, using different gene lists based on the contexts. When mapping confidence was
needed, we sampled 80% genes from the marker list randomly, and performed mapping 100
times. The fraction of times a cell is assigned to a given cell type is defined as the mapping
probability.

Defining transcription factor (TF) co-expression gene modules

To identify TF gene modules that are involved in regulating major cell types, we performed
WGCNA analysis**® on 499 TF marker genes (Supplementary Table 8) based on their average
expression at the subclass level with power = 6 and TOMType = “signed”, and detectCutHeight
=0.998. Genes in “grey” module were removed, which had poor correlation with all the other
genes, and genes that were generally enriched in neurons were excluded. Genes in some modules
clearly had distinct patterns and were thus further split, and they were re-ordered for better
visualization.

Defining transcription factor (TF) code along the taxonomy tree

For each node along the taxonomy tree, we computed the most discriminative TFs distinguishing
all the subclasses under this node from all the subclasses under any sibling nodes, and other
subclasses that also express the same combo of markers along the path from the root. If all the
TF markers along the path from the root together were not specific to the given node, additional
TF markers were selected to provide more specificity. We also required all selected markers at
any nodes to be expressed in at least 70% of clusters within the corresponding subtree at logCPM
> 2. Given such constraint, it is possible that a TF was chosen for more than one sibling nodes, in
which case, we tried to select more TFs for further discrimination.

MERFISH

Brain dissection and freezing

Standard procedures were developed to isolate, cut, fix and pre-treat tissue to preserve macro and
cellular morphology and to produce the best signal to noise ratio for MERFISH. Mice were
transferred from the vivarium to the procedure room with efforts to minimize stress during
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transfer. If mouse body weight fell outside of the normal range (18.8 to 26.4 g), the brain was not
used in the MERFISH process. Mice were anesthetized with 0.5% isoflurane. A grid-lined
freezing chamber was designed to allow for standardized placement of the brain within the block
in order to minimize variation in sectioning plane. Chilled OCT was placed in the chamber, and a
thin layer of OCT was frozen along the bottom by brief placement of the chamber in a dry ice
ethanol bath. The brain was rapidly dissected and placed into the OCT. The orientation of the
brain was adjusted using a dissecting scope, and the freezing chamber containing OCT and brain
were frozen in a dry ice/ethanol bath. Brains were stored at -80°C.

Cryosectioning

The fresh frozen brain was sectioned at 10 um on Leica 3050 S cryostats. The OCT block
containing a fresh frozen brain was trimmed in the cryostat until reaching the desired starting
section. Sections were collected every 200 um to evenly cover the brain from anterior to
posterior and each section was mounted onto a functionalized 20-mm coverslip treated with
yellow green (YG) fluorescent microspheres (VIZGEN, #2040003)

Fixation and dehydration

After air drying on the coverslips for 10-15 minutes, the tissue sections were loaded into a Leica
Autostainer XL (Leica ST5010). They were washed in 1x PBS for 1 minute, fixed in 4% PFA for
15 minutes, washed in 1x PBS for 5 minutes 3 times, washed in 70% ethanol and then stored in
70% ethanol at 4°C. They were stored for at least one day and no more than 6 weeks before
proceeding.

Hybridization

For staining the tissue with MERFISH probes a modified version of instructions provided by the
manufacturer was used. All solutions were prepared according to the instruction provided by the
manufacturer. For hybridization samples were removed from the 70% ethanol and washed in a
petri dish containing VIZGEN Sample Prep Buffer (VIZGEN, #20300001). Sample Prep Buffer
was aspirated, and the samples were equilibrated with 5mL of VIZGEN Formamide Wash Buffer
(VIZGEN, #20300002) in a humidified incubator at 37°C for 30 minutes. Formamide Wash
Buffer was removed via aspiration and a 50-ul droplet of MERSCOPE Gene Panel Mix was
added onto the center of the tissue section. Next, the tissue section was covered with parafilm
and stored in a humidified 37°C cell culture incubator for 36-48 hours.

Gel embedding

Parafilm covering the sections was removed and 5ml of the VIZGEN Formamide Wash Buffer
was immediately added. Sections were incubated at 47°C for 30 min. Formamide Wash Buffer
was aspirated and the previous step repeated. Sections were washed with VIZGEN Sample Prep
Wash Buffer after the second formamide wash for 2 min. 110 pl of VIZGEN gel embedding
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solution (VIZGEN #20300004) with APS and TEMED was added onto the center of a Gel Slick-
coated microscope slide and any excess embedding solution was gently removed.

To allow for the gel to fully polymerize the sections were incubated at room temperature for 1.5
hours. To clear the tissue the section was incubated in 5 ml of VIZGEN Clearing Solution
(VIZGEN #20300003) with Proteinase K (NEB P8107S) according to the Manufacturer’s
instructions for at least 24 hours or until it was clear in a humidified incubation oven at 37°C.

Imaging

Following clearing, sections were washed twice for 5 min in Sample Prep Wash Buffer
(VIZGEN, #20300001). VIZGEN DAPI and PolyT Stain (VIZGEN, 20300021) was applied to
each section for 15 min followed by a 10 min wash in Formamide Wash Buffer. Formamide
Wash Buffer was removed and replaced with Sample Prep Wash Buffer during MERSCOPE set
up. 100 pl of RNAse Inhibitor (New England BioLabs M0314L) was added to 250 pl of Imaging
Buffer Activator (VIZGEN, #203000015) and this mixture was added via the cartridge activation
port to a pre-thawed and mixed MERSCOPE Imaging cartridge (VIZGEN, #1040004). 15 ml
mineral oil (Millipore-Sigma m5904-6X500ML) was added to the activation port and the
MERSCOPE fluidics system was primed according to VIZGEN instructions. The flow chamber
was assembled with the hybridized and cleared section coverslip according to VIZGEN
specifications and the imaging session was initiated after collection of a 10X mosaic DAPI
image and selection of the imaging area. For specimens that passed the minimum count
threshold, imaging was initiated, and processing completed according to VIZGEN proprietary
protocol.

Data analysis

Cell segmentation was performed as described previously*®’. Briefly, cells were segmented
based on DAPI and PolyT staining using Cellpose!3. Segmentation was performed on a median
z-plane (4" out of 7) and cell borders were propagated to z-planes above and below. The
resulting cell-by-gene table was filtered to keep cells with a volume > 100 um? and < 3,000 pm?,
that have at least 15 genes detected and contain a minimum of 40 but no more than 3,000 mMRNA
molecules (red dashed lines in Extended Data Figure 2d-e) and remove low quality cells and
doublets that are outside of these ranges. Overall counts of genes were normalized by cell
volume and log?2 transformed. To assign cluster identity to each cell in the MERFISH dataset, we
mapped the MERFISH cells to the sScRNA-seq reference taxonomy. For this, the 10xv3 scRNA-
seq data was subsetted to only genes common to both datasets. Our mapping method (as
described in Assigning cell type identities section) finds the nearest cluster centroid in the
SscRNA-seq reference dataset for a query data point with the correlation of shared genes as
distance metric. The cluster label of the nearest neighbor was assigned as mapped label.
Bootstrapping was conducted with 80% subsampling of marker genes to make label assignment
robust.
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CCF registration

To facilitate alignment of MERFISH sections to the CCF, we assigned each cell from the
SscRNA-seq dataset to one of these major regions: CB, CTXsp, HB, HPF, HY, isocortex, LSX,
MB, OLF, PAL, sAMY, STRd, STRv, TH and HB. This delineation was driven by the level of
region-specific dissection for the SCRNA-seq experiments as well as the cell type specificity of
regions. Because of the more gradient transition of cell type composition between cortical
regions, the specificity of cortical plate regions is limited to isocortex, OLF and HPF despite
more granular dissection regions. Each cluster in the SCRNA-seq dataset was assigned to the
region the majority of cells were derived from. We identified anchor clusters we used for region
annotation of the MERFISH data. These clusters were defined as a) having more that 30% of all
cells in one region and b) more than 20 cells in a MERFISH section. In addition to that we used
ependymal and choroid plexus cells to label the ventricles and identified specific clusters of
oligodendrocytes that were enriched in white matter tracts. To account for clusters that were
found at low frequency in regions outside its main region we calculated for each cell its 50
nearest neighbors in physical space and reassigned each cell to the region annotation dominating
its neighborhood. Next, we used that same approach to assign each cell mapped to a non-anchor
cluster to the region annotation dominating its immediate surrounding. The resultant label maps
were used as input to our registration tool to find for each section its approximate location along
the anterior to posterior axis of the brain as well as any offsets in pitch and yaw introduced
during sectioning.

Registration was performed at 10-um in-plane resolution. For each section, an anatomical
reference image was created by aggregating the number of detected spots within a 10x10 um
grid for each gene probe. A single image was created across all probes by taking the maximum
count for each grid unit. The midline was manually determined by annotating the most dorsal
and most ventral point. These points were then used to compute a rigid transform to rotate the
section upright and center in the middle. This set of rectified images were stacked in sequencial
order to create an initial configuration for registration.

Alignment to the Allen CCFv3 was performed by matching the above-mentioned scRNA-seq
derived region labels to their corresponding anatomical parcellation of the CCF. A label map was
generated for each region by aggregating the cells assigned to that region within a 10x10 pum
grid, transformed to the initial configuration using the computed rigid transforms. Using the
corresponding anatomical labels, the ANTS registration framework was used to establish a 2.5D
deformable spatial mapping between the MERFISH data and the CCF via three major steps: 1) A
3D global affine (12 dof) mapping was performed to align the CCF into the MERFISH space.
This generated resampled sections from the CCF that provided section-wise 2D target space for
each of the MERFISH sections. Since the CCF is a continuous label set with isotropic voxels,
this avoids interpolation artifacts that can result if resampling is performed on the MERFISH
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data instead, which has large section gaps, and can contain missing sections. 2) After
establishing a resampled CCF section for each MERFISH section, 2D affine registrations were
performed to align each MERFISH section to match the global anatomy of the CCF brain. This
addressed misalignments from the initial manual stacking of the MERFISH sections using the
midline and provided a global mapping to initialize the local deformable mappings. 3) Finally, a
2D multi-scale, symmetric diffeomorphic registration (step size = 0.2, sigma = 3) was used on
each section to map local anatomic differences between the corresponding MERFISH and CCF
structures in each section. Global and section-wise mappings from each of these registration
steps were preserved and concatenated (with appropriate inversions) to allow point-to-point
mapping between the original MERFISH coordinate space and the CCF space.
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Table 1. Summary of the whole mouse brain cell type atlas. Major cell divisions (Pallium
glutamatergic, Subpalium GABAergic, PAL-sSAMY-TH-HY-BM-HB neuronal, CBX-MOB-
other neuronal, Neuroglial, Vascular, Immune), cell classes under each division, and the numbers
of subclasses, supertypes, and clusters under each class are listed. Each level of the hierarchy is

color coded consistently with the taxonomy.

Cell Class No. of Subclasses No. of Supertypes No. of Clusters
Pallium glutamatergic
IT-ET Glut 26 101 402

8 27 83

CGE GABA 4 19 101

MGE GABA 4 16 106

g 3 126
PAL-sAMY-TH-HY-MB-HB neuronal

MH-LH Glut 2 9 35

TH Glut 8 35 113

15 53 379

HY GABA 18 72 425

CNU-HYa Glut 13 42 236

HY Glut 19 84 337

HY MM Glut 2 3 13

MB Glut 30 102 657

P Glut 11 38 235

MY Glut 22 59 411

MB GABA 26 87 472

12 2

MY GABA 18 54 347

MB Dopa
MB-HB Sero

CB GABA
CB Glut
HY Gnrh1 Glut

MOB-CR Glut
Pineal Glut

Neuroglial
Astro-Epen

OEG 1 1 4
Vascular

Vascular

Immune
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Figure 1. Transcriptomic cell type taxonomy of the whole mouse brain. (a) The
transcriptomic taxonomy tree of 306 subclasses organized in a dendrogram (10xv2: n =
1,708,450 cells; 10v3 n = 2,349,599 cells). The color blocks divide the dendrogram into major
cell divisions. From left to right, the bar plots represent class, major neurotransmitter type, region
distribution of profiled cells, number of clusters, number of RNA-seq cells, and number of
MERFISH cells per subclass. The subclasses marked with orange dots represent highly distinct
subclasses and ones marked with grey dots represent subclasses containing sex-dominant
clusters. For each cell, 15 nearest neighbors in reduced dimension space were determined and
summarized by subclass. Highly distinct subclasses were identified as those with no nearest
neighbors assigned to other subclasses and/or those that formed a highly distinct branch on the
taxonomy dendrogram. Sex-dominant clusters within a subclass were identified by calculating
the odds and log P value for Male and Female distribution per cluster. Clusters with odds < 0.2
and logPval < -10 were marked as sex-dominant. (b-e) UMAP representation of all cell types
colored by division (b), class (c), subclass (d), and brain region (e).
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Figure 2. Neuronal cell type classification and distribution across the brain. UMAP
representation (a-e) and representative MERFISH sections (f-J) of Pallium glut (a,f), Subpallium
GABA (b,9), PAL-SAMY-HY (c,h), TH-EPI (d,i), and MB-HB-CB (e,j) neighborhoods colored
by subclass. Each subclass is labeled by its ID and shown in the same color between UMAPs and
MERFISH sections. Outlines in (a-d) show cell classes. For full subclass names see
Supplementary Table 7.
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Figure 3. Neurotransmitter types and their distribution throughout the mouse brain. (a-c)
UMAP representation of neuronal subclasses containing clusters releasing glutamate-GABA
dual transmitters. UMAPs are colored by subclass (a), neurotransmitter type (b), and cluster (c).
Glutamate-GABA co-releasing clusters include clusters 559, 560, 563 in subclass 37, cluster 566
in subclass 38, clusters 1249, 1250, 1251 in subclass 80, clusters 1498, 1499 in subclass 93,
clusters 1571, 1592, 1593 in subclass 99, clusters 2307, 2308 in subclass129, clusters 2716,
2717, 2721 in subclass 148, clusters 3469, 3480, 3482 in subclass 175, cluster 3609 in subclass
178, cluster 4073 in subclass 201, cluster 4089 in subclass 202, clusters 4496, 4498, 4499, 4501,
4502, 4505, 4506, 4514 in subclass 224, clusters 4526, 4528, 4529 in subclass 225, cluster 4653
in subclass 238, and cluster 5041 in subclass 275. Clusters in italic are shown in MERFISH
sections in (j). (d) UMAPs representing the expression of neurotransmitter transporter genes for
glutamate, GABA and glycine. (e-g) UMAP representation of neuronal subclasses containing
clusters releasing modulatory neurotransmitters and their various combinations of co-releasing
with glutamate and/or GABA. UMAPs are colored by subclass (e), neurotransmitter type (f), and
cluster (g). Cholinergic neurons include clusters 795 (co-release w/ GABA), 796, 797 (w/
GABA), 798 (w/ GABA), 799 (w/ glut), 800 (w/ GABA), 801, 802, 803-805 (all w/ glut) in
subclass 49; cluster 958 (w/ GABA) in subclass 59; clusters 1060-1063, 1070, 1071 and 1075
(all w/ glut) in subclass 63; clusters 3322, 3346, 3347, 3348, 3349, 3350 (all w/ glut except 3349)
in subclass 170; cluster 3939 (w/ glut) in subclass 188; clusters 4847-4852 in subclass 248; and
cluster 5100 in subclass 282. Dopaminergic neurons include clusters 1221-1224 (all w/ GABA)
in subclass 75; clusters 2536 and 2537 (both w/ glut) in subclass 139; clusters 4856 (w/ glut-
GABA), 4857 (w/ glut-GABA), 4860 (w/ glut-GABA), 4862 (w/ glut), 4863-4865, 4866 (w/
glut), 4867, 4868 (w/ glut), 4869 (w/ glut), 4870 (w/ GABA), 4871-4875, 4876 (w/ GABA),
4877-4880 (all w/ glut), 4881, 4883-4886 (all w/ glut), 4887-4890, 4891 (w/ glut-GABA), 4892,
4893 in subclass 250; and clusters 5047, 5048, 5050, 5055 (all w/ GABA) in subclass 277.
Histaminergic neurons include clusters 1225 (w/ GABA), 1226 (w/ GABA), and 1227-1229 in
subclass 76. Noradrenergic neurons include clusters 4823, 4824, 4826-4829, 4832 and 4840 (all
w/ glut), as well as 4845 in subclass 247. Serotonergic neurons include clusters 2658, 2659,
2660-2662 (all w/ glut), 2663, 2664, 2665-2667 (all w/ glut), 2674 (w/ glut), 2680, 2681-2685
(all w/ glut), 2688 (w/ glut), and 2689 (w/ glut) in subclass 146. Clusters in italic are shown in
MERFISH sections in (j). (h) UMAPSs representing the expression of genes for glutamate,
GABA and modulatory neurotransmitters. (i-J) Representative MERFISH sections showing the
location of neuronal types with glutamate-GABA dual transmitters and those with modulatory
neurotransmitters. Cells in (i) are colored and labeled by subclasses. Cells in (j) are colored by
neurotransmitter/neuromodulator types and labeled by cluster IDs. See Supplementary Table 7
for detailed neurotransmitter assignment for each cluster.
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Figure 4. Non-neuronal cell types and immature neuronal types. (a) Dot plot showing the
transcription factor marker gene expression in non-neuronal subclasses. Dot size and color
indicate proportion of expressing cells and average expression level in each subclass,
respectively. (b) UMAP representation of non-neuronal cell types colored by subclass. Three
subpopulations are highlighted and further investigated: astrocytes (c), ependymal cells (d), and
VLMC (e). (c-e) UMAP representation and representative MERFISH sections of astrocytes (c),
ependymal cells (d), and VLMC (e) colored and numbered by cluster. Outlines in (c-d) UMAPs
show subclasses. (f) Co-localization of VLMC cluster 5181 with Tanycyte cluster 5133 on the
MERFISH section. (g) Co-localization of VLMC cluster 5180 with CHOR cluster 5142 and
Ependymal clusters 5137 and 5138. (h) Co-localization of VLMCs with Interlaminar astrocytes
(ILA). (i) UMAP representation of immature neuron populations colored by supertype.
Maturation trajectories in dentate gyrus (DG) (j), inner main olfactory bulb (k), and outer main
olfactory bulb (1) are highlighted. (j-1) Representative MERFISH sections showing location of
immature neuronal supertypes from the three trajectories.
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Figure 5. Transcription factor modules across the whole mouse brain. (a) Distribution of the
number of differentially expressed TFs between divisions (pink), between classes (apple green),
between subclasses (sea green), and within subclasses (dark blue). (b) Cross validation accuracy
for each cluster (top panel) or subclass (bottom panel) using classifiers built based on all 8,108
marker genes (pink), randomly selected 499 marker genes (sea green), or 499 TF marker genes
(dark blue). (c) Confusion matrix between the assigned and predicted subclasses using classifiers
trained on 499 TF markers in cross validation. The size of the dots corresponds to the number of
overlapping cells, and the color corresponds to the Jaccard similarity score between the assigned
and predicted subclasses. (d) Expression level of TFs (logCPM) per cluster. For each TF along
the Y axis, clusters are sorted from the highest to lowest mean gene expression level along the X
axis. (e) Expression of key TFs for each subclass in the taxonomy tree, organized in gene
modules (mod) shown as color bars on the right. The color blocks divide the dendrogram into
major cell divisions. The color bars below the dendrogram denote classes.
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Figure 6. Region specific features and transitional cell types. (a) Scatterplot showing the
number of neuronal clusters identified per region vs. the number of neuronal cells profiled within
the corresponding region. Each neuronal cluster is assigned to the most dominant region. (b)
Distribution of the number of genes detected per neuronal cluster per region with logCPM > 3.
The top panel shows the number of Homeobox TFs per cluster per region, the middle panel
shows the number of all TFs expressed per cluster per region, and the bottom panel shows the
number of any gene expressed per cluster per region. (c) Distribution of the number of DEGs
between every pair of neuronal clusters within each region, split at quantiles of 0.1, 0.2, ..., and
0.9. The curves show the spread of the number of DEGs between more similar types at 0.1
quantile vs. the more distinct types at 0.9 quantile. (d) Scatterplot showing the number of cells
mapped to a given neuronal cluster vs. the standard deviation of their 3D coordinates along the X
(medial-lateral), Y (dorsal-ventral), and Z (anterior-posterior) axis based on the MERFISH
dataset, stratified by the regions. The plot shows how localized the clusters are within each
region along each spatial axis. (e-g) UMAP representation (e-f) and representative MERFISH
sections (g) of subclasses shared between broad regions, (e,g) colored by subclass, and (f)
colored by region. In (g) the best matching CCF reference atlas is shown on the left side of the
MERFISH sections.
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Extended Data Figure 1. sScRNA-seq data analysis workflow. (a) Number of cells at each step
in the scRNA-seq data analysis pipeline. The identification of doublets and low-quality clusters
is described in more detail in Methods. The 10xv2 and 10xv3 data were first QC-ed and analyzed
separately. After initial clustering the datasets were combined and QC-ed again before and after
joint clustering. (b-c) Gene count and qgc score thresholds used for each of the four major cell
populations (neuroglial cells, neurons, immature neurons and granule cells, and other) on the
10xv2 (b) and 10xv3 (c) datasets. (d-e) Number of cells isolated from dissection ROI’s (pre-QC)
and number of cells passing QC (post-QC) for 10xv2 (d) and 10xv3 (e) datasets. We didn’t
profile LSX, STR, SAMY, PAL, Pons, MY, and CB by 10xv2. Some regions were collected
using different dissections between 10xv2 and 10xv3, but all regions were covered by 10xv3.
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Extended Data Figure 2. MERFISH data generation, data processing and summary of
results. (a) Workflow for generating and processing MERFISH data. (b) Correlation of gene
detection between MERFISH and bulk RNA-sequencing for four different brain regions. (c)
Histogram displaying the distribution of gene detection correlation between adjacent MERFISH
sections. (d-f) Violin plots displaying distribution of cell volumes (d), gene detection (e), and
MRNA molecule detection (f) for individual sections ordered from anterior to posterior (left
panel) or cumulative distribution for the whole brain (right panel). Red dashed lines indicate
cutoff for filtering. (g) Cumulative histogram showing the relative contribution of each subclass
to each section ordered from anterior to posterior. (h) Pie chart showing the proportion of cells in
each major division across the whole brain.
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Extended Data Figure 3. Transcriptomic cell type taxonomy of the whole mouse brain with
additional metadata information. (a-b) Number of genes (a) or number of UMI’s (b) detected
per cell in 10xv2 (top) or 10xv3 (bottom) datasets for each major cell division. The data shown is
post-QC. (c) UMAP representation of all cell types colored by neurotransmitter (NT) type. NT
type color code is the same as shown in (d). (d) The transcriptomic taxonomy tree of 306
subclasses organized in a dendrogram (same as Figure 1a). The color blocks divide the
dendrogram into major cell divisions. From left to right, the bar plots represent cell class
assignment, NT type assignment, heatmap showing expression of major neurotransmitter marker
genes, sex distribution, platform distribution, light-dark distribution of profiled cells, and number
of donors that contributed to each subclass.
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Extended Data Figure 4. Constellation plot of the global relatedness between subclasses.
Each subclass is represented by a disk, labeled by the subclass ID and positioned at the subclass
centroid in UMAP coordinates shown in Figure 1d. The size of the disk corresponds to the
number of cells within each subclass, and the edge weights correspond to the fraction of shared
neighbors (see Methods) between subclasses. Each subclass is colored by the class it belongs to.
Curved line bubbles drawn around subclasses outline the major divisions. Distinct subclasses are
highlighted by the red rings around the disks.
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Extended Data Figure 5. Validation of data integration across 10xv2, 10xv3, and
MERFISH datasets. (a-c) UMAP representation of all cell types colored by profiling platform
(@), region (b), and subclass (c). Other than the regions only profiled by 10xv3 (LSX, STR,
SAMY, PAL, Pons, MY), the cells from both platforms integrate very well. Cell types in
isocortex and HPF have a lot more 10xv2 cells, consistent with our sampling plan. (d)
Correlation of gene expression between 10xv2 and 10xv3 and between 10xv3 and MERFISH.
For each gene, we computed the Pearson correlation of its average expression in each cluster
across clusters between 10xv2 and 10xv3, and the correlation between 10xv3 and MERFISH.
For 10xv3 and MERFISH comparison, distribution of the correlation values of all 500 genes in
the MERFISH panel is shown. For 10xv3 and 10xv2 comparison, we show the correlation of
5383 marker genes based on 10xv2, and 466 10xv2 marker genes that are also present on the
MERFISH gene panel (the 34 MERFISH genes not shown are expressed in clusters not profiled
by 10xv2). (e) 2D density plot showing on the X-axis the number of DEGs (based on 10xv3
dataset) present on the MERFISH gene panel between all pairs of clusters, and on the Y-axis the
number of such DEGs showing the same direction of changes between corresponding pairs of
mapped MERFISH clusters. Almost all the DEGs between all pairs of clusters show the same
direction of changes between 10xv3 and MERFISH. (f) 2D density plot showing on the X-axis
the number of DEGs (based on 10xv3 dataset) present on the MERFISH gene panel between all
pairs of clusters, and on the Y-axis the number of such DEGs showing the same direction of
changes, and logFC > 1 between corresponding pairs of mapped MERFISH clusters. About 60%
of DEGs between all pairs of clusters based on 10xv3 show significant fold change (FC) in
MERFISH. (g) Similar analysis as in (f) but shown as violin plot by binning the number of
10xv3 DEGs present on the MERFISH gene panel on the X-axis, with better resolution on
closely related pairs with four or fewer DEGs present on MERFISH gene panels.
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Extended Data Figure 6. Highly distinct neuronal types across the brain. UMAP representation
(a) and representative MERFISH sections (b) of highly distinct subclasses across the brain,
colored by subclass.
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Extended Data Figure 7. Neuropeptide distribution across the whole mouse brain. (a)
Scatter plot of Tau score over the number of clusters each neuropeptide is expressed in at the
level of logCPM > 3. The Tau score is a measurement of cell type specificity, which varies from
0 to 1 where 0 means uniformly expressed and 1 means highly specific to one type. (b) Scatter
plot of Tau score over the number of clusters each peptide-liganded G-protein coupled receptor
(GPCR) gene is expressed in at the level of logCPM > 3. (c) Expression level of neuropeptide
(logCPM) per cluster. For each neuropeptide along the Y axis, clusters are sorted from the
highest to lowest mean gene expression level along the X axis. (d) Expression level of
neuropeptide (logCPM) per cluster. For each neuropeptide along the Y axis, clusters are sorted
from the highest to lowest mean gene expression level along the X axis. For each gene, only the
top 200 highest-expressing clusters out of 5,200 clusters are shown. (e) Representative
MERFISH sections highlighting the spatial location of clusters expressing each of the 20 highly
cell-type-specific neuropeptide genes (expressed in 8 or fewer clusters). (f) Representative
MERFISH sections showing the expression of the neuropeptides present on the MERFISH gene
panel that are widely expressed.
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Extended Data Figure 8. Additional non-neuronal UMAPs and marker genes. (a-c) UMAP
representation of non-neuronal cell types colored by subclass (a), region (b), and cluster (c). (d)
Dot plot showing marker gene expression in non-neuronal subclasses. Dot size and color indicate
proportion of expressing cells and average expression level in each subclass, respectively. (e)
Dot plot showing marker gene expression in all clusters in the Astro-Epen class. Dot size and
color indicate proportion of expressing cells and average expression level in each cluster,
respectively. (f) Dot plot showing the marker gene expression in VLMC clusters. Dot size and
color indicate proportion of expressing cells and average expression level in each cluster,
respectively. (g) Representative MERFISH sections showing the spatial gradient of OEG
clusters. (h) UMAP representation of OPCs and oligodendrocytes colored and labeled by
supertype. (i-J) Representative MERFISH sections showing the spatial distribution of OPC (i)
and Oligo (j) supertypes.
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Extended Data Figure 9. Gene expression patterns in immature neuron populations. (a)
Heatmap showing the gene expression changes as immature neurons transition to mature cell
types, conserved between DG and MOB cell type development. Key markers at each stage of
development are highlighted. (b) Heatmap showing the gene expression changes as immature
neurons transition to mature cell types, specific to MOB cell types. (c) Heatmap showing the
gene expression changes as immature neurons transition to mature cell types, specific to DG cell

types.


https://doi.org/10.1101/2023.03.06.531121
http://creativecommons.org/licenses/by-nc/4.0/

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Yao Extended Data Fig. 10

{ Jrerf1
TRz 1P Nrdal 2
a 2 o b
5578 Foxcs ey . ° §
mE 6,Left o g %)
. Trp73. (V) @ E
i, - Gl s
F‘x o 2 - @ 3
g [} o o
e Q@ g z
H ng%(:re%a Tz st 2 & g a =
o % = o]
TS )| & ';"W b g g S
1 ] : B I L O,
= — I_imEzrpsas —— || Mot X = < 9o
Sz | R g,%,,gx EI EI g‘ "E‘I EI g
Tomes 1 agef 2 39 o @l %
Neurod2 ZicT En 3 - = o = o
e K el Otfp [ ] ® 0 3x10
Q etk Six6 3.8x10°
] Bain 1 Bsx [ ] 4.2x10°
T BT ;§ Foxp2{® @ [ ) 9.6x10°
W|—&£’= D IKLE Fezf1 ) 45x10°
_—— § uih Fop2 Foxg1{ @ ® @ 4.8x10°
Foxaz,Nraaz2 -2 1,12 . 0]
————————————— %? Sim1 8.1 ><1OD
oo g o ewrodz Lhx5 6.8x10
Hmaz‘—‘—|::rpsas t Pou3f2 7.1x10°
Gaiad o3| = g Nhih2 9.5x10°
- = I ez Ebf1 8.2x10°
Foxp,Loft,Gata f——— 9’ Ebf2 9.4x10°
- ox5Mesz Lhx1 5.8x10°
—A IE .
= - I I ewgggmm Inx2 ® 52x10°
[ — I Sim2 3.7x10°
o rmm Meis2 00000 @ 1.1x10
500002 Evx2 3.8x10°
?ia " St18 [ [ X0 7.6x10°
ém_ et Ent o0 6.7x10°
P'E’% En2 X 4.5x10°
bl Pax7 [ ® 0035310
Fo07 Pax8 [ 5.7x10°
;axﬁ Pousf1 o 6.5x10°
I foifiran H Olig3 [ ) 7.4x10°
G — Pax3 ® O 62x10°
E@ﬁ ] Nr2ft 0 0 (XX XX [X ) ® 7x10°
el e Esigi{0 0 0000000000000 8.8x10°
ZcF%Luz Uncx Uncx 5x10°
= : . Tox -0 0 000 7.2x10°
: ‘;%m,,% Y XXX X XX XX (XXX ® 71,100
. ax2,Lhx1
B s,
Eve H
Hmc2 Horb3
Ni-1
H
bt
o || B2MHb garmin b2, povant
— Poudf1
2 n%ummm
|
a3 c
Dmrta2
Pi lkx2-1
)
= Fob1 ©
tetal 3 132
Division Gpsimt =l :
Pallium glutamatergic
Subpallium GABAergic
PAL-sAMY-TH-HY-MB-HB neuronal
CBX-MOB-other neuronal
Neuroglial
Vascular
Immune
Class
B IT-ET Glut
NP-CT-L6b Glut ]
MOB-DG-IMN TSRZZ DI 3
CGE GABA S — sixa RbSP1 5pg idd ——
Fe I—
I MGE GABA — 2 1 Ezﬂﬁggﬂ 131 -
B CNU GABA c'%;“y% Ney
B LSXGABA ki bxn%cutz Isit
B MH-LH Glut y
B THGIt Tort Eb.602 ? e
HY MM Glut =
1 HY GABA s“
B MOB-CR Glut c:;gm
CNU-HYa Glut 1L,
Il CNU-HYa GABA -
o 5
M HY Glut btz !
M MB Glut Eiﬁws«z Hi el
I PGlut o s 238
M MB-HB Sero i 237
B MY Glut o5t Npas1 .“i :
. P GABA ‘rfiglhxekarb
MY GABA E,smads
MB GABA -
[ MB Dopa
I CBGABA gomz
Qo — .
nri uf L) R 153 pouet2
N L Runx2 "
1l Pineal Glut i :égguusmua«z
I Astro-Epen Féef28cfiToBIE 1 |
Oll 0 Pou3f1
= e oa oz "L‘%?gi?
Vascular eu{%\ﬁ e
5
Immune — By
o &2 Ry i
H
® Otp subclass I fEA— i

Subclass id


https://doi.org/10.1101/2023.03.06.531121
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.06.531121; this version posted March 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Extended Data Figure 10. Transcription factor code. (a) The transcriptomic taxonomy tree of
306 subclasses organized in a dendrogram (same as Figure 1a). The color blocks divide the
dendrogram into major cell divisions. The color bars denote classes. Key transcription factors are
annotated for nodes and subclasses on the tree. Red dots mark the Otp expressing subclasses
described in panels (b) and (c). (b) Gene expression dot plot of Otp expressing subclasses. Dot
size and color indicate proportion of expressing cells and average expression level in each
subclass, respectively. (c) Representative MERFISH sections highlighting the Otp expressing
subclasses.
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Extended Data Figure 11. Transcription factor families. Expression of key TFs for each
subclass in the taxonomy tree, organized by TF gene families. The color blocks divide the
dendrogram into major cell divisions. The color bars denote classes.
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Extended Data Figure 12. Circadian cycle associated expression changes in clock genes. (a-
b) Dot plot showing the expression of clock genes in light-phase and dark-phase cells within
each cell class (a) or selected subclasses that have any clock genes with fold change logFC > 1
between light and dark phases (b). Dot size and color indicate proportion of expressing cells and
average expression level in each class or subclass, respectively. (c) Heatmap showing the logFC
difference between light and dark phases for clock genes in selected subclasses as in (b).
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Supplementary Table 1. Allen Mouse Brain Common Coordinate Framework version 3
(CCFv3) regional ontology. Adopted from Wang et al, 2020.

Supplementary Table 2. RNA-seq specimen information. All donors used in this study are
listed, with associated metadata including sex, age, genotype, light/dark cycle phase, etc. From
one donor multiple regions could be dissected (“roi.1”, “roi.2”, “roi.3”’) or multiple FACS gating
plans (“facs_population_plan.1-3”") were used.

Supplementary Table 3. RNA-seq cell sampling per region. Number of cells sampled for each
dissected region using 10xv2 or 10xv3 platform. ROI (region of interest) is the brain region
combination for the 10x profiling.

Supplementary Table 4. RNA-seq quality control thresholds used for each cell class. The
first tab has the gene count and qc score thresholds for each cell class, the second tab has the list
of genes used to calculate the qc score.

Supplementary Table 5. Marker gene list. The list of 8,108 differentially expressed genes
(DEGs) combined from the top 15 differentially expressed genes in both directions between all
pairs of clusters, which was used for imputation, PCA dimensionality reduction and 2D/3D
UMAP computation.

Supplementary Table 6. MERFISH 500-gene panel used in Vizgen MERSCOPE platform.

Supplementary Table 7. Cell type annotation. Detailed information for each cluster, including
membership in broader categories (supertype, subclass, class, division and neighborhood), NT
type, NT type combo, major NT marker genes, major neuropeptides, main dissection region,
tentative anatomical annotation, number of 10xv2 and 10xv3 cells, relative proportions between
sexes and light/dark conditions, accession numbers to cell types, and marker genes. Note that the
tentative anatomical annotations are tentative and incomplete, and they will need to be refined in
the future.

Supplementary Table 8. Transcription factor marker gene list. The first tab shows the 499
TF marker genes contained within the 8,108 DEG list. The second tab shows the TF gene
modules shown in Figure 5d.
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