

Social Behavior Atlas: A computational framework for tracking and mapping 3D close interactions of free-moving animals

Yaning Han^{1, 2, 3, 4, #}, **Ke Chen**^{1, 2, 3, 4, #}, **Yunke Wang**^{1, 3, 4, #}, **Wenhao Liu**^{1, 3, 4, 5}, **Xiaojing Wang**^{1, 3, 4, 6}, **Jiahui Liao**^{1, 3, 4, 7}, **Yiting Huang**^{1, 3, 4}, **Chuanliang Han**^{1, 3, 4}, **Kang Huang**^{1, 2, 3, 4}, **Jiajia Zhang**^{1, 3, 4}, **Shengyuan Cai**^{1, 3, 4}, **Zhouwei Wang**^{1, 2, 3, 4}, **Yongji Wu**^{1, 3, 4}, **Gao Gao**^{1, 3, 4, 8}, **Nan Wang**^{1, 2, 3, 4}, **Jinxiu Li**⁹, **Yangwangzi Song**⁹, **Jing Li**¹⁰, **Guodong Wang**⁹, **Liping Wang**^{1, 3, 4}, **Yaping Zhang**⁹, and **Pengfei Wei**^{1, 3, 4, *}

¹Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

²University of Chinese Academy of Sciences, Beijing 100049, China

³CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

⁴Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

⁵Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong, China

⁶Department of Physical Education, China University of Geosciences, Beijing 100083, China

⁷School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China

⁸Honam University, Gwangju 62399, South Korea

⁹State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese

25 Academy of Sciences, Kunming 650223, China

26 ¹⁰Kunming Police Dog Base of the Chinese Ministry of Public Security, Kunming 650204, China

27 [#]The authors contributed equally to this paper.

28

29 **Correspondence to:**

30 *Pengfei Wei, Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced
31 Technology, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, P.R.China. E-mail:

32 pf.wei@siat.ac.cn

33

34 **Abstract**

35 The study of social behaviors in animals is essential for understanding their survival and
36 reproductive strategies. However, accurately tracking and analyzing the social interactions of free-
37 moving animals has remained a challenge. Existing multi-animal pose estimation techniques suffer
38 from drawbacks such as the need for extensive manual annotation and difficulty in discriminating
39 between similar-looking animals in close social interactions. In this paper, we present the Social
40 Behavior Atlas (SBeA), a novel computational framework that solves these challenges by employing
41 a deep learning-based video instance segmentation model, 3D pose reconstruction, and unsupervised
42 dynamic behavioral clustering. SBeA framework also involves a multi-camera setup to prevent
43 occlusion, and a novel approach to identify individual animals in close social interactions. We
44 demonstrate the effectiveness of SBeA in tracking and mapping the 3D close interactions of free-
45 moving animals using the example of genetic mutant mice, birds, and dogs. Our results show that
46 SBeA is capable of identifying subtle social interaction abnormalities, and the models and frameworks
47 developed can be applied to a wide range of animal species. SBeA is a powerful tool for researchers
48 in the fields of neuroscience and ecology to study animal social behaviors with a high degree of
49 accuracy and reliability.

50

51 **Introduction**

52 Close social interactions are critical for the survival and reproduction of animals¹. However, the
53 study of social behaviors has traditionally relied on rudimentary measures, such as the duration of time
54 spent in specific areas during experiments like three-chamber tests². To address this limitation, deep
55 learning-based quantitative measurements have emerged as a potential solution³. In particular, there
56 has been a surge of interest in developing multi-animal pose estimation and behavioral mapping
57 techniques across various disciplines, including neuroscience and ecology⁴. Although single-animal
58 pose estimation has been achieved with high accuracy through deep learning, accurately tracking and
59 mapping the social behaviors of multiple animals remains a challenging task⁵.

60 Advanced multi-animal pose estimation toolboxes, such as Multi-animal DeepLabCut (maDLC)
61 and Social LEAP Estimate Animal Poses (SLEAP), have enabled markerless and precise tracking of
62 body parts for different species based on videography⁶⁻⁸. However, these techniques suffer from
63 several limitations. Firstly, the high level of tracking precision necessitates a significant amount of
64 manual annotation, which becomes increasingly laborious as the number of animals in the study
65 increases. Secondly, occlusion can occur when multiple animals are present in the same video frame,
66 resulting in poor inference about the behavior of each animal. Thirdly, in close social interactions
67 between similar-looking animals⁹, it becomes challenging to distinguish between individual identities,
68 particularly over extended periods of time¹⁰.

69 The Social Behavior Atlas (SBeA) offers a solution to the challenges proposed by existing multi-
70 animal pose estimation techniques. Firstly, the number of manual annotations can be reduced by
71 comprising two processes. The first is the acquisition of each animal's contour. As fewer as 400
72 annotations are enough to separate adjacent animals. These data generate millions of labeled frames to

73 train the deep learning-based video instance segmentation (VIS) model. Secondly, to address the issue
74 of occlusion, SBeA employs multiple cameras to capture video streams, which are used to reconstruct
75 3D poses and prevent complete occlusion¹¹⁻¹³. Thirdly, SBeA resolves the multi-animal identification
76 problem by merging the contour of each animal with the characteristic identity of multiple view angles,
77 which achieves over 90% identification precision without human data annotation. Furthermore, after
78 solving those problems, inspired by the natural structures of social behavior, the unsupervised dynamic
79 behavioral metric learning is finally designed. The behavioral metric is composed of a time-series low-
80 dimensional representation of the behavior module. The behavioral mapping generates the social
81 behavior atlas, and one-third of the cluster purity reaches over 95%. Using SBeA, we found the subtle
82 social interaction abnormalities of Shank3B KO mice, which verifies the availability of SBeA. The
83 models and frameworks developed for SBeA can be also applied to birds and dogs, showcasing its
84 strong generalization abilities suitable for various application scenarios.

85 **Results**

86 **SBeA: from multi-animal markerless 3D pose tracking to unsupervised social behavior mapping.**

87 The focus of SBeA is on quantifying the behavior of freely social animals comprehensively. It
88 presents two significant challenges: pose tracking and behavior mapping. The pose tracking involves
89 identifying the key body parts of each animal as well as their identities, which is particularly
90 challenging when dealing with animals that look similar¹⁰. To address this issue, a novel free social
91 behavior test paradigm has been developed that involves a multi-view camera array (Fig. 1a). This
92 approach captures the animals covering more view angles and helps to overcome the challenge of
93 frequent occlusion¹¹⁻¹⁴. The camera array is used to capture images of a checkerboard for camera
94 calibration, followed by videos of two free-moving animals for the social behavior test (Video capture
95 phase 1, Fig. 1a). Finally, the array captures videos of single free-moving animals to facilitate animal
96 identification without the need for human intervention (Video capture phase 2, Fig. 1a).

97 After the video acquisition, the multi-animal contour of video capture phase 1 and the single-
98 animal pose of video capture phase 2 are manually annotated for the training of AI to output the 3D
99 poses with identities of animals (Fig. 1b and c). The design of this AI model was separated into four
100 stages for function integration. Through these multistage networks, the task of multi-animal video
101 instance segmentation, pose estimation, and identity recognition was achieved with a relatively small
102 number of manual annotations (~400 frames), as shown in Fig. 1d (left). By incorporating camera
103 parameters, the above results from various camera angles were combined and matched based on
104 geometric constraints to reconstruct 3D pose trajectories with identities for each animal (Fig. 1d, center
105 and right).

106 After conducting pose tracking, the process of behavior mapping involves breaking down the

107 trajectories of animals into distinct behavior modules, and then, using appropriate metrics to obtain a
108 low-dimensional representation of these modules¹². In the context of SBeA, the framework for
109 decomposing behavior is extended from a single animal to multiple animals¹², with their 3D
110 trajectories being separately decomposed into locomotion, non-locomotor movement, and body
111 distance components (Fig. 1e top and middle). These parallel components are then divided into
112 segments and subsequently merged into social behavioral modules using the dynamic behavior metric
113 (Fig. 1e bottom). Overall, this process utilizes a nature-inspired structure for behavior decomposition
114 and provides a dynamic approach to understanding social behaviors in groups of animals.

115 To gain insight into the distribution of features within social behavioral modules, it is necessary
116 to convert them into low-dimensional representations (Fig. 1f). These representations incorporate both
117 spatial and temporal aspects, with the spatial aspect being captured by low-dimensional embeddings
118 of distance features in the SBeA framework (Fig. 1f left). The temporal aspect is represented by the
119 social ethogram (Fig. 1f right). In SBeA, social behavioral modules are first clustered based on their
120 spatial characteristics and then expanded into the temporal dimension to construct the social ethogram.
121 This approach allows for a more comprehensive understanding of the distribution of features within
122 social behavioral modules.

123

124 **Fewer manual data annotations for multi-animal 3D pose tracking of SBeA.**

125 The use of deep learning for social pose estimation has been beneficial in enhancing the
126 acquisition of data for multiple body parts in animals, as previously demonstrated in literature^{7,8}.
127 However, due to the flexible social interactions among animals, creating a comprehensive training
128 dataset for deep learning-based social pose estimation is a challenge. Inadequately trained deep neural

129 networks tend to produce higher tracking errors, particularly in frames with close animal interactions
130 ¹⁰. To address this issue, we introduce a novel animal tracking method using continuously occluded
131 copy-paste data augmentation (Fig. 2a) in our SBeA framework. There are pieces of evidence that
132 simple copy-paste can increase the precision of instance segmentation¹⁵. Additionally, the continuous
133 copy-paste further increases the performance of multi-object tracking and segmentation¹⁶. Here for
134 multi-animal tracking, we extend the above methods to continuously occluded copy-paste, which
135 generates the virtual scenario with instance occlusion. By capturing a short video of multiple animals
136 behaving freely in an open field, SBeA obtains sufficient elements (background and animal instances)
137 to generate the virtual dataset. These elements synthesize the complex interactive relationships
138 between animals without the need for manual annotations, resulting in a sufficiently large virtual
139 dataset to train deep neural networks.

140 During free behavior, it is common for animals to overlap, leading to loss of tracking in single-
141 view cameras. To address this, SBeA employs a multi-view camera array to capture video streams,
142 enabling compensation for the visual field of the cameras and facilitating continuous tracking (Fig. 2b)
143 ¹¹⁻¹³. Background and trajectories can be extracted through background subtraction algorithms applied
144 to the raw video streams (Fig. 2c left top and left middle). In addition, frames with close social
145 interactions can be extracted for manual contour annotations (Fig. 2c left bottom). A lightweight
146 instance segmentation deep neural network, YOLACT++, is trained with self-training using
147 approximately 400-800 annotated contour frames (Fig. 2c center bottom), which enhances its
148 performance while ensuring time-efficiency^{17,18}. The well-trained self-training YOLACT++ predicts
149 animal masks of video streams, and animal instances can be cropped based on these masks. As some
150 trajectories of two animals may overlap in the same spatial position across different periods, merged

151 animal instances, backgrounds, trajectories, and masks can generate virtual scenarios with various
152 occlusion relationships and mask labels (Fig. 2c center top and center middle). The continuously
153 occluded copy-paste data augmentation increases the scale of the training dataset without additional
154 manual annotations, producing a VIS dataset with successive frames of behaving animals and
155 annotations. To capture the spatial-temporal patterns of occluded animals, the video instance
156 segmentation with transformers (VisTR) method is modified and applied to the virtual VIS dataset as
157 it can segment instances at the sequence level as a whole (Fig. 2c right top)¹⁹. Well-trained VisTR can
158 patch the raw video streams to display only one animal in each video (Fig. 2d left top and left middle).
159 Thus, pose estimation models trained for single animals, such as DeepLabCut, can be used to predict
160 single animal poses on these patched videos after fine-tuning using patched frames (Fig. 2c right
161 bottom, and 2d left bottom). Finally, the single-animal poses of each patched frame are merged into
162 multi-animal poses (Fig. 2d left top, left middle, and left bottom).

163 The subsequent step in SBeA, following the acquisition of multi-animal poses from video frames,
164 is the 3D reconstruction (Fig. 2e). Firstly, the MouseVenue3D automatic camera calibration system is
165 employed to acquire the camera parameters of the camera array (Fig. 2e left top)^{11,13}. Then, based on
166 the epipolar constraint of camera parameters, the combination of each animal instance in each camera
167 view is optimized to achieve minimum reprojection error (Fig. 2e left bottom). The optimized 3D
168 skeletons of the single frame in Fig. 2d right bottom are presented in Fig. 2e right top and bottom. In
169 the 3D skeleton, the close contact between two animals, such as anogenital sniffing, can be quantified
170 (Fig. 2e right top and bottom).

171 Compared with the square increasing of routine multi-animal pose estimation methods such as
172 maDLC, the pose annotation strategy in SBeA is linearly increasing with body points and the number

173 of animals (Fig. 2f)⁸. Considering the diversiform social interaction of animals, routine multi-animal
174 pose estimation methods need to annotate more data on frames with various social interactions to get
175 higher precision. Here, we create a well-annotated dataset Social Black Mice for Video Instance
176 Segmentation (SBM-VIS) to quantify the performance of SBeA. According to the distance distribution
177 of the test dataset, the clustering algorithm is used to separate close interaction (Fig. 2g, the left orange
178 stem) and other conditions. The pixel root-mean-square error (RMSE) of all data is significantly lower
179 than the close interaction of about 2 pixels of different body parts (Fig. 2h). But compared with maDLC,
180 SBeA still has significantly lower RMSE of animal close interaction, with 800 pose-labeled frames are
181 used to train maDLC and 400 pose- and 400 mask-labeled frames are used to train SBeA (Extended
182 Data Fig. 1). For all of the test data, SBeA has significantly lower RMSE than maDLC in the Nose,
183 Left ear, Right ear, Root tail, Mid tail, and Tip tail while maDLC has significantly lower pixel RMSE
184 in the Back, Right front paw and Left front paw (Extended Data Fig. 1a). For the close contact part of
185 the test data, SBeA has significantly lower RMSE in Nose, Left ear, Right ear, Left front limb, Right
186 front limb, Left hind limb, Left hind paw, Root tail, Mid tail, and Tip tail (Extended Data Fig. 1b).
187 These results show that SBeA can get higher precision with fewer manual annotations than routine
188 multi-animal pose estimation methods such as maDLC. To get a similar precision of maDLC, SBeA
189 only needs about a quarter of pose annotation points.

190
191 **SBeA needs no data annotations for multi-animal identification.**

192 Accurately distinguishing the identities of free-moving animals is crucial for social behavior tests,
193 particularly in studying treatment-induced behaviors in transgenic animal models^{12,20,21}. However,
194 frequent occlusion of these animals can lead to imprecise identification even with physical markers.

195 Moreover, the animals are the same breed to reduce the influence of irrelevant experiment variables
196 with indistinguishable appearances for human annotators. That causes difficulties in creating the
197 animal identification dataset to train deep neural networks such as SIPEC²². To address these
198 challenges, we propose a solution in SBeA, which involves combining a camera array with
199 bidirectional transfer learning in animal identification (Fig. 3a). Transfer learning allows artificial
200 neural networks to use previous knowledge in new tasks²³. For animal segmentation and identification
201 tasks, the knowledge between them can be shared bidirectionally with each other. So, the segmentation
202 model trained for multi-animals can be transferred to single-animal segmentation, and the
203 identification model trained for single-animals can be transferred to multi-animal identification. The
204 bidirectional transfer learning of them avoids unnecessary manual data annotations.

205 Well-trained VisTR in Fig. 2 can be used to segment single-animal instances from multiple view
206 angles (Fig. 3b). These instances are then cropped, cascaded, and resized to generate training data for
207 an identification model based on EfficientNet architecture (Fig. 3c, left and center)²⁴. After that,
208 LayerCAM is used to evaluate the patterns for identification recognition (Fig. 3c right)²⁵. Before using
209 the identification model in multi-animal instances, the cascaded and resized image frames were
210 prepared (Fig. 3d, right). By using the best geometric constraint of 3D poses, instances from each
211 frame view angle of each animal were matched to construct input frames of the identification model
212 (Fig. 3d, left). Finally, the well-trained model outputted the top prediction probabilities to append the
213 identities of instances and 3D poses. LayerCAM was also employed to verify the recognition patterns
214 for identification (Fig. 3e).

215 To evaluate the identification model's performance in SBeA, we conducted experiments with ten
216 C57BL/6J mice having tail markers, where we recorded their free behaviors for 5 minutes. The tail

217 markers are convenient for experimenters to distinguish the identities of each mouse. The first 4
218 minutes of data were used for training the identification model, and the last 1 minute was used for
219 validation. The confusion matrix of the validation data demonstrated that the EfficientNet model can
220 identify most of the mice (Fig. 3f). The t-SNE algorithm was used to create a 2D feature representation
221 of the identified mice (Fig. 3j). However, the features of mice with ID M4 and M5 were found to be
222 mixed with other classes, as quantified by the silhouette coefficient Fig. 3h). The sorted validation
223 precision of the identified mice showed that the mouse with ID M4 had the lowest precision of
224 approximately 0.4 (Fig. 3i). Even though the features of M5 were mixed with other classes, its
225 precision was found to be around 0.8 (Fig. 3i).

226 To assess the identification model's performance in multi-animal data, we recorded the free social
227 behaviors of 5 paired C57BL/6J mice identified by SBeA for 15 minutes. We manually verified the
228 identities of mask reprojection images and 3D poses frame by frame (Fig. 3j). The results indicated
229 that although some of the single mouse identity precisions were lower (Fig. 3i), the overall precision
230 in identifying pairs of mice could be higher than 0.85, as seen in the case of the pairs of M3&M4 and
231 M5&M6. Additionally, the validation precision in single-animal identification was found to be
232 positively correlated with precision in multi-animal identification, as evidenced by the other pairs (Fig.
233 3j).

234 We also investigate if the number of animals would influence the identification recognition
235 precision. Previous research suggests that the identification precision may decrease with an increasing
236 number of animals involved in the study^{26,27}. To counteract this trend, we increased the amount of
237 training data to balance the precision decrease. Our results indicate that for a group of 22 mice, a 15-
238 minute video recording can achieve similar precision to that of 10 mice with a 5-minute recording (Fig.

239 3k). These findings have important implications for optimizing study design and ensuring accurate
240 identification of individual animals in social behavior experiments.

241 Our research has revealed that the precision of animal identification can be influenced by the
242 experiment apparatus used in social behavior tests (Fig. 3l). Specifically, we found that open fields
243 with different diameters - 50cm and - 20cm can impact the precision of animal identification conducted
244 on the same ten mice. Our results indicate that the precision of identification in the 20cm open field is
245 significantly higher than that in the 50cm field (Fig. 3l). This difference may be due to the higher dots
246 per inch (DPI) of mice.

247 Further, we tested the stability of identification patterns. Animals would groom themselves, which
248 could change the patterns of identities⁹. We compared the identification precision of two separate
249 groups of mice. One group underwent both identity video recording and social behavior tests on the
250 same day, while the other group underwent social behavior tests one week after their identity videos
251 were recorded (Fig. 3m). We manually verified the identities of mask reprojection images and 3D
252 poses frame-by-frame. Our analysis revealed that while there was no significant difference in the
253 precision of mask reprojection images between the two groups, the precision of 3D poses in the group
254 that underwent social behavior tests one week after the recording of their identity videos was
255 significantly lower than that of the group that underwent both on the same day (Fig. 3m). As the
256 precision of 3D poses is equivalent to the identification precision of cascade and resize images, the
257 observed decrease in precision of 3D poses indicates a decline in identification precision. Shorter
258 intervals between the recording of identity videos and social behavior tests could potentially enhance
259 the accuracy of identification recognition.

260 We evaluated the feature intensity of the identification model used to distinguish different animals

261 at last in this chapter. To this end, we designed open fields with diameters of 50 and 20 cm, respectively,
262 in which the same ten mice were allowed to freely engage in social behavior 2 mice per trial. The pose
263 tracking point "Root tail" with tail markers was used as a control against other body parts (Fig. 3n).
264 We calculated LayerCAM values to quantify the feature intensity of each body point. The results
265 showed that the Root tail in the 50 cm group had more significant feature intensities than in the 20 cm
266 group. This finding suggests that a higher DPI can enable the identification model to capture more
267 available fur pattern features and thereby overcome errors resulting from marker occlusion.
268 Additionally, we found that identification using low animal DPI requires the use of stronger markers
269 to maintain sufficient recognition precision.

270

271 **SBeA reveals the social behavioral structure in the atlas by unsupervised machine learning.**

272 Following pose tracking, it is necessary to map the trajectories with animal identities to a low-
273 dimensional space to gain insights into behavior (Fig. 4a). Recent research has indicated that the body
274 language of social animals can be represented through sequential behavioral motifs or modules²⁸. Thus,
275 we expand our prior work on the animal behavior mapping framework to encompass multiple animals,
276 Behavior Atlas (BeA), which was initially developed for a single animal. The concepts of parallel and
277 dynamic behavior decomposition from BeA have been adopted in our new framework SBeA (Fig. 4b
278 and c). In the social process, the distance between animals is an essential component, as noted in
279 previous studies²⁹. In addition to using non-locomotor movement to assess body movement and
280 locomotion to evaluate body displacement, body distance is also utilized to evaluate the relationships
281 of body position (Fig. 4b). After parallel decomposition, each component is decomposed further using
282 dynamic time alignment kernel (DTAK) to retain the natural dynamic structures of behavior (Fig. 4c).

283 To distinguish subtle structures of social behavior, the temporal points of decomposition for each
284 component are merged through logical addition (Fig. 4d). The aforementioned steps enable the metric
285 of social behavior, resulting in the transformation of continuous pose trajectories into discrete social
286 behavior modules.

287 Then, the social behavior modules are embedded in a low-dimensional space for behavior
288 representation (Fig. 4e and f). All of the social behavior modules from different experimental trials
289 need to be represented in a common feature space. That induces two questions, the first is what feature
290 is reasonable to represent social behavior in a low-dimensional space, and the second is how to create
291 a common feature space under the big behavioral data^{30,31}. For the first question, the distance
292 component is chosen for the feature representation of social behavior modules (Fig. 4e left). The
293 dimensionally reduced distance component by uniform manifold approximation and projection
294 (UMAP) is beneficial to improve the separation of behavior atlas verified by our previous studies¹¹⁻
295 ^{14,32}. But with the increase of data scale, the computational consumption of UMAP would be
296 unacceptable because of limited memory space, which is the second question. To solve the second
297 question, the residual multilayer perceptron (ResMLP) is combined with UMAP for feature
298 representation (Fig. 4e right)³³. A part of the social behavior feature frames is extracted randomly to
299 build up the feature representation of distance dynamics by the UMAP. Then, the mapping from
300 extracted social behavior feature frames to distance dynamics is trained by ResMLP for the feature
301 encoding. Further, the rest of the social behavior feature frames are decoded by ResMLP to distance
302 dynamics. The distance dynamics are embedded by DTAK and UMAP to construct the social behavior
303 atlas (Fig. 4f). To reveal the distributions of different social behavior modules, based on density
304 clustering, we modified the watershed algorithm to automatically determine the best cluster density

305 with upper and lower boundaries. At last, the social behavior modules of the same clusters are manually
306 identified and defined (Fig. 4g).

307 In constructing the social behavior atlas, the inclusion of the distance component is crucial. By
308 using the distance component, the social behavior atlas can maintain the overall body distance
309 structures of social behavior modules (Fig. 4h left), while the absence of the distance component leads
310 to a lack of observable patterns in the distribution of distance (Fig. 4h right). To compare the
311 effectiveness of the distance representations in the atlases, the map/body distance metric is utilized,
312 with higher values indicating better performance in distance representation (Fig. 4i). Results show that
313 the distance component is essential in achieving a high map/body distance, indicating the importance
314 of including this component in constructing the social behavior atlas. Additionally, the 0.45 ± 0.32 s
315 temporal duration of merged behavioral modules reveals that the SBeA framework can effectively
316 decompose social behavior into dynamic sub-second motifs (Fig. 4j)^{12,34}. The ResMLP can address
317 issues related to the memory cost of large behavioral data, while also reducing computational time
318 consumption compared to using UMAP alone. More than 5000 frames can get time benefits from
319 ResMLP, and the time benefits will increase with the number of frames (Fig. 4k). Then, the time
320 proportion of identified behavioral modules is quantified to evaluate their temporal precision (Fig. 4l).
321 The time proportion of the typical social behavior such as allogrooming conforms to previous studies
322 on social behavior³⁵. Further, the feature correlations between the intra- and inter-clusters of each social
323 behavior class are compared for the evaluation of clustering consistency (Fig. 4m). The intra-feature
324 correlations of each social behavior class are significantly higher than inter-feature correlations, and
325 the intra-feature correlations distribute consistently near to 1, in turn, the inter-feature correlations
326 distribute in the weak negative correlation. These unsupervised validation measures demonstrate the

327 effectiveness of the SBeA framework in accurately mapping social behavior.

328 In addition to unsupervised validation, we conducted supervised validation of SBeA using the
329 PAIR-R24M dataset (Fig. 4n)³⁶. The dataset provides 3D poses, social behavior labels, and subject
330 behavior labels of rats in free behavior. We used SBeA to construct the social behavior atlas for the
331 dataset, and appended the three social labels (close, chase, and explore) to each behavior module (Fig.
332 4o). The distributions of the three social labels were separated and matched their similarity relationship.
333 The 121 combinations of subject behavior labels also showed distribution patterns in the social
334 behavior atlas (Fig. 4p). The social labels such as close and explore were consistent with the close
335 distance distribution in the distance map, and the chase label was consistent with the distance transition
336 zone of the distance map (Fig. 4q). To quantify the clustering performance, we used the cluster purity
337 of social and subject behavior labels (Fig. 4r and s). For the upper boundary of clustering, 14 classes
338 were clustered with a mean cluster purity of 0.77 ± 0.16 (Fig. 4r). For the lower boundary of clustering,
339 405 classes were clustered, and the probability of cluster purities greater than 0.95 was significantly
340 higher than for other purities (Fig. 4s). These results provide further validation of the performance of
341 SBeA in supervised contexts.

342

343 **SBeA identifies *Shank3B* knockout mice in free-social interactions by subtle behavior modules.**

344 Social behavior can serve as an indicator of the genetic variations that underlie neuropsychiatric
345 disorders³⁷. SBeA is well-suited for this purpose, as it allows for a detailed characterization of social
346 behavior at an atlas-level. To test the ability of SBeA to detect genetic differences from social behavior,
347 we utilized an animal model of autism spectrum disorder (ASD): Shank3B knockout mice^{12,20}. While
348 abnormal individual behaviors of these mice have been previously identified, the limitations of existing

349 techniques have made it difficult to fully understand their abnormal free social behaviors^{12,20}.

350 To distinguish between Shank3B knockout (KO) mice and wild-type (WT) mice, a free-social
351 behavioral paradigm was designed based on the framework of SBeA, which consists of three steps:
352 identity recording, social behavior recording, and SBeA processing (Fig. 5a). First, the home-caged
353 WT and KO mice were randomly shuffled and recorded for 5 minutes each using the MouseVenue3D
354 system to obtain identity information. After identity recording, the mice were randomly grouped into
355 three pairs (WT-WT, WT-KO, and KO-KO) for social behavior recording, with each pair of mice
356 recorded for 15 minutes. The identity and social behavior data were then processed using SBeA for 3D
357 pose tracking and behavior mapping. The experiment used a total of 10 WT and 10 KO mice, resulting
358 in 45 unique pairs of mice, including 10 WT-WT, 10 KO-KO, and 25 WT-KO pairs. To ensure equal
359 representation of each group, the number of WT-KO pairs was reduced from 25 to 10 through random
360 sampling. Before behavior mapping, the raw trajectories were copied and switched to capture the
361 direction of social behavior between WT and KO mice. This resulted in a total of 60 pairs of trajectories
362 for behavior mapping using SBeA.

363 The social behavior atlas with distance map is shown in Fig. 5b. After the construction of the
364 social behavior atlas, the density map is calculated to compare the social behavior distribution of each
365 group by kernel density estimation (Fig. 5c). Density map shows obvious differences across the three
366 groups. Combing with the distance map, the WT-WT group shows social behavior phenotypes with
367 flexible distances from close to far, the KO-KO group shows more abnormal social behaviors than the
368 WT-WT group, and WT-KO shows more close social interaction than the WT-WT group. From the
369 global level, the social behaviors of KO mice show differences from WT mice.

370 The 260 social behavior modules identified in the social behavior atlas were clustered to reveal

371 their coincident patterns, which displayed distinct speckled patterns for each group, ranging from 1 to
372 20 social behavior modules in the KO-KO group (Fig. 5d). To compare the differences in behavior
373 components among the three groups, principal component analysis (PCA) was employed to determine
374 the percent variability explained by each principal component (Fig. 5e). The results indicated that three
375 components could account for 90% of the variance, while 11 components could account for 99% of
376 the variance. To construct the phenotype space of the three groups, UMAP was used for dimensional
377 reduction of the social behavior modules, with the dimension number set to 3 based on the 90%
378 variance explanation, owing to the more robust feature representation of non-linear dimensional
379 reduction (Fig. 5f). The distributions of the three groups in the phenotype space were found to be
380 segregated, matching the distribution of the density map, and distinguishing KO mice from WT mice
381 (Fig. 5c).

382 Further, SBeA was utilized to identify subtle social behavior modules that distinguish KO and
383 WT mice. The two-way ANOVA was used to compare the behavior fractions between the three groups,
384 and 24 social behavior modules were found to have significant differences (Fig. 5h). To reduce the
385 redundancy of these results, angle spectrum clustering, which combines PCA and hierarchical
386 clustering, was proposed (Fig. 5g). The social behavior modules were merged based on their angular
387 separation of features, resulting in the identification of 9 social behaviors, as determined by human
388 analysis (Fig. 5i). The color of mice represented the behavior cases with the highest mean fraction in
389 Fig. 5g.

390 The 9 social behavior modules identified through SBeA highlighted significant differences among
391 the three groups. The WT-WT group exhibited more allogrooming, a prosocial behavior, than the WT-
392 KO and KO-KO groups³⁸. Conversely, allogrooming was rare in unstressed partners and even rarer in

393 Shank3B KO mice, suggesting an antisocial behavioral phenotype³⁵. The exploring behavior of the
394 WT-WT group was significantly higher than that of the KO-KO group, which displayed reduced motor
395 ability or social novelty^{12,20}. In the WT-KO group, social behavior with significant differences were
396 divided into two parts, namely, peer sniffing and independent grooming. Peer sniffing was observed
397 more frequently in the WT mouse, particularly when the KO mouse was grooming or in locomotion,
398 indicating a behavioral phenotype of curiosity. Furthermore, the KO mouse could induce higher
399 interest in the WT mouse than vice versa. Independent grooming could be an imitation of the WT
400 mouse by the KO mouse, and in the KO-KO groups, the higher incidence of independent grooming
401 could be attributed to the increased individual grooming of each mouse. In addition to increased
402 independent grooming, two abnormal behavior phenotypes, namely, synchronous behaviors and
403 immobility, were observed. The synchronous behaviors displayed 5 subtypes, including grooming,
404 hunching, rearing, sniffing, and micromovement, indicating greater behavior variability in free-social
405 conditions compared to individual spontaneous behavior of KO mice¹². Most instances of immobility
406 occurred in only one pair of KO-KO mice, indicating that abnormal autistic-like behaviors vary even
407 among mice with the same genetic background. These findings demonstrate that SBeA can
408 differentiate genetic mutant animals based on social behavior and identify genetic mutant-related
409 subtle social behavior modules.

410
411 **SBeA is robust to be used in different environments across species.**

412 To assess the generalizability of SBeA to different animal species and experimental settings, the
413 behaviors of birds and dogs were captured using the MouseVenue3D system with varying device
414 configurations¹¹. The animals were prepared to have as similar appearances as possible (Fig. 5a top

415 and 5e top), and it was difficult for human experimenters to separate two animals from the randomly
416 selected frames. The resulting videos were manually annotated to train the AI of the pose tracking
417 component of SBeA (Fig. 6a bottom and 6e bottom), using 19 body parts for birds and 17 body parts
418 for dogs, based on previous studies^{39,40}. The well-trained AI was then used to predict video instances,
419 body poses, and identities (Fig. 6b and f), which were mapped to a social ethogram and behavior atlas
420 using the behavior mapping component of SBeA (Fig. 6c and g). In total, 34 and 15 social behavior
421 classes were identified for birds and dogs, respectively, and their typical cases were visualized in 3D
422 (Fig. 6d and h). The 3D pose tracking of birds showed clear identification of their claw touching their
423 rectrix, while the 3D pose tracking of dogs was robust to occlusion even in the lying posture.

424 To evaluate the performance of the SBeA algorithm in tracking birds and dogs, various metrics
425 were employed, including tracking likelihood, 3D reprojection error, identity confusion matrix, and
426 feature correlation (FC) (Fig. 6i-m). The results indicate that while dogs have a higher tracking
427 likelihood than birds, both achieve a satisfactory level of tracking precision (Fig. 6i)¹². But the 3D
428 reprojection error is significantly higher for dogs due to incomplete camera coverage and annotation
429 errors (Fig. 6j). In terms of identity recognition, both birds and dogs have higher precision than mice
430 due to their distinct fur patterns (Fig. 6k). The results of FC show that all of the intra-FC of clusters
431 are significantly higher than inter-FC (Fig. 6l and m). But from the distribution of FCs, the clustering
432 performance of birds is better than dogs. The feature mix-up of intra- and inter-clusters is influenced
433 by the 3D pose tracking precision. The error of 3D pose tracking such as target loss in dogs would
434 degrade the performance of SBeA clustering. The LayerCAM analysis reveals no significant
435 differences in feature values between birds and dogs, except for the Mid back and Nose of dogs, which
436 may be attributed to the loss of nose detection in video captures (Fig. 6n and o). The identification

437 recognition network automatically reduces the feature weights on the body part with target loss or
438 occlusion to keep the higher recognition precision of identities. These results demonstrate that SBeA
439 is robust enough to be applied to different animal species in various experimental settings, making it a
440 versatile tool for the study of social behavior in animals.

441 **Discussion**

442 Here we have presented SBeA, a framework for 3D pose tracking and behavior mapping of multiple
443 free-social animals. SBeA builds upon the BeA framework, extending it to enable multi-animal pose
444 estimation and social behavior clustering¹¹⁻¹⁴. The method reduces the labor required for annotation
445 by up to fifty percent compared to traditional approaches for pose estimation. By utilizing four
446 cameras, SBeA overcomes the issue of occlusion and reconstructs 3D behaviors accurately. Notably,
447 SBeA resolves the challenge of animal identification over extended time frames, facilitating the study
448 of close social interactions. The technique is highly versatile and has been successfully applied to
449 various animal species, including *Shank3B* knockout mice, where it revealed synchronous behaviors
450 and reduced social interest. SBeA's cross-species application has been verified in birds and dogs. In
451 summary, SBeA represents a breakthrough in deep learning-based pose estimation and identification,
452 offering numerous potential applications in animal behavior research.

453 Both maDLC and SLEAP are versatile tools that can be applied to a variety of animal models, from
454 fish to humans.^{7,8} However, a major drawback of these tools is the lack of a framework for maintaining
455 animal identities during long-term experiments, which can be fatal to the accuracy of results¹⁰. SBeA
456 incorporates the identity recognition approach of idTracker.ai and TRex, utilizing deep neural networks
457 to directly learn the appearance features of animals^{26,41}. This results in a lower error rate than maDLC
458 or SLEAP and allows for frames with low accuracy to be filtered without affecting the entire video.
459 Additionally, SBeA provides an extension of 2D tracking tools to 3D movement tracking, which is
460 critical for making accurate inferences about animal behavior.

461 One potential area for future research to improve SBeA is the development of an end-to-end model
462 that can reduce storage consumption. To accomplish this, the process of data generation could be

463 incorporated into a video instance segmentation model. Additionally, the identity videos available in
464 this context may contain sufficient information to train a deep learning model for tasks such as multi-
465 animal segmentation, identification, and pose estimation. Furthermore, the behavior atlas of a single
466 animal could be combined with a social behavior atlas of multiple animals through an algorithmic
467 bridge from BeA to SBeA that facilitates not only social behavior analysis but also other forms of
468 analysis within the field.

469

470 **Online content**

471 The online version of SBeA will be released after the peer review of this work. Anyone interested in
472 our work can contact us for the further corporation.

473

474

475

476 **Methods**

477 **Experiments of mice, birds, and dogs.** There are four experiments in this study.

478 The first is the free-social behavior test of two wild-type mice for the program design of SBeA.

479 32 adult male C57BL/6 mice (7–12 weeks old) are used for the free-social behavior test. The mice

480 were housed at 4-5 mice per cage under a 12-h light–dark cycle at 22–25 °C with 40–70% humidity,

481 and were allowed to access water and food ad libitum (Shenzhen Institutes of Advanced Technology,

482 Shenzhen, China). Before the social behavior test, the mice are added tail tags using black mark pen.

483 The tail tags are constructed by horizontal and vertical lines. The horizontal line represents one, and

484 the vertical line represents five. Using the combination of horizontal and vertical lines, the mice are

485 marked according to the sequence of the experiment. After that, the mice are put into a circular open

486 field made of a transparent acrylic wall and white plastic ground, with a base diameter of 50 cm or 20

487 cm and a height of 50 cm for 5 min or 15 min identity recording one by one using MouseVenue3D.

488 Then, the mice are paired and put into the same circular open field for the free-social behavior test.

489 The second is the free-social behavior test of mice with different genotypes. 5 adult (8 weeks old)

490 Shank3B knockout (KO; *Shank3B*^{−/−}) mice on C57BL/6J genetic background and 5 adults (8 weeks

491 old) male C57BL/6 mice, were used in the behavioral experiments. *Shank3B*^{−/−} mice were obtained

492 from the Jackson Laboratory (Jax No. 017688) and were described previously²⁰. The mice were housed

493 at 4-5 mice per cage under a 12-h light–dark cycle at 22–25 °C with 40–70% humidity, and were

494 allowed to access water and food ad libitum (Shenzhen Institutes of Advanced Technology, Shenzhen,

495 China). The mice have added the tail tag introduced above. After that, the mice are put into a circular

496 open field with a base diameter of 20 cm introduced before for 5 min identity recording. Then the mice

497 are paired to WT-WT, WT-KO, and KO-KO groups and put into the same circular open field for the

498 free-social behavior test. The combinations of groups and the sequence of experiments are random
499 generated by customized MATLAB code.

500 The third is the free-social behavior test of two birds. One male and one female *Melopsittacus*
501 *Undulatus* (about 26 weeks old) are used in this experiment. They are housed in a conventional
502 environment with feed regularly (Shenzhen Institutes of Advanced Technology, Shenzhen, China). The
503 birds are first put into a circular open field with a base diameter of 20 cm introduced before for 5 min
504 identity recording one by one, and then put in it together for 15 min free-social behavior test and
505 recording.

506 The fourth is the free-social behavior test of two dogs. Two female Belgian Malinois (13 weeks
507 old) are used in this experiment. They are housed in Kunming Police Dog Base of the Chinese Ministry
508 of Public Security, Kunming, 650204, China, and their behavior test of them is finished in the State
509 Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy
510 of Sciences, Kunming, 650223, China. The dogs are first put into a $2 \times 2 \text{ m}^2$ open field made by
511 fences one by one for the identity recording. Restricted by the locomotion of dogs, there are only 6
512 min and 11 min identity frames captured by MouseVenue3D and both of them are used for
513 identification. Then, they are both put into the open field for 15 min free-social behavior test.

514 All husbandry and experimental procedures of mice and birds in this study were approved by
515 Animal Care and Use Committees at the Shenzhen Institute of Advanced Technology, Chinese
516 Academy of Sciences. And all husbandry and experimental procedures of dogs in this study were
517 approved by Animal Care and Use Committees at the Kunming Institute of Zoology, Chinese Academy
518 of Sciences.

519

520 **MouseVenue3D subtle behavior capture system.** There are three versions of MouseVenue3D
521 systems used in this study.

522 The first version is used for the data capture of the SBM-VIS dataset. Four Intel RealSense D435
523 cameras are mounted orthogonally on four supporting pillars made of stainless steel. The distance
524 between the nearest cameras is 90 cm. The cameras are adjusted to 75 cm off the ground to capture the
525 whole view of the animal activities in the open field. Images were simultaneously recorded at 30
526 frames in 640×480 sizes per second by a PCI-E USB-3.0 data acquisition card and the pyrealsense2
527 Python camera interface package. The cameras are connected to a high-performance computer (i7-
528 9700K, 16G RAM) equipped with a 1-terabyte SSD and 12-terabyte HDD as an image acquisition
529 platform. The computer also controls the camera calibration module.

530 The second version is used for the behavioral capturing of mice and birds. Four Point Grey FLIR
531 Chameleon3 CM3-U3-13S2 cameras with adaptive zoom lenses are mounted orthogonally on four
532 supporting pillars made of stainless steel. The distance between the nearest cameras is 85 cm. The
533 cameras are adjusted to 45 cm off the ground to capture the whole view of the animal activities in the
534 open field. To adapt to the size of the open field, the focal length and the pitch angle of cameras are
535 flexibly adjusted before each experiment. Images were simultaneously recorded at 30 frames in 1288
536 $\times 964$ sizes in grayscale per second by a PCI-E USB-3.0 data acquisition card and the Spinnaker
537 Python camera interface package. The cameras are connected to a high-performance computer (i9-
538 10900K, 128G RAM) equipped with a 512-gigabyte SSD and two 16-terabyte HDDs as an image
539 acquisition platform. The computer also controls the camera calibration module.

540 The third version is used for the behavioral capturing of dogs. Four Intel RealSense D435 cameras
541 are mounted orthogonally on walls. The distance between the nearest cameras is 210 cm. The cameras

542 are adjusted to 150 cm off the ground to capture the whole view of the dog activities in the open field.
543 Images were simultaneously recorded at 30 frames in 640×360 sizes per second by a PCI-E USB-3.0
544 data acquisition card and the pyrealsense2 Python camera interface package. The cameras are
545 connected to a high-performance computer (i7-9700K, 16G RAM) equipped with a 1-terabyte SSD
546 and 12-terabyte HDD as an image acquisition platform. The computer also controls the camera
547 calibration module.

548

549 **SBM-VIS Dataset.** The free-social behavior of two C57BL/6 mice introduced above is captured by
550 the first version of MouseVenue3D. The first 1 min frames of four cameras are annotated as the SBM-
551 VIS dataset, which is 7200 frames in total. To accelerate the data annotation, we take deep learning for
552 assistance. 30% of the contours are manually labeled, and the rest are firstly labeled by YOLACT++
553 trained by the manually labeled 30% contours then checked by humans. Then, the single animal
554 DeepLabCut is used to predict the poses of masked frames with the human check. Per 18 frames are
555 grouped for a video instance and saved as YouTubeVIS format⁴². And the poses are saved as a .csv file.
556 The identities across different cameras are corrected by human annotators.

557

558 **New scenario generation for video instance segmentation.** The new scenario generation for video
559 instance segmentation is divided into several steps: contour extraction, trajectory extraction, dataset
560 labeling, background calculation, model self-training, and video dataset generation. After that, it can
561 be input into the instance segmentation model for large-scale training. Suppose the number of animals
562 in the video is n. Conda virtual environment configuration includes OpenCV 4.5.5.62, Python 3.8.12,

563 Pytorch 1.10.1, The computer was configured with Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz
564 and NVIDIA RTX3090 GPU.

565 In the animal contour step, image thresholding is first done, and then the contour in the image is
566 extracted, and the following formula is used to determine whether the frame is social or not, where i
567 stands for a frame, R_i stands for the judgment result of this frame and num_i stands for the number of
568 contours in this frame:

$$569 R_i = \begin{cases} social, num_i < n \cap num_i > 0 \\ nonsocial, num_i = n \\ error, others \end{cases} \quad (1)$$

570 When extracting the animal trajectory, due to the influence of noise, all the contour center points
571 are recorded as the candidates of the animal frame center point, and the closest point to each animal in
572 the previous frame is selected from multiple center points as the true center point of this frame, and
573 then the Hungarian matching idea is used to remove the matching points successfully, to optimize the
574 animal trajectory.

575 For dataset annotation, different manually annotated datasets were used for different animals. We
576 manually annotated 272 images in the 50 cm mice open field experiment, 805 images in the 20 cm
577 mice open field experiment, 600 images in the birds experiment, and 800 images in the dogs
578 experiment.

579 For background calculation, the non-mask position (the background) of each image is extracted
580 and fused into the final background image using the labeled data set. The above operation is repeated
581 for all data sets to obtain a clean background image.

582 The labeled data set is used for YOLACT++ round training, and the trained model is used to
583 predict video frames. The predicted high-quality frames will be added to the original data set for the

584 next round of training. Among them, the selection method of high-quality frames is as follows: i
585 represents a certain frame, f_i is the segmentation result of the frame i , f_{i-1} is the segmentation result
586 of the frame $i-1$, F is the calculation process of scoring matrix of all segmentation results in two
587 frames, the calculation idea refers to the Hungarian matching idea, and the calculation result is G_i :

588
$$G_i = F(f_i, f_{i-1}) \quad (2)$$

589 Then, all G_i are merged and clustered, and the class with the higher overall matrix score is
590 selected as the high-quality frame class and added to the training data set. YOLACT++ selects the
591 ResNet50 model as the pre-training model, and the maximum number of iterations is 150,000
592 generations. The training process takes about 5 hours. After YOLACT++ finishes training, its final
593 model is used to predict the results for all frames.

594 The video dataset required for instance segmentation training is subsequently generated. The data
595 set is divided into three parts, which are real data set, social area data set, and randomly generated data
596 set. The real data set is the continuous high-quality frames predicted and filtered by YOLACT++,
597 which are written into the video data set after data enhancement, where the data enhancement is
598 performed by flipping the image left and right. Since there are many occlusions during social
599 interaction and the performance of the model decreases, it is necessary to generate multiple datasets in
600 the social area. Here, consecutive frames of animals in the social area are selected and augmented to
601 generate the social area dataset, where N forms of enhancement are generated by data augmentation,
602 as shown below, where C represents combination (that is, the combination of different masks is
603 selected for flipping in each frame). A stands for alignment (that is, all masks are aligned to occlusion):

604
$$N = \left(\sum_n^{i=0} C_n^i \right) * A_n^n \quad (3)$$

605 Since the number of real data and social area data sets may be far from enough to complete the
606 model training task, some data sets in the animal activity area are randomly generated after this step.
607 In this part, the real animal trajectory in the video, the obtained animal mask, and the background
608 calculated in the previous step are used for data collection, and the video data set is written after data
609 enhancement. 14940 video datasets were generated for the 50cm mice open field experiment, 15130
610 for the 20cm mice open field experiment, 5970 for the bird experiment, and 41,755 for the dog
611 experiment.

612

613 **The training and validation of video instance segmentation model.** Here, the video instance
614 segmentation model adopts the Transformer-based VisTR model, which regards the video instance
615 segmentation task as a parallel sequence encoding and decoding problem. The pre-training model was
616 the ResNet101 model trained on the COCO dataset, the learning rate was set to 0.0001, the dropout
617 parameter was set to 0.1, the training epochs is 30, the frame length was set to 9, the sequence length
618 was set to 19, the number of encoding layers was 6, the number of decoding layers was 6, and Adam
619 was used for the optimizer. The model training takes about 1.5 days. The trained model is evaluated
620 on one minute of standard data, and the model accuracy for video instance segmentation is as follows:
621 IST (Identity swap times) is 5.500 ± 3.640 , ISTP (Identity swap times percentage) is 0.003 ± 0.002 ,
622 IOU_{NID} (The Intersection of the union without identity) is 0.746 ± 0.017 , mAP50_{NID} (Mean of average
623 precision without identity, the threshold value is greater than 0.5) is 0.985 ± 0.013 , mAP50_{ID} (Mean of
624 average precision with identity, the threshold value is greater than 0.5) is 0.605 ± 0.319 , similarly,
625 mAP70_{NID} is 0.805 ± 0.068 , mAP70_{ID} is 0.497 ± 0.271 .

626

627 **Single animal pose estimation.** Single animal pose estimation was performed using DeepLabCut
628 2.2.0.4 with a Conda virtual environment with Python 3.8.12. Four different animals were used in the
629 manual labeling of the dataset, with 709 images labeled for mice in a 50cm open field, 1421 images
630 labeled for mice in a 20cm open field, 1035 images labeled for birds, and 819 images labeled for dogs.
631 The number of body posture points varied for each animal, with 16 for each mouse(nose, left ear, right
632 ear, neck, left front limb, right front limb, left hind limb, right hind limb, left front claw, right front
633 claw, left hind claw, right hind claw, back, root tail, mid tail, tip tail), 19 for each bird(beak, calvaria,
634 left eye, right eye, neck, left wing root, left wing mid, left wing tip, right wing root, right wing mid,
635 right wing tip, left leg root, left leg tip, right leg root, right leg tip, back, belly, tail root, tail tip), and
636 17 for each dog(nose, left ear, right ear, neck, left front limb, left front paw, right front limb, right front
637 paw, left hind limb, left hind paw, right hind limb, right hind paw, front back, mid back, hind back, tail
638 root, tail tip). ResNet50 was used as the pre-trained model. The model was trained for a maximum of
639 103 million iterations with a batch size of 8 and took approximately 10 hours to train on an NVIDIA
640 RTX3090 GPU using Python. The prediction results were saved in a CSV file.

641

642 **3D pose reconstruction of multi-animals.** Here, we use the multi-view geometry method in computer
643 vision for the 3D reconstruction of multiple animals. The basic projection formula between 2D points
644 and 3D space points is as follows.

$$645 s \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = K \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \quad (4)$$

646 Here, s represents the scaling factor, x and y are the points in the image, K is the camera
647 internal reference, R is the rotation matrix, t is the translation matrix, and X , Y , and Z represent
648 the coordinates of the 3D points. Specifically, firstly, all two-dimensional skeleton information of
649 multi-animal and multi-view was read, and the points in the two-dimensional file with too low a
650 confidence rate were directly set to NaN. Then, the relative position parameters between multiple
651 cameras are read and the triangulation algorithm is used for the 3D reconstruction of a single animal.

652 The basic principle is as follows:

$$\begin{aligned} \alpha_1 &= K_1[R_1 t_1]P \\ \alpha_2 &= K_2[R_2 t_2]P \\ &\dots \\ \alpha_n &= K_n[R_n t_n]P \end{aligned} \tag{5}$$

653 Here, α_1 to α_n represent the two-dimensional points with the same content in different cameras,
654 K_1 to K_n represent the internal parameter matrix of different cameras, R_1 to R_n represent the rotation
655 matrix of different cameras, t_1 to t_n represent the translation matrix of different cameras, and the three-
656 dimensional point P can be solved by combining these equations, and we use the SVD decomposition
657 to solve the least squares regression problem.

658 Next, since the appearance of animals in different views is very similar, the identities of instance
659 segmentation may be swapped, and the wrong 3D point coordinates may be calculated. Therefore, we
660 first obtain the full permutation index list of all 2D points of multiple animals in each view angle, and
661 then obtain the 3D point coordinates in all cases. Eventually, the point with the smallest error is selected
662 as the final multi-animal 3D skeleton point.

664

665 **The training and validation of animal identification model.** In multi-animal experiments, because
666 the animal hair is too similar, its identity is likely to be wrongly assigned. Here, we use the deep
667 learning model to identify two-dimensional animals under four perspectives, to determine the identity,
668 and to ensure that the animal identity of the whole video can be corrected back.
669 The data set of identity recognition needs to record the individual activity videos of all experimental
670 animals in the same scene, and then obtain two-dimensional pictures of animals from multiple
671 perspectives. The trained video instance segmentation model is used to predict the mask of the whole
672 body of a single animal (the effect of manually selecting some body parts of animals for identity
673 recognition is not good). Then, the four obtained prediction images are processed by image stretching,
674 stitching, thresholding, and so on, and finally, a complete image is obtained as the training data. The
675 labels are the animal numbers, so there is no need to manually annotate the data. The size of the dataset
676 depends on the duration of recording individual activity videos of animals. In the mouse experiment
677 with a 50 cm open field, the data set size was 594,000, in the mouse experiment with a 20 cm open
678 field, the data set size was 180,000, in the bird social experiment, and the dog social experiment, the
679 data set size was 54161.
680 The deep learning model uses the Efficientnet-b4 model, the maximum number of iterations is set to
681 120, the initial value of the learning rate is 0.005, and the batch size is set to 32. It is trained on NVIDIA
682 RTX3090 GPU, and each round of training takes about 40 minutes.
683 In the mouse experiment with a 50 cm open field, the accuracy of the identification network in the
684 training set was 0.993, and the accuracy of the validation set was 0.922. In the mouse experiment with
685 a 20 cm open field, the accuracy of the training set was 0.999, and the accuracy of the validation set

686 was 0.911. In the dog social experiment, the training set accuracy is 0.999, and the validation set
687 accuracy is 0.999.

688

689 **The pattern visualization of animal identification by LayerCAM.** LayerCAM can generate the
690 class activation maps (CAM) of each layer of CNN-based models²⁵. The LayerCAM of each layer of
691 the EfficientNet-based identity recognition network is averaged to output a global visualization pattern
692 of animal identities. To further compare the feature weights of different body parts of animals, the 2D
693 poses are used for the body part location of identity frames. From the 2D poses to identity frames,
694 there is a coordinate transformation. The transformed 2D poses on identity frames P_t can be calculated
695 as:

$$696 \quad P_t = K_r [K_b^1(P_1 + B_b^1), K_b^2(P_2 + B_b^2), \dots, K_b^{cam}(P_{cam} + B_b^{cam})] \quad (6)$$

697 where K_r is the resized matrix of cascade frames, K_b is the scale matrix of the bounding box of
698 single camera view, P is the raw 2D poses, B_b is the bias matrix of the bounding box of single camera
699 view, and the index cam is the camera number. The K_b is decided by the size of frames and the
700 bounding box size of the cropped animal instance. To reduce the disturbance of 2D pose estimation, a
701 box centered on P_t of each transformed 2D pose crops the LayerCAM value. And the mean value of
702 them represents the CAM weights of each body part.

703

704 **The mask reprojection from 3D poses to video instances.** The 3D poses of each animal connect the
705 geometric relationships of the video instances in different camera views. In the step of 3D
706 reconstruction of multi-animals, the 2D poses of each camera view angle have been re-grouped by
707 optimization. Because the 2D poses of multiple animals are constructed by the single animal after

708 video instance segmentation, the masks of instances are matched to the 2D poses. Therefore, the 3D
709 poses of each animal are corresponding to the masks of video instances frame by frame. A table saves
710 the corresponding indexes from 3D poses to video instances and is checked frame by frame for mask
711 reprojection.

712

713 **Parallel decomposition of trajectories.** The parallel decomposition of trajectories includes three parts.

714 The first part is the decomposition of non-locomotor movement. Let X_{ij}^m is the behavior
715 trajectories of animals m with i frames and j dimensions, the non-locomotor movement component
716 Y_{NM} can be calculated as follows:

$$717 Y_{NM} = \{X^m - J \frac{1}{N} \sum_{n=1}^N X_{nj}^m\} \quad (7),$$

718 where J is all one vector, and N is the number of frames. After this step, the center of the body
719 of the animals can be aligned together.

720 The second part is the decomposition of locomotion. The locomotion component Y_L can be
721 calculated as follows:

$$722 Y_L = \left\{ \frac{\partial X^m}{\partial i} \right\} \quad (8).$$

723 The third part is the decomposition of distance. The distance component Y_D can be calculated as
724 follows:

$$725 Y_D = \sqrt{(X^1 - X^2)^2} \quad (9).$$

726

727 **Feature representation of distance dynamics.** The distance dynamics Y_{DD} can be calculated as
728 follows:

729

$$\begin{cases} Y_{DD} = f_{UMAP}(Y_D), i < I_{thres} \\ Y_{DD} = f_{ResMLP}(Y_D), i \geq I_{thres} \end{cases} \quad (10),$$

730 where $f_{UMAP}(\cdot)$ is the UMAP mapping including the parameters n_neighbors set to 199, and

731 I_{thres} is the threshold of frames set to 200000, and $f_{ResMLP}(\cdot)$ is the feature

732 representation including ResMLP. For $f_{ResMLP}(\cdot)$, firstly, the Y_D is randomly sampled to Y_{Ds}

733 according to I_{thres} . And the rest of Y_D is Y_{Dr} . Then, Y_{Ds} and $Y_{DDs} = f_{UMAP}(Y_{Ds})$, the UMAP of Y_{Ds} , is

734 used to train ResMLP for feature encoding. After the training, the ResMLP predicts the Y_{DDr} from Y_{Dr} ,

735 and the Y_{DD} can be recombined by Y_{DDs} and Y_{DDr} according to the sample point.

736 The ResMLP is based on the residual module and multi-layer perceptron^{43,44}. The residual block

737 is constructed by multi-layer perceptron with two layers. Each layer has 64 neurons, and two residual

738 blocks are stacked to construct the residual part. The head of ResMLP is one 1d convolution layer and

739 one global max pooling layer for the feature encoding of distance dynamics⁴⁵. The output part of

740 ResMLP is constructed by one fully connected layer with one sigmoid layer for the continuous value

741 representation⁴⁶. The activation function of ResMLP uses ReLU layers⁴⁶. The optimizer of ResMLP is

742 adam, the initial learning rate is set to 0.001, the mini batch size is set to 2000, and the epoch number

743 is set to 100⁴⁷. The final RMSE of validation is 0.02~0.06, and the training time of ResMLP is about 4

744 min on NVIDIA GeForce RTX 3090 GPU.

745

746 **The time consumption comparison of ResMLP.** After the manually time consumption test of UMAP,

747 the quadratic function is used for the estimation time comparison. The coefficient of quadratic function

748 is 0.00002. The time consumption of ResMLP is estimated as a linear function with slope set to

749 0.000008 and intercept set to 240 based on the training and prediction time of ResMLP. The functions
750 of the time consumption are as follows:

751
$$T_{UMAP} = k_{UMAP} y_D^2 \quad (11),$$

752
$$T_{ResMLP} = k_{ResMLP} y_D^2 + b_{ResMLP} \quad (12),$$

753 where T_{UMAP} is the time consumption of UMAP, k_{UMAP} is the coefficient of quadratic function, y_D
754 is the number of distance components, T_{ResMLP} is the time consumption of ResMLP, k_{ResMLP} is the
755 slope of ResMLP, and b_{ResMLP} is the intercept.

756

757 **The distance map.** Let Y_E is the low-dimensional embedding of the social behavior atlas, and Y_{DM} is
758 the distance of Y_E . The Y_{DM} can be calculated as follows:

759
$$Y_{DM}^j = \frac{1}{q^j - p^j + 1} \sum_{i=p^j}^{q^j} y_D^i \quad (13),$$

760 where j is one of the point in Y_{DM} , p is the start time point of Y_{DM}^j , and q is the end time point
761 of Y_{DM}^j .

762

763 **The map/body distance.** The body distance is equivalent to Y_{DM} . The map distance Y_{EM} can be
764 calculated as follows:

765
$$Y_{EM}^j = \arg \min (Jy_E^j - Y_E) \quad (14),$$

766 where y_E is one point of Y_E . And the map/body distance Y_{MB} can be calculated as follows:

767
$$Y_{MB}^j = \frac{Y_{EM}^j}{Y_{DM}^j} \quad (15).$$

768

769 **The adaptive watershed clustering.** The variable of watershed clustering on 2D embeddings is the
 770 kernel bandwidth k_b , which decides the density d . The adaptive watershed clustering is designed to
 771 automatically choose the best d . The best d is determined by the stable number of clusters c_{st} . To
 772 get c_{st} , the clusters under certain k_b are firstly calculated as:

773
$$c_n^i = f_{WC}(Y_E, k_b^i) \quad (16),$$

774 where $f_{WC}(\cdot)$ is the watershed clustering, c_n is the number of clusters. Then, the c_{st} is calculated
 775 as:

776
$$c_{st} = c_n^{f_{Mode}\left(\left|\frac{dc_n^i}{di}\right|\right)} \quad (17),$$

777 where $f_{Mode}(\cdot)$ is the mode function. The c_s is the lower bound of watershed clustering with
 778 larger kernel bandwidth. To improve the sensitivity of watershed clustering for the subtle differences
 779 of social behavior, a threshold u_{thres} is set to 0.9 to restrict k_b in more fine grain. So, the number of
 780 sensitivity clusters c_{se} can be calculated as:

781
$$c_{se} = \arg \max \left(\left| \frac{dc_n^i}{di} \right| - u_{thres} \times \left(f_{Max} \left(\left| \frac{dc_n^i}{di} \right| \right) - f_{Min} \left(\left| \frac{dc_n^i}{di} \right| \right) \right) \right) \quad (18),$$

782 where $f_{Max}(\cdot)$ is the maximum function, and $f_{Min}(\cdot)$ is the minimum function. The c_{st} and c_{se}
 783 together determine the lower and upper bound of watershed clustering.

784

785 **Behavior mapping of the PAIR-R24M dataset.** The 3D trajectories of PAIR-R24M dataset are
 786 captured by high-performance cameras with high frame rate. To reduce the processing time and keep
 787 the global features of different mice, the frame rate is downsampled from 120 Hz to 30 Hz. The
 788 classification of the behavioral interactions of the animals includes 4 categories especially close, chase,

789 explore and NaN value. The NaN value in social behavior atlas is defined as others. Because the
790 interaction classes are imbalance in quantity, four coefficients are used to balance the visual effect of
791 data distribution in atlas.

792

793 **The cluster purity.** The cluster purity is an indicator to quantify the uniformity of a cluster. Let the
794 $P = \{p_1, p_2, \dots, p_N\}$ is the ground truth indexes of all data, the $Q = \{q_1, q_2, \dots, q_N\}$ is the cluster indexes
795 of all data, and N is the number of clusters, the cluster purity C_p can be calculated as:

$$796 C_p^i = \frac{\sum p_i \cap q_i}{\sum p_i \cup q_i} \quad (19).$$

797

798 **The cluster gram of grouped mice.** To reveal the inherent patterns of behavior fractions of each group,
799 the cluster gram is firstly stacked group by group. Then, all of the behavior fractions are normalized
800 according to the dimension of subject and sorted by hierarchical clustering according to the dimension
801 of social behavior module. The clustering tree is normalized for better visualization. Further, the
802 behavior fractions of each group are sorted according to Euclidean distance for the similarity metric.
803 The initial row of each group for sorting is chose by the maximum change rate R_m . The R_m can be
804 calculated as:

$$805 R_m = \sum \left| \frac{ds_m^i}{di} \right| \quad (20),$$

806 where s_m is the sorted social behavior fractions by hierarchical clustering.

807

808 **The angle spectrum clustering.** The angle spectrum clustering is used to merge the similar sub-
809 clusters of behavior in feature vector space. Let V is the feature vector matrix of social behavior
810 modules in PCA space, the angle spectrum A_s can be calculated as:

$$a_s^{ij} = \arccos\left(\frac{\mathbf{v}_i \cdot \mathbf{v}_j}{|\mathbf{v}_i| \times |\mathbf{v}_j|}\right) \quad (21),$$

812 where \mathbf{v} is one of the feature vector in V . Then, the A_s is clustered by hierarchical clustering
813 according to the 11 components of 99% variance explanation.

814

815 **Computational software and hardware.** The development of 3D tracking part of SBeA is based on
816 the Python 3.8.12 in Conda environment on Ubuntu 20.04. The development of behavior mapping part
817 and figure plot uses MATLAB R2021b. All of the statistics are finished by Prism 8.0 (GraphPad
818 Software). The development of SBeA is on a high-performance workstation with two Intel Xeon Silver
819 4210R, eight NVIDIA GeForce RTX 3090, 2 Tera Byte RAM and a 140 Tera Byte Network Attached
820 Storage. SBeA has been verified to be able to applied in a workstation with one Intel i9-12900K CPU,
821 at least one NVIDIA GeForce RTX 3090 GPU and 128 Giga Byte RAM.

822

823 **Statistics.** Before hypothesis testing, data were first tested for normality by the Shapiro–Wilk
824 normality test and for homoscedasticity by the F test. For normally distributed data with homogeneous
825 variances, parametric tests were used; otherwise, non-parametric tests were used. All of the ANOVA
826 analysis are corrected by the recommended options of Prism 8.0. No data in this work are removed.
827 All related data are included in analysis.

828

830 **References**

- 831 1. Chen, P. & Hong, W. Neural Circuit Mechanisms of Social Behavior. *Neuron* **98**, 16–30 (2018).
- 832 2. Barbera, G. *et al.* An open-source capacitive touch sensing device for three chamber social behavior test. *MethodsX* **7**, 101024 (2020).
- 833 3. Sturman, O. *et al.* Deep learning-based behavioral analysis reaches human accuracy and is capable of outperforming commercial solutions. *Neuropsychopharmacology* **45**, 1942–1952 (2020).
- 834 4. Schweihoff, J. F., Hsu, A. I., Schwarz, M. K. & Yttri, E. A. A-SOiD, an active learning platform for expert-guided, data efficient discovery of behavior. *bioRxiv* 2022.11.04.515138 (2022) doi:10.1101/2022.11.04.515138.
- 835 5. Mathis, M. W. & Mathis, A. Deep learning tools for the measurement of animal behavior in neuroscience. *Curr Opin Neurobiol* **60**, 1–11 (2020).
- 836 6. Chen, Z. *et al.* AlphaTracker: A multi-animal tracking and behavioral analysis tool. *bioRxiv* Preprint at <https://doi.org/10.1101/2020.12.04.405159> (2020).
- 837 7. Pereira, T. D. *et al.* SLEAP: A deep learning system for multi-animal pose tracking. *Nature Methods* **2022** *19*:4 **19**, 486–495 (2022).
- 838 8. Lauer, J. *et al.* Multi-animal pose estimation, identification and tracking with DeepLabCut. *Nature Methods* **2022** *19*:4 **19**, 496–504 (2022).
- 839 9. Vidal, M., Wolf, N., Rosenberg, B., Harris, B. P. & Mathis, A. Perspectives on Individual Animal Identification from Biology and Computer Vision. *Integr Comp Biol* **61**, 900–916 (2021).
- 840 10. Agezo, S. & Berman, G. J. Tracking together: estimating social poses. *Nature Methods* **2022** *19*:4 **19**, 410–411 (2022).
- 841 11. Han, Y. *et al.* MouseVenue3D: A Markerless Three-Dimension Behavioral Tracking System for Matching Two-Photon Brain Imaging in Free-Moving Mice. *Neurosci Bull* **38**, 303–317 (2022).
- 842 12. Huang, K. *et al.* A hierarchical 3D-motion learning framework for animal spontaneous behavior mapping. *Nat Commun* **12**, (2021).
- 843 13. Han, Y., Huang, K., Chen, K., Wang, L. & Wei, P. An automatic three dimensional markerless behavioral tracking system of free-moving mice. *2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER 2021* 306–310 (2021) doi:10.1109/CYBER53097.2021.9588299.
- 844 14. Liu, N. *et al.* Objective and comprehensive re-evaluation of anxiety-like behaviors in mice using the Behavior Atlas. *Biochem Biophys Res Commun* **559**, 1–7 (2021).
- 845 15. Ghiasi, G. *et al.* Simple Copy-Paste Is a Strong Data Augmentation Method for Instance Segmentation. 2918–2928 Preprint at <https://cocodataset.org/> (2021).
- 846 16. Xu, Z. *et al.* Continuous Copy-Paste for One-Stage Multi-Object Tracking and Segmentation. 15323–15332 Preprint at <http://www.cvlabs.net/> (2021).
- 847 17. Bolya, D., Zhou, C., Xiao, F. & Lee, Y. J. YOLACT++ Better Real-Time Instance Segmentation. *IEEE Trans Pattern Anal Mach Intell* **44**, 1108–1121 (2022).
- 848 18. Bolya, D., Fanyi, C. Z., Yong, X. & Lee, J. *YOLACT Real-time Instance Segmentation*. *openaccess.thecvf.com* <https://github.com/dbolya/yolact>. (2019).
- 849 19. Wang, Y. *et al.* End-to-End Video Instance Segmentation With Transformers. 8741–8750 Preprint at <https://git.io/VisTR> (2021).
- 850 20. Peça, J. *et al.* Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. *Nature* **472**, 437–442 (2011).

873 21. Mei, Y. *et al.* Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. *Nature* **530**,
874 481–484 (2016).

875 22. Marks, M. *et al.* Deep-learning-based identification, tracking, pose estimation and behaviour classification of
876 interacting primates and mice in complex environments. *Nature Machine Intelligence* **2022** *4*:4, 331–340
877 (2022).

878 23. Zhuang, F. *et al.* A Comprehensive Survey on Transfer Learning. *Proceedings of the IEEE* vol. 109 Preprint
879 at <https://doi.org/10.1109/JPROC.2020.3004555> (2021).

880 24. Tan, M. & Le, Q. v. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. 6105–6114
881 Preprint at <https://proceedings.mlr.press/v97/tan19a.html> (2019).

882 25. Jiang, P. T., Zhang, C. bin, Hou, Q., Cheng, M. M. & Wei, Y. LayerCAM: Exploring hierarchical class
883 activation maps for localization. *IEEE Transactions on Image Processing* **30**, 5875–5888 (2021).

884 26. Romero-Ferrero, F., Bergomi, M. G., Hinz, R. C., Heras, F. J. H. & de Polavieja, G. G. idtracker.ai: tracking
885 all individuals in small or large collectives of unmarked animals. *Nature Methods* **2019** *16*:2 **16**, 179–182
886 (2019).

887 27. Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, S. & de Polavieja, G. G. IdTracker: Tracking
888 individuals in a group by automatic identification of unmarked animals. *Nat Methods* **11**, 743–748 (2014).

889 28. Ebbesen, C. L. & Froemke, R. C. Body language signals for rodent social communication. *Curr Opin
890 Neurobiol* **68**, 91–106 (2021).

891 29. Bzdok, D. & Dunbar, R. I. M. The Neurobiology of Social Distance. *Trends Cogn Sci* **24**, 717–733 (2020).

892 30. von Ziegler, L., Sturman, O. & Bohacek, J. Big behavior: challenges and opportunities in a new era of deep
893 behavior profiling. *Neuropsychopharmacology* 1–12 (2020) doi:10.1038/s41386-020-0751-7.

894 31. Gomez-Marin, A., Paton, J. J., Kampff, A. R., Costa, R. M. & Mainen, Z. F. Big behavioral data: Psychology,
895 ethology and the foundations of neuroscience. *Nature Neuroscience* Preprint at
896 <https://doi.org/10.1038/nn.3812> (2014).

897 32. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension
898 Reduction. (2018).

899 33. Shi, S., Wang, Y., Dong, H., Gui, G. & Ohtsuki, T. Smartphone-Aided Human Activity Recognition Method
900 using Residual Multi-Layer Perceptron. *INFOCOM WKSHPS 2022 - IEEE Conference on Computer
901 Communications Workshops* (2022) doi:10.1109/INFOCOMWKSHPS54753.2022.9798274.

902 34. Wiltschko, A. B. *et al.* Mapping Sub-Second Structure in Mouse Behavior. *Neuron* **88**, 1121–1135 (2015).

903 35. Wu, Y. E. *et al.* Neural control of affiliative touch in prosocial interaction. *Nature* **2021** *599*:7884 **599**, 262–
904 267 (2021).

905 36. Marshall, J. D. *et al.* The PAIR-R24M Dataset for Multi-animal 3D Pose Estimation. *bioRxiv*
906 2021.11.23.469743 (2021) doi:10.1101/2021.11.23.469743.

907 37. Day, F. R., Ong, K. K. & Perry, J. R. B. Elucidating the genetic basis of social interaction and isolation. *Nat
908 Commun* **9**, (2018).

909 38. Wu, Y. E. & Hong, W. Neural basis of prosocial behavior. *Trends Neurosci* (2022)
910 doi:10.1016/J.TINS.2022.06.008.

911 39. Dunn, T. W. *et al.* Geometric deep learning enables 3D kinematic profiling across species and environments.
912 *Nature Methods* **2021** *18*:5 **18**, 564–573 (2021).

913 40. Mathis, A. *et al.* Pretraining boosts out-of-domain robustness for pose estimation. in *Proceedings - 2021 IEEE
914 Winter Conference on Applications of Computer Vision, WACV 2021* (2021).
915 doi:10.1109/WACV48630.2021.00190.

916 41. Walter, T. & Couzin, I. D. Trex, a fast multi-animal tracking system with markerless identification, and 2d

917 estimation of posture and visual elds. *Elife* **10**, 1–73 (2021).

918 42. Yang, L., Fan, Y. & Xu, N. Video instance segmentation. in *Proceedings of the IEEE International Conference*
919 *on Computer Vision* vols 2019–October (2019).

920 43. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in *Proceedings of the*
921 *{IEEE} conference on computer vision and pattern recognition* 770–778 (2016). doi:10.1109/CVPR.2016.90.

922 44. Kruse, R., Mostaghim, S., Borgelt, C., Braune, C. & Steinbrecher, M. Multi-layer Perceptrons. 53–124 (2022)
923 doi:10.1007/978-3-030-42227-1_5.

924 45. Kiranyaz, S. *et al.* 1D convolutional neural networks and applications: A survey. *Mech Syst Signal Process*
925 **151**, (2021).

926 46. Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. *Nature* Preprint at <https://doi.org/10.1038/nature14539>
927 (2015).

928 47. Zhang, Z. Improved Adam Optimizer for Deep Neural Networks. in *2018 IEEE/ACM 26th International*
929 *Symposium on Quality of Service, IWQoS 2018* (2019). doi:10.1109/IWQoS.2018.8624183.

930 48. Kort, R. *et al.* Shaping the oral microbiota through intimate kissing. *Microbiome* **2**, (2014).

931 49. Clucas, B. Patterns of Behavior: Konrad Lorenz, Niko Tinbergen, and the Founding of Ethology. *J Mammal*
932 **87**, (2006).

933 50. Kaminski, J. & Marshall-Pescini, S. *The Social Dog: Behavior and Cognition. The Social Dog: Behavior and*
934 *Cognition* (2014). doi:10.1016/C2012-0-06593-3.

935 51. de Chaumont, F. *et al.* Real-time analysis of the behaviour of groups of mice via a depth-sensing camera and
936 machine learning. *Nature Biomedical Engineering* **2019 3:11** **3**, 930–942 (2019).

937

938

939 **Acknowledgements**

940 This work was supported in part by STI2030-Major Projects(2021ZD0203900), National Natural
941 Science Foundation of China (32222036), the Youth Innovation Promotion Association of the Chinese
942 Academy of Sciences (Y2021100), the National Key R&D Program of China (2018YFA0701403),
943 CAS Key Laboratory of Brain Connectome and Manipulation (2019DP173024), and Guangdong
944 Provincial Key Laboratory of Brain Connectome and Behavior (2017B030301017). We thank
945 ChatGPT for the English language editing of this paper.

946 **Author contributions**

947 Conceptualization was done by YN. H., K. C. and PF. W. Code was done by YN. H., K. C., JH. L. and
948 ZW. W. Algorithm design was done by YN. H. and K. C. Mouse data were gathered by YN. H., WH.
949 L., XJ. W., YT. H. Bird data were gathered by YN. H., CL. H. and YT. H. Dog data were gathered by
950 JX. L., YWZ. S., N. W., J. L., GD. W., YP. Z., YN. H., YT. H., XJ. W. and JH. L. Hardware was set
951 up by YN. H. and K. H. Data analysis was done by YN. H. Preliminary experiments were assisted by
952 K. H., JJ. Z., SY. C., YJ. W., G. G. and LP. W. The article was written by YN. H., K. C., YK. W. and
953 PF. W. with input from all authors. PF. W. supervised the project.

954

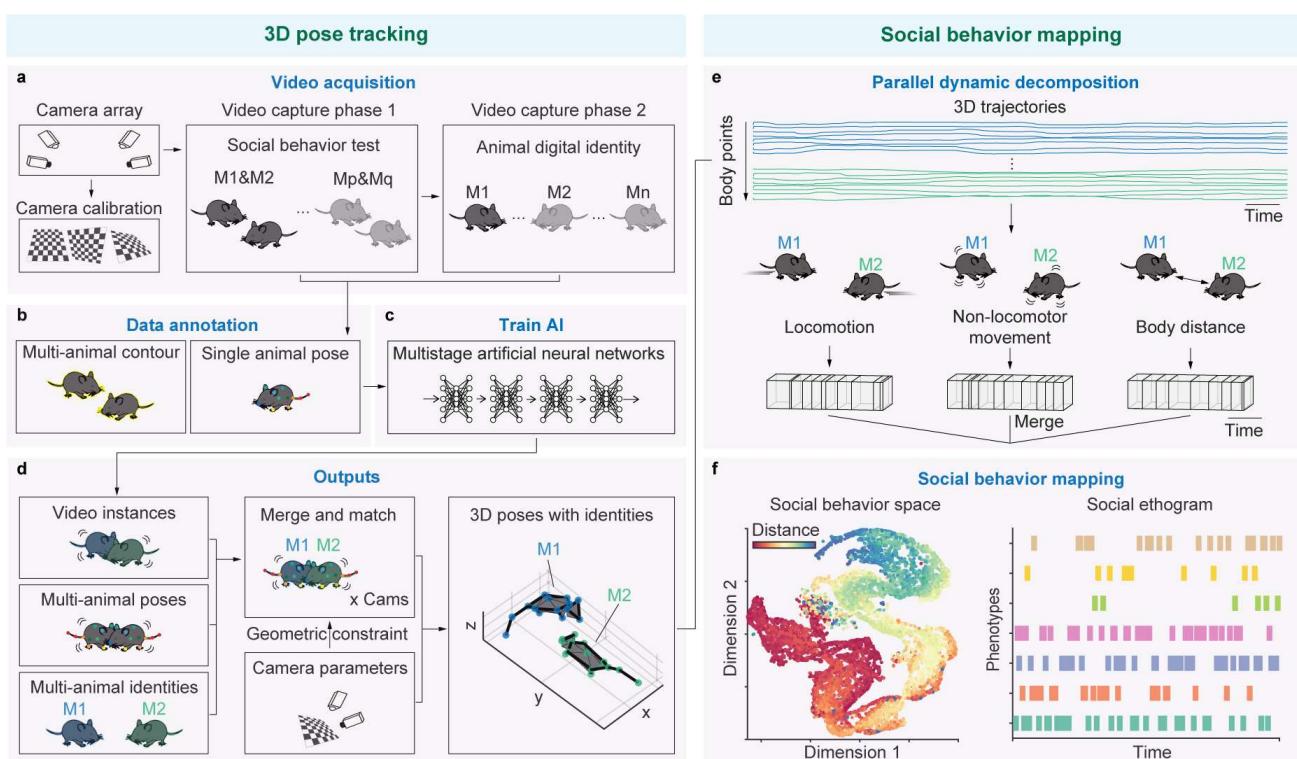
955 **Competing interests**

956 The authors declare no competing interests.

957

958

Figures and legends



959

Fig. 1| The architecture of Social Behavior Atlas. **a**, Video acquisition for free social behavior test. The camera array is used for behavioral capturing, and it is calibrated by checkboard images. There are two phase for behavioral video capturing including social behavior test and animal digital identity. The phase 1 is to capture the videos of free-social interactions of two mice. The phase 2 is to capture the identities of each mice in phase 1. **b**, Data annotation for AI training. Social Behavior Atlas need the annotations of multi-animal contour and single animal pose. **c**, The multistage artificial neural networks for 3D pose tracking. **d**, The outputs of 3D pose tracking. Left: The outputs of AI including video instances, multi-animal poses, and multi-animal identities. Center: Combining video instances, multi-animal poses, and multi-animal identities with camera calibration parameters for 3D reconstruction with identities. Right: The visualization of 3D poses with identities. **e**, Parallel dynamic decompostion of body trajectories. Raw 3D trajectories of two animals can be decomposed into locomotion, non-locomotor movement and body distance. After dynamical temporal deomsition, these three parts are merged together as social behavior motifs for behavioral mapping. **f**, Social behavior metric. Social behavior motifs are clustered and pheonotyped according to the distribution in social behavior space.

975

976

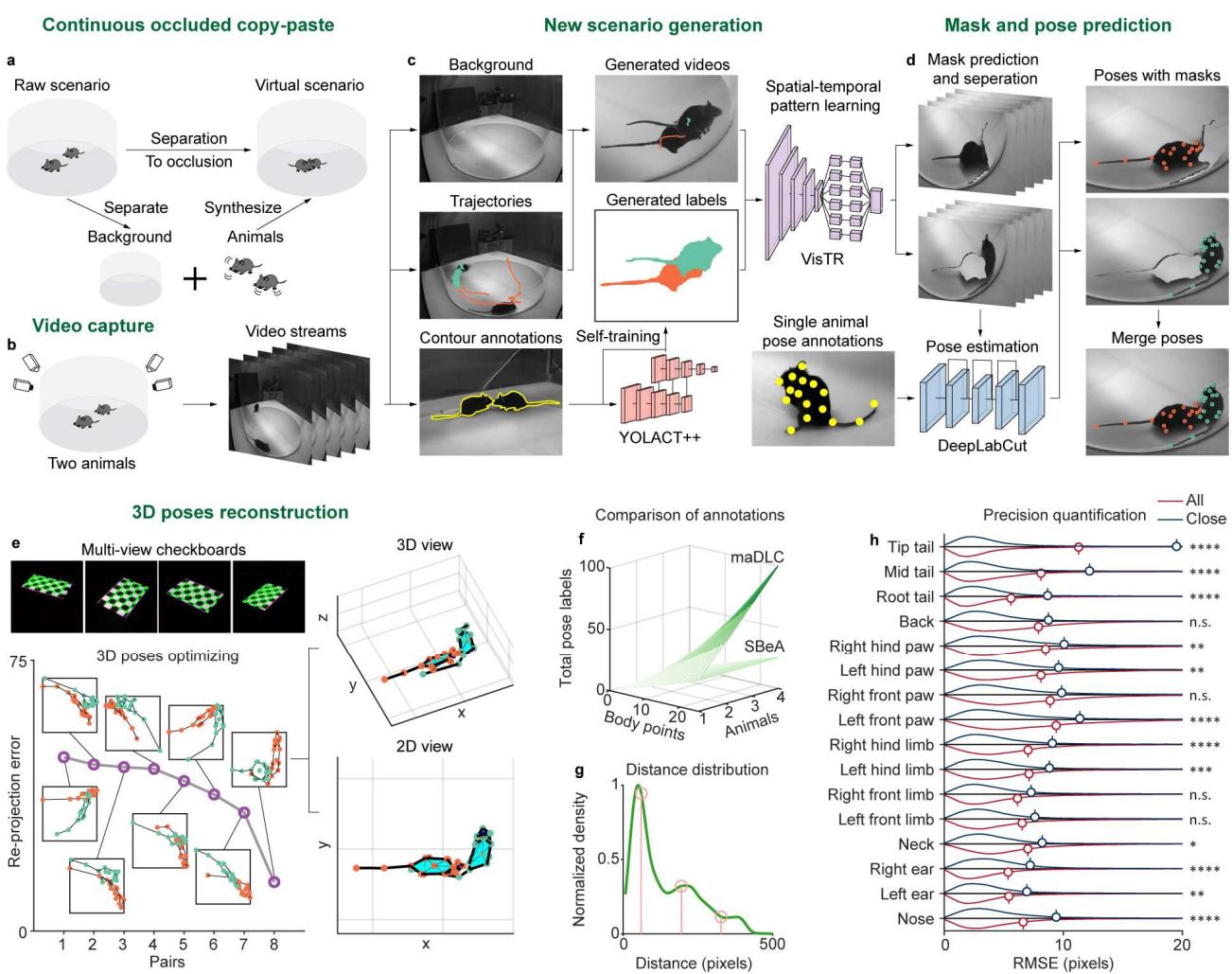
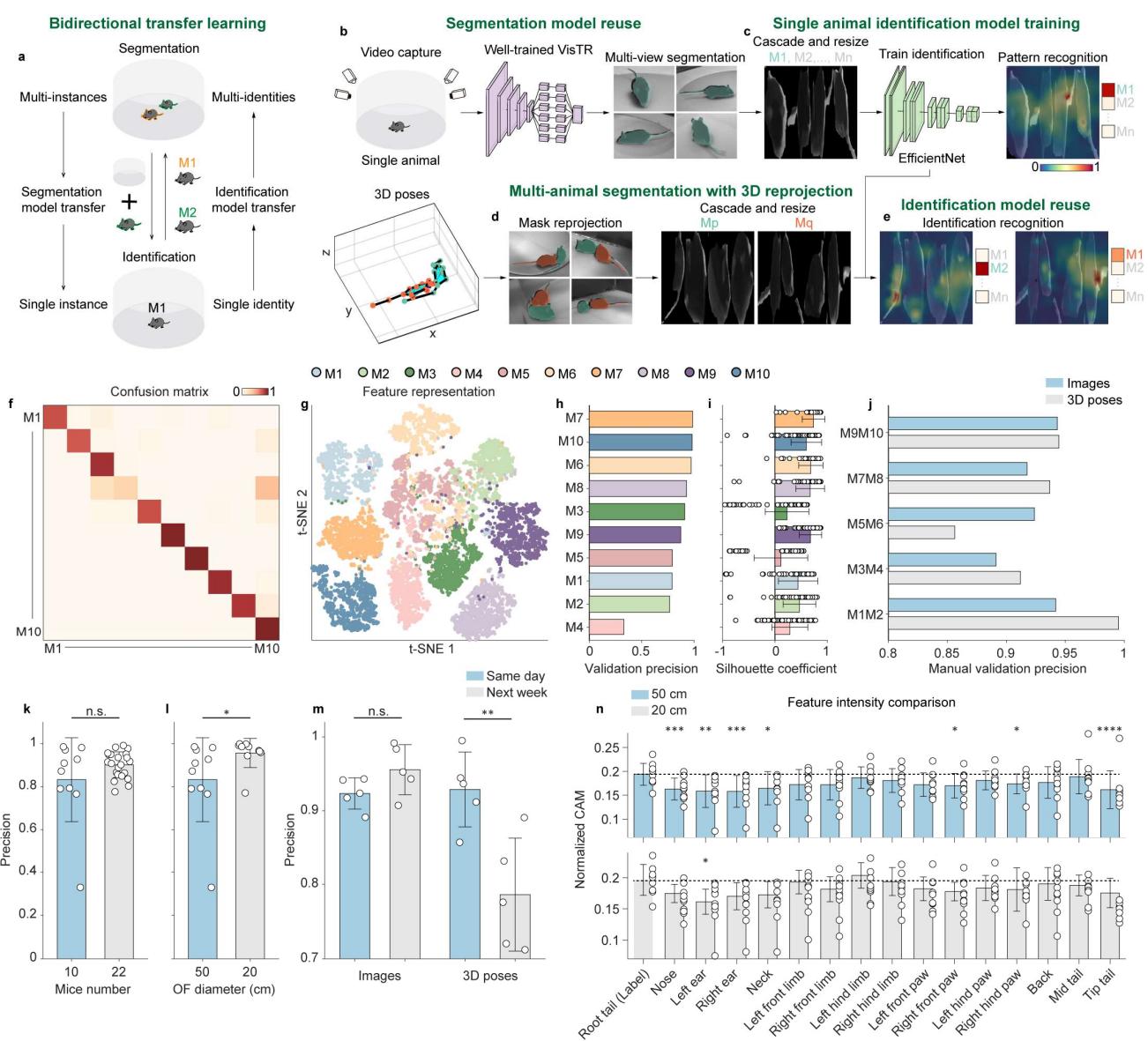


Fig. 2| Continuously occluded copy-paste data augmentation-based multi-animal tracking. **a**, Concept diagram of continuously occluded copy-paste data augmentation. From raw scenario, the instances of background and animals can be synthesized with occlusion in new combination. That achieves generating big data from small data. **b**, Video capture of two free-moving animals. Two animals are put in transparent circular open field and the video streams of behavior are captured by camera array. **c**, New scenario generation according to a little manually labeled data. Behavioral video streams are separated to backgrounds (top left), trajectories (medium left) and manually labeled masks (bottom left). Self-training YOLACT++ is used to predict more unlabeled masks from manually labeled masks. They then combined with backgrounds and trajectories to generate new scenarios of two free-moving mice. **d**, Mask and pose prediction. VisTR is used for the spatial-temporal learning of new scenarios and predict the masks of real mouse instances. Single animal pose estimation model such as DeepLabCut is used for each animal and further the 2D pose of them are merged together. **e**, 3D poses reconstruction. The camera array are calibrated by checkboard images using Zhang's calibration. And reprojection errors of all combination pairs of 2D poses of each animals are optimized for 3D reconstruction. Top right: 3D view of 3D poses of two mice in this case. Bottom right: 2D view of 3D poses of two mice in this case. **f**, Comparison of the number of manually labeled points of SBeA and maDLC. **g**, Distance distribution of two free-moving mice. Pink stems are distance boundaries clustered by k-means (close: 60.69, interim: 195.03, far: 327.47). **h**, Prediction error comparison of all validation data. The differences between all and close data are about ± 2 pixels (two-way ANOVA).

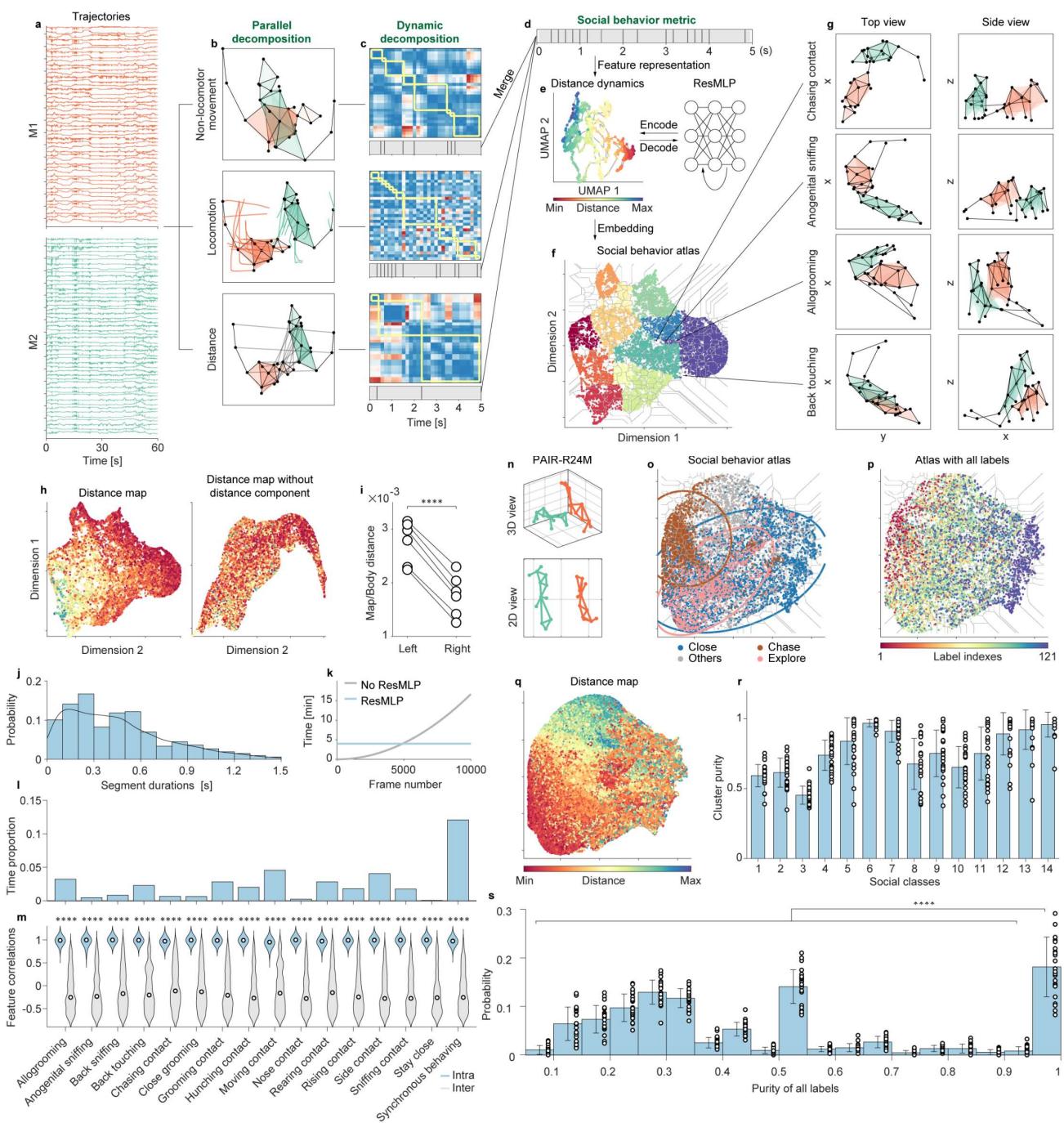
997 followed by Sidak multiple comparisons test). RMSE: root-mean squared error, n.s.: no significant
998 difference, *: $P<0.05$, **: $P<0.01$, ***: $P<0.001$, ****: $P<0.0001$.
999
1000



1001

1002 **Fig. 3| Bidirectional transfer learning-based animal identification.** **a**, Concept diagram of
1003 bidirectional transfer learning-based animal identification. Well trained segmentation model on multi-
1004 animals can be transferred to the single animal, and well trained identity recognition model on the
1005 single animal can also be transferred to multi-animals. The transfer learning of two models reduces
1006 unnecessary manual annotations of animal identities. **b**, Segmentation model reuse. Left: an animal is
1007 put in transparent circular open field and the video streams are captured by camera array. Center: The
1008 well-trained VisTR is reused for the single animal. Right: The output of well-trained VisTR on the
1009 single animal. **c**, Single animal identification model training. Left: the single animal instances of multi-
1010 view are cropped, cascaded and resized to an image. Center: using EfficientNet as the backbone to
1011 train multi-animal classifier. Right: The identity recognition pattern visualization by LayerCAM. **d**,
1012 Multi-animal segmentation with 3D reprojection. Left: mask reprojection of each camera view. Right:
1013 crop, cascade and resize of two animal instances from matched camera view angles. **e**, Identification
1014 model reuse. The well-trained identification model on the single animal can be reused in multi-animal
1015 identification. **f**, Confusion matrix of single animal identification. **g**, Feature representation of single
1016 animal identification using t-SNE. **h**, The sorted validation precision of **f**. **i**, The sorted silhouette

1017 coefficient of **g**. **j**, The manual validation precision of multi-animal identification. **k**, The identification
1018 precision under different mice number. The identification of 10 mice uses 7200 frames for training and
1019 1800 for validation, and 22 mice uses 21600 frames for training and 5400 frames for validation. With
1020 the increase of animal number, the add of training frames can keep higher identification precision (two-
1021 sided Mann–Whitney test). **l**, The identification precision under different open field (OF) diameter of
1022 behavioral test(two-sided Mann–Whitney test). **m**, The identification precision in different interval
1023 time between social behavior test and identify recording(two-sided unpaired T-test). **n**, The feature
1024 intensity of the tracking body parts under different OF diameter of behavioral test. The root tail of mice
1025 is labeled by different black line markers for the easy distinguish of human(one-way ANOVA followed
1026 by Dunnett multiple comparisons test). n.s.: no significant difference, *: $P<0.05$, **: $P<0.01$, ***:
1027 $P<0.001$, ****: $P<0.0001$.
1028
1029
1030



1043 performance for the representation of social behavior with different distances. **j**, The probability of
1044 segment durations. **k**, The comparison of computational time consumption of feature representation
1045 with or without ResMLP. **l**, The time proportion of different behavior. **m**, The feature correlations intra
1046 and inter behavioral classes (two-sided Mann–Whitney test). **n-s**, The performance quantification of
1047 SBeA on the PAIR-R24M dataset. **n**, The visualization of two mice in the PAIR-R24M dataset. **o**, The
1048 social behavior atlas of PAIR-R24M dataset. The social classes of the PAIR-R24M dataset are
1049 separated in social behavior atlas. The ellipse is the Gaussian model fitting of the three classes. **p**, The
1050 social behavior atlas of all the class labels of PAIR-R24M dataset. The 11 classes of each mouse are
1051 combined to 121 classes, and the 121 classes are distributed with patterns. **q**, The distance map of
1052 social behavior atlas. The distance distribution of distance map is coincident with labels in **o**. **r**, The
1053 cluster purity of social classes in **o**. **s**, The cluster purity probability of all labels in **p**. The cluster
1054 purities greater than 0.95 are significant higher than others (one-way ANOVA followed by Tukey
1055 multiple comparisons test). n.s.: no significant difference, *: $P<0.05$, **: $P<0.01$, ***: $P<0.001$, ****:
1056 $P<0.0001$.

1057

1058

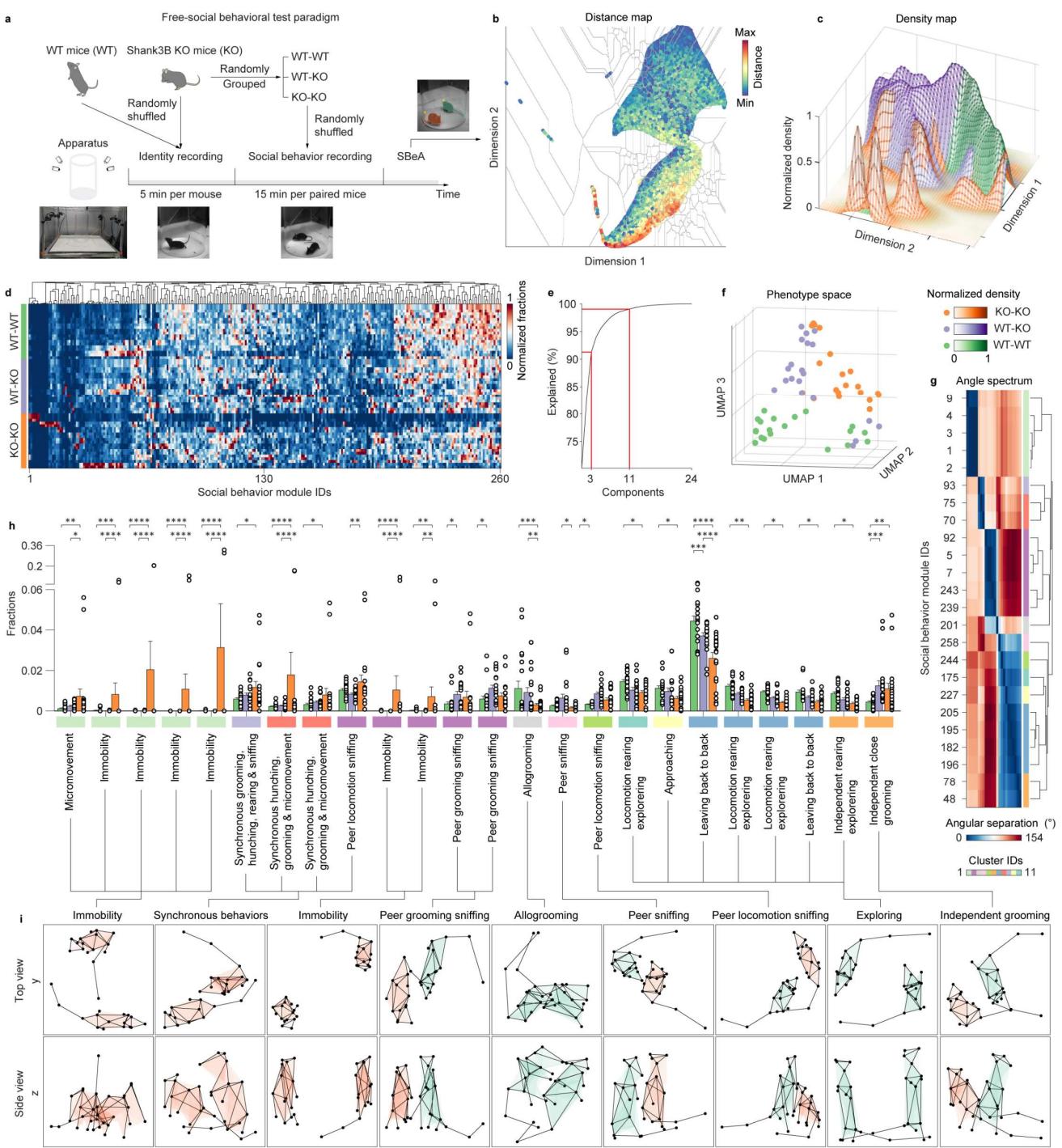
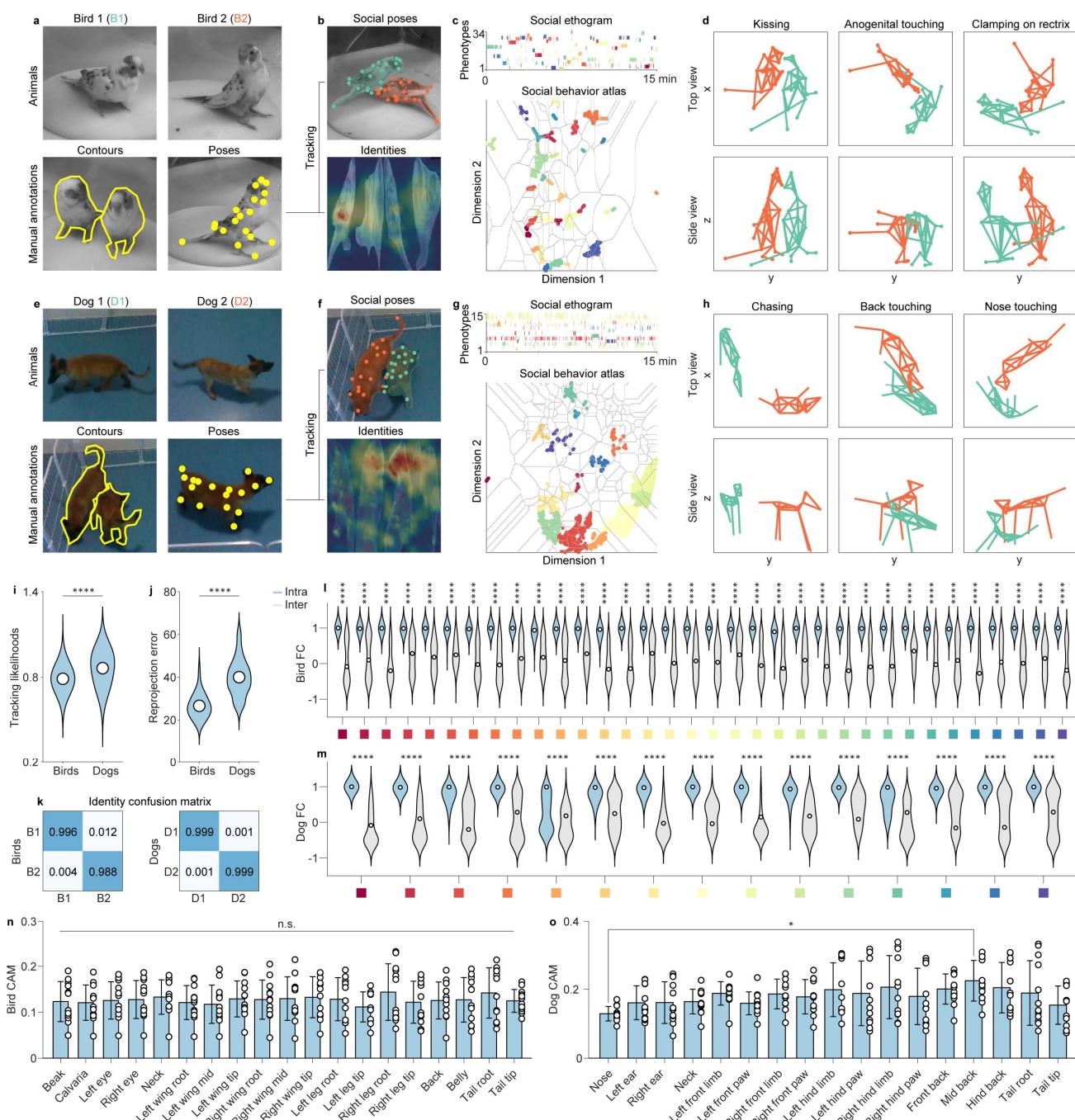


Fig. 5| The identifying of abnormal social behavior modules in *Shank3B* knockout mice. **a**, The paradigm of free-social behavioral test. WT: Wild type mice, KO: *Shank3B* knockout mice. **b**, The social behavior atlas with distance map of 3 grouped mice. **c**, The distribution of social behavioral modules of three social groups. A total of 260 social behavior modules are identified. **d**, The fractions of social behavioral modules of three social groups. The fractions of each group are normalized, and they are clustered and resorted according to the dimension of social behavior modules. **e**, Dimensional reduction of behavior fractions using principal component analysis (PCA) after hypothesis testing (two-way ANOVA followed by Tukey multiple comparisons test). 24 social behavior modules are significant differences in three groups. 3 components can explain more than 90% variances, and 11

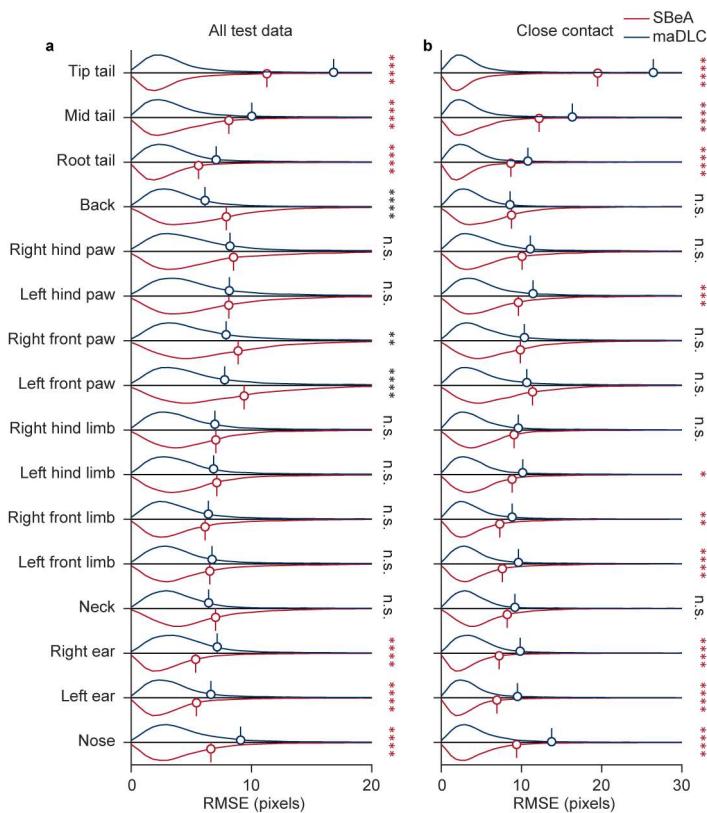
1069 components can explain more than 99% variances. **f**, The construction of phenotype space. UMAP is
1070 used to reduce the 260 dimensions of social behavior modules to 3 dimensions according to **e**. Different
1071 colors of dots represent different social groups. The phenotypes of 3 social groups can be separated in
1072 phenotype space. **g**, The merging of social behavior modules according to behavioral feature angles
1073 and **e**. 24 social behavior modules with significant differences are firstly mapped to PCA feature space
1074 and then the angular separation are calculated to construct angle spectrum. Further, hierarchical
1075 clustering is used to cluster angle spectrum to 11 clusters according to **e**. **h**, The comparison of
1076 behavioral fractions of 3 social groups. 24 social behavior modules with significant differences are
1077 manually identified. **i**, The visualization of merged social behavior modules. With the assistance of **g**,
1078 9 social behavior modules are merged and identified from 24 social behavior modules. Orange 3D
1079 mice represent KO mice, and green 3D mice represent WT mice. n.s.: no significant difference, *:
1080 P<0.05, **: P<0.01, ***: P<0.001, ****: P<0.0001.
1081
1082
1083



1084
1085 **Fig. 6| SBeA for the applications across species such as birds and dogs. a-d**, SBeA is used for birds.
1086 **a**, The preparation of birds. Two parrots with inconspicuous appearance difference are used for social
1087 behavior test. After video recording of identity and free-social behavior by camera array, the contours
1088 and poses are manually annotated. 19 body parts are defined for 3D pose tracking. **b**, The social poses
1089 and identities outputs of SBeA. **c**, The social ethogram and social behavior atlas of birds. **d**, The 3D
1090 social behavior cases of birds. **e-h**, SBeA is used for dogs. **e**, The preparation of dogs. Two Belgian
1091 Malinois with inconspicuous appearance difference are used for the social behavior test. After video
1092 recording of identity and free-social behavior by camera array, the contours and poses are manually
1093 annotated. 17 body parts are defined for 3D pose tracking. **f**, The social poses and identities outputs
1094 of SBeA. **g**, The social ethogram and social behavior atlas of dogs. **h**, The 3D social behavior cases
1095 of dogs. **i-o**, The performance quantification of SBeA in birds and dogs. **i**, The tracking likelihoods of

1096 birds and dogs are significant different (two-sided Mann–Whitney test). **j**, The 3D reprojection error
1097 of birds and dogs are significant different (two-sided Mann–Whitney test). **k**, The identity recognition
1098 confusion matrix of birds and dogs. **l**, The feature correlations (FC) intra and inter behavioral classes
1099 of birds (two-way ANOVA followed by Sidak multiple comparisons test). **m**, The FC intra and inter
1100 behavioral classes of dogs (two-way ANOVA followed by Sidak multiple comparisons test). **n**, The
1101 feature intensity of the tracking body parts of birds (one-way ANOVA followed by Tukey multiple
1102 comparisons test). The feature intensities do not show significant differences. **o**, The feature intensity
1103 of the tracking body parts of dogs (one-way ANOVA followed by Dunnett multiple comparisons
1104 test). The feature intensities between nose and mid back show significant differences. n.s.: no
1105 significant difference, *: $P<0.05$, **: $P<0.01$, ***: $P<0.001$, ****: $P<0.0001$.
1106

1107 **Supplementary materials**



1108

1109 **Extended Data Fig. 1| Performance comparison of SBeA and maDLC.** **a**, Prediction error
1110 compasion of all test data. The RMSE of most of the body parts of SBeA is significantly lower than
1111 maDLC (two-way ANOVA followed by Sidak multiple comparisons test). **b**, Prediction error
1112 compasion of close contact. The RMSE of all of the body parts of SBeA is significantly lower than
1113 maDLC or even with maDLC (two-way ANOVA followed by Sidak multiple comparisons test). RMSE:
1114 root-mean squared error, n.s.: no significant difference, *: P<0.05, **: P<0.01, ***: P<0.001, ****:
1115 P<0.0001.

1116

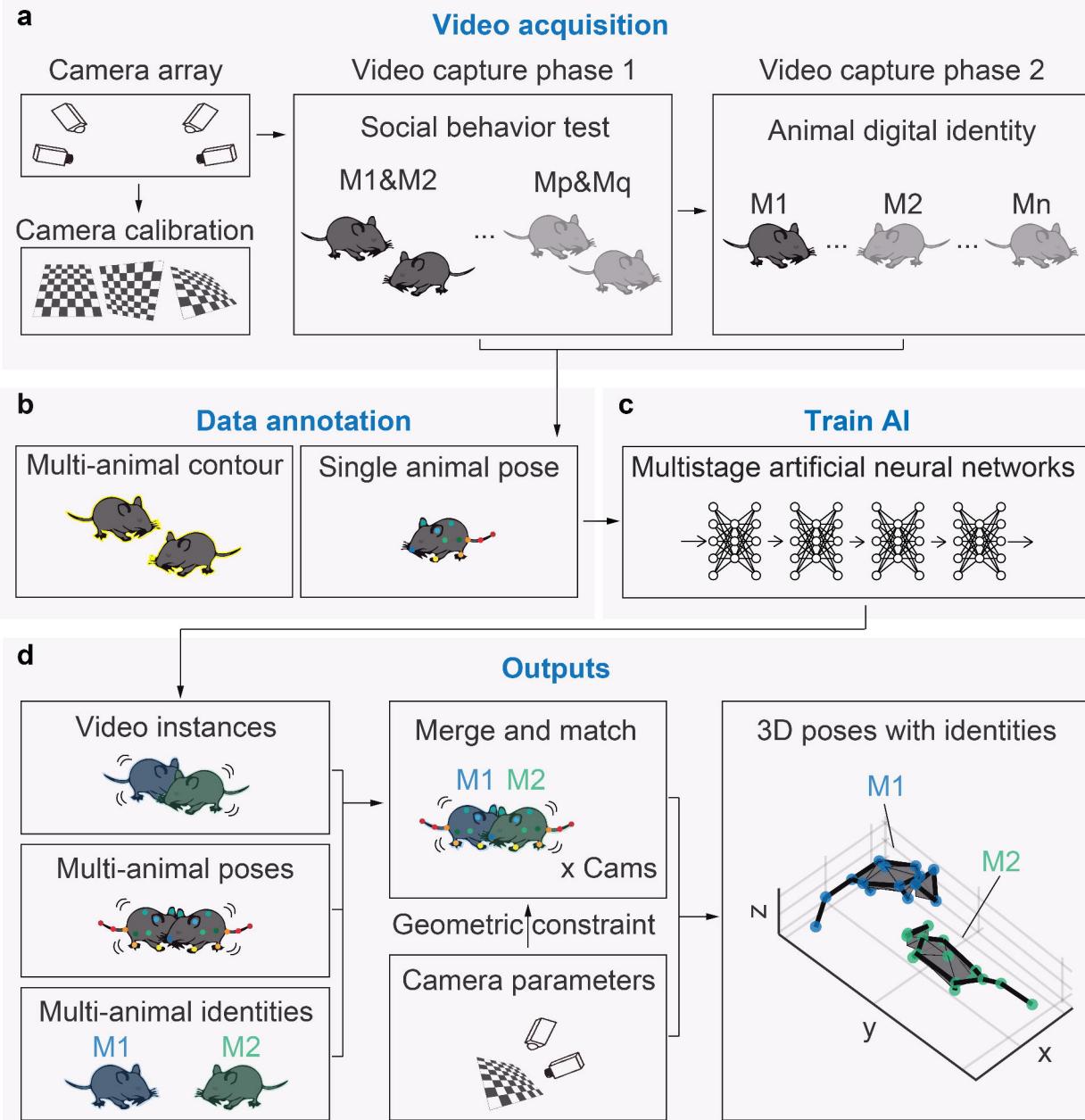
Social behavior	Definition	Species
Approaching	One individual approaching another individual with locomotion.	Mouse

Allogrooming	Grooming behavior directed towards another individual.	Mouse
Anogenital sniffing	Sniffing and exploring the anogenital (perianal and genital) region of another individual.	Mouse
Back touching	One individual touching the back of another individual by nose or fore limbs.	Mouse
Chasing contact	One individual running after another individual with discrete contact.	Mouse
Immobility	All of the individuals are motionless.	Mouse
Independent close grooming	All of the individuals are self-grooming without the influence of another individual.	Mouse
Independent rearing exploring	All of the individuals are rearing towards the outside without the influence of another individual.	Mouse
Locomotion rearing exploring	All of the individuals are rearing towards the outside with locomotion.	Mouse
Leaving back to back	All of the individuals towards back to each other and in locomotion.	Mouse
Micromovement	Small, subtle movements of individuals.	Mouse
Peer sniffing	Sniffing behavior directed towards another individual.	Mouse
Peer locomotion sniffing	Sniffing behavior directed towards another locomotion individual.	Mouse
Peer grooming sniffing	Sniffing behavior directed towards another grooming individual.	Mouse

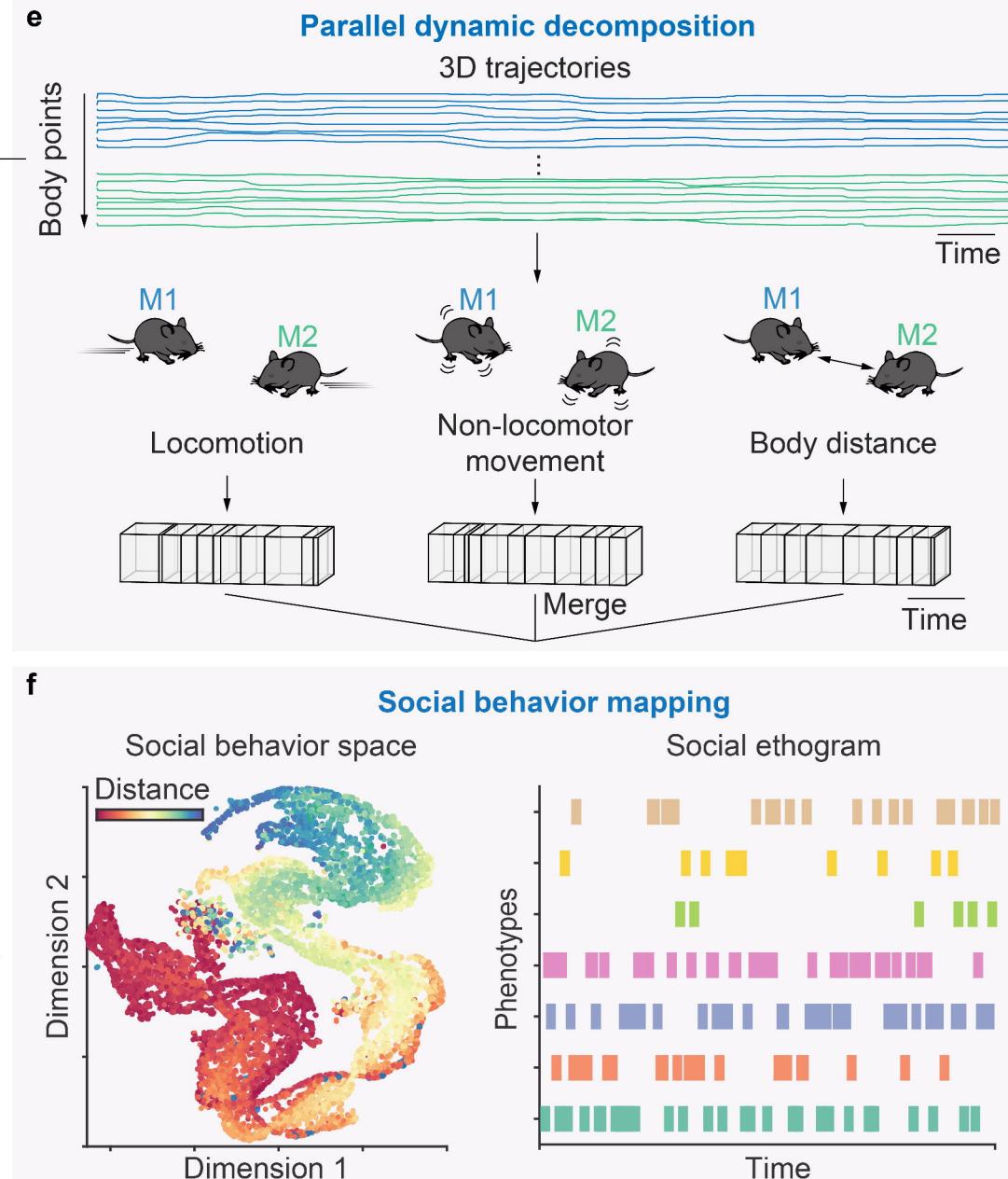
Synchronous behavior	The coordinated movement or activity of multiple individuals at the same time.	Mouse
Anogenital touching	Contacting the genital or anal region of another individual.	Bird
Clamping on rectrix	One individual holding onto the tail feathers of another individual by feet.	Bird
Kissing	Two individuals touching beaks.	Bird
Back touching	One individual touching the back of another individual by nose or fore limbs.	Dog
Chasing	One individual pursuing or running after another individual.	Dog
Nose touching	Two individual touching the noses of each other.	Dog

1117 **Extended Data Tab. 1| Social behavior definitions for manual labeling.** The definition of social
1118 behavior of mouse, bird and dog refers to Mouse Ethogram database (www.mousebehavior.org),
1119 ref.^{35,48–51}.
1120

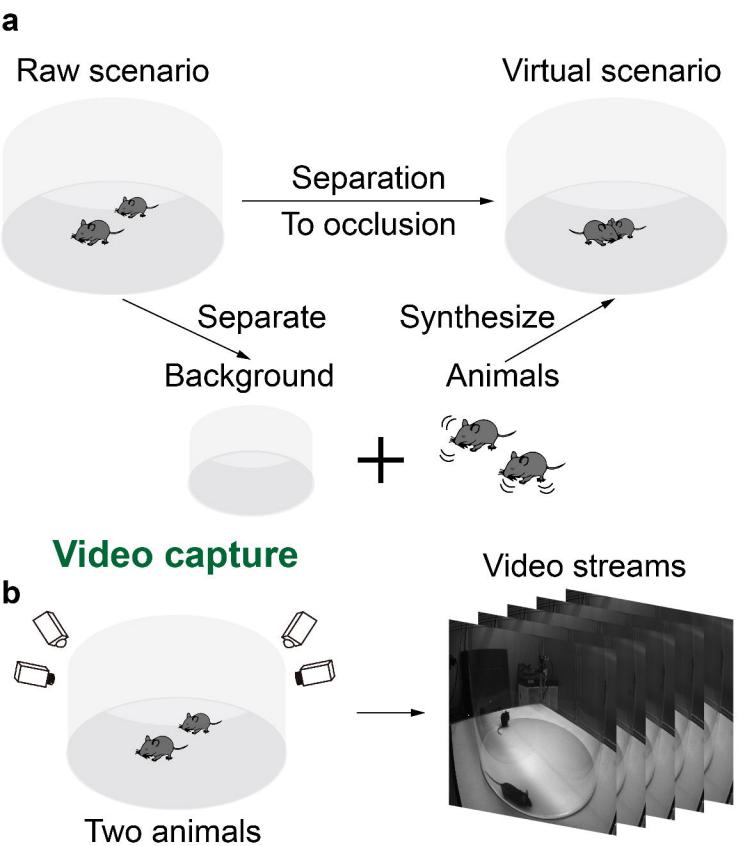
3D pose tracking



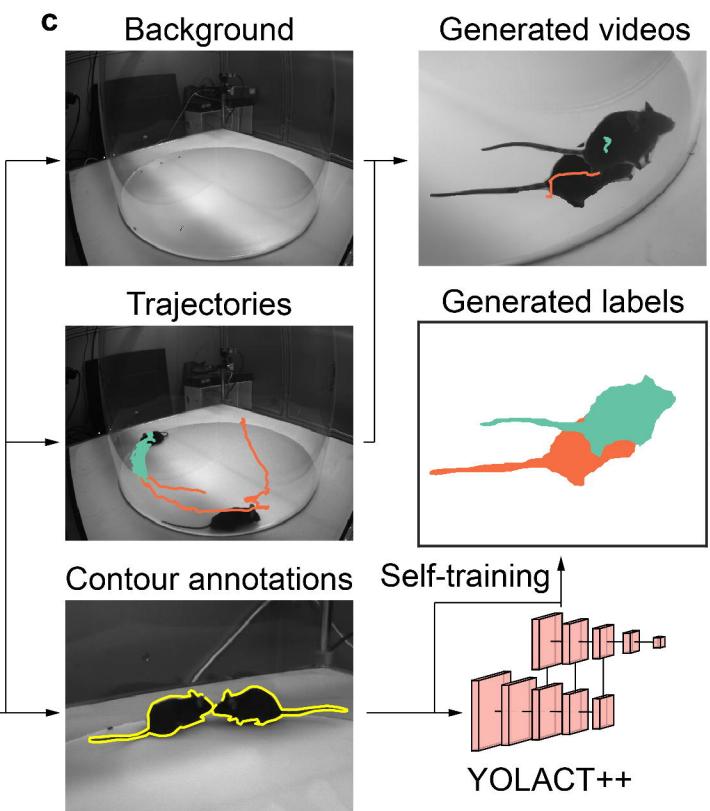
Social behavior mapping



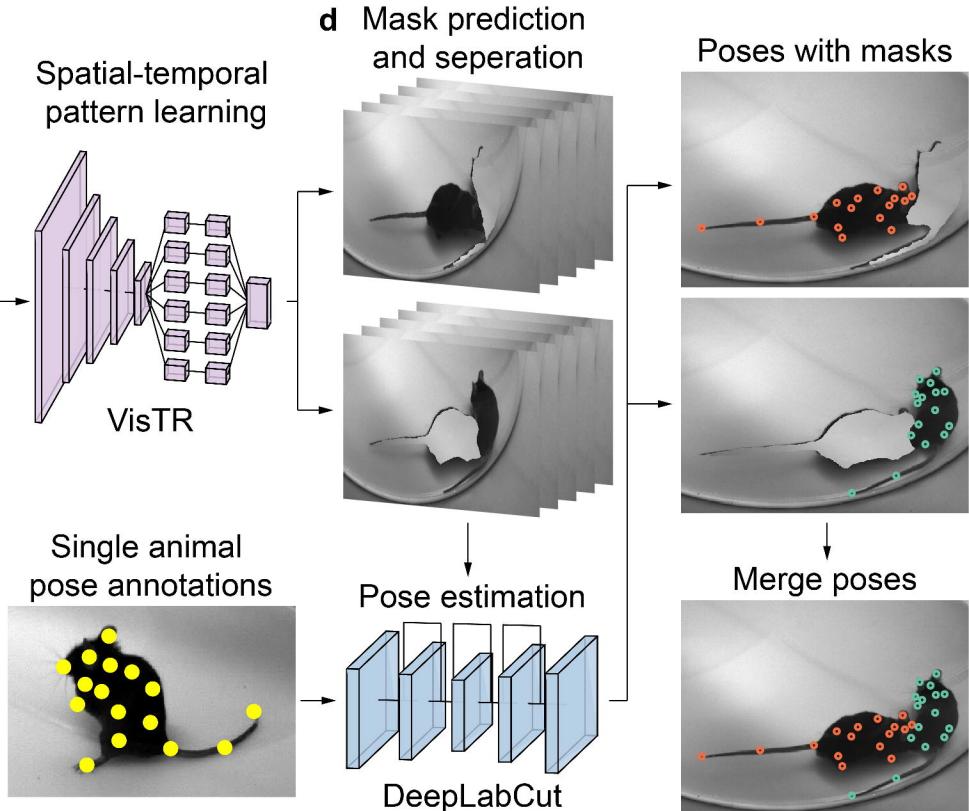
Continuous occluded copy-paste



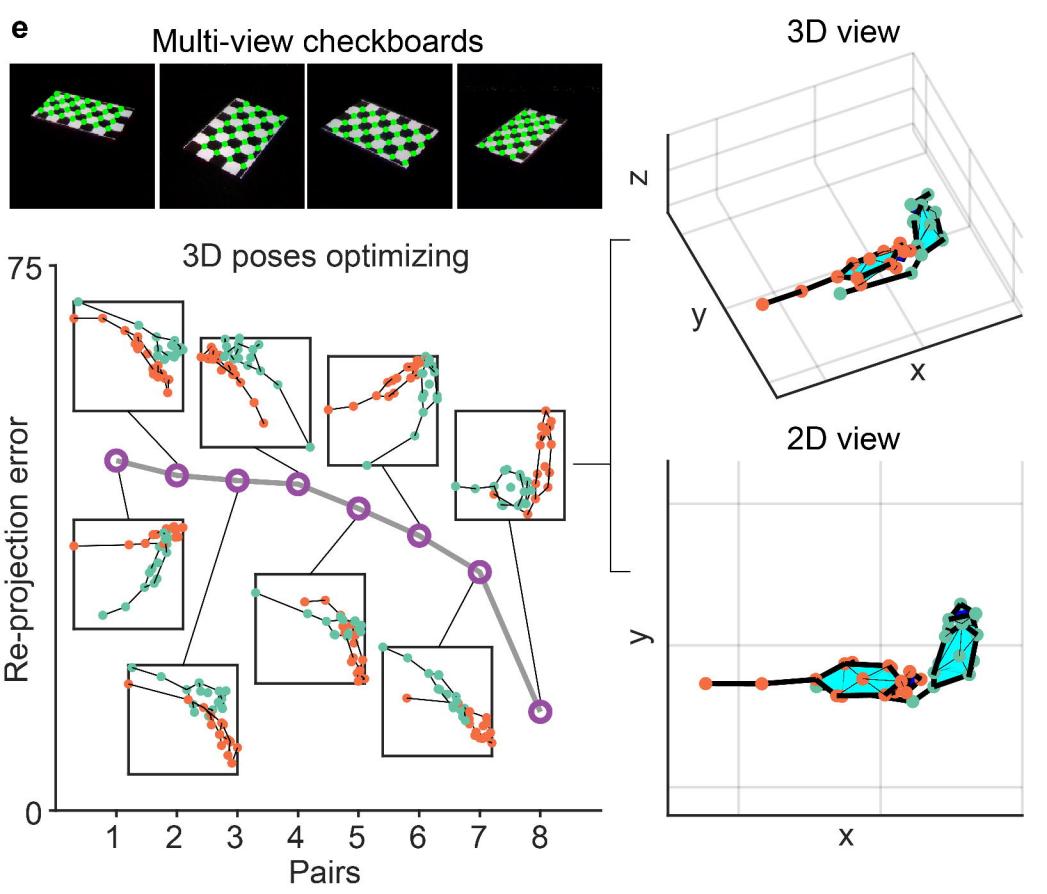
New scenario generation



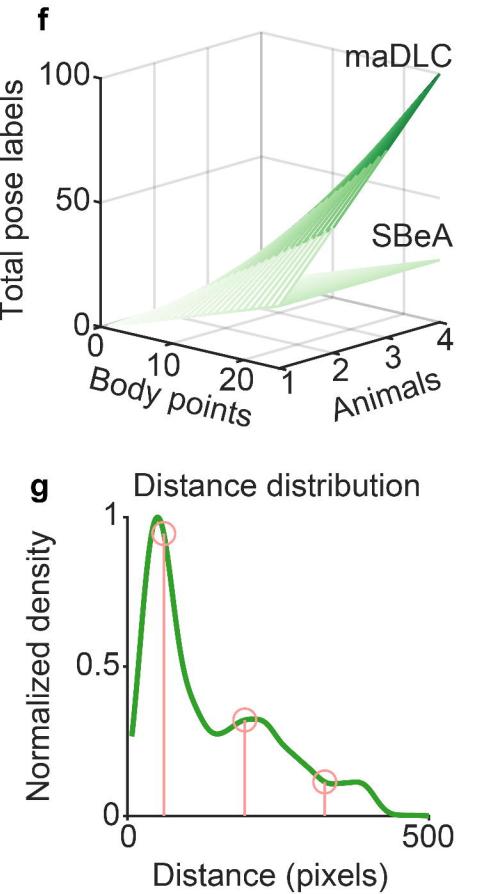
Mask and pose prediction



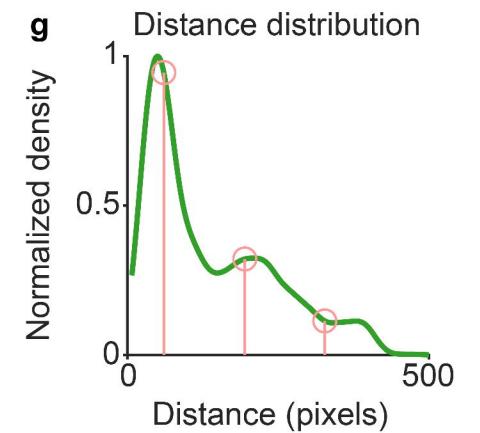
3D poses reconstruction



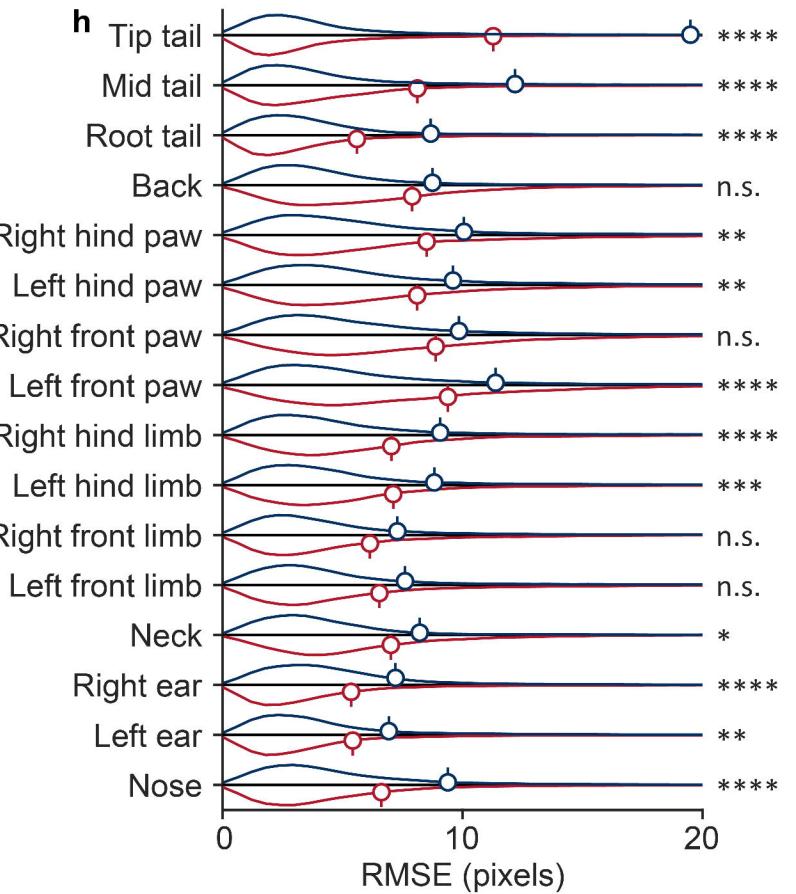
Comparison of annotations



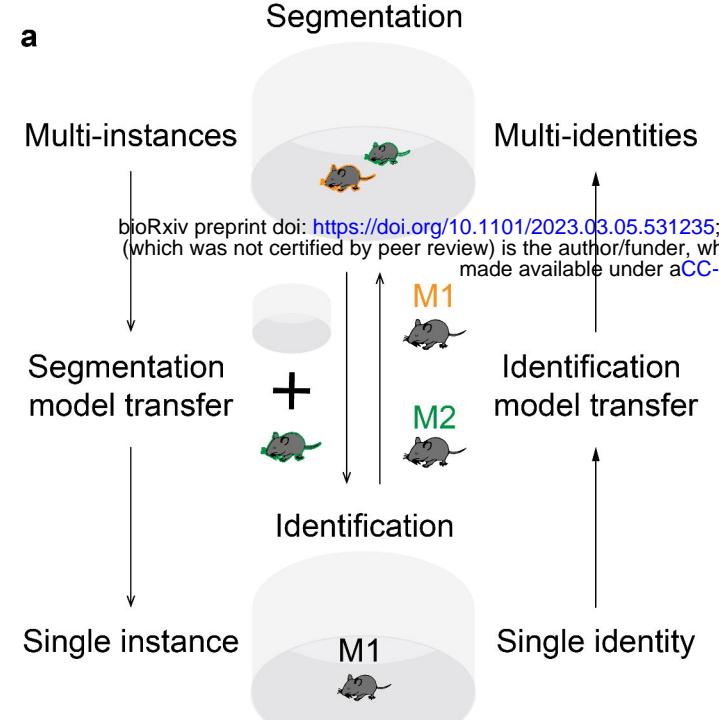
Distance distribution



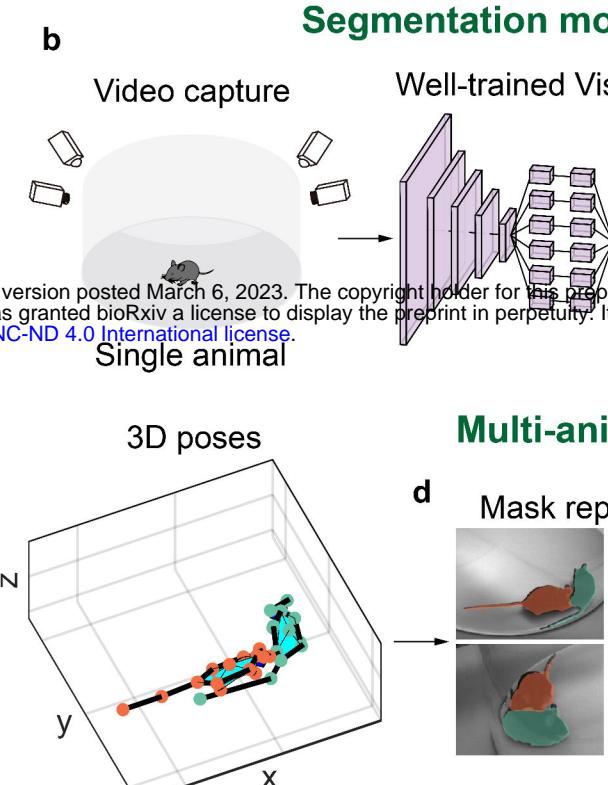
Precision quantification



Bidirectional transfer learning



9



c Single animal identification model training

