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Abstract 34 

The study of social behaviors in animals is essential for understanding their survival and 35 

reproductive strategies. However, accurately tracking and analyzing the social interactions of free-36 

moving animals has remained a challenge. Existing multi-animal pose estimation techniques suffer 37 

from drawbacks such as the need for extensive manual annotation and difficulty in discriminating 38 

between similar-looking animals in close social interactions. In this paper, we present the Social 39 

Behavior Atlas (SBeA), a novel computational framework that solves these challenges by employing 40 

a deep learning-based video instance segmentation model, 3D pose reconstruction, and unsupervised 41 

dynamic behavioral clustering. SBeA framework also involves a multi-camera setup to prevent 42 

occlusion, and a novel approach to identify individual animals in close social interactions. We 43 

demonstrate the effectiveness of SBeA in tracking and mapping the 3D close interactions of free-44 

moving animals using the example of genetic mutant mice, birds, and dogs. Our results show that 45 

SBeA is capable of identifying subtle social interaction abnormalities, and the models and frameworks 46 

developed can be applied to a wide range of animal species. SBeA is a powerful tool for researchers 47 

in the fields of neuroscience and ecology to study animal social behaviors with a high degree of 48 

accuracy and reliability. 49 

  50 
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Introduction 51 

Close social interactions are critical for the survival and reproduction of animals1. However, the 52 

study of social behaviors has traditionally relied on rudimentary measures, such as the duration of time 53 

spent in specific areas during experiments like three-chamber tests2. To address this limitation, deep 54 

learning-based quantitative measurements have emerged as a potential solution3. In particular, there 55 

has been a surge of interest in developing multi-animal pose estimation and behavioral mapping 56 

techniques across various disciplines, including neuroscience and ecology4. Although single-animal 57 

pose estimation has been achieved with high accuracy through deep learning, accurately tracking and 58 

mapping the social behaviors of multiple animals remains a challenging task5.  59 

Advanced multi-animal pose estimation toolboxes, such as Multi-animal DeepLabCut (maDLC) 60 

and Social LEAP Estimate Animal Poses (SLEAP), have enabled markerless and precise tracking of 61 

body parts for different species based on videography6–8. However, these techniques suffer from 62 

several limitations. Firstly, the high level of tracking precision necessitates a significant amount of 63 

manual annotation, which becomes increasingly laborious as the number of animals in the study 64 

increases. Secondly, occlusion can occur when multiple animals are present in the same video frame, 65 

resulting in poor inference about the behavior of each animal. Thirdly, in close social interactions 66 

between similar-looking animals9, it becomes challenging to distinguish between individual identities, 67 

particularly over extended periods of time10. 68 

The Social Behavior Atlas (SBeA) offers a solution to the challenges proposed by existing multi-69 

animal pose estimation techniques. Firstly, the number of manual annotations can be reduced by 70 

comprising two processes. The first is the acquisition of each animal’s contour. As fewer as 400 71 

annotations are enough to separate adjacent animals. These data generate millions of labeled frames to 72 
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train the deep learning-based video instance segmentation (VIS) model. Secondly, to address the issue 73 

of occlusion, SBeA employs multiple cameras to capture video streams, which are used to reconstruct 74 

3D poses and prevent complete occlusion11–13.  Thirdly, SBeA resolves the multi-animal identification 75 

problem by merging the contour of each animal with the characteristic identity of multiple view angles, 76 

which achieves over 90% identification precision without human data annotation. Furthermore, after 77 

solving those problems, inspired by the natural structures of social behavior, the unsupervised dynamic 78 

behavioral metric learning is finally designed. The behavioral metric is composed of a time-series low-79 

dimensional representation of the behavior module.  The behavioral mapping generates the social 80 

behavior atlas, and one-third of the cluster purity reaches over 95%. Using SBeA, we found the subtle 81 

social interaction abnormalities of Shank3B KO mice, which verifies the availability of SBeA. The 82 

models and frameworks developed for SBeA can be also applied to birds and dogs, showcasing its 83 

strong generalization abilities suitable for various application scenarios.  84 
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Results 85 

SBeA: from multi-animal markerless 3D pose tracking to unsupervised social behavior mapping. 86 

The focus of SBeA is on quantifying the behavior of freely social animals comprehensively. It 87 

presents two significant challenges: pose tracking and behavior mapping. The pose tracking involves 88 

identifying the key body parts of each animal as well as their identities, which is particularly 89 

challenging when dealing with animals that look similar10. To address this issue,  a novel free social 90 

behavior test paradigm has been developed that involves a multi-view camera array (Fig. 1a). This 91 

approach captures the animals covering more view angles and helps to overcome the challenge of 92 

frequent occlusion11–14. The camera array is used to capture images of a checkerboard for camera 93 

calibration, followed by videos of two free-moving animals for the social behavior test (Video capture 94 

phase 1, Fig. 1a). Finally, the array captures videos of single free-moving animals to facilitate animal 95 

identification without the need for human intervention (Video capture phase 2, Fig. 1a). 96 

After the video acquisition, the multi-animal contour of video capture phase 1 and the single-97 

animal pose of video capture phase 2 are manually annotated for the training of AI to output the 3D 98 

poses with identities of animals (Fig. 1b and c). The design of this AI model was separated into four 99 

stages for function integration. Through these multistage networks, the task of multi-animal video 100 

instance segmentation, pose estimation, and identity recognition was achieved with a relatively small 101 

number of manual annotations (~400 frames), as shown in Fig. 1d (left). By incorporating camera 102 

parameters, the above results from various camera angles were combined and matched based on 103 

geometric constraints to reconstruct 3D pose trajectories with identities for each animal (Fig. 1d, center 104 

and right). 105 

After conducting pose tracking, the process of behavior mapping involves breaking down the 106 
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trajectories of animals into distinct behavior modules, and then, using appropriate metrics to obtain a 107 

low-dimensional representation of these modules12. In the context of SBeA, the framework for 108 

decomposing behavior is extended from a single animal to multiple animals12, with their 3D 109 

trajectories being separately decomposed into locomotion, non-locomotor movement, and body 110 

distance components (Fig. 1e top and middle). These parallel components are then divided into 111 

segments and subsequently merged into social behavioral modules using the dynamic behavior metric 112 

(Fig. 1e bottom). Overall, this process utilizes a nature-inspired structure for behavior decomposition 113 

and provides a dynamic approach to understanding social behaviors in groups of animals. 114 

To gain insight into the distribution of features within social behavioral modules, it is necessary 115 

to convert them into low-dimensional representations (Fig. 1f). These representations incorporate both 116 

spatial and temporal aspects, with the spatial aspect being captured by low-dimensional embeddings 117 

of distance features in the SBeA framework (Fig. 1f left). The temporal aspect is represented by the 118 

social ethogram (Fig. 1f right). In SBeA, social behavioral modules are first clustered based on their 119 

spatial characteristics and then expanded into the temporal dimension to construct the social ethogram. 120 

This approach allows for a more comprehensive understanding of the distribution of features within 121 

social behavioral modules. 122 

 123 

Fewer manual data annotations for multi-animal 3D pose tracking of SBeA. 124 

The use of deep learning for social pose estimation has been beneficial in enhancing the 125 

acquisition of data for multiple body parts in animals, as previously demonstrated in literature7,8. 126 

However, due to the flexible social interactions among animals, creating a comprehensive training 127 

dataset for deep learning-based social pose estimation is a challenge. Inadequately trained deep neural 128 
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networks tend to produce higher tracking errors, particularly in frames with close animal interactions 129 

10. To address this issue, we introduce a novel animal tracking method using continuously occluded 130 

copy-paste data augmentation (Fig. 2a) in our SBeA framework. There are pieces of evidence that 131 

simple copy-paste can increase the precision of instance segmentation15. Additionally, the continuous 132 

copy-paste further increases the performance of multi-object tracking and segmentation16. Here for 133 

multi-animal tracking, we extend the above methods to continuously occluded copy-paste, which 134 

generates the virtual scenario with instance occlusion. By capturing a short video of multiple animals 135 

behaving freely in an open field, SBeA obtains sufficient elements (background and animal instances) 136 

to generate the virtual dataset. These elements synthesize the complex interactive relationships 137 

between animals without the need for manual annotations, resulting in a sufficiently large virtual 138 

dataset to train deep neural networks. 139 

During free behavior, it is common for animals to overlap, leading to loss of tracking in single-140 

view cameras. To address this, SBeA employs a multi-view camera array to capture video streams, 141 

enabling compensation for the visual field of the cameras and facilitating continuous tracking (Fig. 2b) 142 

11–13. Background and trajectories can be extracted through background subtraction algorithms applied 143 

to the raw video streams (Fig. 2c left top and left middle). In addition, frames with close social 144 

interactions can be extracted for manual contour annotations (Fig. 2c left bottom). A lightweight 145 

instance segmentation deep neural network, YOLACT++, is trained with self-training using 146 

approximately 400-800 annotated contour frames (Fig. 2c center bottom), which enhances its 147 

performance while ensuring time-efficiency17,18. The well-trained self-training YOLACT++ predicts 148 

animal masks of video streams, and animal instances can be cropped based on these masks. As some 149 

trajectories of two animals may overlap in the same spatial position across different periods, merged 150 
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animal instances, backgrounds, trajectories, and masks can generate virtual scenarios with various 151 

occlusion relationships and mask labels (Fig. 2c center top and center middle). The continuously 152 

occluded copy-paste data augmentation increases the scale of the training dataset without additional 153 

manual annotations, producing a VIS dataset with successive frames of behaving animals and 154 

annotations. To capture the spatial-temporal patterns of occluded animals, the video instance 155 

segmentation with transformers (VisTR) method is modified and applied to the virtual VIS dataset as 156 

it can segment instances at the sequence level as a whole (Fig. 2c right top)19. Well-trained VisTR can 157 

patch the raw video streams to display only one animal in each video (Fig. 2d left top and left middle). 158 

Thus, pose estimation models trained for single animals, such as DeepLabCut, can be used to predict 159 

single animal poses on these patched videos after fine-tuning using patched frames (Fig. 2c right 160 

bottom, and 2d left bottom). Finally, the single-animal poses of each patched frame are merged into 161 

multi-animal poses (Fig. 2d left top, left middle, and left bottom). 162 

The subsequent step in SBeA, following the acquisition of multi-animal poses from video frames, 163 

is the 3D reconstruction (Fig. 2e). Firstly, the MouseVenue3D automatic camera calibration system is 164 

employed to acquire the camera parameters of the camera array (Fig. 2e left top)11,13. Then, based on 165 

the epipolar constraint of camera parameters, the combination of each animal instance in each camera 166 

view is optimized to achieve minimum reprojection error (Fig. 2e left bottom). The optimized 3D 167 

skeletons of the single frame in Fig. 2d right bottom are presented in Fig. 2e right top and bottom. In 168 

the 3D skeleton, the close contact between two animals, such as anogenital sniffing, can be quantified 169 

(Fig. 2e right top and bottom). 170 

Compared with the square increasing of routine multi-animal pose estimation methods such as 171 

maDLC, the pose annotation strategy in SBeA is linearly increasing with body points and the number 172 
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of animals (Fig. 2f)8. Considering the diversiform social interaction of animals, routine multi-animal 173 

pose estimation methods need to annotate more data on frames with various social interactions to get 174 

higher precision. Here, we create a well-annotated dataset Social Black Mice for Video Instance 175 

Segmentation (SBM-VIS) to quantify the performance of SBeA. According to the distance distribution 176 

of the test dataset, the clustering algorithm is used to separate close interaction (Fig. 2g, the left orange 177 

stem) and other conditions. The pixel root-mean-square error (RMSE) of all data is significantly lower 178 

than the close interaction of about 2 pixels of different body parts (Fig. 2h). But compared with maDLC, 179 

SBeA still has significantly lower RMSE of animal close interaction, with 800 pose-labeled frames are 180 

used to train maDLC and 400 pose- and 400 mask-labeled frames are used to train SBeA (Extended 181 

Data Fig. 1). For all of the test data, SBeA has significantly lower RMSE than maDLC in the Nose, 182 

Left ear, Right ear, Root tail, Mid tail, and Tip tail while maDLC has significantly lower pixel RMSE 183 

in the Back, Right front paw and Left front paw (Extended Data Fig. 1a). For the close contact part of 184 

the test data, SBeA has significantly lower RMSE in Nose, Left ear, Right ear, Left front limb, Right 185 

front limb, Left hind limb, Left hind paw, Root tail, Mid tail, and Tip tail (Extended Data Fig. 1b). 186 

These results show that SBeA can get higher precision with fewer manual annotations than routine 187 

multi-animal pose estimation methods such as maDLC. To get a similar precision of maDLC, SBeA 188 

only needs about a quarter of pose annotation points.  189 

 190 

SBeA needs no data annotations for multi-animal identification. 191 

Accurately distinguishing the identities of free-moving animals is crucial for social behavior tests, 192 

particularly in studying treatment-induced behaviors in transgenic animal models12,20,21. However, 193 

frequent occlusion of these animals can lead to imprecise identification even with physical markers. 194 
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Moreover, the animals are the same breed to reduce the influence of irrelevant experiment variables 195 

with indistinguishable appearances for human annotators. That causes difficulties in creating the 196 

animal identification dataset to train deep neural networks such as SIPEC22. To address these 197 

challenges, we propose a solution in SBeA, which involves combining a camera array with 198 

bidirectional transfer learning in animal identification (Fig. 3a). Transfer learning allows artificial 199 

neural networks to use previous knowledge in new tasks23. For animal segmentation and identification 200 

tasks, the knowledge between them can be shared bidirectionally with each other. So, the segmentation 201 

model trained for multi-animals can be transferred to single-animal segmentation, and the 202 

identification model trained for single-animals can be transferred to multi-animal identification. The 203 

bidirectional transfer learning of them avoids unnecessary manual data annotations.  204 

Well-trained VisTR in Fig. 2 can be used to segment single-animal instances from multiple view 205 

angles (Fig. 3b). These instances are then cropped, cascaded, and resized to generate training data for 206 

an identification model based on EfficientNet architecture (Fig. 3c, left and center)24. After that, 207 

LayerCAM is used to evaluate the patterns for identification recognition (Fig. 3c right)25. Before using 208 

the identification model in multi-animal instances, the cascaded and resized image frames were 209 

prepared (Fig. 3d, right). By using the best geometric constraint of 3D poses, instances from each 210 

frame view angle of each animal were matched to construct input frames of the identification model 211 

(Fig. 3d, left). Finally, the well-trained model outputted the top prediction probabilities to append the 212 

identities of instances and 3D poses. LayerCAM was also employed to verify the recognition patterns 213 

for identification (Fig. 3e). 214 

To evaluate the identification model's performance in SBeA, we conducted experiments with ten 215 

C57BL/6J mice having tail markers, where we recorded their free behaviors for 5 minutes. The tail 216 
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markers are convenient for experimenters to distinguish the identities of each mouse. The first 4 217 

minutes of data were used for training the identification model, and the last 1 minute was used for 218 

validation. The confusion matrix of the validation data demonstrated that the EfficientNet model can 219 

identify most of the mice (Fig. 3f). The t-SNE algorithm was used to create a 2D feature representation 220 

of the identified mice (Fig. 3j). However, the features of mice with ID M4 and M5 were found to be 221 

mixed with other classes, as quantified by the silhouette coefficient Fig. 3h). The sorted validation 222 

precision of the identified mice showed that the mouse with ID M4 had the lowest precision of 223 

approximately 0.4 (Fig. 3i). Even though the features of M5 were mixed with other classes, its 224 

precision was found to be around 0.8 (Fig. 3i). 225 

To assess the identification model's performance in multi-animal data, we recorded the free social 226 

behaviors of 5 paired C57BL/6J mice identified by SBeA for 15 minutes. We manually verified the 227 

identities of mask reprojection images and 3D poses frame by frame (Fig. 3j). The results indicated 228 

that although some of the single mouse identity precisions were lower (Fig. 3i), the overall precision 229 

in identifying pairs of mice could be higher than 0.85, as seen in the case of the pairs of M3&M4 and 230 

M5&M6. Additionally, the validation precision in single-animal identification was found to be 231 

positively correlated with precision in multi-animal identification, as evidenced by the other pairs (Fig. 232 

3j).  233 

We also investigate if the number of animals would influence the identification recognition 234 

precision. Previous research suggests that the identification precision may decrease with an increasing 235 

number of animals involved in the study26,27. To counteract this trend, we increased the amount of 236 

training data to balance the precision decrease. Our results indicate that for a group of 22 mice, a 15-237 

minute video recording can achieve similar precision to that of 10 mice with a 5-minute recording (Fig. 238 
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3k). These findings have important implications for optimizing study design and ensuring accurate 239 

identification of individual animals in social behavior experiments. 240 

Our research has revealed that the precision of animal identification can be influenced by the 241 

experiment apparatus used in social behavior tests (Fig. 3l). Specifically, we found that open fields 242 

with different diameters - 50cm and - 20cm can impact the precision of animal identification conducted 243 

on the same ten mice. Our results indicate that the precision of identification in the 20cm open field is 244 

significantly higher than that in the 50cm field (Fig. 3l). This difference may be due to the higher dots 245 

per inch (DPI) of mice.  246 

Further, we tested the stability of identification patterns. Animals would groom themselves, which 247 

could change the patterns of identities9. We compared the identification precision of two separate 248 

groups of mice. One group underwent both identity video recording and social behavior tests on the 249 

same day, while the other group underwent social behavior tests one week after their identity videos 250 

were recorded (Fig. 3m). We manually verified the identities of mask reprojection images and 3D 251 

poses frame-by-frame. Our analysis revealed that while there was no significant difference in the 252 

precision of mask reprojection images between the two groups, the precision of 3D poses in the group 253 

that underwent social behavior tests one week after the recording of their identity videos was 254 

significantly lower than that of the group that underwent both on the same day (Fig. 3m). As the 255 

precision of 3D poses is equivalent to the identification precision of cascade and resize images, the 256 

observed decrease in precision of 3D poses indicates a decline in identification precision. Shorter 257 

intervals between the recording of identity videos and social behavior tests could potentially enhance 258 

the accuracy of identification recognition. 259 

We evaluated the feature intensity of the identification model used to distinguish different animals 260 
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at last in this chapter. To this end, we designed open fields with diameters of 50 and 20 cm, respectively, 261 

in which the same ten mice were allowed to freely engage in social behavior 2 mice per trial. The pose 262 

tracking point "Root tail" with tail markers was used as a control against other body parts (Fig. 3n). 263 

We calculated LayerCAM values to quantify the feature intensity of each body point. The results 264 

showed that the Root tail in the 50 cm group had more significant feature intensities than in the 20 cm 265 

group. This finding suggests that a higher DPI can enable the identification model to capture more 266 

available fur pattern features and thereby overcome errors resulting from marker occlusion. 267 

Additionally, we found that identification using low animal DPI requires the use of stronger markers 268 

to maintain sufficient recognition precision. 269 

 270 

SBeA reveals the social behavioral structure in the atlas by unsupervised machine learning.  271 

Following pose tracking, it is necessary to map the trajectories with animal identities to a low-272 

dimensional space to gain insights into behavior (Fig. 4a). Recent research has indicated that the body 273 

language of social animals can be represented through sequential behavioral motifs or modules28. Thus, 274 

we expand our prior work on the animal behavior mapping framework to encompass multiple animals, 275 

Behavior Atlas (BeA), which was initially developed for a single animal. The concepts of parallel and 276 

dynamic behavior decomposition from BeA have been adopted in our new framework SBeA (Fig. 4b 277 

and c). In the social process, the distance between animals is an essential component, as noted in 278 

previous studies29. In addition to using non-locomotor movement to assess body movement and 279 

locomotion to evaluate body displacement, body distance is also utilized to evaluate the relationships 280 

of body position (Fig. 4b). After parallel decomposition, each component is decomposed further using 281 

dynamic time alignment kernel (DTAK) to retain the natural dynamic structures of behavior (Fig. 4c). 282 
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To distinguish subtle structures of social behavior, the temporal points of decomposition for each 283 

component are merged through logical addition (Fig. 4d). The aforementioned steps enable the metric 284 

of social behavior, resulting in the transformation of continuous pose trajectories into discrete social 285 

behavior modules. 286 

Then, the social behavior modules are embedded in a low-dimensional space for behavior 287 

representation (Fig. 4e and f). All of the social behavior modules from different experimental trials 288 

need to be represented in a common feature space. That induces two questions, the first is what feature 289 

is reasonable to represent social behavior in a low-dimensional space, and the second is how to create 290 

a common feature space under the big behavioral data30,31. For the first question, the distance 291 

component is chosen for the feature representation of social behavior modules (Fig. 4e left). The 292 

dimensionally reduced distance component by uniform manifold approximation and projection 293 

(UMAP) is beneficial to improve the separation of behavior atlas verified by our previous studies11–294 

14,32. But with the increase of data scale, the computational consumption of UMAP would be 295 

unacceptable because of limited memory space, which is the second question. To solve the second 296 

question, the residual multilayer perceptron (ResMLP) is combined with UMAP for feature 297 

representation (Fig. 4e right)33. A part of the social behavior feature frames is extracted randomly to 298 

build up the feature representation of distance dynamics by the UMAP. Then, the mapping from 299 

extracted social behavior feature frames to distance dynamics is trained by ResMLP for the feature 300 

encoding. Further, the rest of the social behavior feature frames are decoded by ResMLP to distance 301 

dynamics. The distance dynamics are embedded by DTAK and UMAP to construct the social behavior 302 

atlas (Fig. 4f). To reveal the distributions of different social behavior modules, based on density 303 

clustering, we modified the watershed algorithm to automatically determine the best cluster density 304 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.05.531235doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.05.531235
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

with upper and lower boundaries. At last, the social behavior modules of the same clusters are manually 305 

identified and defined (Fig. 4g).  306 

In constructing the social behavior atlas, the inclusion of the distance component is crucial. By 307 

using the distance component, the social behavior atlas can maintain the overall body distance 308 

structures of social behavior modules (Fig. 4h left), while the absence of the distance component leads 309 

to a lack of observable patterns in the distribution of distance (Fig. 4h right). To compare the 310 

effectiveness of the distance representations in the atlases, the map/body distance metric is utilized, 311 

with higher values indicating better performance in distance representation (Fig. 4i). Results show that 312 

the distance component is essential in achieving a high map/body distance, indicating the importance 313 

of including this component in constructing the social behavior atlas. Additionally, the 0.45±0.32s 314 

temporal duration of merged behavioral modules reveals that the SBeA framework can effectively 315 

decompose social behavior into dynamic sub-second motifs (Fig. 4j)12,34. The ResMLP can address 316 

issues related to the memory cost of large behavioral data, while also reducing computational time 317 

consumption compared to using UMAP alone. More than 5000 frames can get time benefits from 318 

ResMLP, and the time benefits will increase with the number of frames (Fig. 4k). Then, the time 319 

proportion of identified behavioral modules is quantified to evaluate their temporal precision (Fig. 4l). 320 

The time proportion of the typical social behavior such as allogrooming conforms to previous studies 321 

on social behavior35. Further, the feature correlations between the intra- and inter-clusters of each social 322 

behavior class are compared for the evaluation of clustering consistency (Fig. 4m). The intra-feature 323 

correlations of each social behavior class are significantly higher than inter-feature correlations, and 324 

the intra-feature correlations distribute consistently near to 1, in turn, the inter-feature correlations 325 

distribute in the weak negative correlation. These unsupervised validation measures demonstrate the 326 
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effectiveness of the SBeA framework in accurately mapping social behavior. 327 

In addition to unsupervised validation, we conducted supervised validation of SBeA using the 328 

PAIR-R24M dataset (Fig. 4n)36. The dataset provides 3D poses, social behavior labels, and subject 329 

behavior labels of rats in free behavior. We used SBeA to construct the social behavior atlas for the 330 

dataset, and appended the three social labels (close, chase, and explore) to each behavior module (Fig. 331 

4o). The distributions of the three social labels were separated and matched their similarity relationship. 332 

The 121 combinations of subject behavior labels also showed distribution patterns in the social 333 

behavior atlas (Fig. 4p). The social labels such as close and explore were consistent with the close 334 

distance distribution in the distance map, and the chase label was consistent with the distance transition 335 

zone of the distance map (Fig. 4q). To quantify the clustering performance, we used the cluster purity 336 

of social and subject behavior labels (Fig. 4r and s). For the upper boundary of clustering, 14 classes 337 

were clustered with a mean cluster purity of 0.77±0.16 (Fig. 4r). For the lower boundary of clustering, 338 

405 classes were clustered, and the probability of cluster purities greater than 0.95 was significantly 339 

higher than for other purities (Fig. 4s). These results provide further validation of the performance of 340 

SBeA in supervised contexts. 341 

 342 

SBeA identifies Shank3B knockout mice in free-social interactions by subtle behavior modules.  343 

Social behavior can serve as an indicator of the genetic variations that underlie neuropsychiatric 344 

disorders37. SBeA is well-suited for this purpose, as it allows for a detailed characterization of social 345 

behavior at an atlas-level. To test the ability of SBeA to detect genetic differences from social behavior, 346 

we utilized an animal model of autism spectrum disorder (ASD): Shank3B knockout mice12,20. While 347 

abnormal individual behaviors of these mice have been previously identified, the limitations of existing 348 
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techniques have made it difficult to fully understand their abnormal free social behaviors12,20.  349 

To distinguish between Shank3B knockout (KO) mice and wild-type (WT) mice, a free-social 350 

behavioral paradigm was designed based on the framework of SBeA, which consists of three steps: 351 

identity recording, social behavior recording, and SBeA processing (Fig. 5a). First, the home-caged 352 

WT and KO mice were randomly shuffled and recorded for 5 minutes each using the MouseVenue3D 353 

system to obtain identity information. After identity recording, the mice were randomly grouped into 354 

three pairs (WT-WT, WT-KO, and KO-KO) for social behavior recording, with each pair of mice 355 

recorded for 15 minutes. The identity and social behavior data were then processed using SBeA for 3D 356 

pose tracking and behavior mapping. The experiment used a total of 10 WT and 10 KO mice, resulting 357 

in 45 unique pairs of mice, including 10 WT-WT, 10 KO-KO, and 25 WT-KO pairs. To ensure equal 358 

representation of each group, the number of WT-KO pairs was reduced from 25 to 10 through random 359 

sampling. Before behavior mapping, the raw trajectories were copied and switched to capture the 360 

direction of social behavior between WT and KO mice. This resulted in a total of 60 pairs of trajectories 361 

for behavior mapping using SBeA. 362 

The social behavior atlas with distance map is shown in Fig. 5b. After the construction of the 363 

social behavior atlas, the density map is calculated to compare the social behavior distribution of each 364 

group by kernel density estimation (Fig. 5c). Density map shows obvious differences across the three 365 

groups. Combing with the distance map, the WT-WT group shows social behavior phenotypes with 366 

flexible distances from close to far, the KO-KO group shows more abnormal social behaviors than the 367 

WT-WT group, and WT-KO shows more close social interaction than the WT-WT group. From the 368 

global level, the social behaviors of KO mice show differences from WT mice. 369 

The 260 social behavior modules identified in the social behavior atlas were clustered to reveal 370 
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their coincident patterns, which displayed distinct speckled patterns for each group, ranging from 1 to 371 

20 social behavior modules in the KO-KO group (Fig. 5d). To compare the differences in behavior 372 

components among the three groups, principal component analysis (PCA) was employed to determine 373 

the percent variability explained by each principal component (Fig. 5e). The results indicated that three 374 

components could account for 90% of the variance, while 11 components could account for 99% of 375 

the variance. To construct the phenotype space of the three groups, UMAP was used for dimensional 376 

reduction of the social behavior modules, with the dimension number set to 3 based on the 90% 377 

variance explanation, owing to the more robust feature representation of non-linear dimensional 378 

reduction (Fig. 5f). The distributions of the three groups in the phenotype space were found to be 379 

segregated, matching the distribution of the density map, and distinguishing KO mice from WT mice 380 

(Fig. 5c). 381 

Further, SBeA was utilized to identify subtle social behavior modules that distinguish KO and 382 

WT mice. The two-way ANOVA was used to compare the behavior fractions between the three groups, 383 

and 24 social behavior modules were found to have significant differences (Fig. 5h). To reduce the 384 

redundancy of these results, angle spectrum clustering, which combines PCA and hierarchical 385 

clustering, was proposed (Fig. 5g). The social behavior modules were merged based on their angular 386 

separation of features, resulting in the identification of 9 social behaviors, as determined by human 387 

analysis (Fig. 5i). The color of mice represented the behavior cases with the highest mean fraction in 388 

Fig. 5g. 389 

The 9 social behavior modules identified through SBeA highlighted significant differences among 390 

the three groups. The WT-WT group exhibited more allogrooming, a prosocial behavior, than the WT-391 

KO and KO-KO groups38. Conversely, allogrooming was rare in unstressed partners and even rarer in 392 
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Shank3B KO mice, suggesting an antisocial behavioral phenotype35. The exploring behavior of the 393 

WT-WT group was significantly higher than that of the KO-KO group, which displayed reduced motor 394 

ability or social novelty12,20. In the WT-KO group, social behavior with significant differences were 395 

divided into two parts, namely, peer sniffing and independent grooming. Peer sniffing was observed 396 

more frequently in the WT mouse, particularly when the KO mouse was grooming or in locomotion, 397 

indicating a behavioral phenotype of curiosity. Furthermore, the KO mouse could induce higher 398 

interest in the WT mouse than vice versa. Independent grooming could be an imitation of the WT 399 

mouse by the KO mouse, and in the KO-KO groups, the higher incidence of independent grooming 400 

could be attributed to the increased individual grooming of each mouse. In addition to increased 401 

independent grooming, two abnormal behavior phenotypes, namely, synchronous behaviors and 402 

immobility, were observed. The synchronous behaviors displayed 5 subtypes, including grooming, 403 

hunching, rearing, sniffing, and micromovement, indicating greater behavior variability in free-social 404 

conditions compared to individual spontaneous behavior of KO mice12. Most instances of immobility 405 

occurred in only one pair of KO-KO mice, indicating that abnormal autistic-like behaviors vary even 406 

among mice with the same genetic background. These findings demonstrate that SBeA can 407 

differentiate genetic mutant animals based on social behavior and identify genetic mutant-related 408 

subtle social behavior modules. 409 

 410 

SBeA is robust to be used in different environments across species. 411 

To assess the generalizability of SBeA to different animal species and experimental settings, the 412 

behaviors of birds and dogs were captured using the MouseVenue3D system with varying device 413 

configurations11. The animals were prepared to have as similar appearances as possible (Fig. 5a top 414 
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and 5e top), and it was difficult for human experimenters to separate two animals from the randomly 415 

selected frames. The resulting videos were manually annotated to train the AI of the pose tracking 416 

component of SBeA (Fig. 6a bottom and 6e bottom), using 19 body parts for birds and 17 body parts 417 

for dogs, based on previous studies39,40. The well-trained AI was then used to predict video instances, 418 

body poses, and identities (Fig. 6b and f), which were mapped to a social ethogram and behavior atlas 419 

using the behavior mapping component of SBeA (Fig. 6c and g). In total, 34 and 15 social behavior 420 

classes were identified for birds and dogs, respectively, and their typical cases were visualized in 3D 421 

(Fig. 6d and h). The 3D pose tracking of birds showed clear identification of their claw touching their 422 

rectrix, while the 3D pose tracking of dogs was robust to occlusion even in the lying posture.  423 

To evaluate the performance of the SBeA algorithm in tracking birds and dogs, various metrics 424 

were employed, including tracking likelihood, 3D reprojection error, identity confusion matrix, and 425 

feature correlation (FC) (Fig. 6i-m). The results indicate that while dogs have a higher tracking 426 

likelihood than birds, both achieve a satisfactory level of tracking precision (Fig. 6i)12. But the 3D 427 

reprojection error is significantly higher for dogs due to incomplete camera coverage and annotation 428 

errors (Fig. 6j). In terms of identity recognition, both birds and dogs have higher precision than mice 429 

due to their distinct fur patterns (Fig. 6k). The results of FC show that all of the intra-FC of clusters 430 

are significantly higher than inter-FC (Fig. 6l and m). But from the distribution of FCs, the clustering 431 

performance of birds is better than dogs. The feature mix-up of intra- and inter-clusters is influenced 432 

by the 3D pose tracking precision. The error of 3D pose tracking such as target loss in dogs would 433 

degrade the performance of SBeA clustering. The LayerCAM analysis reveals no significant 434 

differences in feature values between birds and dogs, except for the Mid back and Nose of dogs, which 435 

may be attributed to the loss of nose detection in video captures (Fig. 6n and o). The identification 436 
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recognition network automatically reduces the feature weights on the body part with target loss or 437 

occlusion to keep the higher recognition precision of identities. These results demonstrate that SBeA 438 

is robust enough to be applied to different animal species in various experimental settings, making it a 439 

versatile tool for the study of social behavior in animals.  440 
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Discussion 441 

Here we have presented SBeA, a framework for 3D pose tracking and behavior mapping of multiple 442 

free-social animals.  SBeA builds upon the BeA framework, extending it to enable multi-animal pose 443 

estimation and social behavior clustering11–14. The method reduces the labor required for annotation 444 

by up to fifty percent compared to traditional approaches for pose estimation.  By utilizing four 445 

cameras, SBeA overcomes the issue of occlusion and reconstructs 3D behaviors accurately. Notably, 446 

SBeA resolves the challenge of animal identification over extended time frames, facilitating the study 447 

of close social interactions. The technique is highly versatile and has been successfully applied to 448 

various animal species, including Shank3B knockout mice, where it revealed synchronous behaviors 449 

and reduced social interest. SBeA's cross-species application has been verified in birds and dogs. In 450 

summary, SBeA represents a breakthrough in deep learning-based pose estimation and identification, 451 

offering numerous potential applications in animal behavior research.  452 

Both maDLC and SLEAP are versatile tools that can be applied to a variety of animal models, from 453 

fish to humans.7,8. However, a major drawback of these tools is the lack of a framework for maintaining 454 

animal identities during long-term experiments, which can be fatal to the accuracy of results10. SBeA 455 

incorporates the identity recognition approach of idTracker.ai and TRex, utilizing deep neural networks 456 

to directly learn the appearance features of animals26,41. This results in a lower error rate than maDLC 457 

or SLEAP and allows for frames with low accuracy to be filtered without affecting the entire video. 458 

Additionally, SBeA provides an extension of 2D tracking tools to 3D movement tracking, which is 459 

critical for making accurate inferences about animal behavior. 460 

One potential area for future research to improve SBeA is the development of an end-to-end model 461 

that can reduce storage consumption. To accomplish this, the process of data generation could be 462 
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incorporated into a video instance segmentation model. Additionally, the identity videos available in 463 

this context may contain sufficient information to train a deep learning model for tasks such as multi-464 

animal segmentation, identification, and pose estimation. Furthermore, the behavior atlas of a single 465 

animal could be combined with a social behavior atlas of multiple animals through an algorithmic 466 

bridge from BeA to SBeA that facilitates not only social behavior analysis but also other forms of 467 

analysis within the field.  468 

  469 
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Online content 470 

The online version of SBeA will be released after the peer review of this work. Anyone interested in 471 

our work can contact us for the further corporation. 472 

 473 

 474 

  475 
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Methods 476 

Experiments of mice, birds, and dogs. There are four experiments in this study. 477 

The first is the free-social behavior test of two wild-type mice for the program design of SBeA. 478 

32 adult male C57BL/6 mice (7–12 weeks old) are used for the free-social behavior test. The mice 479 

were housed at 4-5 mice per cage under a 12-h light–dark cycle at 22–25ௗ°C with 40–70% humidity, 480 

and were allowed to access water and food ad libitum (Shenzhen Institutes of Advanced Technology, 481 

Shenzhen, China). Before the social behavior test, the mice are added tail tags using black mark pen. 482 

The tail tags are constructed by horizontal and vertical lines. The horizontal line represents one, and 483 

the vertical line represents five. Using the combination of horizontal and vertical lines, the mice are 484 

marked according to the sequence of the experiment. After that, the mice are put into a circular open 485 

field made of a transparent acrylic wall and white plastic ground, with a base diameter of 50ௗcm or 20 486 

cm and a height of 50ௗcm for 5 min or 15 min identity recording one by one using MouseVenue3D. 487 

Then, the mice are paired and put into the same circular open field for the free-social behavior test. 488 

The second is the free-social behavior test of mice with different genotypes. 5 adult (8 weeks old) 489 

Shank3B knockout (KO; Shank3B−/−) mice on C57BL/6J genetic background and 5 adults (8 weeks 490 

old) male C57BL/6 mice, were used in the behavioral experiments. Shank3B−/− mice were obtained 491 

from the Jackson Laboratory (Jax No. 017688) and were described previously20. The mice were housed 492 

at 4-5 mice per cage under a 12-h light–dark cycle at 22–25ௗ°C with 40–70% humidity, and were 493 

allowed to access water and food ad libitum (Shenzhen Institutes of Advanced Technology, Shenzhen, 494 

China). The mice have added the tail tag introduced above. After that, the mice are put into a circular 495 

open field with a base diameter of 20ௗcm introduced before for 5 min identity recording. Then the mice 496 

are paired to WT-WT, WT-KO, and KO-KO groups and put into the same circular open field for the 497 
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free-social behavior test. The combinations of groups and the sequence of experiments are random 498 

generated by customized MATLAB code.  499 

The third is the free-social behavior test of two birds. One male and one female Melopsittacus 500 

Undulatus (about 26 weeks old) are used in this experiment. They are housed in a conventional 501 

environment with feed regularly (Shenzhen Institutes of Advanced Technology, Shenzhen, China). The 502 

birds are first put into a circular open field with a base diameter of 20ௗcm introduced before for 5 min 503 

identity recording one by one, and then put in it together for 15 min free-social behavior test and 504 

recording.  505 

The fourth is the free-social behavior test of two dogs. Two female Belgian Malinois (13 weeks 506 

old) are used in this experiment. They are housed in Kunming Police Dog Base of the Chinese Ministry 507 

of Public Security, Kunming,650204, China, and their behavior test of them is finished in the State 508 

Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy 509 

of Sciences, Kunming, 650223, China. The dogs are first put into a 2 × 2 m2 open field made by 510 

fences one by one for the identity recording. Restricted by the locomotion of dogs, there are only 6 511 

min and 11 min identity frames captured by MouseVenue3D and both of them are used for 512 

identification. Then, they are both put into the open field for 15 min free-social behavior test.  513 

All husbandry and experimental procedures of mice and birds in this study were approved by 514 

Animal Care and Use Committees at the Shenzhen Institute of Advanced Technology, Chinese 515 

Academy of Sciences. And all husbandry and experimental procedures of dogs in this study were 516 

approved by Animal Care and Use Committees at the Kunming Institute of Zoology, Chinese Academy 517 

of Sciences. 518 

 519 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.05.531235doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.05.531235
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

MouseVenue3D subtle behavior capture system. There are three versions of MouseVenue3D 520 

systems used in this study.  521 

The first version is used for the data capture of the SBM-VIS dataset. Four Intel RealSense D435 522 

cameras are mounted orthogonally on four supporting pillars made of stainless steel. The distance 523 

between the nearest cameras is 90 cm. The cameras are adjusted to 75 cm off the ground to capture the 524 

whole view of the animal activities in the open field. Images were simultaneously recorded at 30 525 

frames in 640×480 sizes per second by a PCI-E USB-3.0 data acquisition card and the pyrealsense2 526 

Python camera interface package. The cameras are connected to a high-performance computer (i7-527 

9700K, 16G RAM) equipped with a 1-terabyte SSD and 12-terabyte HDD as an image acquisition 528 

platform. The computer also controls the camera calibration module.  529 

The second version is used for the behavioral capturing of mice and birds. Four Point Grey FLIR 530 

Chameleon3 CM3-U3-13S2 cameras with adaptive zoom lenses are mounted orthogonally on four 531 

supporting pillars made of stainless steel. The distance between the nearest cameras is 85 cm. The 532 

cameras are adjusted to 45 cm off the ground to capture the whole view of the animal activities in the 533 

open field. To adapt to the size of the open field, the focal length and the pitch angle of cameras are 534 

flexibly adjusted before each experiment. Images were simultaneously recorded at 30 frames in 1288535 

×964 sizes in grayscale per second by a PCI-E USB-3.0 data acquisition card and the Spinnaker 536 

Python camera interface package. The cameras are connected to a high-performance computer (i9-537 

10900K, 128G RAM) equipped with a 512-gigabyte SSD and two 16-terabyte HDDs as an image 538 

acquisition platform. The computer also controls the camera calibration module. 539 

The third version is used for the behavioral capturing of dogs. Four Intel RealSense D435 cameras 540 

are mounted orthogonally on walls. The distance between the nearest cameras is 210 cm. The cameras 541 
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are adjusted to 150 cm off the ground to capture the whole view of the dog activities in the open field. 542 

Images were simultaneously recorded at 30 frames in 640×360 sizes per second by a PCI-E USB-3.0 543 

data acquisition card and the pyrealsense2 Python camera interface package. The cameras are 544 

connected to a high-performance computer (i7-9700K, 16G RAM) equipped with a 1-terabyte SSD 545 

and 12-terabyte HDD as an image acquisition platform. The computer also controls the camera 546 

calibration module. 547 

 548 

SBM-VIS Dataset. The free-social behavior of two C57BL/6 mice introduced above is captured by 549 

the first version of MouseVenue3D. The first 1 min frames of four cameras are annotated as the SBM-550 

VIS dataset, which is 7200 frames in total. To accelerate the data annotation, we take deep learning for 551 

assistance. 30% of the contours are manually labeled, and the rest are firstly labeled by YOLACT++ 552 

trained by the manually labeled 30% contours then checked by humans. Then, the single animal 553 

DeepLabCut is used to predict the poses of masked frames with the human check. Per 18 frames are 554 

grouped for a video instance and saved as YouTubeVIS format42. And the poses are saved as a .csv file. 555 

The identities across different cameras are corrected by human annotators.  556 

 557 

New scenario generation for video instance segmentation. The new scenario generation for video 558 

instance segmentation is divided into several steps: contour extraction, trajectory extraction, dataset 559 

labeling, background calculation, model self-training, and video dataset generation. After that, it can 560 

be input into the instance segmentation model for large-scale training. Suppose the number of animals 561 

in the video is n. Conda virtual environment configuration includes OpenCV 4.5.5.62, Python 3.8.12, 562 
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Pytorch 1.10.1, The computer was configured with Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz 563 

and NVIDIA RTX3090 GPU. 564 

In the animal contour step, image thresholding is first done, and then the contour in the image is 565 

extracted, and the following formula is used to determine whether the frame is social or not, where i  566 

stands for a frame, iR  stands for the judgment result of this frame and inum  stands for the number of 567 

contours in this frame: 568 

, 0

,

,

i i

i i

social num n num

R nonsocial num n

error others

  
 



                                                (1) 569 

When extracting the animal trajectory, due to the influence of noise, all the contour center points 570 

are recorded as the candidates of the animal frame center point, and the closest point to each animal in 571 

the previous frame is selected from multiple center points as the true center point of this frame, and 572 

then the Hungarian matching idea is used to remove the matching points successfully, to optimize the 573 

animal trajectory. 574 

For dataset annotation, different manually annotated datasets were used for different animals. We 575 

manually annotated 272 images in the 50 cm mice open field experiment, 805 images in the 20 cm 576 

mice open field experiment, 600 images in the birds experiment, and 800 images in the dogs 577 

experiment. 578 

For background calculation, the non-mask position (the background) of each image is extracted 579 

and fused into the final background image using the labeled data set. The above operation is repeated 580 

for all data sets to obtain a clean background image. 581 

The labeled data set is used for YOLACT++ round training, and the trained model is used to 582 

predict video frames. The predicted high-quality frames will be added to the original data set for the 583 
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next round of training. Among them, the selection method of high-quality frames is as follows: i  584 

represents a certain frame, if  is the segmentation result of the frame i , 1if   is the segmentation result 585 

of the frame 1i  , F  is the calculation process of scoring matrix of all segmentation results in two 586 

frames, the calculation idea refers to the Hungarian matching idea, and the calculation result is iG : 587 

1( , )i i iG F f f                                                                      (2) 588 

Then, all iG   are merged and clustered, and the class with the higher overall matrix score is 589 

selected as the high-quality frame class and added to the training data set. YOLACT++ selects the 590 

ResNet50 model as the pre-training model, and the maximum number of iterations is 150,000 591 

generations. The training process takes about 5 hours. After YOLACT++ finishes training, its final 592 

model is used to predict the results for all frames. 593 

The video dataset required for instance segmentation training is subsequently generated. The data 594 

set is divided into three parts, which are real data set, social area data set, and randomly generated data 595 

set. The real data set is the continuous high-quality frames predicted and filtered by YOLACT++, 596 

which are written into the video data set after data enhancement, where the data enhancement is 597 

performed by flipping the image left and right. Since there are many occlusions during social 598 

interaction and the performance of the model decreases, it is necessary to generate multiple datasets in 599 

the social area. Here, consecutive frames of animals in the social area are selected and augmented to 600 

generate the social area dataset, where N  forms of enhancement are generated by data augmentation, 601 

as shown below, where C   represents combination (that is, the combination of different masks is 602 

selected for flipping in each frame). A  stands for alignment (that is, all masks are aligned to occlusion):  603 

 
0

i( )*
i

n
n n

n

N C A


                                                                      (3) 604 
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Since the number of real data and social area data sets may be far from enough to complete the 605 

model training task, some data sets in the animal activity area are randomly generated after this step. 606 

In this part, the real animal trajectory in the video, the obtained animal mask, and the background 607 

calculated in the previous step are used for data collection, and the video data set is written after data 608 

enhancement. 14940 video datasets were generated for the 50cm mice open field experiment, 15130 609 

for the 20cm mice open field experiment, 5970 for the bird experiment, and 41,755 for the dog 610 

experiment. 611 

 612 

The training and validation of video instance segmentation model. Here, the video instance 613 

segmentation model adopts the Transformer-based VisTR model, which regards the video instance 614 

segmentation task as a parallel sequence encoding and decoding problem. The pre-training model was 615 

the ResNet101 model trained on the COCO dataset, the learning rate was set to 0.0001, the dropout 616 

parameter was set to 0.1, the training epochs is 30, the frame length was set to 9, the sequence length 617 

was set to 19, the number of encoding layers was 6, the number of decoding layers was 6, and Adam 618 

was used for the optimizer. The model training takes about 1.5 days. The trained model is evaluated 619 

on one minute of standard data, and the model accuracy for video instance segmentation is as follows: 620 

IST (Identity swap times) is 5.500±3.640, ISTP (Identity swap times percentage) is 0.003±0.002, 621 

IOUNID (The Intersection of the union without identity) is 0.746±0.017, mAP50NID (Mean of average 622 

precision without identity, the threshold value is greater than 0.5) is 0.985±0.013, mAP50ID (Mean of 623 

average precision with identity, the threshold value is greater than 0.5) is 0.605±0.319, similarly, 624 

mAP70NID is 0.805±0.068，mAP70ID is 0.497±0.271. 625 

 626 
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Single animal pose estimation. Single animal pose estimation was performed using DeepLabCut 627 

2.2.0.4 with a Conda virtual environment with Python 3.8.12. Four different animals were used in the 628 

manual labeling of the dataset, with 709 images labeled for mice in a 50cm open field, 1421 images 629 

labeled for mice in a 20cm open field, 1035 images labeled for birds, and 819 images labeled for dogs. 630 

The number of body posture points varied for each animal, with 16 for each mouse(nose, left ear, right 631 

ear, neck, left front limb, right front limb, left hind limb, right hind limb, left front claw, right front 632 

claw, left hind claw, right hind claw, back, root tail, mid tail, tip tail), 19 for each bird(beak, calvaria, 633 

left eye, right eye, neck, left wing root, left wing mid, left wing tip, right wing root, right wing mid, 634 

right wing tip, left leg root, left leg tip, right leg root, right leg tip, back, belly, tail root,  tail tip), and 635 

17 for each dog(nose, left ear, right ear, neck, left front limb, left front paw, right front limb, right font 636 

paw, left hind limb, left hind paw, right hind limb, right hind paw, front back, mid back, hind back, tail 637 

root, tail tip). ResNet50 was used as the pre-trained model. The model was trained for a maximum of 638 

103 million iterations with a batch size of 8 and took approximately 10 hours to train on an NVIDIA 639 

RTX3090 GPU using Python. The prediction results were saved in a CSV file. 640 

 641 

3D pose reconstruction of multi-animals. Here, we use the multi-view geometry method in computer 642 

vision for the 3D reconstruction of multiple animals. The basic projection formula between 2D points 643 

and 3D space points is as follows. 644 

    
0 1

1
1

X
x

R t Y
s y K

Z

 
                 

 

                                                           (4) 645 
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Here, s   represents the scaling factor, x   and y   are the points in the image, K   is the camera 646 

internal reference, R  is the rotation matrix, t  is the translation matrix, and X , Y , and Z  represent 647 

the coordinates of the 3D points. Specifically, firstly, all two-dimensional skeleton information of 648 

multi-animal and multi-view was read, and the points in the two-dimensional file with too low a 649 

confidence rate were directly set to NaN. Then, the relative position parameters between multiple 650 

cameras are read and the triangulation algorithm is used for the 3D reconstruction of a single animal. 651 

The basic principle is as follows: 652 

1 1 1

2 2 2 2

[ ]

[ ]

...

[ ]

1

n n n n

K R t P

K R t P

K R t P











                                                                  (5) 653 

Here, 1  to n  represent the two-dimensional points with the same content in different cameras, 654 

1K  to nK  represent the internal parameter matrix of different cameras, 1R  to nR  represent the rotation 655 

matrix of different cameras, 1t  to nt  represent the translation matrix of different cameras, and the three-656 

dimensional point P  can be solved by combining these equations, and we use the SVD decomposition 657 

to solve the least squares regression problem. 658 

Next, since the appearance of animals in different views is very similar, the identities of instance 659 

segmentation may be swapped, and the wrong 3D point coordinates may be calculated. Therefore, we 660 

first obtain the full permutation index list of all 2D points of multiple animals in each view angle, and 661 

then obtain the 3D point coordinates in all cases. Eventually, the point with the smallest error is selected 662 

as the final multi-animal 3D skeleton point. 663 

 664 
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The training and validation of animal identification model. In multi-animal experiments, because 665 

the animal hair is too similar, its identity is likely to be wrongly assigned. Here, we use the deep 666 

learning model to identify two-dimensional animals under four perspectives, to determine the identity, 667 

and to ensure that the animal identity of the whole video can be corrected back. 668 

The data set of identity recognition needs to record the individual activity videos of all experimental 669 

animals in the same scene, and then obtain two-dimensional pictures of animals from multiple 670 

perspectives. The trained video instance segmentation model is used to predict the mask of the whole 671 

body of a single animal (the effect of manually selecting some body parts of animals for identity 672 

recognition is not good). Then, the four obtained prediction images are processed by image stretching, 673 

stitching, thresholding, and so on, and finally, a complete image is obtained as the training data. The 674 

labels are the animal numbers, so there is no need to manually annotate the data. The size of the dataset 675 

depends on the duration of recording individual activity videos of animals. In the mouse experiment 676 

with a 50 cm open field, the data set size was 594,000, in the mouse experiment with a 20 cm open 677 

field, the data set size was 180,000, in the bird social experiment, and the dog social experiment, the 678 

data set size was 54161. 679 

The deep learning model uses the Efficientnet-b4 model, the maximum number of iterations is set to 680 

120, the initial value of the learning rate is 0.005, and the batch size is set to 32. It is trained on NVIDIA 681 

RTX3090 GPU, and each round of training takes about 40 minutes. 682 

In the mouse experiment with a 50 cm open field, the accuracy of the identification network in the 683 

training set was 0.993, and the accuracy of the validation set was 0.922. In the mouse experiment with 684 

a 20 cm open field, the accuracy of the training set was 0.999, and the accuracy of the validation set 685 
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was 0.911. In the dog social experiment, the training set accuracy is 0.999, and the validation set 686 

accuracy is 0.999. 687 

 688 

The pattern visualization of animal identification by LayerCAM. LayerCAM can generate the 689 

class activation maps (CAM) of each layer of CNN-based models25. The LayerCAM of each layer of 690 

the EfficientNet-based identity recognition network is averaged to output a global visualization pattern 691 

of animal identities. To further compare the feature weights of different body parts of animals, the 2D 692 

poses are used for the body part location of identity frames. From the 2D poses to identity frames, 693 

there is a coordinate transformation. The transformed 2D poses on identity frames tP  can be calculated 694 

as: 695 

1 1 2 2
1 2[ ( ), ( ),..., ( )]cam cam

t r b b b b b cam bP K K P B K P B K P B                                         (6) 696 

where rK  is the resized matrix of cascade frames, bK  is the scale matrix of the bounding box of 697 

single camera view, P  is the raw 2D poses, bB  is the bias matrix of the bounding box of single camera 698 

view, and the index cam   is the camera number. The bK   is decided by the size of frames and the 699 

bounding box size of the cropped animal instance. To reduce the disturbance of 2D pose estimation, a 700 

box centered on tP  of each transformed 2D pose crops the LayerCAM value. And the mean value of 701 

them represents the CAM weights of each body part. 702 

 703 

The mask reprojection from 3D poses to video instances. The 3D poses of each animal connect the 704 

geometric relationships of the video instances in different camera views. In the step of 3D 705 

reconstruction of multi-animals, the 2D poses of each camera view angle have been re-grouped by 706 

optimization. Because the 2D poses of multiple animals are constructed by the single animal after 707 
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video instance segmentation, the masks of instances are matched to the 2D poses. Therefore, the 3D 708 

poses of each animal are corresponding to the masks of video instances frame by frame. A table saves 709 

the corresponding indexes from 3D poses to video instances and is checked frame by frame for mask 710 

reprojection.  711 

 712 

Parallel decomposition of trajectories. The parallel decomposition of trajectories includes three parts.  713 

The first part is the decomposition of non-locomotor movement. Let 
m
ijX

  is the behavior 714 

trajectories of animals m with i  frames and j  dimensions, the non-locomotor movement component 715 

NMY  can be calculated as follows: 716 

1

1
{ }

N
m m

NM nj
n

Y X J X
N 

  
                                                            (7), 717 

where J  is all one vector, and N  is the number of frames. After this step, the center of the body 718 

of the animals can be aligned together. 719 

The second part is the decomposition of locomotion. The locomotion component LY   can be 720 

calculated as follows: 721 

{ }
m

L

X
Y

i




                                                                         (8). 722 

The third part is the decomposition of distance. The distance component DY  can be calculated as 723 

follows: 724 

1 2 2( )DY X X                                                                     (9). 725 

 726 

Feature representation of distance dynamics. The distance dynamics DDY  can be calculated as 727 

follows: 728 
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Re

( ),

( ),
DD UMAP D thres

DD sMLP D thres

Y f Y i I

Y f Y i I

 
                                                        (10), 729 

where ( )UMAPf    is the UMAP mapping including the parameters n_neighbors set to 199, and 730 

min_dist set to 0.3, thresI   is the threshold of frames set to 200000, and Re ( )sMLPf    is the feature 731 

representation including ResMLP. For Re ( )sMLPf    , firstly, the DY   is randomly sampled to DsY  732 

according to thresI . And the rest of DY  is DrY . Then, DsY  and ( )DDs UMAP DsY f Y ,the UMAP of DsY , is 733 

used to train ResMLP for feature encoding. After the training, the ResMLP predicts the DDrY  from DrY , 734 

and the DDY  can be recombined by DDsY  and DDrY  according to the sample point.  735 

The ResMLP is based on the residual module and multi-layer perceptron43,44. The residual block 736 

is constructed by multi-layer perceptron with two layers. Each layer has 64 neurons, and two residual 737 

blocks are stacked to construct the residual part. The head of ResMLP is one 1d convolution layer and 738 

one global max pooling layer for the feature encoding of distance dynamics45. The output part of 739 

ResMLP is constructed by one fully connected layer with one sigmoid layer for the continuous value 740 

representation46. The activation function of ResMLP uses ReLU layers46. The optimizer of ResMLP is 741 

adam, the initial learning rate is set to 0.001, the mini batch size is set to 2000, and the epoch number 742 

is set to 10047.The final RMSE of validation is 0.02~0.06, and the training time of ResMLP is about 4 743 

min on NVIDIA GeForce RTX 3090 GPU. 744 

 745 

The time consumption comparison of ResMLP. After the manually time consumption test of UMAP, 746 

the quadratic function is used for the estimation time comparison. The coefficient of quadratic function 747 

is 0.00002. The time consumption of ResMLP is estimated as a linear function with slope set to 748 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.05.531235doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.05.531235
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

0.000008 and intercept set to 240 based on the training and prediction time of ResMLP. The functions 749 

of the time consumption are as follows: 750 

2
UMAP UMAP DT k y                                                                      (11), 751 

2
Re Re ResMLP sMLP D sMLPT k y b                                                           (12), 752 

where UMAPT  is the time consumption of UMAP, UMAPk  is the coefficient of quadratic function, Dy  753 

is the number of distance components, Re sMLPT   is the time consumption of ResMLP, Re sMLPk   is the 754 

slope of ResMLP, and Re sMLPb  is the intercept.  755 

 756 

The distance map. Let EY  is the low-dimensional embedding of the social behavior atlas, and DMY  is 757 

the distance of EY  . The DMY  can be calculated as follows: 758 

1

1

j

j

q
j i

DM Dj j
i p

Y y
q p 


  

                                                           (13), 759 

where j  is one of the point in DMY  , p  is the start time point of 
j

DMY  , and q   is the end time point 760 

of 
j

DMY .  761 

 762 

The map/body distance. The body distance is equivalent to DMY  . The map distance EMY   can be 763 

calculated as follows: 764 

arg min( )j j
EM E EY Jy Y                                                              (14), 765 

where Ey  is one point of EY  . And the map/body distance MBY  can be calculated as follows: 766 

j
j EM

MB j
DM

Y
Y

Y


                                                                       (15). 767 

 768 
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The adaptive watershed clustering. The variable of watershed clustering on 2D embeddings is the 769 

kernel bandwidth bk  , which decides the density d  . The adaptive watershed clustering is designed to 770 

automatically choose the best d  . The best d  is determined by the stable number of clusters stc  . To 771 

get stc  , the clusters under certain bk  are firstly calculated as: 772 

( , )i i
n WC E bc f Y k                                                                 (16), 773 

where ( )WCf   is the watershed clustering, nc  is the number of clusters. Then, the stc  is calculated 774 

as: 775 

i
n

Mode
dc

f
di

st nc c

 
 
 
                                                                   (17), 776 

where ( )Modef    is the mode function. The sc   is the lower bound of watershed clustering with 777 

larger kernel bandwidth. To improve the sensitivity of watershed clustering for the subtle differences 778 

of social behavior, a threshold thresu  is set to 0.9 to restrict bk  in more fine grain. So, the number of 779 

sensitivity clusters sec  can be calculated as: 780 

arg max
i i i
n n n

se thres Max Min

dc dc dc
c u f f

di di di

     
                                                (18), 781 

where ( )Maxf    is the maximum function, and ( )Minf    is the minimum function. The stc   and sec  782 

together determine the lower and upper bound of watershed clustering. 783 

 784 

Behavior mapping of the PAIR-R24M dataset. The 3D trajectories of PAIR-R24M dataset are 785 

captured by high-performance cameras with high frame rate. To reduce the processing time and keep 786 

the global features of different mice, the frame rate is downsampled from 120 Hz to 30 Hz. The 787 

classification of the behavioral interactions of the animals includes 4 categories especially close, chase, 788 
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explore and NaN value. The NaN value in social behavior atlas is defined as others. Because the 789 

interaction classes are imbalance in quantity, four coefficients are used to balance the visual effect of 790 

data distribution in atlas.  791 

 792 

The cluster purity. The cluster purity is an indicator to quantify the uniformity of a cluster. Let the 793 

1 2{ , ,..., }NP p p p  is the ground truth indexes of all data, the 1 2{ , ,..., }NQ q q q  is the cluster indexes 794 

of all data, and N  is the number of clusters, the cluster purity PC  can be calculated as: 795 

i ii
P

i i

p q
C

p q






                                                                   (19). 796 

 797 

The cluster gram of grouped mice. To reveal the inherent patterns of behavior fractions of each group, 798 

the cluster gram is firstly stacked group by group. Then, all of the behavior fractions are normalized 799 

according to the dimension of subject and sorted by hierarchical clustering according to the dimension 800 

of social behavior module. The clustering tree is normalized for better visualization. Further, the 801 

behavior fractions of each group are sorted according to Euclidean distance for the similarity metric. 802 

The initial row of each group for sorting is chose by the maximum change rate mR  . The mR  can be 803 

calculated as: 804 

i
m

m

ds
R

di


                                                                 (20), 805 

where ms  is the sorted social behavior fractions by hierarchical clustering.  806 
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The angle spectrum clustering. The angle spectrum clustering is used to merge the similar sub-808 

clusters of behavior in feature vector space. Let V   is the feature vector matrix of social behavior 809 

modules in PCA space, the angle spectrum sA  can be calculated as: 810 

arccos i jij
s

i j

v v
a

v v

 
 
                                                             (21), 811 

where v  is one of the feature vector in V  . Then, the sA  is clustered by hierarchical clustering 812 

according to the 11 components of 99% variance explanation.  813 

 814 

Computational software and hardware. The development of 3D tracking part of SBeA is based on 815 

the Python 3.8.12 in Conda environment on Ubuntu 20.04. The development of behavior mapping part 816 

and figure plot uses MATLAB R2021b. All of the statistics are finished by Prism 8.0 (GraphPad 817 

Software). The development of SBeA is on a high-performance workstation with two Intel Xeon Silver 818 

4210R, eight NVIDIA GeForce RTX 3090, 2 Tera Byte RAM and a 140 Tera Byte Network Attached 819 

Storage. SBeA has been verified to be able to applied in a workstation with one Intel i9-12900K CPU, 820 

at least one NVIDIA GeForce RTX 3090 GPU and 128 Giga Byte RAM. 821 

 822 

Statistics. Before hypothesis testing, data were first tested for normality by the Shapiro–Wilk 823 

normality test and for homoscedasticity by the F test. For normally distributed data with homogeneous 824 

variances, parametric tests were used; otherwise, non-parametric tests were used. All of the ANOVA 825 

analysis are corrected by the recommended options of Prism 8.0. No data in this work are removed. 826 

All related data are included in analysis. 827 

 828 
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Figures and legends 958 

 959 

Fig. 1| The architecture of Social Behavior Atlas. a, Video acquisition for free social behavior test. 960 

The camera array is used for behavioral capturing, and it is calibrated by checkboard images. There 961 

are two phase for beahvioral video capturing including social behavior test and animal digital identity. 962 

The phase 1 is to capture the videos of free-social interactions of two mice. The phase 2 is to capture 963 

the identities of each mice in phase 1. b, Data annotation for AI training. Social Behavior Atlas need 964 

the annotations of multi-animal contour and single animal pose. c, The multistage artificial neural 965 

networks for 3D pose tracking.  d,The outputs of 3D pose tracking. Left: The outputs of AI including 966 

video instances, multi-animal poses, and multi-animal identities. Center: Combining video instances, 967 

multi-animal poses, and multi-animal identities with camera calibration parameters for 3D 968 

reconstruction with identities. Right: The visualization of 3D poses with identities. e, Parallel dynamic 969 

decompostion of body trajectories. Raw 3D trajectories of two animals can be decomposed into 970 

locomotion, non-locomotor movement and body distance. After dynamical temporal decomsition, 971 

these three parts are merged together as social behavior motifs for behavioral mapping. f, Social 972 

behavior metric. Social behavior motifs are clustered and pheonotyped according to the distribution in 973 

social behavior space. 974 
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 977 

Fig. 2| Continuously occluded copy-paste data augmentation-based multi-animal tracking. a, 978 

Concept diagram of continuously occluded copy-paste data augmentation. From raw scenario, the 979 

instances of background and animals can be synthesized with occlusion in new combination. That 980 

achieves generating big data from small data. b, Video capture of two free-moving animals. Two 981 

animals are put in transparent circular open field and the video streams of behavior are captured by 982 

camera array. c, New scenario generation according to a little manually labeled data. Behavioral video 983 

streams are seperated to backgrounds (top left), trajectories (medium left) and manually labeled masks 984 

(bottom left). Self-training YOLACT++ is used to predict more unlabeled masks from manually 985 

labeled masks. They then combied with backgrounds and trajctories to generate new scenarios of two 986 

free-moving mice. d, Mask and pose prediction. VisTR is used for the spatial-temporal learning of new 987 

scenarios and predict the masks of real mouse instances. Single animal pose estimation model such as 988 

DeepLabCut is used for each animal and further the 2D pose of them are merged together. e, 3D poses 989 

reconstruction. The camera array are calibrated by checkboard images using Zhang’s calibration. And 990 

reprojection errors of all combination pairs of 2D poses of each animals are optimized for 3D 991 

reconstruction. Top right: 3D view of 3D poses of two mice in this case. Bottom right: 2D view of 3D 992 

poses of two mice in this case. f, Compasion of the number of manually labeled points of SBeA and 993 

maDLC. g, Distance distribution of two free-moving mice. Pink stems are distance boundarys 994 

clustered by k-means (close: 60.69, interim: 195.03, far: 327.47). h, Prediction error compasion of all 995 

validataion data. The differences between all and close data are about ±2 pixels (two-way ANOVA 996 
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followed by Sidak multiple comparisons test). RMSE: root-mean squared error, n.s.: no significant 997 

difference, *: P<0.05, **: P<0.01, ***: P<0.001, ****: P<0.0001. 998 
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 1001 

Fig. 3| Bidirectional transfer learning-based animal identification. a, Concept diagram of 1002 

bidirectional transfer learning-based animal identification. Well trained segmentation model on multi-1003 

animals can be transferred to the single animal, and well trained identity recognition model on the 1004 

single animal can also be transfered to multi-animals. The transfer learning of two models reduces 1005 

unnecessary manual annotations of animal identities. b, Segmentation model resue. Left: an animal is 1006 

put in transparent circular open field and the video streams are captured by camera array. Center: The 1007 

well-trained VisTR is reused for the single animal. Right: The output of well-trained VisTR on the 1008 

single animal. c, Single animal identification model training. Left: the single animal instances of multi-1009 

view are cropped, cascaded and resized to an image. Center: using EfficientNet as the backbone to 1010 

train multi-animal classifiier. Right: The identity recognition pattern visualization by LayerCAM.  d, 1011 

Multi-animal segmentation with 3D reprojection. Left: mask reprojection of each camera view. Right: 1012 

crop, cascade and resize of two animal instances from matched camera view angles. e, Identifaction 1013 

model reuse. The well-trained identifaction model on the single animal can be reused in multi-animal 1014 

identifaction. f, Confusion matrix of single animal identification. g, Feature representation of single 1015 

animal identification using t-SNE. h, The sorted validation precision of f. i, The sorted silhouette 1016 
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coefficient of g. j, The manual validation precision of multi-animal identification. k, The identification 1017 

precision under different mice number. The identification of 10 mice uses 7200 frames for training and 1018 

1800 for validation, and 22 mice uses 21600 frames for training and 5400 frames for validation. With 1019 

the increase of animal number, the add of training frames can keep higher identification precision (two-1020 

sided Mann–Whitney test). l, The identification precision under different open field (OF) diameter of 1021 

behavioral test(two-sided Mann–Whitney test). m, The identification precision in different interval 1022 

time between social behavior test and identify recording(two-sided unpaired T-test). n, The feature 1023 

intensity of the tracking body parts under different OF diameter of behavioral test. The root tail of mice 1024 

is labeled by different black line markers for the easy distinguish of human(one-way ANOVA followed 1025 

by Dunnett multiple comparisons test). n.s.: no significant difference, *: P<0.05, **: P<0.01, ***: 1026 

P<0.001, ****: P<0.0001.  1027 

 1028 
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 1031 
Fig. 4| Natural behavioral structure-inspired segmentation and mapping of free social 1032 

interactions. a, The 3D trajectories of 2 animals. b, The parallel decomposition of trajectories. Top: 1033 

Non-locomotor movement. Middle: Locomotion. Bottom: Distance. c, The dynamic decomposition 1034 

after parallel decomposition using Dynamic Time Alignment Kernel (DTAK). d, e, and f, Social 1035 

behavior metric after dynamic decomposition.  d, Decomposed segments merging. e, Feture 1036 

representation of segments. Left: Dimensional reduction of distance dynamics. Right: Residual Multi-1037 

Layer Perceptron (ResMLP) for feature refining. f, Social behavior atlas construction. The adaptive 1038 

watershed is used for clustering. Color represents large clusters and area represent sub-clusters. g, 1039 

Social behavior cases clustered in social behavior atlas. h, Left: The distance map of f, Right: The 1040 

distance map without the distance component in behavior decomposition steps. i, The comparison of 1041 

map/body distance of h (two-sided paired T-test). The higher the map/body distance, the better 1042 
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performance for the representation of social behavior with different distances. j, The probability of 1043 

segment durations. k, The comparison of computational time consumption of feature representation 1044 

with or without ResMLP. l, The time proportion of different behavior. m, The feature correlations intra 1045 

and inter behavioral classes (two-sided Mann–Whitney test). n-s,The performance quantification of 1046 

SBeA on the PAIR-R24M dataset. n, The visualization of two mice in the PAIR-R24M dataset. o, The 1047 

social behavior atlas of PAIR-R24M dataset. The social classes of the PAIR-R24M dataset are 1048 

seperated in social behavior atlas. The ellipse is the Gaussian model fitting of the three classes. p, The 1049 

social behavior atlas of all the class labels of PAIR-R24M dataset. The 11 classes of each mouse are 1050 

combined to 121 classes, and the 121 classes are distributed with patterns. q, The distance map of 1051 

social behavior atlas. The distance distribution of distance map is coincident with labels in o. r, The 1052 

cluster purity of social classes in o. s, The cluster purity probability of all labels in p. The cluster 1053 

purities greater than 0.95 are significant higher than others (one-way ANOVA followed by Tukey 1054 

multiple comparisons test). n.s.: no significant difference, *: P<0.05, **: P<0.01, ***: P<0.001, ****: 1055 

P<0.0001. 1056 

 1057 
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 1059 

Fig. 5| The identifying of abnormal social behavior modules in Shank3B knockout mice. a, The 1060 

paradigm of free-social behavioral test. WT: Wild type mice, KO: Shank3B knockout mice. b, The 1061 

social behavior atlas with distance map of 3 grouped mice. c, The distribution of social behavioral 1062 

modules of three social groups. A total of 260 social behavior modules are identified.  d, The fractions 1063 

of social behavioral modules of three social groups. The fractions of each group are normalized, and 1064 

they are clustered and resorted according to the dimension of social behavior modules. e, Dimensional 1065 

reduction of behavior fractions using principal component analysis (PCA) after hypothesis testing 1066 

(two-way ANOVA followed by Tukey multiple comparisons test).  24 social behavior modules are 1067 

significant differences in three groups. 3 components can explain more than 90% variances, and 11 1068 
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components can explain more than 99% variances. f, The construction of phenotype space. UMAP is 1069 

used to reduce the 260 dimensions of social behavior modules to 3 dimensions according to e. Different 1070 

colors of dots represent different social groups. The phenotypes of 3 social groups can be seperated in 1071 

phenotpye space. g, The merging of social behavior modules according to behavioral feature angles 1072 

and e. 24 social behavior modules with significant differences are firstly mapped to PCA feature space 1073 

and then the angular separation are calculated to construct angle spectrum. Further, hierarchical 1074 

clustering is used to cluster angle spectrum to 11 clusters according to e. h, The comparison of 1075 

beahvioral fractions of 3 social groups. 24 social behavior modules with significant differences are 1076 

manually identified. i, The visualization of merged social behavior modules. With the assistance of g, 1077 

9 social behavior modules are merged and identified from 24 social behavior modules. Orange 3D 1078 

mice represent KO mice, and green 3D mice represent WT mice. n.s.: no significant difference, *: 1079 

P<0.05, **: P<0.01, ***: P<0.001, ****: P<0.0001. 1080 

 1081 
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 1084 

Fig. 6| SBeA for the applications across species such as birds and dogs. a-d, SBeA is used for birds. 1085 

a, The preparation of birds. Two parrots with inconspicuous appearance difference are used for social 1086 

behavior test. After video recording of identiy and free-social behavior by camera array, the contours 1087 

and poses are manually annotated. 19 body parts are defined for 3D pose tracking. b, The social poses 1088 

and identities outputs of SBeA.  c, The social ethogram and social behavior atlas of birds. d, The 3D 1089 

social behavior cases of birds. e-h, SBeA is used for dogs. e, The preparation of dogs. Two Belgian 1090 

Malinois with inconspicuous appearance difference are used for the social behavior test. After video 1091 

recording of identity and free-social behavior by camera array, the contours and poses are manually 1092 

annotated. 17 body parts are defined for 3D pose tracking.. f, The social poses and identities outputs 1093 

of SBeA.  g, The social ethogram and social behavior atlas of dogs. h, The 3D social behavior cases 1094 

of dogs. i-o, The performance quantification of SBeA in birds and dogs. i, The tracking likelihoods of 1095 
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birds and dogs are significant different (two-sided Mann–Whitney test). j, The 3D reprojection error 1096 

of birds and dogs are significant different (two-sided Mann–Whitney test). k, The identity recognition 1097 

confusion matrix of birds and dogs. l, The feature correlations (FC) intra and inter behavioral classes 1098 

of birds (two-way ANOVA followed by Sidak multiple comparisons test). m, The FC intra and inter 1099 

behavioral classes of dogs (two-way ANOVA followed by Sidak multiple comparisons test). n, The 1100 

feature intensity of the tracking body parts of birds (one-way ANOVA followed by Tukey multiple 1101 

comparisons test).The feature intensities do not show significant differences. o, The feature intensity 1102 

of the tracking body parts of dogs (one-way ANOVA followed by Dunnett multiple comparisons 1103 

test).The feature intensities between nose and mid back show significant differences. n.s.: no 1104 

significant difference, *: P<0.05, **: P<0.01, ***: P<0.001, ****: P<0.0001. 1105 
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Supplementary materials 1107 

 1108 

Extended Data Fig. 1| Performance comparison of SBeA and maDLC. a, Prediction error 1109 

compasion of all test data. The RMSE of most of the body parts of SBeA is significantly lower than 1110 

maDLC (two-way ANOVA followed by Sidak multiple comparisons test). b, Prediction error 1111 

compasion of close contact. The RMSE of all of the body parts of SBeA is significantly lower than 1112 

maDLC or even with maDLC (two-way ANOVA followed by Sidak multiple comparisons test). RMSE: 1113 

root-mean squared error, n.s.: no significant difference, *: P<0.05, **: P<0.01, ***: P<0.001, ****: 1114 

P<0.0001. 1115 

 1116 

Social behavior Definition Species 

Approaching One individual approaching another individual with 

locomotion. 

Mouse 
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Allogrooming Grooming behavior directed towards another 

individual. 

Mouse 

Anogenital sniffing Sniffing and exploring the anogenital (perianal and 

genital) region of another individual. 

Mouse 

Back touching One individual touching the back of another 

individual by nose or fore limbs. 

Mouse 

Chasing contact One individual running after another individual with 

discrete contact. 

Mouse 

Immobility All of the individuals are motionless. Mouse 

Independent close grooming All of the individuals are self-grooming without the 

influence of another individual. 

Mouse 

Independent rearing exploring All of the individuals are rearing towards the outside 

without the influence of another individual. 

Mouse 

Locomotion rearing exploring All of the individuals are rearing towards the outside 

with locomotion. 

Mouse 

Leaving back to back All of the individuals towards back to each other 

and in locomotion. 

Mouse 

Micromovement Small, subtle movements of individuals. Mouse 

Peer sniffing Sniffing behavior directed towards another 

individual. 

Mouse 

Peer locomotion sniffing Sniffing behavior directed towards another 

locomotion individual. 

Mouse 

Peer grooming sniffing Sniffing behavior directed towards another 

grooming individual. 

Mouse 
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Synchronous behavior The coordinated movement or activity of multiple 

individuals at the same time. 

Mouse 

Anogenital touching Contacting the genital or anal region of another 

individual. 

Bird 

Clamping on rectrix One individual holding onto the tail feathers of 

another individual by feet. 

Bird 

Kissing Two individuals touching beaks. Bird 

Back touching One individual touching the back of another 

individual by nose or fore limbs. 

Dog 

Chasing One individual pursuing or running after another 

individual. 

Dog 

Nose touching Two individual touching the noses of each other. Dog 

Extended Data Tab. 1| Social behavior definitions for manual labeling. The definition of social 1117 

behavior of mouse, bird and dog refers to Mouse Ethogram database (www.mousebehavior.org), 1118 

ref.35,48–51. 1119 

 1120 
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