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Abstract

The study of social behaviors in animals is essential for understanding their survival and
reproductive strategies. However, accurately tracking and analyzing the social interactions of free-
moving animals has remained a challenge. Existing multi-animal pose estimation techniques suffer
from drawbacks such as the need for extensive manual annotation and difficulty in discriminating
between similar-looking animals in close social interactions. In this paper, we present the Social
Behavior Atlas (SBeA), a novel computational framework that solves these challenges by employing
a deep learning-based video instance segmentation model, 3D pose reconstruction, and unsupervised
dynamic behavioral clustering. SBeA framework also involves a multi-camera setup to prevent
occlusion, and a novel approach to identify individual animals in close social interactions. We
demonstrate the effectiveness of SBeA in tracking and mapping the 3D close interactions of free-
moving animals using the example of genetic mutant mice, birds, and dogs. Our results show that
SBeA is capable of identifying subtle social interaction abnormalities, and the models and frameworks
developed can be applied to a wide range of animal species. SBeA is a powerful tool for researchers
in the fields of neuroscience and ecology to study animal social behaviors with a high degree of

accuracy and reliability.
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Introduction

Close social interactions are critical for the survival and reproduction of animals'. However, the
study of social behaviors has traditionally relied on rudimentary measures, such as the duration of time
spent in specific areas during experiments like three-chamber tests®. To address this limitation, deep
learning-based quantitative measurements have emerged as a potential solution®. In particular, there
has been a surge of interest in developing multi-animal pose estimation and behavioral mapping
techniques across various disciplines, including neuroscience and ecology®. Although single-animal
pose estimation has been achieved with high accuracy through deep learning, accurately tracking and
mapping the social behaviors of multiple animals remains a challenging task’.

Advanced multi-animal pose estimation toolboxes, such as Multi-animal DeepLabCut (maDLC)
and Social LEAP Estimate Animal Poses (SLEAP), have enabled markerless and precise tracking of
body parts for different species based on videography®®. However, these techniques suffer from
several limitations. Firstly, the high level of tracking precision necessitates a significant amount of
manual annotation, which becomes increasingly laborious as the number of animals in the study
increases. Secondly, occlusion can occur when multiple animals are present in the same video frame,
resulting in poor inference about the behavior of each animal. Thirdly, in close social interactions
between similar-looking animals’, it becomes challenging to distinguish between individual identities,
particularly over extended periods of time'°.

The Social Behavior Atlas (SBeA) offers a solution to the challenges proposed by existing multi-
animal pose estimation techniques. Firstly, the number of manual annotations can be reduced by
comprising two processes. The first is the acquisition of each animal’s contour. As fewer as 400

annotations are enough to separate adjacent animals. These data generate millions of labeled frames to
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train the deep learning-based video instance segmentation (VIS) model. Secondly, to address the issue
of occlusion, SBeA employs multiple cameras to capture video streams, which are used to reconstruct
3D poses and prevent complete occlusion!!™!3. Thirdly, SBeA resolves the multi-animal identification
problem by merging the contour of each animal with the characteristic identity of multiple view angles,
which achieves over 90% identification precision without human data annotation. Furthermore, after
solving those problems, inspired by the natural structures of social behavior, the unsupervised dynamic
behavioral metric learning is finally designed. The behavioral metric is composed of a time-series low-
dimensional representation of the behavior module. The behavioral mapping generates the social
behavior atlas, and one-third of the cluster purity reaches over 95%. Using SBeA, we found the subtle
social interaction abnormalities of Shank3B KO mice, which verifies the availability of SBeA. The
models and frameworks developed for SBeA can be also applied to birds and dogs, showcasing its

strong generalization abilities suitable for various application scenarios.
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Results
SBeA: from multi-animal markerless 3D pose tracking to unsupervised social behavior mapping.

The focus of SBeA is on quantifying the behavior of freely social animals comprehensively. It
presents two significant challenges: pose tracking and behavior mapping. The pose tracking involves
identifying the key body parts of each animal as well as their identities, which is particularly
challenging when dealing with animals that look similar'®. To address this issue, a novel free social
behavior test paradigm has been developed that involves a multi-view camera array (Fig. 1a). This
approach captures the animals covering more view angles and helps to overcome the challenge of
frequent occlusion''"'*, The camera array is used to capture images of a checkerboard for camera
calibration, followed by videos of two free-moving animals for the social behavior test (Video capture
phase 1, Fig. 1a). Finally, the array captures videos of single free-moving animals to facilitate animal
identification without the need for human intervention (Video capture phase 2, Fig. 1a).

After the video acquisition, the multi-animal contour of video capture phase 1 and the single-
animal pose of video capture phase 2 are manually annotated for the training of Al to output the 3D
poses with identities of animals (Fig. 1b and c). The design of this Al model was separated into four
stages for function integration. Through these multistage networks, the task of multi-animal video
instance segmentation, pose estimation, and identity recognition was achieved with a relatively small
number of manual annotations (~400 frames), as shown in Fig. 1d (left). By incorporating camera
parameters, the above results from various camera angles were combined and matched based on
geometric constraints to reconstruct 3D pose trajectories with identities for each animal (Fig. 1d, center
and right).

After conducting pose tracking, the process of behavior mapping involves breaking down the

6
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trajectories of animals into distinct behavior modules, and then, using appropriate metrics to obtain a
low-dimensional representation of these modules'?. In the context of SBeA, the framework for
decomposing behavior is extended from a single animal to multiple animals'?, with their 3D
trajectories being separately decomposed into locomotion, non-locomotor movement, and body
distance components (Fig. le top and middle). These parallel components are then divided into
segments and subsequently merged into social behavioral modules using the dynamic behavior metric
(Fig. 1e bottom). Overall, this process utilizes a nature-inspired structure for behavior decomposition
and provides a dynamic approach to understanding social behaviors in groups of animals.

To gain insight into the distribution of features within social behavioral modules, it is necessary
to convert them into low-dimensional representations (Fig. 1f). These representations incorporate both
spatial and temporal aspects, with the spatial aspect being captured by low-dimensional embeddings
of distance features in the SBeA framework (Fig. 1f left). The temporal aspect is represented by the
social ethogram (Fig. 1f right). In SBeA, social behavioral modules are first clustered based on their
spatial characteristics and then expanded into the temporal dimension to construct the social ethogram.
This approach allows for a more comprehensive understanding of the distribution of features within

social behavioral modules.

Fewer manual data annotations for multi-animal 3D pose tracking of SBeA.

The use of deep learning for social pose estimation has been beneficial in enhancing the
acquisition of data for multiple body parts in animals, as previously demonstrated in literature’?.
However, due to the flexible social interactions among animals, creating a comprehensive training

dataset for deep learning-based social pose estimation is a challenge. Inadequately trained deep neural
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networks tend to produce higher tracking errors, particularly in frames with close animal interactions
10 To address this issue, we introduce a novel animal tracking method using continuously occluded
copy-paste data augmentation (Fig. 2a) in our SBeA framework. There are pieces of evidence that
simple copy-paste can increase the precision of instance segmentation'®. Additionally, the continuous
copy-paste further increases the performance of multi-object tracking and segmentation'®. Here for
multi-animal tracking, we extend the above methods to continuously occluded copy-paste, which
generates the virtual scenario with instance occlusion. By capturing a short video of multiple animals
behaving freely in an open field, SBeA obtains sufficient elements (background and animal instances)
to generate the virtual dataset. These elements synthesize the complex interactive relationships
between animals without the need for manual annotations, resulting in a sufficiently large virtual
dataset to train deep neural networks.

During free behavior, it is common for animals to overlap, leading to loss of tracking in single-
view cameras. To address this, SBeA employs a multi-view camera array to capture video streams,
enabling compensation for the visual field of the cameras and facilitating continuous tracking (Fig. 2b)
11-13 Background and trajectories can be extracted through background subtraction algorithms applied
to the raw video streams (Fig. 2c left top and left middle). In addition, frames with close social
interactions can be extracted for manual contour annotations (Fig. 2c left bottom). A lightweight
instance segmentation deep neural network, YOLACT++, is trained with self-training using
approximately 400-800 annotated contour frames (Fig. 2c center bottom), which enhances its
performance while ensuring time-efficiency!”!8. The well-trained self-training YOLACT++ predicts
animal masks of video streams, and animal instances can be cropped based on these masks. As some

trajectories of two animals may overlap in the same spatial position across different periods, merged

8
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animal instances, backgrounds, trajectories, and masks can generate virtual scenarios with various
occlusion relationships and mask labels (Fig. 2¢ center top and center middle). The continuously
occluded copy-paste data augmentation increases the scale of the training dataset without additional
manual annotations, producing a VIS dataset with successive frames of behaving animals and
annotations. To capture the spatial-temporal patterns of occluded animals, the video instance
segmentation with transformers (VisTR) method is modified and applied to the virtual VIS dataset as
it can segment instances at the sequence level as a whole (Fig. 2¢ right top)'®. Well-trained VisTR can
patch the raw video streams to display only one animal in each video (Fig. 2d left top and left middle).
Thus, pose estimation models trained for single animals, such as DeepLabCut, can be used to predict
single animal poses on these patched videos after fine-tuning using patched frames (Fig. 2c right
bottom, and 2d left bottom). Finally, the single-animal poses of each patched frame are merged into
multi-animal poses (Fig. 2d left top, left middle, and left bottom).

The subsequent step in SBeA, following the acquisition of multi-animal poses from video frames,
is the 3D reconstruction (Fig. 2e). Firstly, the MouseVenue3D automatic camera calibration system is
employed to acquire the camera parameters of the camera array (Fig. 2e left top)'""!>. Then, based on
the epipolar constraint of camera parameters, the combination of each animal instance in each camera
view is optimized to achieve minimum reprojection error (Fig. 2e left bottom). The optimized 3D
skeletons of the single frame in Fig. 2d right bottom are presented in Fig. 2e right top and bottom. In
the 3D skeleton, the close contact between two animals, such as anogenital sniffing, can be quantified
(Fig. 2e right top and bottom).

Compared with the square increasing of routine multi-animal pose estimation methods such as

maDLC, the pose annotation strategy in SBeA is linearly increasing with body points and the number

9
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of animals (Fig. 2f). Considering the diversiform social interaction of animals, routine multi-animal
pose estimation methods need to annotate more data on frames with various social interactions to get
higher precision. Here, we create a well-annotated dataset Social Black Mice for Video Instance
Segmentation (SBM-VIS) to quantify the performance of SBeA. According to the distance distribution
of the test dataset, the clustering algorithm is used to separate close interaction (Fig. 2g, the left orange
stem) and other conditions. The pixel root-mean-square error (RMSE) of all data is significantly lower
than the close interaction of about 2 pixels of different body parts (Fig. 2h). But compared with maDLC,
SBeA still has significantly lower RMSE of animal close interaction, with 800 pose-labeled frames are
used to train maDLC and 400 pose- and 400 mask-labeled frames are used to train SBeA (Extended
Data Fig. 1). For all of the test data, SBeA has significantly lower RMSE than maDLC in the Nose,
Left ear, Right ear, Root tail, Mid tail, and Tip tail while maDLC has significantly lower pixel RMSE
in the Back, Right front paw and Left front paw (Extended Data Fig. 1a). For the close contact part of
the test data, SBeA has significantly lower RMSE in Nose, Left ear, Right ear, Left front limb, Right
front limb, Left hind limb, Left hind paw, Root tail, Mid tail, and Tip tail (Extended Data Fig. 1b).
These results show that SBeA can get higher precision with fewer manual annotations than routine
multi-animal pose estimation methods such as maDLC. To get a similar precision of maDLC, SBeA

only needs about a quarter of pose annotation points.

SBeA needs no data annotations for multi-animal identification.
Accurately distinguishing the identities of free-moving animals is crucial for social behavior tests,
particularly in studying treatment-induced behaviors in transgenic animal models'?>?°2!. However,

frequent occlusion of these animals can lead to imprecise identification even with physical markers.
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Moreover, the animals are the same breed to reduce the influence of irrelevant experiment variables
with indistinguishable appearances for human annotators. That causes difficulties in creating the
animal identification dataset to train deep neural networks such as SIPEC?*2. To address these
challenges, we propose a solution in SBeA, which involves combining a camera array with
bidirectional transfer learning in animal identification (Fig. 3a). Transfer learning allows artificial
neural networks to use previous knowledge in new tasks?*. For animal segmentation and identification
tasks, the knowledge between them can be shared bidirectionally with each other. So, the segmentation
model trained for multi-animals can be transferred to single-animal segmentation, and the
identification model trained for single-animals can be transferred to multi-animal identification. The
bidirectional transfer learning of them avoids unnecessary manual data annotations.

Well-trained VisTR in Fig. 2 can be used to segment single-animal instances from multiple view
angles (Fig. 3b). These instances are then cropped, cascaded, and resized to generate training data for
an identification model based on EfficientNet architecture (Fig. 3c, left and center)?*. After that,
LayerCAM is used to evaluate the patterns for identification recognition (Fig. 3¢ right)?°. Before using
the identification model in multi-animal instances, the cascaded and resized image frames were
prepared (Fig. 3d, right). By using the best geometric constraint of 3D poses, instances from each
frame view angle of each animal were matched to construct input frames of the identification model
(Fig. 3d, left). Finally, the well-trained model outputted the top prediction probabilities to append the
identities of instances and 3D poses. LayerCAM was also employed to verify the recognition patterns
for identification (Fig. 3e).

To evaluate the identification model's performance in SBeA, we conducted experiments with ten

C57BL/6J mice having tail markers, where we recorded their free behaviors for 5 minutes. The tail
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markers are convenient for experimenters to distinguish the identities of each mouse. The first 4
minutes of data were used for training the identification model, and the last 1 minute was used for
validation. The confusion matrix of the validation data demonstrated that the EfficientNet model can
identify most of the mice (Fig. 3f). The t-SNE algorithm was used to create a 2D feature representation
of the identified mice (Fig. 3j). However, the features of mice with ID M4 and M5 were found to be
mixed with other classes, as quantified by the silhouette coefficient Fig. 3h). The sorted validation
precision of the identified mice showed that the mouse with ID M4 had the lowest precision of
approximately 0.4 (Fig. 3i). Even though the features of M5 were mixed with other classes, its
precision was found to be around 0.8 (Fig. 31).

To assess the identification model's performance in multi-animal data, we recorded the free social
behaviors of 5 paired C57BL/6J mice identified by SBeA for 15 minutes. We manually verified the
identities of mask reprojection images and 3D poses frame by frame (Fig. 3j). The results indicated
that although some of the single mouse identity precisions were lower (Fig. 31), the overall precision
in identifying pairs of mice could be higher than 0.85, as seen in the case of the pairs of M3&M4 and
M5&M6. Additionally, the validation precision in single-animal identification was found to be
positively correlated with precision in multi-animal identification, as evidenced by the other pairs (Fig.
3)).

We also investigate if the number of animals would influence the identification recognition
precision. Previous research suggests that the identification precision may decrease with an increasing
number of animals involved in the study?*?’. To counteract this trend, we increased the amount of
training data to balance the precision decrease. Our results indicate that for a group of 22 mice, a 15-

minute video recording can achieve similar precision to that of 10 mice with a 5-minute recording (Fig.
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3k). These findings have important implications for optimizing study design and ensuring accurate
identification of individual animals in social behavior experiments.

Our research has revealed that the precision of animal identification can be influenced by the
experiment apparatus used in social behavior tests (Fig. 31). Specifically, we found that open fields
with different diameters - 50cm and - 20cm can impact the precision of animal identification conducted
on the same ten mice. Our results indicate that the precision of identification in the 20cm open field is
significantly higher than that in the 50cm field (Fig. 31). This difference may be due to the higher dots
per inch (DPI) of mice.

Further, we tested the stability of identification patterns. Animals would groom themselves, which
could change the patterns of identities’. We compared the identification precision of two separate
groups of mice. One group underwent both identity video recording and social behavior tests on the
same day, while the other group underwent social behavior tests one week after their identity videos
were recorded (Fig. 3m). We manually verified the identities of mask reprojection images and 3D
poses frame-by-frame. Our analysis revealed that while there was no significant difference in the
precision of mask reprojection images between the two groups, the precision of 3D poses in the group
that underwent social behavior tests one week after the recording of their identity videos was
significantly lower than that of the group that underwent both on the same day (Fig. 3m). As the
precision of 3D poses is equivalent to the identification precision of cascade and resize images, the
observed decrease in precision of 3D poses indicates a decline in identification precision. Shorter
intervals between the recording of identity videos and social behavior tests could potentially enhance
the accuracy of identification recognition.

We evaluated the feature intensity of the identification model used to distinguish different animals

13


https://doi.org/10.1101/2023.03.05.531235
http://creativecommons.org/licenses/by-nc-nd/4.0/

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.05.531235; this version posted March 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

at last in this chapter. To this end, we designed open fields with diameters of 50 and 20 cm, respectively,
in which the same ten mice were allowed to freely engage in social behavior 2 mice per trial. The pose
tracking point "Root tail" with tail markers was used as a control against other body parts (Fig. 3n).
We calculated LayerCAM values to quantify the feature intensity of each body point. The results
showed that the Root tail in the 50 cm group had more significant feature intensities than in the 20 cm
group. This finding suggests that a higher DPI can enable the identification model to capture more
available fur pattern features and thereby overcome errors resulting from marker occlusion.
Additionally, we found that identification using low animal DPI requires the use of stronger markers

to maintain sufficient recognition precision.

SBeA reveals the social behavioral structure in the atlas by unsupervised machine learning.
Following pose tracking, it is necessary to map the trajectories with animal identities to a low-
dimensional space to gain insights into behavior (Fig. 4a). Recent research has indicated that the body
language of social animals can be represented through sequential behavioral motifs or modules®. Thus,
we expand our prior work on the animal behavior mapping framework to encompass multiple animals,
Behavior Atlas (BeA), which was initially developed for a single animal. The concepts of parallel and
dynamic behavior decomposition from BeA have been adopted in our new framework SBeA (Fig. 4b
and c). In the social process, the distance between animals is an essential component, as noted in
previous studies?’. In addition to using non-locomotor movement to assess body movement and
locomotion to evaluate body displacement, body distance is also utilized to evaluate the relationships
of body position (Fig. 4b). After parallel decomposition, each component is decomposed further using

dynamic time alignment kernel (DTAK) to retain the natural dynamic structures of behavior (Fig. 4c).
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To distinguish subtle structures of social behavior, the temporal points of decomposition for each
component are merged through logical addition (Fig. 4d). The aforementioned steps enable the metric
of social behavior, resulting in the transformation of continuous pose trajectories into discrete social
behavior modules.

Then, the social behavior modules are embedded in a low-dimensional space for behavior
representation (Fig. 4e and f). All of the social behavior modules from different experimental trials
need to be represented in a common feature space. That induces two questions, the first is what feature
is reasonable to represent social behavior in a low-dimensional space, and the second is how to create

a common feature space under the big behavioral data’®!

. For the first question, the distance
component is chosen for the feature representation of social behavior modules (Fig. 4e left). The
dimensionally reduced distance component by uniform manifold approximation and projection
(UMAP) is beneficial to improve the separation of behavior atlas verified by our previous studies'!”
1432 But with the increase of data scale, the computational consumption of UMAP would be
unacceptable because of limited memory space, which is the second question. To solve the second
question, the residual multilayer perceptron (ResMLP) is combined with UMAP for feature
representation (Fig. 4e right)*>. A part of the social behavior feature frames is extracted randomly to
build up the feature representation of distance dynamics by the UMAP. Then, the mapping from
extracted social behavior feature frames to distance dynamics is trained by ResMLP for the feature
encoding. Further, the rest of the social behavior feature frames are decoded by ResMLP to distance
dynamics. The distance dynamics are embedded by DTAK and UMAP to construct the social behavior

atlas (Fig. 4f). To reveal the distributions of different social behavior modules, based on density

clustering, we modified the watershed algorithm to automatically determine the best cluster density
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with upper and lower boundaries. At last, the social behavior modules of the same clusters are manually
identified and defined (Fig. 4g).

In constructing the social behavior atlas, the inclusion of the distance component is crucial. By
using the distance component, the social behavior atlas can maintain the overall body distance
structures of social behavior modules (Fig. 4h left), while the absence of the distance component leads
to a lack of observable patterns in the distribution of distance (Fig. 4h right). To compare the
effectiveness of the distance representations in the atlases, the map/body distance metric is utilized,
with higher values indicating better performance in distance representation (Fig. 41). Results show that
the distance component is essential in achieving a high map/body distance, indicating the importance
of including this component in constructing the social behavior atlas. Additionally, the 0.45+0.32s
temporal duration of merged behavioral modules reveals that the SBeA framework can effectively
decompose social behavior into dynamic sub-second motifs (Fig. 4j)!%**. The ResMLP can address
issues related to the memory cost of large behavioral data, while also reducing computational time
consumption compared to using UMAP alone. More than 5000 frames can get time benefits from
ResMLP, and the time benefits will increase with the number of frames (Fig. 4k). Then, the time
proportion of identified behavioral modules is quantified to evaluate their temporal precision (Fig. 41).
The time proportion of the typical social behavior such as allogrooming conforms to previous studies
on social behavior®. Further, the feature correlations between the intra- and inter-clusters of each social
behavior class are compared for the evaluation of clustering consistency (Fig. 4m). The intra-feature
correlations of each social behavior class are significantly higher than inter-feature correlations, and
the intra-feature correlations distribute consistently near to 1, in turn, the inter-feature correlations

distribute in the weak negative correlation. These unsupervised validation measures demonstrate the
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effectiveness of the SBeA framework in accurately mapping social behavior.

In addition to unsupervised validation, we conducted supervised validation of SBeA using the
PAIR-R24M dataset (Fig. 4n)*. The dataset provides 3D poses, social behavior labels, and subject
behavior labels of rats in free behavior. We used SBeA to construct the social behavior atlas for the
dataset, and appended the three social labels (close, chase, and explore) to each behavior module (Fig.
40). The distributions of the three social labels were separated and matched their similarity relationship.
The 121 combinations of subject behavior labels also showed distribution patterns in the social
behavior atlas (Fig. 4p). The social labels such as close and explore were consistent with the close
distance distribution in the distance map, and the chase label was consistent with the distance transition
zone of the distance map (Fig. 4q). To quantify the clustering performance, we used the cluster purity
of social and subject behavior labels (Fig. 4r and s). For the upper boundary of clustering, 14 classes
were clustered with a mean cluster purity of 0.77+0.16 (Fig. 4r). For the lower boundary of clustering,
405 classes were clustered, and the probability of cluster purities greater than 0.95 was significantly
higher than for other purities (Fig. 4s). These results provide further validation of the performance of

SBeA in supervised contexts.

SBeA identifies Shank3B knockout mice in free-social interactions by subtle behavior modules.
Social behavior can serve as an indicator of the genetic variations that underlie neuropsychiatric
disorders®’. SBeA is well-suited for this purpose, as it allows for a detailed characterization of social
behavior at an atlas-level. To test the ability of SBeA to detect genetic differences from social behavior,
we utilized an animal model of autism spectrum disorder (ASD): Shank3B knockout mice!>?’. While

abnormal individual behaviors of these mice have been previously identified, the limitations of existing
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techniques have made it difficult to fully understand their abnormal free social behaviors!>%,

To distinguish between Shank3B knockout (KO) mice and wild-type (WT) mice, a free-social
behavioral paradigm was designed based on the framework of SBeA, which consists of three steps:
identity recording, social behavior recording, and SBeA processing (Fig. 5a). First, the home-caged
WT and KO mice were randomly shuffled and recorded for 5 minutes each using the Mouse Venue3D
system to obtain identity information. After identity recording, the mice were randomly grouped into
three pairs (WT-WT, WT-KO, and KO-KO) for social behavior recording, with each pair of mice
recorded for 15 minutes. The identity and social behavior data were then processed using SBeA for 3D
pose tracking and behavior mapping. The experiment used a total of 10 WT and 10 KO mice, resulting
in 45 unique pairs of mice, including 10 WT-WT, 10 KO-KO, and 25 WT-KO pairs. To ensure equal
representation of each group, the number of WT-KO pairs was reduced from 25 to 10 through random
sampling. Before behavior mapping, the raw trajectories were copied and switched to capture the
direction of social behavior between WT and KO mice. This resulted in a total of 60 pairs of trajectories
for behavior mapping using SBeA.

The social behavior atlas with distance map is shown in Fig. 5b. After the construction of the
social behavior atlas, the density map is calculated to compare the social behavior distribution of each
group by kernel density estimation (Fig. 5¢). Density map shows obvious differences across the three
groups. Combing with the distance map, the WT-WT group shows social behavior phenotypes with
flexible distances from close to far, the KO-KO group shows more abnormal social behaviors than the
WT-WT group, and WT-KO shows more close social interaction than the WT-WT group. From the
global level, the social behaviors of KO mice show differences from WT mice.

The 260 social behavior modules identified in the social behavior atlas were clustered to reveal
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their coincident patterns, which displayed distinct speckled patterns for each group, ranging from 1 to
20 social behavior modules in the KO-KO group (Fig. 5d). To compare the differences in behavior
components among the three groups, principal component analysis (PCA) was employed to determine
the percent variability explained by each principal component (Fig. 5e). The results indicated that three
components could account for 90% of the variance, while 11 components could account for 99% of
the variance. To construct the phenotype space of the three groups, UMAP was used for dimensional
reduction of the social behavior modules, with the dimension number set to 3 based on the 90%
variance explanation, owing to the more robust feature representation of non-linear dimensional
reduction (Fig. 5f). The distributions of the three groups in the phenotype space were found to be
segregated, matching the distribution of the density map, and distinguishing KO mice from WT mice
(Fig. 5c¢).

Further, SBeA was utilized to identify subtle social behavior modules that distinguish KO and
WT mice. The two-way ANOVA was used to compare the behavior fractions between the three groups,
and 24 social behavior modules were found to have significant differences (Fig. 5h). To reduce the
redundancy of these results, angle spectrum clustering, which combines PCA and hierarchical
clustering, was proposed (Fig. 5g). The social behavior modules were merged based on their angular
separation of features, resulting in the identification of 9 social behaviors, as determined by human
analysis (Fig. 51). The color of mice represented the behavior cases with the highest mean fraction in
Fig. 5g.

The 9 social behavior modules identified through SBeA highlighted significant differences among
the three groups. The WT-WT group exhibited more allogrooming, a prosocial behavior, than the WT-

KO and KO-KO groups®®. Conversely, allogrooming was rare in unstressed partners and even rarer in
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Shank3B KO mice, suggesting an antisocial behavioral phenotype®*. The exploring behavior of the
WT-WT group was significantly higher than that of the KO-KO group, which displayed reduced motor
ability or social novelty'>?°. In the WT-KO group, social behavior with significant differences were
divided into two parts, namely, peer sniffing and independent grooming. Peer sniffing was observed
more frequently in the WT mouse, particularly when the KO mouse was grooming or in locomotion,
indicating a behavioral phenotype of curiosity. Furthermore, the KO mouse could induce higher
interest in the WT mouse than vice versa. Independent grooming could be an imitation of the WT
mouse by the KO mouse, and in the KO-KO groups, the higher incidence of independent grooming
could be attributed to the increased individual grooming of each mouse. In addition to increased
independent grooming, two abnormal behavior phenotypes, namely, synchronous behaviors and
immobility, were observed. The synchronous behaviors displayed 5 subtypes, including grooming,
hunching, rearing, sniffing, and micromovement, indicating greater behavior variability in free-social
conditions compared to individual spontaneous behavior of KO mice'2. Most instances of immobility
occurred in only one pair of KO-KO mice, indicating that abnormal autistic-like behaviors vary even
among mice with the same genetic background. These findings demonstrate that SBeA can
differentiate genetic mutant animals based on social behavior and identify genetic mutant-related

subtle social behavior modules.

SBeA is robust to be used in different environments across species.
To assess the generalizability of SBeA to different animal species and experimental settings, the
behaviors of birds and dogs were captured using the MouseVenue3D system with varying device

configurations''. The animals were prepared to have as similar appearances as possible (Fig. 5a top
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and 5Se top), and it was difficult for human experimenters to separate two animals from the randomly
selected frames. The resulting videos were manually annotated to train the Al of the pose tracking
component of SBeA (Fig. 6a bottom and 6e bottom), using 19 body parts for birds and 17 body parts
for dogs, based on previous studies***°. The well-trained Al was then used to predict video instances,
body poses, and identities (Fig. 6b and f), which were mapped to a social ethogram and behavior atlas
using the behavior mapping component of SBeA (Fig. 6¢ and g). In total, 34 and 15 social behavior
classes were identified for birds and dogs, respectively, and their typical cases were visualized in 3D
(Fig. 6d and h). The 3D pose tracking of birds showed clear identification of their claw touching their
rectrix, while the 3D pose tracking of dogs was robust to occlusion even in the lying posture.

To evaluate the performance of the SBeA algorithm in tracking birds and dogs, various metrics
were employed, including tracking likelihood, 3D reprojection error, identity confusion matrix, and
feature correlation (FC) (Fig. 6i-m). The results indicate that while dogs have a higher tracking
likelihood than birds, both achieve a satisfactory level of tracking precision (Fig. 61)'2. But the 3D
reprojection error is significantly higher for dogs due to incomplete camera coverage and annotation
errors (Fig. 6j). In terms of identity recognition, both birds and dogs have higher precision than mice
due to their distinct fur patterns (Fig. 6k). The results of FC show that all of the intra-FC of clusters
are significantly higher than inter-FC (Fig. 61 and m). But from the distribution of FCs, the clustering
performance of birds is better than dogs. The feature mix-up of intra- and inter-clusters is influenced
by the 3D pose tracking precision. The error of 3D pose tracking such as target loss in dogs would
degrade the performance of SBeA clustering. The LayerCAM analysis reveals no significant
differences in feature values between birds and dogs, except for the Mid back and Nose of dogs, which

may be attributed to the loss of nose detection in video captures (Fig. 6n and o). The identification
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recognition network automatically reduces the feature weights on the body part with target loss or
occlusion to keep the higher recognition precision of identities. These results demonstrate that SBeA
is robust enough to be applied to different animal species in various experimental settings, making it a

versatile tool for the study of social behavior in animals.
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Discussion

Here we have presented SBeA, a framework for 3D pose tracking and behavior mapping of multiple
free-social animals. SBeA builds upon the BeA framework, extending it to enable multi-animal pose
estimation and social behavior clustering!' 4. The method reduces the labor required for annotation
by up to fifty percent compared to traditional approaches for pose estimation. By utilizing four
cameras, SBeA overcomes the issue of occlusion and reconstructs 3D behaviors accurately. Notably,
SBeA resolves the challenge of animal identification over extended time frames, facilitating the study
of close social interactions. The technique is highly versatile and has been successfully applied to
various animal species, including Shank3B knockout mice, where it revealed synchronous behaviors
and reduced social interest. SBeA's cross-species application has been verified in birds and dogs. In
summary, SBeA represents a breakthrough in deep learning-based pose estimation and identification,
offering numerous potential applications in animal behavior research.

Both maDLC and SLEAP are versatile tools that can be applied to a variety of animal models, from
fish to humans.”®. However, a major drawback of these tools is the lack of a framework for maintaining
animal identities during long-term experiments, which can be fatal to the accuracy of results!®. SBeA
incorporates the identity recognition approach of idTracker.ai and TRex, utilizing deep neural networks
to directly learn the appearance features of animals®®*!. This results in a lower error rate than maDLC
or SLEAP and allows for frames with low accuracy to be filtered without affecting the entire video.
Additionally, SBeA provides an extension of 2D tracking tools to 3D movement tracking, which is
critical for making accurate inferences about animal behavior.

One potential area for future research to improve SBeA is the development of an end-to-end model

that can reduce storage consumption. To accomplish this, the process of data generation could be
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incorporated into a video instance segmentation model. Additionally, the identity videos available in
this context may contain sufficient information to train a deep learning model for tasks such as multi-
animal segmentation, identification, and pose estimation. Furthermore, the behavior atlas of a single
animal could be combined with a social behavior atlas of multiple animals through an algorithmic
bridge from BeA to SBeA that facilitates not only social behavior analysis but also other forms of

analysis within the field.
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Online content

The online version of SBeA will be released after the peer review of this work. Anyone interested in

our work can contact us for the further corporation.
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Methods
Experiments of mice, birds, and dogs. There are four experiments in this study.

The first is the free-social behavior test of two wild-type mice for the program design of SBeA.
32 adult male C57BL/6 mice (7—12 weeks old) are used for the free-social behavior test. The mice
were housed at 4-5 mice per cage under a 12-h light—dark cycle at 22-25 °C with 40-70% humidity,
and were allowed to access water and food ad libitum (Shenzhen Institutes of Advanced Technology,
Shenzhen, China). Before the social behavior test, the mice are added tail tags using black mark pen.
The tail tags are constructed by horizontal and vertical lines. The horizontal line represents one, and
the vertical line represents five. Using the combination of horizontal and vertical lines, the mice are
marked according to the sequence of the experiment. After that, the mice are put into a circular open
field made of a transparent acrylic wall and white plastic ground, with a base diameter of 50 cm or 20
cm and a height of 50 cm for 5 min or 15 min identity recording one by one using MouseVenue3D.
Then, the mice are paired and put into the same circular open field for the free-social behavior test.

The second is the free-social behavior test of mice with different genotypes. 5 adult (8 weeks old)
Shank3B knockout (KO; Shank3B~'~) mice on C57BL/6] genetic background and 5 adults (8 weeks
old) male C57BL/6 mice, were used in the behavioral experiments. Shank3B~~ mice were obtained
from the Jackson Laboratory (Jax No. 017688) and were described previously?’. The mice were housed
at 4-5 mice per cage under a 12-h light—dark cycle at 22-25 °C with 40-70% humidity, and were
allowed to access water and food ad libitum (Shenzhen Institutes of Advanced Technology, Shenzhen,
China). The mice have added the tail tag introduced above. After that, the mice are put into a circular
open field with a base diameter of 20 cm introduced before for 5 min identity recording. Then the mice

are paired to WT-WT, WT-KO, and KO-KO groups and put into the same circular open field for the
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free-social behavior test. The combinations of groups and the sequence of experiments are random
generated by customized MATLAB code.

The third is the free-social behavior test of two birds. One male and one female Melopsittacus
Undulatus (about 26 weeks old) are used in this experiment. They are housed in a conventional
environment with feed regularly (Shenzhen Institutes of Advanced Technology, Shenzhen, China). The
birds are first put into a circular open field with a base diameter of 20 cm introduced before for 5 min
identity recording one by one, and then put in it together for 15 min free-social behavior test and
recording.

The fourth is the free-social behavior test of two dogs. Two female Belgian Malinois (13 weeks
old) are used in this experiment. They are housed in Kunming Police Dog Base of the Chinese Ministry
of Public Security, Kunming,650204, China, and their behavior test of them is finished in the State
Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy
of Sciences, Kunming, 650223, China. The dogs are first put into a 2 X 2 m? open field made by
fences one by one for the identity recording. Restricted by the locomotion of dogs, there are only 6
min and 11 min identity frames captured by MouseVenue3D and both of them are used for
identification. Then, they are both put into the open field for 15 min free-social behavior test.

All husbandry and experimental procedures of mice and birds in this study were approved by
Animal Care and Use Committees at the Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences. And all husbandry and experimental procedures of dogs in this study were
approved by Animal Care and Use Committees at the Kunming Institute of Zoology, Chinese Academy

of Sciences.
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MouseVenue3D subtle behavior capture system. There are three versions of MouseVenue3D
systems used in this study.

The first version is used for the data capture of the SBM-VIS dataset. Four Intel RealSense D435
cameras are mounted orthogonally on four supporting pillars made of stainless steel. The distance
between the nearest cameras is 90 cm. The cameras are adjusted to 75 cm off the ground to capture the
whole view of the animal activities in the open field. Images were simultaneously recorded at 30
frames in 640 X480 sizes per second by a PCI-E USB-3.0 data acquisition card and the pyrealsense2
Python camera interface package. The cameras are connected to a high-performance computer (i7-
9700K, 16G RAM) equipped with a 1-terabyte SSD and 12-terabyte HDD as an image acquisition
platform. The computer also controls the camera calibration module.

The second version is used for the behavioral capturing of mice and birds. Four Point Grey FLIR
Chameleon3 CM3-U3-13S2 cameras with adaptive zoom lenses are mounted orthogonally on four
supporting pillars made of stainless steel. The distance between the nearest cameras is 85 cm. The
cameras are adjusted to 45 cm off the ground to capture the whole view of the animal activities in the
open field. To adapt to the size of the open field, the focal length and the pitch angle of cameras are
flexibly adjusted before each experiment. Images were simultaneously recorded at 30 frames in 1288
X964 sizes in grayscale per second by a PCI-E USB-3.0 data acquisition card and the Spinnaker
Python camera interface package. The cameras are connected to a high-performance computer (i9-
10900K, 128G RAM) equipped with a 512-gigabyte SSD and two 16-terabyte HDDs as an image
acquisition platform. The computer also controls the camera calibration module.

The third version is used for the behavioral capturing of dogs. Four Intel RealSense D435 cameras

are mounted orthogonally on walls. The distance between the nearest cameras is 210 cm. The cameras
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are adjusted to 150 cm off the ground to capture the whole view of the dog activities in the open field.
Images were simultaneously recorded at 30 frames in 640X 360 sizes per second by a PCI-E USB-3.0
data acquisition card and the pyrealsense2 Python camera interface package. The cameras are
connected to a high-performance computer (i7-9700K, 16G RAM) equipped with a 1-terabyte SSD
and 12-terabyte HDD as an image acquisition platform. The computer also controls the camera

calibration module.

SBM-VIS Dataset. The free-social behavior of two C57BL/6 mice introduced above is captured by
the first version of MouseVenue3D. The first 1 min frames of four cameras are annotated as the SBM-
VIS dataset, which is 7200 frames in total. To accelerate the data annotation, we take deep learning for
assistance. 30% of the contours are manually labeled, and the rest are firstly labeled by YOLACT++
trained by the manually labeled 30% contours then checked by humans. Then, the single animal
DeepLabCut is used to predict the poses of masked frames with the human check. Per 18 frames are

t42

grouped for a video instance and saved as YouTubeVIS format™. And the poses are saved as a .csv file.

The identities across different cameras are corrected by human annotators.

New scenario generation for video instance segmentation. The new scenario generation for video
instance segmentation is divided into several steps: contour extraction, trajectory extraction, dataset
labeling, background calculation, model self-training, and video dataset generation. After that, it can
be input into the instance segmentation model for large-scale training. Suppose the number of animals

in the video is n. Conda virtual environment configuration includes OpenCV 4.5.5.62, Python 3.8.12,
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Pytorch 1.10.1, The computer was configured with Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz
and NVIDIA RTX3090 GPU.

In the animal contour step, image thresholding is first done, and then the contour in the image is
extracted, and the following formula is used to determine whether the frame is social or not, where i

stands for a frame, R, stands for the judgment result of this frame and num. stands for the number of

contours in this frame:

social ,num; <n N num, >0

R = nonsocial,num. = n (1)

1

error,others

When extracting the animal trajectory, due to the influence of noise, all the contour center points
are recorded as the candidates of the animal frame center point, and the closest point to each animal in
the previous frame is selected from multiple center points as the true center point of this frame, and
then the Hungarian matching idea is used to remove the matching points successfully, to optimize the
animal trajectory.

For dataset annotation, different manually annotated datasets were used for different animals. We
manually annotated 272 images in the 50 cm mice open field experiment, 805 images in the 20 cm
mice open field experiment, 600 images in the birds experiment, and 800 images in the dogs
experiment.

For background calculation, the non-mask position (the background) of each image is extracted
and fused into the final background image using the labeled data set. The above operation is repeated
for all data sets to obtain a clean background image.

The labeled data set is used for YOLACT++ round training, and the trained model is used to

predict video frames. The predicted high-quality frames will be added to the original data set for the
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next round of training. Among them, the selection method of high-quality frames is as follows: i
represents a certain frame, f; is the segmentation result of the frame i, f, , is the segmentation result

of the frame i—1, F is the calculation process of scoring matrix of all segmentation results in two

frames, the calculation idea refers to the Hungarian matching idea, and the calculation result is G.:
G =F(f.f.) @)

Then, all G, are merged and clustered, and the class with the higher overall matrix score is
selected as the high-quality frame class and added to the training data set. YOLACT++ selects the
ResNet50 model as the pre-training model, and the maximum number of iterations is 150,000
generations. The training process takes about 5 hours. After YOLACT++ finishes training, its final
model is used to predict the results for all frames.

The video dataset required for instance segmentation training is subsequently generated. The data
set is divided into three parts, which are real data set, social area data set, and randomly generated data
set. The real data set is the continuous high-quality frames predicted and filtered by YOLACT++,
which are written into the video data set after data enhancement, where the data enhancement is
performed by flipping the image left and right. Since there are many occlusions during social
interaction and the performance of the model decreases, it is necessary to generate multiple datasets in
the social area. Here, consecutive frames of animals in the social area are selected and augmented to
generate the social area dataset, where N forms of enhancement are generated by data augmentation,
as shown below, where C represents combination (that is, the combination of different masks is

selected for flipping in each frame). A stands for alignment (that is, all masks are aligned to occlusion):

N=S Cyrar 3)
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Since the number of real data and social area data sets may be far from enough to complete the
model training task, some data sets in the animal activity area are randomly generated after this step.
In this part, the real animal trajectory in the video, the obtained animal mask, and the background
calculated in the previous step are used for data collection, and the video data set is written after data
enhancement. 14940 video datasets were generated for the 50cm mice open field experiment, 15130
for the 20cm mice open field experiment, 5970 for the bird experiment, and 41,755 for the dog

experiment.

The training and validation of video instance segmentation model. Here, the video instance
segmentation model adopts the Transformer-based VisTR model, which regards the video instance
segmentation task as a parallel sequence encoding and decoding problem. The pre-training model was
the ResNet101 model trained on the COCO dataset, the learning rate was set to 0.0001, the dropout
parameter was set to 0.1, the training epochs is 30, the frame length was set to 9, the sequence length
was set to 19, the number of encoding layers was 6, the number of decoding layers was 6, and Adam
was used for the optimizer. The model training takes about 1.5 days. The trained model is evaluated
on one minute of standard data, and the model accuracy for video instance segmentation is as follows:
IST (Identity swap times) is 5.500%3.640, ISTP (Identity swap times percentage) is 0.003+0.002,
IOUnib (The Intersection of the union without identity) is 0.746 20.017, mAP50nip (Mean of average
precision without identity, the threshold value is greater than 0.5) is 0.985+0.013, mAP50ip (Mean of
average precision with identity, the threshold value is greater than 0.5) is 0.605+0.319, similarly,

mAP70nm is 0.805+0.068, mAP70mp is 0.497+0.271.
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Single animal pose estimation. Single animal pose estimation was performed using DeepLabCut
2.2.0.4 with a Conda virtual environment with Python 3.8.12. Four different animals were used in the
manual labeling of the dataset, with 709 images labeled for mice in a 50cm open field, 1421 images
labeled for mice in a 20cm open field, 1035 images labeled for birds, and 819 images labeled for dogs.
The number of body posture points varied for each animal, with 16 for each mouse(nose, left ear, right
ear, neck, left front limb, right front limb, left hind limb, right hind limb, left front claw, right front
claw, left hind claw, right hind claw, back, root tail, mid tail, tip tail), 19 for each bird(beak, calvaria,
left eye, right eye, neck, left wing root, left wing mid, left wing tip, right wing root, right wing mid,
right wing tip, left leg root, left leg tip, right leg root, right leg tip, back, belly, tail root, tail tip), and
17 for each dog(nose, left ear, right ear, neck, left front limb, left front paw, right front limb, right font
paw, left hind limb, left hind paw, right hind limb, right hind paw, front back, mid back, hind back, tail
root, tail tip). ResNet50 was used as the pre-trained model. The model was trained for a maximum of
103 million iterations with a batch size of 8 and took approximately 10 hours to train on an NVIDIA

RTX3090 GPU using Python. The prediction results were saved in a CSV file.

3D pose reconstruction of multi-animals. Here, we use the multi-view geometry method in computer
vision for the 3D reconstruction of multiple animals. The basic projection formula between 2D points

and 3D space points is as follows.

X
X
LR Y @
sl vi=
Y 0 1|z
I
1
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Here, s represents the scaling factor, x and y are the points in the image, K is the camera
internal reference, R is the rotation matrix, ¢ is the translation matrix, and X, ¥, and Z represent
the coordinates of the 3D points. Specifically, firstly, all two-dimensional skeleton information of
multi-animal and multi-view was read, and the points in the two-dimensional file with too low a
confidence rate were directly set to NaN. Then, the relative position parameters between multiple
cameras are read and the triangulation algorithm is used for the 3D reconstruction of a single animal.

The basic principle is as follows:

a, =K, [Rt,]1P

=K, [Rt,]|P
a, 2 Roty ] (5)

a,=K,[R,1P

Here, o, to «, represent the two-dimensional points with the same content in different cameras,
K, to K, represent the internal parameter matrix of different cameras, R, to R represent the rotation
matrix of different cameras, ¢, to ¢, represent the translation matrix of different cameras, and the three-
dimensional point P can be solved by combining these equations, and we use the SVD decomposition
to solve the least squares regression problem.

Next, since the appearance of animals in different views is very similar, the identities of instance
segmentation may be swapped, and the wrong 3D point coordinates may be calculated. Therefore, we
first obtain the full permutation index list of all 2D points of multiple animals in each view angle, and
then obtain the 3D point coordinates in all cases. Eventually, the point with the smallest error is selected

as the final multi-animal 3D skeleton point.
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The training and validation of animal identification model. In multi-animal experiments, because
the animal hair is too similar, its identity is likely to be wrongly assigned. Here, we use the deep
learning model to identify two-dimensional animals under four perspectives, to determine the identity,
and to ensure that the animal identity of the whole video can be corrected back.

The data set of identity recognition needs to record the individual activity videos of all experimental
animals in the same scene, and then obtain two-dimensional pictures of animals from multiple
perspectives. The trained video instance segmentation model is used to predict the mask of the whole
body of a single animal (the effect of manually selecting some body parts of animals for identity
recognition is not good). Then, the four obtained prediction images are processed by image stretching,
stitching, thresholding, and so on, and finally, a complete image is obtained as the training data. The
labels are the animal numbers, so there is no need to manually annotate the data. The size of the dataset
depends on the duration of recording individual activity videos of animals. In the mouse experiment
with a 50 cm open field, the data set size was 594,000, in the mouse experiment with a 20 cm open
field, the data set size was 180,000, in the bird social experiment, and the dog social experiment, the
data set size was 54161.

The deep learning model uses the Efficientnet-b4 model, the maximum number of iterations is set to
120, the initial value of the learning rate is 0.005, and the batch size is set to 32. It is trained on NVIDIA
RTX3090 GPU, and each round of training takes about 40 minutes.

In the mouse experiment with a 50 cm open field, the accuracy of the identification network in the
training set was 0.993, and the accuracy of the validation set was 0.922. In the mouse experiment with

a 20 cm open field, the accuracy of the training set was 0.999, and the accuracy of the validation set
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was 0.911. In the dog social experiment, the training set accuracy is 0.999, and the validation set

accuracy is 0.999.

The pattern visualization of animal identification by LayerCAM. LayerCAM can generate the
class activation maps (CAM) of each layer of CNN-based models®’. The LayerCAM of each layer of
the EfficientNet-based identity recognition network is averaged to output a global visualization pattern
of animal identities. To further compare the feature weights of different body parts of animals, the 2D
poses are used for the body part location of identity frames. From the 2D poses to identity frames,
there is a coordinate transformation. The transformed 2D poses on identity frames £ can be calculated

as:

P =K [K) (B +B). K} (P, + B, K (B, + B™)] ©)

where K, is the resized matrix of cascade frames, K, is the scale matrix of the bounding box of
single camera view, P is the raw 2D poses, B, is the bias matrix of the bounding box of single camera
view, and the index ¢4 is the camera number. The K, is decided by the size of frames and the

bounding box size of the cropped animal instance. To reduce the disturbance of 2D pose estimation, a

box centered on g of each transformed 2D pose crops the LayerCAM value. And the mean value of

them represents the CAM weights of each body part.

The mask reprojection from 3D poses to video instances. The 3D poses of each animal connect the
geometric relationships of the video instances in different camera views. In the step of 3D
reconstruction of multi-animals, the 2D poses of each camera view angle have been re-grouped by

optimization. Because the 2D poses of multiple animals are constructed by the single animal after
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video instance segmentation, the masks of instances are matched to the 2D poses. Therefore, the 3D
poses of each animal are corresponding to the masks of video instances frame by frame. A table saves
the corresponding indexes from 3D poses to video instances and is checked frame by frame for mask

reprojection.

Parallel decomposition of trajectories. The parallel decomposition of trajectories includes three parts.

m

The first part is the decomposition of non-locomotor movement. Let ~ % is the behavior

trajectories of animals 7 with ! frames and / dimensions, the non-locomotor movement component

Yo can be calculated as follows:

YNM:{X —J—Zan}
N (),

where / is all one vector, and N is the number of frames. After this step, the center of the body

of the animals can be aligned together.

The second part is the decomposition of locomotion. The locomotion component Y can be

calculated as follows:

a m
Y, ={——}
Oi (8).
The third part is the decomposition of distance. The distance component Yy can be calculated as

follows:

YD:\/(AXI_AXz)2 9).

Feature representation of distance dynamics. The distance dynamics Yop can be calculated as
follows:
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{ Yop = fUMAP(YD)’i <L s
Yoy = fResMLP (YD)’i 2 L s (10),

where Jomar () is the UMAP mapping including the parameters n_neighbors set to 199, and

min_dist set to 0.3, Lires is the threshold of frames set to 200000, and Jrearr () is the feature

Y,

representation including ResMLP. For Jreszr () , firstly, the Yy is randomly sampled to ~2s

according to Lipes . And the rest of Y is Yy, . Then, Y, and Yoo, = Joar (V) ,the UMAP of Y, , 18
used to train ResMLP for feature encoding. After the training, the ResMLP predicts the Yo, from Yy, ,

Y,

and the Yop can be recombined by "2 and Yo, according to the sample point.

The ResMLP is based on the residual module and multi-layer perceptron****. The residual block
is constructed by multi-layer perceptron with two layers. Each layer has 64 neurons, and two residual
blocks are stacked to construct the residual part. The head of ResMLP is one 1d convolution layer and
one global max pooling layer for the feature encoding of distance dynamics*. The output part of
ResMLP is constructed by one fully connected layer with one sigmoid layer for the continuous value
representation*®. The activation function of ResMLP uses ReLU layers*. The optimizer of ResMLP is
adam, the initial learning rate is set to 0.001, the mini batch size is set to 2000, and the epoch number
is set to 100*”.The final RMSE of validation is 0.02~0.06, and the training time of ResMLP is about 4

min on NVIDIA GeForce RTX 3090 GPU.
The time consumption comparison of ResMLP. After the manually time consumption test of UMAP,

the quadratic function is used for the estimation time comparison. The coefficient of quadratic function

is 0.00002. The time consumption of ResMLP is estimated as a linear function with slope set to
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0.000008 and intercept set to 240 based on the training and prediction time of ResMLP. The functions

of the time consumption are as follows:

Tonsar = Konar (11),
Teoir = kresuerVn + bresyur (12),

where Tonar is the time consumption of UMAP, Konuar is the coefficient of quadratic function, Vo

k

is the number of distance components, Tresmr is the time consumption of ResMLP, "ResMLP ig the

slope of ResMLP, and Prestur is the intercept.

The distance map. Let Yy is the low-dimensional embedding of the social behavior atlas, and You is

the distance of Yy . The You can be calculated as follows:

YDjM = +1 ZyD
a (13),

' j
where / is one of the point in You , P is the start time point of You ,and 4 is the end time point

j
of "pm

The map/body distance. The body distance is equivalent to You . The map distance You can be

calculated as follows:
Y/, =argmin(Jy] —Y,) (14),
where *£ is one point of Yy . And the map/body distance Vi can be calculated as follows:

J
Y, EM

J
YDM

j =
MB

(15).
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The adaptive watershed clustering. The variable of watershed clustering on 2D embeddings is the

kernel bandwidth k, , which decides the density d  The adaptive watershed clustering is designed to
automatically choose the best @ . The best @ is determined by the stable number of clusters . To

get €« | the clusters under certain k, are firstly calculated as:

¢, = fuc(Yy.k}) (16),

where Jwc©) is the watershed clustering, “r is the number of clusters. Then, the “ is calculated
as:

j:Mudp[ %]
Cy =Cy (17)’

where Sotoae () is the mode function. The < is the lower bound of watershed clustering with

larger kernel bandwidth. To improve the sensitivity of watershed clustering for the subtle differences

of social behavior, a threshold “mres is set to 0.9 to restrict k, in more fine grain. So, the number of
sensitivity clusters Ce can be calculated as:

dc!
dl _uthres X(fMax[ ]_f]\/[m [ ]]
(18),

where o () is the maximum function, and Sy () is the minimum function. The s and e

dc!
di

dc,';
di

c,, =argmax

together determine the lower and upper bound of watershed clustering.

Behavior mapping of the PAIR-R24M dataset. The 3D trajectories of PAIR-R24M dataset are
captured by high-performance cameras with high frame rate. To reduce the processing time and keep
the global features of different mice, the frame rate is downsampled from 120 Hz to 30 Hz. The

classification of the behavioral interactions of the animals includes 4 categories especially close, chase,
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explore and NaN value. The NaN value in social behavior atlas is defined as others. Because the
interaction classes are imbalance in quantity, four coefficients are used to balance the visual effect of

data distribution in atlas.

The cluster purity. The cluster purity is an indicator to quantify the uniformity of a cluster. Let the

P ={Pis Pses Py} is the ground truth indexes of all data, the Q=141:92- v} is the cluster indexes

of all data, and IV is the number of clusters, the cluster purity Cr can be calculated as:

Cl‘ — sz mqi
: Zpiuqi (19).

The cluster gram of grouped mice. To reveal the inherent patterns of behavior fractions of each group,
the cluster gram is firstly stacked group by group. Then, all of the behavior fractions are normalized
according to the dimension of subject and sorted by hierarchical clustering according to the dimension
of social behavior module. The clustering tree is normalized for better visualization. Further, the
behavior fractions of each group are sorted according to Euclidean distance for the similarity metric.
The initial row of each group for sorting is chose by the maximum change rate R, . The R, can be

calculated as:

ds!
di

R=Y

(20),

where *» is the sorted social behavior fractions by hierarchical clustering.
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The angle spectrum clustering. The angle spectrum clustering is used to merge the similar sub-
clusters of behavior in feature vector space. Let V' is the feature vector matrix of social behavior
modules in PCA space, the angle spectrum 4, can be calculated as:

ViV

a’ = arccos
|Vz'| ‘Vj‘
21),

where V is one of the feature vector in ¥ . Then, the 4, is clustered by hierarchical clustering

according to the 11 components of 99% variance explanation.

Computational software and hardware. The development of 3D tracking part of SBeA is based on
the Python 3.8.12 in Conda environment on Ubuntu 20.04. The development of behavior mapping part
and figure plot uses MATLAB R2021b. All of the statistics are finished by Prism 8.0 (GraphPad
Software). The development of SBeA is on a high-performance workstation with two Intel Xeon Silver
4210R, eight NVIDIA GeForce RTX 3090, 2 Tera Byte RAM and a 140 Tera Byte Network Attached
Storage. SBeA has been verified to be able to applied in a workstation with one Intel 19-12900K CPU,

at least one NVIDIA GeForce RTX 3090 GPU and 128 Giga Byte RAM.

Statistics. Before hypothesis testing, data were first tested for normality by the Shapiro—Wilk
normality test and for homoscedasticity by the F test. For normally distributed data with homogeneous
variances, parametric tests were used; otherwise, non-parametric tests were used. All of the ANOVA
analysis are corrected by the recommended options of Prism 8.0. No data in this work are removed.

All related data are included in analysis.
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Fig. 1| The architecture of Social Behavior Atlas. a, Video acquisition for free social behavior test.
The camera array is used for behavioral capturing, and it is calibrated by checkboard images. There
are two phase for beahvioral video capturing including social behavior test and animal digital identity.
The phase 1 is to capture the videos of free-social interactions of two mice. The phase 2 is to capture
the identities of each mice in phase 1. b, Data annotation for Al training. Social Behavior Atlas need
the annotations of multi-animal contour and single animal pose. ¢, The multistage artificial neural
networks for 3D pose tracking. d,The outputs of 3D pose tracking. Left: The outputs of Al including
video instances, multi-animal poses, and multi-animal identities. Center: Combining video instances,
multi-animal poses, and multi-animal identities with camera calibration parameters for 3D
reconstruction with identities. Right: The visualization of 3D poses with identities. e, Parallel dynamic
decompostion of body trajectories. Raw 3D trajectories of two animals can be decomposed into
locomotion, non-locomotor movement and body distance. After dynamical temporal decomsition,
these three parts are merged together as social behavior motifs for behavioral mapping. f, Social
behavior metric. Social behavior motifs are clustered and pheonotyped according to the distribution in
social behavior space.
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Fig. 2| Continuously occluded copy-paste data augmentation-based multi-animal tracking. a,
Concept diagram of continuously occluded copy-paste data augmentation. From raw scenario, the
instances of background and animals can be synthesized with occlusion in new combination. That
achieves generating big data from small data. b, Video capture of two free-moving animals. Two
animals are put in transparent circular open field and the video streams of behavior are captured by
camera array. ¢, New scenario generation according to a little manually labeled data. Behavioral video
streams are seperated to backgrounds (top left), trajectories (medium left) and manually labeled masks
(bottom left). Self-training YOLACT++ is used to predict more unlabeled masks from manually
labeled masks. They then combied with backgrounds and trajctories to generate new scenarios of two
free-moving mice. d, Mask and pose prediction. VisTR is used for the spatial-temporal learning of new
scenarios and predict the masks of real mouse instances. Single animal pose estimation model such as
DeepLabCut is used for each animal and further the 2D pose of them are merged together. e, 3D poses
reconstruction. The camera array are calibrated by checkboard images using Zhang’s calibration. And
reprojection errors of all combination pairs of 2D poses of each animals are optimized for 3D
reconstruction. Top right: 3D view of 3D poses of two mice in this case. Bottom right: 2D view of 3D
poses of two mice in this case. f, Compasion of the number of manually labeled points of SBeA and
maDLC. g, Distance distribution of two free-moving mice. Pink stems are distance boundarys
clustered by k-means (close: 60.69, interim: 195.03, far: 327.47). h, Prediction error compasion of all
validataion data. The differences between all and close data are about £ 2 pixels (two-way ANOVA
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followed by Sidak multiple comparisons test). RMSE: root-mean squared error, n.s.: no significant
difference, *: P<0.05, **: P<0.01, ***: P<(0.001, ****: P<(0.0001.
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Fig. 3| Bidirectional transfer learning-based animal identification. a, Concept diagram of
bidirectional transfer learning-based animal identification. Well trained segmentation model on multi-
animals can be transferred to the single animal, and well trained identity recognition model on the
single animal can also be transfered to multi-animals. The transfer learning of two models reduces
unnecessary manual annotations of animal identities. b, Segmentation model resue. Left: an animal is
put in transparent circular open field and the video streams are captured by camera array. Center: The
well-trained VisTR is reused for the single animal. Right: The output of well-trained VisTR on the
single animal. ¢, Single animal identification model training. Left: the single animal instances of multi-
view are cropped, cascaded and resized to an image. Center: using EfficientNet as the backbone to
train multi-animal classifiier. Right: The identity recognition pattern visualization by LayerCAM. d,
Multi-animal segmentation with 3D reprojection. Left: mask reprojection of each camera view. Right:
crop, cascade and resize of two animal instances from matched camera view angles. e, Identifaction
model reuse. The well-trained identifaction model on the single animal can be reused in multi-animal
identifaction. f, Confusion matrix of single animal identification. g, Feature representation of single
animal identification using t-SNE. h, The sorted validation precision of f. i, The sorted silhouette
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coefficient of g. j, The manual validation precision of multi-animal identification. k, The identification
precision under different mice number. The identification of 10 mice uses 7200 frames for training and
1800 for validation, and 22 mice uses 21600 frames for training and 5400 frames for validation. With
the increase of animal number, the add of training frames can keep higher identification precision (two-
sided Mann—Whitney test). I, The identification precision under different open field (OF) diameter of
behavioral test(two-sided Mann—Whitney test). m, The identification precision in different interval
time between social behavior test and identify recording(two-sided unpaired T-test). n, The feature
intensity of the tracking body parts under different OF diameter of behavioral test. The root tail of mice
is labeled by different black line markers for the easy distinguish of human(one-way ANOVA followed
by Dunnett multiple comparisons test). n.s.: no significant difference, *: P<0.05, **: P<0.01, ***;
P<0.001, ****: P<0.0001.
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Fig. 4| Natural behavioral structure-inspired segmentation and mapping of free social
interactions. a, The 3D trajectories of 2 animals. b, The parallel decomposition of trajectories. Top:
Non-locomotor movement. Middle: Locomotion. Bottom: Distance. ¢, The dynamic decomposition
after parallel decomposition using Dynamic Time Alignment Kernel (DTAK). d, e, and f, Social
behavior metric after dynamic decomposition. d, Decomposed segments merging. e, Feture
representation of segments. Left: Dimensional reduction of distance dynamics. Right: Residual Multi-
Layer Perceptron (ResMLP) for feature refining. f, Social behavior atlas construction. The adaptive
watershed is used for clustering. Color represents large clusters and area represent sub-clusters. g,
Social behavior cases clustered in social behavior atlas. h, Left: The distance map of f, Right: The
distance map without the distance component in behavior decomposition steps. i, The comparison of
map/body distance of h (two-sided paired T-test). The higher the map/body distance, the better
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performance for the representation of social behavior with different distances. j, The probability of
segment durations. k, The comparison of computational time consumption of feature representation
with or without ResMLP. 1, The time proportion of different behavior. m, The feature correlations intra
and inter behavioral classes (two-sided Mann—Whitney test). n-s,The performance quantification of
SBeA on the PAIR-R24M dataset. n, The visualization of two mice in the PAIR-R24M dataset. o, The
social behavior atlas of PAIR-R24M dataset. The social classes of the PAIR-R24M dataset are
seperated in social behavior atlas. The ellipse is the Gaussian model fitting of the three classes. p, The
social behavior atlas of all the class labels of PAIR-R24M dataset. The 11 classes of each mouse are
combined to 121 classes, and the 121 classes are distributed with patterns. q, The distance map of
social behavior atlas. The distance distribution of distance map is coincident with labels in o. r, The
cluster purity of social classes in 0. s, The cluster purity probability of all labels in p. The cluster
purities greater than 0.95 are significant higher than others (one-way ANOVA followed by Tukey
multiple comparisons test). n.s.: no significant difference, *: P<0.05, **: P<0.01, ***: P<0.001, ****;
P<0.0001.
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1060  Fig. 5| The identifying of abnormal social behavior modules in Shank3B knockout mice. a, The
1061  paradigm of free-social behavioral test. WT: Wild type mice, KO: Shank3B knockout mice. b, The
1062  social behavior atlas with distance map of 3 grouped mice. ¢, The distribution of social behavioral
1063  modules of three social groups. A total of 260 social behavior modules are identified. d, The fractions
1064  of social behavioral modules of three social groups. The fractions of each group are normalized, and
1065  they are clustered and resorted according to the dimension of social behavior modules. e, Dimensional
1066  reduction of behavior fractions using principal component analysis (PCA) after hypothesis testing
1067  (two-way ANOVA followed by Tukey multiple comparisons test). 24 social behavior modules are
1068  significant differences in three groups. 3 components can explain more than 90% variances, and 11
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components can explain more than 99% variances. f, The construction of phenotype space. UMAP is
used to reduce the 260 dimensions of social behavior modules to 3 dimensions according to e. Different
colors of dots represent different social groups. The phenotypes of 3 social groups can be seperated in
phenotpye space. g, The merging of social behavior modules according to behavioral feature angles
and e. 24 social behavior modules with significant differences are firstly mapped to PCA feature space
and then the angular separation are calculated to construct angle spectrum. Further, hierarchical
clustering is used to cluster angle spectrum to 11 clusters according to e. h, The comparison of
beahvioral fractions of 3 social groups. 24 social behavior modules with significant differences are
manually identified. i, The visualization of merged social behavior modules. With the assistance of g,
9 social behavior modules are merged and identified from 24 social behavior modules. Orange 3D
mice represent KO mice, and green 3D mice represent WT mice. n.s.: no significant difference, *:
P<0.05, **: P<0.01, ***: P<0.001, ****: P<0.0001.
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Fig. 6| SBeA for the applications across species such as birds and dogs. a-d, SBeA is used for birds.
a, The preparation of birds. Two parrots with inconspicuous appearance difference are used for social
behavior test. After video recording of identiy and free-social behavior by camera array, the contours
and poses are manually annotated. 19 body parts are defined for 3D pose tracking. b, The social poses
and identities outputs of SBeA. ¢, The social ethogram and social behavior atlas of birds. d, The 3D
social behavior cases of birds. e-h, SBeA is used for dogs. e, The preparation of dogs. Two Belgian
Malinois with inconspicuous appearance difference are used for the social behavior test. After video
recording of identity and free-social behavior by camera array, the contours and poses are manually
annotated. 17 body parts are defined for 3D pose tracking.. f, The social poses and identities outputs
of SBeA. g, The social ethogram and social behavior atlas of dogs. h, The 3D social behavior cases
of dogs. i-0, The performance quantification of SBeA in birds and dogs. i, The tracking likelihoods of
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birds and dogs are significant different (two-sided Mann—Whitney test). j, The 3D reprojection error
of birds and dogs are significant different (two-sided Mann—Whitney test). k, The identity recognition
confusion matrix of birds and dogs. 1, The feature correlations (FC) intra and inter behavioral classes
of birds (two-way ANOVA followed by Sidak multiple comparisons test). m, The FC intra and inter
behavioral classes of dogs (two-way ANOVA followed by Sidak multiple comparisons test). n, The
feature intensity of the tracking body parts of birds (one-way ANOVA followed by Tukey multiple
comparisons test). The feature intensities do not show significant differences. o, The feature intensity
of the tracking body parts of dogs (one-way ANOVA followed by Dunnett multiple comparisons
test).The feature intensities between nose and mid back show significant differences. n.s.: no
significant difference, *: P<0.05, **: P<0.01, ***: P<0.001, ****: P<(0.0001.
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Extended Data Fig. 1| Performance comparison of SBeA and maDLC. a, Prediction error
compasion of all test data. The RMSE of most of the body parts of SBeA is significantly lower than
maDLC (two-way ANOVA followed by Sidak multiple comparisons test). b, Prediction error
compasion of close contact. The RMSE of all of the body parts of SBeA is significantly lower than
maDLC or even with maDLC (two-way ANOVA followed by Sidak multiple comparisons test). RMSE:

root-mean squared error, n.s.: no significant difference, *: P<0.05, **: P<0.01, ***: P<0.001, ****:

P<0.0001.
Social behavior Definition Species
Approaching One individual approaching another individual with ~ Mouse

locomotion.
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Allogrooming

Anogenital sniffing

Back touching

Chasing contact

Immobility

Independent close grooming

Independent rearing exploring

Locomotion rearing exploring

Leaving back to back

Micromovement

Peer sniffing

Peer locomotion sniffing

Peer grooming sniffing

Grooming behavior directed towards another
individual.

Sniffing and exploring the anogenital (perianal and
genital) region of another individual.

One individual touching the back of another
individual by nose or fore limbs.

One individual running after another individual with
discrete contact.

All of the individuals are motionless.

All of the individuals are self-grooming without the
influence of another individual.

All of the individuals are rearing towards the outside
without the influence of another individual.

All of the individuals are rearing towards the outside
with locomotion.

All of the individuals towards back to each other
and in locomotion.

Small, subtle movements of individuals.

Sniffing behavior directed towards another
individual.

Sniffing behavior directed towards another
locomotion individual.

Sniffing behavior directed towards another

grooming individual.
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Synchronous behavior The coordinated movement or activity of multiple Mouse

individuals at the same time.

Anogenital touching Contacting the genital or anal region of another Bird
individual.
Clamping on rectrix One individual holding onto the tail feathers of Bird

another individual by feet.
Kissing Two individuals touching beaks. Bird
Back touching One individual touching the back of another Dog

individual by nose or fore limbs.

Chasing One individual pursuing or running after another Dog
individual.
Nose touching Two individual touching the noses of each other. Dog

1117  Extended Data Tab. 1| Social behavior definitions for manual labeling. The definition of social

1118  behavior of mouse, bird and dog refers to Mouse Ethogram database (www.mousebehavior.org),

1119 ref 354831

1120
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