

1 **Title: Ecosystem connectivity and configuration can mediate instability at a distance in**
2 **metaecosystems**

3 **Authors:** Christina P. Tadiri^{1,2}, Jorge O. Negrín Dastis^{1,3}, Melania E. Cristescu^{1,4}, Andrew
4 Gonzalez^{1,4}, Gregor F. Fussmann^{1,4}

5 ¹Department of Biology, McGill University

6 1205 Avenue Docteur Penfield, Montreal QC Canada H3A 1B1

7 ²Present address: Department of Environmental Sciences, University of Basel
8 Vesalgasse 1, 4058 Basel, Switzerland

9 ³Fisheries and Oceans Canada,
10 200 Kent Street, Ottawa ON Canada K1A 0E6

11 ⁴Quebec Centre for Biodiversity Science

12 **Number of Tables: 1**

13 **Number of Figures: 3**

14 **Supplemental Figures: 2**

15 **Word Count: 5815**

16 **Abstract**

17 Ecosystems are connected by flows of nutrients and organisms. Changes to connectivity and
18 nutrient enrichment may destabilise ecosystem dynamics far from the nutrient source. We used
19 gradostats to examine the effects of trophic connectivity (movement of consumers and
20 producers) versus nutrient-only connectivity in different metaecosystem configurations (linear vs
21 dendritic) on dynamics of *Daphnia pulex* (consumers) and an algae (resources). We found that
22 peak population size and instability (coefficient of variation; CV) of *Daphnia* populations
23 increased as distance from the nutrient input increased, but were lower in metaecosystems
24 connected by all trophic levels compared to nutrient-only connected systems and in dendritic
25 systems compared to linear ones. We examined the effects of trophic connectivity (i.e. how
26 many trophic levels are moving rather than one or the other) using a generic model to
27 qualitatively assess patterns of ecosystem dynamics. Our model predicted increased population
28 sizes and fluctuations in ecosystems with nutrient connectivity, with this pattern being more
29 pronounced in linear rather than dendritic systems. These results confirm that connectivity may
30 propagate and even amplify instability over a metaecosystem to communities far from the source
31

32 disturbance, and suggest a pathway for future experiments, that recreate conditions closer to
33 those found in natural systems.

34 **Keywords:** gradostat, consumer-resource dynamics, ecosystem connectivity, *Daphnia pulex*,
35 nutrient enrichment, metaecosystem

36 **Introduction**

37 Ecosystem stability is a central theme in ecology with a large body of theory focused on
38 identifying the key processes that stabilise versus those that destabilise an ecosystem's dynamics
39 (1-3). A significant body of research now invokes spatial processes, such as species dispersal and
40 nutrient flows that may alter their movement in space over time, as key governors of stability in
41 trophic systems (4). Anthropogenic perturbations to stability have been addressed and include
42 altered climate gradients (5), altered trophic structure by over-exploitation (6), altered rates and
43 scales of nutrient flows (7), and permanent shifts in the size (8) and connectivity of habitats (4).
44 Experiments have contributed significantly to our understanding of the factors driving instability
45 (9, 10), but few have sought to identify how these factors interact to define stability across
46 trophically structured metaecosystems (11).

47 Altered patterns and rates of ecosystem connectivity can cause instability over large spatial
48 extents both locally and at the metacommunity level. Here instability is any form of dynamics
49 that threatens the persistence of a species locally or across the metacommunity. Connectivity via
50 the spatial flows of nutrients, resources and consumers can carry or even amplify the
51 destabilising effects of point sources of disturbance and perturbation over large distances (7, 12).
52 For example, changes in the rates of movement of consumers may synchronise consumer
53 dynamics driving instability (13), leading to greater metacommunity instability, as measured by
54 increases in the variance in population dynamics within and among local communities (12).

55 Nutrient enrichment is another well-known source of community instability. This phenomenon,
56 known as the paradox of enrichment (14) causes ecosystems to transition from stable dynamics
57 to a regime characterised by large oscillations in the dynamics of primary producers and
58 consumers. The consumer-resource oscillations caused by nutrient enrichment can increase the
59 risk of extinction especially of edible species, allowing inedible species to become dominant
60 (15). From this theory we expect connectivity and nutrient enrichment to interact strongly to
61 define patterns of instability over entire metacommunities.

62 McCann et al (7) derived theoretical results in networked communities showing how ecosystem
63 connectivity due to nutrient or consumer movement may allow nutrient enrichment at a point
64 source to accumulate and drive instability at a terminal community far from the source. They

65 also demonstrated the differential effects of either nutrient or consumer movement on system
66 stability, where nutrient movement alone may be stabilising but lead to increases in consumer
67 population sizes, whereas movement of consumers alone leads to amplification of consumer
68 populations in the terminal community which drives instability. Additionally, they predicted that
69 heterogeneity in the flow rates across a connected metaecosystem can be stabilising. They also
70 highlighted empirical observational examples of nutrient-driven instability at a distance with
71 nutrient movement, though none with consumer movement alone. These theoretical predictions
72 have not been tested with a controlled experiment.

73 In this study we combined a replicated gradostat experiment and model simulations to test how
74 metaecosystem configuration, heterogeneity, and functional connectivity alter the stability of the
75 community dynamics. Modelled after the chemostat, a gradostat apparatus consists of a series of
76 flasks connected by tubing through which medium is pumped in, through and out in order to
77 create a sustained nutrient gradient (16). Gradostats thus offer the ability to experimentally test
78 predictions about metaecosystems in microcosms; they have been used to examine competition
79 dynamics (17-19) and consumer-resource dynamics (16, 20) in metacommunities. The direction
80 and speed of flow and configuration of the flasks ('nodes') in the gradostats metaecosystem
81 network may be modified to a greater degree than in chemostats. The gradostat offers high
82 control over spatial flows in a lab setting and the small size allows for multiple treatments in a
83 replicated experimental design.

84 To identify metaecosystem dynamics characteristic of our system we studied *Daphnia*-algae-
85 nutrient interactions in gradostats with two metaecosystem configurations—linear and dendritic
86 networks—and two levels of connectivity (only connected by flow of nutrients or connected by
87 movement of all trophic levels). We hypothesised based on the findings of McCann et al (7) that
88 instability would be greatest in the terminal node of gradostats, and that this effect would be
89 stronger in those gradostats where consumers and resources move in addition to nutrients. We
90 further hypothesised that metaecosystem configuration would modify instability in the terminal
91 node, with those in dendritic configurations being more stable than linear ones due to the slower
92 upstream nodes dampening the influx of nutrients and consumers to the terminal node. We
93 compare our experimental results to simulations of a generic consumer-resource model
94 describing the experimental design.

95 **Methods**

96 *Laboratory Experimental Design*

97 For a full description of culture and treatment preparation, see Supplemental Methods.

98 Our gradostat flasks contained simple communities of the water flea *Daphnia pulex* consuming a
99 mix of three algal species (*Pseudokirchneriella subcapitata*, *Scenedesmus quadricauda*,
100 *Ankistrodesmus falcatus*). Configuration was controlled by connecting flasks in a linear
101 configuration or a dendritic configuration. We also controlled functional connectivity contrasting
102 metaecosystem dynamics when only nutrients moved versus the case when nutrients, resources
103 and consumers moved. This experiment employed a 2x2x2 factorial design to test the importance
104 of ecosystem trophic connectivity (a treatment considering movement of medium only vs.
105 movement of media, phytoplankton and *Daphnia* between flasks) and metaecosystem
106 configuration (linear or dendritic) on the stability of ecosystems with two levels of enriched
107 medium input (regular and phosphorus-enriched). Each metaecosystem consisted of four
108 “nodes” of 500 mL Erlenmeyer flasks with a foam stopper to allow for gas exchange, seeded
109 initially with 100 mL algal mix (total average algal density of $2.22 \times 10^6 \pm 1.3 \times 10^4$ cells/mL) to
110 which 50 adult *Daphnia* were added before topping off the flask to 500 mL with FLAMES
111 media (21). Flasks were then connected by Tygon tubing and from an inflow reservoir of
112 FLAMES medium (10 $\mu\text{gP/L}$) or enriched P (70 $\mu\text{gP/L}$) medium was pumped through the array
113 of flasks using peristaltic pumps (Watson-Marlow 503S/RL and Rainin Dynamix RP-1). The
114 dilution rate was 0.1 day^{-1} for all flasks in the linear configurations and the “hub” and “terminal”
115 nodes of the dendritic configurations, and 0.05 day^{-1} for the “upstream” nodes in the dendritic
116 configurations (Figure 1). To block the flow of organisms in the nutrient only connectivity
117 treatment, outflow tubing was placed inside an 80- μm nylon mesh held in place with the stopper.
118 Due to colony formation of the phytoplankton and clogging of the mesh this proved to be an
119 effective retention mechanism also for the algal resources. In the trophic connectivity treatment,
120 *D. pulex* were manually moved using a 2mL transfer pipette at a rate of $\approx 0.1 \text{ day}^{-1}$ (20% were
121 moved after each sampling count as sampling was only done every two days) in all linear nodes
122 and the hub and terminal dendritic nodes, and $\approx 5\%$ per day (10% moved after sampling) in the
123 upstream dendritic nodes. Inflow stock solutions were prepared using FLAMES media (10
124 $\mu\text{gP/L}$). To increase P in the additionally nutrient-enriched treatment without changing pH, 132

125 $\mu\text{g/L}$ of H_2KPO_4 and $168 \mu\text{g/L}$ HK_2PO_4 were added to our increased P treatment inflow stock
126 solution. For the less-phosphorus treatment, no additional phosphorus was added, but $218 \mu\text{g/L}$
127 KCl were added to control for the K added to the high-P medium.

128 *Experimental Sampling*

129 The gradostats were sampled every other day for 30 days. In each node, the concentration of
130 each algal species was measured using a haemocytometer. To estimate *Daphnia* population size,
131 a 2mL plastic transfer pipette was used to gently agitate, then sample each node. The number of
132 individuals and two age classes (adult or juvenile) in the pipette were determined and then
133 replaced to the experimental flask. This process was repeated five times, and the total *D. pulex*
134 count of the five samples was used to estimate *Daphnia* density/10mL (total number estimated
135 per flask = total sampled count *50). A pilot testing this method proved it had an average error of
136 17.41 %. On Day 30 of the experiment, 40mL samples were taken from each flask to be analysed
137 for total phosphorus concentration (TP). Phosphorus samples were analysed using a standard
138 protocol (22) at the GRIL-Université du Québec à Montréal analytical laboratory.

139 *Statistical Analysis*

140 To quantify the instability of *Daphnia* populations in experimental gradostats, we determined the
141 peak total population size (as estimated by our 10mL samples) and the coefficient of variation
142 (CV) of population size over the course of the experiment. These variables were calculated for
143 each node within each gradostat, as well as in aggregate summed across all nodes. Similarly, CV
144 and peak density were calculated for each species of alga but we report here values based on
145 total algal density (sum of all species present).

146 All analyses of experimental gradostat data were conducted in R version 4 (23). For tests of
147 statistical significance α was set to $p = 0.05$. To determine whether metaecosystem connectivity
148 and configuration influenced local instability downstream of the nutrient enrichment source, we
149 analysed the effects of our three experimental treatments and node position (1 upstream to 4
150 terminal) on *Daphnia* population peak and CV using generalized linear mixed effects models
151 with block as a random factor and different error distributions depending on the outcome
152 variable (Poisson distribution for *Daphnia* peak, with daphnia CV and algal CV log-
153 transformed). We also tested for interactions between node position and each experimental

154 treatment ($DV \sim Node * (Connectivity + Configuration + Phosphorus) + (1/Block)$). Non-significant
155 interactions were removed for final models

156 Final TP concentrations within each flask were compared among experimental treatments and
157 node positions using a generalized linear mixed effects model with each treatment and node as
158 fixed variables and block as a random effect ($TP \sim Node * (Connectivity + Configuration + Phosphorus) + (1/Block)$)

160 Non-significant interaction terms were removed for final statistical models.

161 We also measured instability at the scale of the entire gradostat. At the metaecosystem level, the
162 effects of connectivity, configuration and phosphorus input treatments and their interactions on
163 *Daphnia* peak and CV were tested using generalized linear mixed-effects models (package *lmer*).
164 Block was included as a random factor in all models to account for any differences in initial algal
165 concentrations or other temporal variability among blocks
166 ($DV \sim Connectivity * Configuration * Phosphorus + (1/Block)$). Different error distributions were
167 applied depending on the response variable (Poisson distribution for peak metapopulation size,
168 and log-transformation for CV), and non-significant interaction terms were removed one by one
169 from the full statistical model. Goodness of fit of the final models were assessed with diagnostic
170 plots of residuals.

171 *Metaecosystem Model*

172 We examined the effects of trophic connectivity (i.e. how many trophic levels are moving from
173 one node to the next) using a generic model to qualitatively assess patterns of ecosystem
174 dynamics. We derived a model of 12 ordinary differential equations (ODEs) to describe a
175 nutrient (N) - algae (A) - *Daphnia* (D) food chain repeated in four coupled flasks (subscripts 1, 2,
176 3, 4) with nutrient (only nutrients move) and trophic (nutrients, algae and *Daphnia* move)
177 connectivity. The other treatment compared linear system with identical flowrates or dendritic
178 systems with heterogenous flowrate configurations. This distinction of having either only
179 nutrients move, or additionally *Daphnia* and algae move is akin to what is observed in aquatic
180 ecosystems where organisms at different trophic levels may move at different rates and scales
181 within river networks.

182 Linear Metaecosystems

183 We assume all flasks/“nodes” are homogenous in their initial N , A and D conditions. For linear
184 configurations, inflow of medium (with nutrient concentration N_{sup}) is into gradostat 1 at rate δ .
185 In case of nutrient connectivity $\delta_h = 0$, and only medium flows at rate δ from nodes 1 to 2, 2 to
186 3, 3 to 4, and out of 4. This modification of outflow from the terminal node was necessary due to
187 the volume constraints of gradostat flasks. In case of trophic connectivity, nutrients, algae and
188 *Daphnia* flow in the same manner at rate $\delta_h = \delta$. Assuming Monod-type uptake functions for
189 both nutrients (by algae) and algae (by *Daphnia*) the model takes the form:

For node 1:

$$\begin{aligned}\frac{dN_1}{dt} &= \delta N_{\text{sup}} - \frac{\mu N_1}{\lambda + N_1} A_1 - \delta N_1 \\ \frac{dA_1}{dt} &= \varepsilon_A \frac{\mu N_1}{\lambda + N_1} A_1 - \frac{r A_1}{k + A_1} D_1 - \delta_h A_1 \\ \frac{dD_1}{dt} &= \varepsilon_D \frac{r A_1}{k + A_1} D_1 - m D_1 - \delta_h D_1\end{aligned}$$

190 For nodes $i=2,3,4$:

$$\begin{aligned}\frac{dN_i}{dt} &= \delta N_{i-1} - \frac{\mu N_i}{\lambda + N_i} A_i - \delta N_i \\ \frac{dA_i}{dt} &= \delta_h A_{i-1} + \varepsilon_A \frac{\mu N_i}{\lambda + N_i} A_i - \frac{r A_i}{k + A_i} D_i - \delta_h A_i \\ \frac{dD_i}{dt} &= \delta_h D_{i-1} + \varepsilon_D \frac{r A_i}{k + A_i} D_i - m D_i - \delta_h D_i\end{aligned}$$

191 Dendritic Metaecosystem

192 We can also describe a dendritic gradostat model with heterogenous flow rates. In this
193 configuration, flasks 1 and 2 are both recipients of the inflow medium, but at a slower rate
194 $\delta' = \delta / 2$ than in the linear configuration, and both flow out into flask 3, which then flows to
195 flask 4 and out at the same rate as in the linear network. In analogy to the linear configuration, in
196 case of trophic connectivity $\delta'_h = \delta_h / 2$, otherwise $\delta'_h = 0$. This modification of flow
197 configuration in addition to rate in some nodes was necessary again due to the volume
198 constraints of the gradostat flasks.

199 The **dendritic** model takes the form:

For nodes $i=1,2$:

$$\frac{dN_i}{dt} = \delta' N_{\text{sup}} - \frac{\mu N_i}{\lambda + N_i} A_i - \delta' N_i$$

$$\frac{dA_i}{dt} = \varepsilon_A \frac{\mu N_i}{\lambda + N_i} A_i - \frac{r A_i}{k + A_i} D_i - \delta'_h A_i$$

$$\frac{dD_i}{dt} = \varepsilon_D \frac{r A_i}{k + A_i} D_i - m D_i - \delta'_h D_i$$

For node 3:

$$\frac{dN_3}{dt} = \delta' (N_1 + N_2) - \frac{\mu N_3}{\lambda + N_3} A_3 - \delta' N_3$$

$$\frac{dA_3}{dt} = \delta'_h (A_1 + A_2) + \varepsilon_A \frac{\mu N_3}{\lambda + N_3} A_3 - \frac{r A_3}{k + A_3} D_3 - \delta'_h A_3$$

$$\frac{dD_3}{dt} = \delta'_h (D_1 + D_2) + \varepsilon_D \frac{r A_3}{k + A_3} D_3 - m D_3 - \delta'_h D_3 ,$$

and node 4 identical to the linear model

200

201 Initial state variable values were set to $N_0 = 25$; $A_0 = 50$; $D_0 = 5$; in all four nodes of the gradostat
202 system. These generic values in nutrient units are within the realm of possibility for a gradostat
203 system but are not intended to quantitatively predict results or our gradostat experiments.
204 Parameter estimates can be found in Table 1.

205 The system of ODEs for the model was solved with ode45 in Matlab (R2022b) and model
206 outputs for 30 days were obtained.

207 **Results**

208 All reported values are means \pm standard error unless otherwise stated.

209 *Phosphorus Gradients in Experimental Gradostats*

210 Lack of sample preservation meant we were unable to obtain final TP concentration
211 measurements for all our experimental nodes. With the samples we did obtain (one full replicate
212 of each type of metaecosystem), we were unable to detect a significant difference in final P
213 concentration among our high P and low P gradostats, indicating that all experienced a similar
214 degree of disturbance in the form of nutrient enrichment, similar to the assumption of high

215 nutrient loading in McCann et al (7). Nutrient-level was therefore removed from our statistical
216 models for population dynamics and all P treatments were considered as enriched replicates. We
217 detected a significant difference in P concentration by node position (1-4), regardless of
218 metaecosystem connectivity or configuration treatment, with final TP increasing towards the
219 terminal node (slope estimate=0.14±14.46, p=0.001), indicating that a nutrient gradient was
220 established in our metaecosystems (Figure S1)

221 *Comparison Among Experimental Gradostat Nodes*

222 In most of our gradostats, algae were grazed to undetectable levels before the end of the
223 experiment. For *Daphnia* peak population size, we observed significant interactions between
224 node position and connectivity (slope estimate = -0.11±0.007, p<0.001) and between node
225 position and configuration (slope estimate = 0.06±.006, p<0.001). In general, peak population
226 size was higher downstream (main effect slope estimate = 0.17±0.01), but this effect was
227 stronger in gradostats with trophic connectivity than systems in which only nutrients were
228 moved. This effect was also stronger in linear configurations compared to dendritic ones.
229 Additionally, main effects of connectivity and configuration were detected, where population
230 peaks were generally higher in nodes where only nutrients were moving (main effect slope
231 estimate=1.09±0.02, p<0.001) and higher in linear compared to dendritic configurations (main
232 effect slope estimate=0.09±0.02, p<0.001) (Figure 2a). No difference among any treatments,
233 node position or interaction effects were detected for algal population sizes.

234 For the CV of *Daphnia* populations, a significant interaction between connectivity and node
235 position was detected (estimate=0.1±0.05 p=0.04), where instability increased far from the
236 source of nutrient input in gradostats where only nutrients were moved, but decreased with
237 distance from the source in gradostats where algae and *Daphnia* moved (Figure 2b). No
238 difference among any treatments, node position or interaction effects were detected for algal CV.

239 *Comparison Among Experimental Networks*

240 We also explored instability at the metaecosystem level. Similar to our results at the node level, a
241 significant interaction of connectivity and configuration (estimate=0.96±0.02, p<0.001) on
242 *Daphnia* peak was detected. Peak population size was higher in gradostats where only nutrients
243 were moved than in gradostats where algae and *Daphnia* were moved, and this effect was more

244 pronounced in linear systems compared to dendritic ones. A similar interaction of configuration
245 and connectivity on metaecosystem *Daphnia* CV was also detected, where *Daphnia* CV was also
246 greater for linear systems (0.66 ± 0.34) compared to dendritic ones (0.55 ± 0.03), but this effect was
247 most pronounced in systems with nutrient connectivity (estimate= 0.26 ± 0.16 , $p < 0.0001$; Figure
248 3). No effect of any treatments or interactions was found for algal CV.

249 *Community Dynamics in Model Simulation*

250 In general, our model simulations followed a similar pattern to our experimental results (Figure
251 1). In our mathematical model, *Daphnia* populations generally began in a growth phase in all
252 nodes, reaching a population peak and then declining and stabilising, or going extinct. We did
253 not predict or observe repeated oscillations of either species within the timeframe of our
254 experiment (30 days). Upstream nodes in metaecosystems with trophic connectivity tended to
255 remain relatively stable or decline. Overall, our model predictions indicated that *Daphnia*
256 population size is amplified downstream in gradostats with trophic connectivity where
257 consumers move with resources and nutrients, whereas this pattern is inverted in systems where
258 only nutrients move, with consumer populations being largest in the upstream node. However,
259 population sizes are higher overall in systems where only nutrients move. Heterogeneity in terms
260 of slower upstream flow rates and a dendritic configuration dampens these effects such that peak
261 population sizes are lower in downstream nodes of dendritic configurations compared to their
262 linear counterparts.

263 At the metaecosystem level, our model predicted lower *Daphnia* population sizes in systems
264 with trophic connectivity compared to those with only nutrients flowing between nodes.

265 **Discussion**

266 We combined an experimental test with gradostats and a mathematical model to show that the
267 stability of consumer-resource dynamics (*Daphnia* – algae dynamics) is influenced by the type
268 of functional connectivity among communities and the configuration of nodes in the network.
269 We compared our findings with simulations from a consumer-resource model of our
270 metaecosystem. We hypothesised based on earlier theoretical work (7), that nutrient enrichment
271 would drive local population instability in the “terminal” nodes of the network and that consumer
272 movement would lead to greater network instability by synchronising consumer-resource

273 dynamics within nodes. We also expected that spatial configuration of the network would modify
274 these effects. Both our experimental data and model predictions demonstrate nutrient
275 accumulation downstream from the enrichment source in connected ecosystems, with
276 concentrations of P in terminal nodes almost four times that of the inflow, which may create the
277 conditions for nutrient driven instability at locations far from the source (7). In keeping with this,
278 we found that *Daphnia* instability was greater downstream, with peaks and CV of biomass up to
279 twice those upstream indicating that this amplification of enrichment may cause bottom-up
280 effects on community instability similar to those described in the paradox of enrichment (14).
281 However, we found that connectivity with consumers moving with resources and nutrients
282 stabilises community dynamics. Heterogenous flow rates among nodes provide a similar
283 stabilising effect with dendritic configurations being more stable than linear ones, particularly for
284 nutrient-connected systems.

285 *Connectivity and Configuration Significantly Impact Downstream Stability*

286 We had hypothesised that trophic connectivity (*Daphnia* and algae moving with nutrients) would
287 destabilise the dynamics by generating synchrony among nodes (13), because previous work
288 predicted that both nutrient and consumer movement were capable of propagating instability
289 through enriched systems. However, we found that nutrient connected gradostats actually had
290 higher CV and population peaks that were almost twice the size of systems where consumers and
291 algae moved. This instability was evident at the node and metaecosystem level. A key difference
292 between our experiment and previous theoretical work (7) is that this earlier work considered
293 consumer (i.e., *Daphnia*) movement alone, rather than with nutrient movement; this involves a
294 decoupling of consumer density from nutrient concentration. Previous models by Gounand et al
295 (24) predict that intermediate rates of consumer movement may have a stabilising effect due to
296 negative density dependence, leading to smaller amplitude oscillations of consumer populations
297 like those observed in our experiment. It is possible that within this experiment the immigration
298 and emigration of consumers, which is known to stabilise population dynamics (25), meant that
299 they were able to track and control algae resource growth.

300 We expected a dendritic configuration with heterogenous flowrates to “slow” the spread of
301 instability throughout a network compared to a linear configuration. We see this effect in our
302 results for peak *Daphnia* population size for the treatments in which only nutrients flowed. A

303 dendritic configuration could have a more stabilising effect by increasing asynchrony among
304 nodes because input is coming from multiple heterogeneous sources rather than a single source
305 (7). In general, we saw that that nodes in dendritic systems were more stable than their linear
306 counterparts, however the impacts were not as strong as those of functional connectivity
307 treatments. Moreover, at the metaecosystem level, an interaction between connectivity and
308 configuration was detected, where the stabilising effects of a dendritic configuration was
309 stronger in linear nutrient connected systems compared to trophically connected systems. These
310 findings therefore suggest that not only the degree of connectivity (in terms of movement of
311 nutrients, resources, consumers, etc.), but the configuration of a metaecosystem in terms of
312 direction and number of connections can affect stability, in line with theory (26).

313 *Model Simulations Predict Similar Patterns*

314 Our confidence in this understanding of the experimental results is strengthened by the analysis
315 of our model that shows that movement of consumers and algae with nutrients may have a
316 stabilising effect on enriched ecosystems. Population sizes were lower in trophically connected
317 systems, which may increase risk of extinction in a stochastic model. Although very few nodes
318 went extinct in our experiment over 30 days, running our model for a longer period of time
319 (Figure S2) suggests that trophic connectivity may lead to extinction within 100 days, while
320 nutrient connected systems may lead to stable limit cycles that persist, despite the larger
321 oscillations, at least in upstream nodes. Moreover, in our trophically connected simulations
322 without outflow, our terminal nodes with large oscillations are the only ones to stabilise in the
323 long-term (Figure S2). Running microcosms for a longer period of time might demonstrate the
324 longer-term expectation of such a high degree of consumer removal. An analysis of longer-term
325 dynamics also hints at different mechanisms for consumer instability under different connectivity
326 regimes. In systems where only nutrients move, algae were first driven to large oscillations and
327 very low densities, as predicted by the paradox of enrichment, whereas in systems where
328 consumers move, algae eventually stabilised and consumers attained low densities, suggesting
329 that connectivity may induce either top-down or bottom-up effects on ecosystem stability,
330 depending on which trophic level(s) are moving.

331 Our model also demonstrated that node configuration may impact stability, with all dendritic
332 systems having, smaller more stable populations than linear configurations. This effect was

333 especially pronounced in trophically connected systems. The heterogenous flow rates dampedened
334 the effects of enrichment on downstream ecosystem stability compared to linear systems with
335 homogenous flow rates. In these cases, the upstream nodes absorb most of the instability
336 compared to downstream ones, with less amplification of instability downstream compared to
337 linear systems; this results is in line with predictions made by McCann et al (7). However, as in
338 our experimental results, even in dendritic systems connectivity had a large impact on local
339 stability, with nutrient connectivity leading to greater instability than trophic connectivity. This
340 implies that heterogeneity in flow rates has a minimal impact on metaecosystem instability
341 compared to connectivity.

342 *Implications and Avenues for Future Work*

343 Runoff from agricultural fertilizers and herbicides is a major contributor to nutrient enrichment
344 in aquatic ecosystems (27, 28), as are point-source influxes from urban habitats (27, 29). We
345 demonstrated experimentally that the effects of this enrichment on ecosystems may be
346 propagated or even amplified at a distance far from the source, especially when the
347 metaecosystem is connected by the movement of nutrients/water alone. These results are
348 consistent with recent theory and imply that in some cases managing connectivity among
349 ecosystems may dampen the negative impacts of enrichment on stability, in line with
350 metapopulation theory (7).

351 We recognize a few key limitations of this work. First, our gradostats configurations are
352 constrained in their equal for homogenous flow rates in/out of flasks, and future work could
353 benefit from further examining how spatial heterogeneity in flow rates may influence overall
354 metaecosystem stability. Furthermore, our model and experiment consider only one source point
355 of nutrient enrichment, and real-world aquatic ecosystems may have many, which could also
356 increase the accumulation of nutrients and therefore instability at the terminal node.
357 Additionally, our model and experiment are simple in that they involve only two trophic levels
358 and four nodes, with all nodes experiencing identical initial conditions. Investigating these
359 dynamics in larger (both in size and number of nodes), more complex communities with multiple
360 consumer species and at longer time scales would therefore be an important avenue for future
361 work.

362 *Conclusion*

363 Though theory has examined the impacts of consumer dispersal and nutrient enrichment on
364 stability across metaecosystems (7, 24), this study is one of few (30) to empirically test this
365 theory. We model and controlled an experimental system in which algae and consumers moved
366 versus the cases where only medium moved with a flow of nutrients. We found that trophic
367 connectivity (movement of algae and consumers) may stabilise an enriched system, but that
368 metaecosystem configuration also may act to dampen instability. These findings have
369 implications for agricultural and industrial practices, as well as how agriculture and urban
370 systems are designed, as runoff and pollution are two large contributors of nutrient enrichment to
371 aquatic ecosystems (7) and may also impact metaecosystem connectivity and configuration. We
372 show that even a low level of nutrient input via fresh culture media is enough to destabilise
373 ecosystems far from the input source, suggesting that even a moderate amount of runoff or
374 inflow of nutrients similar to concentrations that are already present in the local environment
375 could have similar effects. Additionally, we demonstrate that connectivity and configuration may
376 diminish these effects, suggesting that preventing or slowing movement of some trophic levels at
377 some nodes within a metaecosystem may dampen some of these impacts. Future work would
378 benefit from scaling up these findings to larger-sized, more complex networks (node number and
379 configuration) and communities (e.g. trophic structure). There is much more work to do to
380 discover how anthropogenic inputs may destabilize metaecosystem dynamics across space and
381 time via dispersal and community connectivity.

382 **Acknowledgements:** We thank Libby Rothberg, Michelle Gros and Alessandra Loria for
383 laboratory support. We thank Mark Romer and Mahnaz Mansoori for administration of the
384 McGill University Phytotron. AG acknowledges the support of the Liber Ero Chair in
385 Biodiversity Conservation. We thank Kevin McCann for stimulating discussions.

386 **Funding:** This project was supported by a Canada First Research Excellence Fund, (Food from
387 Thought) Agricultural Systems for a Healthy Planet (0004-2015).

388 **Conflict of Interest:** We declare no competing interests

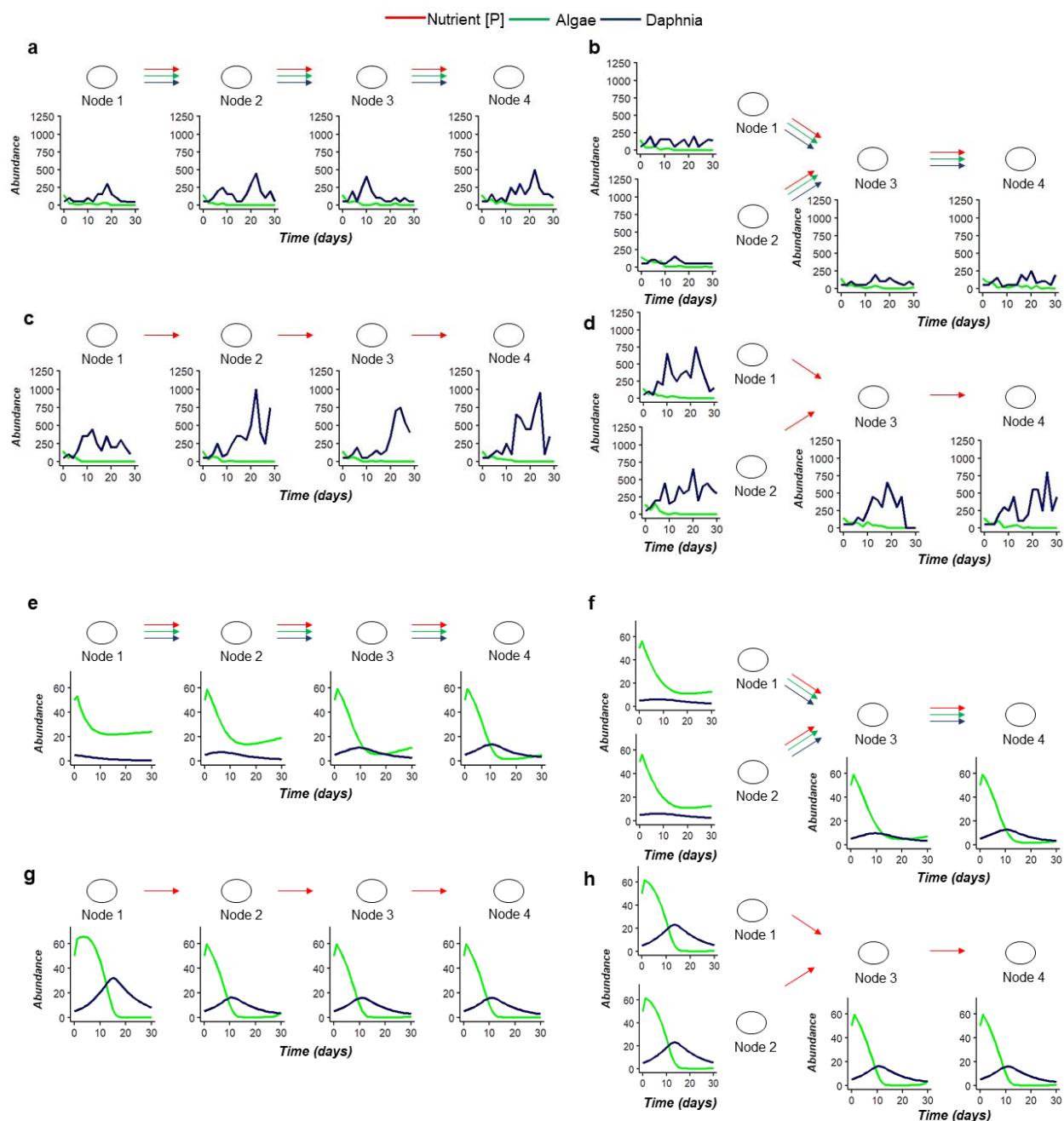
389 **Data Accessibility Statement:** All raw data and codes necessary to reproduce our results will be
390 uploaded publicly to Dryad digital repository upon acceptance of this manuscript.

391 **References**

- 392 1. Ives AR, Carpenter SR. Stability and diversity of ecosystems. *Science*. 2007;317(5834):58-62.
- 393 2. McCann KS. The diversity–stability debate. *Nature*. 2000;405(6783):228-33.
- 394 3. Donohue I, Hillebrand H, Montoya JM, Petchey OL, Pimm SL, Fowler MS, et al. Navigating
395 the complexity of ecological stability. *Ecology Letters*. 2016;19(9):1172-85.
- 396 4. Loreau M, Mouquet N, Holt RD. Meta-ecosystems: a theoretical framework for a spatial
397 ecosystem ecology. *Ecology Letters*. 2003;6(8):673-9.
- 398 5. Thompson PL, Gonzalez A. Dispersal governs the reorganization of ecological networks
399 under environmental change. *Nature Ecology & Evolution*. 2017;1(6):1-8.
- 400 6. Pedersen EJ, Marleau JN, Granados M, Moeller HV, Guichard F. Nonhierarchical dispersal
401 promotes stability and resilience in a tritrophic metacommunity. *The American
402 Naturalist*. 2016;187(5):E116-E28.
- 403 7. McCann KS, Cazelles K, MacDougall AS, Fussmann GF, Bieg C, Cristescu M, et al.
404 Landscape modification and nutrient-driven instability at a distance. *Ecology Letters*.
405 2021;24(3):398-414.
- 406 8. Rooney N, McCann K, Gellner G, Moore JC. Structural asymmetry and the stability of diverse
407 food webs. *Nature*. 2006;442(7100):265-9.
- 408 9. Bell G, Fugère V, Barrett R, Beisner B, Cristescu M, Fussmann G, et al. Trophic structure
409 modulates community rescue following acidification. *Proceedings of the Royal Society
410 B*. 2019;286(1904):20190856.
- 411 10. Fugère V, Hébert M-P, Da Costa NB, Xu CC, Barrett RD, Beisner BE, et al. Community
412 rescue in experimental phytoplankton communities facing severe herbicide pollution.
413 *Nature Ecology & Evolution*. 2020;4(4):578-88.
- 414 11. Firkowski CR, Thompson PL, Gonzalez A, Cadotte MW, Fortin MJ. Multi-trophic
415 metacommunity interactions mediate asynchrony and stability in fluctuating
416 environments. *Ecological Monographs*. 2022;92(1):e01484.
- 417 12. Quévrex P, Loreau M. Synchrony and Stability in Trophic Metacommunities: When Top
418 Predators Navigate in a Heterogeneous World. *Frontiers in Ecology and Evolution*.
419 2022;10.
- 420 13. Gouhier TC, Guichard F, Gonzalez A. Synchrony and stability of food webs in
421 metacommunities. *The American Naturalist*. 2010;175(2):E16-E34.
- 422 14. Rosenzweig ML. Paradox of enrichment: destabilization of exploitation ecosystems in
423 ecological time. *Science*. 1971;171(3969):385-7.
- 424 15. Levin SA, Segel LA. Hypothesis for origin of planktonic patchiness. *Nature*.
425 1976;259(5545):659-.
- 426 16. Lovitt RW, Wimpenny JWT. The Gradostat: a Bidirectional Compound Chemostat and its
427 Application in Microbiological Research. *Microbiology*. 1981;127(2):261-8.
- 428 17. Gaki A, Theodorou A, Vayenas DV, Pavlou S. Complex dynamics of microbial competition
429 in the gradostat. *Journal of Biotechnology*. 2009;139(1):38-46.
- 430 18. Smith H, Waltman P. The gradostat: a model of competition along a nutrient gradient.
431 *Microbial Ecology*. 1991;22(1):207-26.
- 432 19. Gültzow N, Wahlen Y, Hillebrand H. Metaecosystem Dynamics of Marine Phytoplankton
433 Alters Resource Use Efficiency along Stoichiometric Gradients. *The American
434 Naturalist*. 2019;193(1):35-50.

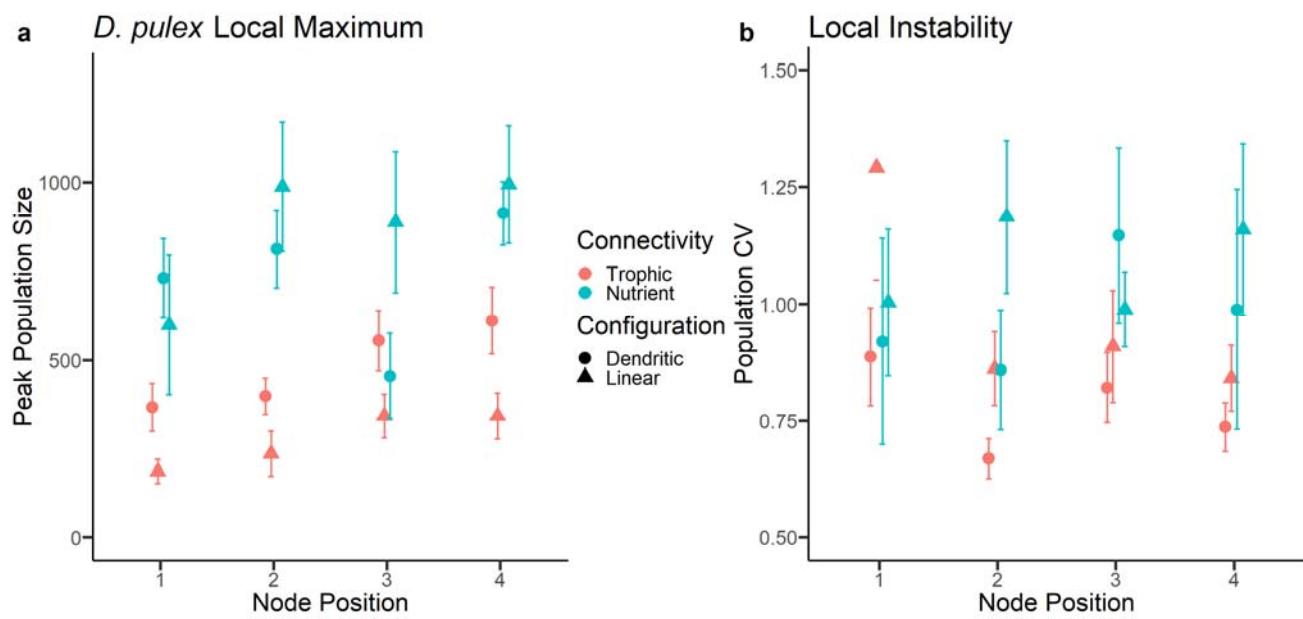
435 20. Smith HAL. Microbial growth in periodic gradostats. The Rocky Mountain Journal of
436 Mathematics. 1990;20(4):1173-94.
437 21. Celis-Salgado MP, Cairns A, Kim N, Yan ND. The FLAMES medium: a new, soft-water
438 culture and bioassay medium for Cladocera. SIL Proceedings, 1922-2010.
439 2008;30(2):265-71.
440 22. Wetzel RG, Likens GE. Limnological Analyses: Springer New York; 2013.
441 23. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R
442 Foundation for Statistical Computing; 2020.
443 24. Gounand I, Mouquet N, Canard E, Guichard F, xe, xe, et al. The Paradox of Enrichment in
444 Metaecosystems. The American Naturalist. 2014;184(6):752-63.
445 25. Gonzalez A, Mouquet N, Loreau M. Biodiversity as spatial insurance: the effects of habitat
446 fragmentation and dispersal on ecosystem functioning. 2009.
447 26. Gilarranz LJ, Rayfield B, Liñán-Cembrano G, Bascompte J, Gonzalez A. Effects of network
448 modularity on the spread of perturbation impact in experimental metapopulations.
449 Science. 2017;357(6347):199-201.
450 27. Bashir I, Lone FA, Bhat RA, Mir SA, Dar ZA, Dar SA. Concerns and threats of
451 contamination on aquatic ecosystems. Bioremediation and biotechnology: sustainable
452 approaches to pollution degradation. 2020:1-26.
453 28. Pericherla S, Karnena MK, Vara S. A review on impacts of agricultural runoff on freshwater
454 resources. Int J Emerg Technol. 2020;11:829-33.
455 29. Wurtsbaugh WA, Paerl HW, Dodds WK. Nutrients, eutrophication and harmful algal blooms
456 along the freshwater to marine continuum. WIREs Water. 2019;6(5):e1373.
457 30. Laan E, Fox JW. An experimental test of the effects of dispersal and the paradox of
458 enrichment on metapopulation persistence. Oikos. 2020;129(1):49-58.

459 **Tables and Figures**


Table 1: Parameter Estimates for Linear Configuration

PARAMETER	DEFINITION	VALUE	UNIT
δ	dilution and transfer rate	0.1	day ⁻¹
δ_h	trophic connectivity transfer rate	0.1	day ⁻¹
($\delta_h=0$ IN CASE OF NUTRIENT CONNECTIVITY)			
N_{sup}	nutrient inflow concentration	50	nutrient (P) units
μ	maximum algal growth rate	1.5	day ⁻¹
λ	algal half-saturation constant	1.0	nutrient (P) units
ε_A	algal conversion efficiency	0.5	
r	maximum <i>Daphnia</i> growth rate	0.7	day ⁻¹
k	<i>Daphnia</i> half-saturation constant	10	nutrient (P) units
ε_D	<i>Daphnia</i> conversion efficiency	0.4	
m	<i>Daphnia</i> mortality	0.1	day ⁻¹

460


Figure 1: Population dynamics observed for *Daphnia pulex* (dark blue) and total algae concentration (green) within-node across metaecosystems by connectivity and configuration treatments based on an example experimental

replicate (a-d) and from model simulations (e-h). For experimental data, *D. pulex* abundance is the estimated total number of animals in the flask based on our 50mL sample. Total algal abundance is the estimated number of cells/ μ L to fit the axis, based on a haemocytometer count. For model outputs, units are based on nutrient units with initial values of 50 for algae and 5 for *Daphnia pulex*.

Figure 2: Within-node population instability (peak, a and cv, b) compared by metaecosystem connectivity and configuration. In general, *Daphnia pulex* population peak increases downstream from the source, but this effect is stronger in systems with trophic connectivity than those with nutrient connectivity and linear compared to dendritic networks. Population peaks are overall higher in networks with nutrient connectivity compared to those with trophic connectivity. For CV, instability increases with distance from nutrient input in nutrient connected systems, and decreases with distance from the source with trophically connected systems. CV is overall higher in nodes of

systems with nutrient connectivity compared to those with trophic connectivity. Values are means ± 1 standard error, points are jittered horizontally to distinguish overlapping y-values.

Figure 3: Interaction of connectivity and configuration on overall network instability (measured by Daphnia pulex population CV. Values are means ± 1 standard error. Nutrient connected networks were significantly less stable than networks with trophic connectivity where consumer and producers moved alongside nutrients, however metaecosystem configuration modified this relationship, with dendritic systems being stabilizing in nutrient connected systems compared to linear ones. For population peak (data not shown) a similar interaction was detected.

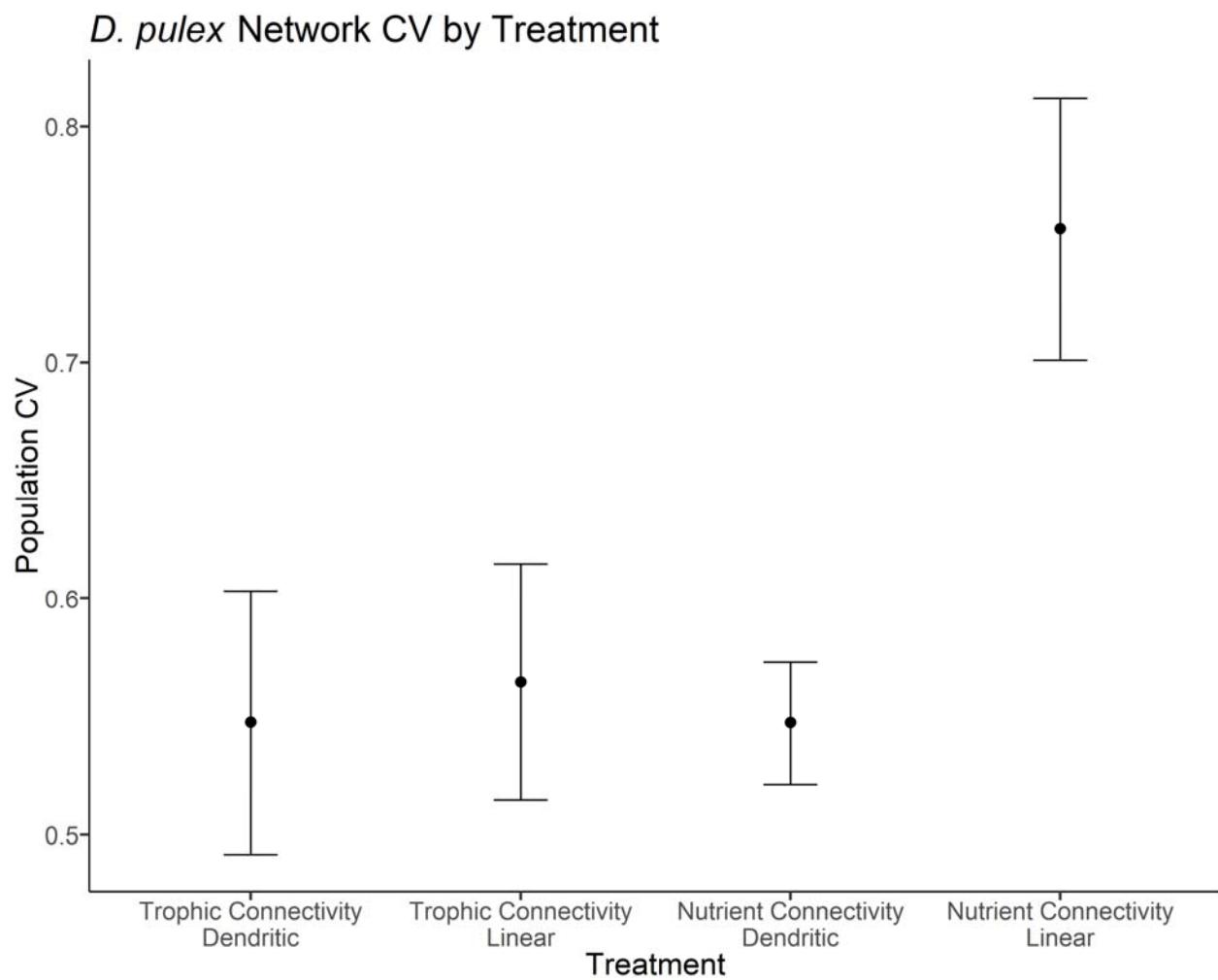
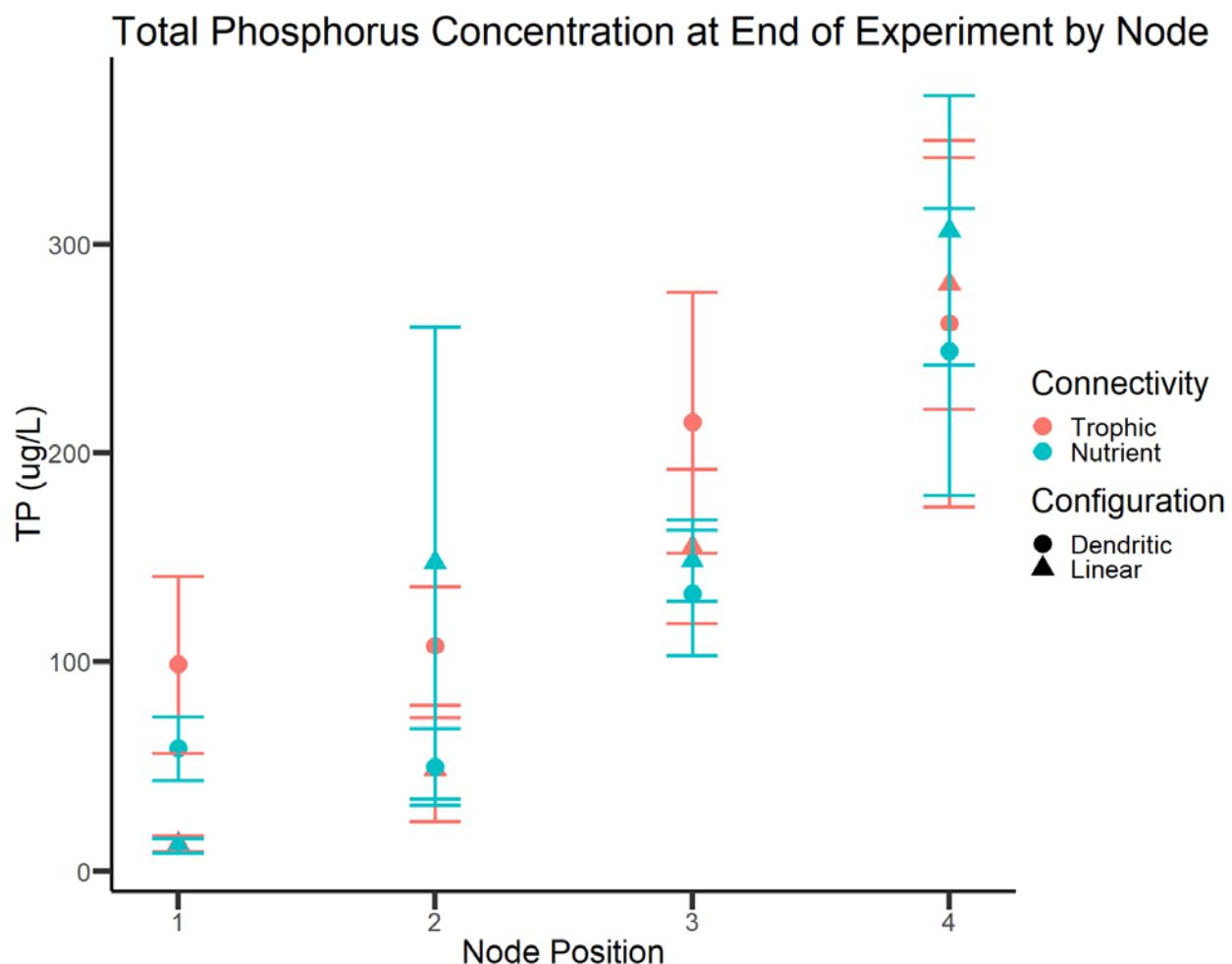
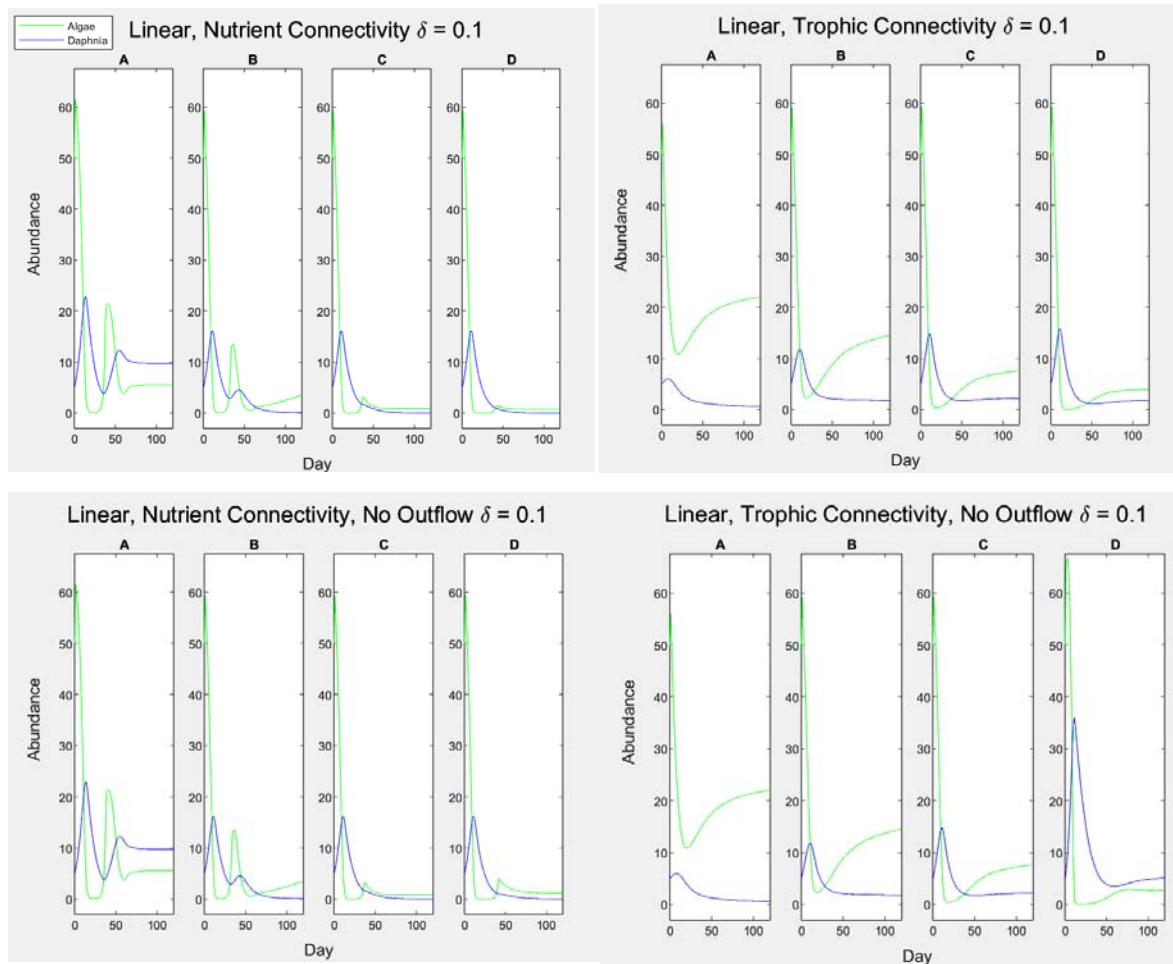




Figure S1: P gradient observed in all metaecosystems (final TP concentration mean \pm 1 standard error) with total P accumulating in terminal node, with no difference among experimental treatments.

Figure S2: 100-day (about the duration of a summer season in temperate zones) extension of the gradostat theoretical model, with and without outflow. Broad patterns are in line with our 30-model and experimental results. In both cases, nutrient connectivity leads to unstable oscillations which are propagated over the system. In trophically connected systems, instability is amplified further from the source, but overall lower than in nutrient connected systems.

