

1 **Addition of adjuvant to DTaP modulates vaccine-induced immunological
2 responses but is insufficient to improve protection in CD-1 mice**

3

4 **Kelly L. Weaver¹, Gage M. Pyles¹, Spencer R. Dublin¹, Annalisa B. Huckaby¹, Sarah
5 J. Miller¹, Maria De La Paz Gutierrez¹, Emel Sen-Kilic¹, William T. Witt¹, Dylan T.
6 Boehm, F. Heath, Damron¹, and Mariette Barbier^{1*}**

7 ¹Vaccine Development Center in the Department of Microbiology, Immunology, and Cell
8 Biology at West Virginia University, Morgantown, WV 26505

9 *Correspondence: mabarbier@hsc.wvu.edu

10 Keywords: *B. pertussis*, vaccines, memory, adjuvants, B cells, T cells, CXCL13, germinal
11 centers

12

13 3.1 Abstract

14 Pertussis is a vaccine-preventable respiratory disease caused by the Gram-
15 negative bacterium *Bordetella pertussis*. While vaccination rates remain high in
16 developed countries, incidence of pertussis has increased following the transition from
17 wP vaccines to aP vaccines. The reemergence of pertussis is attributed, in part, to waning
18 immunity induced by aP vaccination. Therefore, the objective of this work was to
19 determine if addition of adjuvant to DTaP can modulate the immune response and
20 improve protection compared to DTaP alone. In this study we immunized outbred, female
21 CD-1 mice with 1/320th the human dose of vehicle control, DTaP, and DTaP
22 supplemented with adjuvant. Markers of early vaccine-induced memory were measured
23 using a chemokine assay or by flow cytometry. Protection was assessed by measuring
24 serological responses and quantifying bacterial burden in the respiratory tract at day 3
25 post-challenge. From this work we identified a partially protective aP vaccine dose to use
26 for vaccination and challenge studies. We observed that MPLA and SWE promote robust
27 anti-*B. pertussis* antibody responses and stimulate significant increases in early markers
28 of vaccine-induced memory such as CXCL13, FDCs, and T_{FH} cells. Quil-A induced Th1
29 responses compared to DTaP alone, but none of the adjuvants improved protection
30 against challenge with *B. pertussis*. Overall, the data suggests that addition of adjuvant
31 modulates the protective immune responses induced by aPs. Further studies are needed
32 to evaluate the B cell compartment and longevity of protection.

33
34
35

36 3.2 Introduction

37 Pertussis, otherwise known as whooping cough, is a vaccine preventable human
38 respiratory disease³¹. Vaccines against pertussis have been implemented since the
39 1940's and provide protection from severe disease and in the case of neonates and
40 infants, death. While current pertussis vaccines have an excellent safety profile and
41 protect against severe pertussis, they do not prevent transmission of pertussis^{41,42}.
42 Recent studies have shed also light on the waning immunity associated with acellular
43 pertussis vaccination in which the vaccine-induced memory does not last long-term
44 compared to whole cell vaccination. This insufficient protection raises the need for the
45 development of next generation pertussis vaccines that can prevent both transmission
46 and promote long-term protection.

47 It has long been hypothesized that addition of adjuvant to pertussis vaccines could
48 improve the longevity of protection and pertussis vaccine-induced memory. Indeed,
49 several groups have shown that addition of adjuvant improves protection and serological
50 responses against *B. pertussis*^{38,85,120,245,246}. However, there is still a lack in
51 understanding of pertussis vaccine-induced memory responses. An adjuvant is a
52 substance added to purified antigen-based vaccines, such as DTaP, to promote the
53 immunogenicity. Adjuvants can broaden, alter, and increase immune responses^{82,245} by
54 recruiting antigen presenting cells to the site of vaccination and aiding in the development
55 of the adaptive immune responses. The mechanisms by which adjuvants work vary from
56 depot effect to recruitment of innate immune cells, and the production of chemokines and
57 cytokines^{246,247}. By engaging these components, adjuvants can alter the adaptive immune

58 response. Understanding how adjuvants affect the quantity and quality of adaptive
59 responses allows for proper selection for vaccine development efforts.

60 There are a variety of substances that can act as adjuvants, such as salts,
61 emulsions, saponins, and even microbial components, but few are licensed for use in
62 humans^{83,248}. The objective of this study was to determine if protection and vaccine-
63 induced memory could be enhanced via evaluation of the immunopotentiation effects of
64 each adjuvant when added to DTaP. The acellular pertussis vaccine DTaP is adjuvanted
65 with aluminium hydroxide, or alum. The adjuvants selected include monophosphoryl A
66 (MPLA), Quil-A, SWE, oligonucleotide (ODN) 1585, ODN 1826, and ODN 2395.
67 Traditionally, alum or aluminium hydroxide has been utilized as a vaccine adjuvant.
68 Aluminium salts commonly referred to as alum have been utilized in studies since 1926
69 and are thought to work via depot effect although mechanisms of action are not well
70 understood. MPLA is a TLR4 agonist and has been shown to lead to a significant increase
71 in T_{FH} cells, germinal center B cells, and plasma cells²⁴⁹. Quil-A is a saponin that
72 stimulates cell mediated responses and antibody mediated responses^{83,250}. SWE is an
73 oil-in-water emulsion similar to MF59 and has been implemented in several preclinical
74 trials^{251,252}. MF59 induces potent T_{FH} cell responses and enhances germinal center B cell
75 responses^{253,254}. Finally, the last class of adjuvant evaluated in this study belongs to the
76 TLR9 agonist group known as ODN's that induce Th1 responses overall, but can have
77 differing immunostimulatory effects²⁵⁵⁻²⁵⁷. Type A induces plasmacytoid dendritic cells
78 (pDCs), B induces strong activation of B cells, and C induces both. It is for these reasons
79 that the above adjuvants were chosen for our study.

80 In this work, we supplemented DTaP that is adjuvanted with alum with additional
81 adjuvants. We hypothesized that the combination of adjuvants may function similarly to
82 adjuvant systems which are combinations of immunostimulatory substances that can
83 provide broad protection compared to a single adjuvant formulation. We assessed cell
84 populations and chemokine responses associated with the development of
85 immunological memory to understand how addition of adjuvant effects the immune
86 response compared to both DTaP alone. These data suggest that while addition of
87 adjuvant is not sufficient to improve protection against *B. pertussis* compared to DTaP
88 alone, adjuvants have the potential to alter the immune response even in the presence of
89 alum. We observed that Quil-A skewed the immune response from Th2 toward Th1, and
90 MPLA and SWE induced significant increases in early markers of vaccine-induced
91 memory such as CXCL13, FDC's, and T_{FH} cells. Further studies are needed to analyze
92 the B cell compartment and longevity of protection induced by addition of adjuvant to
93 DTaP.

94 3.3 Materials and Methods

95 3.3.1 *B. pertussis* strains and growth conditions

96 *Bordetella pertussis* strain UT25Sm1 was kindly provided by Dr. Sandra Armstrong
97 (University of Minnesota)^{129,130}. UT25Sm1 strain has been fully genome sequenced
98 (NCBI Reference Sequence: NZ_CP015771.1). UT25Sm1 was grown on Difco™ Bordet
99 Gengou (BG) agar (VWR™, Cat. #90003-414) supplemented with 15% defibrillated
100 sheep blood (Hemostat Laboratories, Cat. #DSB500) and streptomycin 100 µg/mL
101 (Gibco™, Cat. #11860038) at 36°C for 48 hours. The number of viable bacteria and the
102 Bvg+ (hemolytic and characteristic colony morphology) phenotype was confirmed to

103 ensure consistency between each challenge. Bacteria were then collected using
104 polyester swabs and resuspended in Stainer Scholte media¹³² (SSM) supplemented with
105 L-proline and SSM supplement. SSM liquid culture was incubated for 24 hours at 36°C
106 with constant shaking at 180 rpm until reaching mid-log phase OD_{600nm} 0.5 with 1 cm path
107 width (Beckman Coulter™ DU 530 UV Vis spectrophotometer). The UT25Sm1 *B.*
108 *pertussis* culture was diluted in supplemented SSM to OD_{600nm} = 0.24 - 0.245 (equivalent
109 to 10⁹ CFU/mL) to be used for challenge or serological analysis by ELISA.

110 3.3.2 Vaccine preparation and immunization, bacterial challenge, and
111 euthanasia

112 The acellular *B. pertussis* vaccine DTaP (Infranrix®, GlaxoSmithKline) was
113 purchased. The following adjuvants were utilized in these studies: MPLA-SM
114 VacciGrade™ (InvivoGen, Cat. #vac-mpla), ODN 1585 VacciGrade™ (InvivoGen, Cat.
115 #vac-1581-1), ODN 1826 VacciGrade™ (InvivoGen, Cat. #vac-1826-1), ODN 2395
116 VacciGrade™ (InvivoGen, Cat. #vac-2395-1), Quil-A® adjuvant (InvivoGen, Cat. #vac-
117 quil), and Sepivac SWE™, Seppic. SWE was mixed with 1/320th the human dose of DTaP
118 1:1 bedside in the dark. MPLA, ODNs, and Quil-A were added to 1/320th the human dose
119 of DTaP at a concentration of 20 µg per mouse. All vaccines were intramuscularly
120 administered at 1/320th the human dose in 50 µL. The vaccines were diluted using
121 endotoxin free phosphate buffered saline (PBS) (Millipore Sigma™, Cat. #TMS012A).
122 PBS was administered as a vehicle control. In all experimental groups, 6-week-old
123 outbred female CD1 mice (Charles River, Strain code 022) were used. Mice were primed
124 at day 0, followed by a booster of the same vaccine at day 21. Non-challenged mice were

125 euthanized at days 22 and 35 post-vaccination while challenged mice were only
126 euthanized at day 35 post-vaccination. For challenged animals, mice were anesthetized
127 three days before euthanasia by intraperitoneal injection (IP) ketamine (7.7 mg/kg)
128 (Patterson Veterinary, Cat. #07-803-6637) and xylazine (0.77 mg/kg) (Patterson
129 Veterinary, Cat. #07-808-1939) in sterile 0.9% NaCl (Baxter, Cat. #2F7124) and
130 challenged intranasally with ~2x10⁷ CFU/dose of live *B. pertussis* (10 µL per nostril)^{120,191}.
131 At day three post-challenge mice were euthanized by IP injection of Euthasol (390 mg
132 pentobarbital/kg) (Patterson Veterinary, Cat. #07-805-9296) in sterile 0.9% w/v NaCl.

133 3.3.3 Quantification of bacterial burden

134 Lung and trachea homogenates as well as nasal lavage (nasal wash) were
135 collected post mortem and used to enumerate bacterial burden per tissue. Mice were
136 challenged at day 32 post-prime and processed three days later (day 35 post-
137 vaccination). The nasal cavity was flushed with 1 mL sterile PBS for nasal lavage. The
138 lung and trachea were homogenized separately in 1 mL sterile PBS using a Polytron PT
139 2500 E homogenizer (Kinematica). Samples were serially diluted in ten-fold dilutions in
140 PBS and plated on BG agar to quantify viable bacterial burden. Plates were incubated at
141 36°C for 48-72 hours to determine colony forming units (CFUs) per mL.

142 3.3.4 Serological analysis of immunized mice

143 Enzyme linked immunosorbent assay (ELISA) was utilized to measure *Bordetella*
144 *pertussis*-specific antibodies in the serum of immunized mice^{191–193}. After euthanasia,
145 blood was collected in BD Microtainer serum separator tubes (BD, Cat. #365967) via
146 cardiac puncture at days 22 and 35 post primary immunization. Blood was centrifuged at
147 14,000 x g for 2 minutes and sera were stored at -80°C. Pierce™ high-binding 96 well

148 plates (Thermo Scientific™, Cat. #15041) were coated with 5x10⁷ CFU/well viable *B.*
149 *pertussis* overnight at 4°C. Plates were washed three times with PBS-Tween®20 (Fisher
150 Scientific, Cat. #BP337-500), then blocked with 5% w/v non-fat dry milk (Nestle Carnation,
151 Cat. #000500002292840) in PBS-Tween®20. Serum samples were serially diluted from
152 1:50 to 1:819,200 using 5% w/v milk in PBS-Tween®20. Plates were incubated at 37°C
153 for 2 hours and washed four times with PBS-Tween®20. Secondary goat anti-mouse IgG
154 antibody 1:2000 (Southern Biotech, Cat. #1030-04) conjugated to alkaline phosphatase
155 was added and incubated for 1 hour at 37°C. Wells were washed five times with PBS-
156 Tween®20 and Pierce p-Nitrophenyl Phosphate (PNPP) (Thermo Scientific, Cat. #37620)
157 was added to each well to develop plates for 30 minutes in the dark at room temperature.
158 The absorbance at 405 nm was read utilizing a SpectraMax® i3 plate reader (Molecular
159 Devices). The lower limit of detection for serum titers was 1:50, and for statistical analysis,
160 all values below the limit of detection are represented with the arbitrary value of one.
161 Endpoint titers were determined by selecting the dilution at which the absorbance was
162 greater than or equal to twice that of the negative control.

163 3.3.5 Chemokine assay

164 CXCL13 levels were measured in sera from mice using the Mouse Magnetic
165 Luminex® Assays (R&D Systems, Cat. #LXSAMSM) kit. Data was obtained using a
166 Magpix (Luminex) instrument.

167 3.3.6 Tissue isolation, preparation, staining, and flow cytometry

168 Flow cytometry was used to characterize cell populations from the inguinal lymph
169 nodes. Organs were harvested at days 22 and 35 post-prime. Lymph nodes were
170 homogenized using disposable pestles (USA Scientific, Cat. #1405-4390) in Dulbecco's

171 Modified Eagle Media (DMEM) (Corning Incorporated, Cat. #10-013-CV) with 10% v/v
172 fetal bovine serum (FBS) (Gemini Bio, Cat. #100-500). Homogenized samples were
173 strained for separation using 70 μ M pore nylon mesh (Elko Filtering Co, Cat. #03-70/33)
174 and centrifuged for 5 minutes at 1,000 x g. Next, samples were resuspended in PBS
175 with 5mM ethylenediaminetetraacetic acid (EDTA) (Fisher Scientific, Cat. #50-103-5745)
176 and 1% v/v FBS. Single cell suspensions were incubated with 5 μ g/mL anti-mouse
177 CD16/CD32 Fc block (clone 2.4G2, Thermo Fisher Scientific, Cat. #553142) for 15
178 minutes at 4°C per the manufacturer's instructions. Cells were stained with antibodies
179 against cell surface markers (**Supplemental Table 1**) (FDCs:CD45 $^{-}$ CD21/35 $^{+}$). Each
180 single cell suspension was incubated with the antibody cocktail for 1 hour at 4°C in the
181 dark. Samples were washed by resuspending in PBS, centrifuging, removing the
182 supernatant, and washing in PBS with 5mM EDTA and 1% v/v FBS and fixed with 0.4%
183 w/v paraformaldehyde (Santa Cruz Biotechnology, Cat. #sc-281692) overnight. After
184 fixation, samples were centrifuged and washed before resuspension in PBS with 5mM
185 EDTA and 1% v/v FBS. The samples were processed using an LSR Fortessa flow
186 cytometer (BD Biosciences) and analyzed using FlowJo (FlowJo™ Software Version
187 v10). Cells were counted using Sphero AccuCount 5-5.9 μ m beads according to the
188 manufacturer's protocol (Spherotech, Cat. #ACBP-50-10).

189 3.3.10 ELISpot preparation and analysis

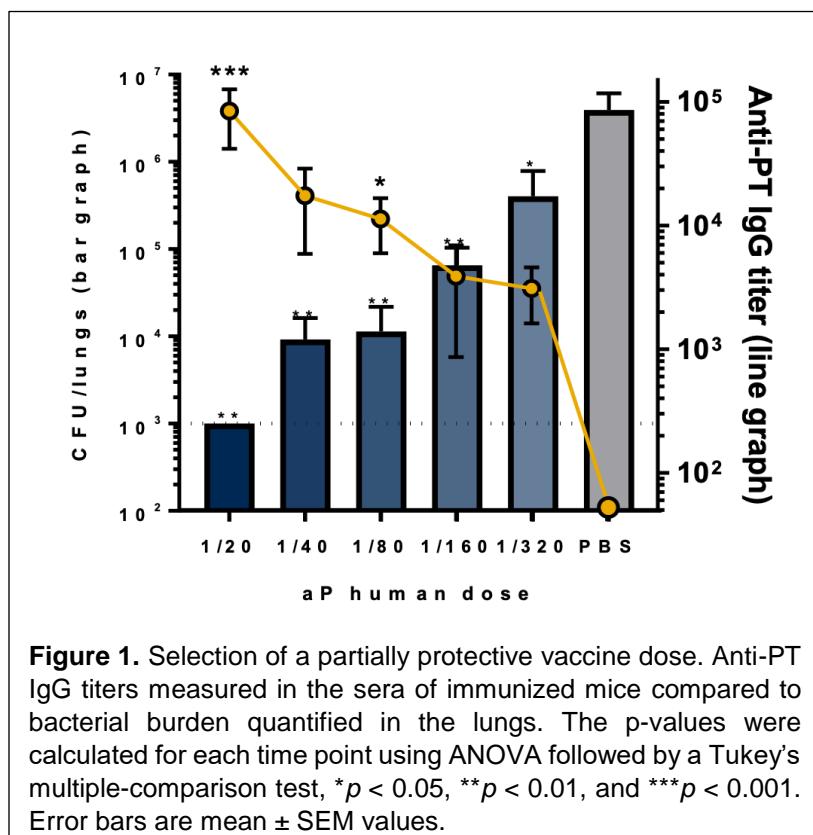
190 The Mouse IgG ELISpot (ImmunoSpot®, Cat. #mlgG-SCE-1M) was used to
191 quantify *B. pertussis* specific antibody secreting cells in the bone marrow of immunized
192 mice. UT25Sm1 was cultured as described above. PVDF membrane 96-well plates were
193 coated with 5×10^7 CFU/well *B. pertussis* and incubated overnight at 4°C. Bone marrow

194 samples were isolated by centrifuging femurs at 400 \times g for 5 minutes in 200 μ L PCR
195 tubes with holes in the bottom that were placed into 2 mL Eppendorf tubes. The bone
196 marrow was resuspended in heat-inactivated filter-sterilized FBS and filtered through 70
197 μ m mesh with FBS with 10% v/v dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Cat. #D8418-
198 100ML) and stored at -80°C. Bone marrow cells were thawed in a 37°C water bath and
199 placed in DMEM with 10% v/v FBS. Cells were centrifuged at 400 \times g for 5 minutes,
200 resuspended in CTL Test B Culture medium (ImmunoSpot), diluted 1:10 with PBS and
201 1:1 with trypan blue stain (Invitrogen™, Cat. #T10282), and counted on the Countess II
202 Automated Cell Counter (Invitrogen). Plates were washed with PBS and cells were added
203 to the first row then serially diluted two-fold down the plate. Cells were incubated at 36°C
204 overnight and imaged using the ImmunoSpot® S6 ENTRY Analyzer and CTL Software.
205 Dilutions with spots ranging from ~10-100 per well were selected to enumerate the
206 number of anti-*B. pertussis* antibody-producing cells per sample. Cell counts were
207 normalized to spots per 10⁶ cells using the cell and spot counts.

208 3.3.11 Statistics

209 Statistical analysis was performed using GraphPad Prism version 8 (GraphPad).
210 When comparing three or more groups of parametric data a one-way ANOVA (analysis
211 of variance) with Tukey's multiple comparison test was used unless otherwise noted. For
212 non-parametric data a Kruskal-Wallis test with Dunnet's post-hoc test was used. The
213 ROUT method was used to identify outliers when appropriate.

214 3.3.12 Animal care and use


215 All mouse experiments were approved by the West Virginia University Institutional
216 Animal Care and Use Committees (WVU-AUCU protocol 1901021039) and completed in

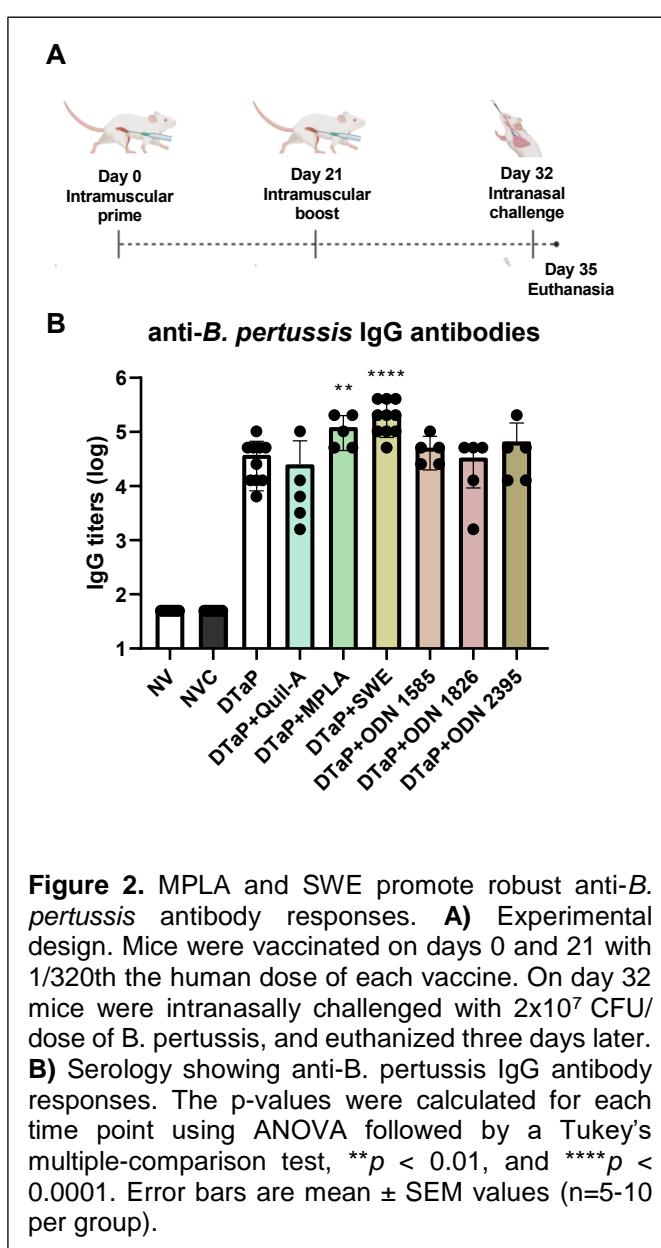
217 strict accordance of the National Institutes of Health Guide for the care and use of
218 laboratory animals. All work was done using universal precautions at BSL2 under the
219 IBC protocol # 17-11-01.

220 3.4 Results

221 3.4.1 Determining a partially protective vaccine dose

222 Previous studies from our laboratories have examined the differences in the
223 immunological response to
224 vaccination with aP and wP
225 vaccines in the murine
226 mouse model²⁵⁸. To do so,
227 we have used highly
228 saturating doses (1/10th of
229 the human dose) to be able
230 to study longevity of
231 protection and detect rare
232 antigen-specific memory B
233 cell populations. In more
234 recent studies, we have

Figure 1. Selection of a partially protective vaccine dose. Anti-PT IgG titers measured in the sera of immunized mice compared to bacterial burden quantified in the lungs. The p-values were calculated for each time point using ANOVA followed by a Tukey's multiple-comparison test, * $p < 0.05$, ** $p < 0.01$, and *** $p < 0.001$. Error bars are mean \pm SEM values.


235 however shown that it is important to use a non-saturating dose to determine the effect
236 of antigen and adjuvant modification on the immune response to *B. pertussis*
237 vaccination^{119,255}. To determine a non-saturating dose of vaccine that would provide
238 partial protection, we titrated the aP vaccine from 1/20th to 1/320th the human dose
239 (**Figure 1**). Mice were boosted with the same vaccine at day 21 post-vaccination and

240 challenged with 2×10^7 CFUs/dose of *B. pertussis* at day 35 post-prime. Three days later,
241 bacterial burden was quantified in the lungs of challenged mice. Blood was collected via
242 cardiac puncture and used to measure the anti-PT antibody titers. We observed that all
243 doses selected provided significant protection against bacterial colonization in the lung
244 three days post-challenge compared to the mock-vaccinated mice (**Figure 1**), and that
245 protection was dose-dependent. The 1/20th dose provided the highest protection, with a
246 bacterial burden in the lung three days post-challenge lower than the limit of detection.
247 We also observed a dose-dependent production of anti-pertussis antibodies in response
248 to vaccination, with the highest titers observed in mice vaccinated with 1/20th of the human
249 dose and the lowest titers in the mice vaccinated with 1/320th of the human dose (**Figure**
250 **1**). The dose 1/320th was selected to move forward as it conferred the least protection
251 amongst immunized mice with the exception of the PBS challenged group.

252 3.4.2 MPLA and SWE promote robust anti-*B. pertussis* antibody responses

253 One of the primary correlates of protection measured to determine pertussis
254 vaccine efficacy is the antibody response to the pathogen. To determine if modification of
255 the adjuvant content of the DTaP vaccine modifies the serological response, we first
256 performed immunogenicity studies in which 1/320th the human dose of vehicle control,
257 DTaP only, or DTaP+adjuvant was administered intramuscularly to mice on days 0 and
258 21. In this first phase of the study, the adjuvants Quil-A, MPLA, SWE, ODN 1585, ODN
259 1826, and ODN 2395 were evaluated. At day 32 mice were intranasally challenged with
260 2×10^7 CFU of *B. pertussis* and bacterial burden was quantified in the respiratory tract from
261 the lungs, trachea, and nasal wash (**Figure 2A**). From the serum anti-*B. pertussis* IgG
262 antibodies were measured by ELISA (**Figure 2B**). All mice vaccinated with DTaP alone

263 or combined with various adjuvants produced detectable levels of anti-*B. pertussis*
264 antibody levels. However, we observed
265 a statistically significant increase in anti-
266 *B. pertussis* antibody levels in mice
267 vaccinated with DTaP+MPLA or
268 DTaP+SWE compared to non-
269 vaccinated mice. These data suggest
270 that addition of MPLA and SWE to
271 DTaP could potentiate the antibody
272 responses against *B. pertussis*
273 compared to alum alone contained in
274 DTaP. These two adjuvants were
275 therefore selected for subsequent
276 characterization of the immune
277 response they generated. In addition,
278 as addition of Quil-A negatively affected
279 antibody production to *B. pertussis*, this
280 adjuvant was also selected for further
281 characterization to determine its effect on the immunological response to DTaP.

Figure 2. MPLA and SWE promote robust anti-*B. pertussis* antibody responses. **A)** Experimental design. Mice were vaccinated on days 0 and 21 with 1/320th the human dose of each vaccine. On day 32 mice were intranasally challenged with 2×10^7 CFU/dose of *B. pertussis*, and euthanized three days later. **B)** Serology showing anti-*B. pertussis* IgG antibody responses. The p-values were calculated for each time point using ANOVA followed by a Tukey's multiple-comparison test, $^{**}p < 0.01$, and $^{****}p < 0.0001$. Error bars are mean \pm SEM values ($n=5-10$ per group).

282 3.4.3 Addition of Quil-A to DTaP alters the type of Th cell response
283 compared to DTaP alone

284 aP vaccines are known to induce Th2 responses, however, some of the adjuvants

285 selected are known to drive Th1 responses.

286 Therefore, we next assessed if addition of

287 adjuvant could skew the Th2 response as

288 measured by analyzing the anti-*B. pertussis*

289 IgG1/IgG2a ratio (**Figure 3**). The IgG1/IgG2

290 ratio was measured from the sera of

291 immunized mice. The only significant

292 difference observed compared to DTaP was in

293 the Quil-A adjuvanted group in which we

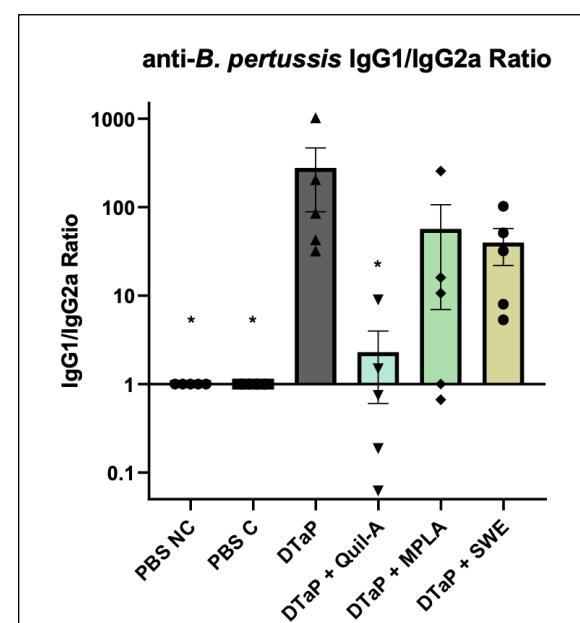
294 observed a shift toward a Th1 response.

295 Addition of MPLA and SWE did not

296 significantly alter the humoral response

297 compared to DTaP alone and both vaccines

298 were associated with a Th2-dominant response. Interestingly, some of the mice


299 vaccinated with DTaP + MPLA had a very low IgG1/IgG2a ratio, suggesting that they

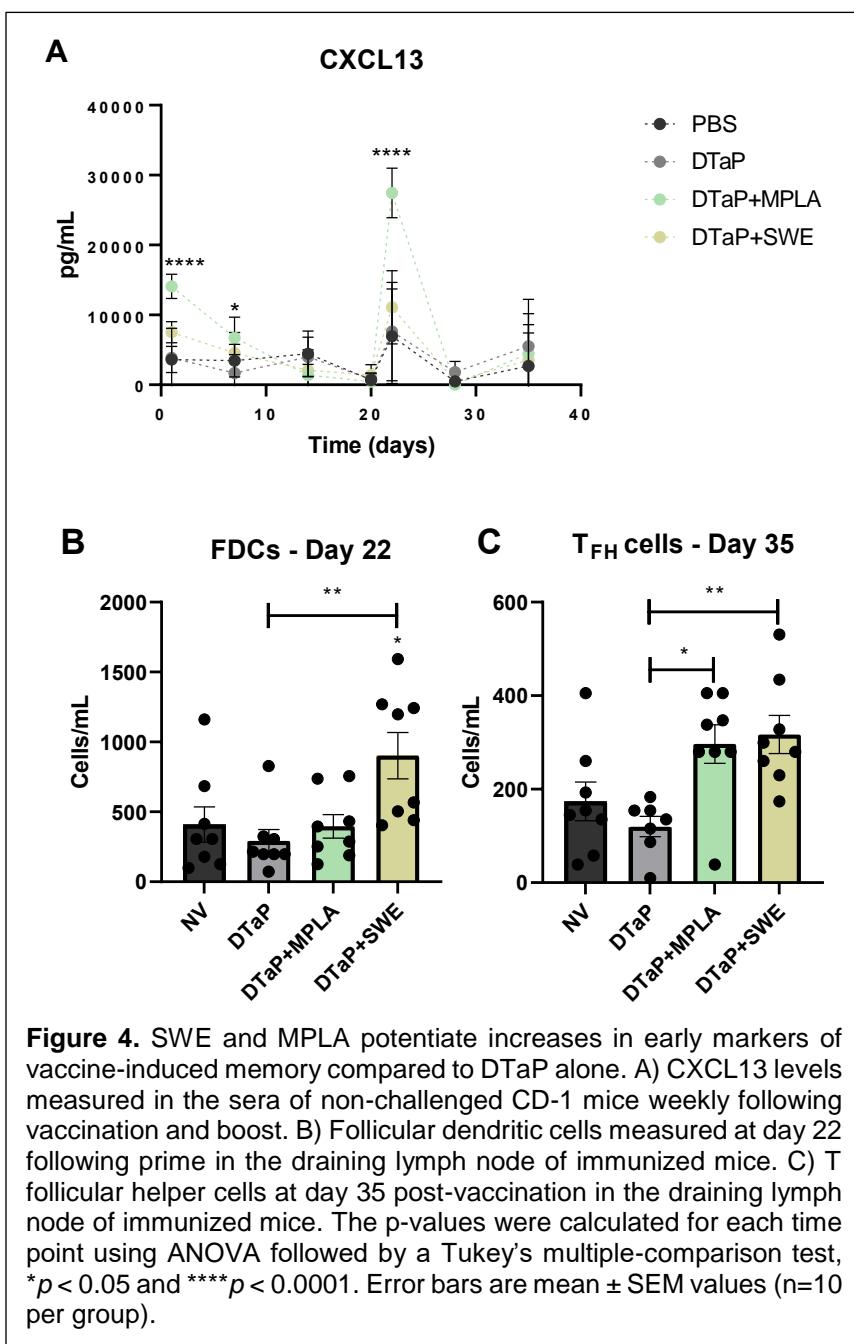
300 developed a different Th response more skewed towards Th1 compared to the mice

301 administered DTaP alone. Overall, the data suggest that addition of adjuvant to DTaP

302 has the potential to skew the type of protective immune response from a Th2-dominant

303 response to a more balanced Th1-Th2 response.

Figure 3. Addition of Quil-A induces Th1 responses compared to DTaP alone. The anti-*B. pertussis* IgG1/IgG2a ratio was measured in the sera of immunized mice. The p-values were calculated for each time point using ANOVA followed by a Tukey's multiple-comparison test, * $p < 0.05$. Error bars are mean \pm SEM values (n=5 per group).

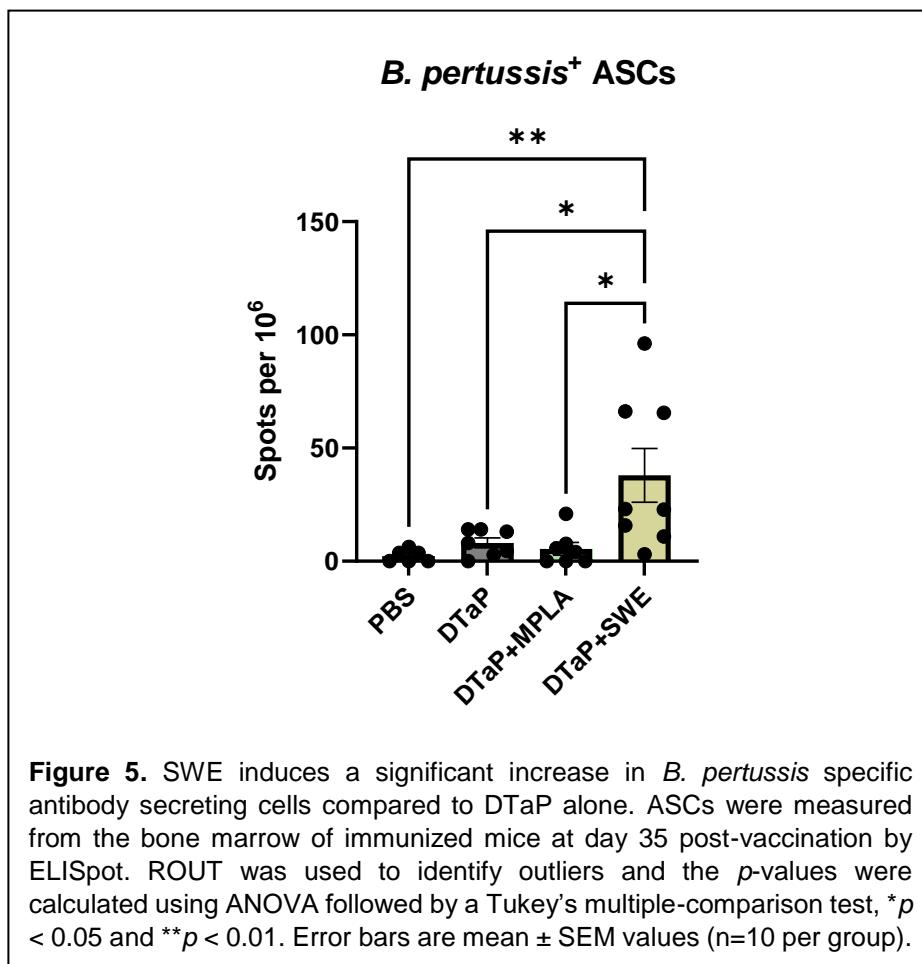

304 3.4.4 SWE and MPLA potentiate increases in early markers of vaccine-
305 induced memory compared to DTaP alone

306 To determine if addition of adjuvant impacts pertussis vaccine-induced memory,
307 early markers of germinal center formation were measured in non-challenged mice
308 (**Figure 4**). CXCL13 levels were measured in blood collected via submandibular bleeding

309 at days 1, 7, 14, 20, and
310 28 following vaccination.
311 Blood samples were
312 collected by cardiac
313 puncture at days 22 and
314 35 as secondary method
315 of euthanasia.

316 A significant increase in
317 CXCL13 was only
318 observed at day 22 post-
319 prime in DTaP+MPLA
320 vaccinated mice
321 compared to DTaP only

322 (**Figure 4A**). This data
323 suggests that addition of
324 MPLA to DTaP leads to
325 an increase in CXCL13
326 and potentially long-term

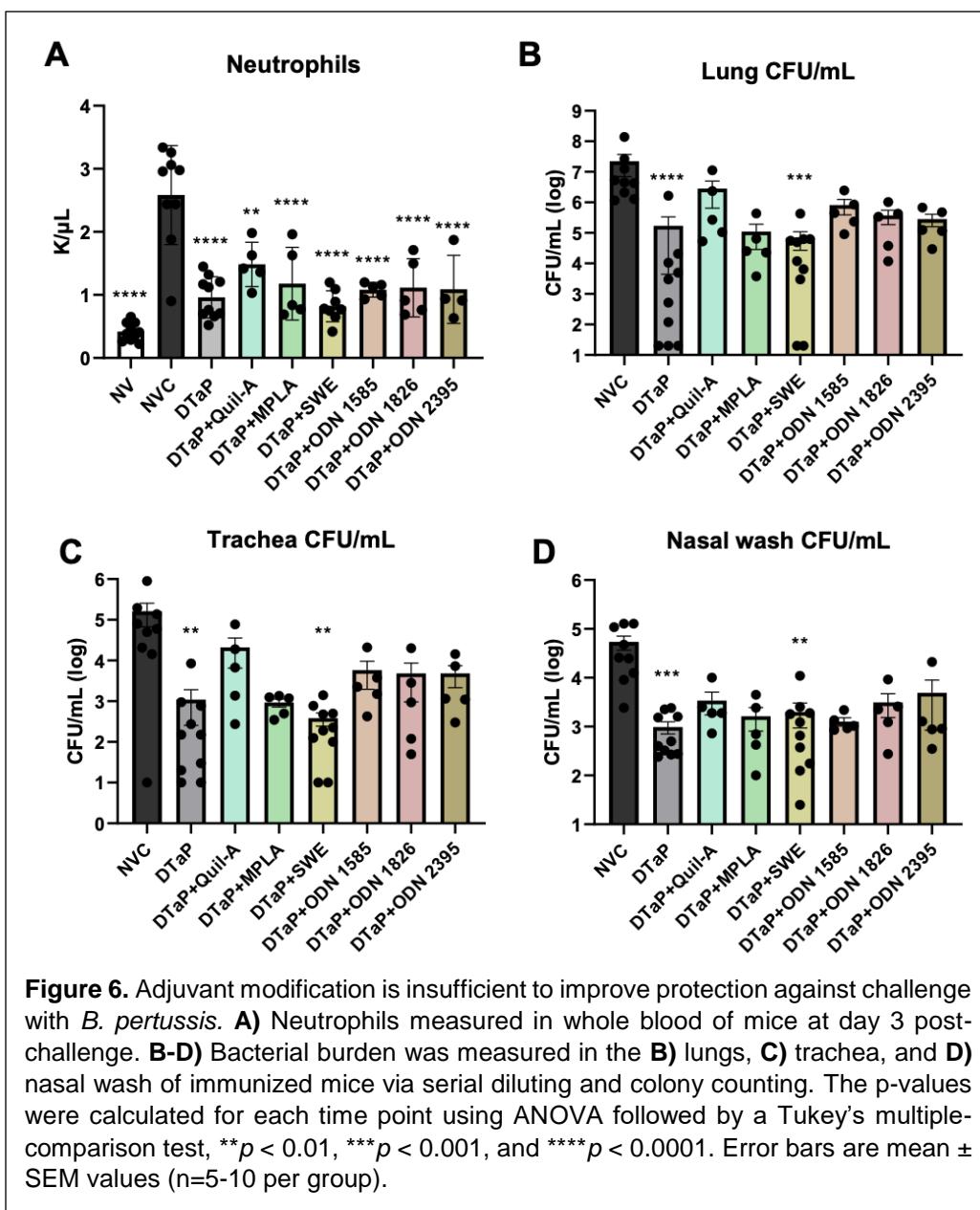

Figure 4. SWE and MPLA potentiate increases in early markers of vaccine-induced memory compared to DTaP alone. A) CXCL13 levels measured in the sera of non-challenged CD-1 mice weekly following vaccination and boost. B) Follicular dendritic cells measured at day 22 following prime in the draining lymph node of immunized mice. C) T follicular helper cells at day 35 post-vaccination in the draining lymph node of immunized mice. The p-values were calculated for each time point using ANOVA followed by a Tukey's multiple-comparison test, * $p < 0.05$ and *** $p < 0.0001$. Error bars are mean \pm SEM values (n=10 per group).

327 memory as CXCL13 is a biomarker of germinal center formation. FDCs present antigen

328 via complement receptors and play a critical role in the differentiation of T_{FH} cells and the
329 development of germinal centers. At day 22 post-prime, we measured FDCs from the
330 draining lymph nodes of immunized mice. We observed a significant increase in FDCs
331 elicited by addition of adjuvant to DTaP compared to DTaP alone (**Figure 4B**). By day 35
332 post-prime T_{FH} levels were significantly increased in the presence of both MPLA and SWE
333 compared to DTaP alone (**Figure 4C**). Altogether, these data suggest that the addition of
334 both MPLA and SWE to DTaP has the potential to alter early pertussis vaccine-induced
335 memory responses.

336 3.4.5 SWE induces a significant increase in *B. pertussis* specific antibody
337 secreting cells compared to DTaP alone

338 Antibodies play a crucial role in vaccine-mediated protection via neutralization,
339 opsonization, and activation of complement²⁵⁹. High affinity antibodies are produced by
340 antibody secreting cells that differentiate from naive B cells as a result of germinal center
341 activity. To evaluate if addition of adjuvant impacts B cell responses, *B. pertussis* specific
342 ASCs were measured in the bone marrow of non-challenged CD-1 mice at day 35 post-
343 vaccination (**Figure 5**). We observed that the addition of SWE to DTaP led to a statistically
344 significant increase in *B. pertussis*⁺ ASCs compared to both vehicle control and DTaP
345 alone. MPLA did not lead to an increase in *B. pertussis*⁺ ASCs in comparison to vehicle
346 control nor DTaP alone. These data suggest that not only does SWE have the potential
347 to increase early markers of germinal center formation, but it also influences the B cell
348 compartment.



349

350 3.4.6 Adjuvant modification is insufficient to improve protection against
351 challenge with *B. pertussis*

352 Antibodies produced in response to DTaP vaccination play a role in bacterial
353 opsonization and in neutralizing the activity of pertussis toxin, one of the major virulence
354 factors of *B. pertussis*. During challenge with *B. pertussis*, pertussis toxin is released,
355 leading to an increase in circulating neutrophils called leukocytosis. Neutralization of
356 pertussis toxin activity by circulating antibodies can be measured as a decrease in
357 leukocytosis in mice after challenge. To determine if the increase in *B. pertussis* antibody
358 production associated with addition of MPLA and SWE to the DTaP vaccine (**Figure 4B**)

359 is associated with an increase in pertussis-toxin neutralizing and decrease in
360 leukocytosis, the number of circulating neutrophils were measured from the whole blood
361 of challenged female CD-1 mice three days post-challenge (**Figure 6A**). There was a
362 significant decrease in neutrophil levels observed in all groups compared to the non-
363 vaccinated challenged group. Surprisingly, addition of Quil-A to DTaP provided the least
364 amount of protection against leukocytosis (1.484 K/ μ L). The lowest number of neutrophils
365 was observed in the non-vaccinated and DTaP+SWE immunized group suggesting that
366 SWE may be a promising candidate to evaluate further.

Figure 6. Adjuvant modification is insufficient to improve protection against challenge with *B. pertussis*. **A)** Neutrophils measured in whole blood of mice at day 3 post-challenge. **B-D)** Bacterial burden was measured in the **B)** lungs, **C)** trachea, and **D)** nasal wash of immunized mice via serial diluting and colony counting. The p-values were calculated for each time point using ANOVA followed by a Tukey's multiple-comparison test, ** $p < 0.01$, *** $p < 0.001$, and **** $p < 0.0001$. Error bars are mean \pm SEM values ($n=5-10$ per group).

367

368 Bacterial burden was measured in the lungs (**Figure 6B**), trachea (**Figure 6C**), and
369 nasal wash (**Figure 6D**) of challenged mice. Data is represented as CFU/mL for each
370 organ. A significant decrease in bacterial burden was observed in the DTaP and
371 DTaP+SWE groups compared to non-vaccinated challenged mice in all organs. While
372 there was no significant decrease in bacterial burden in the MPLA adjuvanted group, the

373 trend was similar to the SWE adjuvanted group. The same trends were observed in the
374 trachea and nasal wash of immunized mice, yet the most protection was observed in the
375 lung. The data suggest that differences in adjuvanted groups compared to DTaP alone
376 are not observed when measuring protection via quantification of bacterial burden.

377 These studies shed light on the opportunity for future formulation of DTaP vaccines
378 with adjuvant systems to modulate the immune response to vaccination and improve
379 protection conferred by aP vaccines. While there were no differences observed in
380 protection, the data suggest that the addition of adjuvant can skew the type of immune
381 response compared to DTaP alone. Addition of adjuvant to DTaP improved the early
382 vaccine-induced memory responses such as CXCL13 levels, FDCs, and T_{FH} cells.
383 Further studies need to be done to evaluate the B cell compartment and longevity of
384 protection conferred by addition of MPLA and SWE compared to DTaP alone. Overall,
385 these data provide evidence that next-generation pertussis vaccines could potentially
386 benefit from the implementation of adjuvant systems.

387 **3.5 Discussion**

388 Current aPs exhibit an excellent safety profile, yet the protection conferred is
389 suboptimal. aPs do not prevent transmission or colonization of the respiratory tract by *B.*
390 *pertussis*, nor do they provide long-term protection^{42,44}. Evidence shows that although
391 vaccine coverage is high, overall incidence and outbreaks of pertussis have increased in
392 DTaP primed individuals. Waning immunity, or a decrease in protection over time
393 following vaccination, contributes to the suboptimal protection associated with aPs^{38,160}.
394 The mechanisms underlying aP induced protection are not well understood, and
395 biomarkers of long-term protection are needed for future vaccine development.

396 In our studies we vaccinated mice with a non-saturating dose, 1/320th the human
397 dose of DTaP, with or without addition of adjuvant (**Figure 2**). It was critical to use a
398 partially protective vaccine dose to able to evaluate the effects of each adjuvant. Outbred
399 CD-1 mice were primed at day 0 and boosted at day 21. Blood was collected via cardiac
400 puncture and anti-*B. pertussis* IgG antibody titers were measured at day 35 post-
401 vaccination. While not statistically increased compared to DTaP alone, MPLA and SWE
402 stimulated robust antibody responses (**Figure 2B**). Although levels of anti-*B. pertussis*
403 IgG antibody responses are not statistically improved, the functionality of antibodies
404 induced by MPLA and SWE could differ from DTaP alone. Functionality of antibodies is
405 critical to consider during vaccine development, especially in the case of pertussis. aP
406 vaccines generate two main categories of antibodies, those that are bactericidal and
407 those that mediate phagocytosis and clearance of the bacteria. In the DTaP vaccine
408 antibodies generated against pertactin primarily mediate bactericidal responses while
409 anti-filamentous hemagglutinin antibodies promote phagocytic uptake^{260–262}. As over
410 85% of *B. pertussis* clinical isolates no longer express pertactin, it is also crucial to
411 consider the need for new antigens that drive bactericidal antibodies against antigens on
412 the surface of the bacterium²⁶³. Therefore, the functionality, affinity, and avidity of
413 antibodies should be evaluated in future studies.

414 Next, the IgG1/IgG2a ratio was measured to determine if adjuvants could shift the
415 T cell response from Th2 dominant observed with DTaP alone, toward Th1 (**Figure 3**).
416 The data suggests that even in the presence of alum, the addition of adjuvant impacts T
417 cell responses. Although a balance between Th1/Th2 responses could be beneficial, this
418 does not indicate that protection will be improved. Quil-A potentiated a Th1 dominant

419 phenotype, decreasing the Th2 bias, but did not lead to a statistically significant reduction
420 in bacterial burden in the respiratory tract compared to NVC mice (**Figure 6B-D**). These
421 data are important to consider given that T cell responses are a topic of debate in
422 pertussis vaccine development efforts. wPs and natural infection are associated with the
423 induction of Th1/Th17 dominant responses⁴⁸. It is hypothesized that Th1/Th17 responses
424 may contribute to the long-term protection observed in wP and convalescent individuals
425 whereas aPs stimulate Th2 responses and confer insufficient, short-term protection.

426 Interestingly, MPLA and SWE altered early markers of vaccine-induced memory
427 (**Figure 4**). MPLA led to a significant increase in CXCL13 levels as early as one day post-
428 vaccination compared to DTaP alone (**Figure 4A**). CXCL13 in the MPLA group peaked
429 immediately following boost at day 22 post-vaccination. As CXCL13 is a biomarker for
430 germinal center formation, MPLA could potentially enhance the longevity of memory
431 conferred by DTaP. Previous studies suggest that MPLA induces robust T_{FH} cell, germinal
432 center B cell, and plasma cell responses leading to the production of neutralizing
433 antibodies. While MPLA did not lead to a significant increase in FDCs at day 22 (**Figure**
434 **4B**), it did induce a significant increase in T_{FH} cells at day 35 compared to DTaP alone
435 (**Figure 4C**). SWE did not promote significant increases in CXCL13, but did significantly
436 increase FDCs and T_{FH} cells suggesting that it also has the potential to improve pertussis
437 vaccine-induced memory. Next, *B. pertussis* specific ASCs were measured in the bone
438 marrow of immunized mice at day 35 post-prime to assess the impact of adjuvant on the
439 B cell compartment. We observed that SWE led to a significant increase in *B. pertussis*⁺
440 ASCs in the bone marrow (**Figure 5**). These data suggest that addition of adjuvant to
441 DTaP influences different aspects of the vaccine-induced memory response. The

442 mechanisms underlying these findings, as well as the longevity of memory need to be
443 further evaluated.

444 Altogether, given these findings, these data suggest that adjuvants have
445 immunopotentiating effects when added to DTaP that can skew T cell responses, improve
446 vaccine-induced memory, but do not enhance protection. While Quil-A balanced T cell
447 responses toward Th1/Th2 and significantly decreased leukocytosis (**Figure 6A**), it did
448 not decrease bacterial burden compared to NVC mice. Similarly to Quil-A, none of the
449 ODNs selected improved protection compared to NVC and were not evaluated further.
450 MPLA and SWE led to robust antibody responses and protection from challenge and were
451 selected for further evaluation. As MPLA and SWE improved early markers of vaccine-
452 induced memory we propose moving forward to measure *B. pertussis* specific MBC and
453 ASC over time to determine if the longevity of protection can be enhanced compared to
454 DTaP alone. These data provide evidence for the exploration into adjuvant systems for
455 the development of next-generation vaccines that can prevent transmission, colonization,
456 and induction of long-term protection.

457 3.6 Acknowledgements

458 The authors would like to acknowledge Dr. Kathleen Brundage, director of the
459 flow cytometry and single cell core at West Virginia University in Morgantown, WV.

460 3.7 Contributions

461 KLW, MB, and FHD were responsible for study design. KLW led experiments.
462 GMP, SRD, ABH, SJM, ESK, MPG, WTW assisted in data collection. KLW, MB, and
463 FHD were responsible for writing the manuscript and all authors approved and provided
464 edits.

465 3.8 Conflicts of interest

466 The authors have no conflicts of interest to disclose.

467 3.9 Funding

468 The study was supported by a 1R01AI14167101A1 to M.B.; K.L.W. received
469 funding from the Cell and Molecular Biology and Biomedical Engineering Training
470 Program funded by NIGMS grant T32 GM133369 (2019-2021), as well as the NASA West
471 Virginia Space Grant Consortium Graduate Research Fellowship Program, Grant
472 #80NSSC20M0055 (2021-2022). F.H.D is supported by NIH through grants
473 1R01AI137155-01A1 and 1R01AI153250-01A1. The WVU Vaccine Development Center,
474 M.B. and F.H.D are supported by a Research Challenge Grant No. HEPC.dsr.18.6 from
475 the Division of Science and Research, WV Higher Education Policy Commission. Flow
476 Cytometry experiments were performed in the West Virginia University Flow Cytometry &
477 Single Cell Core Facility, which is supported by the National Institutes of Health
478 equipment grant number S10OD016165 and the Institutional Development Awards
479 (IDeA) from the National Institute of General Medical Sciences of the National Institutes
480 of Health under grant numbers P30GM121322 (TME CoBRE) and P20GM103434
481 (INBRE).

482

483 **Supplementary table 1.** T_{FH} and FDC flow cytometry panels.

T Follicular Helper Cells			
Antibody	Fluorophore	Company	Catalog Number
CD185	PE	BD Biosciences	551959
PD-1	Per-CP-eFluor710	eBioscience	46-9985-82
CD4	APC-Cy7	BioLegend	100526
CD3 ϵ	BV510	BD Biosciences	563024

Follicular Dendritic Cells			
Antibody	Fluorophore	Company	Catalog Number
CD45	PE-CF594	BD Biosciences	562420
CD21/CD35	BV421	BD Biosciences	562756

484