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Abstract

Sterols are produced via complex, multistep biosynthetic pathways involving similar enzymatic
conversions in plants, animals and fungi, yielding a variety of sterol metabolites with slightly
different chemical properties to exert diverse and specific functions. The role of plant sterols has
been studied in the context of cell biological processes, signaling and overall plant development,
mainly based on mutants. Due to their essential nature, genetic interference with their function
causes pleiotropic developmental defects. An important alternative is to use a pharmacological
approach. However, the current toolset for manipulating sterol biosynthesis in plants remains
limited. Here, we probed a collection of inhibitors of mammalian cholesterol biosynthesis to
identify new inhibitors of plant sterol biosynthesis. We provide evidence that imidazole-type
fungicides, bifonazole, clotrimazole and econazole inhibit the obtusifoliol 14a-demethylase
CYP51, that is highly conserved among eukaryotes. Surprisingly, we found that the selective
estrogen receptor modulator, clomiphene, inhibits sterol biosynthesis, in part by inhibiting the
plant-specific cyclopropyl-cycloisomerase CPI1. These results demonstrate that rescreening of
the animal sterol biosynthesis pharmacology is an easy approach for identifying novel inhibitors
of plant sterol biosynthesis. Such molecules can be used as entry points for the development of

plant-specific inhibitors of sterol biosynthesis that can be used in agriculture.
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Introduction

Phytosterols mainly function as structural components in the plasma membrane where they
regulate membrane permeability and fluidity, contribute to organizing the membrane in
microdomains, and modulate the activity of membrane-bound enzymes (Cacas et al., 2012;

Schaller, 2003; Simon-Plas et al., 2011).

In plants, many cellular processes are sterol-dependent, such as clathrin-mediated endocytosis
(Konopka et al., 2008; Men et al., 2008)), cytokinesis (Boutte et al., 2010; Nakamoto et al.,
2015), polarity (Men et al., 2008; Stanislas et al., 2015), and signaling (Simon-Plas et al., 2011).
Consequently, phytosterols have been implicated in various developmental processes, such as
embryonic and post-embryonic development (Clouse, 2000; Schaller, 2003), fertility (Azpiroz et
al., 1998; Catterou et al.,, 2001), plant flowering (Schaller, 2003), growth (He et al., 2000;
Schaller, 2003), seed germination (Guo et al., 1995), biotic- and abiotic stress responses (Han
et al., 2009; Kumar et al., 2015; Pose et al., 2009; Senthil-Kumar et al., 2013), and the auxin-
mediated regulation of cell polarity, gravitropism, endocytosis and auxin efflux (Men et al., 2008;
Pan et al., 2009; Willemsen et al., 2003; Yang et al., 2013). In addition to its structural function,
campesterol is also a metabolic precursor for the growth regulatory plant hormone brassinolide

(Fujioka and Sakurai, 1997; Lindsey et al., 2003; Santner et al., 2009; Vriet et al., 2013).

The importance of phytosterols and brassinosteroids for plant growth and development
is made clear by the severe phenotypes that are observed in mutants deficient in their
biosynthesis. Early and late sterol biosynthesis mutants and BR-deficient mutants have been
described, which all typically show severe dwarfism and defects in fertility, cell elongation,
flowering and senescence. Additionally, Arabidopsis mutants that are defective in early
phytosterol biosynthesis enzymes such as STEROL METHYLTRANSFERASE 1 (SMT1),
CYP51G1, FACKEL (FK) and HYDRAL1 (HYD1) are also deficient in embryogenesis and seed

development, and cannot be rescued by BR treatment (Boutte and Grebe, 2009; Clouse, 2000;
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Diener et al., 2000; Souter et al., 2002). However, while mutants are a great asset for the study
of phytosterol and BR biology in plants, they are not without drawbacks. For instance, the
severe growth phenotypes that are typical for sterol- and BR-biosynthesis mutants make it
difficult to dissect what is direct, and what is an indirect pleiotropic effect due to the often strong
developmental phenotypes in the mutants. Therefore, an interesting alternative to study
phytosterol and BR biology in plants is the use of small molecular inhibitors that target specific

steps of their biosynthesis pathways.

Squalene is the common precursor for sterols in plants, animals and fungi. While the
sterols found in the three eukaryotic kingdoms are highly diverse, their biosynthesis often
involves similar metabolic steps. This similarity is illustrated by the ability of plant enzymes to
complement yeast mutants in the corresponding enzyme (De Vriese et al., 2021; Diener et al.,
2000; Kushiro et al., 2001), suggesting the distinct metabolic precursors can still dock the
substrate binding pockets of these evolutionary distant enzymes. Consequently, sterol
biosynthesis inhibitors that target specific sterol biosynthesis enzymes in fungi and mammals,
often also inhibit sterol biosynthesis in plants. However, the molecular targets of these inhibitors
are often much less defined, or their selectivity is relatively low due to divergence relative to
their yeast and mammalian counterparts (De Vriese et al., 2021; He et al., 2003; Rozhon et al.,
2013). For instance, reported oxidosqualene cyclase (OSC) inhibitors seem to non-selectively
inhibit the activities of both cycloartenol synthase (CAS) and B-amyrin synthase (bAS) in plants
(Ito et al., 2013). However, since the sterol biosynthesis pathways of plants, animals and yeast
share many analogous conversion steps that are catalyzed by semi-conserved enzymes
(Desmond and Gribaldo, 2009), several sterol biosynthesis inhibitors were found to be bioactive
across kingdoms, albeit with distinct specificities. This is indeed the case for fenpropimorph, a
morpholine-derived fungicide that is a known inhibitor of C-8,7 sterol isomerase (subnanomolar

concentrations) and C-14 sterol reductase (micromolar concentrations) in yeast (Kerkenaar,
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96 1990; Marcireau et al., 1990), which is also used as an inhibitor of FK, the plant C-14 sterol
97 reductase, in plant research (He et al., 2003). However, fenpropimorph and similar morpholines
98 only function at relatively high concentrations in plants (30 - 100 uM). Voriconazole, a triazole-
99 type fungicide, inhibits members of the CYP51 superfamily of 14a-demethylase cytochrome
100  P450 enzymes in both yeast (0.2 uM) (Saravolatz et al., 2003) and plants (1 uM) (Rozhon et al.,
101  2013). Of these inhibitors, only fenpropimorph seems to be commonly used to manipulate sterol

102  biosynthesis in plants.

103  Since the current library of characterized plant sterol biosynthesis inhibitors is rather limited (He
104 et al,, 2003; Rozhon et al., 2013), we set out to expand the catalog of plant sterol biosynthesis
105 inhibitors. Therefore, we selected a subset of compounds that target different steps of the
106 mammalian cholesterol biosynthesis pathway that were recently identified in a screen in a
107  human cell system (Korade et al., 2016). We provide the proof-of-concept for several imidazoles
108 as putative inhibitors of CYP51. Moreover, we identified the Selective Estrogen Receptor
109  Modulator clomiphene as a novel inhibitor plant sterol biosynthesis in part by inhibiting the plant-
110  specific cyclopropyl-cycloisomerase CPI1. These findings illustrate the principle that the wide
111 array of, often commercially available, animal sterol biosynthesis inhibitors can be exploited for

112  the efficient identification of novel plant sterol biosynthesis inhibitors

113
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114 Results
115  Chemical screens in human cell systems resulted in an expanded list of inhibitors that target
116  different steps of cholesterol biosynthesis (Kim et al., 2016; Korade et al., 2016). The enzymatic
117  steps of cholesterol biosynthesis in animals generally strongly resemble those of the plant
118  phytosterol biosynthesis pathway (Desmond and Gribaldo, 2009). Therefore, we postulated that
119  inhibitors of human cholesterol biosynthesis and/or fungal lanosterol biosynthesis could target
120 analogous steps in phytosterol biosynthesis. We selected several representative compounds
121  that target distinct cholesterol/lanosterol biosynthesis enzymes in humans and yeast (Kim et al.,
122 2016; Korade et al., 2016), to evaluate their potential as inhibitors of plant sterol biosynthesis
123 (Table 1). As positive controls we included several imidazoles, a class of molecules that is rich
124  ininhibitors of a variety of Cytochrome P450s, such as CYP51.
125 Table 1. List of putative sterol biosynthesis inhibitors selected for analysis in Arabidopsis
Compound Other bioactivities | Mammalian target in | Analogous
sterol biosynthesis Arabidopsis
enzyme(s)
Bifonazole imidazole antifungal | CYP51A1 CYP51
Clotrimazole imidazole antifungal | CYP51A1 CYP51
Econazole imidazole antifungal | CYP51A1 CYP51
Clomiphene Selective Estrogen | C-8,7 isomerase/DHCR24 HYD1/DWF1
Receptor Modulator
(SERM)
Tamoxifen SERM C-8,7 isomerase/DHCR24 HYD1/DWF1
Perphenazine | antipsychotic, CaM | C-8,7 isomerase/DHCR24 HYD1/DWF1
antagonist
Fluphenazine antipsychotic, CaM | C-8,7 isomerase HYD1
antagonist
Acitretin retinoid antipsoratic | DHCR24 DWF1
Doxepin antipsychotic DHCR24 DWF1
Trifluoperazine | antipsychotic, CaM | DHCR24 DWF1
(TFP) antagonist
126
127
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128 Hypocotyl and root phenotypes highlight putative phytosterol biosynthesis inhibitors
129 among a set of cholesterol biosynthesis inhibitors

130  As an indirect readout of defective phytosterol biosynthesis (Rozhon et al., 2013), we monitored
131 the ability of the inhibitors to reduce hypocotyl length of etiolated Arabidopsis seedlings (Fig. 1A-
132 B; Supplementary Fig. S1A). Bifonazole, clotrimazole and econazole strongly reduced hypocotyl
133  length and were already effective at 0.5 uM concentrations (Fig. 1A). Clomiphene had an effect
134  at higher concentrations (5 — 10 uM range) and tamoxifen reduced hypocotyl length only at 10
135  uM (Fig. 1B). Another putative C-8,7 isomerase/DHCR24 inhibitor, Perphenazine, as well as the
136  DHCR24 inhibitors fluphenazine, acitretin, trifluoperazine and doxepin had no significant effects
137  on hypocotyl elongation, even at the highest concentration (10 pM) tested (Fig. 1B and

138  Supplementary Fig. S1A), suggesting that the latter are not effective inhibitors of phytosterol

139  biosynthesis.
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141 Figure 1. Effect of putative sterol biosynthesis inhibitors on hypocotyl and root length. (A-B) Dose-response
142 curves of hypocotyl lengths of seedlings treated with (A) Clotrimazole, Bifonazole or Econazole and (B) Clomiphene,
143 Tamoxifen or Perphenazine. Seedlings were grown for 8 days in the dark on ¥2 MS medium supplemented with the
144 respective inhibitors at indicated concentrations. (C-D) Dose-response curves of primary root lengths of wild-type
145 seedlings (Col-0) treated with and (C) Clotrimazole, Bifonazole or Econazole and (D) Clomiphene, Tamoxifen or
146 Perphenazine. Wild type seedlings (Col-0) were grown for 7 days under continuous illumination on ¥ MS medium
147 supplemented with the respective inhibitors at indicated concentrations. Averages for each condition are depicted (n
148 = 33 - 56) relative to the DMSO control (0.1 %). Error bars indicate +SEM. Student’s t-test p-values: *p < 0.05, **p <
149  0.01, **p < 0.001.

150 Next, we analyzed the effects of these inhibitors on root growth of light grown seedlings (Fig.
151  1C-D; Supp. Fig. S1B). In comparison to seedlings grown in the presence of 0.1% DMSO,
152  several of the selected compounds strongly inhibited root growth. At concentrations as low as
153 0.1 uM, clotrimazole reduced the primary root length by more than 50% compared to the
154  control, while, bifonazole and econazole did so at 0.5 pM (Fig. 1C). Clomiphene and tamoxifen
155  also strongly reduced the primary root length, albeit at higher concentrations (1 uM and above)
156  than the imidazoles (Fig. 1D). At concentrations of 5 uM and higher, clotrimazole, clomiphene
157 and tamoxifen caused severe reductions in primary root length. Consistently with the low
158  bioactivity in the hypocotyl elongation assay, acitretin, doxepin, perphenazine, fluphenazine and
159  trifluoperazine had no obvious effect on the primary root length at the highest tested
160  concentration of 10 uM (Supplementary Fig. S1B). Due to the low bioactivity in our assays, we
161  did not further pursue acitretin, doxepin, perphenazine, fluphenazine and trifluoperazine in the

162  subsequent analyses.

163  Inhibitors that interfere with root growth cause cell division orientation defects in the
164  root meristem

165 The defective sterol biosynthesis is often associated with defective cell division orientation, such
166 as is the case for fk and smt2smt3 double mutant (Jang et al., 2000; Pullen et al., 2010; Souter
167 et al., 2002). Therefore, we visualized the root meristem organization of inhibitor treated roots
168  using ABCB19-GFP as a plasma membrane marker (Fig. 2A-F). We focused on the inhibitors

169 that caused reductions in the growth assays (Fig. 1C,D). The typical regular organization of the
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170  meristem was disrupted by all inhibitors, as indicated by the appearance of aberrant cell division

171  orientations (Fig. 2A-F).

172 While bifonazole, clomiphene, econazole, and tamoxifen treatment potently disrupted cell
173  division orientations in the root meristem, this was less obvious upon clotrimazole treatment
174  (Fig. 2D). These cell division orientation defects are reminiscent of mutants defective in sterol

175  biosynthesis (Jang et al., 2000; Pullen et al., 2010; Souter et al., 2002).
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Clomiphene
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£

E'

O

Econazole
Tamoxifen

176
177 Figure 2. Perturbed cell division orientation in the root meristem after inhibitor treatment. (A-F) Root
178 organization of 5 day-old ABCB19-GFP seedlings grown on 0.5 x MS supplemented with (A) DMSO (0.1%), (B)
179 Bifonazole (1 uM), (C) Clomiphene (1 uM), (D) Clotrimazole (1 uM), (E) Econazole (1 pM), and (F) Tamoxifen (1 uM).

180 Scale bar = 50 pym.

181 GC-MS analysis reveals disturbed sterol composition in Arabidopsis seedlings after
182  inhibitor treatment

183  Next, we determined the impact of the compounds on the sterol composition of Arabidopsis
184  seedlings (Fig. 3). Seedlings were transferred for 5 days to liquid medium containing 0.5 pM and
185 5 uM of bifonazole, clomiphene, clotrimazole and econazole. Sterols were extracted and

186  analyzed via gas chromatography-mass spectrometry (GC-MS). The major peaks in the GC-MS
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187 chromatograms corresponded to the three major phytosterols in Arabidopsis (campesterol,
188  stigmasterol, and B-sitosterol), and the sterol biosynthesis intermediate isofucosterol (Fig. 3A).
189  B-amyrin, which was added to the samples as an internal standard, and a-tocopherol (vitamin E)
190 eluted in the same range as the major plant sterols (Fig. 3A). The identification of these
191  metabolites was based on a NIST database search with their EI-MS spectra (Supplementary

192 Fig. S2).

193  From these analyses, it was clear that most of the tested compounds had at least some effect
194  on the sterol composition of these three major phytosterols, and isofucosterol (Fig. 3B-E). The
195 largest sterol disturbances were found in the stigmasterol levels, for which generally strong
196  reductions were observed in samples treated with the imidazoles, with more modest effects for
197  clomiphene (Fig. 3B). The relative levels of B-sitosterol, the precursor of stigmasterol, were
198 generally less affected than those of stigmasterol (Fig. 3C). The effect of the inhibitors on
199  campesterol levels was mostly modest, and even slight induction was noted for the 0.5 uM
200 bifonazole treatment (Fig. 3C,D). All compounds strongly reduced the levels of the B-sitosterol-
201  precursor isofucosterol (Fig. 3E). These data indicate that clomiphene and all tested imidazoles

202  have an impact on sterol biosynthesis, either directly, or indirectly.

10
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204 Figure 3. Relative quantification of the major sterols after inhibitor treatment. (A) Representative Total lon
205 Current (TIC) GC-MS chromatogram of a DMSO-treated WT Arabidopsis seedlings sample, with indication of o-
206 tocopherol, campesterol, stigmasterol, B-sitosterol and B-amyrin. (B-E) Peak intensities of (B) stigmasterol, (C) -
207 sitosterol, (D) campesterol and (E) isofucosterol in WT seedlings treated with two concentrations (0.5 or 5 pM) of
208 Bifonazole (Bif.), Clomiphene (Clom.), Clotrimazole (Clot.) and Econazole (Eco.), relative to the peak intensities in the
209 DMSO control. Error bars represent +SEM, n = 5. Student’s t-test p-values: *p < 0.05, **p < 0.01, ***p < 0.001. Non-
210 significant (n.s.) p> 0.05.

211  Clotrimazole, bifonazole and econazole are inhibitors of CYP51 activity in Arabidopsis.

212 To infer the sterol biosynthesis step that is most likely targeted by these inhibitors, we revisited
213 the TIC GC-MS chromatograms for each treatment, in search of new peaks that likely
214  correspond to sterol biosynthesis intermediates, and derivatives thereof. In the TIC GC-MS
215  chromatograms of all imidazole-treated samples, we observed the appearance of up to 5 new

216  peaks (Fig. 4A; Supplementary Fig. S3A,B).

217

11
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219 Figure 4. Clotrimazole target identification. (A) Overlay of a representative TIC GC-MS chromatogram of a control
220 sample (black) and samples treated with 5 pM clotrimazole (red). Five new peaks induced by clotrimazole treatment
221 are indicated by numbers for which the EI-MS spectra are presented in (B) and Supplementary Fig. 4, and are
222 referred to as “metabolite 1” to “metabolite 5”. The peak indicated by (c) is a contaminant. (B) Comparison of the EI-
223 MS profile of metabolite 2 to TMS-Obtusifoliol. Reference EI-MS profile was obtained from NIST '20. (C) Model

224 explaining how inhibition of CYP51G1 by clotrimazole treatment could lead to accumulation of the metabolites 1 to 5.

225

226  The EI-MS profiles of most of these metabolites displayed prominent ions at [M-"CH3]" and [M-
227  TMSIOH-"CH3]" (Fig. 4B; Supplementary Fig. S4A-D), which is indicative of A® sterols with a
228  14a-methyl group (Goad and Akihisha, 1997). The accumulation of A® sterols with a 14a-methyl
229  group is consistent with clotrimazole, bifonazole and econazole inhibiting 14a-demethylase

230  activity in Arabidopsis (AtCYP51G1), a deeply conserved target of many azoles (Crowley and

12
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231 Gallagher, 2014; Lamb et al., 2001). A NIST '20 database search revealed that the EI-MS
232 spectrum of metabolite 5 matched for 59.98% with that of TMS-obtusifoliol (Supplementary Fig.

233 S4A), the preferred target of AtCYP51G1.

234  Metabolite 2 was the major accumulating metabolite not only for clotrimazole, but also for
235  bifonazole and econazole treatments (Fig. 4A, Supplementary Fig. S3A-B) and had an EI-MS
236  spectrum that was also highly similar to that of TMS-obtusifoliol (NIST20) (Fig. 4B). The major
237  differences between both spectra were at the level of its molecular ion [M]*, and the fragments
238 [M —'CH3]" and [M — TMSIOH — "CH3]", all of which had an m/z value that is 12 Da lower than
239  the corresponding ions in the TMS-obtusifoliol spectrum, suggesting that it contains one carbon
240  atom less than obtusifoliol, yielding C,gHs0O. This chemical formula corresponds to that of 14a-
241 methyl-24(28)-dihydrofecosterol, the major metabolite accumulating in atcyp51g1 mutants (Kim

242  etal., 2005).

243 The biosynthesis of 14a-methyl-24(28)-dihydrofecosterol from obtusifoliol requires C4a-
244  demethylation and C24(28) double bond reduction (Fig. 4C). The C4a-demethylation of
245  obtusifoliol is also seen in the Atcyp51g1 mutant with the accumulation 14a-methyl-fecosterol
246 (C29H4g0O) (Kim et al., 2005). The molecular ion of both metabolite 1 and 3, i.e., m/z 484
247  (Supplementary Fig. S4B,C), corresponds with a chemical formula of C,HssO and a double
248  bond equivalent (DBE) of 6, which indicates the presence of 2 double bonds. Both metabolites
249  could thus be 14a-methyl-fecosterol. However, the prominent peak at m/z 69 in metabolite 1
250  (Supplementary Fig. S4B) is indicative for the presence of a A**®)-double bond in the side chain
251  of 14a-methylsterols (Goad and Akihisha, 1997), suggesting that metabolite 1 is 29-

252 norlanosterol. By deduction, metabolite 3 then likely corresponds to 14a-methyl-fecosterol.

253  Metabolite 4 displayed a molecular ion at m/z 500 (Supplementary Fig. S4D), matching a

254  chemical formula of C3oHs,O and a DBE of 5, indicating a single double bond. This matches the
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255  main features of 24(28)-dihydro-obtusifoliol, another metabolite that also accumulates in the

256  cyp51 mutant (Kim et al., 2005).

257  The accumulation of 14a-methyl sterols is a tell-tale sign of inhibition of CYP51 activity (Kim et
258  al., 2005; Maillot-Vernier et al., 1990; Taton et al., 1988). Therefore, it can be concluded that
259  bifonazole, clotrimazole, and econazole inhibit the Arabidopsis CYP51 orthologue (CYP51G1).
260 That clotrimazole accumulated additional 14a-methyl sterols probably reflects its higher

261  bioactivity compared to bifonazole, and econazole.

262  Clomiphene inhibits CPI activity in Arabidopsis

263 In contrast to the imidazole TIC GC-MS chromatograms, no 14o-methyl-24(28)-
264  dihydrofecosterol (2) peak appeared in the clomiphene samples. Instead, five induced peaks
265  appeared in the clomiphene-treated samples that were not induced in the imidazole-treated
266  samples (Fig. 5A; pink arrows), suggesting that clomiphene has a different target than the
267  imidazoles. The EI-MS spectrum of the largest of these peaks (10) was a mixed spectrum of two
268  metabolites (metabolites 10a and 10b). After deconvolution, we found via database searches
269  that the fragment ions for these metabolites corresponded to the fragmentation spectra of TMS-

270  cycloeucalenol and TMS-a-amyrin (Fig. 5B,C).

271 Similarly to TMS-cycloeucalenol, metabolite 7 and metabolite 8 showed two intense [M-
272 TMSIOH]" and [M-TMSIOH-'CHs]" fragment ions (Supplementary Fig. S5A,B), indicating these
273  metabolites are also 9B,19-cyclopropanesterols (Goad and Akihisha, 1997), related to
274  cycloeucalenol. Based on the m/z of their molecular ions, one is likely its demethylated version,
275  24-methylene pollinastanol (metabolite 7) and the other differing from the previous by a reduced
276 double bond, 24-methyl pollinastanol (metabolite 8). The identity of these metabolites was
277  further supported by a shared fragment ion at m/z 269, representing the sterol backbone ([M-

278  TMSIOH-SC]") and a fragment ion unique to 24-methyl pollinastanol at m/z 220 (B6hme et al.,
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1997). Jointly, the accumulation of cycloeucalenol, and its aberrant metabolites 24-methylene
pollinastanol and 24-methyl pollinastanol, suggests that clomiphene inhibits cycloeucalenol

cycloisomerase (CPI) activity (Fig. 5D).

The spectrum of metabolite 6 was very similar to that of 24-methylene lophenol
(Co9H4g0) (Zu et al., 2021), including major fragment ions (m/z 343, 255 and 229)
(Supplementary Fig. S5C).This suggests that the structure of metabolite 6 is closely related to
24-methylene lophenol. The identity of metabolite 9 (Supplementary Fig. S5D) could not be
reliably resolved due to low abundance. The accumulation of metabolites that are unrelated to
cycloeucalenol indicates that clomiphene targets multiple steps in the phytosterol biosynthetic

pathway.
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289

290 Figure 5. GC-MS based identification of CPI as a clomiphene target. (A) Overlay of a representative TIC GC-MS
291 chromatogram of the control sample (black) and the samples treated with 5 uM (pink) clomiphene. Pink arrows
292 indicate the positions of the accumulating metabolites. New peaks, induced by inhibitor treatment are indicated by
293 numbers for which the EI-MS spectra are presented here and in Supplementary Fig. S5. (c) = contaminant. (B,C)
294 Comparison of the EI-MS profile of Metabolite 10a to TMS-Cycloeucalenol (B) and Metabolite 10b to TMS-a-amyrin
295 (C). Reference EI-MS profiles were obtained from the Golm Metabolome Database and NIST20. (D) Model explaining
296 how clomiphene treatment could lead to accumulation of cycloeucalenol, 24-methylene pollinastanol and 24-methyl

297 pollinastanol.
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298

299

300

301 Discussion

302  Phytosterol biosynthesis is orchestrated by complex, branched pathways that are regulated by a
303  wide range of enzymes, which makes the study of these processes often difficult. While several
304 mutants are available that are defective in specific steps of phytosterol biosynthesis, these
305 mutants often show severe growth phenotypes and are thus not ideal to study sterol
306  biosynthesis defects later in a plant’s life. Unfortunately, the current toolset of sterol biosynthesis
307 inhibitors in plants is limited (De Vriese et al., 2021). The close homology of the structures and
308 the relative conservation of enzymes involved, explains why imidazoles that are known to block
309 sterol biosynthesis in animals and/or fungi can also interfere with sterol biosynthesis in plants
310 (He et al., 2003; Rozhon et al., 2013). While differences in structure and divergence of the
311  catalytic centers may cause shifts in specificity, inhibitors of human sterol biosynthesis should

312  thus be enriched in molecules that can interfere with plant sterol biosynthesis.

313  We exploited this principle by exploring a set of putative mammalian cholesterol biosynthesis
314  inhibitors and identified several new inhibitors of plant sterol biosynthesis. Based on
315 morphological and biochemical effects we demonstrate that the imidazoles, bifonazole,
316 clotrimazole, and econazole, and the selective estrogen receptor modulator, clomiphene, are
317  potent inhibitors of sterol biosynthesis. Matching the strong functional conservation of CYP51
318  activities, the tested imidazoles were found to potently interfere CYP51G1 of Arabidopsis.
319 However, instead of targeting conserved enzymes with C8,7 isomerisation or C24-reductase

320 activities, we found that clomiphene targeted CPI activities in Arabidopsis. Notably, multiple
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321  inhibitors of human sterol biosynthesis did not have strong effects on plant growth, indicating

322 that they do not inhibit plant sterol biosynthesis, and were therefore not further analyzed.

323  Jointly, these data suggests that the exploration of inhibitors of human sterol biosynthesis is a
324  valuable approach for identifying new inhibitors of plan sterol biosynthesis. Exploration of
325  structural variants for improving affinity and specificity could lead to the development of plant-

326  specific sterol biosynthesis inhibitors for agriculture.

327

328 Bifonazole, clotrimazole and econazole are inhibitors of plant CYP51 activity

329  Multiple azoles were identified as potent fungicides by inhibiting the cytochrome P450-
330 dependent monooxygenase CYP51 (Shafiei et al., 2020). They typically act by non-competitive
331  binding to the ferric ion of the heme group of the cytochrome P450, thus preventing substrate
332 binding (Warrilow et al., 2013). Sterol C14-demethylation is a highly conserved step in sterol
333  biosynthesis in eukaryotes, and is mediated by a CYP51 homolog. The strong conservation of
334 CYP51 enzymatic activity is also reflected in its sensitivity to different azoles (Shafiei et al.,
335 2020). Yet, sequence divergence between fungi, plants and animals has installed differential
336  sensitivities to azoles, allowing their application as fungicides in medicine and agriculture. In
337  example, bifonazole, clotrimazole, and econazole are commonly used to treat fungal infection of
338 the skin and urogenital tracts, reflecting their preference towards fungal over human CYP51s
339 (Warrilow et al., 2013). We found that bifonazole, clotrimazole, and econazole interfered with
340 plant growth and development at submicromolar concentrations. Of these inhibitors only
341  clotrimazole was previously shown to be toxic to Lemna species (Alkimin et al., 2020), to inhibit
342  radish root growth (Bach, 1985), and root gravitropism in Pisum sativum (Amzallag and
343  Vaisman, 2006), without providing evidence that sterol biosynthesis was inhibited in these

344  conditions. Our GC-MS revealed that bifonazole, clotrimazole, and econazole treatments induce
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345 the accumulation of sterol biosynthesis intermediates that also accumulate in the Arabidopsis
346  cyp51 mutant (Kim et al., 2005). This provides the first biochemical evidence that these azoles
347 inhibit CYP51 activities in plants. Interestingly, bifonazole and econazole, but not clotrimazole,
348  trigger cell division defects in the root, that are not seen in cyp51 mutants(Kim et al., 2005),
349  suggesting that clotrimazole has a higher specificity towards CYP51.

350

351  Clomiphene is a novel plant sterol biosynthesis inhibitor

352  Clomiphene is well known as estrogen receptor agonist or antagonist, depending on the target
353  tissue, and is used to induce ovulation or treat breast cancer. In a repurposing screen of FDA
354  approved drugs, clomiphene was identified as an inhibitor of A8-7 sterol isomerase and
355 DHCR24 activities (Korade et al., 2016). The corresponding enzymes in plants are the A8-7
356  sterol isomerase HYDRAI, and the C24 sterol side chain reductase DWARF1. Consistently with
357 inhibition of sterol biosynthesis enzymes, clomiphene caused altered cell division patterns in the
358 root meristem that were associated with reduced sterol levels. However, the analysis of the
359  sterol biosynthesis intermediates indicated that clomiphene interferes with cyclopropylsterol-
360 cycloisomerase (CPI), and possibly other steps in sterol biosynthesis. Current CPI
361 pharmacology consists of morpholines such as fenpropimorph (Taton et al., 1987), and LDAO
362 (Darnet et al., 2020). Similarly to clomiphene, neither inhibitor is selective for CPIl. Morpholines
363  also inhibit the C14 sterol reductase (FACKLE) and A8-7 sterol isomerase (HYDRA1) activities
364 (Taton et al., 1987), while LDAO is a potent inhibitor of 2,3-oxidosqualene cyclization to
365 cycloartenol and B-amyrin (Cerutti et al., 1985). This suggests that similarity in the biochemical
366 reaction, and in the catalytic center of the different enzymes, make it difficult to develop
367 selective inhibitors. Similarly, clomiphene also caused the accumulation of two other
368 metabolites, indicating that clomiphene also probably has multiple targets in the sterol

369  biosynthesis pathway. In human liver microsomes, 9 clomiphene metabolites could be identified
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370 that were more potent estrogen antagonists than clomiphene itself (Murdter et al., 2012). It is
371  therefore not unlikely that clomiphene is also metabolized in plants, and that one or more of
372  these metabolites inhibit one or more steps of plant sterol biosynthesis. A more detailed
373  exploration of clomiphene metabolism in plants will be required. Interestingly, CPI is plant-
374  specific (Desmond and Gribaldo, 2009), indicating that it is an interesting target for developing

375 herbicides.

376

377 A call for caution for using estradiol and SERM-inducible systems

378  Our analyses identified clomiphene, a Selective Estradiol Receptor Modulator (SERM), as an
379 inhibitor of sterol biosynthesis in plants. Clomiphene caused aberrant cell divisions in the root
380 meristem. Similar cell division phenotypes were observed with tamoxifen, that can be
381 metabolized in human cells into the SERM, 4-hydroxytamoxifen. This suggests that estrogen

382  receptor ligands potentially inhibit sterol biosynthesis in plants.

383 Several systems that are commonly used for chemically induced expression in plants
384  use estradiol or 4-hydroxytamoxifen as an activating ligand. The most popular system involves
385 the chimeric transcription factor XVE, that can activate a LexA operator based promoter in
386 response to B-estradiol (Zuo et al., 2000), that is typically applied between 2 and 10uM in
387  Arabidopsis (Schlucking et al., 2013; Wang et al., 2020; Yamada et al., 2020), and up to 20 uM
388 inrice protoplasts (Chen et al., 2017). A derivative hereof allows for activation of UAS operator
389 based promoters in response to the SERM 4-hydroxytamoxifen (Friml et al., 2004), that is
390 typically applied at 2uM in Arabidopsis (Kitakura et al., 2011). The concentrations of these
391 ligands are in the range of, and even higher than, those at which we observed significant root
392  growth phenotypes for clomiphene and tamoxifen, molecules whose chemical space closely

393  matches that of the inductive ligands, B-estradiol and 4-hydroxytamoxifen, respectively. This
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indicates that some of the observed phenotypes in such inducible backgrounds may be modified
by reduced sterol content, or the accumulation of sterol biosynthesis intermediates. This calls
for caution for using such inducible systems in the context of cell biological processes that are
sterol-dependent, such as clathrin-mediated endocytosis (Men et al., 2008), cytokinesis (Boutte

et al., 2010; Nakamoto et al., 2015) and polarity (Men et al., 2008; Stanislas et al., 2015)
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399 Material and methods

400 Compounds

401  All compounds used in the experiments (acitretin, bifonazole, clomiphene, clotrimazole,
402 doxepin, econazole, fluphenazine, flutrimazole, oxiconazole nitrate, perphenazine, tamoxifen,
403  tetraphenylphosphonium, trifluoperazine, trityl chloride) were obtained from Sigma-Aldrich

404  (Overijse, Belgium) and dissolved in DMSO.

405 Arabidopsis phenotyping

406  Gas-sterilized Arabidopsis thaliana seeds (Col-0) were plated on ¥ Murashige and Skoog (MS)
407  medium supplemented with the appropriate compounds at various concentrations (3 rows/plate,
408 0.5 cm between seeds). For the primary root length experiments, the plated seeds were first
409  stratified for 3 days in the dark at 4°C and subsequently transferred to a growth chamber under
410  continuous light conditions at 21°C. After 7 days of growth, the plates were scanned and the
411  primary root lengths of the seedlings were measured with Fiji (Schindelin et al., 2015). For each
412 treatment, 47-62 individual roots were measured. For the hypocotyl length experiments, the
413  plated seeds were stratified for 3 days in the dark at 4°C. To induce germination they were
414  subjected to 4 hours light, prior to transfer to the dark. After 8 days of growth in the dark, the
415  plates were scanned and the hypocotyl lengths of the seedlings were measured with ImageJ.

416  For each treatment, 33-56 individual hypocotyls were measured.

417 GC-MS sterol profiling
418  Arabidopsis thaliana seeds were grown on % MS plates for 3 days until germination. Very small
419  seedlings were subsequently transferred to wells of 6-well plates containing 5 ml liquid ¥2 MS

420  medium and 0.5 or 5 uM of the appropriate compounds, or 0.1% DMSO (1 well per sample, 5
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421  biological replicates per treatment). The seedlings were grown for 5 days in these wells with the

422  compounds, after which they were frozen in liquid nitrogen and thoroughly ground into powder.

423  Approximately 100 mg (fresh weight) of plant material ground under liquid nitrogen was
424  extracted with 1 mL of methanol to which 5 pg/mL of B-amyrin was added as internal standard.
425  The extractions were carried out at room temperature for 30 minutes, after which the samples
426  were centrifuged at 20,800 x g for 5 minutes. The supernatant was collected and evaporated to
427 dryness under vacuum. The remaining plant material was lyophilized for dry weight
428  determination. The samples were derivatized for GC-MS analysis by adding 10 yL of pyridine
429  and 50 pL of N-Methyl-N-(trimethylsilyhtrifluoroacetamide (Sigma-Aldrich) to the residue. GC-
430 MS analysis was carried out using a GC model 6890 and an MS model 5973 (Agilent). A 1-uL
431  aliquot was injected in splitless mode into a VF-5ms capillary column (Varian CP9013, Agilent).
432  The GC was operated at a constant helium flow of 1 mL per minute and the injector was set to
433  280°C. The oven was held at 80 °C for 1 minute after injection, then ramped to 280 °C at 20 °C
434 per minute, held at 280 °C for 30 minutes, ramped to 320 °C at 20 °C per minute, held at 320 °C
435  for one minute, and finally cooled to 80 °C at 50 °C per minute. The MS transfer line was set to
436 250 °C, the MS ion source to 230 °C, and the quadrupole to 150 °C, throughout. Full EI-MS
437  spectra between m/z 60-800 were recorded with a solvent delay of 7.8 minutes. Peak areas
438  were integrated using Masshunter Qualitative Analysis Software (Agilent) and normalized
439  against the dry weight of the sample and the peak area of the internal standard. The total ion
440 currents underneath the peaks corresponding to campesterol, stigmasterol, [B-sitosterol,
441  isofucosterol and the internal standard B-amyrin were determined for all samples. To correct for
442  the loss of analyte during sample preparation or analysis, the values for these three sterols were
443  normalized against the internal standard B-amyrin, a triterpene with physicochemical properties
444  similar to the profiled sterols. In addition, the obtained values were also corrected for the

445  amount of plant material that was extracted by dividing the obtained values by the dry weight of
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446  the extracted plant material. The relative abundance of the phytosterols [-sitosterol,
447  stigmasterol, campesterol and isofucosterol in the different treatments was calculated by

448  normalization against the DMSO control.
449
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