

1 **The selective estrogen receptor modulator clomiphene inhibits sterol
2 biosynthesis in *Arabidopsis thaliana***

3

4 **Qing Wang^{1,2,*}, Kjell De Vriese^{1,2,*}, Sandrien Desmet^{1,2,3}, Jacob Pollier^{1,2,3}, Qing Lu^{1,2}, Alain
5 Goossens^{1,2}, Danny Geelen⁴, Eugenia Russinova^{1,2}, Geert Goeminne^{1,2,3}, Tom
6 Beeckman^{1,2}, Steffen Vanneste^{1,2,4,‡}**

7 1: Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark
8 71, 9052 Ghent, Belgium

9 2: VIB Center for Plant Systems Biology, VIB, Technologiepark 71, 9052 Ghent, Belgium

10 3: VIB Metabolomics Core, VIB, Technologiepark 71, 9052 Ghent, Belgium

11 4: Department of Plants and Crops, Ghent University, Coupure Links 653, 9000 Ghent,
12 Belgium

13 *These authors contributed equally

14 ‡ For correspondence: steffen.vanneste@ugent.be

15

16

17

18

19

20

21 **Author Contributions:**

22 Q.W., K.D.V., Q.L. performed phenotyping analyses and experiments related to target
23 identification. S.D. and J.P. performed and analyzed the GC-MS experiments. T.B., D.G., E.R.,

24 G.G. and S.V. conceptualized and supervised the experiments, and all authors contributed to
25 the writing of the manuscript.

26 **Abstract**

27

28 Sterols are produced via complex, multistep biosynthetic pathways involving similar enzymatic
29 conversions in plants, animals and fungi, yielding a variety of sterol metabolites with slightly
30 different chemical properties to exert diverse and specific functions. The role of plant sterols has
31 been studied in the context of cell biological processes, signaling and overall plant development,
32 mainly based on mutants. Due to their essential nature, genetic interference with their function
33 causes pleiotropic developmental defects. An important alternative is to use a pharmacological
34 approach. However, the current toolset for manipulating sterol biosynthesis in plants remains
35 limited. Here, we probed a collection of inhibitors of mammalian cholesterol biosynthesis to
36 identify new inhibitors of plant sterol biosynthesis. We provide evidence that imidazole-type
37 fungicides, bifonazole, clotrimazole and econazole inhibit the obtusifoliol 14 α -demethylase
38 CYP51, that is highly conserved among eukaryotes. Surprisingly, we found that the selective
39 estrogen receptor modulator, clomiphene, inhibits sterol biosynthesis, in part by inhibiting the
40 plant-specific cyclopropyl-cycloisomerase CPI1. These results demonstrate that rescreening of
41 the animal sterol biosynthesis pharmacology is an easy approach for identifying novel inhibitors
42 of plant sterol biosynthesis. Such molecules can be used as entry points for the development of
43 plant-specific inhibitors of sterol biosynthesis that can be used in agriculture.

44

45

46 **Introduction**

47 Phytosterols mainly function as structural components in the plasma membrane where they
48 regulate membrane permeability and fluidity, contribute to organizing the membrane in
49 microdomains, and modulate the activity of membrane-bound enzymes (Cacas *et al.*, 2012;
50 Schaller, 2003; Simon-Plas *et al.*, 2011).

51 In plants, many cellular processes are sterol-dependent, such as clathrin-mediated endocytosis
52 (Konopka *et al.*, 2008; Men *et al.*, 2008)), cytokinesis (Boutte *et al.*, 2010; Nakamoto *et al.*,
53 2015), polarity (Men *et al.*, 2008; Stanislas *et al.*, 2015), and signaling (Simon-Plas *et al.*, 2011).
54 Consequently, phytosterols have been implicated in various developmental processes, such as
55 embryonic and post-embryonic development (Clouse, 2000; Schaller, 2003), fertility (Azpiroz *et*
56 *al.*, 1998; Catterou *et al.*, 2001), plant flowering (Schaller, 2003), growth (He *et al.*, 2000;
57 Schaller, 2003), seed germination (Guo *et al.*, 1995), biotic- and abiotic stress responses (Han
58 *et al.*, 2009; Kumar *et al.*, 2015; Pose *et al.*, 2009; Senthil-Kumar *et al.*, 2013), and the auxin-
59 mediated regulation of cell polarity, gravitropism, endocytosis and auxin efflux (Men *et al.*, 2008;
60 Pan *et al.*, 2009; Willemsen *et al.*, 2003; Yang *et al.*, 2013). In addition to its structural function,
61 campesterol is also a metabolic precursor for the growth regulatory plant hormone brassinolide
62 (Fujioka and Sakurai, 1997; Lindsey *et al.*, 2003; Santner *et al.*, 2009; Vriet *et al.*, 2013).

63 The importance of phytosterols and brassinosteroids for plant growth and development
64 is made clear by the severe phenotypes that are observed in mutants deficient in their
65 biosynthesis. Early and late sterol biosynthesis mutants and BR-deficient mutants have been
66 described, which all typically show severe dwarfism and defects in fertility, cell elongation,
67 flowering and senescence. Additionally, *Arabidopsis* mutants that are defective in early
68 phytosterol biosynthesis enzymes such as STEROL METHYLTRANSFERASE 1 (SMT1),
69 CYP51G1, FACKEL (FK) and HYDRA1 (HYD1) are also deficient in embryogenesis and seed
70 development, and cannot be rescued by BR treatment (Boutte and Grebe, 2009; Clouse, 2000;

71 Diener *et al.*, 2000; Souter *et al.*, 2002). However, while mutants are a great asset for the study
72 of phytosterol and BR biology in plants, they are not without drawbacks. For instance, the
73 severe growth phenotypes that are typical for sterol- and BR-biosynthesis mutants make it
74 difficult to dissect what is direct, and what is an indirect pleiotropic effect due to the often strong
75 developmental phenotypes in the mutants. Therefore, an interesting alternative to study
76 phytosterol and BR biology in plants is the use of small molecular inhibitors that target specific
77 steps of their biosynthesis pathways.

78 Squalene is the common precursor for sterols in plants, animals and fungi. While the
79 sterols found in the three eukaryotic kingdoms are highly diverse, their biosynthesis often
80 involves similar metabolic steps. This similarity is illustrated by the ability of plant enzymes to
81 complement yeast mutants in the corresponding enzyme (De Vriese *et al.*, 2021; Diener *et al.*,
82 2000; Kushiro *et al.*, 2001), suggesting the distinct metabolic precursors can still dock the
83 substrate binding pockets of these evolutionary distant enzymes. Consequently, sterol
84 biosynthesis inhibitors that target specific sterol biosynthesis enzymes in fungi and mammals,
85 often also inhibit sterol biosynthesis in plants. However, the molecular targets of these inhibitors
86 are often much less defined, or their selectivity is relatively low due to divergence relative to
87 their yeast and mammalian counterparts (De Vriese *et al.*, 2021; He *et al.*, 2003; Rozhon *et al.*,
88 2013). For instance, reported oxidosqualene cyclase (OSC) inhibitors seem to non-selectively
89 inhibit the activities of both cycloartenol synthase (CAS) and β -amyrin synthase (bAS) in plants
90 (Ito *et al.*, 2013). However, since the sterol biosynthesis pathways of plants, animals and yeast
91 share many analogous conversion steps that are catalyzed by semi-conserved enzymes
92 (Desmond and Gribaldo, 2009), several sterol biosynthesis inhibitors were found to be bioactive
93 across kingdoms, albeit with distinct specificities. This is indeed the case for fenpropimorph, a
94 morpholine-derived fungicide that is a known inhibitor of C-8,7 sterol isomerase (subnanomolar
95 concentrations) and C-14 sterol reductase (micromolar concentrations) in yeast (Kerkemaar,

96 1990; Marcireau *et al.*, 1990), which is also used as an inhibitor of FK, the plant C-14 sterol
97 reductase, in plant research (He *et al.*, 2003). However, fenpropimorph and similar morpholines
98 only function at relatively high concentrations in plants (30 - 100 μ M). Voriconazole, a triazole-
99 type fungicide, inhibits members of the CYP51 superfamily of 14 α -demethylase cytochrome
100 P450 enzymes in both yeast (0.2 μ M) (Saravolatz *et al.*, 2003) and plants (1 μ M) (Rozhon *et al.*,
101 2013). Of these inhibitors, only fenpropimorph seems to be commonly used to manipulate sterol
102 biosynthesis in plants.

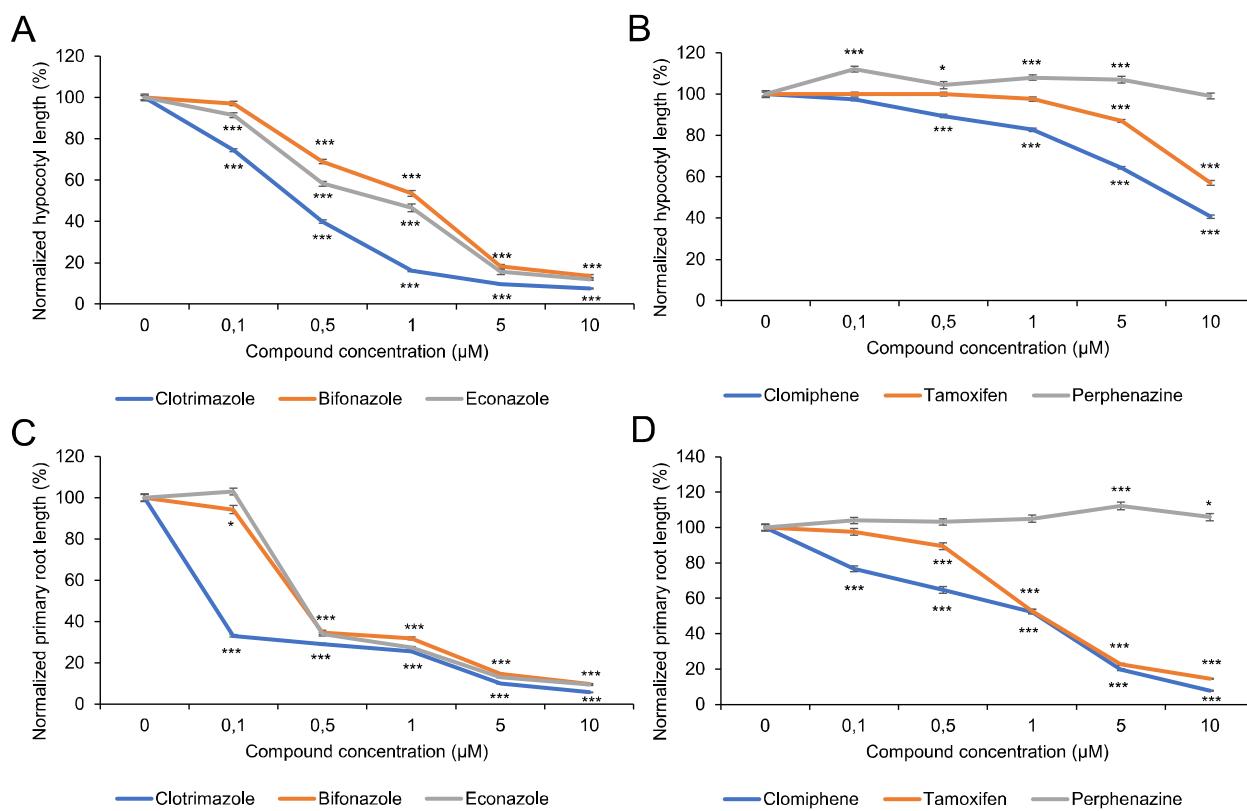
103 Since the current library of characterized plant sterol biosynthesis inhibitors is rather limited (He
104 *et al.*, 2003; Rozhon *et al.*, 2013), we set out to expand the catalog of plant sterol biosynthesis
105 inhibitors. Therefore, we selected a subset of compounds that target different steps of the
106 mammalian cholesterol biosynthesis pathway that were recently identified in a screen in a
107 human cell system (Korade *et al.*, 2016). We provide the proof-of-concept for several imidazoles
108 as putative inhibitors of CYP51. Moreover, we identified the Selective Estrogen Receptor
109 Modulator clomiphene as a novel inhibitor plant sterol biosynthesis in part by inhibiting the plant-
110 specific cyclopropyl-cycloisomerase CPI1. These findings illustrate the principle that the wide
111 array of, often commercially available, animal sterol biosynthesis inhibitors can be exploited for
112 the efficient identification of novel plant sterol biosynthesis inhibitors

113

114 **Results**

115 Chemical screens in human cell systems resulted in an expanded list of inhibitors that target
116 different steps of cholesterol biosynthesis (Kim *et al.*, 2016; Korade *et al.*, 2016). The enzymatic
117 steps of cholesterol biosynthesis in animals generally strongly resemble those of the plant
118 phytosterol biosynthesis pathway (Desmond and Gribaldo, 2009). Therefore, we postulated that
119 inhibitors of human cholesterol biosynthesis and/or fungal lanosterol biosynthesis could target
120 analogous steps in phytosterol biosynthesis. We selected several representative compounds
121 that target distinct cholesterol/lanosterol biosynthesis enzymes in humans and yeast (Kim *et al.*,
122 2016; Korade *et al.*, 2016), to evaluate their potential as inhibitors of plant sterol biosynthesis
123 (Table 1). As positive controls we included several imidazoles, a class of molecules that is rich
124 in inhibitors of a variety of Cytochrome P450s, such as CYP51.

125 **Table 1. List of putative sterol biosynthesis inhibitors selected for analysis in Arabidopsis**


Compound	Other bioactivities	Mammalian target in sterol biosynthesis	Analogous Arabidopsis enzyme(s)
Bifonazole	imidazole antifungal	CYP51A1	CYP51
Clotrimazole	imidazole antifungal	CYP51A1	CYP51
Econazole	imidazole antifungal	CYP51A1	CYP51
Clomiphene	Selective Estrogen Receptor Modulator (SERM)	C-8,7 isomerase/DHCR24	HYD1/DWF1
Tamoxifen	SERM	C-8,7 isomerase/DHCR24	HYD1/DWF1
Perphenazine	antipsychotic, CaM antagonist	C-8,7 isomerase/DHCR24	HYD1/DWF1
Fluphenazine	antipsychotic, CaM antagonist	C-8,7 isomerase	HYD1
Acitretin	retinoid antipsoratic	DHCR24	DWF1
Doxepin	antipsychotic	DHCR24	DWF1
Trifluoperazine (TFP)	antipsychotic, CaM antagonist	DHCR24	DWF1

126

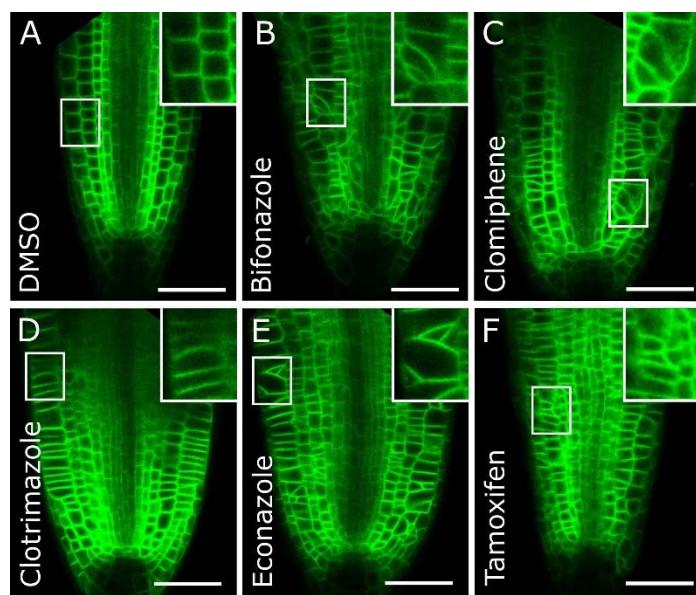
127

128 ***Hypocotyl and root phenotypes highlight putative phytosterol biosynthesis inhibitors***
129 ***among a set of cholesterol biosynthesis inhibitors***

130 As an indirect readout of defective phytosterol biosynthesis (Rozhon *et al.*, 2013), we monitored
131 the ability of the inhibitors to reduce hypocotyl length of etiolated *Arabidopsis* seedlings (Fig. 1A-
132 B; Supplementary Fig. S1A). Bifonazole, clotrimazole and econazole strongly reduced hypocotyl
133 length and were already effective at 0.5 μ M concentrations (Fig. 1A). Clomiphene had an effect
134 at higher concentrations (5 – 10 μ M range) and tamoxifen reduced hypocotyl length only at 10
135 μ M (Fig. 1B). Another putative C-8,7 isomerase/DHCR24 inhibitor, Perphenazine, as well as the
136 DHCR24 inhibitors fluphenazine, acitretin, trifluoperazine and doxepin had no significant effects
137 on hypocotyl elongation, even at the highest concentration (10 μ M) tested (Fig. 1B and
138 Supplementary Fig. S1A), suggesting that the latter are not effective inhibitors of phytosterol
139 biosynthesis.

140

141 **Figure 1. Effect of putative sterol biosynthesis inhibitors on hypocotyl and root length. (A-B)** Dose-response
142 curves of hypocotyl lengths of seedlings treated with (A) Clotrimazole, Bifonazole or Econazole and (B) Clomiphene,
143 Tamoxifen or Perphenazine. Seedlings were grown for 8 days in the dark on ½ MS medium supplemented with the
144 respective inhibitors at indicated concentrations. **(C-D)** Dose-response curves of primary root lengths of wild-type
145 seedlings (Col-0) treated with and (C) Clotrimazole, Bifonazole or Econazole and (D) Clomiphene, Tamoxifen or
146 Perphenazine. Wild type seedlings (Col-0) were grown for 7 days under continuous illumination on ½ MS medium
147 supplemented with the respective inhibitors at indicated concentrations. Averages for each condition are depicted (n
148 = 33 – 56) relative to the DMSO control (0.1 %). Error bars indicate \pm SEM. Student's t-test p-values: *p < 0.05, **p <
149 0.01, ***p < 0.001.

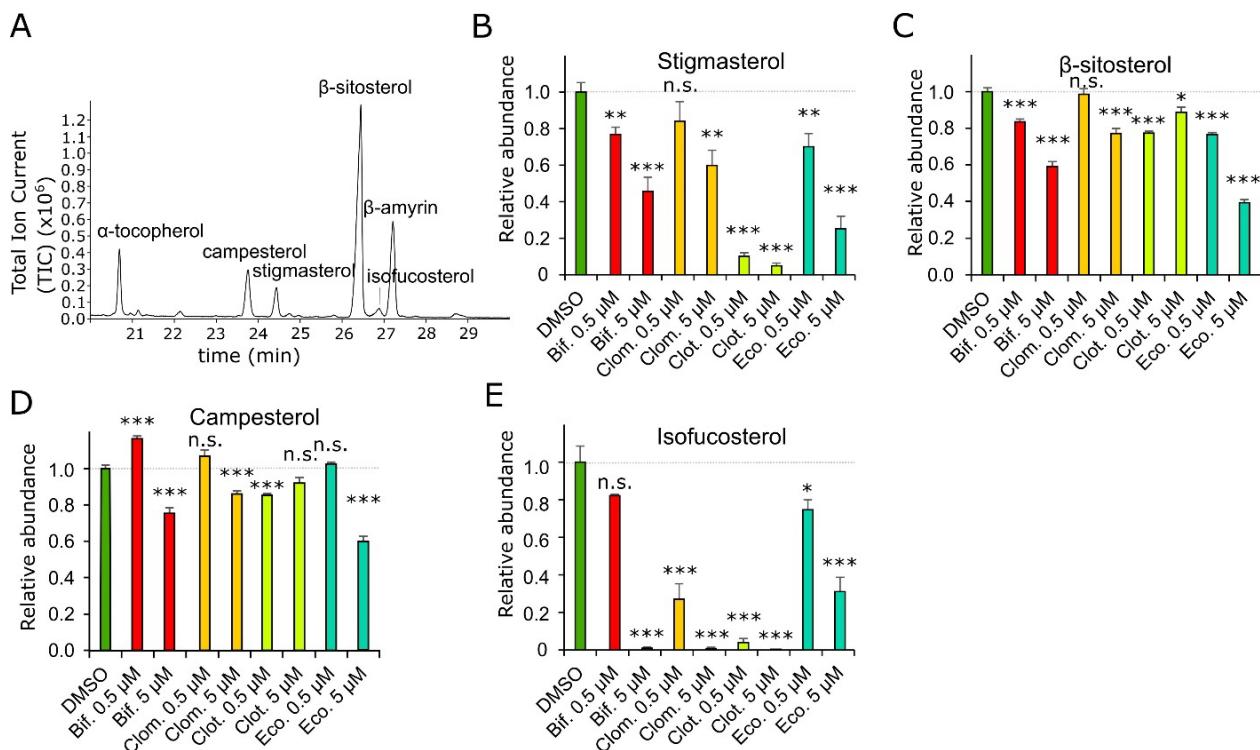

150 Next, we analyzed the effects of these inhibitors on root growth of light grown seedlings (Fig.
151 1C-D; Supp. Fig. S1B). In comparison to seedlings grown in the presence of 0.1% DMSO,
152 several of the selected compounds strongly inhibited root growth. At concentrations as low as
153 0.1 μ M, clotrimazole reduced the primary root length by more than 50% compared to the
154 control, while, bifonazole and econazole did so at 0.5 μ M (Fig. 1C). Clomiphene and tamoxifen
155 also strongly reduced the primary root length, albeit at higher concentrations (1 μ M and above)
156 than the imidazoles (Fig. 1D). At concentrations of 5 μ M and higher, clotrimazole, clomiphene
157 and tamoxifen caused severe reductions in primary root length. Consistently with the low
158 bioactivity in the hypocotyl elongation assay, acitretin, doxepin, perphenazine, fluphenazine and
159 trifluoperazine had no obvious effect on the primary root length at the highest tested
160 concentration of 10 μ M (Supplementary Fig. S1B). Due to the low bioactivity in our assays, we
161 did not further pursue acitretin, doxepin, perphenazine, fluphenazine and trifluoperazine in the
162 subsequent analyses.

163 ***Inhibitors that interfere with root growth cause cell division orientation defects in the***
164 ***root meristem***

165 The defective sterol biosynthesis is often associated with defective cell division orientation, such
166 as is the case for *fk* and *smt2smt3* double mutant (Jang *et al.*, 2000; Pullen *et al.*, 2010; Souter
167 *et al.*, 2002). Therefore, we visualized the root meristem organization of inhibitor treated roots
168 using ABCB19-GFP as a plasma membrane marker (Fig. 2A-F). We focused on the inhibitors
169 that caused reductions in the growth assays (Fig. 1C,D). The typical regular organization of the

170 meristem was disrupted by all inhibitors, as indicated by the appearance of aberrant cell division
171 orientations (Fig. 2A-F).

172 While bifonazole, clomiphene, econazole, and tamoxifen treatment potently disrupted cell
173 division orientations in the root meristem, this was less obvious upon clotrimazole treatment
174 (Fig. 2D). These cell division orientation defects are reminiscent of mutants defective in sterol
175 biosynthesis (Jang *et al.*, 2000; Pullen *et al.*, 2010; Souter *et al.*, 2002).


176
177 **Figure 2. Perturbed cell division orientation in the root meristem after inhibitor treatment. (A-F)** Root
178 organization of 5 day-old ABCB19-GFP seedlings grown on 0.5 x MS supplemented with (A) DMSO (0.1%), (B)
179 Bifonazole (1 μ M), (C) Clomiphene (1 μ M), (D) Clotrimazole (1 μ M), (E) Econazole (1 μ M), and (F) Tamoxifen (1 μ M).
180 Scale bar = 50 μ m.

181 **GC-MS analysis reveals disturbed sterol composition in *Arabidopsis* seedlings after
182 inhibitor treatment**

183 Next, we determined the impact of the compounds on the sterol composition of *Arabidopsis*
184 seedlings (Fig. 3). Seedlings were transferred for 5 days to liquid medium containing 0.5 μ M and
185 5 μ M of bifonazole, clomiphene, clotrimazole and econazole. Sterols were extracted and
186 analyzed via gas chromatography-mass spectrometry (GC-MS). The major peaks in the GC-MS

187 chromatograms corresponded to the three major phytosterols in *Arabidopsis* (campesterol,
188 stigmasterol, and β -sitosterol), and the sterol biosynthesis intermediate isofucosterol (Fig. 3A).
189 β -amyrin, which was added to the samples as an internal standard, and α -tocopherol (vitamin E)
190 eluted in the same range as the major plant sterols (Fig. 3A). The identification of these
191 metabolites was based on a NIST database search with their EI-MS spectra (Supplementary
192 Fig. S2).

193 From these analyses, it was clear that most of the tested compounds had at least some effect
194 on the sterol composition of these three major phytosterols, and isofucosterol (Fig. 3B-E). The
195 largest sterol disturbances were found in the stigmasterol levels, for which generally strong
196 reductions were observed in samples treated with the imidazoles, with more modest effects for
197 clomiphene (Fig. 3B). The relative levels of β -sitosterol, the precursor of stigmasterol, were
198 generally less affected than those of stigmasterol (Fig. 3C). The effect of the inhibitors on
199 campesterol levels was mostly modest, and even slight induction was noted for the 0.5 μ M
200 bifonazole treatment (Fig. 3C,D). All compounds strongly reduced the levels of the β -sitosterol-
201 precursor isofucosterol (Fig. 3E). These data indicate that clomiphene and all tested imidazoles
202 have an impact on sterol biosynthesis, either directly, or indirectly.

203

204 **Figure 3. Relative quantification of the major sterols after inhibitor treatment.** **(A)** Representative Total Ion
 205 Current (TIC) GC-MS chromatogram of a DMSO-treated WT *Arabidopsis* seedlings sample, with indication of α-
 206 tocopherol, campesterol, stigmasterol, β-sitosterol and β-amyrin. **(B-E)** Peak intensities of **(B)** stigmasterol, **(C)** β-
 207 sitosterol, **(D)** campesterol and **(E)** isofucosterol in WT seedlings treated with two concentrations (0.5 or 5 μM) of
 208 Bifonazole (Bif.), Clomiphene (Clom.), Clotrimazole (Clot.) and Econazole (Eco.), relative to the peak intensities in the
 209 DMSO control. Error bars represent ±SEM, n = 5. Student's t-test p-values: *p < 0.05, **p < 0.01, ***p < 0.001. Non-
 210 significant (n.s.) p > 0.05.

211 ***Clotrimazole, bifonazole and econazole are inhibitors of CYP51 activity in *Arabidopsis*.***

212 To infer the sterol biosynthesis step that is most likely targeted by these inhibitors, we revisited
 213 the TIC GC-MS chromatograms for each treatment, in search of new peaks that likely
 214 correspond to sterol biosynthesis intermediates, and derivatives thereof. In the TIC GC-MS
 215 chromatograms of all imidazole-treated samples, we observed the appearance of up to 5 new
 216 peaks (Fig. 4A; Supplementary Fig. S3A,B).

217

218

219 **Figure 4. Clotrimazole target identification.** **(A)** Overlay of a representative TIC GC-MS chromatogram of a control
 220 sample (black) and samples treated with 5 μ M clotrimazole (red). Five new peaks induced by clotrimazole treatment
 221 are indicated by numbers for which the EI-MS spectra are presented in **(B)** and Supplementary Fig. 4, and are
 222 referred to as “metabolite 1” to “metabolite 5”. The peak indicated by (c) is a contaminant. **(B)** Comparison of the EI-
 223 MS profile of metabolite 2 to TMS-Obtusifoliol. Reference EI-MS profile was obtained from NIST '20. **(C)** Model
 224 explaining how inhibition of CYP51G1 by clotrimazole treatment could lead to accumulation of the metabolites 1 to 5.

225

226 The EI-MS profiles of most of these metabolites displayed prominent ions at $[M \cdot \cdot CH_3]^+$ and $[M \cdot \cdot$
 227 $TMSiOH \cdot CH_3]^+$ (Fig. 4B; Supplementary Fig. S4A-D), which is indicative of Δ^8 sterols with a
 228 14 α -methyl group (Goad and Akihisa, 1997). The accumulation of Δ^8 sterols with a 14 α -methyl
 229 group is consistent with clotrimazole, bifonazole and econazole inhibiting 14 α -demethylase
 230 activity in *Arabidopsis* (AtCYP51G1), a deeply conserved target of many azoles (Crowley and

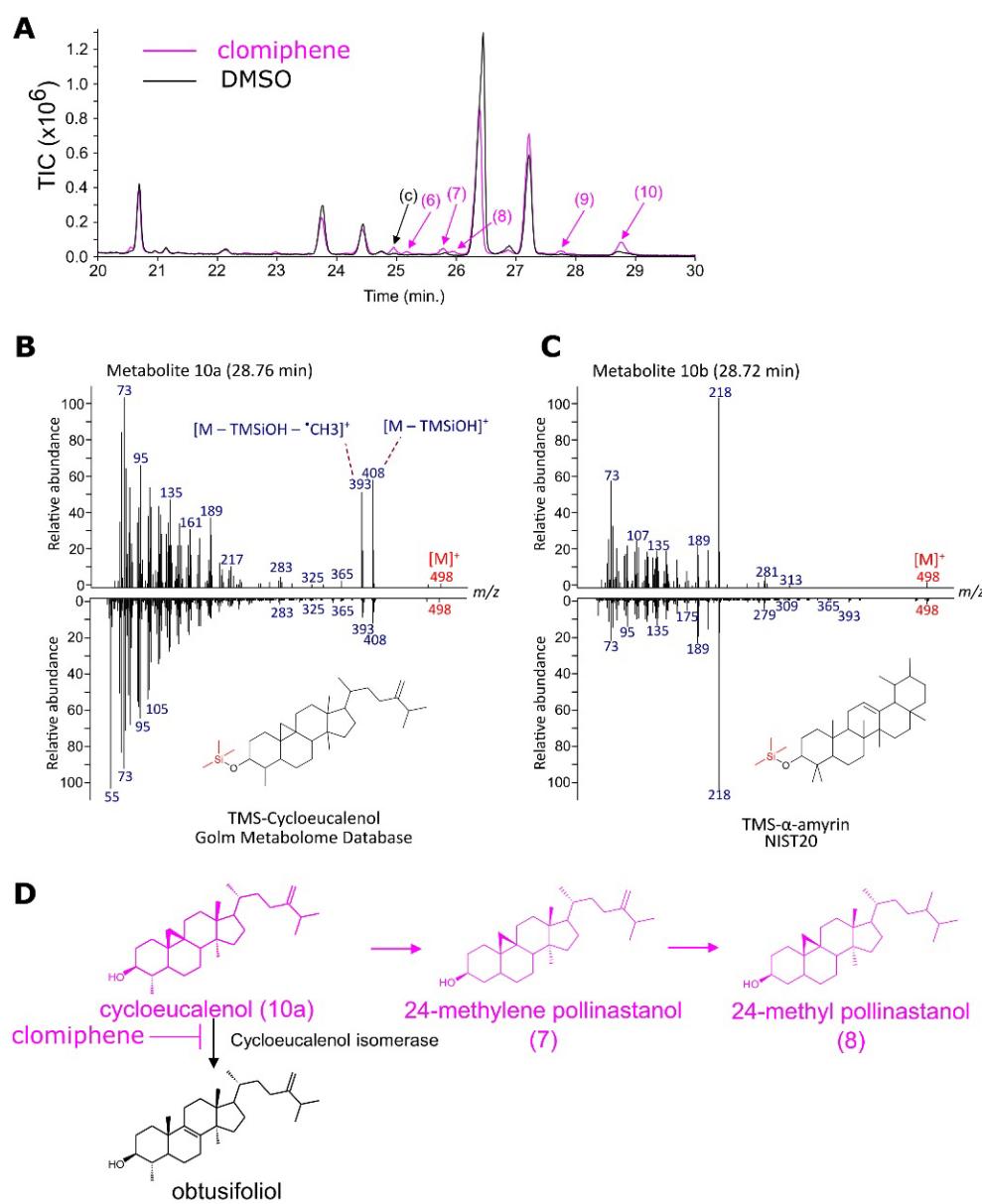
231 Gallagher, 2014; Lamb *et al.*, 2001). A NIST '20 database search revealed that the EI-MS
232 spectrum of metabolite 5 matched for 59.98% with that of TMS-obtusifoliol (Supplementary Fig.
233 S4A), the preferred target of AtCYP51G1.

234 Metabolite 2 was the major accumulating metabolite not only for clotrimazole, but also for
235 bifonazole and econazole treatments (Fig. 4A, Supplementary Fig. S3A-B) and had an EI-MS
236 spectrum that was also highly similar to that of TMS-obtusifoliol (NIST20) (Fig. 4B). The major
237 differences between both spectra were at the level of its molecular ion $[M]^+$, and the fragments
238 $[M - \cdot^C H_3]^+$ and $[M - TMSiOH - \cdot^C H_3]^+$, all of which had an *m/z* value that is 12 Da lower than
239 the corresponding ions in the TMS-obtusifoliol spectrum, suggesting that it contains one carbon
240 atom less than obtusifoliol, yielding $C_{29}H_{50}O$. This chemical formula corresponds to that of 14 α -
241 methyl-24(28)-dihydrofecosterol, the major metabolite accumulating in *atcyp51g1* mutants (Kim
242 *et al.*, 2005).

243 The biosynthesis of 14 α -methyl-24(28)-dihydrofecosterol from obtusifoliol requires C4 α -
244 demethylation and C24(28) double bond reduction (Fig. 4C). The C4 α -demethylation of
245 obtusifoliol is also seen in the *Atcyp51g1* mutant with the accumulation 14 α -methyl-fecosterol
246 ($C_{29}H_{48}O$) (Kim *et al.*, 2005). The molecular ion of both metabolite 1 and 3, i.e., *m/z* 484
247 (Supplementary Fig. S4B,C), corresponds with a chemical formula of $C_{29}H_{48}O$ and a double
248 bond equivalent (DBE) of 6, which indicates the presence of 2 double bonds. Both metabolites
249 could thus be 14 α -methyl-fecosterol. However, the prominent peak at *m/z* 69 in metabolite 1
250 (Supplementary Fig. S4B) is indicative for the presence of a $\Delta^{24(25)}$ -double bond in the side chain
251 of 14 α -methylsterols (Goad and Akihisha, 1997), suggesting that metabolite 1 is 29-
252 norlanosterol. By deduction, metabolite 3 then likely corresponds to 14 α -methyl-fecosterol.
253 Metabolite 4 displayed a molecular ion at *m/z* 500 (Supplementary Fig. S4D), matching a
254 chemical formula of $C_{30}H_{52}O$ and a DBE of 5, indicating a single double bond. This matches the

255 main features of 24(28)-dihydro-obtusifoliol, another metabolite that also accumulates in the
256 *cyp51* mutant (Kim *et al.*, 2005).

257 The accumulation of 14 α -methyl sterols is a tell-tale sign of inhibition of CYP51 activity (Kim *et*
258 *al.*, 2005; Maillot-Vernier *et al.*, 1990; Taton *et al.*, 1988). Therefore, it can be concluded that
259 bifonazole, clotrimazole, and econazole inhibit the *Arabidopsis* CYP51 orthologue (CYP51G1).
260 That clotrimazole accumulated additional 14 α -methyl sterols probably reflects its higher
261 bioactivity compared to bifonazole, and econazole.


262 ***Clomiphene inhibits CPI activity in Arabidopsis***

263 In contrast to the imidazole TIC GC-MS chromatograms, no 14 α -methyl-24(28)-
264 dihydrofecosterol (2) peak appeared in the clomiphene samples. Instead, five induced peaks
265 appeared in the clomiphene-treated samples that were not induced in the imidazole-treated
266 samples (Fig. 5A; pink arrows), suggesting that clomiphene has a different target than the
267 imidazoles. The EI-MS spectrum of the largest of these peaks (**10**) was a mixed spectrum of two
268 metabolites (metabolites 10a and 10b). After deconvolution, we found via database searches
269 that the fragment ions for these metabolites corresponded to the fragmentation spectra of TMS-
270 cycloeucalenol and TMS- α -amyrin (Fig. 5B,C).

271 Similarly to TMS-cycloeucalenol, metabolite 7 and metabolite 8 showed two intense [M-
272 TMSiOH]⁺ and [M-TMSiOH- \cdot CH₃]⁺ fragment ions (Supplementary Fig. S5A,B), indicating these
273 metabolites are also 9 β ,19-cyclopropanesterols (Goad and Akihisha, 1997), related to
274 cycloeucalenol. Based on the *m/z* of their molecular ions, one is likely its demethylated version,
275 24-methylene pollinastanol (metabolite 7) and the other differing from the previous by a reduced
276 double bond, 24-methyl pollinastanol (metabolite 8). The identity of these metabolites was
277 further supported by a shared fragment ion at *m/z* 269, representing the sterol backbone ([M-
278 TMSiOH-SC]⁺) and a fragment ion unique to 24-methyl pollinastanol at *m/z* 220 (Böhme *et al.*,

279 1997). Jointly, the accumulation of cycloeucalenol, and its aberrant metabolites 24-methylene
280 pollinastanol and 24-methyl pollinastanol, suggests that clomiphene inhibits cycloeucalenol
281 cycloisomerase (CPI) activity (Fig. 5D).

282 The spectrum of metabolite 6 was very similar to that of 24-methylene lophenol
283 ($C_{29}H_{48}O$) (Zu *et al.*, 2021), including major fragment ions (m/z 343, 255 and 229)
284 (Supplementary Fig. S5C). This suggests that the structure of metabolite 6 is closely related to
285 24-methylene lophenol. The identity of metabolite 9 (Supplementary Fig. S5D) could not be
286 reliably resolved due to low abundance. The accumulation of metabolites that are unrelated to
287 cycloeucalenol indicates that clomiphene targets multiple steps in the phytosterol biosynthetic
288 pathway.

289

290 **Figure 5. GC-MS based identification of CPI as a clomiphene target. (A)** Overlay of a representative TIC GC-MS
 291 chromatogram of the control sample (black) and the samples treated with 5 μM (pink) clomiphene. Pink arrows
 292 indicate the positions of the accumulating metabolites. New peaks, induced by inhibitor treatment are indicated by
 293 numbers for which the EI-MS spectra are presented here and in **Supplementary Fig. S5**. (c) = contaminant. **(B,C)**
 294 Comparison of the EI-MS profile of Metabolite 10a to TMS-Cycloecalenol **(B)** and Metabolite 10b to TMS- α -amyrin
 295 **(C)**. Reference EI-MS profiles were obtained from the Golm Metabolome Database and NIST20. **(D)** Model explaining
 296 how clomiphene treatment could lead to accumulation of cycloecalenol, 24-methylene pollinastanol and 24-methyl
 297 pollinastanol.

298

299

300

301 **Discussion**

302 Phytosterol biosynthesis is orchestrated by complex, branched pathways that are regulated by a
303 wide range of enzymes, which makes the study of these processes often difficult. While several
304 mutants are available that are defective in specific steps of phytosterol biosynthesis, these
305 mutants often show severe growth phenotypes and are thus not ideal to study sterol
306 biosynthesis defects later in a plant's life. Unfortunately, the current toolset of sterol biosynthesis
307 inhibitors in plants is limited (De Vriese *et al.*, 2021). The close homology of the structures and
308 the relative conservation of enzymes involved, explains why imidazoles that are known to block
309 sterol biosynthesis in animals and/or fungi can also interfere with sterol biosynthesis in plants
310 (He *et al.*, 2003; Rozhon *et al.*, 2013). While differences in structure and divergence of the
311 catalytic centers may cause shifts in specificity, inhibitors of human sterol biosynthesis should
312 thus be enriched in molecules that can interfere with plant sterol biosynthesis.

313 We exploited this principle by exploring a set of putative mammalian cholesterol biosynthesis
314 inhibitors and identified several new inhibitors of plant sterol biosynthesis. Based on
315 morphological and biochemical effects we demonstrate that the imidazoles, bifonazole,
316 clotrimazole, and econazole, and the selective estrogen receptor modulator, clomiphene, are
317 potent inhibitors of sterol biosynthesis. Matching the strong functional conservation of CYP51
318 activities, the tested imidazoles were found to potently interfere CYP51G1 of *Arabidopsis*.
319 However, instead of targeting conserved enzymes with C8,7 isomerisation or C24-reductase
320 activities, we found that clomiphene targeted CPI activities in *Arabidopsis*. Notably, multiple

321 inhibitors of human sterol biosynthesis did not have strong effects on plant growth, indicating
322 that they do not inhibit plant sterol biosynthesis, and were therefore not further analyzed.

323 Jointly, these data suggests that the exploration of inhibitors of human sterol biosynthesis is a
324 valuable approach for identifying new inhibitors of plant sterol biosynthesis. Exploration of
325 structural variants for improving affinity and specificity could lead to the development of plant-
326 specific sterol biosynthesis inhibitors for agriculture.

327

328 **Bifonazole, clotrimazole and econazole are inhibitors of plant CYP51 activity**

329 Multiple azoles were identified as potent fungicides by inhibiting the cytochrome P450-
330 dependent monooxygenase CYP51 (Shafiei *et al.*, 2020). They typically act by non-competitive
331 binding to the ferric ion of the heme group of the cytochrome P450, thus preventing substrate
332 binding (Warrilow *et al.*, 2013). Sterol C14-demethylation is a highly conserved step in sterol
333 biosynthesis in eukaryotes, and is mediated by a CYP51 homolog. The strong conservation of
334 CYP51 enzymatic activity is also reflected in its sensitivity to different azoles (Shafiei *et al.*,
335 2020). Yet, sequence divergence between fungi, plants and animals has installed differential
336 sensitivities to azoles, allowing their application as fungicides in medicine and agriculture. In
337 example, bifonazole, clotrimazole, and econazole are commonly used to treat fungal infection of
338 the skin and urogenital tracts, reflecting their preference towards fungal over human CYP51s
339 (Warrilow *et al.*, 2013). We found that bifonazole, clotrimazole, and econazole interfered with
340 plant growth and development at submicromolar concentrations. Of these inhibitors only
341 clotrimazole was previously shown to be toxic to *Lemna* species (Alkimin *et al.*, 2020), to inhibit
342 radish root growth (Bach, 1985), and root gravitropism in *Pisum sativum* (Amzallag and
343 Vaisman, 2006), without providing evidence that sterol biosynthesis was inhibited in these
344 conditions. Our GC-MS revealed that bifonazole, clotrimazole, and econazole treatments induce

345 the accumulation of sterol biosynthesis intermediates that also accumulate in the Arabidopsis
346 *cyp51* mutant (Kim *et al.*, 2005). This provides the first biochemical evidence that these azoles
347 inhibit CYP51 activities in plants. Interestingly, bifonazole and econazole, but not clotrimazole,
348 trigger cell division defects in the root, that are not seen in *cyp51* mutants(Kim *et al.*, 2005),
349 suggesting that clotrimazole has a higher specificity towards CYP51.

350

351 **Clomiphene is a novel plant sterol biosynthesis inhibitor**

352 Clomiphene is well known as estrogen receptor agonist or antagonist, depending on the target
353 tissue, and is used to induce ovulation or treat breast cancer. In a repurposing screen of FDA
354 approved drugs, clomiphene was identified as an inhibitor of Δ 8-7 sterol isomerase and
355 DHCR24 activities (Korade *et al.*, 2016). The corresponding enzymes in plants are the Δ 8-7
356 sterol isomerase HYDRA1, and the C24 sterol side chain reductase DWARF1. Consistently with
357 inhibition of sterol biosynthesis enzymes, clomiphene caused altered cell division patterns in the
358 root meristem that were associated with reduced sterol levels. However, the analysis of the
359 sterol biosynthesis intermediates indicated that clomiphene interferes with cyclopropylsterol-
360 cycloisomerase (CPI), and possibly other steps in sterol biosynthesis. Current CPI
361 pharmacology consists of morpholines such as fenpropimorph (Taton *et al.*, 1987), and LDAO
362 (Darnet *et al.*, 2020). Similarly to clomiphene, neither inhibitor is selective for CPI. Morpholines
363 also inhibit the C14 sterol reductase (FACKLE) and Δ 8-7 sterol isomerase (HYDRA1) activities
364 (Taton *et al.*, 1987), while LDAO is a potent inhibitor of 2,3-oxidosqualene cyclization to
365 cycloartenol and β -amyrin (Cerutti *et al.*, 1985). This suggests that similarity in the biochemical
366 reaction, and in the catalytic center of the different enzymes, make it difficult to develop
367 selective inhibitors. Similarly, clomiphene also caused the accumulation of two other
368 metabolites, indicating that clomiphene also probably has multiple targets in the sterol
369 biosynthesis pathway. In human liver microsomes, 9 clomiphene metabolites could be identified

370 that were more potent estrogen antagonists than clomiphene itself (Mürdter *et al.*, 2012). It is
371 therefore not unlikely that clomiphene is also metabolized in plants, and that one or more of
372 these metabolites inhibit one or more steps of plant sterol biosynthesis. A more detailed
373 exploration of clomiphene metabolism in plants will be required. Interestingly, CPI is plant-
374 specific (Desmond and Gribaldo, 2009), indicating that it is an interesting target for developing
375 herbicides.

376

377 **A call for caution for using estradiol and SERM-inducible systems**

378 Our analyses identified clomiphene, a Selective Estradiol Receptor Modulator (SERM), as an
379 inhibitor of sterol biosynthesis in plants. Clomiphene caused aberrant cell divisions in the root
380 meristem. Similar cell division phenotypes were observed with tamoxifen, that can be
381 metabolized in human cells into the SERM, 4-hydroxytamoxifen. This suggests that estrogen
382 receptor ligands potentially inhibit sterol biosynthesis in plants.

383 Several systems that are commonly used for chemically induced expression in plants
384 use estradiol or 4-hydroxytamoxifen as an activating ligand. The most popular system involves
385 the chimeric transcription factor XVE, that can activate a LexA operator based promoter in
386 response to β -estradiol (Zuo *et al.*, 2000), that is typically applied between 2 and 10uM in
387 Arabidopsis (Schlucking *et al.*, 2013; Wang *et al.*, 2020; Yamada *et al.*, 2020), and up to 20 uM
388 in rice protoplasts (Chen *et al.*, 2017). A derivative hereof allows for activation of UAS operator
389 based promoters in response to the SERM 4-hydroxytamoxifen (Friml *et al.*, 2004), that is
390 typically applied at 2uM in Arabidopsis (Kitakura *et al.*, 2011). The concentrations of these
391 ligands are in the range of, and even higher than, those at which we observed significant root
392 growth phenotypes for clomiphene and tamoxifen, molecules whose chemical space closely
393 matches that of the inductive ligands, β -estradiol and 4-hydroxytamoxifen, respectively. This

394 indicates that some of the observed phenotypes in such inducible backgrounds may be modified
395 by reduced sterol content, or the accumulation of sterol biosynthesis intermediates. This calls
396 for caution for using such inducible systems in the context of cell biological processes that are
397 sterol-dependent, such as clathrin-mediated endocytosis (Men *et al.*, 2008), cytokinesis (Boutte
398 *et al.*, 2010; Nakamoto *et al.*, 2015) and polarity (Men *et al.*, 2008; Stanislas *et al.*, 2015)

399 **Material and methods**

400 **Compounds**

401 All compounds used in the experiments (acitretin, bifonazole, clomiphene, clotrimazole,
402 doxepin, econazole, fluphenazine, flutrimazole, oxiconazole nitrate, perphenazine, tamoxifen,
403 tetraphenylphosphonium, trifluoperazine, trityl chloride) were obtained from Sigma-Aldrich
404 (Overijse, Belgium) and dissolved in DMSO.

405 ***Arabidopsis phenotyping***

406 Gas-sterilized *Arabidopsis thaliana* seeds (Col-0) were plated on ½ Murashige and Skoog (MS)
407 medium supplemented with the appropriate compounds at various concentrations (3 rows/plate,
408 0.5 cm between seeds). For the primary root length experiments, the plated seeds were first
409 stratified for 3 days in the dark at 4°C and subsequently transferred to a growth chamber under
410 continuous light conditions at 21°C. After 7 days of growth, the plates were scanned and the
411 primary root lengths of the seedlings were measured with Fiji (Schindelin *et al.*, 2015). For each
412 treatment, 47-62 individual roots were measured. For the hypocotyl length experiments, the
413 plated seeds were stratified for 3 days in the dark at 4°C. To induce germination they were
414 subjected to 4 hours light, prior to transfer to the dark. After 8 days of growth in the dark, the
415 plates were scanned and the hypocotyl lengths of the seedlings were measured with ImageJ.
416 For each treatment, 33-56 individual hypocotyls were measured.

417 **GC-MS sterol profiling**

418 *Arabidopsis thaliana* seeds were grown on ½ MS plates for 3 days until germination. Very small
419 seedlings were subsequently transferred to wells of 6-well plates containing 5 ml liquid ½ MS
420 medium and 0.5 or 5 µM of the appropriate compounds, or 0.1% DMSO (1 well per sample, 5

421 biological replicates per treatment). The seedlings were grown for 5 days in these wells with the
422 compounds, after which they were frozen in liquid nitrogen and thoroughly ground into powder.
423 Approximately 100 mg (fresh weight) of plant material ground under liquid nitrogen was
424 extracted with 1 mL of methanol to which 5 µg/mL of β -amyrin was added as internal standard.
425 The extractions were carried out at room temperature for 30 minutes, after which the samples
426 were centrifuged at 20,800 x g for 5 minutes. The supernatant was collected and evaporated to
427 dryness under vacuum. The remaining plant material was lyophilized for dry weight
428 determination. The samples were derivatized for GC-MS analysis by adding 10 μ L of pyridine
429 and 50 μ L of N-Methyl-N-(trimethylsilyl)trifluoroacetamide (Sigma-Aldrich) to the residue. GC-
430 MS analysis was carried out using a GC model 6890 and an MS model 5973 (Agilent). A 1- μ L
431 aliquot was injected in splitless mode into a VF-5ms capillary column (Varian CP9013, Agilent).
432 The GC was operated at a constant helium flow of 1 mL per minute and the injector was set to
433 280 °C. The oven was held at 80 °C for 1 minute after injection, then ramped to 280 °C at 20 °C
434 per minute, held at 280 °C for 30 minutes, ramped to 320 °C at 20 °C per minute, held at 320 °C
435 for one minute, and finally cooled to 80 °C at 50 °C per minute. The MS transfer line was set to
436 250 °C, the MS ion source to 230 °C, and the quadrupole to 150 °C, throughout. Full EI-MS
437 spectra between m/z 60-800 were recorded with a solvent delay of 7.8 minutes. Peak areas
438 were integrated using Masshunter Qualitative Analysis Software (Agilent) and normalized
439 against the dry weight of the sample and the peak area of the internal standard. The total ion
440 currents underneath the peaks corresponding to campesterol, stigmasterol, β -sitosterol,
441 isofucosterol and the internal standard β -amyrin were determined for all samples. To correct for
442 the loss of analyte during sample preparation or analysis, the values for these three sterols were
443 normalized against the internal standard β -amyrin, a triterpene with physicochemical properties
444 similar to the profiled sterols. In addition, the obtained values were also corrected for the
445 amount of plant material that was extracted by dividing the obtained values by the dry weight of

446 the extracted plant material. The relative abundance of the phytosterols β -sitosterol,
447 stigmasterol, campesterol and isofucosterol in the different treatments was calculated by
448 normalization against the DMSO control.

449

450 **Acknowledgments**

451 This work was performed in collaboration with the VIB Metabolomics Core and funded by the
452 VIB Innovation Fund, and an FWO research Grant (G001221N). The authors declare no
453 competing interests.

454 **References**

455 **Alkimin GD, Santos J, Soares A, Nunes B.** 2020. Ecotoxicological effects of the azole antifungal agent
456 clotrimazole on the macrophyte species *Lemna minor* and *Lemna gibba*. *Comp Biochem Physiol C Toxicol*
457 *Pharmacol* **237**, 108835.

458 **Amzallag GN, Vaisman J.** 2006. Influence of brassinosteroids on initiation of the root gravitropic
459 response in *Pisum sativum* seedlings. *Biologia Plantarum* **50**, 283–286.

460 **Azpiroz R, Wu Y, LoCascio JC, Feldmann KA.** 1998. An *Arabidopsis* brassinosteroid-dependent mutant is
461 blocked in cell elongation. *The Plant cell* **10**, 219-230.

462 **Bach TJ.** 1985. Selected natural and synthetic enzyme inhibitors of sterol biosynthesis as molecular
463 probes for in vivo studies concerning the regulation of plant growth. *Plant Sci* **39**, 183-187.

464 **Böhme F, Schmidt J, Van Sung, Adam G.** 1997. 24-Methylpollinastanone, related triterpenoids and
465 sterols from *Costus tonkinensis*. *Phytochemistry* **45**, 1041-1044.

466 **Boutte Y, Frescatada-Rosa M, Men S, Chow CM, Ebine K, Gustavsson A, Johansson L, Ueda T, Moore I,**
467 **Jurgens G, Grebe M.** 2010. Endocytosis restricts *Arabidopsis* KNOLLE syntaxin to the cell division plane
468 during late cytokinesis. *EMBO J* **29**, 546-558.

469 **Boutte Y, Grebe M.** 2009. Cellular processes relying on sterol function in plants. *Current opinion in plant*
470 *biology* **12**, 705-713.

471 **Cacas JL, Furt F, Le Guedard M, Schmitter JM, Bure C, Gerbeau-Pisot P, Moreau P, Bessoule JJ, Simon-**
472 **Plas F, Mongrand S.** 2012. Lipids of plant membrane rafts. *Prog Lipid Res* **51**, 272-299.

473 **Catterou M, Dubois F, Schaller H, Aubanelle L, Vilcot B, Sangwan-Norreel BS, Sangwan RS.** 2001.
474 Brassinosteroids, microtubules and cell elongation in *Arabidopsis thaliana*. I. Molecular, cellular and
475 physiological characterization of the *Arabidopsis* bull mutant, defective in the delta 7-sterol-C5-
476 desaturation step leading to brassinosteroid biosynthesis. *Planta* **212**, 659-672.

477 **Cerutti M, Delprino L, Cattel L, Bouviernave P, Duriatti A, Schuber F, Benveniste P.** 1985. *N*-Oxide as a
478 Potential Function in the Design of Enzyme-Inhibitors-Application to 2,3-Epoxyisqualene-Sterol Cyclases.
479 *J. Chem. Soc. Chem. Commun.* **15**, 1054–1055.

480 **Chen Z, Cheng Q, Hu C, Guo X, Chen Z, Lin Y, Hu T, Bellizzi M, Lu G, Wang GL, Wang Z, Chen S, Wang F.**
481 2017. A Chemical-Induced, Seed-Soaking Activation Procedure for Regulated Gene Expression in Rice.
482 *Front Plant Sci* **8**, 1447.

483 **Clouse SD.** 2000. Plant development: A role for sterols in embryogenesis. *Current biology : CB* **10**, R601-
484 604.

485 **Crowley PD, Gallagher HC.** 2014. Clotrimazole as a pharmaceutical: past, present and future. *J Appl*
486 *Microbiol* **117**, 611-617.

487 **Darnet S, Martin LBB, Mercier P, Bracher F, Geoffroy P, Schaller H.** 2020. Inhibition of Phytosterol
488 Biosynthesis by Azasterols. *Molecules* **25**.

489 **De Vriese K, Pollier J, Goossens A, Beeckman T, Vanneste S.** 2021. Dissecting cholesterol and
490 phytosterol biosynthesis via mutants and inhibitors. *J Exp Bot* **72**, 241-253.

491 **Desmond E, Gribaldo S.** 2009. Phylogenomics of sterol synthesis: insights into the origin, evolution, and
492 diversity of a key eukaryotic feature. *Genome Biol Evol* **1**, 364-381.

493 **Diener AC, Li H, Zhou W, Whoriskey WJ, Nes WD, Fink GR.** 2000. Sterol methyltransferase 1 controls
494 the level of cholesterol in plants. *The Plant cell* **12**, 853-870.

495 **Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K,**
496 **Sandberg G, Hooykaas PJ, Palme K, Offringa R.** 2004. A PINOID-dependent binary switch in apical-basal
497 PIN polar targeting directs auxin efflux. *Science* **306**, 862-865.

498 **Fujioka S, Sakurai A.** 1997. Brassinosteroids. *Natural product reports* **14**, 1-10.

499 **Goad LJ, Akihisha T.** 1997. Mass spectrometry of sterols. In: Goad LJ, Akihisha T, eds. *Analysis of sterols*.
500 Dordrecht: Springer, 152-196.

501 **Guo DA, Venkatramesh M, Nes WD.** 1995. Developmental regulation of sterol biosynthesis in *Zea mays*.
502 *Lipids* **30**, 203-219.

503 **Han PP, Zhou J, Yuan YJ.** 2009. Analysis of phospholipids, sterols, and fatty acids in *Taxus chinensis* var.
504 *mairei* cells in response to shear stress. *Biotechnology and applied biochemistry* **54**, 105-112.

505 **He JX, Fujioka S, Li TC, Kang SG, Seto H, Takatsuto S, Yoshida S, Jang JC.** 2003. Sterols regulate
506 development and gene expression in *Arabidopsis*. *Plant physiology* **131**, 1258-1269.

507 **He Z, Wang ZY, Li J, Zhu Q, Lamb C, Ronald P, Chory J.** 2000. Perception of brassinosteroids by the
508 extracellular domain of the receptor kinase BRI1. *Science (New York, N.Y.)* **288**, 2360-2363.

509 **Ito R, Masukawa Y, Hoshino T.** 2013. Purification, kinetics, inhibitors and CD for recombinant beta-
510 amyrin synthase from *Euphorbia tirucalli* L and functional analysis of the DCTA motif, which is highly
511 conserved among oxidosqualene cyclases. *The FEBS journal* **280**, 1267-1280.

512 **Jang JC, Fujioka S, Tasaka M, Seto H, Takatsuto S, Ishii A, Aida M, Yoshida S, Sheen J.** 2000. A critical
513 role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of
514 *Arabidopsis thaliana*. *Genes & development* **14**, 1485-1497.

515 **Kerkenaar A.** 1990. Inhibition of the sterol delta 14-reductase and delta 8---delta 7-isomerase in fungi.
516 *Biochemical Society transactions* **18**, 59-61.

517 **Kim HB, Schaller H, Goh CH, Kwon M, Choe S, An CS, Durst F, Feldmann KA, Feyereisen R.** 2005.
518 *Arabidopsis cyp51* mutant shows postembryonic seedling lethality associated with lack of membrane
519 integrity. *Plant physiology* **138**, 2033-2047.

520 **Kim HY, Korade Z, Tallman KA, Liu W, Weaver CD, Mirmics K, Porter NA.** 2016. Inhibitors of 7-
521 Dehydrocholesterol Reductase: Screening of a Collection of Pharmacologically Active Compounds in
522 Neuro2a Cells. *Chemical research in toxicology* **29**, 892-900.

523 **Kitakura S, Vanneste S, Robert S, Lofke C, Teichmann T, Tanaka H, Friml J.** 2011. Clathrin mediates
524 endocytosis and polar distribution of PIN auxin transporters in *Arabidopsis*. *Plant Cell* **23**, 1920-1931.

525 **Konopka CA, Backues SK, Bednarek SY.** 2008. Dynamics of *Arabidopsis* dynamin-related protein 1C and
526 a clathrin light chain at the plasma membrane. *Plant Cell* **20**, 1363-1380.

527 **Korade Z, Kim HY, Tallman KA, Liu W, Koczok K, Balogh I, Xu L, Mirmics K, Porter NA.** 2016. The Effect of
528 Small Molecules on Sterol Homeostasis: Measuring 7-Dehydrocholesterol in *Dhcr7*-Deficient Neuro2a
529 Cells and Human Fibroblasts. *Journal of medicinal chemistry* **59**, 1102-1115.

530 **Kumar MS, Ali K, Dahuja A, Tyagi A.** 2015. Role of phytosterols in drought stress tolerance in rice. *Plant*
531 *physiology and biochemistry : PPB* **96**, 83-89.

532 **Kushiro M, Nakano T, Sato K, Yamagishi K, Asami T, Nakano A, Takatsuto S, Fujioka S, Ebizuka Y,**
533 **Yoshida S.** 2001. Obtusifoliol 14alpha-demethylase (CYP51) antisense *Arabidopsis* shows slow growth
534 and long life. *Biochem Biophys Res Commun* **285**, 98-104.

535 **Lamb DC, Cannieux M, Warrilow AG, Bak S, Kahn RA, Manning NJ, Kelly DE, Kelly SL.** 2001. Plant sterol
536 14 alpha-demethylase affinity for azole fungicides. *Biochem Biophys Res Commun* **284**, 845-849.

537 **Lindsey K, Pullen ML, Topping JF.** 2003. Importance of plant sterols in pattern formation and hormone
538 signalling. *Trends in Plant Science* **8**, 521-525.

539 **Maillot-Vernier P, Schaller H, Benveniste P, Belliard G.** 1990. In Vitro Selection of Calli Resistant to a
540 Triazole Cytochrome-P-450-Obtusifoliol-14-Demethylase Inhibitor from Protoplasts of *Nicotiana*
541 *tabacum* L. cv Xanthi. *Plant physiology* **93**, 1190-1195.

542 **Marcireau C, Guilloton M, Karst F.** 1990. In vivo effects of fenpropimorph on the yeast *Saccharomyces*
543 *cerevisiae* and determination of the molecular basis of the antifungal property. *Antimicrobial agents and*
544 *chemotherapy* **34**, 989-993.

545 **Men S, Boutte Y, Ikeda Y, Li X, Palme K, Stierhof YD, Hartmann MA, Moritz T, Grebe M.** 2008. Sterol-
546 dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity.
547 *Nature cell biology* **10**, 237-244.

548 **Mürdter TE, Kerb R, Turpeinen M, Schroth W, Ganchev B, Bohmer GM, Igel S, Schaeffeler E, Zanger U, Brauch H, Schwab M.** 2012. Genetic polymorphism of cytochrome P450 2D6 determines oestrogen receptor activity of the major infertility drug clomiphene via its active metabolites. *Hum Mol Genet* **21**, 1145-1154.

552 **Nakamoto M, Schmit AC, Heintz D, Schaller H, Ohta D.** 2015. Diversification of sterol methyltransferase enzymes in plants and a role for beta-sitosterol in oriented cell plate formation and polarized growth. *Plant J* **84**, 860-874.

555 **Pan J, Fujioka S, Peng J, Chen J, Li G, Chen R.** 2009. The E3 ubiquitin ligase SCFTIR1/AFB and membrane sterols play key roles in auxin regulation of endocytosis, recycling, and plasma membrane accumulation of the auxin efflux transporter PIN2 in *Arabidopsis thaliana*. *The Plant cell* **21**, 568-580.

558 **Pose D, Castanedo I, Borsani O, Nieto B, Rosado A, Taconnat L, Ferrer A, Dolan L, Valpuesta V, Botella MA.** 2009. Identification of the *Arabidopsis* dry2/sqe1-5 mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. *The Plant journal : for cell and molecular biology* **59**, 63-76.

562 **Pullen M, Clark N, Zarinkamar F, Topping J, Lindsey K.** 2010. Analysis of vascular development in the hydra sterol biosynthetic mutants of *Arabidopsis*. *PLoS One* **5**, e12227.

564 **Rozhon W, Husar S, Kalaivanan F, Khan M, Idlhammer M, Shumilina D, Lange T, Hoffmann T, Schwab W, Fujioka S, Poppenberger B.** 2013. Genetic variation in plant CYP51s confers resistance against voriconazole, a novel inhibitor of brassinosteroid-dependent sterol biosynthesis. *PloS one* **8**, e53650.

567 **Santner A, Calderon-Villalobos LI, Estelle M.** 2009. Plant hormones are versatile chemical regulators of plant growth. *Nature chemical biology* **5**, 301-307.

569 **Saravolatz LD, Johnson LB, Kauffman CA.** 2003. Voriconazole: a new triazole antifungal agent. *Clin Infect Dis* **36**, 630-637.

571 **Schaller H.** 2003. The role of sterols in plant growth and development. *Progress in lipid research* **42**, 163-175.

573 **Schindelin J, Rueden CT, Hiner MC, Eliceiri KW.** 2015. The ImageJ ecosystem: An open platform for biomedical image analysis. *Mol Reprod Dev* **82**, 518-529.

575 **Schlucking K, Edel KH, Koster P, Drerup MM, Eckert C, Steinhorst L, Waadt R, Batistic O, Kudla J.** 2013. A new beta-estradiol-inducible vector set that facilitates easy construction and efficient expression of transgenes reveals CBL3-dependent cytoplasm to tonoplast translocation of CIPK5. *Mol Plant* **6**, 1814-1829.

579 **Senthil-Kumar M, Wang K, Mysore KS.** 2013. AtCYP710A1 gene-mediated stigmasterol production plays a role in imparting temperature stress tolerance in *Arabidopsis thaliana*. *Plant signaling & behavior* **8**, e23142.

582 **Shafiei M, Peyton L, Hashemzadeh M, Foroumadi A.** 2020. History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. *Bioorg Chem* **104**, 104240.

584 **Simon-Plas F, Perraki A, Bayer E, Gerbeau-Pissot P, Mongrand S.** 2011. An update on plant membrane rafts. *Curr Opin Plant Biol* **14**, 642-649.

586 **Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K.** 2002. hydra Mutants of *Arabidopsis* are defective in sterol profiles and auxin and ethylene signaling. *The Plant cell* **14**, 1017-1031.

589 **Stanislas T, Huser A, Barbosa IC, Kiefer CS, Brackmann K, Pietra S, Gustavsson A, Zourelidou M, Schwechheimer C, Grebe M.** 2015. *Arabidopsis* D6PK is a lipid domain-dependent mediator of root epidermal planar polarity. *Nat Plants* **1**, 15162.

592 **Taton M, Benveniste P, Rahier A.** 1987. Mechanism of inhibition of sterol biosynthesis enzymes by *N*-substituted morpholines. *Pesticide Sci* **21**, 269-280.

594 **Taton M, Ullmann P, Benveniste P, Rahier A.** 1988. Interaction of Triazole Fungicides and Plant-Growth
595 Regulators with Microsomal Cytochrome-P-450-Dependent Obtusifolol 14-Alpha-Methyl Demethylase.
596 Pesticide Biochemistry and Physiology **30**, 178-189.

597 **Vriet C, Russinova E, Reuzeau C.** 2013. From squalene to brassinolide: the steroid metabolic and
598 signaling pathways across the plant kingdom. Molecular plant **6**, 1738-1757.

599 **Wang X, Ye L, Lyu M, Ursache R, Loytynoja A, Mahonen AP.** 2020. An inducible genome editing system
600 for plants. Nat Plants **6**, 766-772.

601 **Warrilow AG, Parker JE, Kelly DE, Kelly SL.** 2013. Azole affinity of sterol 14alpha-demethylase (CYP51)
602 enzymes from *Candida albicans* and *Homo sapiens*. Antimicrob Agents Chemother **57**, 1352-1360.

603 **Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B.** 2003. Cell polarity and PIN
604 protein positioning in *Arabidopsis* require STEROL METHYLTRANSFERASE1 function. The Plant cell **15**,
605 612-625.

606 **Yamada M, Han X, Benfey PN.** 2020. RGF1 controls root meristem size through ROS signalling. Nature
607 **577**, 85-88.

608 **Yang H, Richter GL, Wang X, Mlodzinska E, Carraro N, Ma G, Jenness M, Chao DY, Peer WA, Murphy
609 AS.** 2013. Sterols and sphingolipids differentially function in trafficking of the *Arabidopsis* ABCB19 auxin
610 transporter. The Plant journal : for cell and molecular biology **74**, 37-47.

611 **Zu P, Koch H, Schwery O, Pironon S, Phillips C, Ondo I, Farrell IW, Nes WD, Moore E, Wright GA,
612 Farman DI, Stevenson PC.** 2021. Pollen sterols are associated with phylogeny and environment but not
613 with pollinator guilds. New Phytol **230**, 1169-1184.

614 **Zuo J, Niu QW, Chua NH.** 2000. Technical advance: An estrogen receptor-based transactivator XVE
615 mediates highly inducible gene expression in transgenic plants. Plant J **24**, 265-273.

616