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Abstract 26 

 27 

Sterols are produced via complex, multistep biosynthetic pathways involving similar enzymatic 28 

conversions in plants, animals and fungi, yielding a variety of sterol metabolites with slightly 29 

different chemical properties to exert diverse and specific functions. The role of plant sterols has 30 

been studied in the context of cell biological processes, signaling and overall plant development, 31 

mainly based on mutants. Due to their essential nature, genetic interference with their function 32 

causes pleiotropic developmental defects. An important alternative is to use a pharmacological 33 

approach. However, the current toolset for manipulating sterol biosynthesis in plants remains 34 

limited. Here, we probed a collection of inhibitors of mammalian cholesterol biosynthesis to 35 

identify new inhibitors of plant sterol biosynthesis. We provide evidence that imidazole-type 36 

fungicides, bifonazole, clotrimazole and econazole inhibit the obtusifoliol 14α-demethylase 37 

CYP51, that is highly conserved among eukaryotes. Surprisingly, we found that the selective 38 

estrogen receptor modulator, clomiphene, inhibits sterol biosynthesis, in part by inhibiting the 39 

plant-specific cyclopropyl-cycloisomerase CPI1. These results demonstrate that rescreening of 40 

the animal sterol biosynthesis pharmacology is an easy approach for identifying novel inhibitors 41 

of plant sterol biosynthesis. Such molecules can be used as entry points for the development of 42 

plant-specific inhibitors of sterol biosynthesis that can be used in agriculture. 43 

 44 

  45 
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Introduction 46 

Phytosterols mainly function as structural components in the plasma membrane where they 47 

regulate membrane permeability and fluidity, contribute to organizing the membrane in 48 

microdomains, and modulate the activity of membrane-bound enzymes (Cacas et al., 2012; 49 

Schaller, 2003; Simon-Plas et al., 2011).  50 

In plants, many cellular processes are sterol-dependent, such as clathrin-mediated endocytosis 51 

(Konopka et al., 2008; Men et al., 2008)), cytokinesis  (Boutte et al., 2010; Nakamoto et al., 52 

2015), polarity (Men et al., 2008; Stanislas et al., 2015), and signaling (Simon-Plas et al., 2011). 53 

Consequently, phytosterols have been implicated in various developmental processes, such as 54 

embryonic and post-embryonic development (Clouse, 2000; Schaller, 2003), fertility (Azpiroz et 55 

al., 1998; Catterou et al., 2001), plant flowering (Schaller, 2003), growth (He et al., 2000; 56 

Schaller, 2003), seed germination (Guo et al., 1995), biotic- and abiotic stress responses (Han 57 

et al., 2009; Kumar et al., 2015; Pose et al., 2009; Senthil-Kumar et al., 2013), and the auxin-58 

mediated regulation of cell polarity, gravitropism, endocytosis and auxin efflux (Men et al., 2008; 59 

Pan et al., 2009; Willemsen et al., 2003; Yang et al., 2013). In addition to its structural function, 60 

campesterol is also a metabolic precursor for the growth regulatory plant hormone brassinolide 61 

(Fujioka and Sakurai, 1997; Lindsey et al., 2003; Santner et al., 2009; Vriet et al., 2013).  62 

The importance of phytosterols and brassinosteroids for plant growth and development 63 

is made clear by the severe phenotypes that are observed in mutants deficient in their 64 

biosynthesis. Early and late sterol biosynthesis mutants and BR-deficient mutants have been 65 

described, which all typically show severe dwarfism and defects in fertility, cell elongation, 66 

flowering and senescence. Additionally, Arabidopsis mutants that are defective in early 67 

phytosterol biosynthesis enzymes such as STEROL METHYLTRANSFERASE 1 (SMT1), 68 

CYP51G1, FACKEL (FK) and HYDRA1 (HYD1) are also deficient in embryogenesis and seed 69 

development, and cannot be rescued by BR treatment (Boutte and Grebe, 2009; Clouse, 2000; 70 
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Diener et al., 2000; Souter et al., 2002). However, while mutants are a great asset for the study 71 

of phytosterol and BR biology in plants, they are not without drawbacks. For instance, the 72 

severe growth phenotypes that are typical for sterol- and BR-biosynthesis mutants make it 73 

difficult to dissect what is direct, and what is an indirect pleiotropic effect due to the often strong 74 

developmental phenotypes in the mutants. Therefore, an interesting alternative to study 75 

phytosterol and BR biology in plants is the use of small molecular inhibitors that target specific 76 

steps of their biosynthesis pathways.  77 

Squalene is the common precursor for sterols in plants, animals and fungi. While the 78 

sterols found in the three eukaryotic kingdoms are highly diverse, their biosynthesis often 79 

involves similar metabolic steps. This similarity is illustrated by the ability of plant enzymes to 80 

complement yeast mutants in the corresponding enzyme (De Vriese et al., 2021; Diener et al., 81 

2000; Kushiro et al., 2001), suggesting the distinct metabolic precursors can still dock the 82 

substrate binding pockets of these evolutionary distant enzymes. Consequently, sterol 83 

biosynthesis inhibitors that target specific sterol biosynthesis enzymes in fungi and mammals, 84 

often also inhibit sterol biosynthesis in plants. However, the molecular targets of these inhibitors 85 

are often much less defined, or their selectivity is relatively low due to divergence relative to 86 

their yeast and mammalian counterparts (De Vriese et al., 2021; He et al., 2003; Rozhon et al., 87 

2013). For instance, reported oxidosqualene cyclase (OSC) inhibitors seem to non-selectively 88 

inhibit the activities of both cycloartenol synthase (CAS) and β-amyrin synthase (bAS) in plants 89 

(Ito et al., 2013). However, since the sterol biosynthesis pathways of plants, animals and yeast 90 

share many analogous conversion steps that are catalyzed by semi-conserved enzymes 91 

(Desmond and Gribaldo, 2009), several sterol biosynthesis inhibitors were found to be bioactive 92 

across kingdoms, albeit with distinct specificities. This is indeed the case for fenpropimorph, a 93 

morpholine-derived fungicide that is a known inhibitor of C-8,7 sterol isomerase (subnanomolar 94 

concentrations) and C-14 sterol reductase (micromolar concentrations) in yeast (Kerkenaar, 95 
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1990; Marcireau et al., 1990), which is also used as an inhibitor of FK, the plant C-14 sterol 96 

reductase, in plant research (He et al., 2003). However, fenpropimorph and similar morpholines 97 

only function at relatively high concentrations in plants (30 - 100 μM). Voriconazole, a triazole-98 

type fungicide, inhibits members of the CYP51 superfamily of 14α-demethylase cytochrome 99 

P450 enzymes in both yeast (0.2 μM) (Saravolatz et al., 2003) and plants (1 μM) (Rozhon et al., 100 

2013). Of these inhibitors, only fenpropimorph seems to be commonly used to manipulate sterol 101 

biosynthesis in plants. 102 

Since the current library of characterized plant sterol biosynthesis inhibitors is rather limited (He 103 

et al., 2003; Rozhon et al., 2013), we set out to expand the catalog of plant sterol biosynthesis 104 

inhibitors. Therefore, we selected a subset of compounds that target different steps of the 105 

mammalian cholesterol biosynthesis pathway that were recently identified in a screen in a 106 

human cell system (Korade et al., 2016). We provide the proof-of-concept for several imidazoles 107 

as putative inhibitors of CYP51. Moreover, we identified the Selective Estrogen Receptor 108 

Modulator clomiphene as a novel inhibitor plant sterol biosynthesis in part by inhibiting the plant-109 

specific cyclopropyl-cycloisomerase CPI1. These findings illustrate the principle that the wide 110 

array of, often commercially available, animal sterol biosynthesis inhibitors can be exploited for 111 

the efficient identification of  novel plant sterol biosynthesis inhibitors  112 

  113 
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Results 114 

Chemical screens in human cell systems resulted in an expanded list of inhibitors that target 115 

different steps of cholesterol biosynthesis (Kim et al., 2016; Korade et al., 2016). The enzymatic 116 

steps of cholesterol biosynthesis in animals generally strongly resemble those of the plant 117 

phytosterol biosynthesis pathway (Desmond and Gribaldo, 2009). Therefore, we postulated that 118 

inhibitors of human cholesterol biosynthesis and/or fungal lanosterol biosynthesis could target 119 

analogous steps in phytosterol biosynthesis. We selected several representative compounds 120 

that target distinct cholesterol/lanosterol biosynthesis enzymes in humans and yeast (Kim et al., 121 

2016; Korade et al., 2016), to evaluate their potential as inhibitors of plant sterol biosynthesis 122 

(Table 1). As positive controls we included several imidazoles, a class of molecules that is rich 123 

in inhibitors of a variety of Cytochrome P450s, such as CYP51.  124 

Table 1. List of putative sterol biosynthesis inhibitors selected for analysis in Arabidopsis 125 

Compound Other bioactivities  Mammalian target in 

sterol biosynthesis 

Analogous 

Arabidopsis 

enzyme(s) 

Bifonazole imidazole antifungal  CYP51A1 CYP51 

Clotrimazole imidazole antifungal  CYP51A1 CYP51 

Econazole imidazole antifungal CYP51A1 CYP51 

Clomiphene Selective Estrogen 

Receptor Modulator 

(SERM) 

C-8,7 isomerase/DHCR24 HYD1/DWF1 

Tamoxifen SERM C-8,7 isomerase/DHCR24 HYD1/DWF1 

Perphenazine antipsychotic, CaM 

antagonist  

C-8,7 isomerase/DHCR24 HYD1/DWF1 

Fluphenazine antipsychotic, CaM 

antagonist 

C-8,7 isomerase HYD1 

Acitretin retinoid antipsoratic DHCR24 DWF1 

Doxepin antipsychotic  DHCR24 DWF1 

Trifluoperazine 

(TFP) 

antipsychotic, CaM 

antagonist 

DHCR24 DWF1 

 126 

 127 
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Hypocotyl and root phenotypes highlight putative phytosterol biosynthesis inhibitors 128 

among a set of cholesterol biosynthesis inhibitors 129 

As an indirect readout of defective phytosterol biosynthesis (Rozhon et al., 2013), we monitored 130 

the ability of the inhibitors to reduce hypocotyl length of etiolated Arabidopsis seedlings (Fig. 1A-131 

B; Supplementary Fig. S1A). Bifonazole, clotrimazole and econazole strongly reduced hypocotyl 132 

length and were already effective at 0.5 µM concentrations (Fig. 1A). Clomiphene had an effect 133 

at higher concentrations (5 – 10 µM range) and tamoxifen reduced hypocotyl length only at 10 134 

µM (Fig. 1B). Another putative C-8,7 isomerase/DHCR24 inhibitor, Perphenazine, as well as the 135 

DHCR24 inhibitors fluphenazine, acitretin, trifluoperazine and doxepin had no significant effects 136 

on hypocotyl elongation, even at the highest concentration (10 µM) tested (Fig. 1B and 137 

Supplementary Fig. S1A), suggesting that the latter are not effective inhibitors of phytosterol 138 

biosynthesis.  139 

 140 
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Figure 1. Effect of putative sterol biosynthesis inhibitors on hypocotyl and root length. (A-B) Dose-response 141 

curves of hypocotyl lengths of seedlings treated with (A) Clotrimazole, Bifonazole or Econazole and (B) Clomiphene, 142 

Tamoxifen or Perphenazine. Seedlings were grown for 8 days in the dark on ½ MS medium supplemented with the 143 

respective inhibitors at indicated concentrations. (C-D) Dose-response curves of primary root lengths of wild-type 144 

seedlings (Col-0) treated with and (C) Clotrimazole, Bifonazole or Econazole and (D) Clomiphene, Tamoxifen or 145 

Perphenazine. Wild type seedlings (Col-0) were grown for 7 days under continuous illumination on ½ MS medium 146 

supplemented with the respective inhibitors at indicated concentrations. Averages for each condition are depicted (n 147 

= 33 – 56) relative to the DMSO control (0.1 %). Error bars indicate ±SEM. Student’s t-test p-values: *p < 0.05, **p < 148 

0.01, ***p < 0.001. 149 

Next, we analyzed the effects of these inhibitors on root growth of light grown seedlings (Fig. 150 

1C-D; Supp. Fig. S1B). In comparison to seedlings grown in the presence of 0.1% DMSO, 151 

several of the selected compounds strongly inhibited root growth. At concentrations as low as 152 

0.1 µM, clotrimazole reduced the primary root length by more than 50% compared to the 153 

control, while, bifonazole and econazole did so at 0.5 µM (Fig. 1C). Clomiphene and tamoxifen 154 

also strongly reduced the primary root length, albeit at higher concentrations (1 µM and above) 155 

than the imidazoles (Fig. 1D). At concentrations of 5 µM and higher, clotrimazole, clomiphene 156 

and tamoxifen caused severe reductions in primary root length. Consistently with the low 157 

bioactivity in the hypocotyl elongation assay, acitretin, doxepin, perphenazine, fluphenazine and 158 

trifluoperazine had no obvious effect on the primary root length at the highest tested 159 

concentration of 10 µM (Supplementary Fig. S1B). Due to the low bioactivity in our assays, we 160 

did not further pursue acitretin, doxepin, perphenazine, fluphenazine and trifluoperazine in the 161 

subsequent analyses. 162 

Inhibitors that interfere with root growth cause cell division orientation defects in the 163 

root meristem 164 

The defective sterol biosynthesis is often associated with defective cell division orientation, such 165 

as is the case for fk and smt2smt3 double mutant (Jang et al., 2000; Pullen et al., 2010; Souter 166 

et al., 2002). Therefore, we visualized the root meristem organization of inhibitor treated roots 167 

using ABCB19-GFP as a plasma membrane marker (Fig. 2A-F). We focused on the inhibitors 168 

that caused reductions in the growth assays (Fig. 1C,D). The typical regular organization of the 169 
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meristem was disrupted by all inhibitors, as indicated by the appearance of aberrant cell division 170 

orientations (Fig. 2A-F). 171 

While bifonazole, clomiphene, econazole, and tamoxifen treatment potently disrupted cell 172 

division orientations in the root meristem, this was less obvious upon clotrimazole treatment 173 

(Fig. 2D). These cell division orientation defects are reminiscent of mutants defective in sterol 174 

biosynthesis (Jang et al., 2000; Pullen et al., 2010; Souter et al., 2002). 175 

 176 

Figure 2. Perturbed cell division orientation in the root meristem after inhibitor treatment. (A-F) Root 177 

organization of 5 day-old ABCB19-GFP seedlings grown on 0.5 x MS supplemented with (A) DMSO (0.1%), (B) 178 

Bifonazole (1 µM), (C) Clomiphene (1 µM), (D) Clotrimazole (1 µM), (E) Econazole (1 µM), and (F) Tamoxifen (1 µM). 179 

Scale bar = 50 µm. 180 

GC-MS analysis reveals disturbed sterol composition in Arabidopsis seedlings after 181 

inhibitor treatment 182 

Next, we determined the impact of the compounds on the sterol composition of Arabidopsis 183 

seedlings (Fig. 3). Seedlings were transferred for 5 days to liquid medium containing 0.5 µM and 184 

5 µM of bifonazole, clomiphene, clotrimazole and econazole. Sterols were extracted and 185 

analyzed via gas chromatography-mass spectrometry (GC-MS). The major peaks in the GC-MS 186 
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chromatograms corresponded to the three major phytosterols in Arabidopsis (campesterol, 187 

stigmasterol, and β-sitosterol), and the sterol biosynthesis intermediate isofucosterol (Fig. 3A). 188 

β-amyrin, which was added to the samples as an internal standard, and α-tocopherol (vitamin E) 189 

eluted in the same range as the major plant sterols (Fig. 3A). The identification of these 190 

metabolites was based on a NIST database search with their EI-MS spectra (Supplementary 191 

Fig. S2).  192 

From these analyses, it was clear that most of the tested compounds had at least some effect 193 

on the sterol composition of these three major phytosterols, and isofucosterol (Fig. 3B-E). The 194 

largest sterol disturbances were found in the stigmasterol levels, for which generally strong 195 

reductions were observed in samples treated with the imidazoles, with more modest effects for 196 

clomiphene (Fig. 3B). The relative levels of β-sitosterol, the precursor of stigmasterol, were 197 

generally less affected than those of stigmasterol (Fig. 3C). The effect of the inhibitors on 198 

campesterol levels was mostly modest, and even slight induction was noted for the 0.5 μM 199 

bifonazole treatment (Fig. 3C,D). All compounds strongly reduced the levels of the β-sitosterol-200 

precursor isofucosterol (Fig. 3E). These data indicate that clomiphene and all tested imidazoles 201 

have an impact on sterol biosynthesis, either directly, or indirectly. 202 
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 203 

Figure 3. Relative quantification of the major sterols after inhibitor treatment. (A) Representative Total Ion 204 

Current (TIC) GC-MS chromatogram of a DMSO-treated WT Arabidopsis seedlings sample, with indication of α-205 

tocopherol, campesterol, stigmasterol, β-sitosterol and β-amyrin. (B-E) Peak intensities of (B) stigmasterol, (C) β-206 

sitosterol, (D) campesterol and (E) isofucosterol in WT seedlings treated with two concentrations (0.5 or 5 µM) of 207 

Bifonazole (Bif.), Clomiphene (Clom.), Clotrimazole (Clot.) and Econazole (Eco.), relative to the peak intensities in the 208 

DMSO control. Error bars represent ±SEM, n = 5. Student’s t-test p-values: *p < 0.05, **p < 0.01, ***p < 0.001. Non-209 

significant (n.s.) p> 0.05. 210 

Clotrimazole, bifonazole and econazole are inhibitors of CYP51 activity in Arabidopsis. 211 

To infer the sterol biosynthesis step that is most likely targeted by these inhibitors, we revisited 212 

the TIC GC-MS chromatograms for each treatment, in search of new peaks that likely 213 

correspond to sterol biosynthesis intermediates, and derivatives thereof. In the TIC GC-MS 214 

chromatograms of all imidazole-treated samples, we observed the appearance of up to 5 new 215 

peaks (Fig. 4A; Supplementary Fig. S3A,B).  216 

 217 
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 218 

Figure 4. Clotrimazole target identification. (A) Overlay of a representative TIC GC-MS chromatogram of a control 219 

sample (black) and samples treated with 5 μM clotrimazole (red). Five new peaks induced by clotrimazole treatment 220 

are indicated by numbers for which the EI-MS spectra are presented in (B) and Supplementary Fig. 4, and are 221 

referred to as “metabolite 1” to “metabolite 5”. The peak indicated by (c) is a contaminant. (B) Comparison of the EI-222 

MS profile of metabolite 2 to TMS-Obtusifoliol. Reference EI-MS profile was obtained from NIST ’20. (C) Model 223 

explaining how inhibition of CYP51G1 by clotrimazole treatment could lead to accumulation of the metabolites 1 to 5. 224 

 225 

The EI-MS profiles of most of these metabolites displayed prominent ions at [M-•CH3]+ and [M-226 

TMSiOH-•CH3]+ (Fig. 4B; Supplementary Fig. S4A-D), which is indicative of Δ8 sterols with a 227 

14α-methyl group (Goad and Akihisha, 1997). The accumulation of Δ8 sterols with a 14α-methyl 228 

group is consistent with clotrimazole, bifonazole and econazole inhibiting 14α-demethylase 229 

activity in Arabidopsis (AtCYP51G1), a deeply conserved target of many azoles (Crowley and 230 
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Gallagher, 2014; Lamb et al., 2001). A NIST ’20 database search revealed that the EI-MS 231 

spectrum of metabolite 5 matched for 59.98% with that of TMS-obtusifoliol (Supplementary Fig. 232 

S4A), the preferred target of AtCYP51G1.  233 

Metabolite 2 was the major accumulating metabolite not only for clotrimazole, but also for 234 

bifonazole and econazole treatments (Fig. 4A, Supplementary Fig. S3A-B) and had an EI-MS 235 

spectrum that was also highly similar to that of TMS-obtusifoliol (NIST20) (Fig. 4B). The major 236 

differences between both spectra were at the level of its molecular ion [M]+,  and the fragments 237 

[M – •CH3]+ and [M – TMSiOH – •CH3]+, all of which had an m/z value that is 12 Da lower than 238 

the corresponding ions in the TMS-obtusifoliol spectrum, suggesting that it contains one carbon 239 

atom less than obtusifoliol, yielding C29H50O. This chemical formula corresponds to that of 14α-240 

methyl-24(28)-dihydrofecosterol, the major metabolite accumulating in atcyp51g1 mutants (Kim 241 

et al., 2005). 242 

 The biosynthesis of 14α-methyl-24(28)-dihydrofecosterol from obtusifoliol requires C4α-243 

demethylation and C24(28) double bond reduction (Fig. 4C). The C4α-demethylation of 244 

obtusifoliol is also seen in the Atcyp51g1 mutant with the accumulation 14α-methyl-fecosterol 245 

(C29H48O) (Kim et al., 2005). The molecular ion of both metabolite 1 and 3, i.e., m/z 484 246 

(Supplementary Fig. S4B,C), corresponds with a chemical formula of C29H48O and a double 247 

bond equivalent (DBE) of 6, which indicates the presence of 2 double bonds. Both metabolites 248 

could thus be 14α-methyl-fecosterol. However, the prominent peak at m/z 69 in metabolite 1 249 

(Supplementary Fig. S4B) is indicative for the presence of a Δ24(25)-double bond in the side chain 250 

of 14α-methylsterols (Goad and Akihisha, 1997), suggesting that metabolite 1 is 29-251 

norlanosterol.  By deduction, metabolite 3 then likely corresponds to 14α-methyl-fecosterol. 252 

Metabolite 4 displayed a molecular ion at m/z 500 (Supplementary Fig. S4D), matching a 253 

chemical formula of C30H52O and a DBE of 5, indicating a single double bond. This matches the 254 
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main features of 24(28)-dihydro-obtusifoliol, another metabolite that also accumulates in the 255 

cyp51 mutant (Kim et al., 2005).  256 

The accumulation of 14α-methyl sterols is a tell-tale sign of inhibition of CYP51 activity (Kim et 257 

al., 2005; Maillot-Vernier et al., 1990; Taton et al., 1988). Therefore, it can be concluded that 258 

bifonazole, clotrimazole, and econazole inhibit the Arabidopsis CYP51 orthologue (CYP51G1). 259 

That clotrimazole accumulated additional 14α-methyl sterols probably reflects its higher 260 

bioactivity compared to bifonazole, and econazole.  261 

Clomiphene inhibits CPI activity in Arabidopsis  262 

In contrast to the imidazole TIC GC-MS chromatograms, no 14α-methyl-24(28)-263 

dihydrofecosterol (2) peak appeared in the clomiphene samples. Instead, five induced peaks 264 

appeared in the clomiphene-treated samples that were not induced in the imidazole-treated 265 

samples (Fig. 5A; pink arrows), suggesting that clomiphene has a different target than the 266 

imidazoles. The EI-MS spectrum of the largest of these peaks (10) was a mixed spectrum of two 267 

metabolites (metabolites 10a and 10b). After deconvolution, we found via database searches 268 

that the fragment ions for these metabolites corresponded to the fragmentation spectra of TMS-269 

cycloeucalenol and TMS-α-amyrin (Fig. 5B,C).  270 

Similarly to TMS-cycloeucalenol, metabolite 7 and metabolite 8 showed two intense [M-271 

TMSiOH]+ and [M-TMSiOH-•CH3]
+ fragment ions (Supplementary Fig. S5A,B), indicating these 272 

metabolites are also 9β,19-cyclopropanesterols (Goad and Akihisha, 1997),  related to 273 

cycloeucalenol. Based on the m/z of their molecular ions, one is likely its demethylated version, 274 

24-methylene pollinastanol (metabolite 7) and the other differing from the previous by a reduced 275 

double bond, 24-methyl pollinastanol (metabolite 8). The identity of these metabolites was 276 

further supported by a shared fragment ion at m/z  269, representing the sterol backbone ([M-277 

TMSiOH-SC]+) and a fragment ion unique to 24-methyl pollinastanol at m/z 220 (Böhme et al., 278 
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1997). Jointly, the accumulation of cycloeucalenol, and its aberrant metabolites 24-methylene 279 

pollinastanol and 24-methyl pollinastanol, suggests that clomiphene inhibits cycloeucalenol 280 

cycloisomerase (CPI) activity (Fig. 5D). 281 

The spectrum of metabolite 6 was very similar to that of 24-methylene lophenol 282 

(C29H48O) (Zu et al., 2021), including major fragment ions (m/z 343, 255 and 229) 283 

(Supplementary Fig. S5C).This suggests that the structure of metabolite 6 is closely related to 284 

24-methylene lophenol. The identity of metabolite 9 (Supplementary Fig. S5D) could not be 285 

reliably resolved due to low abundance. The accumulation of metabolites that are unrelated to 286 

cycloeucalenol indicates that clomiphene targets multiple steps in the phytosterol biosynthetic 287 

pathway. 288 
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 289 

Figure 5. GC-MS based identification of CPI as a clomiphene target. (A) Overlay of a representative TIC GC-MS 290 

chromatogram of the control sample (black) and the samples treated with 5 μM (pink) clomiphene. Pink arrows 291 

indicate the positions of the accumulating metabolites. New peaks, induced by inhibitor treatment are indicated by 292 

numbers for which the EI-MS spectra are presented here and in Supplementary Fig. S5. (c) = contaminant. (B,C) 293 

Comparison of the EI-MS profile of Metabolite 10a to TMS-Cycloeucalenol (B) and Metabolite 10b to TMS-α-amyrin 294 

(C). Reference EI-MS profiles were obtained from the Golm Metabolome Database and NIST20. (D) Model explaining 295 

how clomiphene treatment could lead to accumulation of cycloeucalenol, 24-methylene pollinastanol and 24-methyl 296 

pollinastanol. 297 
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 298 

 299 

 300 

Discussion 301 

Phytosterol biosynthesis is orchestrated by complex, branched pathways that are regulated by a 302 

wide range of enzymes, which makes the study of these processes often difficult. While several 303 

mutants are available that are defective in specific steps of phytosterol biosynthesis, these 304 

mutants often show severe growth phenotypes and are thus not ideal to study sterol 305 

biosynthesis defects later in a plant’s life. Unfortunately, the current toolset of sterol biosynthesis 306 

inhibitors in plants is limited (De Vriese et al., 2021). The close homology of the structures and 307 

the relative conservation of enzymes involved, explains why imidazoles that are known to block 308 

sterol biosynthesis in animals and/or fungi can also interfere with sterol biosynthesis in plants 309 

(He et al., 2003; Rozhon et al., 2013). While differences in structure and divergence of the 310 

catalytic centers may cause shifts in specificity, inhibitors of human sterol biosynthesis should 311 

thus be enriched in molecules that can interfere with plant sterol biosynthesis.  312 

We exploited this principle by exploring a set of putative mammalian cholesterol biosynthesis 313 

inhibitors and identified several new inhibitors of plant sterol biosynthesis. Based on 314 

morphological and biochemical effects we demonstrate that the imidazoles, bifonazole, 315 

clotrimazole, and econazole, and the selective estrogen receptor modulator, clomiphene, are 316 

potent inhibitors of sterol biosynthesis. Matching the strong functional conservation of CYP51 317 

activities, the tested imidazoles were found to potently interfere CYP51G1 of Arabidopsis. 318 

However, instead of targeting conserved enzymes with C8,7 isomerisation or C24-reductase 319 

activities, we found that clomiphene targeted CPI activities in Arabidopsis. Notably, multiple 320 
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inhibitors of human sterol biosynthesis did not have strong effects on plant growth, indicating 321 

that they do not inhibit plant sterol biosynthesis, and were therefore not further analyzed. 322 

Jointly, these data suggests that the exploration of inhibitors of human sterol biosynthesis is a 323 

valuable approach for identifying new inhibitors of plan sterol biosynthesis. Exploration of 324 

structural variants for improving affinity and specificity could lead to the development of plant-325 

specific sterol biosynthesis inhibitors for agriculture. 326 

 327 

Bifonazole, clotrimazole and econazole are inhibitors of plant CYP51 activity 328 

Multiple azoles were identified as potent fungicides by inhibiting the cytochrome P450-329 

dependent monooxygenase CYP51 (Shafiei et al., 2020). They typically act by non-competitive 330 

binding to the ferric ion of the heme group of the cytochrome P450, thus preventing substrate 331 

binding (Warrilow et al., 2013). Sterol C14-demethylation is a highly conserved step in sterol 332 

biosynthesis in eukaryotes, and is mediated by a CYP51 homolog. The strong conservation of 333 

CYP51 enzymatic activity is also reflected in its sensitivity to different azoles (Shafiei et al., 334 

2020). Yet, sequence divergence between fungi, plants and animals has installed differential 335 

sensitivities to azoles, allowing their application as fungicides in medicine and agriculture. In 336 

example, bifonazole, clotrimazole, and econazole are commonly used to treat fungal infection of 337 

the skin and urogenital tracts, reflecting their preference towards fungal over human CYP51s 338 

(Warrilow et al., 2013). We found that bifonazole, clotrimazole, and econazole interfered with 339 

plant growth and development at submicromolar concentrations. Of these inhibitors only 340 

clotrimazole was previously shown to be toxic to Lemna species (Alkimin et al., 2020), to inhibit 341 

radish root growth (Bach, 1985), and root gravitropism in Pisum sativum (Amzallag and 342 

Vaisman, 2006), without providing evidence that sterol biosynthesis was inhibited in these 343 

conditions. Our GC-MS revealed that bifonazole, clotrimazole, and econazole treatments induce 344 
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the accumulation of sterol biosynthesis intermediates that also accumulate in the Arabidopsis 345 

cyp51 mutant (Kim et al., 2005). This provides the first biochemical evidence that these azoles 346 

inhibit CYP51 activities in plants. Interestingly, bifonazole and econazole, but not clotrimazole, 347 

trigger cell division defects in the root, that are not seen in cyp51 mutants(Kim et al., 2005), 348 

suggesting that clotrimazole has a higher specificity towards CYP51. 349 

 350 

Clomiphene is a novel plant sterol biosynthesis inhibitor 351 

Clomiphene is well known as estrogen receptor agonist or antagonist, depending on the target 352 

tissue, and is used to induce ovulation or treat breast cancer. In a repurposing screen of FDA 353 

approved drugs, clomiphene was identified as an inhibitor of Δ8-7 sterol isomerase and 354 

DHCR24 activities (Korade et al., 2016). The corresponding enzymes in plants are the Δ8-7 355 

sterol isomerase HYDRA1, and the C24 sterol side chain reductase DWARF1. Consistently with 356 

inhibition of sterol biosynthesis enzymes, clomiphene caused altered cell division patterns in the 357 

root meristem that were associated with reduced sterol levels. However, the analysis of the 358 

sterol biosynthesis intermediates indicated that clomiphene interferes with cyclopropylsterol-359 

cycloisomerase (CPI), and possibly other steps in sterol biosynthesis. Current CPI 360 

pharmacology consists of morpholines such as fenpropimorph (Taton et al., 1987), and LDAO 361 

(Darnet et al., 2020). Similarly to clomiphene, neither inhibitor is selective for CPI. Morpholines 362 

also inhibit the C14 sterol reductase (FACKLE) and Δ8-7 sterol isomerase (HYDRA1) activities  363 

(Taton et al., 1987), while LDAO is a potent inhibitor of 2,3-oxidosqualene cyclization to 364 

cycloartenol and β-amyrin (Cerutti et al., 1985). This suggests that similarity in the biochemical 365 

reaction, and in the catalytic center of the different enzymes, make it difficult to develop 366 

selective inhibitors. Similarly, clomiphene also caused the accumulation of two other 367 

metabolites, indicating that clomiphene also probably has multiple targets in the sterol 368 

biosynthesis pathway. In human liver microsomes, 9 clomiphene metabolites could be identified 369 
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that were more potent estrogen antagonists than clomiphene itself (Mürdter et al., 2012). It is 370 

therefore not unlikely that clomiphene is also metabolized in plants, and that one or more of 371 

these metabolites inhibit one or more steps of plant sterol biosynthesis. A more detailed 372 

exploration of clomiphene metabolism in plants will be required. Interestingly, CPI is plant-373 

specific (Desmond and Gribaldo, 2009), indicating that it is an interesting target for developing 374 

herbicides.  375 

 376 

A call for caution for using estradiol and SERM-inducible systems 377 

Our analyses identified clomiphene, a Selective Estradiol Receptor Modulator (SERM), as an 378 

inhibitor of sterol biosynthesis in plants. Clomiphene caused aberrant cell divisions in the root 379 

meristem. Similar cell division phenotypes were observed with tamoxifen, that can be 380 

metabolized in human cells into the SERM, 4-hydroxytamoxifen. This suggests that estrogen 381 

receptor ligands potentially inhibit sterol biosynthesis in plants.  382 

Several systems that are commonly used for chemically induced expression in plants 383 

use estradiol or 4-hydroxytamoxifen as an activating ligand. The most popular system involves 384 

the chimeric transcription factor XVE, that can activate a LexA operator based promoter in 385 

response to β-estradiol (Zuo et al., 2000), that is typically applied between 2 and 10uM in 386 

Arabidopsis (Schlucking et al., 2013; Wang et al., 2020; Yamada et al., 2020), and up to 20 uM 387 

in rice protoplasts (Chen et al., 2017). A derivative hereof allows for activation of UAS operator 388 

based promoters in response to the SERM 4-hydroxytamoxifen (Friml et al., 2004), that is 389 

typically applied at 2uM in Arabidopsis (Kitakura et al., 2011). The concentrations of these 390 

ligands are in the range of, and even higher than, those at which we observed significant root 391 

growth phenotypes for clomiphene and tamoxifen, molecules whose chemical space closely 392 

matches that of the inductive ligands, β-estradiol and 4-hydroxytamoxifen, respectively. This 393 
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indicates that some of the observed phenotypes in such inducible backgrounds may be modified 394 

by reduced sterol content, or the accumulation of sterol biosynthesis intermediates. This calls 395 

for caution for using such inducible systems in the context of cell biological processes that are 396 

sterol-dependent, such as clathrin-mediated endocytosis (Men et al., 2008), cytokinesis (Boutte 397 

et al., 2010; Nakamoto et al., 2015) and polarity (Men et al., 2008; Stanislas et al., 2015)  398 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.02.530820doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.02.530820
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

Material and methods 399 

Compounds 400 

All compounds used in the experiments (acitretin, bifonazole, clomiphene, clotrimazole, 401 

doxepin, econazole, fluphenazine, flutrimazole, oxiconazole nitrate, perphenazine, tamoxifen, 402 

tetraphenylphosphonium, trifluoperazine, trityl chloride) were obtained from Sigma-Aldrich 403 

(Overijse, Belgium) and dissolved in DMSO.  404 

Arabidopsis phenotyping  405 

Gas-sterilized Arabidopsis thaliana seeds (Col-0) were plated on ½ Murashige and Skoog (MS) 406 

medium supplemented with the appropriate compounds at various concentrations (3 rows/plate, 407 

0.5 cm between seeds). For the primary root length experiments, the plated seeds were first 408 

stratified for 3 days in the dark at 4°C and subsequently transferred to a growth chamber under 409 

continuous light conditions at 21°C. After 7 days of growth, the plates were scanned and the 410 

primary root lengths of the seedlings were measured with Fiji (Schindelin et al., 2015). For each 411 

treatment, 47-62 individual roots were measured. For the hypocotyl length experiments, the 412 

plated seeds were stratified for 3 days in the dark at 4°C. To induce germination they were 413 

subjected to 4 hours light, prior to transfer to the dark. After 8 days of growth in the dark, the 414 

plates were scanned and the hypocotyl lengths of the seedlings were measured with ImageJ. 415 

For each treatment, 33-56 individual hypocotyls were measured. 416 

GC-MS sterol profiling 417 

Arabidopsis thaliana seeds were grown on ½ MS plates for 3 days until germination. Very small 418 

seedlings were subsequently transferred to wells of 6-well plates containing 5 ml liquid ½ MS 419 

medium and 0.5 or 5 µM of the appropriate compounds, or 0.1% DMSO (1 well per sample, 5 420 
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biological replicates per treatment). The seedlings were grown for 5 days in these wells with the 421 

compounds, after which they were frozen in liquid nitrogen and thoroughly ground into powder.  422 

Approximately 100 mg (fresh weight) of plant material ground under liquid nitrogen was 423 

extracted with 1 mL of methanol to which 5 µg/mL of β-amyrin was added as internal standard. 424 

The extractions were carried out at room temperature for 30 minutes, after which the samples 425 

were centrifuged at 20,800 x g for 5 minutes. The supernatant was collected and evaporated to 426 

dryness under vacuum. The remaining plant material was lyophilized for dry weight 427 

determination. The samples were derivatized for GC-MS analysis by adding 10 μL of pyridine 428 

and 50 μL of N-Methyl-N-(trimethylsilyl)trifluoroacetamide (Sigma-Aldrich) to the residue. GC-429 

MS analysis was carried out using a GC model 6890 and an MS model 5973 (Agilent). A 1-µL 430 

aliquot was injected in splitless mode into a VF-5ms capillary column (Varian CP9013, Agilent). 431 

The GC was operated at a constant helium flow of 1 mL per minute and the injector was set to 432 

280°C. The oven was held at 80 °C for 1 minute after injection, then ramped to 280 °C at 20 °C 433 

per minute, held at 280 °C for 30 minutes, ramped to 320 °C at 20 °C per minute, held at 320 °C 434 

for one minute, and finally cooled to 80 °C at 50 °C per minute. The MS transfer line was set to 435 

250 °C, the MS ion source to 230 °C, and the quadrupole to 150 °C, throughout. Full EI-MS 436 

spectra between m/z 60-800 were recorded with a solvent delay of 7.8 minutes. Peak areas 437 

were integrated using Masshunter Qualitative Analysis Software (Agilent) and normalized 438 

against the dry weight of the sample and the peak area of the internal standard. The total ion 439 

currents underneath the peaks corresponding to campesterol, stigmasterol, β-sitosterol, 440 

isofucosterol and the internal standard β-amyrin were determined for all samples. To correct for 441 

the loss of analyte during sample preparation or analysis, the values for these three sterols were 442 

normalized against the internal standard β-amyrin, a triterpene with physicochemical properties 443 

similar to the profiled sterols. In addition, the obtained values were also corrected for the 444 

amount of plant material that was extracted by dividing the obtained values by the dry weight of 445 
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the extracted plant material. The relative abundance of the phytosterols β-sitosterol, 446 

stigmasterol, campesterol and isofucosterol in the different treatments was calculated by 447 

normalization against the DMSO control. 448 
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