

1 **A native herbaceous community exerts a strong allelopathic effect on the woody**
2 **range-expander *Betula fruticosa***

3 Lichao Wang^{1,2†}, Ayub M. O. Oduor^{1,3†}, Yanjie Liu^{1*}

4 ¹*Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and*
5 *Agroecology, Chinese Academy of Sciences, Changchun, 130102, China*

6 ²*University of Chinese Academy of Sciences, Beijing, 100049, China*

7 ³*Department of Applied Biology, Technical University of Kenya, P.O Box 52428-00200,*
8 *Nairobi, Kenya*

9

10 [†]These authors contributed equally to this work.

11 *Email of corresponding author: liuyanjie@iga.ac.cn, +86 431 82536096

12

13 Running title: Allelochemicals of a native herbaceous community may suppress shrub
14 encroachment

15

16 **Abstract**

17 Biological invasions by range-expanding native and alien plant species often reduce native
18 plant community diversity and productivity. Superior performance of some invasive plants
19 over native plants is due to production of allelochemicals by invaders that suppress growth of
20 native plants. Nevertheless, native plants can also produce allelopathic compounds, which
21 may provide biotic resistance against invasive plant species, in accordance with the homeland
22 security hypothesis. In support of the hypothesis, several previous studies found evidence for
23 allelopathic effects of native plant species on alien plant species. However, as most of these
24 studies tested allelopathic effects of single native plant species on invasive plant species, the
25 contribution of allelopathy to the resistance of native plant communities to invasion has
26 received considerably less attention. Here, we performed two competition experiments in a
27 greenhouse to test for potential pairwise allelopathic effects on each other of a woody
28 range-expander *Betula fruticosa* and a community of four native herbaceous species in China.
29 We tested whether *B. fruticosa* and the herbaceous community differed in their competitive
30 effects and responses, and whether these were changed by the presence of activated carbon –
31 an allelopathy neutralizer in the soil. Results show that presence of activated carbon
32 ameliorated suppressive effects of the resident herbaceous community on above-ground
33 biomass of *B. fruticosa*. By contrast, presence of activated carbon tended to aggravate
34 suppressive effects of *B. fruticosa* on the resident herbaceous community. Overall, these
35 results provide support to the homeland security hypothesis and suggest that strong biotic
36 resistance of the resident herbaceous community may limit invasion success of the woody
37 range-expander *B. fruticosa*.

38 **Keywords:** shrub, competition, allelochemicals, encroachment, global change, non-native

39 **Introduction**

40 Biological invasions by range-expanding native and alien plant species often have
41 detrimental ecological and socioeconomic impacts (Essl et al. 2019; Schaffner et al. 2020;
42 Vilà and Hulme 2017). As the number of range-expanding species will likely continue to
43 increase (Essl et al. 2019; Seebens et al. 2021), it is important to identify mechanisms that
44 underlie establishment of plants and invasibility of the resident plant communities. Invasive
45 plants may outperform resident plants through superior competition for resources necessary
46 for growth such as soil moisture, nutrients, and light (Gallien and Carboni 2017; Theoharides
47 and Dukes 2007). Studies also indicate that superior performance of some invasive plants
48 over native plants is due to production of allelochemicals by invaders that suppress growth of
49 native plants (Baker 1974; Callaway and Aschehoug 2000; Hickman et al. 2021; Oduor et al.
50 2020). In support of this idea, a recent synthesis found that majority of 524 invasive plant
51 species that were studied produce allelochemicals with the potential to negatively affect
52 native plant growth (Kalisz et al. 2021). The observation that many invasive plants are
53 allelopathic led to the formulation of the novel weapons hypothesis, which posits that some
54 alien plants are successful invaders because they produce chemical compounds that are toxic
55 to naïve native plants (Callaway and Ridenour 2004). Numerous studies find support for the
56 novel weapons hypothesis (e.g., Abhilasha et al. 2008; Becerra et al. 2018; Inderjit et al. 2011;
57 Ridenour and Callaway 2001; Thorpe et al. 2009), which suggests that allelopathy might
58 indeed play an important role in plant invasions.

59 Native plants can also produce allelopathic compounds, which may provide biotic
60 resistance against invasive plant species that are naïve to allelochemicals of the natives
61 (Rabotnov 1982; Weidenhamer and Romeo 2005), in accordance with the homeland security
62 hypothesis (Cummings et al. 2012). Several previous studies found evidence for allelopathic
63 effects of native plant species on alien species (Adomako et al. 2019; Christina et al. 2015;

64 Cummings et al. 2012; Hou et al. 2011; Mignoni et al. 2018; Ning et al. 2016; Weidenhamer
65 and Romeo 2005; Yuan et al. 2021). However, as most of these studies tested allelopathic
66 effects of single native plant species on invasive plant species, the contribution of allelopathy
67 to the resistance of native plant communities to invasion has received considerably less
68 attention (Yuan et al. 2022). Native plant communities may have strong allelopathic effects on
69 invaders because there may be a high likelihood that species-rich native communities harbour
70 at least one species that produces a disproportionately higher concentration of potent
71 allelochemicals or there could be synergistic effects of different allelochemicals from different
72 species within the community (Yuan et al. 2022). This prediction has received little empirical
73 test (but see Adomako et al. 2019; Ning et al. 2016; Yuan et al. 2022).

74 Temperate herbaceous wetlands of China have been experiencing encroachment by
75 various range-expanding shrub species in recent decades, as a consequence of global
76 warming and anthropogenic disturbances (Lee et al. 2017; Lett and Dorrepaal 2018; Vuorinen
77 et al. 2017). Because of the fundamental differences in functional traits between the
78 range-expanding shrubs and native herbaceous species (Zhang et al. 2021a), shrub
79 encroachment may threaten native plant community diversities. *Betula fruticosa* is one of the
80 prominent range-expanding shrub species within the herbaceous wetlands (Zhang et al.
81 2021a). The species is distributed in Inner Mongolia and northern Heilongjiang
82 (<http://www.iplant.cn>) where it grows at 600-1100 meters above sea level, and flowers and
83 fruits between June and August. It has been expanding and gradually occupying a dominant
84 position in the herb-dominated wetland habitats of the Sanjiang Plain in Northeast China
85 (Zhang et al. 2021a). However, whether allelopathy mediates interaction between *B. fruticosa*
86 and resident herbaceous communities remains unclear.

87 In this study, we performed a greenhouse experiment to test a prediction of the homeland
88 security hypothesis that native plant communities may resist invasion by the range-expander

89 *B. fruticosa* through inhibitory allelopathic effects. We addressed two questions: (1) Do *B.*
90 *fruticosa* and the community have mutual allelopathic effects on each other? (2) Are the
91 allelopathic effects of the community on *B. fruticosa* stronger than those of *B. fruticosa* on
92 the community?

93

94 **Material and Methods**

95 **Study species and cultivation**

96 All the study species used for the experiment co-occur naturally in the Sanjiang Plain of
97 northeast China, and their seeds were collected from wild populations (**Table 1**). On 3
98 January 2021, we sowed seeds of *B. fruticosa* into plastic trays (19.5 cm × 14.6 cm × 6.5 cm)
99 that had been filled with a sterilized growth medium that comprised a mixture of sand and
100 fine vermiculite (Pindstrup Plus, Pindstrup Mosebrug A/S, Denmark; pH: 6; 120.0 mg/L N;
101 12.0 mg/L P; 400.0 mg/L K; 28.0 mg/L Mg; 0.4 mg/L B; 2.0 mg/L Mo; 1.7 mg/L Cu; 2.9
102 mg/L Mn; 0.9 mg/L Zn; 8.4 mg/L Fe) 25%, 25%, 50%) in a ratio of 1:1 (v/v). The growth
103 medium had been sterilized with a dose of 25 kGy of 60CO γ irradiation for four days (at the
104 Harbin Guangya Radiation New Technology Co., Ltd., Harbin, China) to eliminate the
105 potential influence of live soil organisms. One month later (i.e. 3 February 2021), we
106 transplanted 200 similar-sized *B. fruticosa* individuals into a seedling tray, one individual in
107 each tray hole. Between 19 February and 23 March, we fertilized the seedlings with 1g/L of
108 Peters Professional® liquid fertilizer once every week for a total of five weeks. The fertilizer
109 contained the following nutrients: 20% nitrogen, 20% potassium oxide (K₂O), 0.02% Boron,
110 0.015% Copper, 0.12% Iron, 0.06% Manganese, 0.010% Molybdenum, and 0.08% Zinc. On
111 15 February, we sowed approximately 200 seeds for each of the four wetland herb species in
112 trays that had been filled with the same sterilized growth medium as above. We placed all

113 trays with seeds in a greenhouse under natural light conditions, with a temperature between
114 15 and 25 °C.

115

116 **Experimental set-up and measurement**

117 To assess whether allelopathy mediates competitive interactions between *B. fruticosa* and the
118 resident native herbaceous community, we performed two separate greenhouse experiments.

119 The first experiment aimed to test allelopathic effect of the woody plant *B. fruticosa* on the
120 herbaceous community of native species (Experiment-1), while the second experiment tested
121 allelopathic effect of the herbaceous community on *B. fruticosa* (Experiment-2) (**Figure S1**).

122 Both experiments employed a fully-crossed factorial design. In Experiment 1, we grew the
123 native community with vs. without *B. fruticosa* and in the presence vs. absence of activated
124 carbon (**Figure S1**). In Experiment 2, we grew the woody plant *B. fruticosa* with vs. without
125 the native community and in the presence vs. absence of activated carbon (**Figure S1**).

126 Activated carbon is widely used in ecological studies to adsorb and neutralize potential
127 allelochemicals produced by experimental plants (Kabouw et al. 2010; Zhang et al. 2021b).

128 To set up the experiments, we filled 160 circular 2.5-L plastic pots (top diameter × bottom
129 diameter × height: 18.5 cm × 12.5 cm × 15 cm) with a sterilized growth medium that had
130 been prepared as described above. In each pot, we homogenized the growth medium with 5 g
131 of a slow-release fertilizer (Osmocote Exact Standard; 15.00% N + 9.00% phosphorus
132 pentoxide + 12.00% potassium oxide + 2.00% magnesium oxide + 0.02% B + 0.05% Cu +
133 0.45% Fe + 0.09% cheated by EDTA + 0.06% Mn + 0.02% Mo + 0.015% Zn; Everris
134 International B.V., Geldermalsen, The Netherlands). We then homogenized pot content with
135 50 mL of activated carbon (Analytical purity of activated carbon powder, pH 5.0-7.0;
136 Sinopharm Chemical Reagent Co., Ltd, China), for a half of the pots (n=80).

137 In Experiment 1, we transplanted an individual of each of the four native herbaceous

138 species in 80 pots. A half of the pots contained activated carbon, while the other half did not.
139 The individual seedling were transplanted at equal distances from each other in a circular
140 formation. Then we introduced an individual *B. fruticosa* into the middle of the pot, for a half
141 of the pots with and without activated carbon. In experiment 2, we transplanted *B. fruticosa*
142 individuals in the center of the pot. In a half of pots with and with activated carbon treatment,
143 we transplanted an individual seedling of each of the four herbaceous species at equal
144 distances from each other in a circular formation around *B. fruticosa*. Each of the two
145 experiments had two levels of competition: (Community grown without *B. fruticosa* vs.
146 community grown with *B. fruticosa* for Experiment 1 and *B. fruticosa* grown with
147 community vs. *B. fruticosa* grown without community for Experiment 2) \times 2 levels of
148 activated carbon (with vs. without activated carbon) \times 20 replicates (**Figure S1**). Immediately
149 after transplant, we randomly assigned the 160 pots to positions on one greenhouse bench
150 (temperature: 22-28 °C; relative humidity 60%; natural lighting) and watered them regularly.
151 The two experiments lasted 123 days and were performed concurrently at the Northeast
152 Institute of Geography and Agroecology of the Chinese Academy of Sciences (43°59'49"N,
153 125°24'3"E).

154 On 2 July 2021, we harvested above-ground biomass of native herbaceous community in
155 Experiment 1 and above-ground biomass of *B. fruticosa* in Experiment 2. Three *B. fruticosa*
156 individuals (one grown alone) died during the experiment, thus we harvested above-ground
157 biomass of 77 *B. fruticosa* and 80 herbaceous community. All the plant materials were dried
158 at 65 °C for 72 hours and then weighed to an accuracy of 0.0001 g.

159

160 **Statistical analyses**

161 To test the mutual allelopathy between *B. fruticosa* and the native herbaceous community, we
162 fitted two separate Bayesian multilevel models in R 4.0.2 ([R Core Team 2020](#)) using the *brm*

163 function in the *brms* package (Bürkner 2017). As the above-ground biomass of *B. fruticosa*
164 and the native herbaceous community had Gaussian error distributions, we applied cube root
165 transformation of the data prior to the analysis to improve normality and homogeneity of the
166 residuals. The fixed part of each model included competition treatment (two levels each for
167 experiments 1 and 2), activated carbon treatment (with vs. without activated carbon), and
168 two-way interaction between the two factors. Each model was run with four independent
169 Markov chains of 4, 000 iterations, discarding the first 2, 000 iterations per chain as warm-up
170 and resulting in 8, 000 posterior samples overall. To directly test hypotheses about the main
171 and interactive effects based on each coefficient's posterior distribution, we used the sum
172 coding, which effectively 'centers' the effects to the grand mean (i.e., the mean value across
173 all data observations; Schad et al. 2020). To implement this in *brms*, we used the functions
174 *contrasts* and *contr.sum* of the *stats* package in R. We considered the two fixed factors
175 (competition and activated carbon), and interaction between them as significant when their 95%
176 credible interval of the posterior distribution did not overlap zero, and as marginally
177 significant when their 90% credible intervals did not overlap zero.

178

179 **Results**

180 Above-ground biomass of *B. fruticosa* was significantly influenced by main and interactive
181 effects of competition and activated carbon treatments (Table 2; Fig. 1). In the absence of
182 activated carbon, competition from the community reduced above-ground biomass of *B.*
183 *fruticosa* by 68.43% (Fig. 1a). However, in the presence of activated carbon, *B. fruticosa*
184 produced similar above-ground biomass in the presence (1.16 g) vs. absence (1.32 g) of
185 competition from the herbaceous community (Fig. 1a). By contrast, above-ground biomass of
186 the resident herbaceous community was significantly influenced by the main effect of
187 competition from *B. fruticosa* and marginally by an interaction between activated carbon and

188 competition (**Table 2**; **Fig. 1**). Specifically, averaged across the activated carbon treatments,
189 competition from *B. fruticosa* reduced mean above-ground biomass of the herbaceous
190 community by 19.4% (**Fig. 1b**). Nevertheless, presence of activated carbon marginally
191 aggravated the suppressive effect of *B. fruticosa* on the community above-ground biomass
192 (**Fig. 1c**). Specifically, competition from *B. fruticosa* reduced the community above-ground
193 biomass by 30.33% in the presence of activated carbon and by 5.7% in the absence of
194 activated carbon (**Fig. 1c**).

195

196 **Discussion**

197 We tested allelopathic interactions between a range-expanding native shrub *B. fruticosa* and a
198 native herbaceous community, and results suggest that presence of activated carbon
199 ameliorated suppressive effects of the resident herbaceous community on above-ground
200 biomass of *B. fruticosa* (**Fig. 1a**). By contrast, presence of activated carbon tended to
201 aggravate suppressive effects of the range-expander shrub on the resident herbaceous
202 community (**Fig. 1c**). Overall, these results suggest that the resident herbaceous community
203 had a strong allelopathic effect on *B. fruticosa*, and that these effects were neutralized or
204 reduced by activated carbon. On the other hand, *B. fruticosa* had little allelopathic effect on
205 the community. Taken together, the results provide a strong support for the homeland security
206 hypothesis ([Cummings et al. 2012](#)), but little support for the novel weapons hypothesis
207 ([Callaway and Ridenour 2004](#)).

208 The present results complement those of the few other studies that tested whether the
209 novel-weapons hypothesis and homeland-security hypothesis can both explain competitive
210 interactions between alien and native plant species within the same community, with mixed
211 findings. While the novel weapons hypothesis predicts strong allelopathic effects of alien
212 plant species on native plant species ([Callaway and Ridenour 2004](#)), the homeland security

213 hypothesis posits that the reverse should also be true (Cummings et al. 2012). A recent study
214 of interactions between five alien and five native herbaceous species in China found that alien
215 species had negative allelopathic and resource-based competitive effects on native plants,
216 while the reverse was also true (Yuan et al. 2021). The native plant *Sesbania virgata* had
217 strong allelopathic effects on the alien plant *Leucaena leucocephala* in Brazil, while the
218 alien did not affect the native through allelopathy (Mignoni et al. 2018). Other studies have
219 demonstrated allelopathic effects of native plant species on alien species but did not
220 simultaneously test allelopathic effects of aliens on natives (e.g., Cummings et al. 2012; Hou
221 et al. 2011; Weidenhamer and Romeo 2005). More studies are needed to enhance
222 understanding of the generality of both novel weapons hypothesis and homeland security
223 hypothesis operating in the same invaded communities.

224 Our result showed that suppressive effects of *B. fruticosa* on the native herbaceous
225 community tended to be stronger in the presence (rather than absence) of activated carbon
226 (Fig. 1c). This could partly reflect that activated carbon released the allelopathic suppression
227 among native species in the non-invaded community, and thus increased their biomass
228 production. On the other hand, activated carbon tended to facilitate greater growth of *B.*
229 *fruticosa* in the invaded community, and hence it's stronger suppressive effects on the
230 community. Activated carbon has been successfully used in several studies on allelopathy
231 (e.g., Inderjit and Callaway 2003; Lankau 2010; Mahall and Callaway 1992; Mangla,
232 Callaway 2008; Yuan et al. 2021). However, activated carbon can alter soil nutrient
233 availability and plant growth even in the absence of the focal allelopathic agent (e.g.,
234 Kabouw et al. 2010; Lau et al. 2008; Weißhuhn and Prati 2009). For example, activated
235 carbon caused an increase in the specific root length and root branching in a study of 10 plant
236 species (Yuan et al. 2021). In the present case, it is likely that activated carbon caused a
237 reduction in soil nutrient availability to plants by adsorbing the nutrients leading to stronger

238 competitive effects of *B. fruticosa* on the resident herbaceous community.

239 The present results suggesting significant negative allelopathic effects of a native plant
240 community on the range-expander *B. fruticosa*, complement those of a few other studies that
241 tested for allelopathic effects of native plant communities on alien plant species, with mixed
242 results. For instance, native plant communities had negative allelopathic effects on the
243 invader *Solidago canadensis* in China (Adomako et al. 2019). Ning et al. (2016) also found
244 evidence for allelopathic effects of native plant communities on alien species in Germany.
245 These findings provide support for the homeland-security hypothesis. In contrast,
246 allelochemicals of diverse native plant communities did not provide resistance but instead
247 facilitated the germination of six alien invasive plant species (Yuan et al. 2022). However, as
248 the few studies that have tested allelopathic effects of native plants on invasive plants have
249 focused on herbaceous invasive species only, it remains unclear whether allelopathic effects
250 of native plant communities may differ between woody and non-woody invasive species.

251 In conclusion, our results suggest an asymmetric allelopathic interaction between the
252 native herbaceous community and *B. fruticosa* as the native herbaceous community likely
253 had strong negative effect on *B. fruticosa* through allelopathy, but the reverse was not true. In
254 line with the homeland security hypothesis, strong biotic resistance of the resident herbaceous
255 community may limit invasion success of the range-expander *B. fruticosa*.

256

257 **Funding**

258 This work was supported by the funding from the National Natural Science Foundation of
259 China (NSFC: 41901054). AMOO acknowledges funding from the Chinese Academy of
260 Sciences (CAS-PIFI: 2021VBB0004). The authors declare that no funds, grants, or other
261 support were received during the preparation of this manuscript.

262

263 **Conflict of interest**

264 The authors have declared that no competing interests exist.

265

266 **Acknowledgements**

267 We thank Xue Zhang, Huifei Jin and Mingxin Pan for help with the set-up of the experiment

268 and plant harvest.

269

270 **Author contributions**

271 YL conceived the idea and designed the experiment. LW performed the experiment. LW and

272 YL analyzed the data. LW wrote the draft of the manuscript, with further inputs from YL and

273 AMOO.

274

275 **Data accessibility**

276 Should the manuscript be accepted, the data supporting the results will be archived in Dryad

277 and the data DOI will be included at the end of the article.

278 **References**

279 Abhilasha D, Quintana N, Vivanco J et al (2008) Do allelopathic compounds in invasive
280 *Solidago canadensis* s.l. restrain the native European flora? *J Ecol* 96:993-1001.
281 <https://doi.org/10.1111/j.1365-2745.2008.01413.x>

282 Adomako MO, Ning L, Tang M et al (2019) Diversity- and density-mediated allelopathic
283 effects of resident plant communities on invasion by an exotic plant. *Plant Soil*
284 440:581-592. [10.1007/s11104-019-04123-9](https://doi.org/10.1007/s11104-019-04123-9)

285 Baker HG (1974) The evolution of weeds. *Annu Rev Ecol Syst* 5:1-24.
286 <https://www.jstor.org/stable/2096877>

287 Becerra PI, Catford JA, Inderjit et al (2018) Inhibitory effects of *Eucalyptus globulus* on
288 understorey plant growth and species richness are greater in non-native regions. *Global*
289 *Ecol Biogeogr* 27:68-76. <https://doi.org/10.1111/geb.12676>

290 Bürkner PC (2017) Advanced Bayesian multilevel modeling with the R package brms. *arXiv*
291 preprint [arXiv:1705.11123](https://arxiv.org/abs/1705.11123). [http://arxiv.org/abs/1705.11123](https://arxiv.org/abs/1705.11123)

292 Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a
293 mechanism for exotic invasion. *Science* 290:521-523.
294 <https://doi.org/10.1126/science.290.5491.521>

295 Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of
296 increased competitive ability. *Front Ecol Environ* 2:436-443.
297 <https://doi.org/10.1890/1540-9295>

298 Christina M, Rouifed S, Puijalon S et al (2015) Allelopathic effect of a native species on a
299 major plant invader in Europe. *Sci Nat-Heidelberg* 102:12.
300 <https://doi.org/10.1007/s00114-015-1263-x>

301 Cummings JA, Parker IM, Gilbert GS (2012) Allelopathy: a tool for weed management in
302 forest restoration. *Plant Eco* 213:1975-1989. <https://doi.org/10.1007/s11258-012-0154-x>

303 Essl F, Dullinger S, Genovesi P et al (2019) A Conceptual framework for range-expanding
304 species that track human-induced environmental change. *BioScience* 69:908-919.
305 <https://doi.org/10.1093/biosci/biz101>

306 Gallien L, Carboni M (2017) The community ecology of invasive species: where are we and

307 what's next? *Ecography* 40:335-352. <https://doi.org/10.1111/ecog.02446>

308 Hickman DT, Rasmussen A, Ritz K, et al (2021) Review: Allelochemicals as multi-kingdom
309 plant defence compounds: towards an integrated approach. *Pest Manag Sci*
310 77:1121-1131. <https://doi.org/10.1002/ps.6076>

311 Hou YP, Peng SL, Chen BM et al (2011) Inhibition of an invasive plant (*Mikania micrantha*
312 H.B.K.) by soils of three different forests in lower subtropical China. *Biol Invasions*
313 13:381-391. <https://doi.org/10.1007/s10530-010-9830-8>

314 Inderjit, Callaway RM (2003) Experimental designs for the study of allelopathy. *Plant Soil*
315 256:1-11. <https://doi.org/10.1023/A:1026242418333>

316 Inderjit, Evans H, Crocoll C et al (2011) Volatile chemicals from leaf litter are associated
317 with invasiveness of a Neotropical weed in Asia. *Ecology* 92:316-324.
318 <https://doi.org/10.1890/10-0400.1>

319 Kabouw P, Nab M, van Dam NM (2010) Activated carbon addition affects substrate pH and
320 germination of six plant species. *Soil Biol Biochem* 42:1165-1167.
321 <https://doi.org/10.1016/j.soilbio.2010.02.022>

322 Kalisz S, Kivlin SN, Bialic-Murphy L (2021) Allelopathy is pervasive in invasive plants. *Biol*
323 *Invasions* 23:367-371. <https://doi.org/10.1007/s10530-020-02383-6>

324 Lankau R (2010) Soil microbial communities alter allelopathic competition between *Alliaria*
325 *petiolata* and a native species. *Biol Invasions* 12:2059-2068.
326 <https://doi.org/10.1007/s10530-009-9608-z>

327 Lau JA, Puliafico KP, Kopshever JA et al (2008) Inference of allelopathy is complicated by
328 effects of activated carbon on plant growth. *New Phytol* 178:412-423.
329 <https://doi.org/10.1111/j.1469-8137.2007.02360.x>

330 Lee A, Fujita H, Kobayashi H (2017) Effects of drainage on open-water mire pools: open
331 water shrinkage and vegetation change of pool plant communities. *Wetlands* 37:741-751.
332 <https://doi.org/10.1007/s13157-017-0907-3>

333 Lett S, Dorrepaal E (2018) Global drivers of tree seedling establishment at alpine treelines in
334 a changing climate. *Funct Ecol* 32:1666-1680. <https://doi.org/10.1111/1365-2435.13137>

335 Mahall BE, Callaway RM (1992) Root communication mechanisms and intracommunity
336 distributions of two Mojave Desert shrubs. *Ecology* 73:2145-2151.

337 <https://doi.org/10.2307/1941462>

338 Mangla S, Callaway RM (2008) Exotic invasive plant accumulates native soil pathogens
339 which inhibit native plants. J Ecol 96:58-67.

340 <https://doi.org/10.1111/j.1365-2745.2007.01312.x>

341 Mignoni DSB, Simões K, Braga MR (2018) Potential allelopathic effects of the tropical
342 legume *Sesbania virgata* on the alien *Leucaena leucocephala* related to seed
343 carbohydrate metabolism. Biol Invasions 20:165-180.
344 <https://doi.org/10.1007/s10530-017-1524-z>

345 Ning L, Yu FH, van Kleunen M (2016) Allelopathy of a native grassland community as a
346 potential mechanism of resistance against invasion by introduced plants. Biol Invasions
347 18:3481-3493. <https://doi.org/10.1007/s10530-016-1239-6>

348 Oduor AMO, van Kleunen M, Stift M (2020) Allelopathic effects of native and invasive
349 *Brassica nigra* do not support the novel-weapons hypothesis. Am J Bot 107:1106-1113.
350 <https://doi.org/10.1002/ajb2.1516>

351 Rabotnov T (1982) Importance of the evolutionary approach to the study of allelopathy.
352 Ékologia 3:5-8. (translated from Russian)

353 Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference:
354 the effects of an invasive weed on a native bunchgrass. Oecologia 126:444-450.
355 <https://doi.org/10.1007/s004420000533>

356 Schad DJ, Vasishth S, Hohenstein S et al (2020) How to capitalize on a priori contrasts in
357 linear (mixed) models: A tutorial. J Mem Lang 110:104038.
358 <https://doi.org/10.1016/j.jml.2019.104038>

359 Schaffner U, Steinbach S, Sun Y et al (2020) Biological weed control to relieve millions from
360 *Ambrosia* allergies in Europe. Nat Commun 11:1745.
361 <https://doi.org/10.1038/s41467-020-15586-1>

362 Seebens H, Bacher S, Blackburn TM et al (2021) Projecting the continental accumulation of
363 alien species through to 2050. Global Change Biol 27:970-982.
364 <https://doi.org/10.1111/gcb.15333>

365 Team RC R 2020. R: A language and environment for statistical computing. R Foundation for
366 Statistical Computing. Vienna, Austria: URL <http://www.R-project.org/>.

367 Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting
368 nonindigenous species success during four stages of invasion. *New Phytol* 176:256-273.
369 <https://doi.org/10.1111/j.1469-8137.2007.02207.x>

370 Thorpe AS, Thelen GC, Diaconu A et al (2009) Root exudate is allelopathic in invaded
371 community but not in native community: field evidence for the novel weapons
372 hypothesis. *J Ecol* 97:641-645. <https://doi.org/10.2307/20528894>

373 Vilà M, Hulme PE (2017) Impact of biological invasions on ecosystem services. Springer,
374 Berlin.

375 Vuorinen KEM, Oksanen L, Oksanen T et al (2017) Open tundra persist, but arctic features
376 decline—Vegetation changes in the warming Fennoscandian tundra. *Global Change Biol*
377 23:3794-3807. <https://doi.org/10.1111/gcb.13710>

378 Weidenhamer JD, Romeo JT (2005) Allelopathy as a mechanism for resisting invasion: the
379 case of *Polygonella myriophylla*. In: Inderjit (Eds.) *Invasive plants: ecological and*
380 *agricultural aspects*. Birkhäuser Basel, Basel, pp. 167-177

381 Weißhuhn K, Prati D (2009) Activated carbon may have undesired side effects for testing
382 allelopathy in invasive plants. *Basic Appl Ecol* 10:500-507.
383 <https://doi.org/10.1016/j.baae.2008.10.009>

384 Yuan L, Li JM, Yu FH et al (2021) Allelopathic and competitive interactions between native
385 and alien plants. *Biol Invasions* 23:3077-3090. 10.1007/s10530-021-02565-w

386 Yuan L, Li J, van Kleunen M (2022) Diversity of resident plant communities could weaken
387 their allelopathic resistance against alien and native invaders. *Biol Invasions* 24:607-619.
388 10.1007/s10530-021-02667-5

389 Zhang X, Jiang S, Jiang W et al (2021a) Shrub encroachment balances soil organic carbon
390 pool by increasing carbon recalcitrance in a temperate herbaceous wetland. *Plant Soil*
391 464:347-357. <https://doi.org/10.1007/s11104-021-04975-0>

392 Zhang Z, Liu Y, Yuan L et al (2021b) Effect of allelopathy on plant performance: a
393 meta-analysis. *Ecol Lett* 24:348-362. <https://doi.org/10.1111/ele.13627>

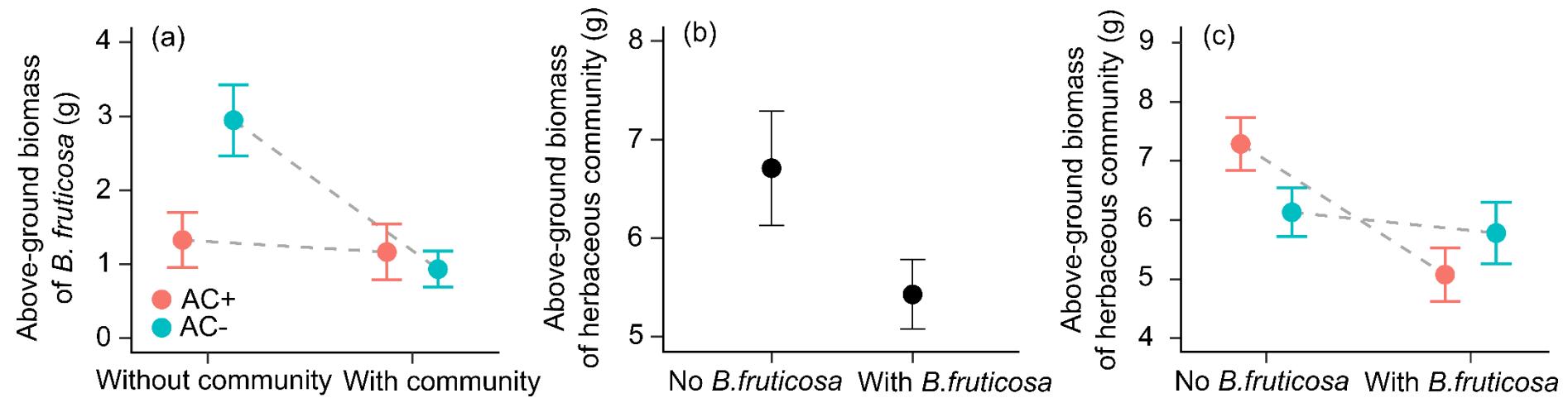
394

395 **Tables**

396 **Table 1.** Information on the plant species that were used in the present study

Species	Family	Growth form	Life cycle	Reproduction mode
<i>Betula fruticosa</i>	Betulaceae	Shrub	Perennial	Seed
<i>Sanguisorba officinalis</i>	Rosaceae	Herbaceous	Perennial	Seed
<i>Gentiana manshurica</i>	Gentianaceae	Herbaceous	Perennial	Seed
<i>Sium suave</i>	Apiaceae	Herbaceous	Perennial	Seed
<i>Deyeuxia angustifolia</i>	Poaceae	Herbaceous	Perennial	Seed

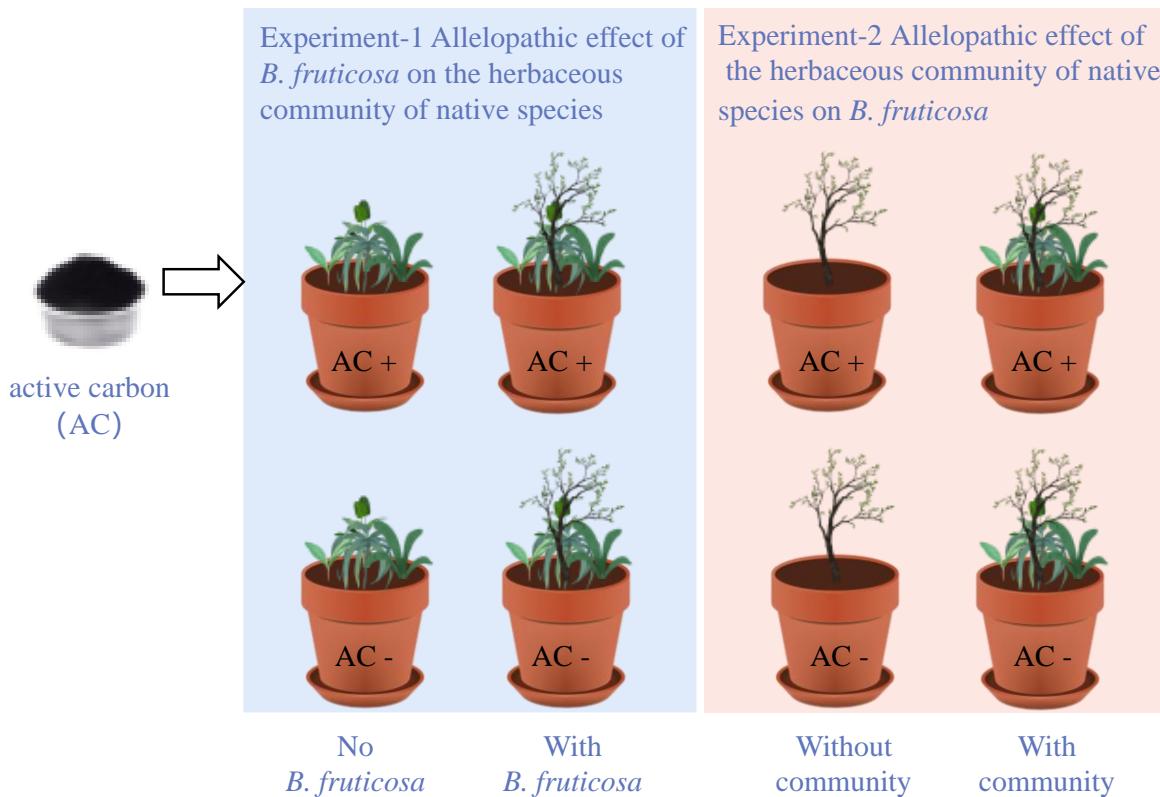
397 **Table 2** Output of two separate Bayesian multilevel models that were run to test the effects of competition treatment (Community grown without
 398 *B. fruticosa* vs. community grown with *B. fruticosa* for Experiment 1 and *B. fruticosa* grown with community vs. *B. fruticosa* grown without
 399 community for Experiment 2), activated carbon treatment (with vs. without activated carbon), and two-way interaction between the two
 400 treatments on above-ground biomass of *B. fruticosa* and a resident herbaceous community in each pot. Shown are the model estimates and
 401 standard errors (SE) as well as the lower (L) and upper (U) values of the 95% and 90% credible intervals (CI).


		Estimate	SE	L95%CL	U95%CL	L90%CL	U90%CL
Above-ground biomass of <i>B. fruticosa</i>	Intercept	0.958*	0.053	0.854	1.061	0.869	1.045
	Activated carbon (A)	0.114*	0.053	0.01	0.218	0.027	0.202
	Competition (C)	0.130*	0.052	0.027	0.233	0.044	0.217
	A×C	0.128*	0.054	0.021	0.236	0.04	0.217
Above-ground biomass of resident herbaceous community	Intercept	1.796*	0.025	1.748	1.844	1.755	1.837
	Activated carbon (A)	-0.008	0.024	-0.056	0.04	-0.048	0.033
	Competition (C)	0.071*	0.025	0.022	0.119	0.029	0.111
	A×C	-0.048 †	0.024	-0.095	0.001	-0.087	-0.008

402 Model estimates whose 95% credible intervals do not overlap with zero are indicated with asterisks (*), and those whose 90% credible intervals do not
 403 overlap with zero are indicated with daggers (†).

404

Figures


405

406

Figure 1 Mean values (\pm SE) of above-ground biomass of *B. fruticosa* (a), herbaceous community (b & c). Shown are main and interactive effects of presence (with community) vs. absence (without community) of competition from a resident herbaceous community, presence (AC+) vs. absence (AC-) of activated carbon, and presence (with *B. fruticosa*) vs. absence (No *B. fruticosa*) of competition from *B. fruticosa* (cf. Table 2).

410 **Supporting information**

411

412 **Figure S1.** A schematic of an experimental set-up to test allelopathic interactions between a
413 range-expanding species *Betulla fruticosa* and a native plant community of four species
414 *Sanguisorba officinalis*, *Gentiana manshurica*, *Sium suave*, and *Deyeuxia angustifolia*.
415 Activated carbon was used to neutralize allelochemicals.