

## Astrocyte glypican 5 regulates synapse maturation and stabilization

Bosworth AP<sup>1,2</sup>, Contreras M<sup>1,2</sup>, Weiser Novak S<sup>3</sup>, Sancho L<sup>1</sup>, Salas IH<sup>1</sup>, Manor U<sup>3</sup>, Allen NJ<sup>1\*</sup>

<sup>1</sup>Molecular Neurobiology Laboratory  
The Salk Institute for Biological Studies  
10010 North Torrey Pines Rd  
La Jolla, CA, 92037, USA

<sup>2</sup>Neurosciences Graduate Program  
University of California, San Diego  
La Jolla, CA, 92093, USA

<sup>3</sup>Waitt Advanced Biophotonics Center  
The Salk Institute for Biological Studies  
10010 North Torrey Pines Road  
La Jolla, CA, 92037, USA

Correspondence:  
Nicola J. Allen [nallen@salk.edu](mailto:nallen@salk.edu)

22 **Summary**

23 The maturation and stabilization of appropriate synaptic connections is a vital step in the  
24 development of neuronal circuits, however the molecular signals underlying these processes are  
25 not fully understood. We show that astrocytes, through production of glypican 5 (GPC5), are  
26 required for maturation and refinement of synapses in the developing mouse cortex. In the  
27 absence of astrocyte GPC5 thalamocortical synapses in the visual cortex show structural  
28 immaturity during the critical period, including smaller presynaptic terminals, decreased  
29 postsynaptic density area, and presence of more postsynaptic partners at multisynaptic  
30 connections. This structural immaturity is accompanied by a delay in developmental incorporation  
31 of GLUA2-containing calcium impermeable AMPARs at intracortical synapses. The functional  
32 impact of this is that mice lacking astrocyte GPC5 exhibit increased levels of ocular dominance  
33 plasticity in adulthood. This shows astrocyte GPC5 is necessary for maturation and stabilization  
34 of synaptic connections in typical development, with implications for understanding disorders with  
35 altered synaptic function, including Alzheimer's disease, where GPC5 levels are altered.

36

37

38

39

40

41 **Keywords**

42 Astrocyte; synapse; plasticity; development; neurodegeneration

43 **Introduction**

44 The formation and maturation of neuronal synapses during development is essential for circuit  
45 function throughout the lifespan. The transformation from immature nascent synapses to stable  
46 mature synapses in the adult involves structural changes at the pre and postsynaptic terminals,  
47 as well as shifts in neurotransmitter receptor composition. In the cortex functional maturation of  
48 excitatory glutamatergic synapses is marked by the incorporation of GLUA2 subunits into AMPA-  
49 type glutamate receptors (AMPARs) which renders them impermeable to calcium [1, 2].  
50 Structurally, immature filopodia-like dendritic spines mature into a more stable mushroom-like  
51 structure as the synapse is strengthened and stabilized [3]. These processes result in more stable  
52 synaptic connections which make up the persistent cortical circuits observed in the adult. The  
53 mechanisms which drive this developmental switch in synaptic structure and receptor  
54 composition, and that maintain stable connections in the adult brain, are not fully understood.  
55

56 Astrocytes, a class of glial cell, produce several secreted proteins that regulate the formation and  
57 maturation of synapses [4, 5]. Thrombospondins 1 and 2 induce structurally immature excitatory  
58 synapses to form, and Hevin regulates postsynaptic spine maturation [6, 7]. Glycans 4 and 6  
59 induce the formation of nascent glutamatergic synapses by increasing levels of GLUA1 AMPARs,  
60 and chordin like 1 (CHRD1) contributes to synapse maturation by recruitment of GLUA2  
61 AMPARs [8-10]. Glycans (GPCs) are a family of GPI-anchored heparan sulfate proteoglycans,  
62 and there are 6 family members in mammals (GPC1-6) [11]. GPCs exist in a membrane attached  
63 form, or are cleaved from the membrane to produce a soluble form, and it is the soluble forms  
64 that have been shown to be synaptogenic when produced by astrocytes [8]. GPC family members  
65 are expressed in the brain at different stages of development and adulthood by multiple cell types  
66 and have roles in regulating synapses [12-14]. Given the synaptogenic role of astrocyte GPC4  
67 and GPC6 in early development, which correlates with their peak of expression [15], we asked if  
68 other GPC family members are expressed by astrocytes and if so play a role in regulating  
69 synapses. This led us to focus on GPC5, which is expressed widely across the brain, and whose  
70 expression by astrocytes is increased during a time of robust synaptic maturation and refinement  
71 in the cortex and remains highly expressed in the adult brain [15].  
72

73 The timing of GPC5 expression suggests it may play a role in the maturation of synapses and  
74 their maintenance in the adult, a question we addressed in the mouse visual cortex (VC). Within  
75 the primary VC excitatory presynaptic inputs come from two main sources: intracortical and  
76 thalamocortical axons. Intracortical inputs can be distinguished by the expression of VGLUT1 at  
77 their presynaptic terminals, while thalamocortical inputs, arising from the visual thalamus (dLGN),  
78 express VGLUT2 at their presynaptic terminals [16, 17]. Thalamic inputs make up a small fraction  
79 of the excitatory connections in the VC but are distinct due to the large size of the axonal boutons  
80 and the presence of multiple postsynaptic targets at a single bouton [18-20]. Both intracortical  
81 and thalamocortical synapses undergo a developmental incorporation of GLUA2 AMPAR  
82 subunits as they mature, which occurs in a layer dependent manner between postnatal (P) day  
83 7-16 [1, 2]. Normal development of the VC involves the refinement of thalamocortical synapses  
84 as ocular dominance is established and neurons in the binocular zone (BZ) are tuned for binocular  
85 matching of the eyes, which continues during the critical period, a time of enhanced plasticity [21,  
86 22].  
87

88 Using astrocyte-specific GPC5 conditional knock out (cKO) mice we found that the absence of  
89 astrocyte GPC5 renders thalamocortical synapses structurally immature, and delays the  
90 incorporation of GLUA2 at intracortical synapses during the critical period, demonstrating that  
91 GPC5 regulates synapse maturation. Further, in mice lacking astrocyte GPC5 we found an  
92 increase in plasticity in response to visual deprivation in adulthood, showing GPC5 is a plasticity  
93 restricting factor in adulthood. The role of GPC5 as a regulator of synapse maturation and

94 plasticity is distinct from the roles of GPC4 and 6 in synapse formation, showing diverse roles for  
95 different GPC family members in cortical circuit development and maturation. In humans GPCs  
96 have been associated with multiple neurological disorders including autism (GPC4,6),  
97 schizophrenia (GPC1,4,5,6), glioma (GPC3), Sanfillipo syndrome type B (GPC5), multiple  
98 sclerosis (GPC5) and Alzheimer's disease (GPC5), demonstrating that understanding the role of  
99 GPCs in typical development is important for determining their role in neurological disorders [23-  
100 30].

101 **Results**

102 ***Gpc5* is expressed throughout the brain by both astrocytes and OPCs**

103 We previously used RNA sequencing to analyze the expression of glycan family members by  
104 astrocytes in the mouse visual cortex (VC) across postnatal development, with time points  
105 correlating with distinct stages of synaptic development: P7 – synapse initiation; P14 –  
106 synaptogenesis peaks; P28 – synapse maturation (peak critical period); P120 – synapses stable  
107 (adulthood) (Figure 1A) [15]. This showed astrocyte *Gpc5* mRNA is upregulated between P7 and  
108 P14, and remains highly expressed throughout adulthood (P28 and P120) (Figure 1B). In contrast,  
109 other astrocyte-expressed glycan family members, *Gpc4* and *Gpc6*, peak in expression at P7  
110 and P14 respectively and then decline (Figure 1B). Additionally, the level of *Gpc5* mRNA detected  
111 in astrocytes is ~10-fold higher than either *Gpc4* or *Gpc6* at the peak of expression (Figure 1B),  
112 demonstrating *Gpc5* is the predominant glycan expressed by astrocytes. To determine if  
113 additional cell types in the mouse cortex express *Gpc5* we consulted published RNA sequencing  
114 studies, which show that *Gpc5* mRNA is enriched in both astrocytes and oligodendrocyte  
115 progenitor cells (OPCs) compared to other cells including neurons and microglia (Figure 1C) [31].  
116 Thus, *Gpc5* is restricted to the glial lineage.

117

118 To ask how broadly expressed *Gpc5* is in the mouse brain we first consulted published RNA  
119 sequencing studies, including our own, that analyzed adult astrocytes from multiple brain regions.  
120 These show that *Gpc5* is highly expressed by astrocytes in the forebrain, particularly the cortex,  
121 and at a lower level in cerebellar astrocytes (Figure S1A) [32, 33]. As a second approach we  
122 performed spatial analysis of *Gpc5* mRNA in sagittal sections of the P28 mouse brain using single  
123 molecule fluorescent *in situ* hybridization (smFISH), showing widespread signal across brain  
124 regions (Figure 1D). Due to the higher expression of *Gpc5* by cortical astrocytes (Figure S1A),  
125 and our time course analysis of *Gpc5* expression in VC astrocytes, we focused on the VC for  
126 further studies of *Gpc5*. smFISH of *Gpc5* showed homogeneous expression across all layers of  
127 VC at P28, reproducing our published findings (Figure 1F) [15]. Based on the temporal expression  
128 of *Gpc5* – upregulated at P14 and remaining high into adulthood, and the known role of other  
129 glycan family members in regulating synaptic development, we hypothesized that GPC5 plays  
130 a role in regulating synaptic maturation and/or stability.

131

132 To ask how astrocyte GPC5 regulates synapses we developed an astrocyte-specific GPC5 knock  
133 out mouse by crossing mice with a floxed allele of GPC5 to mice expressing cre recombinase in  
134 astrocytes (Gfap-cre 73.12), and compared GPC5<sup>f/f</sup> cre negative (WT) and GPC5<sup>f/f</sup> cre positive  
135 (cKO) littermates for all experiments (Figure 1E). To verify astrocyte specific removal of GPC5 we  
136 performed smFISH for *Gpc5* in P28 cKO and WT VC along with an astrocyte (*Slc1a3*) and an  
137 OPC probe (*Cspg4*) (Figure 1G). In WT mice we detected widespread expression of *Gpc5*  
138 throughout the VC in both astrocytes and OPCs as shown by colocalization with the respective  
139 cell markers (Figure 1G; S1B). In *Gpc5* cKO mice, *Gpc5* expression is significantly decreased in  
140 astrocytes but not OPCs demonstrating the specificity of the knockdown (Figure 1H,I). *Gpc5* cKO  
141 mice retain some *Gpc5* expression in the cortex overall due to OPC expression (Figure S1C).  
142 Additionally, we asked whether there is a compensatory response in astrocytes to knocking out  
143 GPC5 by probing for two other astrocyte-expressed glycans, *Gpc4* and *Gpc6*, and found no  
144 significant differences (Figure S1D-G). This shows that *Gpc5* is enriched in glial cells in the mouse  
145 VC, and that removing GPC5 from astrocytes does not cause a compensatory upregulation of  
146 *Gpc5* in OPCs, or *Gpc4* and *Gpc6* in astrocytes.

147

148 **Synapses in *Gpc5* cKO mice are immature during the critical period**

149 Due to the role of other glycan family members expressed by astrocytes, GPC4 and GPC6, in  
150 regulating synaptic development and levels of GLUA1 containing AMPARs, we first asked if GPC5  
151 regulates the number of synapses or their AMPAR composition. Due to the uniform expression of

152 *Gpc5* across upper and lower layers of the VC, and the maintained high expression of *Gpc5* at  
153 P28, the peak of the critical period, we analyzed both thalamocortical and intracortical synapses  
154 within the VC at this timepoint. To determine the number and AMPAR composition of synapses  
155 we used immunohistochemistry to label presynaptic markers VGLUT1 (for intracortical synapses)  
156 and VGLUT2 (for thalamocortical synapses), and postsynaptic markers GLUA1 (immature  
157 synapses) and GLUA2 (mature synapses), visualized using confocal microscopy (Figure 1E;  
158 Figure 2, S2).

159  
160 To determine intracortical synapse number and AMPAR composition we analyzed the  
161 colocalization of GLUA1 or GLUA2 with the presynaptic marker VGLUT1 in layer 1 (L1) and L2/3  
162 of WT and *Gpc5* cKO mice. This showed a significant ~30% decrease in the colocalization of  
163 GLUA2 and VGLUT1 in L2/3, with no difference in L1 (Figure 2A,D; S2A,D). This is driven by a  
164 decrease in GLUA2 puncta in L2/3, with no difference in L1, and no alteration in the number of  
165 presynaptic terminals marked by VGLUT1 (Figure 2A-C; S2A-C). In the case of GLUA1 we found  
166 no difference in the number of GLUA1 puncta in L1 or L2/3, nor in the colocalization of GLUA1  
167 and VGLUT1 in either layer (Figure 2E-H; S2E-H). This shows in the absence of astrocytic GPC5  
168 intracortical synapses lack GLUA2 specifically in L2/3.

169  
170 To investigate if there are alterations at thalamocortical synapses in *Gpc5* cKO mice we quantified  
171 the colocalization of the presynaptic marker VGLUT2 with postsynaptic GLUA1 or GLUA2 in L1  
172 and L4, where thalamocortical synapses predominantly form. We found no significant difference  
173 in the colocalization between VGLUT2 and GLUA1 in either L1 or L4, or in the number of GLUA1  
174 or VGLUT2 puncta (Figure 2M-P; S2M-P). There is no difference in colocalization of VGLUT2 and  
175 GLUA2 in L1 or L4, or in the number of GLUA2 or VGLUT2 puncta, in contrast to the observed  
176 decrease in GLUA2 observed at L2/3 intracortical synapses (Figure 2I-L; S2I-L). While the  
177 number of presynaptic VGLUT2 terminals is not altered between WT and *Gpc5* cKO, we found a  
178 significant ~40% decrease in the volume of VGLUT2 puncta in both L1 and L4 (Figure 2Q-S).

179  
180 These data show that intracortical and thalamocortical synapses have distinct developmental  
181 aberrations in the VC of *Gpc5* cKO mice during the critical period (Figure 2T), with decreased  
182 GLUA2 at intracortical synapses and apparently smaller presynaptic terminals at thalamocortical  
183 synapses. Together this suggests that astrocyte GPC5 contributes to synapse maturation in the  
184 developing VC.

185  
186 **Thalamocortical synapses are structurally immature in *Gpc5* cKO mice**  
187 The decrease in VGLUT2 puncta volume observed by confocal microscopy in *Gpc5* cKO mice  
188 suggests a presynaptic structural deficit at thalamocortical synapses. This could be due to a  
189 decrease in size of the presynaptic axonal bouton, and/or a decreased recruitment of presynaptic  
190 vesicles containing VGLUT2. We investigated this at the ultrastructural level using electron  
191 microscopy (EM). To specifically analyze thalamocortical synapses formed between presynaptic  
192 VGLUT2 expressing neurons originating in the visual thalamus (dLGN) and L4 target neurons in  
193 the VC we used a viral strategy to deliver the EM marker APEX2 to label mitochondria within  
194 these axons [34]. We injected AAV9-COX4-DAPEX2 into the dLGN of littermate pairs of WT and  
195 *Gpc5* cKO mice at P14 and collected brains at P28 for processing for EM, along with treatment  
196 with diaminobenzidine (DAB) to visualize APEX2 labeled mitochondria (Figure 3A). Within the VC  
197 the APEX2-DAB labeled mitochondria of the dLGN projections were identifiable in L4 where these  
198 projections synapse in the VC. Serial sections were collected and imaged in the scanning electron  
199 microscope, and high-resolution volumes of neuropil (3DEM) from VC L4 were assembled.

200  
201 Thalamocortical presynaptic boutons were identified by the presence of DAB labeled  
202 mitochondria within the parent axon, and thalamic connections traced and reconstructed (Figure

203 3B). Labeled boutons had the features of VGLUT2 positive thalamic synapses, including a large  
204 volume, asymmetric synapses, and multiple postsynaptic contacts at some presynaptic sites. We  
205 analyzed a number of features at each reconstructed presynaptic bouton, including bouton  
206 volume, number of synaptic vesicles and number of postsynaptic partners. In each analysis we  
207 compared features of WT and Gpc5 cKO synapses as a single group, as well as analyzing  
208 monosynaptic and multisynaptic connections as separate groups.  
209

210 We found the average volume of presynaptic boutons in Gpc5 cKO mice is significantly decreased  
211 compared to WT (Figure S3A). This result is driven by a significant decrease in the volume of  
212 multisynaptic boutons in the Gpc5 cKO, with no difference in the volume of monosynaptic boutons  
213 (Figure 3C,D). In both genotypes there is a significant increase in the volume of multisynaptic  
214 boutons compared to monosynaptic, as is expected, but this increase is smaller in the Gpc5 cKO  
215 (Figure 3D). The number of synaptic vesicles within multisynaptic boutons is significantly  
216 decreased in the Gpc5 cKO compared to WT, with no change at monosynaptic connections  
217 (Figure 3C,E; S3B). Additionally, we found that the average number of postsynaptic partners at a  
218 multisynaptic bouton is higher in the Gpc5 cKO compared to WT, and that the maximum observed  
219 number of synapses at a single bouton is also greater in the Gpc5 cKO (Figure 3F,G).  
220

221 These results demonstrate that there are structural alterations at thalamocortical synapses in  
222 Gpc5 cKO mice which are particularly pronounced at multisynaptic connections. The decreased  
223 VGLUT2 puncta volume observed by light microscopy (Figure 2Q-S) is likely a result of the  
224 decreased volume of Gpc5 cKO multisynaptic thalamic boutons and decreased total number of  
225 vesicles per bouton. These alterations, as well as the larger number of postsynaptic contacts at  
226 multisynaptic boutons, suggests that the absence of astrocytic GPC5 renders thalamocortical  
227 synapses more immature [3, 35, 36].  
228

### 229 **Gpc5 cKO mice show altered postsynaptic structure at thalamocortical synapses**

230 Our data demonstrate that there are developmental disruptions in the presynaptic structure of  
231 thalamocortical synapses and the synaptic AMPAR composition of intracortical synapses in the  
232 absence of GPC5 (Figure 2,3). We next asked whether these effects are accompanied by a  
233 change in postsynaptic structure of either thalamocortical or intracortical synapses.  
234

235 To specifically analyze postsynaptic ultrastructure of thalamocortical synapses we used the EM  
236 dataset described above and segmented the postsynaptic partners of the APEX2 labeled  
237 presynaptic boutons that had been reconstructed. The predominant postsynaptic structures  
238 identified were dendritic spines, with labeled synapses directly onto the dendritic shaft rarely  
239 observed. To characterize the postsynaptic compartment, we first measured the surface area of  
240 the postsynaptic density (PSD), finding a significant decrease in PSD surface area in Gpc5 cKO  
241 mice (Figure 4A,B; S4A). This decrease is present at spines opposed to both monosynaptic and  
242 multisynaptic boutons (Figure 4B). Given the decreased size of the PSD we asked if postsynaptic  
243 spine structure is shifted to a more immature phenotype. We classified reconstructed spines as  
244 thin, mushroom or other based on morphology (see Methods). When analyzing all connections  
245 together we found a trend towards an increased percentage of thin spines and a decreased  
246 percentage of mushroom spines in the Gpc5 cKO (Figure S4B), which became significant when  
247 spines were separated into those present at monosynaptic or multisynaptic connections (Figure  
248 S4C). To ask which connection type is responsible for this difference we separately analyzed  
249 spines opposing monosynaptic and multisynaptic boutons. This showed that there is a significant  
250 increase in the percentage of thin spines and decrease in mushroom spines at monosynaptic  
251 connections (Figure 4C), with no significant shift at multisynaptic connections in Gpc5 cKO mice  
252 (Figure 4D).  
253

254 Given the decreased GLUA2 levels present at L2/3 intracortical synapses in the P28 Gpc5 cKO  
255 mice, we next asked if there was a shift towards a more immature dendritic spine structure in  
256 neurons in this layer, which consists of predominantly intracortical synapses. To investigate this,  
257 we used sharp electrodes to fill individual L2/3 pyramidal neurons in the VC with fluorescent dye  
258 in acute brain sections of P28 WT and Gpc5 cKO mice, with spines imaged using confocal  
259 microscopy (Figure 4E). We quantified spine density, spine length, spine head diameter, and  
260 head/neck ratio of spines located on secondary apical and basal dendrites. We found no  
261 significant difference in the average spine density on apical or basal dendrites (Figure 4F,G).  
262 Analysis of spine morphology (width, length, length to width ratio) also showed no difference  
263 between genotypes (Figure S4D-I). We further categorized spines as mushroom, thin or stubby  
264 based on these measurements, finding no differences in categorization between the genotypes  
265 for either apical or basal dendrites (Figure 4H,I). Overall, we did not observe any gross changes  
266 in the structure of spines on dendrites of L2/3 neurons in Gpc5 cKO mice.  
267

268 The decreased PSD surface area at thalamocortical synapses in Gpc5 cKO mice indicates that  
269 the strength of thalamocortical synapses is diminished, while the shift towards an increased  
270 prevalence of immature thin spines suggests that thalamocortical synapses are more immature.  
271 This immature postsynaptic phenotype, along with the smaller and less refined thalamic axonal  
272 boutons described above, indicate that the absence of astrocytic GPC5 significantly disrupted the  
273 maturation of thalamocortical synapses.  
274

### 275 **GPC5 is sufficient to induce presynaptic specializations**

276 Analysis of synapses in the VC of Gpc5 cKO mice showed a number of alterations, including  
277 structurally immature thalamocortical synapses and decreased GLUA2 at intracortical synapses.  
278 To gain insight into the site of action of GPC5, i.e. presynaptic or postsynaptic, we performed  
279 experiments using retinal ganglion cell (RGC) neurons in culture to ask if soluble GPC5 is  
280 sufficient to induce synapses to form. We used RGCs as they form few synapses in the absence  
281 of astrocytes, and have successfully been used to study the role of astrocytes and astrocyte-  
282 secreted proteins in synaptogenesis, including GPC4 and GPC6 [4].  
283

284 RGCs were cultured alone, with astrocytes or with recombinant GPC5 protein added to the media  
285 for 6 days, then immunostained for presynaptic VGLUT2 and postsynaptic PSD95 (Figure 5A).  
286 Analysis of colocalized VGLUT2 and PSD95, to mark synapses, showed a significant increase in  
287 synapse number in RGCs cultured with astrocytes compared to alone, with no effect of soluble  
288 GPC5 on synapse number (Figure 5B). This demonstrates that GPC5 is not sufficient to induce  
289 synapse formation by itself. Due to the effect of GPC5 on presynaptic terminals identified in Gpc5  
290 cKO mice, we analyzed whether soluble GPC5 protein was sufficient to increase the number or  
291 size of VGLUT2 presynaptic specializations. This identified that GPC5 significantly increased the  
292 number of presynaptic sites compared to RGCs cultured alone, though this increase was less  
293 than that induced by astrocytes (Figure 5C). Analysis of the size of presynaptic terminals found  
294 no significant increase after treatment with GPC5, whereas astrocytes did induce larger terminals  
295 (Figure 5D; S5A). This suggests that the site of action of soluble GPC5 is presynaptic, the same  
296 as for other astrocyte-expressed glycans including GPC4 [9].  
297

298 Based on these findings we hypothesize that *in vivo* the primary target of astrocyte GPC5 is  
299 presynaptic thalamocortical axonal boutons that synapse onto L4 neurons. As L4 neurons project  
300 to L2/3 neurons, we hypothesize that immature thalamocortical synapses have downstream  
301 effects that impact GLUA2 AMPAR levels at intracortical synapses (Figure 5E).  
302  
303  
304

305 **Large scale ocular dominance plasticity during the critical period is unchanged in Gpc5  
306 cKO mice**

307 Gpc5 cKO mice show features of immature synapses at P28, the peak of the critical period,  
308 namely immature synapse structure at thalamocortical synapses and decreased GLUA2 at  
309 intracortical synapses. This led us to ask whether Gpc5 cKO mice show enhanced experience  
310 dependent plasticity in the VC during the critical period, a time when plasticity is already high and  
311 brief periods of sensory deprivation are sufficient to alter neuronal connectivity. In the binocular  
312 zone (BZ) of the VC this plasticity can be observed by depriving one eye of vision for a number  
313 of days, which induces neurons from the open eye to expand their territory in the BZ.

314  
315 To assess this Gpc5 cKO and WT mice were monocularly enucleated (ME) at P28 and the extent  
316 of BZ remodeling assessed after 12 hours (baseline innervation) or 5 days (remodeling) by  
317 exposing mice to bright light to activate neurons in the VC and induce expression of the immediate  
318 early gene *Arc*, visualized using smFISH (Figure 6A) [37]. The width of the *Arc* signal represents  
319 the BZ innervated by the intact eye, and expansion of the *Arc* signal following ME provides a  
320 measurement of ocular dominance plasticity. After 12 hours of deprivation, which represents  
321 baseline innervation of the BZ by the non-deprived eye, we found no difference in the width of the  
322 *Arc* activated neuron zone between Gpc5 cKO mice and WT indicating that absence of astrocyte  
323 GPC5 does not alter baseline connectivity (Figure 6B,C). In both the WT and Gpc5 cKO mice, 5  
324 days of ME is sufficient to significantly increase the width of the *Arc* signal compared to 12 hours,  
325 indicating remodeling has occurred. Furthermore, we found no significant difference between WT  
326 and Gpc5 cKO mice in the width of the *Arc* signal following 5 days of deprivation (Figure 6B,C).  
327 This demonstrates that lack of GPC5 in astrocytes does not affect large scale sensory remodeling  
328 during the critical period.

329  
330 **Synapse maturation is delayed in Gpc5 cKO mice**

331 As *Gpc5* remains highly expressed in the adult brain we asked if adult mice lacking GPC5  
332 maintain deficits in synaptic AMPAR composition and presynaptic terminal size that are present  
333 during the critical period (Figure 2). We assessed this using immunohistochemistry and confocal  
334 imaging of synapses in the VC of Gpc5 cKO and WT mice at P120. We analyzed intracortical and  
335 thalamocortical synapses using the presynaptic markers VGLUT1 and VGLUT2 respectively and  
336 focused on the AMPAR subunit GLUA2 due to the decreased level we observed at P28.

337  
338 At intracortical synapses we found no significant difference in VGLUT1 or GLUA2 puncta number,  
339 or colocalization of VGLUT1 and GLUA2, between WT and Gpc5 cKO mice in either L1 or L2/3,  
340 although there is a non-significant trend to decreased VGLUT1-GLUA2 in L1 (Figure 7A-H). This  
341 is in contrast to P28 where total GLUA2 and VGLUT1-GLUA2 synapses are decreased in L2/3 in  
342 the Gpc5 cKO (Figure 2). At thalamocortical synapses we found no difference in VGLUT2 or  
343 GLUA2 puncta number, or colocalization of VGLUT2 and GLUA2, between WT and Gpc5 cKO  
344 mice in either L1 or L4, although there is a non-significant trend to decreased VGLUT2 puncta  
345 number in L4 (Figure 7I-P). This is consistent with findings at P28 (Figure 2). We found no  
346 difference in the volume of VGLUT2 puncta between WT and Gpc5 cKO mice in either L1 or L4  
347 (Figure 7Q-S), in contrast to P28 where terminal volume is decreased in Gpc5 cKO (Figure 2).

348  
349 Taken together this data indicates that by P120 most synaptic alterations detected during the  
350 critical period in Gpc5 cKO mice have been rectified (Figure 7T). This suggests that absence of  
351 astrocytic GPC5 delays rather than prevents synapse maturation.

352  
353 **Absence of astrocyte GPC5 enables enhanced ocular dominance plasticity in adulthood**

354 In adulthood the high level of experience dependent plasticity present during the critical period is  
355 decreased, and brief periods of sensory deprivation are insufficient to induce large scale

356 remodeling. Although the steady state synapse number and AMPAR composition in Gpc5 cKO  
357 mice has mostly reached WT levels in adulthood (Figure 7), the continued high expression of  
358 GPC5 by astrocytes in the adult brain (Figure 1B) led us to ask if absence of GPC5 enables  
359 increased ocular dominance plasticity in Gpc5 cKO mice in adulthood.  
360

361 To assess this, we performed monocular enucleation (ME) in Gpc5 cKO and WT mice at P120,  
362 and probed for changes in VC neural connectivity using smFISH for *Arc* to visualize active  
363 neurons, as described at P28 (Figure 8A). We found no difference in the width of the *Arc* zone  
364 between WT and Gpc5 cKO mice after 12 hours of ME indicating no baseline changes in  
365 connectivity are present at P120 (Figure 8B,C). After 5 days of ME, we found no difference in the  
366 width of the *Arc* zone in WT mice when compared to 12 hours deprivation, consistent with limited  
367 plasticity present in the adult brain (Figure 8B,C). For Gpc5 cKO mice we found a significant  
368 increase in the width of the *Arc* zone after 5 days of ME compared to 12 hours, demonstrating  
369 that absence of astrocytic GPC5 has enabled some plasticity to occur (Figure 8B,C). This was  
370 also reflected in the width of the *Arc* zone after 5 days ME being significantly larger in the Gpc5  
371 cKO compared to WT (Figure 8B,C).  
372

373 This demonstrates that lifelong absence of GPC5 specifically in astrocytes enables an  
374 environment that is permissive to plasticity and neuronal remodeling in the adult brain (Figure  
375 8D).

376 **Discussion**

377 In this study we identified that astrocyte GPC5 regulates excitatory synapse maturation and  
378 stabilization. In the absence of GPC5 in astrocytes the structural maturation and refinement of  
379 thalamocortical synapses is impaired, and the level of GLUA2 AMPARs at intracortical synapses  
380 is reduced. The consequence of this is enhanced remodeling of connections in the VC after visual  
381 deprivation in the adult brain, but not during the critical period, suggesting that in the adult brain  
382 GPC5 represses plasticity. Importantly these effects are observed in the presence of unaltered  
383 GPC5 expression in OPCs, suggesting there may be distinct roles for GPC5 depending on the  
384 cell-type of origin. These actions are also distinct from those of other astrocyte-expressed GPC  
385 family members. GPC4 and GPC6 induce nascent synapse formation via clustering of GLUA1  
386 AMPARs, distinct from GPC5 which regulates synapse maturation [8, 9]. Other astrocytic factors  
387 that regulate synapse maturation also have distinct actions, for example CHRDL1 recruits GLUA2  
388 AMPARs to thalamocortical synapses, and Hevin regulates NMDA receptors and spine  
389 maturation [6, 10]. This shows that while astrocytes produce multiple synapse-regulating factors,  
390 including GPC5, each has a distinct action in regulating the development and maturation of  
391 excitatory synapses.

392

393 We found that astrocyte GPC5 regulates thalamocortical synapse maturation, with these  
394 connections showing multiple indications of weaker synapses including smaller bouton size, fewer  
395 synaptic vesicles and smaller PSD surface area in cKO mice [36, 38, 39]. The presence of weaker  
396 synapses in conjunction with a larger number of postsynaptic partners at multisynaptic boutons  
397 suggests that this circuit is not undergoing typical maturation, whereby selected synapses are  
398 strengthened and stabilized and excess synapses are pruned [3, 18]. Based on our findings we  
399 hypothesize that GPC5 is necessary for the strengthening of appropriate synapses. In the  
400 absence of this strengthening, pruning may be disrupted leading to excessive weaker synaptic  
401 connectivity particularly at multisynaptic boutons. Weaker synapses with more immature dendritic  
402 spine morphologies are indicative of a less stable synaptic connection, and in the adult  
403 destabilized axonal boutons have been associated with cognitive decline [40]. Diminished GPC5  
404 expression may therefore contribute to synapse loss via destabilization of axonal boutons, which  
405 is of interest as decreased GPC5 expression has been associated with Alzheimer's disease,  
406 where synapse loss is an early pathology [24].

407

408 In the absence of GPC5 in astrocytes brief visual deprivation in adulthood is sufficient to induce  
409 plasticity, whereas absence of GPC5 does not enhance the level of plasticity that normally occurs  
410 during the critical period. This suggests that GPC5 may be involved in actively repressing  
411 plasticity after the closure of the critical period. Astrocyte secreted factors, such as CHRDL1, have  
412 been shown to repress plasticity through the recruitment of GLUA2 AMPAR subunits [10].  
413 Although Gpc5 cKO mice have reduced synaptic GLUA2 during the critical period, they appear to  
414 have recovered GLUA2 levels in the adult, so it is unlikely that this is the mechanism through  
415 which GPC5 represses plasticity. The neuronal factor PIRB also represses plasticity, and  
416 increased spine density has been found in these KO mice [41]. This is of interest due to increased  
417 spine number observed at multisynaptic thalamocortical boutons in Gpc5 cKO mice during the  
418 critical period. In the future it will be important to determine if GPC5 is actively repressing plasticity  
419 through direct regulation of synaptic stability or AMPAR subunit composition. Alternatively,  
420 increased plasticity in adulthood may be the result of incomplete circuit maturation and represent  
421 incomplete closure of the critical period in Gpc5 cKO mice.

422

423 Identifying the mechanism of how astrocytic GPC5 regulates thalamocortical synapses will help  
424 elucidate whether the lack of thalamocortical refinement in the cKO is the result of diminished  
425 synaptic pruning, aberrant synapse formation, or failure of synaptic strengthening and  
426 stabilization. Our cell culture experiments demonstrated that soluble GPC5 protein is sufficient to

427 induce the formation of presynaptic specializations, without increasing synapse number,  
428 suggesting that the primary action of GPC5 is to regulate presynaptic maturation. Based on this  
429 we hypothesize that the observed decrease in GLUA2 at intracortical synapses in L2/3 is  
430 secondary to a failure of thalamocortical synapses in L4 to mature, as many L4 neurons synapse  
431 directly onto L2/3 neurons. *Gpc5* is homogenously expressed by astrocytes across all cortical  
432 layers, and yet the major structural phenotypes we identified in *Gpc5* cKO mice were at  
433 thalamocortical connections. This suggests that the neuronal receptor GPC5 signals through may  
434 determine this specificity. Neuronal receptors that are located at synapses have been identified  
435 for GPC family members produced by both astrocytes and neurons. These include presynaptic  
436 PTPRD and PTPRS [9, 14, 42], postsynaptic LRRTM4 [12, 13], and postsynaptic GPR158 [42].  
437 In the hippocampus neuronal GPC4 binds postsynaptic GPR158 to induce presynaptic  
438 differentiation, and loss of GPR158 leads to immature synaptic morphology specifically at mossy  
439 fiber synapses on CA3 neurons, similar to the thalamocortical phenotype in *Gpc5* cKO mice [42].  
440 Future studies should investigate if GPR158 or other candidate receptors are expressed by L4  
441 neurons and responsible for mediating the effects of GPC5.  
442

443 GPC5 can exist in a membrane attached form via its GPI-anchor, or be cleaved from the  
444 membrane and act in a soluble form in the extracellular space [11]. Previous studies of astrocyte  
445 GPC4 and GPC6 showed that they were functional in their cleaved form [8], and in cell culture  
446 soluble GPC5 protein is able to induce presynaptic specializations showing functionality.  
447 Determining the form of astrocytic GPC5 that is active in the brain will give insight into its  
448 mechanism of action. For example, both soluble and membrane-bound GPC4 regulate  
449 synaptogenesis through PTPRS, whereas only membrane-bound GPC4 can signal through  
450 GPR158 [9, 14, 42]. This demonstrates that GPCs can have different mechanisms of action and  
451 receptor specificity depending on their form. This may explain why the remaining GPC5  
452 expressed by OPCs is unable to compensate for loss of GPC5 in astrocytes, if for example  
453 membrane-bound GPC5 is the dominant form in vivo and requires close association between  
454 astrocyte processes and the synapse.  
455

456 This study identifies astrocyte GPC5 as playing an important role in synapse maturation. We show  
457 that GPC5 is necessary for refinement and strengthening of thalamocortical synapses, which has  
458 implications for the fidelity of thalamic input to the VC and downstream intracortical circuit  
459 maturation. In humans GPC5 has been linked to multiple neurological disorders including  
460 schizophrenia, Sanfillipo syndrome type B and Alzheimer's disease [23-28]. Our findings  
461 demonstrate that absence of GPC5 may destabilize axonal terminals making them vulnerable to  
462 elimination and synapse loss, which could give insight into their role in neurological disorders, for  
463 example Alzheimer's disease, where GPC5 levels are decreased.

464 **Acknowledgments**

465 We thank Cari Dowling and Joseph Hash for technical assistance, and Alison Caldwell for initial  
466 experiments on GPC5. This work was supported by NIH-NINDS R01 NS089791 to N.J.A., as well  
467 as the Pew Foundation and CZI Neurodegeneration Network. This work was supported by the  
468 Waitt Advanced Biophotonics Core Facility of the Salk Institute with funding from NIH-NCI CCSG:  
469 P30 014195 and the Waitt Foundation. Electron microscopy image processing was supported in  
470 part by the grants: NN1 NSF 1707356 and NN2 NSF 2014862. The authors acknowledge the  
471 Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing  
472 HPC and visualization resources that have contributed to the research results reported within this  
473 paper. This work was supported by the GT3 Core Facility of the Salk Institute with funding from  
474 NIH-NCI CCSG: P30 014195, an NINDS R24 Core Grant and funding from NEI. U.M. is supported  
475 by NSF NeuroNex Award (2014862) and the Chan-Zuckerberg Initiative Imaging Scientist Award.  
476 M.C. is supported by a NASEM Ford Foundation Predoctoral Fellowship. L.S. is supported by  
477 NIH-NEI F32 EY033629. I.H.S. is supported by fellowships from the Bright Focus Foundation and  
478 Alzheimer's Association.

479

480 **Author contributions**

481 A.P.B., M.C., S.W.N., L.S., I.H.S. and N.J.A. performed experiments and analyzed data. U.M. and  
482 N.J.A supervised experiments. A.P.B. and N.J.A. designed the experiments and wrote the paper,  
483 with input from all authors. N.J.A. conceived the project.

484

485 **Declaration of interests**

486 The authors declare no competing interests.

487 **Figure Legends**

488 **Figure 1. *Gpc5* is expressed throughout the brain by both astrocytes and OPCs.** **A.** Mouse  
489 cortical synaptogenesis timeline. **B.** Expression of glycan family member mRNA by VC  
490 astrocytes across postnatal development shows *Gpc5* increases with age. \* denotes significantly  
491 altered expression compared to P7. Data from Farhy-Tselnicker et al. 2021. **C.** Cell type  
492 expression of *Gpc5* mRNA in the developing mouse cortex shows *Gpc5* is enriched in astrocytes  
493 and OPCs. Data from Zhang et al. 2014. **D.** Example image of *Gpc5* mRNA expression in a  
494 sagittal section from a WT mouse brain at P28, visualized using smFISH. **E.** Schematic of *Gpc5*  
495 cKO mouse generation and experiment outline, with synaptic analysis performed in the mouse  
496 VC. **F.** Example image of *Gpc5* mRNA expression in both astrocytes (*Slc1a3*) and OPCs (*Cspg4*)  
497 in VC at P28 in a WT mouse, visualized using smFISH. **G.** Representative images of WT and  
498 *Gpc5* cKO P28 L1 VC *Gpc5* mRNA expression, and colocalization with astrocytes (*Slc1a3*) and  
499 OPCs (*Cspg4*). Green box shows zoom in image of astrocyte; blue box shows zoom in image of  
500 OPC. **H.** *Gpc5* mRNA expression in astrocytes in cKO mice. Quantification of G. **I.** *Gpc5* mRNA  
501 expression in OPCs in cKO mice. Quantification of G, H, I: N=5 mice/condition. Graphs show mean  
502 ± SEM, individual data points represent mice. Statistics by 2-sided T-test, P-value on graph. See  
503 also Figure S1.

504

505 **Figure 2. Synapses in *Gpc5* cKO mice are immature during the critical period.** **A-D.** GLUA2  
506 protein level is decreased at intracortical synapses in *Gpc5* cKO mice at P28. **A.** Representative  
507 images of immunostaining for intracortical presynaptic marker VGLUT1 and postsynaptic GLUA2  
508 in L2/3. **B-D.** Quantification of immunostaining, number of VGLUT1 (**B**), GLUA2 (**C**) and  
509 colocalized (**D**) puncta shows decreased GLUA2 and colocalization. N=5 mice/condition. **E-H.**  
510 GLUA1 protein level is unchanged at intracortical synapses in *Gpc5* cKO mice at P28. **E.**  
511 Representative images of immunostaining for intracortical presynaptic marker VGLUT1 and  
512 postsynaptic GLUA1 in L2/3. **F-H.** Quantification of immunostaining, number of VGLUT1 (**F**),  
513 GLUA1 (**G**) and colocalized (**H**) puncta shows no change. N=6 mice/condition. **I-P.**  
514 Thalamocortical synapses have unaltered AMPAR level in *Gpc5* cKO mice at P28. **I.**  
515 Representative images of immunostaining for thalamocortical presynaptic marker VGLUT2 and  
516 postsynaptic GLUA2 in L4. **J-L.** Quantification of immunostaining, number of VGLUT2 (**J**), GLUA2  
517 (**K**) and colocalized (**L**) puncta shows no change. N=5 mice/condition. **M.** Representative images  
518 of immunostaining for thalamocortical presynaptic marker VGLUT2 and postsynaptic GLUA1 in  
519 L4. **N-P.** Quantification of immunostaining, number of VGLUT2 (**N**), GLUA1 (**O**) and colocalized  
520 (**P**) puncta shows no change. N=5 mice/condition. **Q-S.** VGLUT2 puncta volume is decreased in  
521 P28 *Gpc5* cKO mice. **Q.** Representative images of VGLUT2 puncta in L1 VC. **R,S.** Quantification  
522 of Q, VGLUT2 puncta volume in L1 and L4. N=6 mice/condition L1, N=5 mice/condition L4. **T.**  
523 Summary of synaptic changes in *Gpc5* cKO mice at P28. Graphs show mean ± SEM, individual  
524 data points represent mice. Statistics by 2-sided T-test, P-value on graph. See also Figure S2.

525

526 **Figure 3. Thalamocortical synapses are structurally immature in *Gpc5* cKO mice.** **A.**  
527 Schematic of experimental design. Mice were injected in the dLGN with AAV9-COX4-DAPEX2 at  
528 P14 and collected at P28. Sections of visual cortex underwent a DAB reaction and were  
529 processed for EM, with serial sections made at 50nm and loaded in the scanning electron  
530 microscope. An ROI in L4 was selected for EM imaging; example single plane image with APEX2+  
531 mitochondria indicated by red arrows, APEX2- mitochondria indicated by blue arrows. **B.** Example  
532 of reconstructed APEX2 positive thalamocortical axons in L4. Zoom in: Reconstructed  
533 thalamocortical presynaptic bouton and postsynaptic spines. Bouton in purple, vesicles in yellow,  
534 spines in green, PSD in magenta. **C.** Example images of WT and *Gpc5* cKO thalamocortical  
535 presynaptic boutons. Vesicles are marked in yellow, bouton shaded purple. **D.** Volume of  
536 multisynaptic, but not monosynaptic, thalamocortical axonal boutons are decreased in *Gpc5* cKO  
537 mice compared to WT. **E.** The number of synaptic vesicles in multisynaptic thalamocortical axonal

538 boutons is decreased in Gpc5 cKO mice compared to WT. D,E graphs show mean, individual  
539 data points represent presynaptic boutons. N=45 presynaptic boutons per condition, statistics by  
540 two-way ANOVA, P-values on graph. **F**. Example image of multisynaptic connection, presynaptic  
541 bouton shaded purple and postsynaptic spines green. **G**. The number of postsynaptic contacts at  
542 multisynaptic thalamocortical boutons is increased in Gpc5 cKO mice. Graph shows mean;  
543 individual data points represent presynaptic boutons. N=45 presynaptic boutons per condition,  
544 statistics by Mann-Whitney test, P-value on graph. See also Figure S3.  
545

546 **Figure 4. Gpc5 cKO mice show altered postsynaptic structure at thalamocortical synapses.**  
547 **A-D.** Postsynaptic structures at L4 thalamocortical synapses are immature in Gpc5 cKO mice. **A.**  
548 Example images of WT and Gpc5 cKO PSDs in L4. PSD marked in magenta, axon in purple. **B.**  
549 Surface area of PSD at APEX2 positive thalamocortical synapses is decreased at both  
550 monosynaptic and multisynaptic connections in Gpc5 cKO mice. Graphs show mean, individual  
551 data points represent PSDs. N=45 presynaptic boutons and associated PSDs per condition,  
552 statistics by two-way ANOVA, P-values on graph. **C,D.** Dendritic spine morphologies are shifted  
553 towards a more immature state in Gpc5 cKO mice. Prevalence of thin spines is increased and  
554 mushroom spines decreased at monosynaptic (**C**) but not multisynaptic (**D**) APEX2 positive  
555 synapses. Other category includes stubby spines and synapses directly onto the dendritic shaft.  
556 Data presented as percentage of spines in each category, spines were identified as  
557 compartments opposed to presynaptic boutons analyzed in Figure 3. Statistics by Chi-square test,  
558 P-value on graph. **E-I.** There are no gross morphological changes to dendritic spines of P28 L2/3  
559 pyramidal cells in Gpc5 cKO mice. **E.** Representative images of P28 L2/3 pyramidal cell dendrites.  
560 **F,G.** Quantification of spine density for apical (**F**) and basal (**G**) dendrites respectively. **H,I.**  
561 Categorization of spine shape for secondary apical (**H**) and basal (**I**) dendrites respectively. N=3  
562 mice. Graphs show mean  $\pm$  SEM, individual data points represent mice. G,H statistics by T-test,  
563 P-value on graph; I,J statistics by two-way ANOVA, P-value on graph. See also Figure S4.  
564

565 **Figure 5. GPC5 is sufficient to induce presynaptic specializations.** **A-D.** Treating RGC  
566 neurons in culture is sufficient to increase the number of presynaptic terminals without increasing  
567 synapse number. **A.** Example images of neurons immunostained for VGLUT2 and PSD95, grown  
568 alone, with astrocytes or GPC5 protein. **B.** Quantification of synapse number. **C.** Quantification of  
569 presynaptic terminal number. **D.** Quantification of presynaptic terminal size. Graphs show mean,  
570 individual data points represent neurons. N=110 cells per condition from 4 experiments, statistics  
571 by Kruskal-Wallis ANOVA on ranks with Dunn's post-hoc test, P-values on graph. **E.** Model of  
572 GPC5 action. See also Figure S5.  
573

574 **Figure 6. Large scale ocular dominance plasticity during the critical period is unchanged**  
575 **in Gpc5 cKO mice.** **A.** Schematic of experiment. P28 WT and Gpc5 cKO mice underwent  
576 monocular enucleation (ME) and were collected after 12 hours or 5 days following exposure to  
577 bright light. Sections of VC were probed for *Arc* mRNA using smFISH to visualize activated  
578 neurons. **B.** Representative images of *Arc* mRNA in VC ipsilateral to nondeprived eye in WT and  
579 Gpc5 cKO mice, 12 hours or 5 days after ME. **C.** Ocular dominance plasticity is unchanged in  
580 P28 Gpc5 cKO mice compared to WT, quantification of B. Graph mean  $\pm$  SEM, individual data  
581 points mice. N=5 mice/condition, statistics by two-way ANOVA, P-values on graph.  
582

583 **Figure 7. Synapse maturation is delayed in Gpc5 cKO mice.** **A-H.** GLUA2 puncta number is  
584 recovered at intracortical synapses in Gpc5 cKO mice at P120. **A,E.** Representative images of  
585 immunostaining for intracortical presynaptic marker VGLUT1 and postsynaptic GLUA2 in L1 (**A**)  
586 and L2/3 (**E**). **B,F.** VGLUT1 puncta number is unchanged in L1 and L2/3. **C,G.** GLUA2 puncta  
587 number is unchanged in L1 and L2/3. **D,H.** Colocalization of VGLUT1 and GLUA2 puncta is  
588 unchanged in L1 and L2/3. **I-P.** Thalamocortical synaptic levels of GLUA2 are unaltered at P120

589 in Gpc5 cKO mice. **I,M.** Representative images of immunostaining for thalamocortical presynaptic  
590 marker VGLUT2 and postsynaptic GLUA2 in L1 (**I**) and L4 (**M**). **J,N.** VGLUT2 puncta number is  
591 unchanged in L1 and L4. **K,O.** GLUA2 puncta number is unchanged in L1 and L4. **L,P.**  
592 Colocalization of VGLUT2 and GLUA2 is unchanged in L1 and L4. **Q-S.** VGLUT2 puncta volume  
593 is recovered at P120 in Gpc5 cKO mice. **Q.** Representative images of VGLUT2 puncta in layer 1  
594 VC. **R,S.** Quantification of Q, VGLUT2 puncta volume in L1 (**R**) and L4 (**S**). All experiments: N=5  
595 mice/condition. Graphs show mean  $\pm$  SEM, individual data points mice. Statistics by T-test, P-  
596 values on graph. **T.** Summary of synaptic changes in Gpc5 cKO mice at P120.  
597

598 **Figure 8. Absence of astrocyte GPC5 enables enhanced ocular dominance plasticity in**  
599 **adulthood. A.** Schematic of experiment. P120 WT and Gpc5 cKO mice underwent monocular  
600 enucleation (ME) and were collected after 12 hours or 5 days following exposure to bright light.  
601 Sections of VC were probed for *Arc* mRNA using smFISH to visualize activated neurons. **B.**  
602 Representative images of *Arc* mRNA in VC ipsilateral to nondeprived eye in WT and Gpc5 cKO  
603 mice, 12 hours or 5 days after ME. **C.** Ocular dominance plasticity is enhanced in P120 Gpc5 cKO  
604 mice compared to WT. Quantification of B. Graph mean  $\pm$  SEM, individual data points mice. N=5  
605 mice/condition, statistics by two-way ANOVA, P-values on graph. **D.** Summary of phenotypes in  
606 GPC5 astrocyte-specific cKO mice.

607 **Supplemental Figure Legends**

608 **Figure S1 (related to Figure 1). *Gpc5* is expressed throughout the brain by both astrocytes**

609 and OPCs. **A.** Expression of *Gpc5* by adult astrocytes across brain regions shows *Gpc5* is

610 enriched in forebrain astrocytes. Data from Clarke et al. 2018 and Boisvert et al. 2018. **B.** *Gpc5*

611 mRNA is expressed by the majority of astrocytes and OPCs within WT VC at P28. Quantification

612 of Figure 1G, colocalization of *Gpc5* with the astrocyte marker *Slc1a3* or the OPC marker *Cspg4*.

613 N=5 mice. **C.** Total *Gpc5* mRNA is decreased by ~60% in *Gpc5* cKO mice. N=5 mice/condition.

614 Graphs mean ± SEM, individual data points mice. Statistics by one sample T-test, P-value on

615 graph. **D-G.** *Gpc4* and *Gpc6* astrocyte mRNA level is unchanged in *Gpc5* cKO mice. **D.**

616 Representative images of *Gpc4* mRNA in WT and *Gpc5* cKO P28 VC, colocalized with the

617 astrocyte marker *Slc1a3*. **F.** Representative images of *Gpc6* mRNA in WT and *Gpc5* cKO P28

618 VC, colocalized with the astrocyte marker *Slc1a3*. **E,G.** Quantification of D and F respectively.

619 N=5 mice/condition. Graphs mean ± SEM, individual data points mice. Statistics by T-test, P-

620 value on graph.

621

622 **Figure S2 (related to Figure 2). Synapses in *Gpc5* cKO mice are immature during the critical**

623 period. **A-H.** Intracortical L1 synapses in *Gpc5* cKO mice have unaltered AMPAR levels at P28.

624 **A.** Representative images of immunostaining for intracortical presynaptic marker VGLUT1 and

625 postsynaptic GLUA2 in L1. **B-D.** Quantification of immunostaining, number of VGLUT1 (**B**),

626 GLUA2 (**C**) and colocalized (**D**) puncta shows no change. N=6 mice/condition. **E.** Representative

627 images of immunostaining for intracortical presynaptic marker VGLUT1 and postsynaptic GLUA1

628 in L1. **F-H.** Quantification of immunostaining, number of VGLUT1 (**F**), GLUA1 (**G**) and colocalized

629 (**H**) puncta shows no change. N=5 mice/condition. **I-P.** Thalamocortical synapses in L1 have

630 unaltered AMPAR level in *Gpc5* cKO mice at P28. **I.** Representative images of immunostaining

631 for thalamocortical presynaptic marker VGLUT2 and postsynaptic GLUA2 in L1. **J-L.**

632 Quantification of immunostaining, number of VGLUT2 (**J**), GLUA2 (**K**) and colocalized (**L**) puncta

633 shows no change. N=5 mice/condition. **M.** Representative images of immunostaining for

634 thalamocortical presynaptic marker VGLUT2 and postsynaptic GLUA1 in L1. **N-P.** Quantification

635 of immunostaining, number of VGLUT2 (**N**), GLUA1 (**O**) and colocalized (**P**) puncta shows no

636 change. N=6 mice/condition. Graphs show mean ± SEM, individual data points represent mice.

637 Statistics by 2-sided T-test, P-value on graph.

638

639 **Figure S3 (related to Figure 3). Thalamocortical synapses are structurally immature in**

640 ***Gpc5* cKO mice. **A.**** Volume of all presynaptic thalamocortical axonal boutons, combining

641 monosynaptic and multisynaptic boutons, are decreased in *Gpc5* cKO mice compared to WT. **B.**

642 The number of synaptic vesicles in all thalamocortical axonal boutons, combining monosynaptic

643 and multisynaptic boutons, is not altered in *Gpc5* cKO mice compared to WT. A,B graphs show

644 mean, individual data points represent presynaptic boutons. N=90 presynaptic boutons per

645 condition, statistics by T-test, P-values on graph.

646

647 **Figure S4 (related to Figure 4). *Gpc5* cKO mice show altered postsynaptic structure at**

648 **thalamocortical synapses. **A.**** Surface area of PSD at thalamocortical synapses in *Gpc5* cKO

649 mice is decreased when analyzing monosynaptic and multisynaptic connections combined.

650 Graphs show mean, individual data points represent PSDs. N=90 presynaptic boutons and

651 associated PSDs per condition, statistics by T-test, P-value on graph. **B,C.** Dendritic spine

652 structure at thalamocortical synapses is shifted towards a more immature state in *Gpc5* cKO mice.

653 Prevalence of thin spines is increased and mushroom spines decreased when analyzing

654 monosynaptic and multisynaptic connections separately (**C**) but not when combined (**B**). Other

655 category includes stubby spines and synapses directly onto the dendritic shaft. Data presented

656 as percentage of spines in each category, spines identified as opposed to presynaptic boutons

657 analyzed in Figure 3. N=90 presynaptic boutons and associated spines per condition, statistics

658 by Chi-square test, P-value on graph. **D-I.** Spines on L2/3 neurons are unaltered in Gpc5 cKO  
659 mice. Quantification of Figure 4F. No change in the length (**F,I**), width (**E,H**) or length to width ratio  
660 (LWR) (**D,G**) of dendritic spines on secondary apical and basal dendrites in Gpc5 cKO. N=3  
661 mice/condition. Graphs mean  $\pm$  SEM, individual data points mice. Statistics by T-test, P-value on  
662 graph.  
663

664 **Figure S5 (related to Figure 5). GPC5 is sufficient to induce presynaptic specializations.**  
665 Treating RGC neurons in culture with soluble GPC5 is sufficient to increase the number of  
666 presynaptic terminals without increasing terminal size. **A.** Presynaptic terminal size distribution,  
667 all puncta, taken from N=110 cells per condition from 4 experiments.

668 **METHODS**

669 **Animals**

670 All animal experiments were approved by the Salk Institute IACUC.

671

672 **Rats:** Sprague Dawley rats (Charles River stock number 001) were housed with a 12-hour  
673 light/dark cycle in the Salk Institute animal facilities. Rats were provided access to food and water  
674 ad libitum. For astrocyte and neuron cell culture experiments, both sexes were used.

675

676 **Mice:** Mice were housed with a 12-hour light/dark cycle in the Salk Institute animal facilities. Mice  
677 were provided access to food and water ad libitum. Mice of both sexes were used.

678

679 **Astrocyte-specific Glycan 5 conditional knock out mice:** To selectively remove Gpc5 from  
680 astrocytes, Gpc5 floxed mice were crossed to B6.Cg-Tg(Gfap-cre)73.12Mvs/J (Jax stock number  
681 012886). Gpc5 floxed mice were generated by KOMP/MMRRC/EUCOMM as conditional ready  
682 mice. Gpc5 strain was received as the tm1a allele (C57BL/6N-Atm1Brd Gpc5tm1a(KOMP)Wtsi/,  
683 MMRRC Stock #: 047921-UCD) and crossed with mice expressing Flp recombinase (B6.129S4-  
684 Gt(ROSA)26Sortm1(FLP1)Dym/RainJ, Jax stock number 009086) to generate  
685 Gpc5tm1c(KOMP)Wtsi (UC Davis KOMP repository, project ID CSD76974). All experiments were  
686 performed using Gpc5 flox/flox cre negative (WT) and cre positive (cKO) littermate pairs.

687

688 **Tissue collection and preparation**

689 Mice were anesthetized with an intraperitoneal injection of 100mg/kg Ketamine (Victor Medical  
690 Company) and 20 mg/kg Xylazine (Anased) prior to intracardial perfusion. For collection of fresh  
691 frozen tissue used for single molecule fluorescent in situ hybridization (smFISH) experiments,  
692 mice were transcardially perfused with 10 mls PBS. Collected brains were embedded in OCT  
693 (Scigen 4583), frozen in dry ice/ethanol, and stored at -80°C. For collection of fixed brains used  
694 for immunohistochemistry experiments, mice were transcardially perfused with 10 mls PBS  
695 followed by 10 mls 4% PFA. Collected brains were placed in 4% PFA overnight at 4°C, washed  
696 3 times in PBS, and cryoprotected in 30% sucrose at 4°C before being embedded in TFM  
697 (General data healthcare TFM-5), frozen in dry ice/ethanol and stored at -80°C. For cell fill  
698 experiments, mice were transcardially perfused with oxygenated aCSF (in mM: NaCl 126,  
699 NaHCO<sub>3</sub> 26, Glucose 10, KCl 2.5, MgCl<sub>2</sub> 2, NaH<sub>2</sub>PO<sub>4</sub> 1.25, CaCl<sub>2</sub> 2, pH 7.4) at 34°C for 30  
700 seconds followed by 34°C 4% PFA for 15 minutes. Brains were collected and immediately  
701 sectioned on a vibratome. For electron microscopy (EM) experiments, mice were transcardially  
702 perfused with oxygenated aCSF (in mM: NaCl 126, NaHCO<sub>3</sub> 26, Glucose 10, KCl 2.5, MgCl<sub>2</sub> 2,  
703 NaH<sub>2</sub>PO<sub>4</sub> 1.25, CaCl<sub>2</sub> 2, pH 7.4) with 20U/mL Heparin (Sigma Aldrich H3393) at 34°C for 30  
704 seconds followed by 75 mls of 0.15 M Cacodylate buffer, 2.5% Glutaraldehyde, 2% PFA, 4mM  
705 CaCl<sub>2</sub> warmed to 37°C. Brains were collected and stored overnight at 4°C in 0.15 M Cacodylate  
706 buffer, 2.5% Glutaraldehyde, 2% PFA, 4mM CaCl<sub>2</sub>. Prior to sectioning on a vibratome, brains  
707 were washed three times in ice cold 0.15M Cacodylate buffer with 4mM CaCl<sub>2</sub>.

708

709 **Single molecule fluorescent in situ hybridization (smFISH)**

710 Gpc5 WT and cKO littermate mice were used at P28 to analyze *Gpc5* cell-type expression and  
711 efficiency of GPC5 removal from astrocytes, and at P28 and P120 to analyze *Arc* expression in  
712 the BZ of VC following monocular enucleation. Fresh frozen, 18 µm coronal sections (3.4 mm  
713 posterior to Bregma) were obtained using a cryostat (Hacker Industries OTF5000), or sagittal  
714 sections for Figure 1D. smFISH RNAscope (ACDbio 320850) was performed following  
715 manufacturer's instructions for fresh frozen tissue. Slides were frozen at -20C for 20 minutes,  
716 followed by 15 minutes in 4% PFA at 4C. Sections then underwent dehydration via 5 minute  
717 washes in 50%, 75%, and 100% (x2) ethanol. Following dehydration, sections were incubated  
718 with Protease 3 (P28) or Protease 4 (P120) for 15 minutes at room temperature and then washed

719 2 times in PBS. Slides were incubated with target probes for 2 hours at 40C followed by 3  
720 amplification steps and 1 detection step with RNAscope wash buffer rinses between each step.  
721 Sections were mounted with SlowFade gold antifade with DAPI (Thermo Fisher S36939) and  
722 coverslip applied (22 mm x 50 mm, 1.5 thickness) and sealed with clear nail polish. Slides were  
723 imaged within 1 day or stored at -20C.

724  
725 Probes used were GPC4 (ACDbio 442821), GPC5 (ACDbio 442831), GPC6 (ACDbio 453301),  
726 SLC1A3/GLAST (ACDBio 430781-C2), CSPG4 (ACDbio 404131-C3), and ARC (ACDbio  
727 316911). A negative 3-plex probe (ACDbio 320871) was used as a negative control to determine  
728 the level of background signal. Probes for GPC4, GPC5, GPC6 and ARC were imaged in channel  
729 550; SLC1A3/GLAST was imaged in channel 488; CSPG4 was imaged in channel 647.

730  
731 To determine GPC expression layers 1 to 6 of the VC were imaged using a 20X objective on a  
732 Zeiss LSM710 confocal microscope at 2048x2048 pixels as 2 $\mu$ m z-stacks (3 slices).  
733 Representative images are maximum intensity projections of the z-stack. Quantification of  
734 smFISH signal was performed using an ImageJ macro [15]. Images were made into maximum  
735 intensity projections and astrocytes and OPCs identified by their respective probes, with an region  
736 of interest (ROI) drawn around each astrocyte or OPC cell body. The probe of interest (GPC4,  
737 GPC5 or GPC6) channel was thresholded in the same way for all images, cell-type ROIs were  
738 applied, and the thresholded area of probe signal recorded for each ROI. A minimum of 5  
739 littermate pairs of mice, and 3 sections per mouse were imaged. Data in graphs presented as  
740 average per mouse.

741  
742 For Arc experiments entire coronal sections containing the BZ of VC were imaged with a 10x  
743 objective, as 16-bit images on a Zeiss Axio Imager.Z2 fluorescent microscope with 10% tile  
744 overlap. A minimum of 5 littermate pairs of mice, and 4 sections per mouse were imaged. Data  
745 in graphs presented as average per mouse.

746  
747 **Immunohistochemistry and synaptic puncta analysis**  
748 Littermate pairs of Gpc5 WT and cKO mice were used for immunohistochemistry experiments at  
749 P28 and P120. Coronal sections (20 $\mu$ m) containing the BZ of VC were cut from PFA fixed mouse  
750 brains on a cryostat, mounted on Superfrost Plus micro slides (VWR 48311-703), and immediately  
751 processed for immunohistochemistry. Sections were placed in a RT humidified chamber to be  
752 blocked and permeabilized for 1 hour in 5% goat serum and 0.3% Triton X-100 in PBS. Sections  
753 were incubated with primary antibodies in a humidified chamber overnight at 4°C. Primary  
754 antibodies were diluted in 5% goat serum, 0.3% Triton X-100, and 100mM lysine in PBS. Primary  
755 antibodies used: rabbit anti-GLUA1 (Millipore AB1504) 1:500; rabbit anti-GLUA2 (Millipore  
756 AB1768-I) 1:500; guinea pig anti-VGLUT1 (Millipore AB5905) 1:1000; guinea pig anti-VGLUT2  
757 (Millipore AB2251) 1:1000. Sections were washed 3x5 minutes in PBS, then incubated with  
758 secondary antibodies in a humidified chamber at RT for 2 hours. Secondary antibodies were  
759 diluted in 5% goat serum, 0.3% Triton X-100, and 100mM lysine in PBS. Secondary antibodies  
760 used: goat anti-rabbit Alexa 488 (Thermo Fisher Scientific A11073) 1:500; goat anti-guinea pig  
761 Alexa 594 (Thermo Fisher Scientific A11032) 1:500. Sections were incubated with secondary  
762 antibodies alone as a negative control. Sections were washed 3x5 minutes with PBS. SlowFade  
763 gold antifade mountant with DAPI (Thermo Fisher Scientific S36939) was applied to each section  
764 and a coverslip (22 mm x 50 mm 1.5 thickness) placed on top and sealed with clear nail polish.

765  
766 Images were acquired on a Zeiss LSM-880 confocal microscope using a 63x oil immersion  
767 objective (1.4NA) as 16-bit images, 1420x1420 pixels, 0.08 $\mu$ m x 0.08 $\mu$ m pixel size, as a z-stack  
768 of 8 slices with a total thickness of 2.68 $\mu$ m. For VGLUT1 and GLUA1/2 co-staining images were  
769 taken in VC L1 and L2/3. For VGLUT2 and GLUA1/2 co-staining images were taken in VC L1 and

770 L4. Imaging conditions were determined based on the WT condition and applied to the cKO  
771 acquired in the same session.

772  
773 Synaptic staining images were analyzed using IMARIS software (Bitplane) to determine individual  
774 puncta number (VGLUT, GLUA) and synapse number (colocalized VGLUT and GLUA). Four  
775 25 $\mu$ m x 25 $\mu$ m ROIs were selected from within each image for analysis. Each z-stack was viewed  
776 as a 3D image and a Gaussian filter of 0.0725 $\mu$ m applied. Puncta were selected by manually  
777 thresholding the image and defined using the spots tool as spheres with a set diameter: GLUA1  
778 0.4 $\mu$ m, GLUA2 0.4 $\mu$ m, VGLUT1 0.4 $\mu$ m, VGLUT2 0.5 $\mu$ m. Synapses were defined as  
779 colocalization of presynaptic puncta (VGLUT1 or VGLUT2) and postsynaptic puncta (GLUA1 or  
780 GLUA2) using the spots colocalization function, measuring a distance of 0.7 $\mu$ m from center to  
781 center of each spot. Volume of VGLUT2 puncta was measured using the surface tool, thresholded  
782 to capture all puncta defined by the spots tool. All analysis was done blind to genotype. A minimum  
783 of 5 littermate pairs and 3 sections per animal were imaged and analyzed. Data in graphs  
784 presented as average per mouse. Example images are from a single confocal plane.

785  
786 **Cell fills**

787 Littermate pairs of Gpc5 WT and cKO mice were used for experiments at P28. Coronal sections  
788 (200 $\mu$ m) of lightly PFA fixed tissue were cut on a vibratome in ice cold PBS and stored in 4°C  
789 PBS for up to 48 hours. Slices were placed in RT PBS on the stage of a Zeiss microscope, and  
790 pyramidal neurons in VC L2/3 identified and soma impaled with a sharp micropipette (100-400  
791 M $\Omega$ ) backfilled with 10mM Alexa 488 (Thermo Fisher A10436) in 200 mM KCl. Dye was injected  
792 by applying a 1.5 V negative pulse for 5-10 minutes until the cell was filled. After filling, slices  
793 were placed in 4°C 4% PFA for 30 minutes. Slices were mounted on slides with SlowFade gold  
794 antifade mountant with DAPI (Thermo Fisher Scientific S36939), coverslip applied (22 mm x 50  
795 mm 1.5 thickness) and sealed with clear nail polish. Slides were prepared for slices by applying  
796 a thick clear nail polish boundary to prevent coverslips from crushing slices.

797  
798 Images were acquired on a Zeiss LSM-880 confocal microscope using a 63x oil immersion  
799 objective as 16-bit, 1548 x 1548 pixel area, 0.08 $\mu$ m x 0.08 $\mu$ m pixel size images. Exposure  
800 parameters were established based on WT samples and all sections were imaged in a single  
801 session. A z-stack (0.19 $\mu$ m step size) spanning the entire dendrite was taken for each cell, and  
802 both basal and apical secondary dendrites were imaged. Spine analysis was performed using  
803 NeuronStudio software [43]. A 15 $\mu$ m segment of secondary apical or basal dendrite was selected,  
804 at the first branch point, and the number of spines, spine neck length and spine head diameter  
805 were measured and classified according to [44]. A minimum of 5 littermate pairs of mice and 3  
806 cells per mouse were imaged. Data in graphs presented as average per mouse.

807  
808 **APEX2 injection and electron microscopy**

809 To label thalamocortical projections for EM reconstruction, AAV9-COX4-dAPEX2 was injected  
810 into the dLGN of WT and cKO mice at P14 (2 littermate pairs). pAAV-COX4-dAPEX2 was a gift  
811 from David Ginty (Addgene plasmid #117176; <http://n2t.net/addgene:117176>;  
812 RRID:Addgene\_117176) [34]. Packaging in AAV9 was performed by the Salk Viral Vector core  
813 facility (GT3) at a concentration of 2x10<sup>14</sup> vg/mL. Mice were anesthetized with oxygenated  
814 isoflurane (2-3%) and injection was done with a Nanoject pressure injection system. Virus was  
815 diluted to 3x10<sup>12</sup> vg/mL and injected at coordinates 2.0 mm posterior from bregma, 1.9 mm lateral  
816 from the midline, and 2.9 mm below the pia, with a total of 150nL of virus delivered at a rate of  
817 2nL per second. Following 2 weeks of expression, mice were collected at P28 as described above  
818 and the brain was processed for electron microscopy as described with some modifications [34,  
819 45]. Materials used for processing samples for EM were sourced from Electron Microscopy  
820 Sciences unless otherwise indicated. All steps were performed at ice cold temperatures unless

821 otherwise indicated.

822

823 Brains were mounted on a Leica VT1000S vibrating microtome in cacodylate buffer, and 100 $\mu$ m  
824 coronal sections containing the primary VC collected in 6 well plates and washed 2x10 minutes  
825 in cacodylate buffer supplemented with 50mM glycine, followed by 1x10 minutes in cacodylate  
826 buffer. A 10X diaminobenzidine (DAB) tetrahydrochloride solution was freshly prepared by  
827 dissolving 50mg of DAB in 0.1 M HCl at room temperature prior to tissue processing. Sections  
828 were then incubated in DAB solution (final concentration of 0.3 mg/mL DAB in cacodylate buffer)  
829 for 30 minutes in the dark. After 30 minutes, 10 $\mu$ L/mL of cacodylate supplemented with 0.3%  
830 H<sub>2</sub>O<sub>2</sub> was added directly to the DAB solution (final H<sub>2</sub>O<sub>2</sub> concentration of 0.003%) and swirled  
831 extensively to initiate the peroxidase reaction which was allowed to proceed for 1 hour in the dark.  
832 Slices were evaluated for reaction product and washed 3x10 minutes in cacodylate buffer and  
833 then further post-fixed overnight in cacodylate buffer with 3% glutaraldehyde.

834

835 The following day sections were rinsed 2x10 minutes in cacodylate buffer with 50mM glycine  
836 followed by 1x10 minutes in cacodylate buffer and transferred to a petri dish filled with ice cold  
837 cacodylate buffer for photography and microdissection. 2mm wide strips spanning from the  
838 cortical surface to the corpus callosum were collected into scintillation vials for further processing.  
839 Samples were stained with reduced osmium (1% osmium tetroxide and 1.5% potassium  
840 ferrocyanide in cacodylate buffer) for 1h at room temperature, then rinsed 5x3 minutes with ice  
841 cold water and left in 1% aqueous uranyl acetate at 4°C overnight. Samples were then serially  
842 dehydrated in ice cold aqueous ethanol solutions of ascending concentrations, before 3x10  
843 minute incubations with absolute ethanol at room temperature. Samples were then infiltrated with  
844 ascending concentrations of Durcupan resin in absolute ethanol at room temperature (3:1, 4h;  
845 1:1, 4h; 1:3, overnight) before 2x4h incubations rotating in pure resin. Samples were embedded  
846 with fresh resin and paper labels in silicon molds, with the tissue oriented *en face* to the block  
847 face and polymerized for 60h at 65°C in an oven.

848

849 Serial sections were collected onto silicon wafers as described with some modifications [46].  
850 Briefly, the block was trimmed using a 90° diamond trimming knife (Diatome) on an  
851 ultramicrotome (Leica UC7) to a trapezoidal frustum of roughly 150x400 $\mu$ m which included the  
852 region from the cortical surface to deep cortical layers. A silicon chip (35x7mm; University Wafer,  
853 Boston, MA) was hydrophilized in a plasma cleaner (Harrick) immediately preceding partial  
854 immersion in the water boat of a Histo knife (Diatome) mounted on the ultramicrotome. Ribbons  
855 of 150-200 serial sections of thicknesses of approximately 55nm were cut with 4 drops of pure  
856 ethanol in the water boat and an ionizing instrument (Leica EM Crion) activated and oriented  
857 towards the cutting edge of the knife from above. When ribbons of sufficient quality and length  
858 were generated, they were released from the knife edge using a single-eyelash brush and  
859 carefully positioned over the chip. The water level was then slowly lowered using a peristaltic  
860 pump, and sections were allowed to dry down on the silicon substrate. Chips were briefly dried  
861 on a slide on a hot plate set to 60°C.

862

863 Chips were mounted on aluminum stubs using carbon sticky tabs and loaded into a scanning  
864 electron microscope (SEM; Zeiss Sigma VP) equipped with a sensitive backscatter detector  
865 (Gatan), as well as extended raster scanning capabilities and a control system designed for serial  
866 section imaging workflows (ATLAS5, FIBICS). Low resolution image maps of the ribbon of serial  
867 sections were collected, and a mid-resolution map of a central section was generated for  
868 reference. From this image, a region of interest (ROI) from VC L4 of 50x50 $\mu$ m was selected from  
869 between 250-350 $\mu$ m from the cortical surface that [1] had DAB+ terminals; [2] was not obstructed  
870 by blood vessels or somata; [3] was free from obvious debris throughout the series as assessed  
871 from the low-resolution map. This region was identified at one end of the ribbon of sections, and

872 the ROI was imaged at high resolution (pixel size: 2nm; dwell time: 6 $\mu$ s; EHT: 3kV; aperture: 873 30 $\mu$ m; working distance: 8-9mm) on every section in the ribbon.

874  
875 Image stacks were collated and rigidly aligned using TrakEM2 in Fiji and cropped to a minimum  
876 continuous cube of roughly aligned data with minimal padding [47]. Fine stack alignment was  
877 accomplished using SWiFT-IR as deployed on 3DEM.org using the TACC compute resource  
878 Stampede 2 [48, 49]. The well aligned data was then imported into VAST Lite (VAST) for  
879 annotation and analysis [50]. Briefly, axons with DAB+ mitochondria and their corresponding  
880 postsynaptic partners were identified and manually segmented in VAST. Volume of terminals,  
881 vesicle cloud size, and PSD surface area were determined by individually segmenting structures  
882 and using VASTTOOLS MATLAB toolkit. To categorize post synaptic targets, all post synaptic  
883 structures synapsing with a target axonal terminal were segmented. 3D reconstructions of the  
884 segmented post synaptic structures were then determined to be either mushroom, thin, stubby,  
885 or shaft. Spines were categorized based on visual inspection of morphology. Mushroom spines  
886 were identified by the presence of a defined head and neck; thin spines were categorized as long  
887 filopodia like structures with no defined head; stubby spines were identified as short structures  
888 with no definable neck; shaft synapses occurred directly on the dendritic shaft. Data in graphs  
889 presented per presynaptic bouton or per postsynaptic spine. Visualizations of reconstructions  
890 were produced using the Neuromorph add-on in Blender 2.7 (Blender Foundation; [blender.org](http://blender.org))  
891 [51].

892  
893 **Monocular enucleation and *Arc* analysis**

894 Littermate pairs of Gpc5 WT and cKO mice were used for experiments at P28 (critical period) and  
895 P120 (adult). Mice were anesthetized with 2% isoflurane in oxygen and the right eye was removed  
896 via transection of the optic nerve. The empty ocular cavity was filled with Gelfoam (Pfizer 031508)  
897 and eyelid was sutured closed with 6-0 silk sutures (Henry Schein 101-2636). Erythromycin 0.5%  
898 and lidocaine 2% were applied to sutured eyelid. Overnight deprivation (control) mice were  
899 collected 12 hours later. 5-day monocularly deprived mice were collected after 5 days. Mice were  
900 maintained in a 12-hour light/12-hour dark cycle and collected (as described above) at the end of  
901 a 12-hour dark cycle. Mice were exposed to 30 minutes of bright light to induce *Arc* expression in  
902 neurons in the VC stimulated by the open eye before tissue collection. Coronal sections (18 $\mu$ m)  
903 were made from fresh frozen tissue on a cryostat and smFISH for *Arc* and imaging performed as  
904 described above. The width of the activated binocular zone was measured by analyzing the width  
905 of the *Arc* signal in VC L2/3 contralateral to the deprived eye performed using the measure tool  
906 in Zen blue edition software (Zeiss). A minimum of 5 littermate pairs and 4 sections per mouse  
907 were analyzed. Data in graphs presented as average per mouse.

908  
909 **Cell Culture**

910 **Retinal ganglion cell neuron culture:** Retinal ganglion cell neurons (RGCs) were isolated from  
911 P5-P7 Sprague Dawley rat retinas using immunopanning as described [9, 52]. Cells were plated  
912 at a density of 30,000 cells/well on glass coverslips (12mm diameter, Carolina Biological Supply  
913 633029) treated with poly-D-lysine (Sigma P6407) and laminin (R&D 340001001) and grown in  
914 24-well plates. RGCs were cultured in growth media containing: 50% DMEM (Thermo Fisher  
915 11960044), 50% Neurobasal (Thermo Fisher 21103049), Penicillin-Streptomycin (Thermo Fisher  
916 10437028), Glutamax (Thermo Fisher 35050-061), sodium pyruvate (Thermo Fisher 11360-070),  
917 N-acetyl-L-cysteine (Sigma A8199), insulin (Sigma I1882), triiodo-thyronine (Sigma T6397),  
918 SATO (containing: transferrin (Sigma T-1147), BSA (Sigma A-4161), progesterone (Sigma  
919 P6149), putrescine (Sigma P5780), sodium selenite (Sigma S9133)), B27 (Thermo Fisher  
920 17504044), BDNF (Peprotech 450-02), CNTF (Peprotech 450-13), and forskolin (Sigma F6886).  
921 RGCs were cultured in a humidified incubator at 37°C and 10% CO<sub>2</sub> with a half-media change  
922 every 3 days.

923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935

**Cortical astrocyte culture:** Cortical astrocytes were isolated and cultured as described from P1-P2 Sprague Dawley rats [15, 53]. After isolation astrocytes were plated in 15cm cell culture plates coated with poly-D-lysine (Sigma P6407) at 3 million cells/plate and maintained at 37°C and 10% CO<sub>2</sub>. Astrocyte culture medium was DMEM (Thermo Fisher 11960044) with 10% heat-inactivated fetal bovine serum (Thermo Fisher 10437028), Penicillin-Streptomycin (Thermo Fisher 10437028), Glutamax (Thermo Fisher 35050-061), insulin (Sigma I1882), sodium pyruvate (Thermo Fisher 11360-070), hydrocortisone (Sigma H0888), N-acetyl-L-cysteine (Sigma A8199). For RGC feeder layer treatment astrocytes were plated on cell culture inserts for use in a 24-well plate (Thermo Fisher 353104) at 50,000 cells/insert. Before addition to wells containing RGCs, inserts were washed 3 x with 34°C DPBS to remove astrocyte growth medium and switched to RGC growth medium.

936  
937  
938  
939  
940  
941

**RGC neuron treatment:** RGCs were cultured for 7-10 days in full RGC growth media to allow neurite outgrowth, prior to treatment for 6 days with astrocytes or purified GPC5. There were 3 conditions: RGCs alone (negative control), RGCs with a feeder layer of astrocytes (positive control), RGCs + recombinant mouse GPC5 at 1 $\mu$ g/ml (R&D 2689-G5-050/CF, resuspended in DPBS at 0.1 $\mu$ g/ $\mu$ l).

942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953

**Synaptic staining cultured RGC neurons:** RGCs were washed 3 x 5 minutes with 34°C DPBS, fixed in 4% PFA at 34°C for 10 minutes, washed 3 x 5 minutes in PBS, blocked and permeabilized for 30 minutes at RT in 50% antibody buffer (NaCl 150mM, Tris Base 50 mM, BSA 1%, L-Lysine 100 mM), 50% goat serum, and 0.2% Triton X100, washed 1 x 5 minutes with PBS. Primary antibodies were diluted in antibody buffer with 10% goat serum and incubated over night at 4°C: mouse anti-PSD95 (Pierce MA1-045) 1:500, rabbit anti-VGLUT2 (Synaptic Systems 135-403) 1:1000. The next day RGCs were washed 3 x 5 minutes with PBS and incubated with secondary antibodies: goat anti-mouse Alexa 488 (Thermo Fisher A11029) 1:1000, and goat anti-rabbit Alexa 594 (Thermo Fisher A11037) 1:1000 at RT for 1 hour, washed 3 x 5 minutes with PBS and coverslips mounted on microscope slides (Fisherfinest 12-544-2) with SlowFade gold antifade mountant with DAPI (Thermo Fisher S36939) and sealed with clear nail polish.

954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968

RGCs were imaged on a Zeiss AxioImager.Z2 microscope with a 63x oil immersion objective. Images were acquired at 14 bit, 1388x1040 image size, pixel size 0.102 $\mu$ m x 0.102 $\mu$ m. RGCs were selected in the DAPI (nucleus) channel, then pre and postsynaptic puncta imaged. Exposure settings for each imaging session were established based on the positive control (+astrocytes) and used for each image. Synaptic analysis was carried out using the ImageJ (NIH) puncta analyzer plug-in as previously described [8, 54]. Briefly, thresholds to select pre and postsynaptic puncta were established using the positive control condition (+astrocytes), then applied to all images to select puncta to be considered for colocalization = synapse. VGLUT2 puncta size analysis was carried out in ImageJ. Images of the VGLUT2 channel were thresholded based on the positive control condition (+astrocytes), then the 'analyze particles' function used to select thresholded puncta and measure their area. Two or three coverslips per condition and 10 cells per coverslip were imaged, giving 20-30 cells per group per experiment, and the experiment was repeated on 4 separate cultures. Data are presented as combined cells from all 4 experiments, and within each experiment data are normalized to the RGC alone condition.

969  
970  
971  
972  
973

### **Data presentation and statistical analysis**

Data in graphs is presented as mean  $\pm$  S.E.M. along with individual data points representing mice or cells as indicated in the figure legend. Statistical analysis was performed with Prism and the test used indicated in the figure legend. All tests were 2-tailed, and exact P values are reported on the graph. Data were tested for normality of distribution before statistical testing. For 2 samples

974 an unpaired T-test was used for normally distributed data and a Mann-Whitney test for non-  
975 normally distributed data. For more than 2 samples an ANOVA with Tukey's post-hoc test for  
976 multiple comparisons was used for normally distributed data, and a Kruskal-Wallis ANOVA on  
977 ranks with Dunn's post-hoc test for multiple comparisons used for non-normally distributed data.  
978 To compare categories a Chi-square test was used.

979 **References**

980

981 1. Brill, J. and Huguenard, J.R., *Sequential Changes in AMPA Receptor Targeting in the*  
982 *Developing Neocortical Excitatory Circuit*. The Journal of Neuroscience, 2008. **28**(51): p.  
983 13918-13928.

984 2. Kumar, S.S., Bacci, A., Kharazia, V., and Huguenard, J.R., *A developmental switch of*  
985 *AMPA receptor subunits in neocortical pyramidal neurons*. J Neurosci, 2002. **22**(8): p.  
986 3005-15.

987 3. Helm, M.S., Dankovich, T.M., Mandad, S., Rammner, B., Jähne, S., Salimi, V., . . .  
988 Rizzoli, S.O., *A large-scale nanoscopy and biochemistry analysis of postsynaptic*  
989 *dendritic spines*. Nature Neuroscience, 2021. **24**(8): p. 1151-1162.

990 4. Allen, N.J. and Eroglu, C., *Cell Biology of Astrocyte-Synapse Interactions*. Neuron, 2017.  
991 **96**(3): p. 697-708.

992 5. Bosworth, A.P. and Allen, N.J., *The diverse actions of astrocytes during synaptic*  
993 *development*. Current Opinion in Neurobiology, 2017. **47**: p. 38-43.

994 6. Risher, W.C., Patel, S., Kim, I.H., Uezu, A., Bhagat, S., Wilton, D.K., . . . Eroglu, C.,  
995 *Astrocytes refine cortical connectivity at dendritic spines*. Elife, 2014. **3**: p. e04047.

996 7. Christopherson, K.S., Ullian, E.M., Stokes, C.C., Mullowney, C.E., Hell, J.W., Agah, A., .  
997 . . . Barres, B.A., *Thrombospondins are astrocyte-secreted proteins that promote CNS*  
998 *synaptogenesis*. Cell, 2005. **120**(3): p. 421-33.

999 8. Allen, N.J., Bennett, M.L., Foo, L.C., Wang, G.X., Chakraborty, C., Smith, S.J., and  
1000 Barres, B.A., *Astrocyte glycicans 4 and 6 promote formation of excitatory synapses via*  
1001 *GluA1 AMPA receptors*. Nature, 2012. **486**(7403): p. 410-4.

1002 9. Farhy-Tselnicker, I., van Casteren, A.C.M., Lee, A., Chang, V.T., Aricescu, A.R., and  
1003 Allen, N.J., *Astrocyte-Secreted Glycan 4 Regulates Release of Neuronal Pentraxin 1*  
1004 *from Axons to Induce Functional Synapse Formation*. Neuron, 2017. **96**(2): p. 428-  
1005 445.e13.

1006 10. Blanco-Suarez, E., Liu, T.-F., Kopelevich, A., and Allen, N.J., *Astrocyte-Secreted*  
1007 *Chordin-like 1 Drives Synapse Maturation and Limits Plasticity by Increasing Synaptic*  
1008 *GluA2 AMPA Receptors*. Neuron, 2018. **100**(5): p. 1116-1132.e13.

1009 11. Filmus, J., Capurro, M., and Rast, J., *Glycans*. Genome Biology, 2008. **9**(5): p. 224.

1010 12. Siddiqui, T.J., Tari, P.K., Connor, S.A., Zhang, P., Dobie, F.A., She, K., . . . Craig, A.M.,  
1011 *An LRRTM4-HSPG complex mediates excitatory synapse development on dentate*  
1012 *gyrus granule cells*. Neuron, 2013. **79**(4): p. 680-95.

1013 13. de Wit, J., O'Sullivan, M.L., Savas, J.N., Condomitti, G., Caccese, M.C., Vennekens,  
1014 K.M., . . . Ghosh, A., *Unbiased discovery of glycan as a receptor for LRRTM4 in*  
1015 *regulating excitatory synapse development*. Neuron, 2013. **79**(4): p. 696-711.

1016 14. Ko, J.S., Pramanik, G., Um, J.W., Shim, J.S., Lee, D., Kim, K.H., . . . Ko, J., *PTP $\sigma$*   
1017 *functions as a presynaptic receptor for the glypican-4/LRRTM4 complex and is essential*  
1018 *for excitatory synaptic transmission*. Proceedings of the National Academy of Sciences,  
1019 2015. **112**(6): p. 1874-1879.

1020 15. Farhy-Tselnicker, I., Boisvert, M.M., Liu, H., Dowling, C., Erikson, G.A., Blanco-Suarez,  
1021 E., . . . Allen, N.J., *Activity-dependent modulation of synapse-regulating genes in*  
1022 *astrocytes*. eLife, 2021. **10**: p. e70514.

1023 16. Kaneko, T. and Fujiyama, F., *Complementary distribution of vesicular glutamate*  
1024 *transporters in the central nervous system*. Neuroscience Research, 2002. **42**(4): p. 243-  
1025 250.

1026 17. Nahmani, M. and Erisir, A., *VGluT2 immunohistochemistry identifies thalamocortical*  
1027 *terminals in layer 4 of adult and developing visual cortex*. Journal of Comparative  
1028 Neurology, 2005. **484**(4): p. 458-473.

1029 18. Dufour, A., Rollenhagen, A., Sätzler, K., and Lübke, J.H.R., *Development of Synaptic*  
1030 *Boutons in Layer 4 of the Barrel Field of the Rat Somatosensory Cortex: A Quantitative*  
1031 *Analysis*. Cerebral cortex (New York, N.Y. : 1991), 2016. **26**(2): p. 838-854.

1032 19. Oberlaender, M., de Kock, C.P.J., Bruno, R.M., Ramirez, A., Meyer, H.S., Dercksen,  
1033 V.J., . . . Sakmann, B., *Cell Type-Specific Three-Dimensional Structure of*  
1034 *Thalamocortical Circuits in a Column of Rat Vibrissal Cortex*. Cerebral Cortex, 2011.  
1035 **22**(10): p. 2375-2391.

1036 20. Rodriguez-Moreno, J., Rollenhagen, A., Arlandis, J., Santuy, A., Merchan-Pérez, A.,  
1037 DeFelipe, J., . . . Clasca, F., *Quantitative 3D Ultrastructure of Thalamocortical Synapses*  
1038 *from the “Lemniscal” Ventral Posteromedial Nucleus in Mouse Barrel Cortex*. Cerebral  
1039 Cortex, 2017. **28**(9): p. 3159-3175.

1040 21. Gu, Y. and Cang, J., *Binocular matching of thalamocortical and intracortical circuits in*  
1041 *the mouse visual cortex*. eLife, 2016. **5**: p. e22032.

1042 22. Mizuno, H., Luo, W., Tarusawa, E., Saito, Yoshikazu M., Sato, T., Yoshimura, Y., . . .  
1043 Iwasato, T., *NMDAR-Regulated Dynamics of Layer 4 Neuronal Dendrites during*  
1044 *Thalamocortical Reorganization in Neonates*. Neuron, 2014. **82**(2): p. 365-379.

1045 23. Gandal, M.J., Haney, J.R., Parikhshak, N.N., Leppa, V., Ramaswami, G., Hartl, C., . . .  
1046 Geschwind, D.H., *Shared molecular neuropathology across major psychiatric disorders*  
1047 *parallels polygenic overlap*. Science, 2018. **359**(6376): p. 693-697.

1048 24. Grubman, A., Chew, G., Ouyang, J.F., Sun, G., Choo, X.Y., McLean, C., . . . Polo, J.M.,  
1049 *A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals*  
1050 *cell-type-specific gene expression regulation*. Nature Neuroscience, 2019. **22**(12): p.  
1051 2087-2097.

1052 25. Irie, F., Badie-Mahdavi, H., and Yamaguchi, Y., *Autism-like socio-communicative deficits*  
1053 *and stereotypies in mice lacking heparan sulfate*. Proceedings of the National Academy of  
1054 Sciences, 2012. **109**(13): p. 5052-5056.

1055 26. Lau, S.-F., Cao, H., Fu, A.K.Y., and Ip, N.Y., *Single-nucleus transcriptome analysis*  
1056 *reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in*  
1057 *Alzheimer's disease*. *Proceedings of the National Academy of Sciences*, 2020. **117**(41):  
1058 p. 25800-25809.

1059 27. Potkin, S.G., Macciardi, F., Guffanti, G., Fallon, J.H., Wang, Q., Turner, J.A., . . . Xie, X.,  
1060 *Identifying gene regulatory networks in schizophrenia*. *Neuroimage*, 2010. **53**(3): p. 839-  
1061 47.

1062 28. Wang, K.S., Zhang, Q., Liu, X., Wu, L., and Zeng, M., *PKNOX2 is associated with formal*  
1063 *thought disorder in schizophrenia: a meta-analysis of two genome-wide association*  
1064 *studies*. *J Mol Neurosci*, 2012. **48**(1): p. 265-72.

1065 29. Schirmer, L., Velmeshev, D., Holmqvist, S., Kaufmann, M., Werneburg, S., Jung, D., . . .  
1066 Rowitch, D.H., *Neuronal vulnerability and multilineage diversity in multiple sclerosis*.  
1067 *Nature*, 2019. **573**(7772): p. 75-82.

1068 30. Yu, K., Lin, C.J., Hatcher, A., Lozzi, B., Kong, K., Huang-Hobbs, E., . . . Deneen, B.,  
1069 *PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis*. *Nature*,  
1070 2020. **578**(7793): p. 166-171.

1071 31. Zhang, Y., Chen, K., Sloan, S.A., Bennett, M.L., Scholze, A.R., O'Keeffe, S., . . . Wu,  
1072 J.Q., *An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and*  
1073 *Vascular Cells of the Cerebral Cortex*. *The Journal of Neuroscience*, 2014. **34**(36): p.  
1074 11929-11947.

1075 32. Clarke, L.E., Liddelow, S.A., Chakraborty, C., Münch, A.E., Heiman, M., and Barres,  
1076 B.A., *Normal aging induces A1-like astrocyte reactivity*. *Proceedings of the National*  
1077 *Academy of Sciences*, 2018. **115**(8): p. E1896-E1905.

1078 33. Boisvert, M.M., Erikson, G.A., Shokhirev, M.N., and Allen, N.J., *The Aging Astrocyte*  
1079 *Transcriptome from Multiple Regions of the Mouse Brain*. *Cell Reports*, 2018. **22**(1): p.  
1080 269-285.

1081 34. Zhang, Q., Lee, W.-C.A., Paul, D.L., and Ginty, D.D., *Multiplexed peroxidase-based*  
1082 *electron microscopy labeling enables simultaneous visualization of multiple cell types*.  
1083 *Nature Neuroscience*, 2019. **22**(5): p. 828-839.

1084 35. Harris, K. and Stevens, J., *Dendritic spines of rat cerebellar Purkinje cells: serial electron*  
1085 *microscopy with reference to their biophysical characteristics*. *The Journal of*  
1086 *Neuroscience*, 1988. **8**(12): p. 4455-4469.

1087 36. Harris, K. and Stevens, J., *Dendritic spines of CA 1 pyramidal cells in the rat*  
1088 *hippocampus: serial electron microscopy with reference to their biophysical*  
1089 *characteristics*. *The Journal of Neuroscience*, 1989. **9**(8): p. 2982-2997.

1090 37. Syken, J., Grandpre, T., Kanold, P.O., and Shatz, C.J., *PirB restricts ocular-dominance*  
1091 *plasticity in visual cortex*. *Science*, 2006. **313**(5794): p. 1795-800.

1092 38. Bourne, J.N. and Harris, K.M., *Balancing Structure and Function at Hippocampal*  
1093 *Dendritic Spines*. *Annual Review of Neuroscience*, 2008. **31**(1): p. 47-67.

1094 39. Knott, G.W., Holtmaat, A., Wilbrecht, L., Welker, E., and Svoboda, K., *Spine growth*  
1095 *precedes synapse formation in the adult neocortex in vivo*. *Nature Neuroscience*, 2006.  
1096 **9**(9): p. 1117-1124.

1097 40. Grillo, F.W., Song, S., Teles-Grilo Ruivo, L.M., Huang, L., Gao, G., Knott, G.W., . . . De  
1098 Paola, V., *Increased axonal bouton dynamics in the aging mouse cortex*. *Proceedings of*  
1099 *the National Academy of Sciences*, 2013. **110**(16): p. E1514-E1523.

1100 41. Bochner, D.N., Sapp, R.W., Adelson, J.D., Zhang, S., Lee, H., Djurisic, M., . . . Shatz,  
1101 *C.J., Blocking PirB up-regulates spines and functional synapses to unlock visual cortical*  
1102 *plasticity and facilitate recovery from amblyopia*. *Science Translational Medicine*, 2014.  
1103 **6**(258): p. 258ra140.

1104 42. Condomitti, G., Wierda, K.D., Schroeder, A., Rubio, S.E., Vennekens, K.M., Orlandi, C., .  
1105 . . de Wit, J., *An Input-Specific Orphan Receptor GPR158-HSPG Interaction Organizes*  
1106 *Hippocampal Mossy Fiber-CA3 Synapses*. *Neuron*, 2018. **100**(1): p. 201-215.e9.

1107 43. Wearne, S.L., Rodriguez, A., Ehlenberger, D.B., Rocher, A.B., Henderson, S.C., and  
1108 Hof, P.R., *New techniques for imaging, digitization and analysis of three-dimensional*  
1109 *neural morphology on multiple scales*. *Neuroscience*, 2005. **136**(3): p. 661-680.

1110 44. Risher, W.C., Ustunkaya, T., Singh Alvarado, J., and Eroglu, C., *Rapid Golgi Analysis*  
1111 *Method for Efficient and Unbiased Classification of Dendritic Spines*. *PLoS ONE*, 2014.  
1112 **9**(9): p. e107591.

1113 45. Martell, J.D., Deerinck, T.J., Lam, S.S., Ellisman, M.H., and Ting, A.Y., *Electron*  
1114 *microscopy using the genetically encoded APEX2 tag in cultured mammalian cells*. *Nat*  
1115 *Protoc*, 2017. **12**(9): p. 1792-1816.

1116 46. Horstmann, H., Körber, C., Sätzler, K., Aydin, D., and Kuner, T., *Serial Section Scanning*  
1117 *Electron Microscopy (S3EM) on Silicon Wafers for Ultra-Structural Volume Imaging of*  
1118 *Cells and Tissues*. *PLOS ONE*, 2012. **7**(4): p. e35172.

1119 47. Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I., Preibisch, S., Longair, M.,  
1120 . . Douglas, R.J., *TrakEM2 Software for Neural Circuit Reconstruction*. *PLOS ONE*,  
1121 2012. **7**(6): p. e38011.

1122 48. Litvina, E., Adams, A., Barth, A., Bruchez, M., Carson, J., Chung, J.E., . . . Koroshetz,  
1123 W., *BRAIN Initiative: Cutting-Edge Tools and Resources for the Community*. *The Journal*  
1124 *of Neuroscience*, 2019. **39**(42): p. 8275-8284.

1125 49. Wetzel, A.W., Bakal, J., Dittrich, M., Hildebrand, D.G.C., Morgan, J.L., and Lichtman,  
1126 J.W. *Registering large volume serial-section electron microscopy image sets for neural*  
1127 *circuit reconstruction using FFT signal whitening*. in *2016 IEEE Applied Imagery Pattern*  
1128 *Recognition Workshop (AIPR)*. 2016.

1129 50. Berger, D.R., Seung, H.S., and Lichtman, J.W., *VAST (Volume Annotation and*  
1130 *Segmentation Tool): Efficient Manual and Semi-Automatic Labeling of Large 3D Image*  
1131 *Stacks*. *Frontiers in Neural Circuits*, 2018. **12**.

1132 51. Jorstad, A., Blanc, J., and Knott, G., *NeuroMorph: A Software Toolset for 3D Analysis of*  
1133 *Neurite Morphology and Connectivity*. *Frontiers in Neuroanatomy*, 2018. **12**.

1134 52. Winzeler, A. and Wang, J.T., *Purification and culture of retinal ganglion cells from*  
1135 *rodents*. *Cold Spring Harb Protoc*, 2013. **2013**(7): p. 643-52.

1136 53. McCarthy, K.D. and de Vellis, J., *Preparation of separate astroglial and oligodendroglial*  
1137 *cell cultures from rat cerebral tissue*. *The Journal of Cell Biology*, 1980. **85**(3): p. 890-  
1138 902.

1139 54. Ippolito, D.M. and Eroglu, C., *Quantifying Synapses: an Immunocytochemistry-based*  
1140 *Assay to Quantify Synapse Number*. *Journal of Visualized Experiments : JoVE*,  
1141 2010(45): p. 2270.

1142



Figure 1

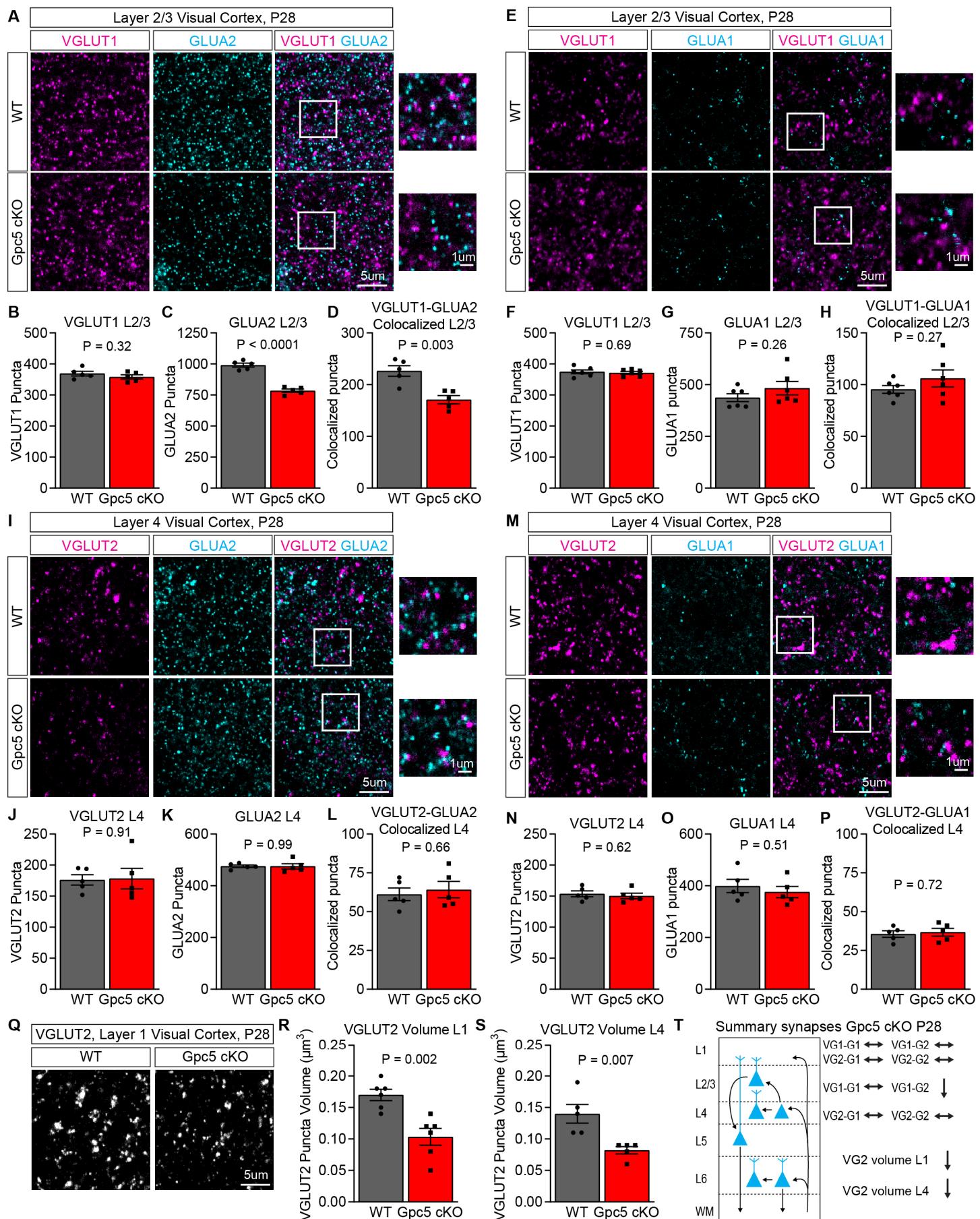



Figure 2

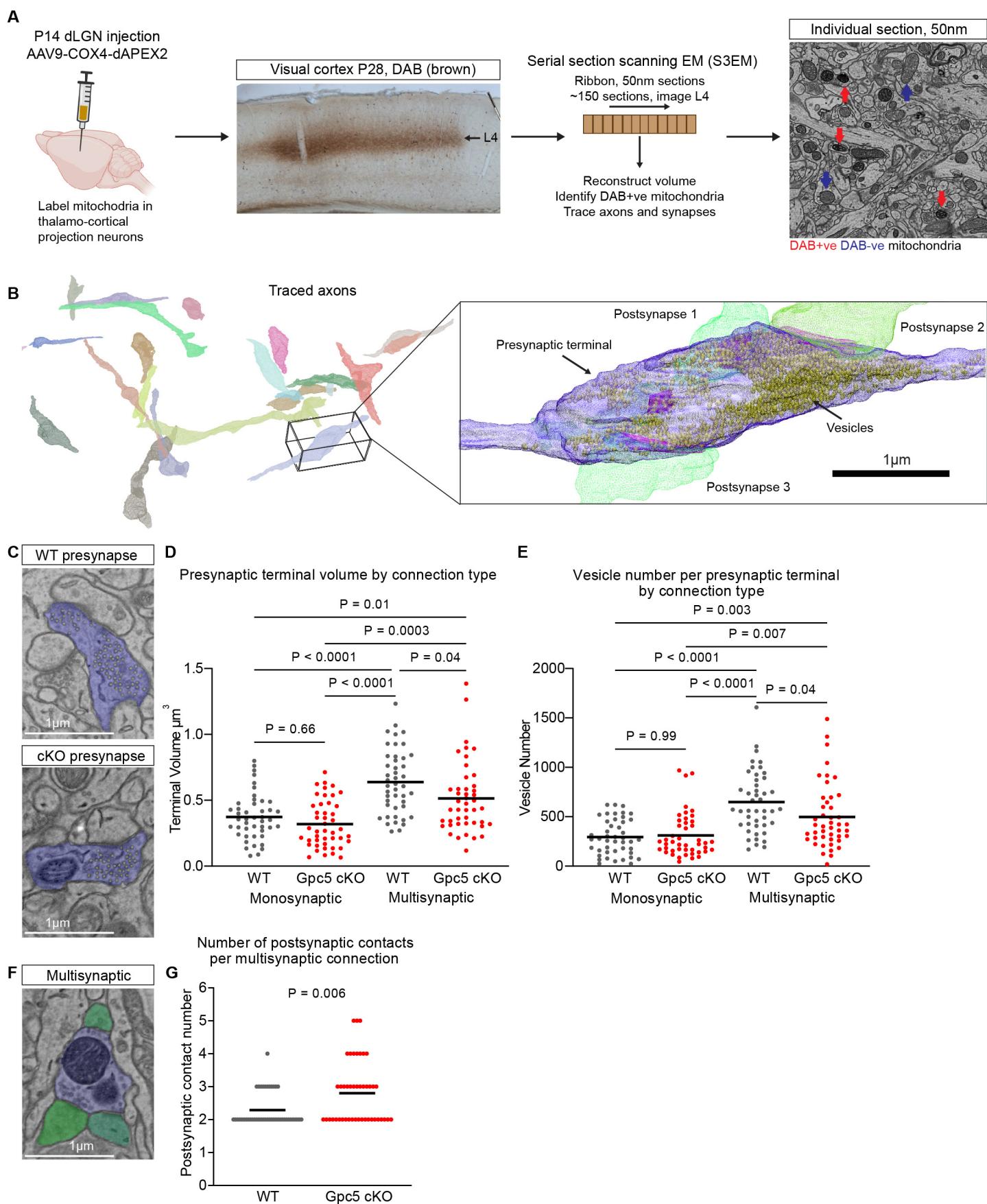



Figure 3

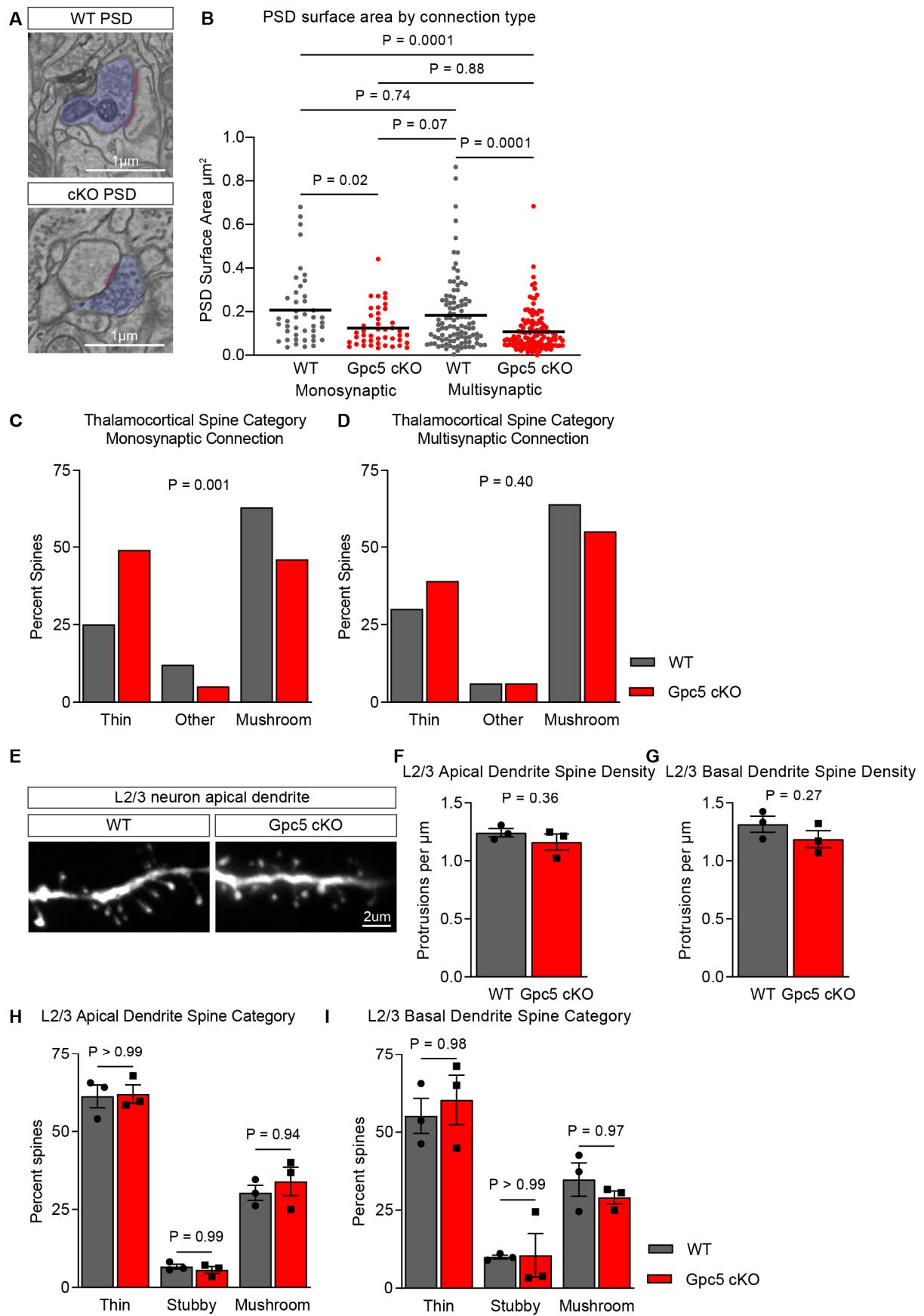



Figure 4

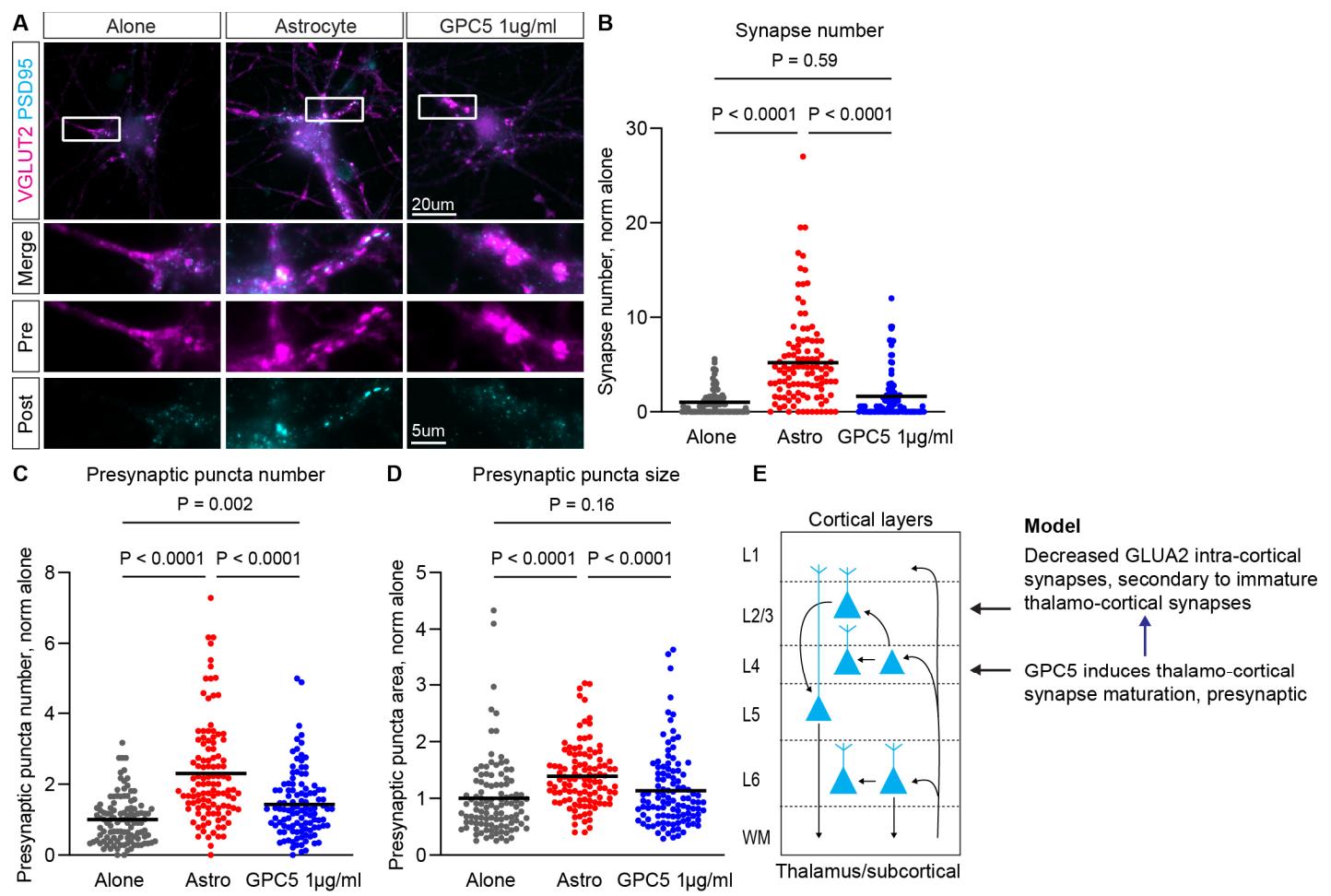



Figure 5

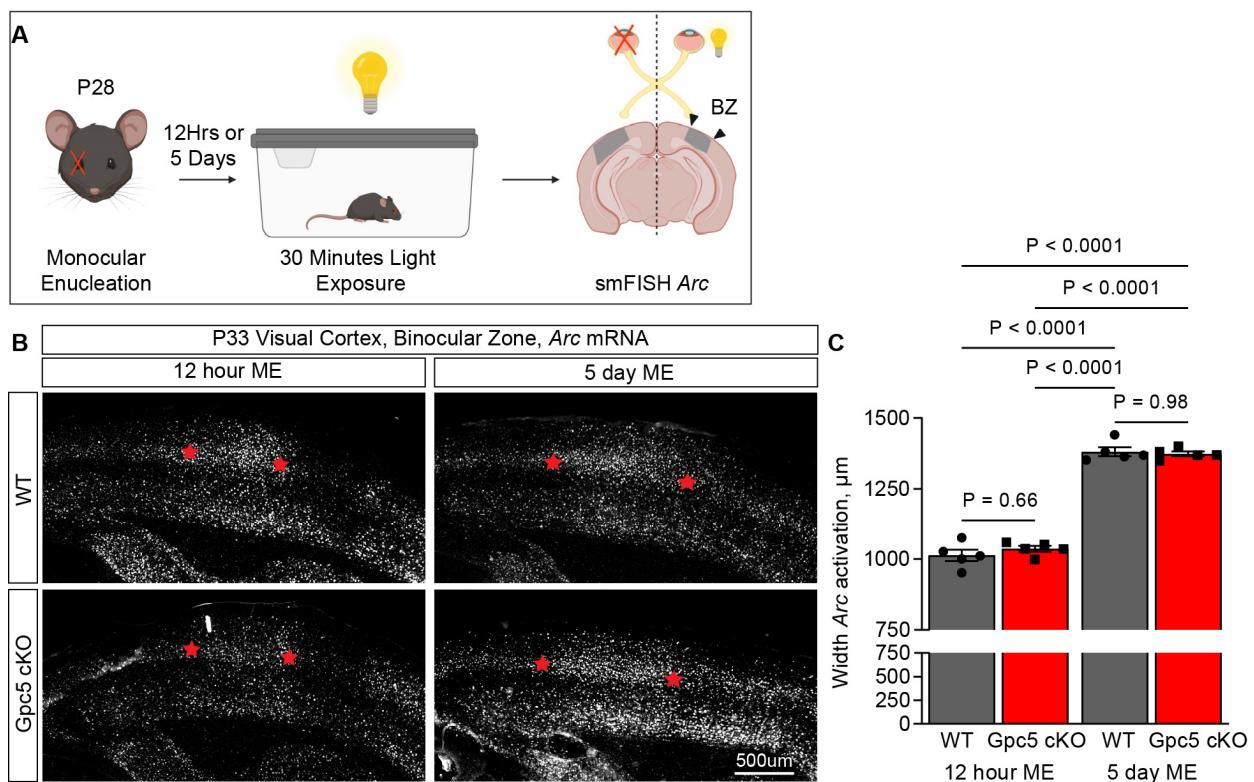



Figure 6

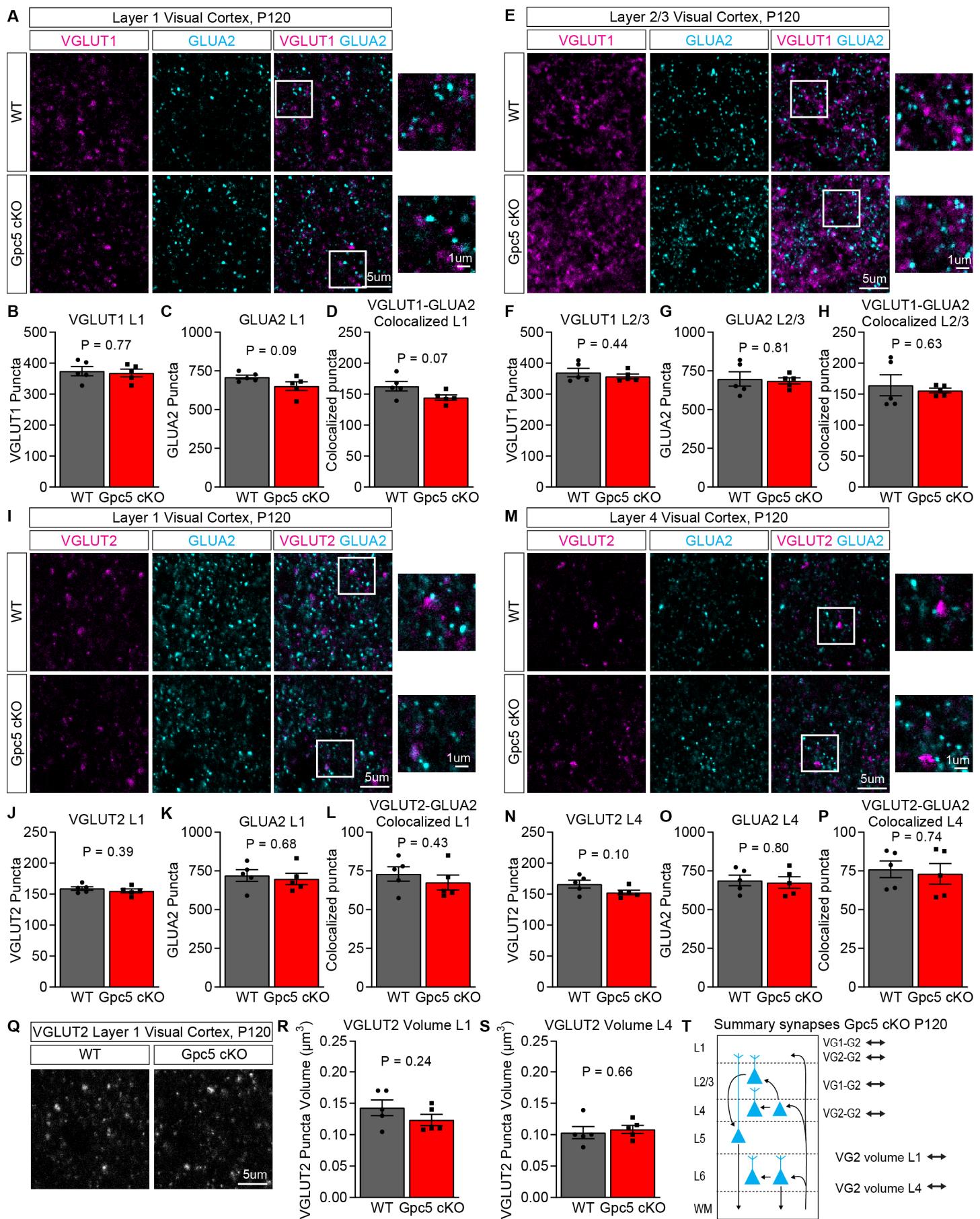



Figure 7

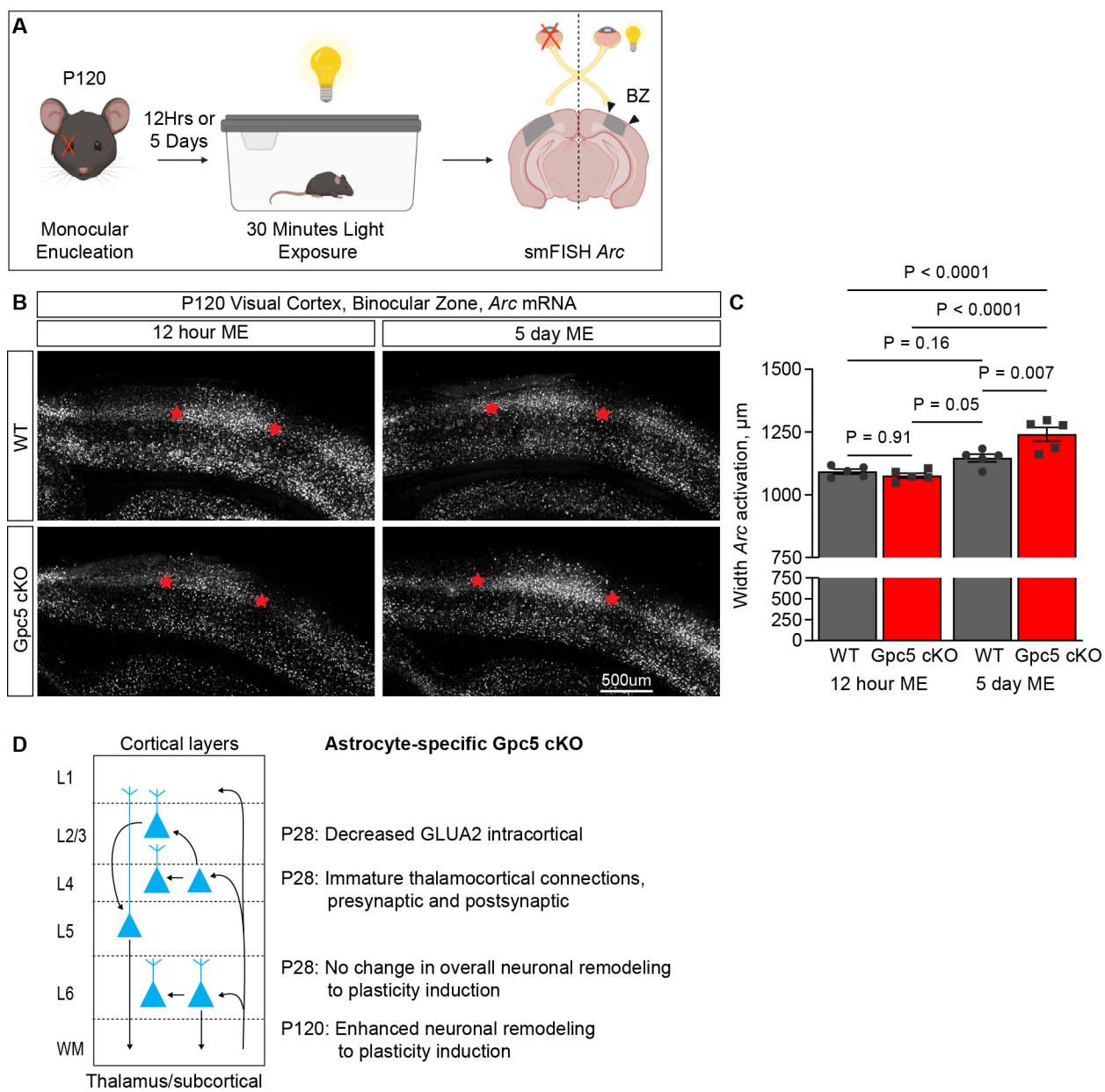



Figure 8