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ABSTRACT

A central goal in neuroscience is the development of a comprehensive mapping between
structural and functional brain features. Computational models support in vivo investigation of
the mechanisms mediating this relationship but currently lack the requisite biological detail.

Here, we characterize human structural brain networks weighted by multiple white matter
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microstructural features to assess their potential joint utilization in computational models. We
report edge-weight-dependent spatial distributions, variance, small-worldness, rich club, hubs, as
well as relationships with function, edge length and myelin. Contrasting networks weighted by
the total intra-axonal cross-sectional area and myelin content of white matter tracts, we find
opposite relationships with functional connectivity, an edge-length-independent inverse
relationship with each other, and the lack of a canonical rich club in myelin-weighted networks.
When controlling for edge length, tractometry-derived networks weighted by either tensor-based
metrics or neurite density show no relationship with whole-brain functional connectivity. We
conclude that structure-function brain models are likely to be improved by the co-utilization of
structural networks weighted by total intra-axonal cross-sectional area and myelin content. We
anticipate that the proposed microstructure-weighted computational modeling approach will

support mechanistic understanding of the structure-function relationship of the human brain.

AUTHOR SUMMARY

For computational network models to provide mechanistic links between brain structure and
function, they must be informed by networks in which edge weights quantify structural features
relevant to brain function. Here, we characterized several weighted structural networks capturing
multiscale features of white matter connectivity. We describe these networks in terms of edge
weight distribution, variance and network topology, as well as their relationships with each other,
edge length and function. Overall, these findings support the joint use of structural networks

weighted by the total intra-axonal cross-sectional area and myelin content of white matter tracts
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in structure-function models. This thorough characterization serves as a benchmark for future

investigations of weighted structural brain networks.

INTRODUCTION

The quest to relate human structural and functional brain networks spans the spectrum of spatial
scale and repertoire of data modalities absolutely. At the macroscale, the human brain can be
modeled as an anatomical network of discrete neuronal populations (nodes) interconnected by
white matter fibers (edges) (Sporns, 2011). Coordinated spatiotemporal patterns of neuronal
activity unfolding upon this structural backbone are fine-tuned by white matter microstructure
(Hodgkin & Huxley, 1952; Huxley & Stampfli, 1949; Moore et al., 2020; Pumphrey & Young,
1938) and form the basis of cognition and behavior (Biswal et al., 1995; Greicius et al., 2003;
Hampson et al., 2006; Liégeois et al., 2019; S. M. Smith et al., 2009; Martijn P. Van Den Heuvel
et al., 2009). Increasingly, MRI facilitates in vivo measurement of multi-scale properties of both
brain structure (e.g., (Alexander et al., 2019; Drakesmith et al., 2019; Jeurissen et al., 2017;
Mancini et al., 2020)) and function (e.g., (Finn et al., 2019; Friston, 2011; Gordon et al., 2017;
Liu et al., 2022)). Diffusion MRI streamline tractography and resting-state functional MRI are
often respectively used to estimate structural and functional connectivity (SC & FC) networks.
Network science provides a framework to bring these fundamentally different substrates into a
common space where their features can be quantified (Fornito et al., 2016; Sporns, 2010; Suarez
et al., 2020) and used to probe the mechanisms mediating human brain function (e.g., (Cabral et

al., 2017; Fornito et al., 2015)).


https://doi.org/10.1101/2023.03.01.530710
http://creativecommons.org/licenses/by-nc-nd/4.0/

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.01.530710; this version posted March 2, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

SC network edges can be weighted by a range of MRI-derived metrics quantifying white matter
microstructural features relevant to brain function including voxel-level estimates of tissue
diffusivity (e.g., (Caeyenberghs et al., 2016)), neurite density (Zhang et al., 2012), axon diameter
distributions (Alexander et al., 2010; Assaf et al., 2008), myelin content (Heath et al., 2018;
Mancini et al., 2020), and the g-ratio (ratio of inner/outer diameters of myelinated axons) (Stikov
et al., 2011, 2015); as well as tract/bundle-level measures of axonal cross-sectional area
(Daducci, Dal Palu, et al., 2015; R. E. Smith et al., 2015). Subsets of these metrics have been
investigated using a microstructure-weighted connectomics approach (Boshkovski et al., 2021;
Caeyenberghs et al., 2016; Deligianni et al., 2016; Frigo et al., 2020; Mancini et al., 2018;
Messaritaki et al., 2021; Schiavi et al., 2020; M. P. van den Heuvel et al., 2010; Martijn P. van
den Heuvel & Sporns, 2011; F. C. Yeh et al., 2016), however a comprehensive characterization

has not yet been provided.

Our goal is to characterize a range of standard and state-of-the-art weighted structural brain
networks in support of their utilization in computational models of brain function. The networks
considered here can be grouped into two classes: those computed with tractometry (S Bells et al.,
2011) and those computed directly from the streamline weights in a tractogram i.e., streamline-
specific. We consider three examples of the latter: (1) the number of streamlines (NoS); and two
methods which optimize the streamline weights in a tractogram to increase specificity for white
matter structural features (2) spherical-deconvolution informed filtering of tractograms (SIFT2)
(R. E. Smith et al., 2015) and (3) convex optimization modeling for microstructure informed

tractography (COMMIT) (Daducci et al., 2013; Daducci, Dal Palu, et al., 2015). SIFT2 and
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91 COMMIT were designed to overcome known limitations of streamline counts (Girard et al.,

92  2014; Jones, 2010; Jones et al., 2013). While the edge weights in all three networks generally

93  capture white matter features relevant to connection strength, SIFT2 and COMMIT more

94  specifically quantify the total intra-axonal cross-sectional area of white matter tracts (henceforth

95 referred to as “edge caliber”). To date, SIFT2 and COMMIT have not been compared to NoS

96  with uniform connection density (Frigo et al., 2020; Schiavi et al., 2020; C. H. Yeh et al., 2016).

97  Thus, it remains unclear how the edge weights themselves affect network topology.

98

99 In contrast, tractometry allows network edge weights to be derived from any volumetric brain
100 image that is co-registered to the tractogram. This increase in methodological flexibility comes at
101  the expense of anatomical specificity. Tractometry is unable to resolve the separate contributions
102  of individual fiber populations to the aggregate value of a voxel. Given that an estimated ~90%
103  of white matter voxels at typical diffusion MRI resolutions (~2mm) contain multiple fiber
104  populations (Jeurissen et al., 2012), the quantitative link between white matter microstructure
105 and essentially all tractometry-derived edge weights is biased by partial volume effects.
106
107  In this work, tractometry is combined with a diffusion tensor model (Basser, 1995; Basser et al.,
108  1994) to derive networks weighted by FA (fractional anisotropy) and RD (radial diffusivity),
109  which respectively quantify the degree of diffusion anisotropy (i.e., directional dependence) and
110  diffusion magnitude perpendicular to the major axis. The crossing fiber problem described above
111  is also known to limit the ability of diffusion tensor models to quantify white matter features (De
112 Santis et al., 2014; J. D. Tournier et al., 2011). Additional tractometry networks examined here

113 include a network weighted by ICVF (intracellular volume fraction) computed with NODDI
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114 (Neurite Orientation Dispersion and Density Imaging) (Zhang et al., 2012), as well as a network
115  weighted by the longitudinal relaxation rate R1 (1/T1), which has been shown to correlate with
116  histology-derived myelin content (Mottershead et al., 2003).

117

118  This characterization of weighted structural brain networks is carried out as follows: (1) within-
119  network features of edge weight distribution and variance; (2) edgewise relationships with FC,
120  edge length and myelin (R1); and (3) topological features of small-worldness, rich club and

121 network hubs. Importantly, uniform binary connectivity is enforced across all weighted network
122 variants allowing the edge weights themselves to drive the characterization.

123

124
125 RESULTS

126 In 50 healthy adults (27 men; 29.54+5.62 years; 47 right-handed), structural brain networks were
127  estimated from multi-shell diffusion MRI data with probabilistic tractography. Each subject’s
128  structural network was used to compute 8 SC networks in which edges were weighted by: NoS,
129  SIFT2, COMMIT, FA, RD, ICVF, R1 and LoS (edge length computed as the mean length of

130 streamlines). The edge weights in NoS, SIFT2 and COMMIT networks were normalized by node
131  volume. Additionally, a static FC network was derived for each subject by zero-lag Pearson

132  cross-correlation of nodewise resting-state time series. Unless otherwise stated, all results shown
133  correspond to networks parcellated with the Schaefer-400 cortical atlas (Schaefer et al., 2018)
134  and include 14 subcortical nodes.

135

136
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Structural Brain Networks Vary in the Distribution of Their Edge Weights

Group-level networks weighted by NoS, SIFT2 and COMMIT show spatially distributed patterns
of high magnitude edge weights and noticeably accentuate within-module connectivity (Figure
1A). Modules correspond to the 7-canonical resting-state networks (Thomas Yeo et al., 2011)
plus the subcortex. These patterns are hallmarks of FC networks and are observed in the FC
network shown here. The contrast between high and low magnitude edge weights is most evident
in COMMIT. By comparison, the spatial variation of edge weight distribution in the tractometry
networks is smoother with more pronounced regional concentrations. R is highest in the edges
connecting the visual module to itself and to the rest of the brain; and lowest within the
subcortex and between the subcortical and limbic modules. The surface plot shows the highest

concentration of R1 in the white matter projections of posterior cortical regions.

A group edge weights
NoS(og) SIFT2(l0g) COMMIT (10g)

B group edge weights subject edge weights
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Figure 1. Edge Weight Distribution. (A) Connectivity matrices (top row) of group-level edge weights for FC (functional
connectivity), NoS (number of streamlines), SIFT2 (spherical-deconvolution informed filtering of tractograms), COMMIT
(convex optimization modeling for microstructure informed tractography), R: (longitudinal relaxation rate), ICVF (intra-cellular
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153  volume fraction), FA (fractional anisotropy), RD (radial diffusivity) and LoS (mean length of streamlines). Each network is
154 composed of 414 nodes as defined by the Schaefer-400 cortical parcellation and 14 subcortical ROIs. Nodes are grouped into the
155 canonical resting state modules (Thomas Yeo et al., 2011) plus the subcortex: SUB (subcortex), VIS (visual), SMN

156 (somatomotor), DAN (dorsal attention), SVAN (salience ventral attention), LIMB (limbic), CONT (control), and DMN (default
157 mode). 3D cortical surfaces (bottom row) of group-level edge weights in the Schaefer-100 parcellation generated with BrainNet
158 Viewer (Xia et al., 2013). Edge diameter and color indicate weight magnitude. (B) Distribution of group-level edge weights
159 binned by: (top) within and between module; (bottom) unimodal, transmodal and between. Unimodal is defined as the VIS and
160 SMN modules. Transmodal is defined as the DMN, CONT, DAN and SVAN modules. (C) Probability density of pooled subject-
161 level edge weight distributions. Ry, ICVF, FA, RD, LoS and FC are shown on a linear x-axis (top), and NoS, SIFT2 and

162 COMMIT are shown on a logarithmic x-axis (bottom). All networks were normalized to the range [0 1] by dividing by the

163 subject-level max for visualization. The edge weights in NoS, SIFT2 and COMMIT networks were logio transformed for these

164  plots.
165

166  Group-level edge weight distributions are summarized with respect to two important

167  organizational patterns of brain function (Figure 1B): within and between resting state modules
168 (Thomas Yeo et al., 2011); and along the principal functional gradient (Margulies et al., 2016).
169  NoS, SIFT2 and COMMIT mirror FC in both plots with greater edge weight magnitude within
170  module, especially within unimodal modules. R1, ICVF, FA and RD generally mirror LoS with
171  the reverse trend: higher between module and lowest in unimodal modules. This suggests that
172  tractometry-derived networks may be influenced by edge length to a greater extent.

173

174  Subject-level edge weight distributions in R1, ICVF, FA and RD are near-normal and network-
175  specific (Figure 1C). They differ in both the magnitude (R1 > ICVF > FA > RD) and dynamic
176  range (FA & ICVF > R:1 & RD) of their edge weights. In contrast, NoS, SIFT2 and COMMIT
177  distributions are highly skewed and tend to be much lower in magnitude (dashed lines). This
178  effect is greatest in COMMIT suggesting that the optimization performed by COMMIT exerts a
179  stronger scaling effect than SIFT2. These results support the conclusion that the structural

180  networks considered here quantify subsets of white matter features which are at least partially
181  non-overlapping.

182

183
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184  Edge Weights in Streamline-Specific Networks Are More Variable

185  Edge weight variance was quantified using the Quartile Coefficient of Dispersion (CQD) due to
186 its robustness to outliers and skewed data. The CQD is computed from the 15t and 3" quartiles as:
187 CQD = Q3 —0Q;/ Q3+ Q4.

188

189 Intra-subject variance is roughly 2-fold greater in NoS, SIFT2 and COMMIT than LoS and FC;
190 and an order of magnitude greater than R1, ICVF, FA and RD in all subjects (Figure 2A).

191 COMMIT is the highest overall. Subjects are more tightly clustered in all weighted SC networks,
192  relative to FC: intra-subject CQD values span roughly a 4-fold greater range in FC. This

193  suggests that individual diversity of functional connectivity is not necessarily reflected in the
194  variability of their structural networks. These patterns are repeated for inter-subject variance.
195  However, FC shows a small subset of highly variable edges with roughly 4-fold greater CQD
196 than the maximum values observed in COMMIT i.e., the most subject-specific connections are
197  functional. The very low edge weight variability in R1, ICVF, FA and RD is in part due to the
198  widespread smoothing effect (partial voluming) resulting from the tractometry computation.

199
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201 Figure 2. Edge Weight Variability. Variability is quantified using the coefficient of quartile dispersion (CQD). (A) Violin

202 distributions of intra-subject (left) and inter-subject (right) edge weight variance. Colored data points respectively correspond to
203 individual subjects (N=50) and edges (N=8549). (B) Surface projections of edgewise mean inter-subject variance for cortical
204 nodes in the Schaefer-400 parcellation (left) and 14 subcortical nodes (right). Cortical and subcortical surfaces were

205 respectively generated with BrainSpace (Vos de Wael et al., 2020) and ENIGMA toolboxes (Lariviére et al., 2021). (C) The

206  proportion of within-network max CQD is shown across edge length bins for FC, NoS, SIFT2, COMMIT and R (top), as well as
207 ICVF, FA and RD (middle). Edge weights are grouped into 6 bins according to edge length, as illustrated by the histogram

208 (bottom). The edges of bins 1-5 were linearly spaced of width, w. The edges of the final bin were of width 3w.

209

210  In general, inter-subject edge weight variance is more spatially distributed in SC networks

211  relative to FC (Figure 2B). COMMIT shows the highest mean CQD over the entire cortex and
212 subcortex. NoS, SIFT2 and COMMIT all show lateral-medial and posterior-anterior cortical

213  gradients. Mean CQD in FC shows the highest concentration in medial inferior frontal cortex and
214  to a lesser extent, the expected pattern of high variance in association cortex. The most variable
215  subcortical regions include the hippocampus, amygdala and accumbens.

216

217  Many features of brain networks (e.g., connection probability, weight magnitude) are known to

218  vary with edge length. Here, we examined the relationship between edge weight variability and

10
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219  edge length by computing the CQD within subsets of group-level edge weights binned according
220  to their edge length (Figure 2C). Edge weight variance in NoS, SIFT2, COMMIT and Rz is
221  highest in the shortest edges and decreases with edge length. ICVF roughly follows the same
222  pattern. FA and RD instead show the highest variability in the longest edges. Overall, the edge
223  weights in streamline-specific SC networks (NoS, SIFT2 and COMMIT) show greater contrast
224 both within and across subjects. SC networks show network-dependent relationships between
225  edge weight variance and edge length. Shorter edges are more variable in myelin- and

226  connection strength-weighted networks, and longer edges are more variable in networks with
227  edge weights derived from a diffusion tensor model.

228

229

230  Opposing Correlations with Function in Connection-Strength- & Myelin-Weighted Networks
231  Shifting to inter-network edge weight relationships shows that SC networks are differentially
232  related to FC (Figure 3A). Importantly, we also see that all brain networks (SC and FC) are
233  strongly and differentially related to edge length at the subject and group levels. Correlations
234 with edge length are negative for NoS, SIFT2, COMMIT, RD and FC; and positive for Ry,

235 ICVF, and FA. Correlation magnitude is strongest in group-level COMMIT (p ~-0.8). To

236  remove this strong obscuring effect, we recomputed correlations using residual edge weights
237  following linear regression of edge length (Figure 3B). NoS, SIFT2 and COMMIT remain
238  positively associated (group-level p ~ 0.35) and R1 remains negatively associated with FC

239  (group-level p = -0.22). Correlation magnitude was reduced following linear regression in all
240  cases. ICVF, FA and RD are reduced to 0 suggesting that they may not be useful in modeling

241  whole-brain FC. These results support the idea that Ri-weighted SC networks provide

11
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242  complementary information to NoS, SIFT2 and COMMIT about the brain structure-function

243  relationship.
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246  Figure 3. Edge Weight Correlations with FC and Edge Length. (A) Violin distributions of edgewise Spearman’s rank

247 correlations of all networks with FC (left) and edge length (right). (B) Violin distributions of edgewise Spearman’s rank

248 correlations of residual edge weights in all networks with residual edge weights in FC. Residual edge weights were computed by
249 linear regression of edge length. Colored data points and bars respectively indicate subject-level and group-level correlations.

250

251

252  Edge Caliber and Myelin Content are Inversely Related

253  Here, we ask how R1, which we refer to as the myelin-weighted network, is related to the

254  connection-strength-weighted network COMMIT. Edge-length regressed residual edge weights

255 in NoS, SIFT2 and COMMIT show a negative association with R1 residuals for all subjects and

12
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256  at the group level, which is strongest in COMMIT (group-level p & r =~ -0.29) (Figure 4A). This
257  suggests an edge-length independent inverse relationship between white matter structural

258  features related to connection strength and myelin content.
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261 Figure 4. The Myelin-Dependence of Structural Brain Networks. (A) Violin distributions (left) of edgewise Spearman’s rank
262 correlations with the myelin-weighted network Ri. Residual edge weights are compared following linear regression of edge

263 length. Colored data points and bars respectively indicate subject-level and group-level correlations. Heat scatter plots (right) of
264 group-level residual edge weights in R1 as a function of NoS (left), SIFT2 (left middle), COMMIT (right middle) and ICVF (right)
265 with the best fit linear curve shown in black. Color indicates data density. (B) Line plot (left) of edgewise Spearman’s rank

266 correlation of edge weights in R1 vs COMMIT across edge length bins. Group-level and subject-level are respectively shown in
267 green and blue. The square and diamond markers connected by dotted lines show binned correlation values, and the horizontal
268 dashed green and blue lines mark the correlation values for all edges pooled together. Scatter plot (middle) of group-level edge
269 weights in R as a function of COMMIT with data points colored by bin identity. Histograms (right) illustrating subject- and
270  group-level edge length bins.

271
272  Computing correlations of edge weights (not residuals) within edge-length bins allows the
273 inverse relationship between R1 and COMMIT to be traced to the shortest edges of the network

274 (group p = -0.40, subject p ~ -0.50). As edge length increases, this relationship is reduced to 0,
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275  then becomes strongly positive in the longest subject-level edges (p ~ 0.39). The scatter plot of
276  group-level R1 vs COMMIT (middle) shows decreasing COMMIT and increasing R1 with

277  increasing edge length. All together, these results support an inverse relationship between the
278  edge caliber and myelin content of a given white matter tract. This can be partly explained by the
279  differential dependence of these structural features on edge length: longer tracts tend to be more
280  myelinated with lower total intra-axonal cross-sectional area. However, this relationship is robust
281  to controlling for edge length supporting an intrinsic dependence between these white matter

282  features.

283
284

285  Divergent Small-Worldness, Hubness and Rich Club in Weighted Structural Networks

286 In this final section, we apply network analysis tools (Rubinov & Sporns, 2010) based on graph
287  theory (Fornito et al., 2013; Sporns, 2018) to group-level weighted SC networks. This facilitates
288  high-level interpretation of general features of network communication such as integrative vs
289  segregative processing and the economy of network organization. Although the high material
290 and metabolic cost of brain tissue naturally tends to favor local connectivity (high clustering),
291  short overall network path length is achieved through a small number of relatively expensive
292  long-range connections (Bullmore & Sporns, 2012). These edges and the nodes they interlink
293  form a densely connected network core known as the rich club (Martijn P. van den Heuvel &
294  Sporns, 2011). While the general proclivity for high local clustering gives rise to segregated

295  functional modules, the rich-club nodes act as network communication hubs supporting inter-
296  modular integration (Collin et al., 2014; de Reus & van den Heuvel, 2014; Griffa & Van den
297  Heuvel, 2018; Kim & Min, 2020; Martijn P. van den Heuvel & Sporns, 2013). Thus, small-world

298  network topology (high clustering and low path length) (Bassett & Bullmore, 2006, 2017)
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299  supports both integrative and segregative processing at a minimum of wiring cost, and the

300 underlying scaffold of hub brain regions tend to show high centrality, low path length (high

301 closeness) and low clustering (M. P. van den Heuvel et al., 2010).

302

303  Here, we report normalized small-worldness, normalized rich-club curves and nodal hubness
304  (Figure 5). Normalized small-worldness (S) is computed as the quotient of normalized measures

305  of clustering coefficient (C/Cnun) and path length (L/Lnun).
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308 Figure 5. Group-level network topology. (A) Small-worldness was estimated in all structural networks: clustering coefficient was
309 normalized within each node, averaged across nodes (C/Cnuit), then plot as a function of normalized Characteristic path length
310 (L/Lnu). Topology measures averaged across 50 degree and strength preserving null networks were used for normalization.
311 Networks above the identity line (dotted black) are characterized by the small world attribute. Tractometry networks are

312 indicated by the arrow. (B) Normalized rich club curves are shown for COMMIT, NoS and SIFT2 (top), as well as ICVF, RD, FA
313 and R1 (bottom). A single binary network (dotted gray line) is also shown (bottom) as binary connectivity was uniform across
314 weighted networks. The normalized rich club coefficient (ghorm) was computed across the range of degree (k) and normalized
315 against 1000 null models (degree preserving for binary and degree and strength preserving for weighted networks). A ¢norm value
316 > 1 (horizontal dashed black lines) over a range of k indicates the presence of a rich club. (C) Nodewise hubness scores are
317 projected onto Schaefer-400 cortical and 14-ROI subcortical surfaces. Scores (0-5) were computed for each node as +1 point for
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318 all nodes in top 20% strength, betweenness, closeness and eigenvector centrality, as well as bottom 20% clustering coefficient.
319 The matrix (right) shows the Euclidean distance between all pairs of nodal hubness vectors.

320

321  All group-level weighted SC networks show the normalized small-world property (S > 1) of
322  higher clustering and lower path length than would be expected by chance (Figure 5A). Small-
323  worldness is highest in COMMIT (S ~ 2.5) and lowest in R1, ICVF, FA and RD (S = 1.6). In
324 contrast, all weighted SC networks did not show a canonical rich club (Figure 5B). Relative to
325  the tractometry and binary SC networks, the normalized rich-club coefficient (¢norm) was much
326 higher in magnitude in NoS, SIFT2 and COMMIT. A rich club was detected in these networks
327  across a large range of degree (k) levels (150 < k < 300). ¢norm Was maximal at k ~ 265 in

328 COMMIT. A rich club was also detected across a similar range of k levels in ICVF and across k
329 inthe range [250 300] for RD, albeit with much lower magnitude ¢norm. However, no clear rich
330  club was observed in R1 or FA. In fact, the rich-club curves for these networks are roughly

331  symmetric about the ¢norm = 1 line relative to COMMIT. A densely connected core was of course
332  recovered in all weighted SC networks (uniform binary connectivity), but these results suggest
333 that its interconnecting edges were consistently weaker than would be expected by chance in R:
334  and FA. By comparison, a rich club was observed in the binary SC network across the very large
335  range of k [50 300]. This supports two important concepts: (1) SC network edge weights can
336  provide an additional layer of information useful for refining the topology of binary SC; and (2)
337  different methods for computing SC network edge weights yield diverse network topology.

338

339  Weighted SC networks show network-dependent spatial topology of hubness scores (Figure
340 5C). The COMMIT and R1 averaged surface shows prominent hubs distributed throughout the

341  brain including the fronto-parietal network. Nearly all of the subcortex showed a hubness score
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342  of 4 or greater in all networks. The Euclidean distance between hubness score vectors (right) was
343  lower for COMMIT and SIFT2 than for either network with NoS. Of the streamline-specific
344 networks, NoS was more similar to both R1 and IVVCF. Overall, these results illustrate the

345  considerable impact that edge weighting can have on network topology.

346
347

348 DISCUSSION

349  Computational network modeling provides a customizable platform for probing the mechanistic
350 relationship between human brain structure and function in vivo. Here, we assemble a thorough
351 characterization of structural brain networks weighted by a range of quantitative MRI metrics
352  capturing the macro- and microscopic features of white matter tracts to inform their utilization in
353  computational models of brain function. Notable trends included: (1) greater edge weight

354  contrast and skewed (heavy-tailed) distributions in the streamline-specific networks NoS, SIFT2
355 and COMMIT; (2) whole-brain correlations with FC in networks weighted by connection

356  strength (positive) and myelin (negative) which were robust to controlling for edge length; (3)
357  whole-brain inverse relationships with myelin for networks weighted by connection strength and
358  neurite density independent of edge length; and (4) the absence of a rich club in R1 and FA

359  networks. All weighted SC networks showed a strong spatial dependence and small-world

360 architecture. Collectively, these results support the overall conclusion that SC networks weighted
361 by edge caliber (e.g., SIFT2 and COMMIT) and myelin (e.g., R1) can be used to quantify non-
362  overlapping subsets of white matter structural features related to FC supporting their joint

363 utilization in modeling function.

364
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365

366 COMMIT vs SIFT2: The Superior Estimate of Connectivity Strength?

367 A principal goal of this work is to identify what, if any, advantage over NoS is provided by the
368  global optimization methods SIFT2 and COMMIT. NoS has previously been used to inform the
369  strength of interregional coupling in computational models of function (e.g., (Honey et al.,

370  2009)). However, important limitations restrict model interpretation. Besides suffering from a
371  range of biases related to the position, size, shape and length of white matter tracts (Girard et al.,
372  2014), NoS varies as a function of tracking parameters limiting its specificity for white matter
373  structural features (Jones, 2010; Jones et al., 2013). SIFT2 and COMMIT reportedly restore the
374  quantitative link between connectome edge weights and white matter structural features related
375  to connection strength. Our results show that when network density is uniform across structural
376  metrics, COMMIT shows greater subject-specificity, edge weight contrast, correlation with

377  myelin, small-worldness and rich club coefficient relative to SIFT2. This supports the hypothesis
378  that using COMMIT instead of NoS to modulate the strength of interregional coupling in

379  computational models of function will yield the greatest improvement in model fit.

380

381

382  Myelin Complements Connection Strength in Predicting FC

383  Despite the differences between COMMIT, SIFT2 and NoS; our results indicate that their edge
384  weights show roughly equivalent positive correlations with FC over the whole brain. R1 was
385  negatively correlated with FC. Significant evidence indicates a link between cerebral myelin and
386  FC including: a relationship between intracortical myelin and FC (Huntenburg et al., 2017;

387  Wang et al., 2019); the prediction of cognition (Sonya Bells et al., 2017; Caeyenberghs et al.,
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388  2016) and FC-derived components (Messaritaki et al., 2021) with myelin-sensitive metrics; and a
389 relationship between damaged myelin sheaths and greater conduction delays in multiple sclerosis
390  (Sorrentino et al., 2022). At the cellular-level, myelin contributes to conduction velocity (Huxley
391 & Stampfli, 1949), metabolic support (Nave & Werner, 2014) and plasticity (Gibson et al.,

392  2018), all of which could be argued to support brain function. Myelin plasticity in particular can
393  be described in terms of “activity-dependence”, whereby an increase in the functional activity of
394  agiven circuit stimulates cellular signaling cascades promoting greater myelination (Douglas
395  Fields, 2015; Mount & Monje, 2017). Coupled with our results, this complex mix of functional
396  roles supports the idea that structure-function models will be improved by integrating measures
397  of myelin and connection strength.

398

399

400 Tract g-ratio and Edge Caliber are Inversely Related to Length

401  When controlling for edge length, we found an inverse relationship between R1 and COMMIT
402  over the whole brain in all subjects and at the group level. This suggests that the aggregate g-
403 ratio of a white matter tract may increase with edge caliber. At the cellular-level, the diameter of
404  an axon and the thickness of its myelin sheath show nearly a linear relationship over a broad

405  range of smaller diameter axons which becomes increasingly nonlinear as axon diameter

406  increases (Berthold et al., 1983; Hildebrand & Hahn, 1978). In general, increasing axon diameter
407  tends to outpace increasing myelin thickness i.e., g-ratio tends to increase with increasing axon
408  caliber (Hildebrand & Hahn, 1978). Our findings suggest that this cellular-level principle may
409  extend to the systems level: increases in edge caliber tend to outpace changes in the myelin

410  content resulting in a concomitant increase in the g-ratio of white matter tracts.
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411

412  We localized the inverse relationship between R1 and COMMIT to the shortest edges i.e., the g-
413  ratio was the highest in the shortest connections. This result is supported by a previous imaging
414  study showing the highest g-ratio in “local” connections (Mancini et al., 2018). In general, we
415  found that R1 increased and COMMIT decreased with increasing edge length. Both of these
416  trends fit well with theories of brain wiring economy in which the energetic cost of maintaining
417  Dbiological material increases with connection length (Bullmore & Sporns, 2012). This natural
418  pressure acts to reduce the total axonal volume of longer white matter bundles. Increasing the
419  myelin content of longer tracts comes at a cost as well, but this may be at least partially offset as
420  increasing myelin content reduces the total membrane surface area along which expensive

421  electrochemical gradients must be maintained (Bullmore & Sporns, 2012). Although, a cost-
422  benefit analysis of the energetics of myelination concluded that the energetic cost of myelin
423  maintenance outweighs any savings on action potentials (Harris & Attwell, 2012). This suggests
424 that higher myelination of longer edges may be better explained as a mechanism to provide

425  trophic support (Nave & Werner, 2014) to vital inter-regional connections (Martijn P. Van Den
426  Heuvel et al., 2012) or to reduce conduction delays.

427

428

429  Edge Weight Variance Decreases with Edge Length in Most Weighted Structural Networks?
430  White matter features related to myelin content, connection strength and neurite density tend to
431  become more consistent across tracts as tract length increases. Greater variability in the weights
432  of the shortest connections could result from a higher proportion of false positive streamlines

433 influencing these edge weights. For SIFT2 and COMMIT, streamline weight computation
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434 becomes increasingly unstable with decreasing length as fewer voxels contribute to the fit.

435  However, this result could also be explained more generally by contrasting the roles of shorter
436  and longer connections in the brain. Shorter white matter tracts connect brain regions near each
437  other in space e.g., within the same module. Just as we might expect the characteristics of

438  smaller roads and streets (e.g., width, building materials, markings, signs, sidewalks, etc.) to vary
439 by neighborhood and city, we might also expect the morphology of shorter white matter

440  connections to change as the functional specialization of any given region or module changes.
441  On the other hand, longer tracts (i.e., the freeways of the brain) may overlap more in both their
442  functional role and morphological features relative to shorter connections, hence lower edge
443  weight variability. Breaking with the above pattern, FA and RD showed the highest edge weight
444  variance in the longest connections. Given that structural measures derived using a voxel-wise
445  diffusion tensor model are particularly sensitive to the white matter “architectural paradigm”
446  (Jones et al., 2013), these results suggest that white matter features related to fiber orientation
447  and geometry actually diverge with increasing tract length.

448

449  The Absence of a Rich Club in R1 and FA

450  Group-level Ri1 and FA did not show a normalized weighted rich club for any degree k. Higher
451  myelination in the white matter tracts connecting rich club nodes has previously been reported
452  (Collin et al., 2014); however, methodological differences limit comparability. A rich club has
453  previously been reported in FA-weighted networks using similar methods to ours (Martijn P. van
454 den Heuvel & Sporns, 2011). The source of this disagreement could potentially be attributed to
455  differences in our tractography algorithm, parcellation or null network computation.

456
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457  In weighted rich-club detection, the identification of a densely connected core is independent of
458  edge weight (depends only on node degree), but the designation of this subnetwork as a rich club
459  requires that it contains a higher-than-chance proportion of the strongest edges from the full

460  network. Indeed, this is the case over a broad range of degree k for COMMIT. Over the same
461  range of k, the normalized rich-club curves for R1 and FA are inverted about the threshold value
462  of 1 with respect to COMMIT. This implies that the subnetwork found at a given k in this range
463  contains edges which tend to show higher COMMIT and lower R1 edge weights than expected
464 by chance. We previously showed edgewise inverse correlations between R1 and COMMIT

465  which were robust to controlling for edge length. We also showed that R1 and FA are positively
466  correlated under these same conditions. In this light, it is not surprising that the edges connecting
467  rich-club nodes tend to show opposite trends in Ri- and FA-weighting with respect to COMMIT.
468  Nonetheless, it is possible that the lack of a rich club in our myelin-weighted network is an

469  artifact of tractometry. Future work will attempt to replicate this result using myelin-weighted
470  networks computed with a different methodology (Schiavi et al., 2022).

471

472

473  Limitations

474  Streamline tractography is known to suffer from several important biases including both false
475  positive and negative streamlines which can influence downstream analyses (Maier-Hein et al.,
476  2017; Schilling et al., 2019; Sotiropoulos & Zalesky, 2019; Zalesky et al., 2016). Through

477  probabilistic tracking, we opted to minimize false negatives while maximizing false positives.
478  This allowed us to implement careful streamline- and edge-filtering strategies in post-processing

479  to address this known bias. Still, without a ground truth, we cannot quantify the extent to which
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480  we were successful in mitigating this issue, nor can we guarantee that we did not erroneously
481  filter true positive streamlines or edges. All processing and filtering methods were consistent and
482  network density was uniform across weighted structural networks. Thus, any major tractography
483  bias should be as homogeneous as possible across networks.

484

485  Tractometry-derived brain networks suffer from widespread partial volume effects. The net

486  effect of this bias is well understood and is apparent in our results and previous work (De Santis
487  etal., 2014; Schiavi et al., 2022). Nonetheless, this method was included here as our goal was to
488  characterize widely used structural connectivity methods. New techniques for reducing this bias
489 are currently being developed which allow for the estimation of tract-specific microstructural
490 features (e.g., (Barakovic, Girard, et al., 2021; Barakovic, Tax, et al., 2021; De Santis et al.,

491  2016; Leppert et al., 2021; Schiavi et al., 2022)).

492

493

494  Conclusion

495  We presented a thorough characterization of weighted SC networks. Overall, our findings

496  support the joint use of SC networks weighted by connection strength and myelin in predicting
497  FC. In particular, using the COMMIT algorithm to quantify connection strength shows promise.
498 Beyond Ry, there are a wide array of myelin sensitive metrics that could be used to compute
499  useful myelin-weighted networks. The integration of this microstructure-weighted connectivity
500 approach into structure-function models will advance the mechanistic interpretation of both the
501  function and dysfunction of the living human brain.

502
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MATERIALS and METHODS

These data are available for download (https://portal.conp.ca/dataset?id=projects/mica-mics). See

Royer et al. (Royer et al., 2022), Cruces et al. (Cruces et al., 2022) for full details of data
acquisition and processing. All data processing and analysis code is openly available at

https://github.com/TardifLab/\Weighted-SC-Networks.

Data Acquisition & Preprocessing
Multimodal MRI data was collected in 50 healthy volunteers at 3 Tesla as follows:
e Ti-weighted (T1w) anatomical: 3D magnetization-prepared rapid gradient-echo sequence
(MP-RAGE; 0.8mm isotropic)
e Multi-shell diffusion-weighted imaging (DWI): 2D pulsed gradient spin-echo echo-planar
imaging sequence (1.6mm isotropic); three shells with b-values 300, 700, and 2000s/mm?
and diffusion directions 10, 40, and 90
e 7 minutes of resting-state functional MRI: multi-band accelerated 2D-BOLD gradient
echo echo-planar sequence (3mm isotropic)
e A quantitative T1 map: 3D-MP2RAGE sequence (Marques et al., 2010) (0.8mm

isotropic)

The multi-modal processing pipeline micapipe (Cruces et al., 2022)

(https://micapipe.readthedocs.io/) was used to preprocess diffusion, anatomical, and functional

images. Functional data derivatives were obtained in parcellated FC matrix form.
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927

528  Tractography and Microstructural Metrics

529  To estimate structural connectomes, anatomically constrained tractography (R. E. Smith et al.,
530 2012) was performed on the normalized white matter FOD image using the probabilistic

531  algorithm iFOD2 (J.-D. Tournier et al., 2010). Tractograms of 5 million streamlines were

532  generated by seeding the gray-white matter interface using the following parameters:

533  maxlength=400, minlength=10, angle=22.5, step=0.5, cutoff=0.06, backtrack, crop_at_gmwmi
534  (gray-matter-white-matter interface). These tractograms were filtered in a two-stage process. (1)
535 awhole-brain connectome weighted by NoS was computed then decomposed into its composite
536  streamlines to derive a new tractogram in which any streamline which failed to connect two gray
537  matter ROIs was excluded. This “streamline-filtering” step typically resulted in approximately a
538 5% decrease in the size of the tractogram (~250k streamlines removed) and was undertaken to
539  ensure that these erroneous streamlines did not affect the COMMIT model. Streamline-filtered
540 tractograms were used to compute NoS and were used as inputs to both the SIFT2 and COMMIT
541  models. SIFT2 determines the effective cross-sectional area of each streamline such that the

542  streamline density throughout the white matter fits the fiber densities estimated using spherical
543  deconvolution. COMMIT was run using a Stick-Zeppelin-Ball forward model and default

544  settings (see https://github.com/daducci/COMMIT). Using the simplifying assumption that

545  structural features are constant along the length of a streamline, COMMIT can be used to
546  compute a weight for each streamline representing their respective proportion of the global
547  diffusion signal i.e., the cross-sectional area of their intracellular compartment. (2) Any

548  streamline with a COMMIT weight < 1e-1? (machine precision 0) was interpreted as a false
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549  positive and filtered from the tractogram. This streamline-level COMMIT-filtering step typically
550  resulted in greater than a 90% decrease in the size of the tractogram with most containing

551  Dbetween ~300-600k streamlines. COMMIT-filtered tractograms were used not only in the

552  computation of COMMIT, but all tractometry networks as well. This additional filtering step was
553  performed on COMMIT streamline weights only (not SIFT2) to reduce the impact of false

554  positive streamlines in tractometry networks as much as possible.

555

556

557  Construction of Weighted Structural Networks

558  The streamline-specific SC networks were computed in the following manner: (1) NoS as the
559  summed streamline count; (2) LoS as the mean streamline length; (3) SIFT2 as the sum of SIFT2
560 streamline weights; and (4) COMMIT as the length-weighted sum of COMMIT streamline

561  weights as in (Schiavi et al., 2020). Explicitly, edgewise entries in COMMIT-weighted networks
562  were computed as:

Nij

PN CHIEN N
aij = Z

563

)

ij

564  where a;; is the edge weight between nodes i and j; Zl-j is the mean streamline length; N;; is the
565  number of streamlines; x{‘j is the COMMIT weight of streamline k; and [, is its length. Edge
566  weights in NoS, SIFT2 and COMMIT were normalized by node volume.

567

568  SC networks weighted by FA, RD, ICVF (Zhang et al., 2012) and R1 were derived using multi-
569 modal tractometry (S Bells et al., 2011). Streamline weights were computed by: (1) co-

570  registering the tractogram and desired image; and (2) sampling the voxel-level aggregate value
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571 along the length of each streamline. Edge weights were computed as the median along each
572  streamline and the mean across streamlines by node pair. Voxel-wise measures of FA and RD
573  were computed with a diffusion tensor model (Basser et al., 1994) and ICVF by applying the
574  NODDI multi-compartment model (Zhang et al., 2012) to preprocessed DWI data (Daducci,
575  Canales-Rodriguez, et al., 2015).

576

577  The 400-node Schaefer (Schaefer et al., 2018) cortical parcellation is used in all results.

578  Subcortical ROIs corresponded to 7 bilateral regions (14 nodes) including the amygdala,

579  thalamus, caudate, accumbens, putamen, hippocampus, and pallidum. A single static, zero-lag
580 FC network was derived by product-moment pairwise Pearson cross-correlation of node-

581  averaged time series. FC network edge weights were Fisher Z-transformed.

582

583

584  Connectome post-processing

585  All SC networks were thresholded at the edge level within subject by: (1) setting edges =0 in all
586  weighted SC networks if they had a COMMIT edge weight < 1e7'?; and (2) applying a 50%
587  uniform threshold mask to facilitate group-consensus averaging. This minimized differences in
588  binary structural network density across subjects and enforced uniform density across weighted
589  SC networks at the group level and within subject. COMMIT was used for this filter as it had the
590 lowest connection density to start.

591

592

593  Network Analysis
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594  Network analysis was performed using tools (Rubinov & Sporns, 2010) based on graph theory
595  (Fornito et al., 2013; Sporns, 2018). Measures of clustering coefficient and path length were
596  normalized against 50 degree and strength preserving null networks. Clustering coefficient was
597  normalized within node then averaged across nodes to obtain a scalar value per network. The
598  following weight (Wij) to length (Lij) transform was used in path length computation: Lij = -
599  log(Wij). Weighted rich club curves were normalized against 1000 degree and strength

600 preserving null networks. The edges in all degree and strength preserving null networks were
601  rewired 1e times total, and the strength sequence was approximated using simulated annealing.
602  Rich club curves were normalized in binary networks against 1000 degree preserving null

603  networks in which each edge was rewired 100 times. All edge rewiring followed the Maslov &
604  Sneppen rewiring model (Maslov & Sneppen, 2002). Similar to (M. P. van den Heuvel et al.,
605  2010), hubness scores (0-5) were computed as 1 point for all nodes showing top 20% strength,
606  betweenness, closeness or eigenvector centrality; and lowest 20% clustering coefficient.

607
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