

1 **The Human Brain Connectome Weighted by the Myelin Content**
2 **and Total Intra-Axonal Cross-Sectional Area of White Matter**
3 **Tracts**

4

5 **Short title:**

6

7 Mark C. Nelson^{1,2}, Jessica Royer^{1,2}, Ilana R. Leppert², Jennifer S.W. Campbell², Simona Schiavi³, Hyerang Jin^{1,2},
8 Shahin Tavakol^{1,2}, Reinder Vos de Wael^{1,2}, Raul Rodriguez-Cruces^{1,2}, G. Bruce Pike⁴, Boris C. Bernhardt^{1,2}, Alessandro
9 Daducci³, Bratislav Misic^{1,2}, and Christine L. Tardif^{1,2,5}

10 ¹Department of Neurology and Neurosurgery, McGill university, Montreal, QC, Canada. ²McConnell Brain Imaging Centre, Montreal
11 Neurological Institute and Hospital, Montreal, QC, Canada. ³Department of Computer Science, University of Verona, Verona, Italy. ⁴Hotchkiss
12 Brain Institute and Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Canada. ⁵Department of Biomedical
13 Engineering, McGill University, Montreal, QC, Canada.

14

15 Corresponding Author: Mark C Nelson, mark.nelson3@mail.mcgill.ca

16

17 Keywords: connectomics; network neuroscience; structural connectivity; functional connectivity;
18 white matter; myelin; computational modeling

19

20 **ABSTRACT**

21 A central goal in neuroscience is the development of a comprehensive mapping between
22 structural and functional brain features. Computational models support *in vivo* investigation of
23 the mechanisms mediating this relationship but currently lack the requisite biological detail.
24 Here, we characterize human structural brain networks weighted by multiple white matter

25 microstructural features to assess their potential joint utilization in computational models. We
26 report edge-weight-dependent spatial distributions, variance, small-worldness, rich club, hubs, as
27 well as relationships with function, edge length and myelin. Contrasting networks weighted by
28 the total intra-axonal cross-sectional area and myelin content of white matter tracts, we find
29 opposite relationships with functional connectivity, an edge-length-independent inverse
30 relationship with each other, and the lack of a canonical rich club in myelin-weighted networks.
31 When controlling for edge length, tractometry-derived networks weighted by either tensor-based
32 metrics or neurite density show no relationship with whole-brain functional connectivity. We
33 conclude that structure-function brain models are likely to be improved by the co-utilization of
34 structural networks weighted by total intra-axonal cross-sectional area and myelin content. We
35 anticipate that the proposed microstructure-weighted computational modeling approach will
36 support mechanistic understanding of the structure-function relationship of the human brain.

37

38 **AUTHOR SUMMARY**

39 For computational network models to provide mechanistic links between brain structure and
40 function, they must be informed by networks in which edge weights quantify structural features
41 relevant to brain function. Here, we characterized several weighted structural networks capturing
42 multiscale features of white matter connectivity. We describe these networks in terms of edge
43 weight distribution, variance and network topology, as well as their relationships with each other,
44 edge length and function. Overall, these findings support the joint use of structural networks
45 weighted by the total intra-axonal cross-sectional area and myelin content of white matter tracts

46 in structure-function models. This thorough characterization serves as a benchmark for future
47 investigations of weighted structural brain networks.

48

49

50 **INTRODUCTION**

51 The quest to relate human structural and functional brain networks spans the spectrum of spatial
52 scale and repertoire of data modalities absolutely. At the macroscale, the human brain can be
53 modeled as an anatomical network of discrete neuronal populations (nodes) interconnected by
54 white matter fibers (edges) (Sporns, 2011). Coordinated spatiotemporal patterns of neuronal
55 activity unfolding upon this structural backbone are fine-tuned by white matter microstructure
56 (Hodgkin & Huxley, 1952; Huxley & Stämpfli, 1949; Moore et al., 2020; Pumphrey & Young,
57 1938) and form the basis of cognition and behavior (Biswal et al., 1995; Greicius et al., 2003;
58 Hampson et al., 2006; Liégeois et al., 2019; S. M. Smith et al., 2009; Martijn P. Van Den Heuvel
59 et al., 2009). Increasingly, MRI facilitates *in vivo* measurement of multi-scale properties of both
60 brain structure (e.g., (Alexander et al., 2019; Drakesmith et al., 2019; Jeurissen et al., 2017;
61 Mancini et al., 2020)) and function (e.g., (Finn et al., 2019; Friston, 2011; Gordon et al., 2017;
62 Liu et al., 2022)). Diffusion MRI streamline tractography and resting-state functional MRI are
63 often respectively used to estimate structural and functional connectivity (SC & FC) networks.
64 Network science provides a framework to bring these fundamentally different substrates into a
65 common space where their features can be quantified (Fornito et al., 2016; Sporns, 2010; Suárez
66 et al., 2020) and used to probe the mechanisms mediating human brain function (e.g., (Cabral et
67 al., 2017; Fornito et al., 2015)).

68

69 SC network edges can be weighted by a range of MRI-derived metrics quantifying white matter
70 microstructural features relevant to brain function including voxel-level estimates of tissue
71 diffusivity (e.g., (Caeyenberghs et al., 2016)), neurite density (Zhang et al., 2012), axon diameter
72 distributions (Alexander et al., 2010; Assaf et al., 2008), myelin content (Heath et al., 2018;
73 Mancini et al., 2020), and the g-ratio (ratio of inner/outer diameters of myelinated axons) (Stikov
74 et al., 2011, 2015); as well as tract/bundle-level measures of axonal cross-sectional area
75 (Daducci, Dal Palù, et al., 2015; R. E. Smith et al., 2015). Subsets of these metrics have been
76 investigated using a microstructure-weighted connectomics approach (Boshkovski et al., 2021;
77 Caeyenberghs et al., 2016; Deligianni et al., 2016; Frigo et al., 2020; Mancini et al., 2018;
78 Messaritaki et al., 2021; Schiavi et al., 2020; M. P. van den Heuvel et al., 2010; Martijn P. van
79 den Heuvel & Sporns, 2011; F. C. Yeh et al., 2016), however a comprehensive characterization
80 has not yet been provided.

81

82 Our goal is to characterize a range of standard and state-of-the-art weighted structural brain
83 networks in support of their utilization in computational models of brain function. The networks
84 considered here can be grouped into two classes: those computed with tractometry (S Bells et al.,
85 2011) and those computed directly from the streamline weights in a tractogram i.e., streamline-
86 specific. We consider three examples of the latter: (1) the number of streamlines (NoS); and two
87 methods which optimize the streamline weights in a tractogram to increase specificity for white
88 matter structural features (2) spherical-deconvolution informed filtering of tractograms (SIFT2)
89 (R. E. Smith et al., 2015) and (3) convex optimization modeling for microstructure informed
90 tractography (COMMIT) (Daducci et al., 2013; Daducci, Dal Palù, et al., 2015). SIFT2 and

91 COMMIT were designed to overcome known limitations of streamline counts (Girard et al.,
92 2014; Jones, 2010; Jones et al., 2013). While the edge weights in all three networks generally
93 capture white matter features relevant to connection strength, SIFT2 and COMMIT more
94 specifically quantify the total intra-axonal cross-sectional area of white matter tracts (henceforth
95 referred to as “edge caliber”). To date, SIFT2 and COMMIT have not been compared to NoS
96 with uniform connection density (Frigo et al., 2020; Schiavi et al., 2020; C. H. Yeh et al., 2016).
97 Thus, it remains unclear how the edge weights themselves affect network topology.

98

99 In contrast, tractometry allows network edge weights to be derived from any volumetric brain
100 image that is co-registered to the tractogram. This increase in methodological flexibility comes at
101 the expense of anatomical specificity. Tractometry is unable to resolve the separate contributions
102 of individual fiber populations to the aggregate value of a voxel. Given that an estimated ~90%
103 of white matter voxels at typical diffusion MRI resolutions (~2mm) contain multiple fiber
104 populations (Jeurissen et al., 2012), the quantitative link between white matter microstructure
105 and essentially all tractometry-derived edge weights is biased by partial volume effects.

106

107 In this work, tractometry is combined with a diffusion tensor model (Basser, 1995; Basser et al.,
108 1994) to derive networks weighted by FA (fractional anisotropy) and RD (radial diffusivity),
109 which respectively quantify the degree of diffusion anisotropy (i.e., directional dependence) and
110 diffusion magnitude perpendicular to the major axis. The crossing fiber problem described above
111 is also known to limit the ability of diffusion tensor models to quantify white matter features (De
112 Santis et al., 2014; J. D. Tournier et al., 2011). Additional tractometry networks examined here
113 include a network weighted by ICVF (intracellular volume fraction) computed with NODDI

114 (Neurite Orientation Dispersion and Density Imaging) (Zhang et al., 2012), as well as a network
115 weighted by the longitudinal relaxation rate R_1 ($1/T_1$), which has been shown to correlate with
116 histology-derived myelin content (Mottershead et al., 2003).

117

118 This characterization of weighted structural brain networks is carried out as follows: (1) within-
119 network features of edge weight distribution and variance; (2) edgewise relationships with FC,
120 edge length and myelin (R_1); and (3) topological features of small-worldness, rich club and
121 network hubs. Importantly, uniform binary connectivity is enforced across all weighted network
122 variants allowing the edge weights themselves to drive the characterization.

123

124

125 **RESULTS**

126 In 50 healthy adults (27 men; 29.54 ± 5.62 years; 47 right-handed), structural brain networks were
127 estimated from multi-shell diffusion MRI data with probabilistic tractography. Each subject's
128 structural network was used to compute 8 SC networks in which edges were weighted by: NoS,
129 SIFT2, COMMIT, FA, RD, ICVF, R_1 and LoS (edge length computed as the mean length of
130 streamlines). The edge weights in NoS, SIFT2 and COMMIT networks were normalized by node
131 volume. Additionally, a static FC network was derived for each subject by zero-lag Pearson
132 cross-correlation of nodewise resting-state time series. Unless otherwise stated, all results shown
133 correspond to networks parcellated with the Schaefer-400 cortical atlas (Schaefer et al., 2018)
134 and include 14 subcortical nodes.

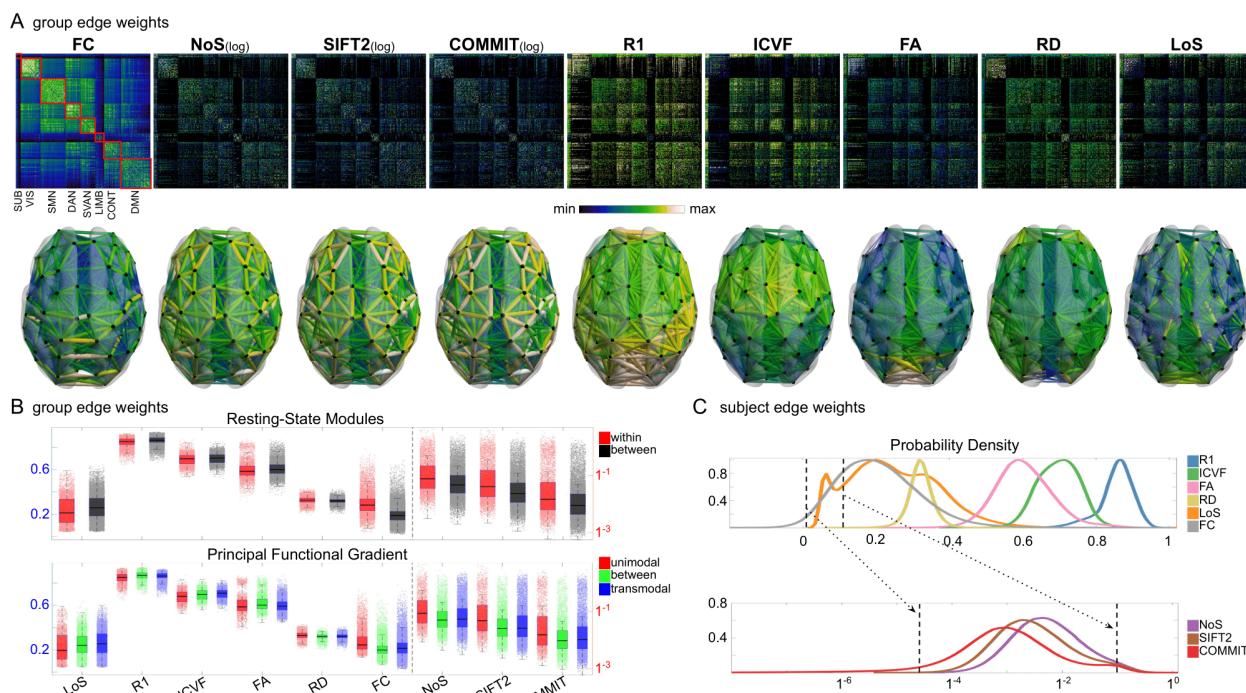
135

136

137 **Structural Brain Networks Vary in the Distribution of Their Edge Weights**

138 Group-level networks weighted by NoS, SIFT2 and COMMIT show spatially distributed patterns
139 of high magnitude edge weights and noticeably accentuate within-module connectivity (**Figure**
140 **1A**). Modules correspond to the 7-canonical resting-state networks (Thomas Yeo et al., 2011)
141 plus the subcortex. These patterns are hallmarks of FC networks and are observed in the FC
142 network shown here. The contrast between high and low magnitude edge weights is most evident
143 in COMMIT. By comparison, the spatial variation of edge weight distribution in the tractometry
144 networks is smoother with more pronounced regional concentrations. R_1 is highest in the edges
145 connecting the visual module to itself and to the rest of the brain; and lowest within the
146 subcortex and between the subcortical and limbic modules. The surface plot shows the highest
147 concentration of R_1 in the white matter projections of posterior cortical regions.

148



149

150 **Figure 1. Edge Weight Distribution.** (A) Connectivity matrices (top row) of group-level edge weights for FC (functional
151 connectivity), NoS (number of streamlines), SIFT2 (spherical-deconvolution informed filtering of tractograms), COMMIT
152 (convex optimization modeling for microstructure informed tractography), R_1 (longitudinal relaxation rate), ICVF (intra-cellular

153 volume fraction), FA (fractional anisotropy), RD (radial diffusivity) and LoS (mean length of streamlines). Each network is
154 composed of 414 nodes as defined by the Schaefer-400 cortical parcellation and 14 subcortical ROIs. Nodes are grouped into the
155 canonical resting state modules (Thomas Yeo et al., 2011) plus the subcortex: SUB (subcortex), VIS (visual), SMN
156 (somatomotor), DAN (dorsal attention), SVAN (salience ventral attention), LIMB (limbic), CONT (control), and DMN (default
157 mode). 3D cortical surfaces (bottom row) of group-level edge weights in the Schaefer-100 parcellation generated with BrainNet
158 Viewer (Xia et al., 2013). Edge diameter and color indicate weight magnitude. (B) Distribution of group-level edge weights
159 binned by: (top) within and between module; (bottom) unimodal, transmodal and between. Unimodal is defined as the VIS and
160 SMN modules. Transmodal is defined as the DMN, CONT, DAN and SVAN modules. (C) Probability density of pooled subject-
161 level edge weight distributions. R_1 , ICVF, FA, RD, LoS and FC are shown on a linear x-axis (top), and NoS, SIFT2 and
162 COMMIT are shown on a logarithmic x-axis (bottom). All networks were normalized to the range [0 1] by dividing by the
163 subject-level max for visualization. The edge weights in NoS, SIFT2 and COMMIT networks were \log_{10} transformed for these
164 plots.

165

166 Group-level edge weight distributions are summarized with respect to two important
167 organizational patterns of brain function (**Figure 1B**): within and between resting state modules
168 (Thomas Yeo et al., 2011); and along the principal functional gradient (Margulies et al., 2016).
169 NoS, SIFT2 and COMMIT mirror FC in both plots with greater edge weight magnitude within
170 module, especially within unimodal modules. R_1 , ICVF, FA and RD generally mirror LoS with
171 the reverse trend: higher between module and lowest in unimodal modules. This suggests that
172 tractometry-derived networks may be influenced by edge length to a greater extent.

173

174 Subject-level edge weight distributions in R_1 , ICVF, FA and RD are near-normal and network-
175 specific (**Figure 1C**). They differ in both the magnitude ($R_1 > \text{ICVF} > \text{FA} > \text{RD}$) and dynamic
176 range ($\text{FA} \& \text{ICVF} > R_1 \& \text{RD}$) of their edge weights. In contrast, NoS, SIFT2 and COMMIT
177 distributions are highly skewed and tend to be much lower in magnitude (dashed lines). This
178 effect is greatest in COMMIT suggesting that the optimization performed by COMMIT exerts a
179 stronger scaling effect than SIFT2. These results support the conclusion that the structural
180 networks considered here quantify subsets of white matter features which are at least partially
181 non-overlapping.

182

183

184 ***Edge Weights in Streamline-Specific Networks Are More Variable***

185 Edge weight variance was quantified using the Quartile Coefficient of Dispersion (CQD) due to
186 its robustness to outliers and skewed data. The CQD is computed from the 1st and 3rd quartiles as:

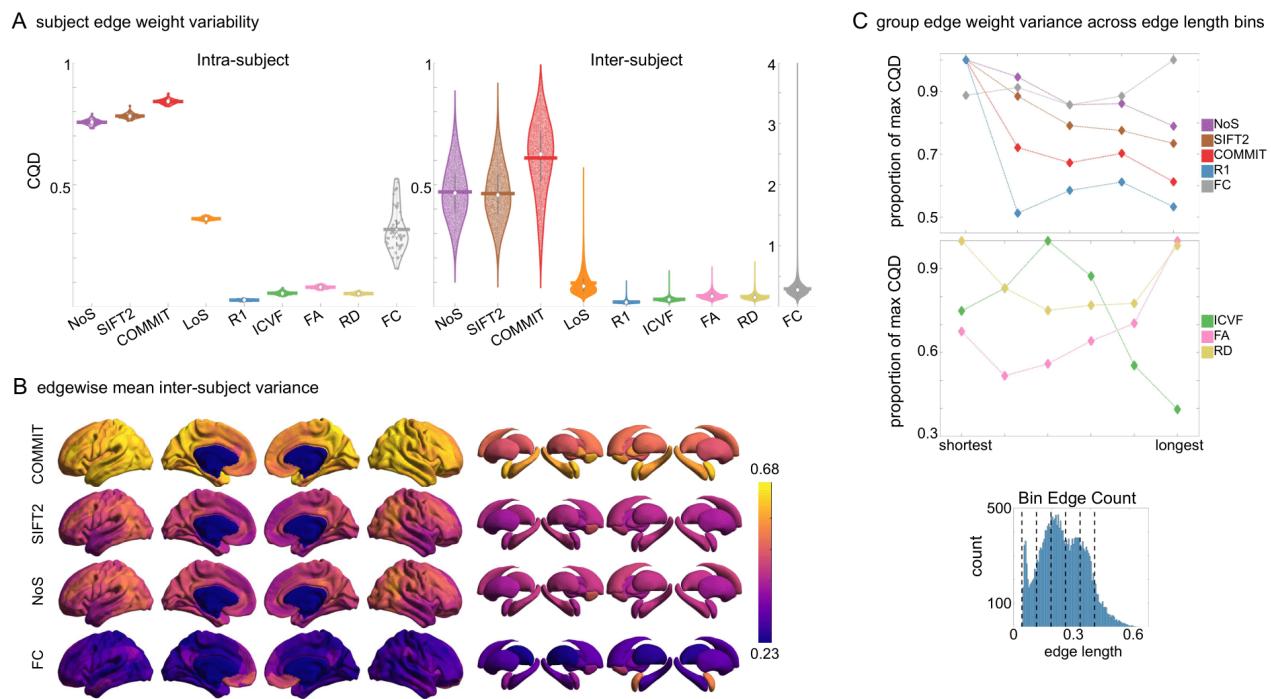
187
$$CQD = Q_3 - Q_1 / Q_3 + Q_1.$$

188

189 *Intra-subject* variance is roughly 2-fold greater in NoS, SIFT2 and COMMIT than LoS and FC;
190 and an order of magnitude greater than R1, ICVF, FA and RD in all subjects (**Figure 2A**).

191 COMMIT is the highest overall. Subjects are more tightly clustered in all weighted SC networks,
192 relative to FC: *intra-subject* CQD values span roughly a 4-fold greater range in FC. This
193 suggests that individual diversity of functional connectivity is not necessarily reflected in the
194 variability of their structural networks. These patterns are repeated for *inter-subject* variance.
195 However, FC shows a small subset of highly variable edges with roughly 4-fold greater CQD
196 than the maximum values observed in COMMIT i.e., the most subject-specific connections are
197 functional. The very low edge weight variability in R1, ICVF, FA and RD is in part due to the
198 widespread smoothing effect (partial voluming) resulting from the tractometry computation.

199



200

201 **Figure 2. Edge Weight Variability.** Variability is quantified using the coefficient of quartile dispersion (CQD). (A) Violin
 202 distributions of *intra-subject* (left) and *inter-subject* (right) edge weight variance. Colored data points respectively correspond to
 203 individual subjects ($N=50$) and edges ($N=8549$). (B) Surface projections of edgewise mean inter-subject variance for cortical
 204 nodes in the Schaefer-400 parcellation (left) and 14 subcortical nodes (right). Cortical and subcortical surfaces were
 205 respectively generated with BrainSpace (Vos de Wael et al., 2020) and ENIGMA toolboxes (Larivière et al., 2021). (C) The
 206 proportion of within-network max CQD is shown across edge length bins for FC, NoS, SIFT2, COMMIT and R1 (top), as well as
 207 ICVF, FA and RD (middle). Edge weights are grouped into 6 bins according to edge length, as illustrated by the histogram
 208 (bottom). The edges of bins 1-5 were linearly spaced of width, w . The edges of the final bin were of width $3w$.

209

210 In general, *inter-subject* edge weight variance is more spatially distributed in SC networks
 211 relative to FC (**Figure 2B**). COMMIT shows the highest mean CQD over the entire cortex and
 212 subcortex. NoS, SIFT2 and COMMIT all show lateral-medial and posterior-anterior cortical
 213 gradients. Mean CQD in FC shows the highest concentration in medial inferior frontal cortex and
 214 to a lesser extent, the expected pattern of high variance in association cortex. The most variable
 215 subcortical regions include the hippocampus, amygdala and accumbens.

216

217 Many features of brain networks (e.g., connection probability, weight magnitude) are known to
 218 vary with edge length. Here, we examined the relationship between edge weight variability and

219 edge length by computing the CQD within subsets of group-level edge weights binned according
220 to their edge length (**Figure 2C**). Edge weight variance in NoS, SIFT2, COMMIT and R_1 is
221 highest in the shortest edges and decreases with edge length. ICVF roughly follows the same
222 pattern. FA and RD instead show the highest variability in the longest edges. Overall, the edge
223 weights in streamline-specific SC networks (NoS, SIFT2 and COMMIT) show greater contrast
224 both within and across subjects. SC networks show network-dependent relationships between
225 edge weight variance and edge length. Shorter edges are more variable in myelin- and
226 connection strength-weighted networks, and longer edges are more variable in networks with
227 edge weights derived from a diffusion tensor model.

228

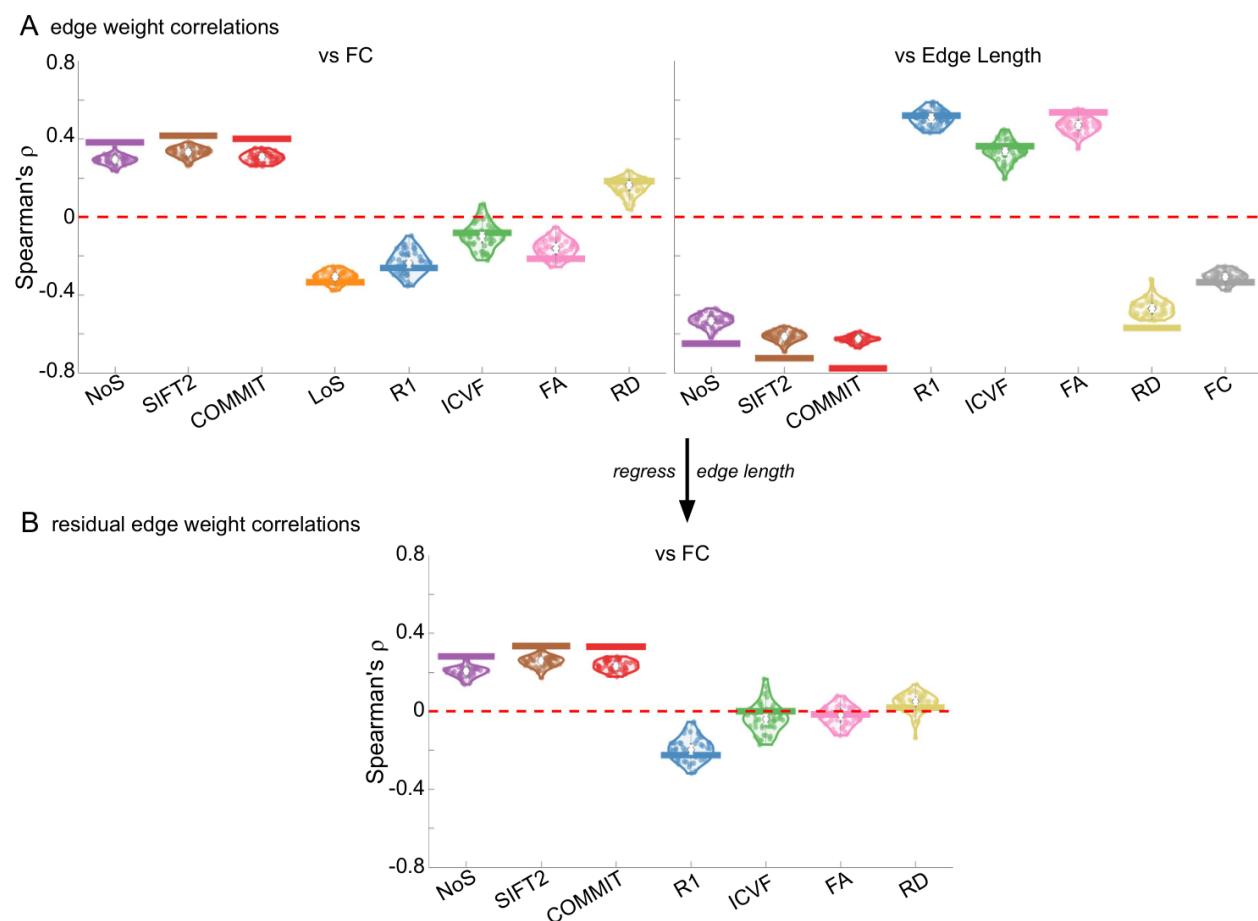
229

230 ***Opposing Correlations with Function in Connection-Strength- & Myelin-Weighted Networks***

231 Shifting to inter-network edge weight relationships shows that SC networks are differentially
232 related to FC (**Figure 3A**). Importantly, we also see that all brain networks (SC and FC) are
233 strongly and differentially related to edge length at the subject and group levels. Correlations
234 with edge length are negative for NoS, SIFT2, COMMIT, RD and FC; and positive for R_1 ,
235 ICVF, and FA. Correlation magnitude is strongest in group-level COMMIT ($\rho \approx -0.8$). To
236 remove this strong obscuring effect, we recomputed correlations using residual edge weights
237 following linear regression of edge length (**Figure 3B**). NoS, SIFT2 and COMMIT remain
238 positively associated (group-level $\rho \approx 0.35$) and R_1 remains negatively associated with FC
239 (group-level $\rho \approx -0.22$). Correlation magnitude was reduced following linear regression in all
240 cases. ICVF, FA and RD are reduced to 0 suggesting that they may not be useful in modeling
241 whole-brain FC. These results support the idea that R_1 -weighted SC networks provide

242 complementary information to NoS, SIFT2 and COMMIT about the brain structure-function
243 relationship.

244



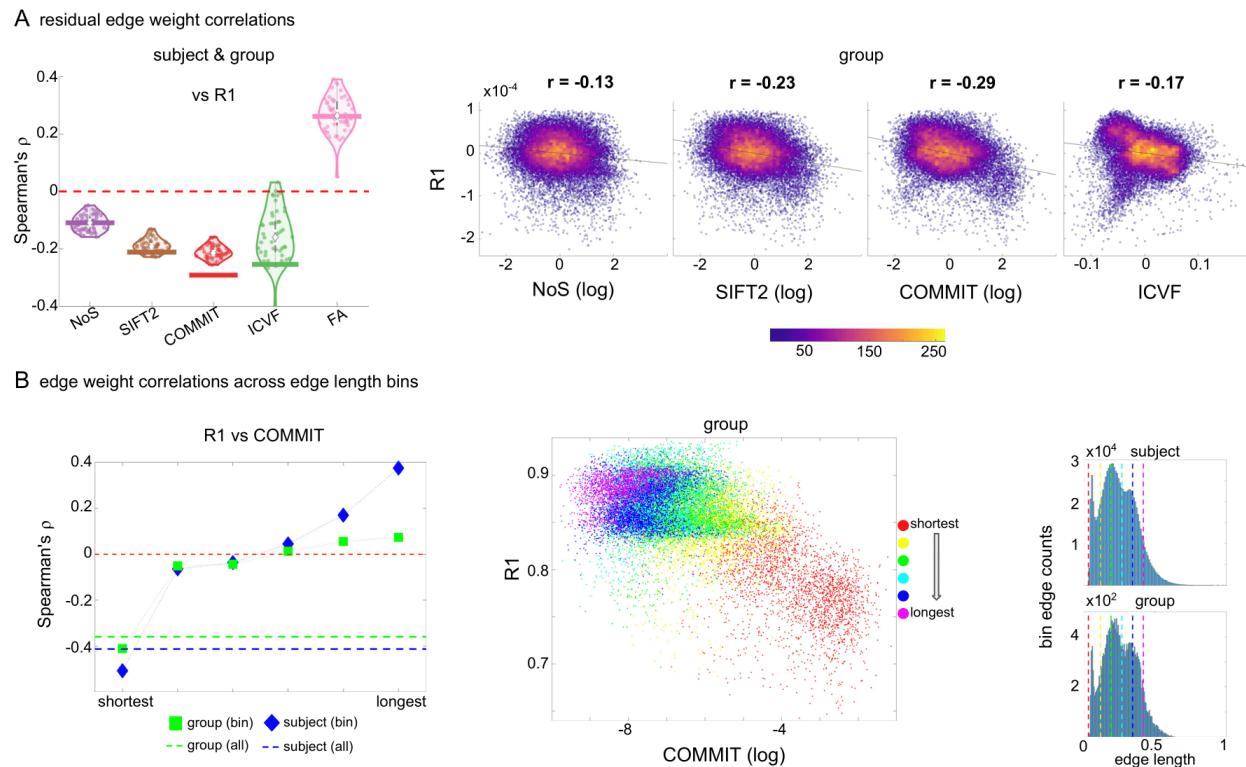
250

251

252 **Edge Caliber and Myelin Content are Inversely Related**

253 Here, we ask how R_1 , which we refer to as the myelin-weighted network, is related to the
254 connection-strength-weighted network COMMIT. Edge-length regressed residual edge weights
255 in NoS, SIFT2 and COMMIT show a negative association with R_1 residuals for all subjects and

256 at the group level, which is strongest in COMMIT (group-level ρ & $r \approx -0.29$) (**Figure 4A**). This
 257 suggests an edge-length independent inverse relationship between white matter structural
 258 features related to connection strength and myelin content.
 259



260
 261 **Figure 4.** The Myelin-Dependence of Structural Brain Networks. (A) Violin distributions (left) of edgewise Spearman's rank
 262 correlations with the myelin-weighted network R_1 . Residual edge weights are compared following linear regression of edge
 263 length. Colored data points and bars respectively indicate subject-level and group-level correlations. Heat scatter plots (right) of
 264 group-level residual edge weights in R_1 as a function of NoS (left), SIFT2 (left middle), COMMIT (right middle) and ICVF (right)
 265 with the best fit linear curve shown in black. Color indicates data density. (B) Line plot (left) of edgewise Spearman's rank
 266 correlation of edge weights in R_1 vs COMMIT across edge length bins. Group-level and subject-level are respectively shown in
 267 green and blue. The square and diamond markers connected by dotted lines show binned correlation values, and the horizontal
 268 dashed green and blue lines mark the correlation values for all edges pooled together. Scatter plot (middle) of group-level edge
 269 weights in R_1 as a function of COMMIT with data points colored by bin identity. Histograms (right) illustrating subject- and
 270 group-level edge length bins.

271
 272 Computing correlations of edge weights (not residuals) within edge-length bins allows the
 273 inverse relationship between R_1 and COMMIT to be traced to the shortest edges of the network
 274 (group $\rho \approx -0.40$, subject $\rho \approx -0.50$). As edge length increases, this relationship is reduced to 0,

275 then becomes strongly positive in the longest subject-level edges ($\rho \approx 0.39$). The scatter plot of
276 group-level R_1 vs COMMIT (middle) shows decreasing COMMIT and increasing R_1 with
277 increasing edge length. All together, these results support an inverse relationship between the
278 edge caliber and myelin content of a given white matter tract. This can be partly explained by the
279 differential dependence of these structural features on edge length: longer tracts tend to be more
280 myelinated with lower total intra-axonal cross-sectional area. However, this relationship is robust
281 to controlling for edge length supporting an intrinsic dependence between these white matter
282 features.

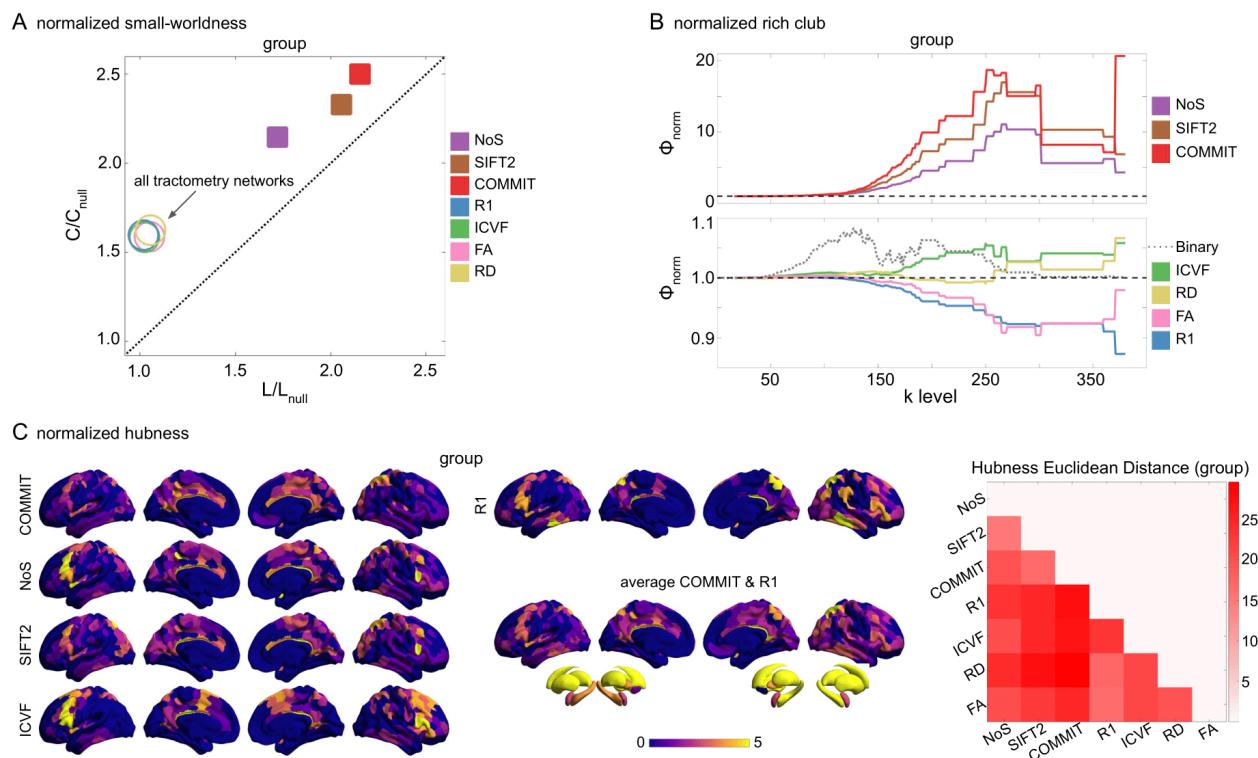
283

284

285 ***Divergent Small-Worldness, Hubness and Rich Club in Weighted Structural Networks***

286 In this final section, we apply network analysis tools (Rubinov & Sporns, 2010) based on graph
287 theory (Fornito et al., 2013; Sporns, 2018) to group-level weighted SC networks. This facilitates
288 high-level interpretation of general features of network communication such as integrative vs
289 segregative processing and the economy of network organization. Although the high material
290 and metabolic cost of brain tissue naturally tends to favor local connectivity (high clustering),
291 short overall network path length is achieved through a small number of relatively expensive
292 long-range connections (Bullmore & Sporns, 2012). These edges and the nodes they interlink
293 form a densely connected network core known as the rich club (Martijn P. van den Heuvel &
294 Sporns, 2011). While the general proclivity for high local clustering gives rise to segregated
295 functional modules, the rich-club nodes act as network communication hubs supporting inter-
296 modular integration (Collin et al., 2014; de Reus & van den Heuvel, 2014; Griffa & Van den
297 Heuvel, 2018; Kim & Min, 2020; Martijn P. van den Heuvel & Sporns, 2013). Thus, small-world
298 network topology (high clustering and low path length) (Bassett & Bullmore, 2006, 2017)

299 supports both integrative and segregative processing at a minimum of wiring cost, and the
 300 underlying scaffold of hub brain regions tend to show high centrality, low path length (high
 301 closeness) and low clustering (M. P. van den Heuvel et al., 2010).
 302
 303 Here, we report normalized small-worldness, normalized rich-club curves and nodal hubness
 304 (**Figure 5**). Normalized small-worldness (S) is computed as the quotient of normalized measures
 305 of clustering coefficient (C/C_{null}) and path length (L/L_{null}).
 306



307
 308 **Figure 5.** Group-level network topology. (A) Small-worldness was estimated in all structural networks: clustering coefficient was
 309 normalized within each node, averaged across nodes (C/C_{null}), then plot as a function of normalized Characteristic path length
 310 (L/L_{null}). Topology measures averaged across 50 degree and strength preserving null networks were used for normalization.
 311 Networks above the identity line (dotted black) are characterized by the small world attribute. Tractometry networks are
 312 indicated by the arrow. (B) Normalized rich club curves are shown for COMMIT, NoS and SIFT2 (top), as well as ICVF, RD, FA
 313 and R1 (bottom). A single binary network (dotted gray line) is also shown (bottom) as binary connectivity was uniform across
 314 weighted networks. The normalized rich club coefficient (Φ_{norm}) was computed across the range of degree (k) and normalized
 315 against 1000 null models (degree preserving for binary and degree and strength preserving for weighted networks). A Φ_{norm} value
 316 > 1 (horizontal dashed black lines) over a range of k indicates the presence of a rich club. (C) Nodewise hubness scores are
 317 projected onto Schaefer-400 cortical and 14-ROI subcortical surfaces. Scores (0-5) were computed for each node as +1 point for

318 all nodes in top 20% strength, betweenness, closeness and eigenvector centrality, as well as bottom 20% clustering coefficient.
319 The matrix (right) shows the Euclidean distance between all pairs of nodal hubness vectors.

320

321 All group-level weighted SC networks show the normalized small-world property ($S > 1$) of
322 higher clustering and lower path length than would be expected by chance (**Figure 5A**). Small-
323 worldness is highest in COMMIT ($S \approx 2.5$) and lowest in R₁, ICVF, FA and RD ($S \approx 1.6$). In
324 contrast, all weighted SC networks did not show a canonical rich club (**Figure 5B**). Relative to
325 the tractometry and binary SC networks, the normalized rich-club coefficient (ϕ_{norm}) was much
326 higher in magnitude in NoS, SIFT2 and COMMIT. A rich club was detected in these networks
327 across a large range of degree (k) levels ($150 < k < 300$). ϕ_{norm} was maximal at $k \approx 265$ in
328 COMMIT. A rich club was also detected across a similar range of k levels in ICVF and across k
329 in the range [250 300] for RD, albeit with much lower magnitude ϕ_{norm} . However, no clear rich
330 club was observed in R₁ or FA. In fact, the rich-club curves for these networks are roughly
331 symmetric about the $\phi_{\text{norm}} = 1$ line relative to COMMIT. A densely connected core was of course
332 recovered in all weighted SC networks (uniform binary connectivity), but these results suggest
333 that its interconnecting edges were consistently weaker than would be expected by chance in R₁
334 and FA. By comparison, a rich club was observed in the binary SC network across the very large
335 range of k [50 300]. This supports two important concepts: (1) SC network edge weights can
336 provide an additional layer of information useful for refining the topology of binary SC; and (2)
337 different methods for computing SC network edge weights yield diverse network topology.

338

339 Weighted SC networks show network-dependent spatial topology of hubness scores (**Figure**
340 **5C**). The COMMIT and R1 averaged surface shows prominent hubs distributed throughout the
341 brain including the fronto-parietal network. Nearly all of the subcortex showed a hubness score

342 of 4 or greater in all networks. The Euclidean distance between hubness score vectors (right) was
343 lower for COMMIT and SIFT2 than for either network with NoS. Of the streamline-specific
344 networks, NoS was more similar to both R1 and IVCF. Overall, these results illustrate the
345 considerable impact that edge weighting can have on network topology.

346

347

348 **DISCUSSION**

349 Computational network modeling provides a customizable platform for probing the mechanistic
350 relationship between human brain structure and function *in vivo*. Here, we assemble a thorough
351 characterization of structural brain networks weighted by a range of quantitative MRI metrics
352 capturing the macro- and microscopic features of white matter tracts to inform their utilization in
353 computational models of brain function. Notable trends included: (1) greater edge weight
354 contrast and skewed (heavy-tailed) distributions in the streamline-specific networks NoS, SIFT2
355 and COMMIT; (2) whole-brain correlations with FC in networks weighted by connection
356 strength (positive) and myelin (negative) which were robust to controlling for edge length; (3)
357 whole-brain inverse relationships with myelin for networks weighted by connection strength and
358 neurite density independent of edge length; and (4) the absence of a rich club in R₁ and FA
359 networks. All weighted SC networks showed a strong spatial dependence and small-world
360 architecture. Collectively, these results support the overall conclusion that SC networks weighted
361 by edge caliber (e.g., SIFT2 and COMMIT) and myelin (e.g., R₁) can be used to quantify non-
362 overlapping subsets of white matter structural features related to FC supporting their joint
363 utilization in modeling function.

364

365

366 ***COMMIT vs SIFT2: The Superior Estimate of Connectivity Strength?***

367 A principal goal of this work is to identify what, if any, advantage over NoS is provided by the
368 global optimization methods SIFT2 and COMMIT. NoS has previously been used to inform the
369 strength of interregional coupling in computational models of function (e.g., (Honey et al.,
370 2009)). However, important limitations restrict model interpretation. Besides suffering from a
371 range of biases related to the position, size, shape and length of white matter tracts (Girard et al.,
372 2014), NoS varies as a function of tracking parameters limiting its specificity for white matter
373 structural features (Jones, 2010; Jones et al., 2013). SIFT2 and COMMIT reportedly restore the
374 quantitative link between connectome edge weights and white matter structural features related
375 to connection strength. Our results show that when network density is uniform across structural
376 metrics, COMMIT shows greater subject-specificity, edge weight contrast, correlation with
377 myelin, small-worldness and rich club coefficient relative to SIFT2. This supports the hypothesis
378 that using COMMIT instead of NoS to modulate the strength of interregional coupling in
379 computational models of function will yield the greatest improvement in model fit.

380

381

382 ***Myelin Complements Connection Strength in Predicting FC***

383 Despite the differences between COMMIT, SIFT2 and NoS; our results indicate that their edge
384 weights show roughly equivalent positive correlations with FC over the whole brain. R_1 was
385 negatively correlated with FC. Significant evidence indicates a link between cerebral myelin and
386 FC including: a relationship between intracortical myelin and FC (Huntenburg et al., 2017;
387 Wang et al., 2019); the prediction of cognition (Sonya Bells et al., 2017; Caeyenberghs et al.,

388 2016) and FC-derived components (Messaritaki et al., 2021) with myelin-sensitive metrics; and a
389 relationship between damaged myelin sheaths and greater conduction delays in multiple sclerosis
390 (Sorrentino et al., 2022). At the cellular-level, myelin contributes to conduction velocity (Huxley
391 & Stämpfli, 1949), metabolic support (Nave & Werner, 2014) and plasticity (Gibson et al.,
392 2018), all of which could be argued to support brain function. Myelin plasticity in particular can
393 be described in terms of “activity-dependence”, whereby an increase in the functional activity of
394 a given circuit stimulates cellular signaling cascades promoting greater myelination (Douglas
395 Fields, 2015; Mount & Monje, 2017). Coupled with our results, this complex mix of functional
396 roles supports the idea that structure-function models will be improved by integrating measures
397 of myelin and connection strength.

398

399

400 ***Tract g-ratio and Edge Caliber are Inversely Related to Length***

401 When controlling for edge length, we found an inverse relationship between R_1 and COMMIT
402 over the whole brain in all subjects and at the group level. This suggests that the aggregate g-
403 ratio of a white matter tract may increase with edge caliber. At the cellular-level, the diameter of
404 an axon and the thickness of its myelin sheath show nearly a linear relationship over a broad
405 range of smaller diameter axons which becomes increasingly nonlinear as axon diameter
406 increases (Berthold et al., 1983; Hildebrand & Hahn, 1978). In general, increasing axon diameter
407 tends to outpace increasing myelin thickness i.e., g-ratio tends to increase with increasing axon
408 caliber (Hildebrand & Hahn, 1978). Our findings suggest that this cellular-level principle may
409 extend to the systems level: increases in edge caliber tend to outpace changes in the myelin
410 content resulting in a concomitant increase in the g-ratio of white matter tracts.

411

412 We localized the inverse relationship between R_1 and COMMIT to the shortest edges i.e., the g-
413 ratio was the highest in the shortest connections. This result is supported by a previous imaging
414 study showing the highest g-ratio in “local” connections (Mancini et al., 2018). In general, we
415 found that R_1 increased and COMMIT decreased with increasing edge length. Both of these
416 trends fit well with theories of brain wiring economy in which the energetic cost of maintaining
417 biological material increases with connection length (Bullmore & Sporns, 2012). This natural
418 pressure acts to reduce the total axonal volume of longer white matter bundles. Increasing the
419 myelin content of longer tracts comes at a cost as well, but this may be at least partially offset as
420 increasing myelin content reduces the total membrane surface area along which expensive
421 electrochemical gradients must be maintained (Bullmore & Sporns, 2012). Although, a cost-
422 benefit analysis of the energetics of myelination concluded that the energetic cost of myelin
423 maintenance outweighs any savings on action potentials (Harris & Attwell, 2012). This suggests
424 that higher myelination of longer edges may be better explained as a mechanism to provide
425 trophic support (Nave & Werner, 2014) to vital inter-regional connections (Martijn P. Van Den
426 Heuvel et al., 2012) or to reduce conduction delays.

427

428

429 ***Edge Weight Variance Decreases with Edge Length in Most Weighted Structural Networks?***

430 White matter features related to myelin content, connection strength and neurite density tend to
431 become more consistent across tracts as tract length increases. Greater variability in the weights
432 of the shortest connections could result from a higher proportion of false positive streamlines
433 influencing these edge weights. For SIFT2 and COMMIT, streamline weight computation

434 becomes increasingly unstable with decreasing length as fewer voxels contribute to the fit.

435 However, this result could also be explained more generally by contrasting the roles of shorter

436 and longer connections in the brain. Shorter white matter tracts connect brain regions near each

437 other in space e.g., within the same module. Just as we might expect the characteristics of

438 smaller roads and streets (e.g., width, building materials, markings, signs, sidewalks, etc.) to vary

439 by neighborhood and city, we might also expect the morphology of shorter white matter

440 connections to change as the functional specialization of any given region or module changes.

441 On the other hand, longer tracts (i.e., the freeways of the brain) may overlap more in both their

442 functional role and morphological features relative to shorter connections, hence lower edge

443 weight variability. Breaking with the above pattern, FA and RD showed the highest edge weight

444 variance in the longest connections. Given that structural measures derived using a voxel-wise

445 diffusion tensor model are particularly sensitive to the white matter “architectural paradigm”

446 (Jones et al., 2013), these results suggest that white matter features related to fiber orientation

447 and geometry actually diverge with increasing tract length.

448

449 ***The Absence of a Rich Club in R_1 and FA***

450 Group-level R_1 and FA did not show a normalized weighted rich club for any degree k . Higher

451 myelination in the white matter tracts connecting rich club nodes has previously been reported

452 (Collin et al., 2014); however, methodological differences limit comparability. A rich club has

453 previously been reported in FA-weighted networks using similar methods to ours (Martijn P. van

454 den Heuvel & Sporns, 2011). The source of this disagreement could potentially be attributed to

455 differences in our tractography algorithm, parcellation or null network computation.

456

457 In weighted rich-club detection, the identification of a densely connected core is independent of
458 edge weight (depends only on node degree), but the designation of this subnetwork as a rich club
459 requires that it contains a higher-than-chance proportion of the strongest edges from the full
460 network. Indeed, this is the case over a broad range of degree k for COMMIT. Over the same
461 range of k , the normalized rich-club curves for R_1 and FA are inverted about the threshold value
462 of 1 with respect to COMMIT. This implies that the subnetwork found at a given k in this range
463 contains edges which tend to show higher COMMIT and lower R_1 edge weights than expected
464 by chance. We previously showed edgewise inverse correlations between R_1 and COMMIT
465 which were robust to controlling for edge length. We also showed that R_1 and FA are positively
466 correlated under these same conditions. In this light, it is not surprising that the edges connecting
467 rich-club nodes tend to show opposite trends in R_1 - and FA-weighting with respect to COMMIT.
468 Nonetheless, it is possible that the lack of a rich club in our myelin-weighted network is an
469 artifact of tractometry. Future work will attempt to replicate this result using myelin-weighted
470 networks computed with a different methodology (Schiavi et al., 2022).

471

472

473 ***Limitations***

474 Streamline tractography is known to suffer from several important biases including both false
475 positive and negative streamlines which can influence downstream analyses (Maier-Hein et al.,
476 2017; Schilling et al., 2019; Sotropoulos & Zalesky, 2019; Zalesky et al., 2016). Through
477 probabilistic tracking, we opted to minimize false negatives while maximizing false positives.
478 This allowed us to implement careful streamline- and edge-filtering strategies in post-processing
479 to address this known bias. Still, without a ground truth, we cannot quantify the extent to which

480 we were successful in mitigating this issue, nor can we guarantee that we did not erroneously
481 filter true positive streamlines or edges. All processing and filtering methods were consistent and
482 network density was uniform across weighted structural networks. Thus, any major tractography
483 bias should be as homogeneous as possible across networks.

484

485 Tractometry-derived brain networks suffer from widespread partial volume effects. The net
486 effect of this bias is well understood and is apparent in our results and previous work (De Santis
487 et al., 2014; Schiavi et al., 2022). Nonetheless, this method was included here as our goal was to
488 characterize widely used structural connectivity methods. New techniques for reducing this bias
489 are currently being developed which allow for the estimation of tract-specific microstructural
490 features (e.g., (Barakovic, Girard, et al., 2021; Barakovic, Tax, et al., 2021; De Santis et al.,
491 2016; Leppert et al., 2021; Schiavi et al., 2022)).

492

493

494 ***Conclusion***

495 We presented a thorough characterization of weighted SC networks. Overall, our findings
496 support the joint use of SC networks weighted by connection strength and myelin in predicting
497 FC. In particular, using the COMMIT algorithm to quantify connection strength shows promise.
498 Beyond R₁, there are a wide array of myelin sensitive metrics that could be used to compute
499 useful myelin-weighted networks. The integration of this microstructure-weighted connectivity
500 approach into structure-function models will advance the mechanistic interpretation of both the
501 function and dysfunction of the living human brain.

502

503

504 **MATERIALS and METHODS**

505 These data are available for download (<https://portal.conp.ca/dataset?id=projects/mica-mics>). See
506 Royer et al. (Royer et al., 2022), Cruces et al. (Cruces et al., 2022) for full details of data
507 acquisition and processing. All data processing and analysis code is openly available at
508 <https://github.com/TardifLab/Weighted-SC-Networks>.

509

510

511 ***Data Acquisition & Preprocessing***

512 Multimodal MRI data was collected in 50 healthy volunteers at 3 Tesla as follows:

513 • T₁-weighted (T_{1w}) anatomical: 3D magnetization-prepared rapid gradient-echo sequence
514 (MP-RAGE; 0.8mm isotropic)

515 • Multi-shell diffusion-weighted imaging (DWI): 2D pulsed gradient spin-echo echo-planar
516 imaging sequence (1.6mm isotropic); three shells with b-values 300, 700, and 2000s/mm²
517 and diffusion directions 10, 40, and 90

518 • 7 minutes of resting-state functional MRI: multi-band accelerated 2D-BOLD gradient
519 echo echo-planar sequence (3mm isotropic)

520 • A quantitative T₁ map: 3D-MP2RAGE sequence (Marques et al., 2010) (0.8mm
521 isotropic)

522

523 The multi-modal processing pipeline *micapipe* (Cruces et al., 2022)
524 (<https://micapipe.readthedocs.io/>) was used to preprocess diffusion, anatomical, and functional
525 images. Functional data derivatives were obtained in parcellated FC matrix form.

526

527

528 ***Tractography and Microstructural Metrics***

529 To estimate structural connectomes, anatomically constrained tractography (R. E. Smith et al.,

530 2012) was performed on the normalized white matter FOD image using the probabilistic

531 algorithm iFOD2 (J.-D. Tournier et al., 2010). Tractograms of 5 million streamlines were

532 generated by seeding the gray-white matter interface using the following parameters:

533 maxlen=400, minlength=10, angle=22.5, step=0.5, cutoff=0.06, backtrack, crop_at_gmwmi

534 (gray-matter-white-matter interface). These tractograms were filtered in a two-stage process. (1)

535 a whole-brain connectome weighted by NoS was computed then decomposed into its composite

536 streamlines to derive a new tractogram in which any streamline which failed to connect two gray

537 matter ROIs was excluded. This “streamline-filtering” step typically resulted in approximately a

538 5% decrease in the size of the tractogram (~250k streamlines removed) and was undertaken to

539 ensure that these erroneous streamlines did not affect the COMMIT model. Streamline-filtered

540 tractograms were used to compute NoS and were used as inputs to both the SIFT2 and COMMIT

541 models. SIFT2 determines the effective cross-sectional area of each streamline such that the

542 streamline density throughout the white matter fits the fiber densities estimated using spherical

543 deconvolution. COMMIT was run using a Stick-Zeppelin-Ball forward model and default

544 settings (see <https://github.com/daducci/COMMIT>). Using the simplifying assumption that

545 structural features are constant along the length of a streamline, COMMIT can be used to

546 compute a weight for each streamline representing their respective proportion of the global

547 diffusion signal i.e., the cross-sectional area of their intracellular compartment. (2) Any

548 streamline with a COMMIT weight $< 1e^{-12}$ (machine precision 0) was interpreted as a false

549 positive and filtered from the tractogram. This streamline-level COMMIT-filtering step typically
550 resulted in greater than a 90% decrease in the size of the tractogram with most containing
551 between ~300-600k streamlines. COMMIT-filtered tractograms were used not only in the
552 computation of COMMIT, but all tractometry networks as well. This additional filtering step was
553 performed on COMMIT streamline weights only (not SIFT2) to reduce the impact of false
554 positive streamlines in tractometry networks as much as possible.

555

556

557 ***Construction of Weighted Structural Networks***

558 The streamline-specific SC networks were computed in the following manner: (1) NoS as the
559 summed streamline count; (2) LoS as the mean streamline length; (3) SIFT2 as the sum of SIFT2
560 streamline weights; and (4) COMMIT as the length-weighted sum of COMMIT streamline
561 weights as in (Schiavi et al., 2020). Explicitly, edgewise entries in COMMIT-weighted networks
562 were computed as:

$$563 \quad \alpha_{ij} = \frac{\sum_{k=1}^{N_{ij}} (x_{ij}^k * l_k)}{\bar{L}_{ij}},$$

564 where α_{ij} is the edge weight between nodes i and j ; \bar{L}_{ij} is the mean streamline length; N_{ij} is the
565 number of streamlines; x_{ij}^k is the COMMIT weight of streamline k ; and l_k is its length. Edge
566 weights in NoS, SIFT2 and COMMIT were normalized by node volume.

567

568 SC networks weighted by FA, RD, ICVF (Zhang et al., 2012) and R₁ were derived using multi-
569 modal tractometry (S Bells et al., 2011). Streamline weights were computed by: (1) co-
570 registering the tractogram and desired image; and (2) sampling the voxel-level aggregate value

571 along the length of each streamline. Edge weights were computed as the median along each
572 streamline and the mean across streamlines by node pair. Voxel-wise measures of FA and RD
573 were computed with a diffusion tensor model (Basser et al., 1994) and ICVF by applying the
574 NODDI multi-compartment model (Zhang et al., 2012) to preprocessed DWI data (Daducci,
575 Canales-Rodríguez, et al., 2015).

576

577 The 400-node Schaefer (Schaefer et al., 2018) cortical parcellation is used in all results.
578 Subcortical ROIs corresponded to 7 bilateral regions (14 nodes) including the amygdala,
579 thalamus, caudate, accumbens, putamen, hippocampus, and pallidum. A single static, zero-lag
580 FC network was derived by product-moment pairwise Pearson cross-correlation of node-
581 averaged time series. FC network edge weights were Fisher Z-transformed.

582

583

584 ***Connectome post-processing***

585 All SC networks were thresholded at the edge level within subject by: (1) setting edges = 0 in all
586 weighted SC networks if they had a COMMIT edge weight $< 1e^{-12}$; and (2) applying a 50%
587 uniform threshold mask to facilitate group-consensus averaging. This minimized differences in
588 binary structural network density across subjects and enforced uniform density across weighted
589 SC networks at the group level and within subject. COMMIT was used for this filter as it had the
590 lowest connection density to start.

591

592

593 ***Network Analysis***

594 Network analysis was performed using tools (Rubinov & Sporns, 2010) based on graph theory
595 (Fornito et al., 2013; Sporns, 2018). Measures of clustering coefficient and path length were
596 normalized against 50 degree and strength preserving null networks. Clustering coefficient was
597 normalized within node then averaged across nodes to obtain a scalar value per network. The
598 following weight (W_{ij}) to length (L_{ij}) transform was used in path length computation: $L_{ij} = -$
599 $\log(W_{ij})$. Weighted rich club curves were normalized against 1000 degree and strength
600 preserving null networks. The edges in all degree and strength preserving null networks were
601 rewired $1e^6$ times total, and the strength sequence was approximated using simulated annealing.
602 Rich club curves were normalized in binary networks against 1000 degree preserving null
603 networks in which each edge was rewired 100 times. All edge rewiring followed the Maslov &
604 Sneppen rewiring model (Maslov & Sneppen, 2002). Similar to (M. P. van den Heuvel et al.,
605 2010), hubness scores (0-5) were computed as 1 point for all nodes showing top 20% strength,
606 betweenness, closeness or eigenvector centrality; and lowest 20% clustering coefficient.

607

608

609 **ACKNOWLEDGMENTS**

610 We acknowledge research support from the National Science and Engineering Research Council
611 of Canada (NSERC Discovery-1304413, DGECR-2018-00216), the CIHR (FDN-154298, PJT-
612 174995), SickKids Foundation (NI17-039), Azrieli Center for Autism Research (ACAR-TACC),
613 Brain Canada, Fonds de recherche du Québec – Santé (FRQ-S), Healthy Brains for Healthy
614 Lives, and the Tier-2 Canada Research Chairs program.

615

616 **REFERENCES**

617 Alexander, D. C., Dyrby, T. B., Nilsson, M., & Zhang, H. (2019). Imaging brain microstructure with diffusion MRI: practicality and applications.
618 *NMR in Biomedicine*, 32(4), 1–26. <https://doi.org/10.1002/nbm.3841>

619 Alexander, D. C., Hubbard, P. L., Hall, M. G., Moore, E. A., Ptito, M., Parker, G. J. M., & Dyrby, T. B. (2010). Orientationally invariant indices
620 of axon diameter and density from diffusion MRI. *NeuroImage*, 52(4), 1374–1389. <https://doi.org/10.1016/j.neuroimage.2010.05.043>

621 Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., & Bassar, P. J. (2008). AxCaliber: A method for measuring axon diameter distribution from
622 diffusion MRI. *Magnetic Resonance in Medicine*, 59(6), 1347–1354. <https://doi.org/10.1002/mrm.21577>

623 Barakovic, M., Girard, G., Schiavi, S., Romascano, D., Descoteaux, M., Granziera, C., Jones, D. K., Innocenti, G. M., Thiran, J.-P., & Daducci,
624 A. (2021). Bundle-Specific Axon Diameter Index as a New Contrast to Differentiate White Matter Tracts. *Frontiers in Neuroscience*,
625 15(June), 1–13. <https://doi.org/10.3389/fnins.2021.646034>

626 Barakovic, M., Tax, C. M. W., Rudrapatna, U., Chamberland, M., Rafael-Patino, J., Granziera, C., Thiran, J. P., Daducci, A., Canales-Rodríguez,
627 E. J., & Jones, D. K. (2021). Resolving bundle-specific intra-axonal T2 values within a voxel using diffusion-relaxation tract-based
628 estimation. *NeuroImage*, 227(September 2020), 117617. <https://doi.org/10.1016/j.neuroimage.2020.117617>

629 Basser, P. J. (1995). Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. *NMR in
630 Biomedicine*, 8(7), 333–344. <https://doi.org/10.1002/nbm.1940080707>

631 Basser, P. J., Mattiello, J., & Lebihan, D. (1994). Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo. In *Journal of
632 Magnetic Resonance, Series B* (Vol. 103, Issue 3, pp. 247–254). <https://doi.org/10.1006/jmrb.1994.1037>

633 Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. *Neuroscientist*, 12(6), 512–523. <https://doi.org/10.1177/1073858406293182>

634 Bassett, D. S., & Bullmore, E. T. (2017). Small-World Brain Networks Revisited. *Neuroscientist*, 23(5), 499–516.
635 <https://doi.org/10.1177/1073858416667720>

636 Bells, S., Cercignani, M., Deoni, S., & Assaf, Y. (2011). “Tractometry” – comprehensive multi-modal quantitative assessment of white matter
637 along specific tracts. *Proceedings of the International Society for Magnetic Resonance in Medicine*, 19(2009), 678.
638 <http://cds.isrmr.org/protected/11MProceedings/files/678.pdf>

639 Bells, Sonya, Lefebvre, J., Prescott, S. A., Dockstader, C., Bouffet, E., Skocic, J., Laughlin, S., & Mabbott, D. J. (2017). Changes in white matter
640 microstructure impact cognition by disrupting the ability of neural assemblies to synchronize. *Journal of Neuroscience*, 37(34), 8227–
641 8238. <https://doi.org/10.1523/jneurosci.0560-17.2017>

642 Berthold, C. H., Nilsson, I., & Rydmark, M. (1983). Axon diameter and myelin sheath thickness in nerve fibres of the ventral spinal root of the
643 seventh lumbar nerve of the adult and developing cat. *Journal of Anatomy*, 136(Pt 3), 483–508.
644 <https://pubmed.ncbi.nlm.nih.gov/6885614/>

645 Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using
646 echo-planar mri. *Magnetic Resonance in Medicine*, 34(4), 537–541. <https://doi.org/10.1002/mrm.1910340409>

647 Boshkovski, T., Kocarev, L., Cohen-Adad, J., Mišić, B., Lehéricy, S., Stikov, N., & Mancini, M. (2021). The R1-weighted connectome:
648 complementing brain networks with a myelin-sensitive measure. *Network Neuroscience*, 5(2), 358–372.
649 https://doi.org/10.1162/netn_a_00179

650 Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. *Nature Reviews Neuroscience*, 13(5), 336–349.
651 <https://doi.org/10.1038/nrn3214>

652 Cabral, J., Kringelbach, M. L., & Deco, G. (2017). Functional connectivity dynamically evolves on multiple time-scales over a static structural
653 connectome: Models and mechanisms. *NeuroImage*, 160(March), 84–96. <https://doi.org/10.1016/j.neuroimage.2017.03.045>

654 Caeyenberghs, K., Metzler-Baddeley, C., Foley, S., & Jones, D. K. (2016). Dynamics of the human structural connectome underlying working
655 memory training. *Journal of Neuroscience*, 36(14), 4056–4066. <https://doi.org/10.1523/JNEUROSCI.1973-15.2016>

656 Collin, G., Sporns, O., Mandl, R. C. W., & Van Den Heuvel, M. P. (2014). Structural and functional aspects relating to cost and benefit of rich
657 club organization in the human cerebral cortex. *Cerebral Cortex*, 24(9), 2258–2267. <https://doi.org/10.1093/cercor/bht064>

658 Cruces, R. R., Royer, J., Herholz, P., Larivière, S., Vos de Wael, R., Paquola, C., Benkarim, O., Park, B., Degré-Pelletier, J., Nelson, M. C.,
659 DeKraker, J., Leppert, I. R., Tardif, C., Poline, J.-B., Concha, L., & Bernhardt, B. C. (2022). Micapipe: A pipeline for multimodal
660 neuroimaging and connectome analysis. *NeuroImage*, 263(August), 119612. <https://doi.org/10.1016/j.neuroimage.2022.119612>

661 Daducci, A., Canales-Rodríguez, E. J., Zhang, H., Dyrby, T. B., Alexander, D. C., & Thiran, J. P. (2015). Accelerated Microstructure Imaging via
662 Convex Optimization (AMICO) from diffusion MRI data. *NeuroImage*, 105, 32–44. <https://doi.org/10.1016/j.neuroimage.2014.10.026>

663 Daducci, A., Dal Palu, A., Lemkadem, A., & Thiran, J. P. (2013). A convex optimization framework for global tractography. *Proceedings -
664 International Symposium on Biomedical Imaging*, 524–527. <https://doi.org/10.1109/ISBI.2013.6556527>

665 Daducci, A., Dal Palù, A., Lemkadem, A., & Thiran, J. P. (2015). COMMIT: Convex optimization modeling for microstructure informed
666 tractography. *IEEE Transactions on Medical Imaging*, 34(1), 246–257. <https://doi.org/10.1109/TMI.2014.2352414>

667 de Reus, M. A., & van den Heuvel, M. P. (2014). Simulated rich club lesioning in brain networks: A scaffold for communication and integration?
668 *Frontiers in Human Neuroscience*, 8(AUG), 1–5. <https://doi.org/10.3389/fnhum.2014.00647>

669 De Santis, S., Assaf, Y., Jeurissen, B., Jones, D. K., & Roebroeck, A. (2016). T1 relaxometry of crossing fibres in the human brain. *NeuroImage*,
670 141, 133–142. <https://doi.org/10.1016/j.neuroimage.2016.07.037>

671 De Santis, S., Drakesmith, M., Bells, S., Assaf, Y., & Jones, D. K. (2014). Why diffusion tensor MRI does well only some of the time: Variance
672 and covariance of white matter tissue microstructure attributes in the living human brain. *NeuroImage*, 89, 35–44.
673 <https://doi.org/10.1016/j.neuroimage.2013.12.003>

674 Deligianni, F., Carmichael, D. W., Zhang, G. H., Clark, C. A., & Clayden, J. D. (2016). NODDI and tensor-based microstructural indices as
675 predictors of functional connectivity. *PLoS ONE*, 11(4), 1–17. <https://doi.org/10.1371/journal.pone.0153404>

676 Douglas Fields, R. (2015). A new mechanism of nervous system plasticity: activity-dependent myelination. *Nature Reviews Neuroscience*,
677 16(12), 756–767. <https://doi.org/10.1007/s11065-015-9294-9>

678 Drakesmith, M., Harms, R., Rudrapatna, S. U., Parker, G. D., Evans, C. J., & Jones, D. K. (2019). Estimating axon conduction velocity in vivo
679 from microstructural MRI. *NeuroImage*, 203(March), 116186. <https://doi.org/10.1016/j.neuroimage.2019.116186>

680 Finn, E. S., Huber, L., Jangraw, D. C., Molfese, P. J., & Bandettini, P. A. (2019). Layer-dependent activity in human prefrontal cortex during
681 working memory. *Nature Neuroscience*, 22(10), 1687–1695. <https://doi.org/10.1038/s41593-019-0487-z>

682 Fornito, A., Zalesky, A., & Breakspear, M. (2013). Graph analysis of the human connectome: Promise, progress, and pitfalls. *NeuroImage*, 80,
683 426–444. <https://doi.org/10.1016/j.neuroimage.2013.04.087>

684 Fornito, A., Zalesky, A., & Breakspear, M. (2015). The connectomics of brain disorders. *Nature Reviews Neuroscience*, 16(3), 159–172.
685 <https://doi.org/10.1038/nrn3901>

686 Fornito, A., Zalesky, A., & Bullmore, E. T. (2016). Fundamentals of Brain Network Analysis. In *Fundamentals of Brain Network Analysis*.
687 Elsevier. <https://doi.org/10.1016/C2012-0-06036-X>

688 Frigo, M., Deslauriers-Gauthier, S., Parker, D., Ismail, A. A. O., Kim, J. J., Verma, R., & Deriche, R. (2020). Diffusion MRI tractography

689 filtering techniques change the topology of structural connectomes. *Journal of Neural Engineering*, 17(6). <https://doi.org/10.1088/1741-2552/abc29b>

691 Friston, K. J. (2011). Functional and effective connectivity: a review. *Brain Connectivity*, 1(1), 13–36. <https://doi.org/10.1089/brain.2011.0008>

692 Gibson, E. M., Geraghty, A. C., & Monje, M. (2018). Bad wrap: Myelin and myelin plasticity in health and disease. In *Developmental*
693 *Neurobiology* (Vol. 78, Issue 2, pp. 123–135). John Wiley and Sons Inc. <https://doi.org/10.1002/dneu.22541>

694 Girard, G., Whittingstall, K., Deriche, R., & Descoteaux, M. (2014). Towards quantitative connectivity analysis: Reducing tractography biases.
695 *NeuroImage*, 98, 266–278. <https://doi.org/10.1016/j.neuroimage.2014.04.074>

696 Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J., Greene, D. J., Berg, J. J., Ortega, M., Hoyt-Drazen, C., Gratton, C., Sun, H.,
697 Hampton, J. M., Coalson, R. S., Nguyen, A. L., McDermott, K. B., Shimony, J. S., Snyder, A. Z., Schlaggar, B. L., Petersen, S. E.,
698 Nelson, S. M., & Dosenbach, N. U. F. (2017). Precision Functional Mapping of Individual Human Brains. *Neuron*, 95(4), 791-807.e7.
699 <https://doi.org/10.1016/j.neuron.2017.07.011>

700 Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default
701 mode hypothesis. *Proceedings of the National Academy of Sciences of the United States of America*, 100(1), 253–258.
702 <https://doi.org/10.1073/pnas.0135058100>

703 Griffa, A., & Van den Heuvel, M. P. (2018). Rich-club neurocircuitry: function, evolution, and vulnerability. *Dialogues in Clinical Neuroscience*,
704 20(2), 121–132. <https://doi.org/10.31887/DCNS.2018.20.2/agriffa>

705 Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C., & Constable, R. T. (2006). Brain connectivity related to working memory performance.
706 *Journal of Neuroscience*, 26(51), 13338–13343. <https://doi.org/10.1523/JNEUROSCI.3408-06.2006>

707 Harris, J. J., & Attwell, D. (2012). The energetics of CNS white matter. *Journal of Neuroscience*, 32(1), 356–371.
708 <https://doi.org/10.1523/JNEUROSCI.3430-11.2012>

709 Heath, F., Hurley, S. A., Johansen-Berg, H., & Sampaio-Baptista, C. (2018). Advances in noninvasive myelin imaging. *Developmental*
710 *Neurobiology*, 78(2), 136–151. <https://doi.org/10.1002/dneu.22552>

711 Hildebrand, C., & Hahn, R. (1978). Relation between myelin sheath thickness and axon size in spinal cord white matter of some vertebrate
712 species. *Journal of the Neurological Sciences*, 38(3), 421–434. [https://doi.org/10.1016/0022-510X\(78\)90147-8](https://doi.org/10.1016/0022-510X(78)90147-8)

713 Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve.
714 *The Journal of Physiology*, 117(4), 500–544. <https://doi.org/10.1113/jphysiol.1952.sp004764>

715 Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional
716 connectivity from structural connectivity. *Proceedings of the National Academy of Sciences of the United States of America*, 106(6),
717 2035–2040. <https://doi.org/10.1073/pnas.0811168106>

718 Huntenburg, J. M., Bazin, P. L., Goulas, A., Tardif, C. L., Villringer, A., & Margulies, D. S. (2017). A Systematic Relationship Between
719 Functional Connectivity and Intracortical Myelin in the Human Cerebral Cortex. *Cerebral Cortex*, 27(2), 981–997.
720 <https://doi.org/10.1093/cercor/bhx030>

721 Huxley, A. F., & Stämpfli, R. (1949). Evidence for saltatory conduction in peripheral myelinated nerve fibres. *The Journal of Physiology*, 108(3),
722 315–339. <http://www.ncbi.nlm.nih.gov/pubmed/16991863>

723 Jeurissen, B., Descoteaux, M., Mori, S., & Leemans, A. (2017). Diffusion MRI fiber tractography of the brain. *NMR in Biomedicine*, 32(4), 1–22.

724 https://doi.org/10.1002/nbm.3785

725 Jeurissen, B., Leemans, A., Tournier, J. D., Jones, D. K., & Sijbers, J. (2012). Investigating the prevalence of complex fiber configurations in
726 white matter tissue with diffusion magnetic resonance imaging. *Human Brain Mapping*, 34(11), 2747–2766.
727 https://doi.org/10.1002/hbm.22099

728 Jones, D. K. (2010). Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. *Imaging in Medicine*, 2(3), 341–
729 355. https://doi.org/10.2217/iim.10.21

730 Jones, D. K., Knösche, T. R., & Turner, R. (2013). White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI.
731 *NeuroImage*, 73, 239–254. https://doi.org/10.1016/j.neuroimage.2012.06.081

732 Kim, D. J., & Min, B. K. (2020). Rich-club in the brain's macrostructure: Insights from graph theoretical analysis. *Computational and Structural
733 Biotechnology Journal*, 18, 1761–1773. https://doi.org/10.1016/j.csbj.2020.06.039

734 Larivière, S., Paquola, C., Park, B. yong, Royer, J., Wang, Y., Benkarim, O., Vos de Wael, R., Valk, S. L., Thomopoulos, S. I., Kirschner, M.,
735 Lewis, L. B., Evans, A. C., Sisodiya, S. M., McDonald, C. R., Thompson, P. M., & Bernhardt, B. C. (2021). The ENIGMA Toolbox:
736 multiscale neural contextualization of multisite neuroimaging datasets. *Nature Methods*, 18(7), 698–700. https://doi.org/10.1038/s41592-
737 021-01186-4

738 Leppert, I. R., Andrews, D. A., Campbell, J. S. W., Park, D. J., Pike, G. B., Polimeni, J. R., & Tardif, C. L. (2021). Efficient whole-brain tract-
739 specific T1 mapping at 3T with slice-shuffled inversion-recovery diffusion-weighted imaging. *Magnetic Resonance in Medicine*, 86(2),
740 738–753. https://doi.org/10.1002/mrm.28734

741 Liégeois, R., Li, J., Kong, R., Orban, C., Van De Ville, D., Ge, T., Sabuncu, M. R., & Yeo, B. T. T. (2019). Resting brain dynamics at different
742 timescales capture distinct aspects of human behavior. *Nature Communications*, 10(1). https://doi.org/10.1038/s41467-019-10317-7

743 Liu, Z. Q., Vázquez-Rodríguez, B., Spreng, R. N., Bernhardt, B. C., Betzel, R. F., & Misic, B. (2022). Time-resolved structure-function coupling
744 in brain networks. *Communications Biology*, 5(1), 1–10. https://doi.org/10.1038/s42003-022-03466-x

745 Maier-Hein, K. H., Neher, P. F., Houde, J. C., Côté, M. A., Garyfallidis, E., Zhong, J., Chamberland, M., Yeh, F. C., Lin, Y. C., Ji, Q., Reddick,
746 W. E., Glass, J. O., Chen, D. Q., Feng, Y., Gao, C., Wu, Y., Ma, J., Renjie, H., Li, Q., ... Descoteaux, M. (2017). The challenge of
747 mapping the human connectome based on diffusion tractography. *Nature Communications*, 8(1). https://doi.org/10.1038/s41467-017-
748 01285-x

749 Mancini, M., Giulietti, G., Dowell, N., Spanò, B., Harrison, N., Bozzali, M., & Cercignani, M. (2018). Introducing axonal myelination in
750 connectomics: A preliminary analysis of g-ratio distribution in healthy subjects. *NeuroImage*, 182, 351–359.
751 https://doi.org/10.1016/j.neuroimage.2017.09.018

752 Mancini, M., Karakuzu, A., Cohen-Adad, J., Cercignani, M., Nichols, T. E., & Stikov, N. (2020). An interactive meta-analysis of MRI
753 biomarkers of myelin. *eLife*, 9, 1–23. https://doi.org/10.7554/eLife.61523

754 Margulies, D. S., Ghosh, S. S., Goulas, A., Falkiewicz, M., Huntenburg, J. M., Langs, G., Bezgin, G., Eickhoff, S. B., Castellanos, F. X., Petrides,
755 M., Jefferies, E., & Smallwood, J. (2016). Situating the default-mode network along a principal gradient of macroscale cortical
756 organization. *Proceedings of the National Academy of Sciences of the United States of America*, 113(44), 12574–12579.
757 https://doi.org/10.1073/pnas.1608282113

758 Marques, J. P., Kober, T., Krueger, G., van der Zwaag, W., Van de Moortele, P. F., & Gruetter, R. (2010). MP2RAGE, a self bias-field corrected

759 sequence for improved segmentation and T1-mapping at high field. *NeuroImage*, 49(2), 1271–1281.
760 <https://doi.org/10.1016/j.neuroimage.2009.10.002>

761 Maslov, S., & Sneppen, K. (2002). Specificity and stability in topology of protein networks. *Science*, 296(5569), 910–913.
762 <https://doi.org/10.1126/science.1065103>

763 Messaritaki, E., Foley, S., Schiavi, S., Magazzini, L., Routley, B., Jones, D. K., & Singh, K. D. (2021). Predicting meg resting-state functional
764 connectivity from microstructural information. *Network Neuroscience*, 5(2), 477–504. https://doi.org/10.1162/netn_a_00187

765 Moore, S., Meschkat, M., Ruhwedel, T., Trevisiol, A., Tzvetanova, I. D., Battefeld, A., Kusch, K., Kole, M. H. P., Strenzke, N., Möbius, W., de
766 Hoz, L., & Nave, K. A. (2020). A role of oligodendrocytes in information processing. *Nature Communications*, 11(1), 1–15.
767 <https://doi.org/10.1038/s41467-020-19152-7>

768 Mottershead, J. P., Schmierer, K., Clemence, M., Thornton, J. S., Scaravilli, F., Barker, G. J., Tofts, P. S., Newcombe, J., Cuzner, M. L., Ordidge,
769 R. J., McDonald, W. I., & Miller, D. H. (2003). High field MRI correlates of myelin content and axonal density in multiple sclerosis: A
770 post-mortem study of the spinal cord. *Journal of Neurology*, 250(11), 1293–1301. <https://doi.org/10.1007/s00415-003-0192-3>

771 Mount, C. W., & Monje, M. (2017). Wrapped to Adapt: Experience-Dependent Myelination. *Neuron*, 95(4), 743–756.
772 <https://doi.org/10.1016/j.neuron.2017.07.009>

773 Nave, K. A., & Werner, H. B. (2014). Myelination of the nervous system: Mechanisms and functions. *Annual Review of Cell and Developmental
774 Biology*, 30, 503–533. <https://doi.org/10.1146/annurev-cellbio-100913-013101>

775 Pumphrey, R. J., & Young, J. Z. (1938). The Rates Of Conduction Of Nerve Fibres Of Various Diameters In Cephalopods. *Journal of
776 Experimental Biology*, 15(4), 453–466. <https://doi.org/10.1242/jeb.15.4.453>

777 Royer, J., Rodríguez-Cruces, R., Tavakol, S., Larivière, S., Herholz, P., Li, Q., Vos de Wael, R., Paquola, C., Benkarim, O., Park, B., Lowe, A. J.,
778 Margulies, D., Smallwood, J., Bernasconi, A., Bernasconi, N., Frauscher, B., & Bernhardt, B. C. (2022). An Open MRI Dataset For
779 Multiscale Neuroscience. *Scientific Data*, 9(1), 569. <https://doi.org/10.1038/s41597-022-01682-y>

780 Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. *NeuroImage*, 52(3), 1059–1069.
781 <https://doi.org/10.1016/j.neuroimage.2009.10.003>

782 Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., Eickhoff, S. B., & Yeo, B. T. T. (2018). Local-Global
783 Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. *Cerebral Cortex*, 28(9), 3095–3114.
784 <https://doi.org/10.1093/cercor/bhx179>

785 Schiavi, S., Lu, P., Weigel, M., Lutti, A., Jones, D. K., Kappos, L., Granziera, C., & Daducci, A. (2022). Bundle Myelin Fraction (BMF)
786 Mapping of Different White Matter Connections Using Microstructure Informed Tractography. *NeuroImage*, 118922.
787 <https://doi.org/10.1016/j.neuroimage.2022.118922>

788 Schiavi, S., Petracca, M., Battocchio, M., El Mendili, M. M., Paduri, S., Fleysher, L., Inglese, M., & Daducci, A. (2020). Sensory-motor network
789 topology in multiple sclerosis: Structural connectivity analysis accounting for intrinsic density discrepancy. *Human Brain Mapping*,
790 41(11), 2951–2963. <https://doi.org/10.1002/hbm.24989>

791 Schilling, K. G., Daducci, A., Maier-Hein, K., Poupon, C., Houde, J. C., Nath, V., Anderson, A. W., Landman, B. A., & Descoteaux, M. (2019).
792 Challenges in diffusion MRI tractography – Lessons learned from international benchmark competitions. *Magnetic Resonance Imaging*,
793 57(November 2018), 194–209. <https://doi.org/10.1016/j.mri.2018.11.014>

794 Smith, R. E., Tournier, J. D., Calamante, F., & Connelly, A. (2012). Anatomically-constrained tractography: Improved diffusion MRI streamlines
795 tractography through effective use of anatomical information. *NeuroImage*, 62(3), 1924–1938.
796 <https://doi.org/10.1016/j.neuroimage.2012.06.005>

797 Smith, R. E., Tournier, J. D., Calamante, F., & Connelly, A. (2015). SIFT2: Enabling dense quantitative assessment of brain white matter
798 connectivity using streamlines tractography. *NeuroImage*, 119, 338–351. <https://doi.org/10.1016/j.neuroimage.2015.06.092>

799 Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., Filippini, N., Watkins, K. E., Toro, R., Laird, A. R., &
800 Beckmann, C. F. (2009). Correspondence of the brain's functional architecture during activation and rest. *Proceedings of the National
801 Academy of Sciences of the United States of America*, 106(31), 13040–13045. <https://doi.org/10.1073/pnas.0905267106>

802 Sorrentino, P., Petkoski, S., Sparaco, M., Troisi Lopez, E., Signoriello, E., Baselice, F., Bonavita, S., Pirozzi, M. A., Quarantelli, M., Sorrentino,
803 G., & Jirsa, V. (2022). Whole-Brain Propagation Delays in Multiple Sclerosis, a Combined Tractography-Magnetoencephalography
804 Study. *The Journal of Neuroscience : The Official Journal of the Society for Neuroscience*, 42(47), 8807–8816.
805 <https://doi.org/10.1523/JNEUROSCI.0938-22.2022>

806 Sotiropoulos, S. N., & Zalesky, A. (2019). Building connectomes using diffusion MRI: why, how and but. In *NMR in Biomedicine* (Vol. 32, Issue
807 4). <https://doi.org/10.1002/nbm.3752>

808 Sporns, O. (2010). Networks of the Brain. In *Networks of the Brain*. The MIT Press. <https://doi.org/10.7551/mitpress/8476.001.0001>

809 Sporns, O. (2011). The human connectome: A complex network. *Annals of the New York Academy of Sciences*, 1224(1), 109–125.
810 <https://doi.org/10.1111/j.1749-6632.2010.05888.x>

811 Sporns, O. (2018). Graph theory methods: applications in brain networks. *Dialogues in Clinical Neuroscience*, 20(2), 111–120.
812 <https://doi.org/10.31887/DCNS.2018.20.2/osporns>

813 Stikov, N., Campbell, J. S. W., Stroh, T., Lavelée, M., Frey, S., Novek, J., Nuara, S., Ho, M. K., Bedell, B. J., Dougherty, R. F., Leppert, I. R.,
814 Boudreau, M., Narayanan, S., Duval, T., Cohen-Adad, J., Picard, P. A., Gasecka, A., Côté, D., & Pike, G. B. (2015). In vivo histology of
815 the myelin g-ratio with magnetic resonance imaging. *NeuroImage*, 118, 397–405. <https://doi.org/10.1016/j.neuroimage.2015.05.023>

816 Stikov, N., Perry, L. M., Mezer, A., Rykhlevskaia, E., Wandell, B. A., Pauly, J. M., & Dougherty, R. F. (2011). Bound pool fractions complement
817 diffusion measures to describe white matter micro and macrostructure. *NeuroImage*, 54(2), 1112–1121.
818 <https://doi.org/10.1016/j.neuroimage.2010.08.068>

819 Suárez, L. E., Markello, R. D., Betzel, R. F., & Misic, B. (2020). Linking Structure and Function in Macroscale Brain Networks. *Trends in
820 Cognitive Sciences*. <https://doi.org/10.1016/j.tics.2020.01.008>

821 Thomas Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L.,
822 Polimeni, J. R., Fisch, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic
823 functional connectivity. *Journal of Neurophysiology*, 106(3), 1125–1165. <https://doi.org/10.1152/jn.00338.2011>

824 Tournier, J.-D., Calamante, F., & Connelly, A. (2010). Improved probabilistic streamlines tractography by 2 nd order integration over fibre
825 orientation distributions. *Ismrm*, 88(2003), 2010. https://cds.ismrm.org/protected/10MProceedings/PDFfiles/1670_4298.pdf

826 Tournier, J. D., Mori, S., & Leemans, A. (2011). Diffusion tensor imaging and beyond. *Magnetic Resonance in Medicine*, 65(6), 1532–1556.
827 <https://doi.org/10.1002/mrm.22924>

828 van den Heuvel, M. P., Mandl, R. C. W., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2010). Aberrant Frontal and Temporal Complex

829 Network Structure in Schizophrenia: A Graph Theoretical Analysis. *Journal of Neuroscience*, 30(47), 15915–15926.

830 <https://doi.org/10.1523/JNEUROSCI.2874-10.2010>

831 Van Den Heuvel, Martijn P., Kahn, R. S., Goñi, J., & Sporns, O. (2012). High-cost, high-capacity backbone for global brain communication.

832 *Proceedings of the National Academy of Sciences of the United States of America*, 109(28), 11372–11377.

833 <https://doi.org/10.1073/pnas.1203593109>

834 van den Heuvel, Martijn P., & Sporns, O. (2011). Rich-club organization of the human connectome. *Journal of Neuroscience*, 31(44), 15775–15786. <https://doi.org/https://doi.org/10.1523/JNEUROSCI.3539-11.2011>

835 van den Heuvel, Martijn P., & Sporns, O. (2013). An anatomical substrate for integration among functional networks in human cortex. *Journal of Neuroscience*, 33(36), 14489–14500. <https://doi.org/10.1523/JNEUROSCI.2128-13.2013>

836 Van Den Heuvel, Martijn P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Efficiency of functional brain networks and intellectual

837 performance. *Journal of Neuroscience*, 29(23), 7619–7624. <https://doi.org/10.1523/JNEUROSCI.1443-09.2009>

838 Vos de Wael, R., Benkarim, O., Paquola, C., Lariviere, S., Royer, J., Tavakol, S., Xu, T., Hong, S. J., Langs, G., Valk, S., Misic, B., Milham, M.,

839 Margulies, D. S., Smallwood, J., & Bernhardt, B. C. (2020). BrainSpace: a toolbox for the analysis of macroscale gradients in

840 neuroimaging and connectomics datasets. *Communications Biology*, 3(1). <https://doi.org/10.1038/s42003-020-0794-7>

841 Wang, P., Kong, R., Kong, X., Liégeois, R., Orban, C., Deco, G., van den Heuvel, M. P., & Thomas Yeo, B. T. (2019). Inversion of a large-scale

842 circuit model reveals a cortical hierarchy in the dynamic resting human brain. *Science Advances*, 5(1).

843 <https://doi.org/10.1126/sciadv.aat7854>

844 Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics. *PLoS ONE*, 8(7).

845 <https://doi.org/10.1371/journal.pone.0068910>

846 Yeh, C. H., Smith, R. E., Liang, X., Calamante, F., & Connelly, A. (2016). Correction for diffusion MRI fibre tracking biases: The consequences

847 for structural connectomic metrics. *NeuroImage*, 142, 150–162. <https://doi.org/10.1016/j.neuroimage.2016.05.047>

848 Yeh, F. C., Badre, D., & Verstynen, T. (2016). Connectometry: A statistical approach harnessing the analytical potential of the local connectome.

849 *NeuroImage*, 125, 162–171. <https://doi.org/10.1016/j.neuroimage.2015.10.053>

850 Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., van den Heuvel, M. P., & Breakspear, M. (2016). Connectome sensitivity or specificity: which

851 is more important? *NeuroImage*, 142, 407–420. <https://doi.org/10.1016/j.neuroimage.2016.06.035>

852 Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C. (2012). NODDI: Practical in vivo neurite orientation dispersion and

853 density imaging of the human brain. *NeuroImage*, 61(4), 1000–1016. <https://doi.org/10.1016/j.neuroimage.2012.03.072>

854

855

856