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ABSTRACT 20 

A central goal in neuroscience is the development of a comprehensive mapping between 21 

structural and functional brain features. Computational models support in vivo investigation of 22 

the mechanisms mediating this relationship but currently lack the requisite biological detail. 23 

Here, we characterize human structural brain networks weighted by multiple white matter 24 
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microstructural features to assess their potential joint utilization in computational models. We 25 

report edge-weight-dependent spatial distributions, variance, small-worldness, rich club, hubs, as 26 

well as relationships with function, edge length and myelin. Contrasting networks weighted by 27 

the total intra-axonal cross-sectional area and myelin content of white matter tracts, we find 28 

opposite relationships with functional connectivity, an edge-length-independent inverse 29 

relationship with each other, and the lack of a canonical rich club in myelin-weighted networks. 30 

When controlling for edge length, tractometry-derived networks weighted by either tensor-based 31 

metrics or neurite density show no relationship with whole-brain functional connectivity. We 32 

conclude that structure-function brain models are likely to be improved by the co-utilization of 33 

structural networks weighted by total intra-axonal cross-sectional area and myelin content. We 34 

anticipate that the proposed microstructure-weighted computational modeling approach will 35 

support mechanistic understanding of the structure-function relationship of the human brain. 36 

 37 

AUTHOR SUMMARY 38 

For computational network models to provide mechanistic links between brain structure and 39 

function, they must be informed by networks in which edge weights quantify structural features 40 

relevant to brain function. Here, we characterized several weighted structural networks capturing 41 

multiscale features of white matter connectivity. We describe these networks in terms of edge 42 

weight distribution, variance and network topology, as well as their relationships with each other, 43 

edge length and function. Overall, these findings support the joint use of structural networks 44 

weighted by the total intra-axonal cross-sectional area and myelin content of white matter tracts 45 
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in structure-function models. This thorough characterization serves as a benchmark for future 46 

investigations of weighted structural brain networks. 47 

 48 

 49 

INTRODUCTION 50 

The quest to relate human structural and functional brain networks spans the spectrum of spatial 51 

scale and repertoire of data modalities absolutely. At the macroscale, the human brain can be 52 

modeled as an anatomical network of discrete neuronal populations (nodes) interconnected by 53 

white matter fibers (edges) (Sporns, 2011). Coordinated spatiotemporal patterns of neuronal 54 

activity unfolding upon this structural backbone are fine-tuned by white matter microstructure 55 

(Hodgkin & Huxley, 1952; Huxley & Stämpfli, 1949; Moore et al., 2020; Pumphrey & Young, 56 

1938) and form the basis of cognition and behavior (Biswal et al., 1995; Greicius et al., 2003; 57 

Hampson et al., 2006; Liégeois et al., 2019; S. M. Smith et al., 2009; Martijn P. Van Den Heuvel 58 

et al., 2009). Increasingly, MRI facilitates in vivo measurement of multi-scale properties of both 59 

brain structure (e.g., (Alexander et al., 2019; Drakesmith et al., 2019; Jeurissen et al., 2017; 60 

Mancini et al., 2020)) and function (e.g., (Finn et al., 2019; Friston, 2011; Gordon et al., 2017; 61 

Liu et al., 2022)). Diffusion MRI streamline tractography and resting-state functional MRI are 62 

often respectively used to estimate structural and functional connectivity (SC & FC) networks. 63 

Network science provides a framework to bring these fundamentally different substrates into a 64 

common space where their features can be quantified (Fornito et al., 2016; Sporns, 2010; Suárez 65 

et al., 2020) and used to probe the mechanisms mediating human brain function (e.g., (Cabral et 66 

al., 2017; Fornito et al., 2015)).  67 
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 68 

SC network edges can be weighted by a range of MRI-derived metrics quantifying white matter 69 

microstructural features relevant to brain function including voxel-level estimates of tissue 70 

diffusivity (e.g., (Caeyenberghs et al., 2016)), neurite density (Zhang et al., 2012), axon diameter 71 

distributions (Alexander et al., 2010; Assaf et al., 2008), myelin content (Heath et al., 2018; 72 

Mancini et al., 2020), and the g-ratio (ratio of inner/outer diameters of myelinated axons) (Stikov 73 

et al., 2011, 2015); as well as tract/bundle-level measures of axonal cross-sectional area 74 

(Daducci, Dal Palù, et al., 2015; R. E. Smith et al., 2015). Subsets of these metrics have been 75 

investigated using a microstructure-weighted connectomics approach (Boshkovski et al., 2021; 76 

Caeyenberghs et al., 2016; Deligianni et al., 2016; Frigo et al., 2020; Mancini et al., 2018; 77 

Messaritaki et al., 2021; Schiavi et al., 2020; M. P. van den Heuvel et al., 2010; Martijn P. van 78 

den Heuvel & Sporns, 2011; F. C. Yeh et al., 2016), however a comprehensive characterization 79 

has not yet been provided. 80 

 81 

Our goal is to characterize a range of standard and state-of-the-art weighted structural brain 82 

networks in support of their utilization in computational models of brain function. The networks 83 

considered here can be grouped into two classes: those computed with tractometry (S Bells et al., 84 

2011) and those computed directly from the streamline weights in a tractogram i.e., streamline-85 

specific. We consider three examples of the latter: (1) the number of streamlines (NoS); and two 86 

methods which optimize the streamline weights in a tractogram to increase specificity for white 87 

matter structural features (2) spherical-deconvolution informed filtering of tractograms (SIFT2) 88 

(R. E. Smith et al., 2015) and (3) convex optimization modeling for microstructure informed 89 

tractography (COMMIT) (Daducci et al., 2013; Daducci, Dal Palù, et al., 2015). SIFT2 and 90 
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COMMIT were designed to overcome known limitations of streamline counts (Girard et al., 91 

2014; Jones, 2010; Jones et al., 2013). While the edge weights in all three networks generally 92 

capture white matter features relevant to connection strength, SIFT2 and COMMIT more 93 

specifically quantify the total intra-axonal cross-sectional area of white matter tracts (henceforth 94 

referred to as “edge caliber”). To date, SIFT2 and COMMIT have not been compared to NoS 95 

with uniform connection density (Frigo et al., 2020; Schiavi et al., 2020; C. H. Yeh et al., 2016). 96 

Thus, it remains unclear how the edge weights themselves affect network topology. 97 

 98 

In contrast, tractometry allows network edge weights to be derived from any volumetric brain 99 

image that is co-registered to the tractogram. This increase in methodological flexibility comes at 100 

the expense of anatomical specificity. Tractometry is unable to resolve the separate contributions 101 

of individual fiber populations to the aggregate value of a voxel. Given that an estimated ~90% 102 

of white matter voxels at typical diffusion MRI resolutions (~2mm) contain multiple fiber 103 

populations (Jeurissen et al., 2012), the quantitative link between white matter microstructure 104 

and essentially all tractometry-derived edge weights is biased by partial volume effects. 105 

 106 

In this work, tractometry is combined with a diffusion tensor model (Basser, 1995; Basser et al., 107 

1994) to derive networks weighted by FA (fractional anisotropy) and RD (radial diffusivity), 108 

which respectively quantify the degree of diffusion anisotropy (i.e., directional dependence) and 109 

diffusion magnitude perpendicular to the major axis. The crossing fiber problem described above 110 

is also known to limit the ability of diffusion tensor models to quantify white matter features (De 111 

Santis et al., 2014; J. D. Tournier et al., 2011). Additional tractometry networks examined here 112 

include a network weighted by ICVF (intracellular volume fraction) computed with NODDI 113 
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(Neurite Orientation Dispersion and Density Imaging) (Zhang et al., 2012), as well as a network 114 

weighted by the longitudinal relaxation rate R1 (1/T1), which has been shown to correlate with 115 

histology-derived myelin content (Mottershead et al., 2003). 116 

 117 

This characterization of weighted structural brain networks is carried out as follows: (1) within-118 

network features of edge weight distribution and variance; (2) edgewise relationships with FC, 119 

edge length and myelin (R1); and (3) topological features of small-worldness, rich club and 120 

network hubs. Importantly, uniform binary connectivity is enforced across all weighted network 121 

variants allowing the edge weights themselves to drive the characterization. 122 

 123 

 124 

RESULTS 125 

In 50 healthy adults (27 men; 29.54±5.62 years; 47 right-handed), structural brain networks were 126 

estimated from multi-shell diffusion MRI data with probabilistic tractography. Each subject’s 127 

structural network was used to compute 8 SC networks in which edges were weighted by: NoS, 128 

SIFT2, COMMIT, FA, RD, ICVF, R1 and LoS (edge length computed as the mean length of 129 

streamlines). The edge weights in NoS, SIFT2 and COMMIT networks were normalized by node 130 

volume. Additionally, a static FC network was derived for each subject by zero-lag Pearson 131 

cross-correlation of nodewise resting-state time series. Unless otherwise stated, all results shown 132 

correspond to networks parcellated with the Schaefer-400 cortical atlas (Schaefer et al., 2018) 133 

and include 14 subcortical nodes. 134 

 135 

 136 
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Structural Brain Networks Vary in the Distribution of Their Edge Weights 137 

Group-level networks weighted by NoS, SIFT2 and COMMIT show spatially distributed patterns 138 

of high magnitude edge weights and noticeably accentuate within-module connectivity (Figure 139 

1A). Modules correspond to the 7-canonical resting-state networks (Thomas Yeo et al., 2011) 140 

plus the subcortex. These patterns are hallmarks of FC networks and are observed in the FC 141 

network shown here. The contrast between high and low magnitude edge weights is most evident 142 

in COMMIT. By comparison, the spatial variation of edge weight distribution in the tractometry 143 

networks is smoother with more pronounced regional concentrations. R1 is highest in the edges 144 

connecting the visual module to itself and to the rest of the brain; and lowest within the 145 

subcortex and between the subcortical and limbic modules. The surface plot shows the highest 146 

concentration of R1 in the white matter projections of posterior cortical regions. 147 

 148 

 149 

Figure 1. Edge Weight Distribution. (A) Connectivity matrices (top row) of group-level edge weights for FC (functional 150 
connectivity), NoS (number of streamlines), SIFT2 (spherical-deconvolution informed filtering of tractograms), COMMIT 151 
(convex optimization modeling for microstructure informed tractography), R1 (longitudinal relaxation rate), ICVF (intra-cellular 152 
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volume fraction), FA (fractional anisotropy), RD (radial diffusivity) and LoS (mean length of streamlines). Each network is 153 
composed of 414 nodes as defined by the Schaefer-400 cortical parcellation and 14 subcortical ROIs. Nodes are grouped into the 154 
canonical resting state modules (Thomas Yeo et al., 2011) plus the subcortex: SUB (subcortex), VIS (visual), SMN 155 
(somatomotor), DAN (dorsal attention), SVAN (salience ventral attention), LIMB (limbic), CONT (control), and DMN (default 156 
mode). 3D cortical surfaces (bottom row) of group-level edge weights in the Schaefer-100 parcellation generated with BrainNet 157 
Viewer (Xia et al., 2013). Edge diameter and color indicate weight magnitude. (B) Distribution of group-level edge weights 158 
binned by: (top) within and between module; (bottom) unimodal, transmodal and between. Unimodal is defined as the VIS and 159 
SMN modules. Transmodal is defined as the DMN, CONT, DAN and SVAN modules. (C) Probability density of pooled subject-160 
level edge weight distributions. R1, ICVF, FA, RD, LoS and FC are shown on a linear x-axis (top), and NoS, SIFT2 and 161 
COMMIT are shown on a logarithmic x-axis (bottom). All networks were normalized to the range [0 1] by dividing by the 162 
subject-level max for visualization. The edge weights in NoS, SIFT2 and COMMIT networks were log10 transformed for these 163 
plots. 164 

 165 

Group-level edge weight distributions are summarized with respect to two important 166 

organizational patterns of brain function (Figure 1B): within and between resting state modules 167 

(Thomas Yeo et al., 2011); and along the principal functional gradient (Margulies et al., 2016). 168 

NoS, SIFT2 and COMMIT mirror FC in both plots with greater edge weight magnitude within 169 

module, especially within unimodal modules. R1, ICVF, FA and RD generally mirror LoS with 170 

the reverse trend: higher between module and lowest in unimodal modules. This suggests that 171 

tractometry-derived networks may be influenced by edge length to a greater extent. 172 

 173 

Subject-level edge weight distributions in R1, ICVF, FA and RD are near-normal and network-174 

specific (Figure 1C). They differ in both the magnitude (R1 > ICVF > FA > RD) and dynamic 175 

range (FA & ICVF > R1 & RD) of their edge weights. In contrast, NoS, SIFT2 and COMMIT 176 

distributions are highly skewed and tend to be much lower in magnitude (dashed lines). This 177 

effect is greatest in COMMIT suggesting that the optimization performed by COMMIT exerts a 178 

stronger scaling effect than SIFT2. These results support the conclusion that the structural 179 

networks considered here quantify subsets of white matter features which are at least partially 180 

non-overlapping. 181 

 182 

 183 
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Edge Weights in Streamline-Specific Networks Are More Variable  184 

Edge weight variance was quantified using the Quartile Coefficient of Dispersion (CQD) due to 185 

its robustness to outliers and skewed data. The CQD is computed from the 1st and 3rd quartiles as: 186 

𝐶𝑄𝐷 =  𝑄3 − 𝑄1  𝑄3 + 𝑄1⁄ . 187 

 188 

Intra-subject variance is roughly 2-fold greater in NoS, SIFT2 and COMMIT than LoS and FC; 189 

and an order of magnitude greater than R1, ICVF, FA and RD in all subjects (Figure 2A). 190 

COMMIT is the highest overall. Subjects are more tightly clustered in all weighted SC networks, 191 

relative to FC: intra-subject CQD values span roughly a 4-fold greater range in FC. This 192 

suggests that individual diversity of functional connectivity is not necessarily reflected in the 193 

variability of their structural networks. These patterns are repeated for inter-subject variance. 194 

However, FC shows a small subset of highly variable edges with roughly 4-fold greater CQD 195 

than the maximum values observed in COMMIT i.e., the most subject-specific connections are 196 

functional. The very low edge weight variability in R1, ICVF, FA and RD is in part due to the 197 

widespread smoothing effect (partial voluming) resulting from the tractometry computation. 198 

 199 
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 200 

Figure 2. Edge Weight Variability. Variability is quantified using the coefficient of quartile dispersion (CQD). (A) Violin 201 
distributions of intra-subject (left) and inter-subject (right) edge weight variance. Colored data points respectively correspond to 202 
individual subjects (N=50) and edges (N=8549). (B) Surface projections of edgewise mean inter-subject variance for cortical 203 
nodes in the Schaefer-400 parcellation (left) and 14 subcortical nodes (right). Cortical and subcortical surfaces were 204 
respectively generated with BrainSpace (Vos de Wael et al., 2020) and ENIGMA toolboxes (Larivière et al., 2021). (C) The 205 
proportion of within-network max CQD is shown across edge length bins for FC, NoS, SIFT2, COMMIT and R1 (top), as well as 206 
ICVF, FA and RD (middle). Edge weights are grouped into 6 bins according to edge length, as illustrated by the histogram 207 
(bottom). The edges of bins 1-5 were linearly spaced of width, w. The edges of the final bin were of width 3w. 208 

  209 

In general, inter-subject edge weight variance is more spatially distributed in SC networks 210 

relative to FC (Figure 2B). COMMIT shows the highest mean CQD over the entire cortex and 211 

subcortex. NoS, SIFT2 and COMMIT all show lateral-medial and posterior-anterior cortical 212 

gradients. Mean CQD in FC shows the highest concentration in medial inferior frontal cortex and 213 

to a lesser extent, the expected pattern of high variance in association cortex. The most variable 214 

subcortical regions include the hippocampus, amygdala and accumbens. 215 

 216 

Many features of brain networks (e.g., connection probability, weight magnitude) are known to 217 

vary with edge length. Here, we examined the relationship between edge weight variability and 218 
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edge length by computing the CQD within subsets of group-level edge weights binned according 219 

to their edge length (Figure 2C). Edge weight variance in NoS, SIFT2, COMMIT and R1 is 220 

highest in the shortest edges and decreases with edge length. ICVF roughly follows the same 221 

pattern. FA and RD instead show the highest variability in the longest edges. Overall, the edge 222 

weights in streamline-specific SC networks (NoS, SIFT2 and COMMIT) show greater contrast 223 

both within and across subjects. SC networks show network-dependent relationships between 224 

edge weight variance and edge length. Shorter edges are more variable in myelin- and 225 

connection strength-weighted networks, and longer edges are more variable in networks with 226 

edge weights derived from a diffusion tensor model. 227 

 228 

 229 

Opposing Correlations with Function in Connection-Strength- & Myelin-Weighted Networks  230 

Shifting to inter-network edge weight relationships shows that SC networks are differentially 231 

related to FC (Figure 3A). Importantly, we also see that all brain networks (SC and FC) are 232 

strongly and differentially related to edge length at the subject and group levels. Correlations 233 

with edge length are negative for NoS, SIFT2, COMMIT, RD and FC; and positive for R1, 234 

ICVF, and FA. Correlation magnitude is strongest in group-level COMMIT (  -0.8). To 235 

remove this strong obscuring effect, we recomputed correlations using residual edge weights 236 

following linear regression of edge length (Figure 3B). NoS, SIFT2 and COMMIT remain 237 

positively associated (group-level   0.35) and R1 remains negatively associated with FC 238 

(group-level   -0.22). Correlation magnitude was reduced following linear regression in all 239 

cases. ICVF, FA and RD are reduced to 0 suggesting that they may not be useful in modeling 240 

whole-brain FC. These results support the idea that R1-weighted SC networks provide 241 
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complementary information to NoS, SIFT2 and COMMIT about the brain structure-function 242 

relationship. 243 

 244 

 245 

Figure 3. Edge Weight Correlations with FC and Edge Length. (A) Violin distributions of edgewise Spearman’s rank 246 
correlations of all networks with FC (left) and edge length (right). (B) Violin distributions of edgewise Spearman’s rank 247 
correlations of residual edge weights in all networks with residual edge weights in FC. Residual edge weights were computed by 248 
linear regression of edge length. Colored data points and bars respectively indicate subject-level and group-level correlations. 249 

 250 

 251 

Edge Caliber and Myelin Content are Inversely Related 252 

Here, we ask how R1, which we refer to as the myelin-weighted network, is related to the 253 

connection-strength-weighted network COMMIT. Edge-length regressed residual edge weights 254 

in NoS, SIFT2 and COMMIT show a negative association with R1 residuals for all subjects and 255 
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at the group level, which is strongest in COMMIT (group-level  & r  -0.29) (Figure 4A). This 256 

suggests an edge-length independent inverse relationship between white matter structural 257 

features related to connection strength and myelin content. 258 

 259 

 260 

Figure 4. The Myelin-Dependence of Structural Brain Networks. (A) Violin distributions (left) of edgewise Spearman’s rank 261 
correlations with the myelin-weighted network R1. Residual edge weights are compared following linear regression of edge 262 
length. Colored data points and bars respectively indicate subject-level and group-level correlations. Heat scatter plots (right) of 263 
group-level residual edge weights in R1 as a function of NoS (left), SIFT2 (left middle), COMMIT (right middle) and ICVF (right) 264 
with the best fit linear curve shown in black. Color indicates data density. (B) Line plot (left) of edgewise Spearman’s rank 265 
correlation of edge weights in R1 vs COMMIT across edge length bins. Group-level and subject-level are respectively shown in 266 
green and blue. The square and diamond markers connected by dotted lines show binned correlation values, and the horizontal 267 
dashed green and blue lines mark the correlation values for all edges pooled together. Scatter plot (middle) of group-level edge 268 
weights in R1 as a function of COMMIT with data points colored by bin identity. Histograms (right) illustrating subject- and 269 
group-level edge length bins. 270 

 271 

Computing correlations of edge weights (not residuals) within edge-length bins allows the 272 

inverse relationship between R1 and COMMIT to be traced to the shortest edges of the network 273 

(group   -0.40, subject   -0.50). As edge length increases, this relationship is reduced to 0, 274 
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then becomes strongly positive in the longest subject-level edges (  0.39). The scatter plot of 275 

group-level R1 vs COMMIT (middle) shows decreasing COMMIT and increasing R1 with 276 

increasing edge length. All together, these results support an inverse relationship between the 277 

edge caliber and myelin content of a given white matter tract. This can be partly explained by the 278 

differential dependence of these structural features on edge length: longer tracts tend to be more 279 

myelinated with lower total intra-axonal cross-sectional area. However, this relationship is robust 280 

to controlling for edge length supporting an intrinsic dependence between these white matter 281 

features. 282 

 283 

 284 

Divergent Small-Worldness, Hubness and Rich Club in Weighted Structural Networks 285 

In this final section, we apply network analysis tools (Rubinov & Sporns, 2010) based on graph 286 

theory (Fornito et al., 2013; Sporns, 2018) to group-level weighted SC networks. This facilitates 287 

high-level interpretation of general features of network communication such as integrative vs 288 

segregative processing and the economy of network organization. Although the high material 289 

and metabolic cost of brain tissue naturally tends to favor local connectivity (high clustering), 290 

short overall network path length is achieved through a small number of relatively expensive 291 

long-range connections (Bullmore & Sporns, 2012). These edges and the nodes they interlink 292 

form a densely connected network core known as the rich club (Martijn P. van den Heuvel & 293 

Sporns, 2011). While the general proclivity for high local clustering gives rise to segregated 294 

functional modules, the rich-club nodes act as network communication hubs supporting inter-295 

modular integration (Collin et al., 2014; de Reus & van den Heuvel, 2014; Griffa & Van den 296 

Heuvel, 2018; Kim & Min, 2020; Martijn P. van den Heuvel & Sporns, 2013). Thus, small-world 297 

network topology (high clustering and low path length) (Bassett & Bullmore, 2006, 2017) 298 
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supports both integrative and segregative processing at a minimum of wiring cost, and the 299 

underlying scaffold of hub brain regions tend to show high centrality, low path length (high 300 

closeness) and low clustering (M. P. van den Heuvel et al., 2010). 301 

  302 

Here, we report normalized small-worldness, normalized rich-club curves and nodal hubness 303 

(Figure 5). Normalized small-worldness (S) is computed as the quotient of normalized measures 304 

of clustering coefficient (C/Cnull) and path length (L/Lnull). 305 

 306 

 307 

Figure 5. Group-level network topology. (A) Small-worldness was estimated in all structural networks: clustering coefficient was 308 
normalized within each node, averaged across nodes (C/Cnull), then plot as a function of normalized Characteristic path length 309 
(L/Lnull). Topology measures averaged across 50 degree and strength preserving null networks were used for normalization. 310 
Networks above the identity line (dotted black) are characterized by the small world attribute. Tractometry networks are 311 
indicated by the arrow. (B) Normalized rich club curves are shown for COMMIT, NoS and SIFT2 (top), as well as ICVF, RD, FA 312 
and R1 (bottom). A single binary network (dotted gray line) is also shown (bottom) as binary connectivity was uniform across 313 
weighted networks. The normalized rich club coefficient (norm) was computed across the range of degree (k) and normalized 314 
against 1000 null models (degree preserving for binary and degree and strength preserving for weighted networks). A norm value 315 
> 1 (horizontal dashed black lines) over a range of k indicates the presence of a rich club. (C) Nodewise hubness scores are 316 
projected onto Schaefer-400 cortical and 14-ROI subcortical surfaces. Scores (0-5) were computed for each node as +1 point for 317 
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all nodes in top 20% strength, betweenness, closeness and eigenvector centrality, as well as bottom 20% clustering coefficient. 318 
The matrix (right) shows the Euclidean distance between all pairs of nodal hubness vectors. 319 

 320 

All group-level weighted SC networks show the normalized small-world property (S > 1) of 321 

higher clustering and lower path length than would be expected by chance (Figure 5A). Small-322 

worldness is highest in COMMIT (S  2.5) and lowest in R1, ICVF, FA and RD (S  1.6). In 323 

contrast, all weighted SC networks did not show a canonical rich club (Figure 5B). Relative to 324 

the tractometry and binary SC networks, the normalized rich-club coefficient (norm) was much 325 

higher in magnitude in NoS, SIFT2 and COMMIT. A rich club was detected in these networks 326 

across a large range of degree (k) levels (150 < k < 300). norm was maximal at k  265 in 327 

COMMIT. A rich club was also detected across a similar range of k levels in ICVF and across k 328 

in the range [250 300] for RD, albeit with much lower magnitude norm. However, no clear rich 329 

club was observed in R1 or FA. In fact, the rich-club curves for these networks are roughly 330 

symmetric about the norm = 1 line relative to COMMIT. A densely connected core was of course 331 

recovered in all weighted SC networks (uniform binary connectivity), but these results suggest 332 

that its interconnecting edges were consistently weaker than would be expected by chance in R1 333 

and FA. By comparison, a rich club was observed in the binary SC network across the very large 334 

range of k [50 300]. This supports two important concepts: (1) SC network edge weights can 335 

provide an additional layer of information useful for refining the topology of binary SC; and (2) 336 

different methods for computing SC network edge weights yield diverse network topology. 337 

 338 

Weighted SC networks show network-dependent spatial topology of hubness scores (Figure 339 

5C). The COMMIT and R1 averaged surface shows prominent hubs distributed throughout the 340 

brain including the fronto-parietal network. Nearly all of the subcortex showed a hubness score 341 
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of 4 or greater in all networks. The Euclidean distance between hubness score vectors (right) was 342 

lower for COMMIT and SIFT2 than for either network with NoS. Of the streamline-specific 343 

networks, NoS was more similar to both R1 and IVCF. Overall, these results illustrate the 344 

considerable impact that edge weighting can have on network topology. 345 

 346 

 347 

DISCUSSION 348 

Computational network modeling provides a customizable platform for probing the mechanistic 349 

relationship between human brain structure and function in vivo. Here, we assemble a thorough 350 

characterization of structural brain networks weighted by a range of quantitative MRI metrics 351 

capturing the macro- and microscopic features of white matter tracts to inform their utilization in 352 

computational models of brain function. Notable trends included: (1) greater edge weight 353 

contrast and skewed (heavy-tailed) distributions in the streamline-specific networks NoS, SIFT2 354 

and COMMIT; (2) whole-brain correlations with FC in networks weighted by connection 355 

strength (positive) and myelin (negative) which were robust to controlling for edge length; (3) 356 

whole-brain inverse relationships with myelin for networks weighted by connection strength and 357 

neurite density independent of edge length; and (4) the absence of a rich club in R1 and FA 358 

networks. All weighted SC networks showed a strong spatial dependence and small-world 359 

architecture. Collectively, these results support the overall conclusion that SC networks weighted 360 

by edge caliber (e.g., SIFT2 and COMMIT) and myelin (e.g., R1) can be used to quantify non-361 

overlapping subsets of white matter structural features related to FC supporting their joint 362 

utilization in modeling function. 363 

 364 
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 365 

COMMIT vs SIFT2: The Superior Estimate of Connectivity Strength? 366 

A principal goal of this work is to identify what, if any, advantage over NoS is provided by the 367 

global optimization methods SIFT2 and COMMIT. NoS has previously been used to inform the 368 

strength of interregional coupling in computational models of function (e.g., (Honey et al., 369 

2009)). However, important limitations restrict model interpretation. Besides suffering from a 370 

range of biases related to the position, size, shape and length of white matter tracts (Girard et al., 371 

2014), NoS varies as a function of tracking parameters limiting its specificity for white matter 372 

structural features (Jones, 2010; Jones et al., 2013). SIFT2 and COMMIT reportedly restore the 373 

quantitative link between connectome edge weights and white matter structural features related 374 

to connection strength. Our results show that when network density is uniform across structural 375 

metrics, COMMIT shows greater subject-specificity, edge weight contrast, correlation with 376 

myelin, small-worldness and rich club coefficient relative to SIFT2. This supports the hypothesis 377 

that using COMMIT instead of NoS to modulate the strength of interregional coupling in 378 

computational models of function will yield the greatest improvement in model fit. 379 

 380 

 381 

Myelin Complements Connection Strength in Predicting FC 382 

Despite the differences between COMMIT, SIFT2 and NoS; our results indicate that their edge 383 

weights show roughly equivalent positive correlations with FC over the whole brain. R1 was 384 

negatively correlated with FC. Significant evidence indicates a link between cerebral myelin and 385 

FC including: a relationship between intracortical myelin and FC (Huntenburg et al., 2017; 386 

Wang et al., 2019); the prediction of cognition (Sonya Bells et al., 2017; Caeyenberghs et al., 387 
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2016) and FC-derived components (Messaritaki et al., 2021) with myelin-sensitive metrics; and a 388 

relationship between damaged myelin sheaths and greater conduction delays in multiple sclerosis 389 

(Sorrentino et al., 2022). At the cellular-level, myelin contributes to conduction velocity (Huxley 390 

& Stämpfli, 1949), metabolic support (Nave & Werner, 2014) and plasticity (Gibson et al., 391 

2018), all of which could be argued to support brain function. Myelin plasticity in particular can 392 

be described in terms of “activity-dependence”, whereby an increase in the functional activity of 393 

a given circuit stimulates cellular signaling cascades promoting greater myelination (Douglas 394 

Fields, 2015; Mount & Monje, 2017). Coupled with our results, this complex mix of functional 395 

roles supports the idea that structure-function models will be improved by integrating measures 396 

of myelin and connection strength. 397 

 398 

 399 

Tract g-ratio and Edge Caliber are Inversely Related to Length 400 

When controlling for edge length, we found an inverse relationship between R1 and COMMIT 401 

over the whole brain in all subjects and at the group level. This suggests that the aggregate g-402 

ratio of a white matter tract may increase with edge caliber. At the cellular-level, the diameter of 403 

an axon and the thickness of its myelin sheath show nearly a linear relationship over a broad 404 

range of smaller diameter axons which becomes increasingly nonlinear as axon diameter 405 

increases (Berthold et al., 1983; Hildebrand & Hahn, 1978). In general, increasing axon diameter 406 

tends to outpace increasing myelin thickness i.e., g-ratio tends to increase with increasing axon 407 

caliber (Hildebrand & Hahn, 1978). Our findings suggest that this cellular-level principle may 408 

extend to the systems level: increases in edge caliber tend to outpace changes in the myelin 409 

content resulting in a concomitant increase in the g-ratio of white matter tracts.  410 
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 411 

We localized the inverse relationship between R1 and COMMIT to the shortest edges i.e., the g-412 

ratio was the highest in the shortest connections. This result is supported by a previous imaging 413 

study showing the highest g-ratio in “local” connections (Mancini et al., 2018). In general, we 414 

found that R1 increased and COMMIT decreased with increasing edge length. Both of these 415 

trends fit well with theories of brain wiring economy in which the energetic cost of maintaining 416 

biological material increases with connection length (Bullmore & Sporns, 2012). This natural 417 

pressure acts to reduce the total axonal volume of longer white matter bundles. Increasing the 418 

myelin content of longer tracts comes at a cost as well, but this may be at least partially offset as 419 

increasing myelin content reduces the total membrane surface area along which expensive 420 

electrochemical gradients must be maintained (Bullmore & Sporns, 2012). Although, a cost-421 

benefit analysis of the energetics of myelination concluded that the energetic cost of myelin 422 

maintenance outweighs any savings on action potentials (Harris & Attwell, 2012). This suggests 423 

that higher myelination of longer edges may be better explained as a mechanism to provide 424 

trophic support (Nave & Werner, 2014) to vital inter-regional connections (Martijn P. Van Den 425 

Heuvel et al., 2012) or to reduce conduction delays.  426 

 427 

 428 

Edge Weight Variance Decreases with Edge Length in Most Weighted Structural Networks? 429 

White matter features related to myelin content, connection strength and neurite density tend to 430 

become more consistent across tracts as tract length increases. Greater variability in the weights 431 

of the shortest connections could result from a higher proportion of false positive streamlines 432 

influencing these edge weights. For SIFT2 and COMMIT, streamline weight computation 433 
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becomes increasingly unstable with decreasing length as fewer voxels contribute to the fit. 434 

However, this result could also be explained more generally by contrasting the roles of shorter 435 

and longer connections in the brain. Shorter white matter tracts connect brain regions near each 436 

other in space e.g., within the same module. Just as we might expect the characteristics of 437 

smaller roads and streets (e.g., width, building materials, markings, signs, sidewalks, etc.) to vary 438 

by neighborhood and city, we might also expect the morphology of shorter white matter 439 

connections to change as the functional specialization of any given region or module changes. 440 

On the other hand, longer tracts (i.e., the freeways of the brain) may overlap more in both their 441 

functional role and morphological features relative to shorter connections, hence lower edge 442 

weight variability. Breaking with the above pattern, FA and RD showed the highest edge weight 443 

variance in the longest connections. Given that structural measures derived using a voxel-wise 444 

diffusion tensor model are particularly sensitive to the white matter “architectural paradigm” 445 

(Jones et al., 2013), these results suggest that white matter features related to fiber orientation 446 

and geometry actually diverge with increasing tract length. 447 

 448 

The Absence of a Rich Club in R1 and FA 449 

Group-level R1 and FA did not show a normalized weighted rich club for any degree k. Higher 450 

myelination in the white matter tracts connecting rich club nodes has previously been reported 451 

(Collin et al., 2014); however, methodological differences limit comparability. A rich club has 452 

previously been reported in FA-weighted networks using similar methods to ours (Martijn P. van 453 

den Heuvel & Sporns, 2011). The source of this disagreement could potentially be attributed to 454 

differences in our tractography algorithm, parcellation or null network computation.  455 

 456 
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In weighted rich-club detection, the identification of a densely connected core is independent of 457 

edge weight (depends only on node degree), but the designation of this subnetwork as a rich club 458 

requires that it contains a higher-than-chance proportion of the strongest edges from the full 459 

network. Indeed, this is the case over a broad range of degree k for COMMIT. Over the same 460 

range of k, the normalized rich-club curves for R1 and FA are inverted about the threshold value 461 

of 1 with respect to COMMIT. This implies that the subnetwork found at a given k in this range 462 

contains edges which tend to show higher COMMIT and lower R1 edge weights than expected 463 

by chance. We previously showed edgewise inverse correlations between R1 and COMMIT 464 

which were robust to controlling for edge length. We also showed that R1 and FA are positively 465 

correlated under these same conditions. In this light, it is not surprising that the edges connecting 466 

rich-club nodes tend to show opposite trends in R1- and FA-weighting with respect to COMMIT. 467 

Nonetheless, it is possible that the lack of a rich club in our myelin-weighted network is an 468 

artifact of tractometry. Future work will attempt to replicate this result using myelin-weighted 469 

networks computed with a different methodology (Schiavi et al., 2022). 470 

 471 

 472 

Limitations 473 

Streamline tractography is known to suffer from several important biases including both false 474 

positive and negative streamlines which can influence downstream analyses (Maier-Hein et al., 475 

2017; Schilling et al., 2019; Sotiropoulos & Zalesky, 2019; Zalesky et al., 2016). Through 476 

probabilistic tracking, we opted to minimize false negatives while maximizing false positives. 477 

This allowed us to implement careful streamline- and edge-filtering strategies in post-processing 478 

to address this known bias. Still, without a ground truth, we cannot quantify the extent to which 479 
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we were successful in mitigating this issue, nor can we guarantee that we did not erroneously 480 

filter true positive streamlines or edges. All processing and filtering methods were consistent and 481 

network density was uniform across weighted structural networks. Thus, any major tractography 482 

bias should be as homogeneous as possible across networks. 483 

 484 

Tractometry-derived brain networks suffer from widespread partial volume effects. The net 485 

effect of this bias is well understood and is apparent in our results and previous work (De Santis 486 

et al., 2014; Schiavi et al., 2022). Nonetheless, this method was included here as our goal was to 487 

characterize widely used structural connectivity methods. New techniques for reducing this bias 488 

are currently being developed which allow for the estimation of tract-specific microstructural 489 

features (e.g., (Barakovic, Girard, et al., 2021; Barakovic, Tax, et al., 2021; De Santis et al., 490 

2016; Leppert et al., 2021; Schiavi et al., 2022)).   491 

 492 

 493 

Conclusion 494 

We presented a thorough characterization of weighted SC networks. Overall, our findings 495 

support the joint use of SC networks weighted by connection strength and myelin in predicting 496 

FC. In particular, using the COMMIT algorithm to quantify connection strength shows promise. 497 

Beyond R1, there are a wide array of myelin sensitive metrics that could be used to compute 498 

useful myelin-weighted networks. The integration of this microstructure-weighted connectivity 499 

approach into structure-function models will advance the mechanistic interpretation of both the 500 

function and dysfunction of the living human brain. 501 

 502 
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 503 

MATERIALS and METHODS 504 

These data are available for download (https://portal.conp.ca/dataset?id=projects/mica-mics). See 505 

Royer et al. (Royer et al., 2022), Cruces et al. (Cruces et al., 2022) for full details of data 506 

acquisition and processing. All data processing and analysis code is openly available at 507 

https://github.com/TardifLab/Weighted-SC-Networks. 508 

 509 

 510 

Data Acquisition & Preprocessing 511 

Multimodal MRI data was collected in 50 healthy volunteers at 3 Tesla as follows:  512 

• T1-weighted (T1w) anatomical: 3D magnetization-prepared rapid gradient-echo sequence 513 

(MP-RAGE; 0.8mm isotropic) 514 

• Multi-shell diffusion-weighted imaging (DWI): 2D pulsed gradient spin-echo echo-planar 515 

imaging sequence (1.6mm isotropic); three shells with b-values 300, 700, and 2000s/mm2 516 

and diffusion directions 10, 40, and 90 517 

• 7 minutes of resting-state functional MRI: multi-band accelerated 2D-BOLD gradient 518 

echo echo-planar sequence (3mm isotropic) 519 

• A quantitative T1 map: 3D-MP2RAGE sequence (Marques et al., 2010) (0.8mm 520 

isotropic) 521 

  522 

The multi-modal processing pipeline micapipe (Cruces et al., 2022) 523 

(https://micapipe.readthedocs.io/) was used to preprocess diffusion, anatomical, and functional 524 

images. Functional data derivatives were obtained in parcellated FC matrix form. 525 
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 526 

 527 

Tractography and Microstructural Metrics 528 

To estimate structural connectomes, anatomically constrained tractography (R. E. Smith et al., 529 

2012) was performed on the normalized white matter FOD image using the probabilistic 530 

algorithm iFOD2 (J.-D. Tournier et al., 2010). Tractograms of 5 million streamlines were 531 

generated by seeding the gray-white matter interface using the following parameters: 532 

maxlength=400, minlength=10, angle=22.5, step=0.5, cutoff=0.06, backtrack, crop_at_gmwmi 533 

(gray-matter-white-matter interface). These tractograms were filtered in a two-stage process. (1) 534 

a whole-brain connectome weighted by NoS was computed then decomposed into its composite 535 

streamlines to derive a new tractogram in which any streamline which failed to connect two gray 536 

matter ROIs was excluded. This “streamline-filtering” step typically resulted in approximately a 537 

5% decrease in the size of the tractogram (~250k streamlines removed) and was undertaken to 538 

ensure that these erroneous streamlines did not affect the COMMIT model. Streamline-filtered 539 

tractograms were used to compute NoS and were used as inputs to both the SIFT2 and COMMIT 540 

models. SIFT2 determines the effective cross-sectional area of each streamline such that the 541 

streamline density throughout the white matter fits the fiber densities estimated using spherical 542 

deconvolution. COMMIT was run using a Stick-Zeppelin-Ball forward model and default 543 

settings (see https://github.com/daducci/COMMIT). Using the simplifying assumption that 544 

structural features are constant along the length of a streamline, COMMIT can be used to 545 

compute a weight for each streamline representing their respective proportion of the global 546 

diffusion signal i.e., the cross-sectional area of their intracellular compartment. (2) Any 547 

streamline with a COMMIT weight < 1e-12 (machine precision 0) was interpreted as a false 548 
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positive and filtered from the tractogram. This streamline-level COMMIT-filtering step typically 549 

resulted in greater than a 90% decrease in the size of the tractogram with most containing 550 

between ~300-600k streamlines. COMMIT-filtered tractograms were used not only in the 551 

computation of COMMIT, but all tractometry networks as well. This additional filtering step was 552 

performed on COMMIT streamline weights only (not SIFT2) to reduce the impact of false 553 

positive streamlines in tractometry networks as much as possible. 554 

 555 

 556 

Construction of Weighted Structural Networks 557 

The streamline-specific SC networks were computed in the following manner: (1) NoS as the 558 

summed streamline count; (2) LoS as the mean streamline length; (3) SIFT2 as the sum of SIFT2 559 

streamline weights; and (4) COMMIT as the length-weighted sum of COMMIT streamline 560 

weights as in (Schiavi et al., 2020). Explicitly, edgewise entries in COMMIT-weighted networks 561 

were computed as:  562 

𝛼𝑖𝑗 =  
∑ (𝑥𝑖𝑗

𝑘  ∗  𝑙𝑘)
𝑁𝑖𝑗

𝑘=1

𝐿̅𝑖𝑗

, 563 

where 𝛼𝑖𝑗 is the edge weight between nodes i and j; 𝐿̅𝑖𝑗 is the mean streamline length; 𝑁𝑖𝑗 is the 564 

number of streamlines; 𝑥𝑖𝑗
𝑘  is the COMMIT weight of streamline k; and 𝑙𝑘 is its length. Edge 565 

weights in NoS, SIFT2 and COMMIT were normalized by node volume. 566 

 567 

SC networks weighted by FA, RD, ICVF (Zhang et al., 2012) and R1 were derived using multi-568 

modal tractometry (S Bells et al., 2011). Streamline weights were computed by: (1) co-569 

registering the tractogram and desired image; and (2) sampling the voxel-level aggregate value 570 
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along the length of each streamline. Edge weights were computed as the median along each 571 

streamline and the mean across streamlines by node pair. Voxel-wise measures of FA and RD 572 

were computed with a diffusion tensor model (Basser et al., 1994) and ICVF by applying the 573 

NODDI multi-compartment model (Zhang et al., 2012) to preprocessed DWI data (Daducci, 574 

Canales-Rodríguez, et al., 2015). 575 

 576 

The 400-node Schaefer (Schaefer et al., 2018) cortical parcellation is used in all results. 577 

Subcortical ROIs corresponded to 7 bilateral regions (14 nodes) including the amygdala, 578 

thalamus, caudate, accumbens, putamen, hippocampus, and pallidum. A single static, zero-lag 579 

FC network was derived by product-moment pairwise Pearson cross-correlation of node-580 

averaged time series. FC network edge weights were Fisher Z-transformed. 581 

 582 

 583 

Connectome post-processing 584 

All SC networks were thresholded at the edge level within subject by: (1) setting edges = 0 in all 585 

weighted SC networks if they had a COMMIT edge weight < 1e-12; and (2) applying a 50% 586 

uniform threshold mask to facilitate group-consensus averaging. This minimized differences in 587 

binary structural network density across subjects and enforced uniform density across weighted 588 

SC networks at the group level and within subject. COMMIT was used for this filter as it had the 589 

lowest connection density to start. 590 

 591 

 592 

Network Analysis 593 
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Network analysis was performed using tools (Rubinov & Sporns, 2010) based on graph theory 594 

(Fornito et al., 2013; Sporns, 2018). Measures of clustering coefficient and path length were 595 

normalized against 50 degree and strength preserving null networks. Clustering coefficient was 596 

normalized within node then averaged across nodes to obtain a scalar value per network. The 597 

following weight (Wij) to length (Lij) transform was used in path length computation: Lij = -598 

log(Wij). Weighted rich club curves were normalized against 1000 degree and strength 599 

preserving null networks. The edges in all degree and strength preserving null networks were 600 

rewired 1e6 times total, and the strength sequence was approximated using simulated annealing. 601 

Rich club curves were normalized in binary networks against 1000 degree preserving null 602 

networks in which each edge was rewired 100 times. All edge rewiring followed the Maslov & 603 

Sneppen rewiring model (Maslov & Sneppen, 2002). Similar to (M. P. van den Heuvel et al., 604 

2010), hubness scores (0-5) were computed as 1 point for all nodes showing top 20% strength, 605 

betweenness, closeness or eigenvector centrality; and lowest 20% clustering coefficient. 606 

 607 
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