

1 **Spatially-resolved single cell transcriptomics reveal a critical role for $\gamma\delta$ T cells in
2 the control of skin inflammation and subcutaneous adipose wasting during
3 chronic *Trypanosoma brucei* infection**

4 Juan F. Quintana^{1,2,3†*}, Matthew C. Sinton^{1*}, Praveena Chandrasegaran¹, Agatha Nabilla
5 Lestari¹, Rhiannon Heslop¹, Bachar Cheaib¹, John Ogunsola¹, Dieudonne Mumba
6 Ngoyi⁴, Nono-Raymond Kuispond Swar^{1,4}, Anneli Cooper¹, Seth B. Coffelt^{5,6}, Annette
7 MacLeod^{1†}

8
9 ¹Wellcome Centre for Integrative Parasitology (WCIP). University of Glasgow, Glasgow,
10 UK. School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of
11 Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK. ²Lydia
12 Becker Institute of Immunology and Inflammation, University of Manchester, UK.
13 ³Division of Immunology, Immunity to Infection and Health, Manchester Academic Health
14 Science Centre, University of Manchester, UK. ⁴Department of Parasitology, National
15 Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo. ⁵School
16 of Cancer Sciences, University of Glasgow Glasgow, UK. ⁶Cancer Research UK Beatson
17 Institute, Glasgow, UK.

18
19 *These authors contributed equally to this work.
20 †Corresponding authors: juan.quintana@glasgow.ac.uk,
21 annette.macleod@glasgow.ac.uk

22
23 **Keywords:** African trypanosomes, $\gamma\delta$ T cells, V γ 6 $^+$ cells, adipocytes, skin inflammation.

24
25
26
27
28
29
30
31
32
33
34
35
36
37

38 **Abstract**

39 African trypanosome parasites colonise the skin in a process important for parasite
40 transmission. However, how the skin responses to trypanosome infection remain
41 unresolved. Here, using a combination of spatial and single cell transcriptomics, coupled
42 with *in vivo* genetic models, we investigated the local immune response of the skin in a
43 murine model of infection. First, we detected a significant expansion of IL-17A-
44 producing $\gamma\delta$ T cells (primarily $V\gamma6^+$) in the infected murine skin compared to naïve
45 controls that occur mainly in the subcutaneous adipose tissue. Second, interstitial
46 preadipocytes located in the subcutaneous adipose tissue upregulate several genes
47 involved in inflammation and antigen presentation, including T cell activation and survival.
48 *In silico* cell-cell communication suggests that adipocytes trigger $\gamma\delta$ T cell activation
49 locally via *Cd40*, *Il6*, *Il10*, and *Tnfsf18* signalling, amongst others. Third, mice deficient in
50 IL-17A-producing $\gamma\delta$ T cells show extensive inflammation, increased frequency of skin-
51 resident IFN γ -producing CD8 $^+$ T cells and limited subcutaneous adipose tissue wasting
52 compared to wild-type infected controls, independent of T_H1 CD4 $^+$ T cells and parasite
53 burden. Based on these observations, we proposed a model whereby adipocytes as well
54 as $V\gamma6^+$ cells act concertedly in the subcutaneous adipose tissue to limit skin inflammation
55 and tissue wasting. These studies shed light onto the mechanisms of $\gamma\delta$ T cell-mediated
56 immunity in the skin in the context of African trypanosome infection, as well as a potential
57 role of immature and mature adipocytes as homeostatic regulators in the skin during
58 chronic infection.

59

60

61

62

63

64

65

66

67

68

69

70

71 **Introduction**

72 The skin represents the ultimate barrier, offering physical and mechanical protection
73 against insults including infections. The skin is a complex organ encompassing several
74 tissue layers, including the dermis and epidermis, which are capable of extensive
75 remodelling and resistance to mechanical and chemical stimuli. Moreover, the skin hosts
76 a complex stromal microenvironment containing a myriad of resident and recruited
77 immune cells that actively survey the tissue. Amongst the dermal immune compartment,
78 $\gamma\delta$ T cells have emerged as critical regulators of tissue homeostasis^{1–4}. For instance, $V\gamma 6^+$
79 cells are enriched in mucosal tissues³ and the dermis^{2,4} where they are considered
80 resident cells. These skin resident $\gamma\delta$ T cells express a wide range of effector molecules
81 including interleukin 17A (IL-17A) and IL-17F⁵, IL-22⁶, and the epidermal growth factor
82 (EGF) receptor ligand⁷, and amphiregulin (AREG)⁸, which are critical for promoting tissue
83 repair and limiting inflammation following an insult^{9–12}. Although $\gamma\delta$ T cells have gathered
84 a lot of attention for their role in cancer^{13–16}, and autoimmune disorders affecting the skin
85 such as psoriasis¹⁷ and lupus¹⁸, their function during parasitic colonisation of the skin is
86 still not well understood.

87 Despite the robust nature of the skin as a barrier, some pathogens manage to circumvent
88 its defences. Of these Trypanosomatids, including the causative agents of leishmaniasis,
89 chagas disease, and sleeping sickness, are known to colonise the skin in a process that
90 has been postulated as being critical for infection and parasite transmission^{19–21}. Indeed,
91 we and others have recently reported the presence of *Trypanosoma brucei* in the skin of
92 mice and humans^{21–23}. Such skin infections are often associated with dermatitis and
93 pruritus²² or can occur in the absence of clinical symptoms or a positive result from gold-
94 standard diagnostic methods²². This strongly indicates that mild or asymptomatic skin
95 infections act as important but overlooked parasite reservoirs hampering ongoing
96 eradication efforts. However, to date, the skin response to *T. brucei* infection remains
97 unknown.

98 Here, we used a combined single cell and spatial transcriptomics approach to generate
99 a spatially resolved single cell atlas of the murine skin during *T. brucei* infection. This
100 combined approach led us to identify that interstitial preadipocytes and Langerhans cells
101 both have central roles in the production of local cytokines and antigenic presentation,
102 taking place largely in the subcutaneous adipose tissue and in proximity to the
103 subcutaneous adipose tissue, respectively. Furthermore, we identified a population of

104 skin IL-17A-producing $V\gamma 6^+$ cells, located in proximity to adipocytes in the subcutaneous
105 adipose tissue and subcutaneous adipose tissue, that display features of TCR
106 engagement and T cell activation upon infection. Cell-cell communication analyses
107 between subcutaneous adipocytes and $V\gamma 6^+$ cells predicted several potential interactions
108 mediating not only T cell activation *via Tnfsf18*, but also promoting adipocyte lipolysis *via*
109 $V\gamma 6^+$ cell-derived *Clcf1* and *Areg*. *In vivo* analyses revealed that $V\gamma 4/6 \gamma\delta$ T cell-deficient
110 mice experience severe skin inflammation, likely mediated by an increased frequency of
111 IFN γ -producing CD8 $^+$ T cells in the skin, but with limited subcutaneous adipose tissue
112 wasting compared to infected wild type controls. We conclude that IL-17A-producing $V\gamma 6^+$
113 cells are critical mediators of skin immunity against African trypanosomes, dampening
114 IFN γ -mediated CD8 $^+$ T cell responses in the skin and promoting subcutaneous adipose
115 tissue wasting, supporting our recently identified role of IL-17 signalling as a mediator of
116 adipose tissue wasting during *T. brucei* infection²⁴. More broadly, our results provide a
117 spatially resolved atlas that can help to dissect further immunological pathways triggered
118 in the skin in response to infection.

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137 **Materials and methods**

138 **Ethical statement.** All animal experiments were approved by the University of Glasgow
139 Ethical Review Committee and performed in accordance with the home office guidelines,
140 UK Animals (Scientific Procedures) Act, 1986 and EU directive 2010/63/EU. All
141 experiments were conducted under SAPO regulations and UK Home Office project
142 licence number PC8C3B25C to Dr. Jean Rodgers.

143 **Murine infections with *Trypanosoma brucei*.** 6–8-week-old wild-type female BALB/c
144 (stock 000651) and FVB/NJ mice (stock 001800) were purchased from Jackson
145 Laboratories. V γ 4/6 $^{-/-}$ mice (a gift from Rebecca O'Brien, National Jewish Health) were
146 backcrossed to FVB/N. Female mice aged (6-8 weeks old) were used for infection. Six-
147 to-eight-week-old wild-type female BALB/c (stock 000651) and FVB/NJ mice (stock
148 001800) were purchased from Jackson Laboratories. For infections, mice were
149 inoculated by intra-peritoneal injection with $\sim 2 \times 10^3$ parasites of strain *T. brucei brucei*
150 Antat 1.1E²⁵. **Click or tap here to enter text.** Parasitaemia was monitored by regular
151 sampling from tail venepuncture and blood was examined using phase microscopy and
152 the rapid “matching” method¹⁶. Uninfected mice of the same strain, sex and age served
153 as uninfected controls. Mice were fed *ad libitum* and kept on a 12 h light–dark cycle. All
154 the experiments were conducted between 8h and 12h.

155 **Skin tissue processing and preparation of single cell suspension for single-cell**
156 **RNA sequencing.** Infected animals and naïve controls were anesthetized with isoflurane
157 at 21 days post-infection and perfused transcardially with 25-30 ml of ice-cold 1X PBS
158 containing 0.025% (wt/vol) EDTA. Skin biopsies from the abdominal flank area were
159 shaved off completely. Some of these sections were placed in 4% PFA for 16 hours prior
160 to embedding in paraffin and histological analysis. Single-cell dissociations for scRNAseq
161 experiments were performed using the 2-step protocol published by (Joost *et al.*, 2020).
162 Briefly, excised 4cm² skin sections were diced into small pieces with a scalpel blade and
163 enzymatically digested with Collagenase type I (500 U/ml; Gibco) and DNase I (1 mg/ml;
164 Sigma) in HBSS containing 0.04% BSA (Invitrogen) for ~ 1 hr at 37 °C with shaking at
165 300rpm. Liberated cells from the partially digested tissue were pushed through a 70 μ m
166 nylon mesh filter with an equal volume of HBSS 0.04% BSA, and then kept on ice. The
167 tissue remaining in the 70 μ m filter was incubated in 0.05% trypsin EDTA for 15 minutes
168 at 37°C, and then liberated cells pushed through the filter with an equal of HBSS 0.04%
169 BSA. Flowthrough from the two digestion steps were combined, passed through a 40 μ M

170 filter to remove any cell aggregate and spun at 350g for 10mins at 4°C. Finally, cells were
171 passed through a MACS dead cell removal kit (Miltenyi Biotec) and diluted to ~1,000
172 cells/µl in 200µl HBSS 0.04% BSA and kept on ice until single-cell capture using the 10X
173 Chromium platform. The single cell suspensions were loaded onto independent single
174 channels of a Chromium Controller (10X Genomics) single-cell platform. Briefly, ~25,000
175 single cells were loaded for capture using 10X Chromium NextGEM Single cell 3 Reagent
176 kit v3.1 (10X Genomics). Following capture and lysis, complementary DNA was
177 synthesized and amplified (12 cycles) as per the manufacturer's protocol (10X
178 Genomics). The final library preparation was carried out as recommended by the
179 manufacturer with a total of 14 cycles of amplification. The amplified cDNA was used as
180 input to construct an Illumina sequencing library and sequenced on a Novaseq 6000
181 sequencers by Glasgow Polyomics.

182 **Read mapping, data processing, and integration.** For FASTQ generation and
183 alignments, Illumina basecall files (*.bcl) were converted to FASTQs using bcl2fastq.
184 Gene counts were generated using Cellranger v.6.0.0 pipeline against a combined *Mus*
185 *musculus* (mm10) and *Trypanosoma brucei* (TREU927) transcriptome reference. After
186 alignment, reads were grouped based on barcode sequences and demultiplexed using
187 the Unique Molecular Identifiers (UMIs). The mouse-specific digital expression matrices
188 (DEMs) from all six samples were processed using the R (v4.2.1) package Seurat v4.1.0
189 ¹⁷. Additional packages used for scRNAseq analysis included dplyr v1.0.7 ¹⁸,
190 RColorBrewer v1.1.2 (<http://colorbrewer.org>), ggplot v3.3.5 ¹⁹, and sctransform v0.3.3 ²⁰.
191 We initially captured 65,734 cells mapping specifically against the *M. musculus* genome
192 across all conditions and biological replicates, with an average of 29,651 reads/cell and
193 a median of 1,762 genes/cell (**S1A Table and Supplementary Figure 1**). The number
194 of UMIs was then counted for each gene in each cell to generate the digital expression
195 matrix (DEM). Low quality cells were identified according to the following criteria and
196 filtered out: *i*) nFeature > 100 or <5,000, *ii*) nCounts > 100 or <20,000, *iii*) > 30% reads
197 mapping to mitochondrial genes, and *iv*) > 40% reads mapping to ribosomal genes, *v*)
198 genes detected < 3 cells. After applying this cut-off, we obtained a total of 56,876 high
199 quality mouse-specific cells with an average of 29,651 reads/cells and a median of 1,683
200 genes/cell (**S1A Table**). High-quality cells were then normalised using the *SCTransform*
201 function, regressing out for total UMI and genes counts, cell cycle genes, and highly
202 variable genes identified by both Seurat and Scater packages, followed by data

203 integration using *IntegrateData* and *FindIntegrationAnchors*. For this, the number of
204 principal components were chosen using the elbow point in a plot ranking principal
205 components and the percentage of variance explained (15 dimensions) using a total of
206 5,000 genes, and SCT as normalisation method.

207 **Cluster analysis, marker gene identification, and subclustering.** The integrated
208 dataset was then analysed using *RunUMAP* (10 dimensions), followed by *FindNeighbors*
209 (10 dimensions, reduction = “pca”) and *FindClusters* (resolution = 0.4). With this
210 approach, we identified a total of 16 cell clusters. The cluster markers were then found
211 using the *FindAllMarkers* function (logfc.threshold = 0.25, assay = “RNA”). To identify cell
212 identity confidently, we employed a supervised approach. This required the manual
213 inspection of the marker gene list followed by and assignment of cell identity based on
214 the expression of putative marker genes expressed in the unidentified clusters. The
215 resolution used for these analyses was selected using the Clustree package²⁶
216 **(Supplementary Figure 1).** A cluster name denoted by a single marker gene indicates
217 that the chosen candidate gene is selectively and robustly expressed by a single cell
218 cluster and is sufficient to define that cluster (e.g., *Col1a1*, *Cd3g*, *Pparg*, *Krt14*, among
219 others). When manually inspecting the gene markers for the final cell types identified in
220 our dataset, we noted the co-occurrence of genes that could discriminate two or more
221 cell types (e.g., T cells, fibroblasts). To increase the resolution of our clusters to help
222 resolve potential mixed cell populations embedded within a single cluster, we subset
223 fibroblasts, myeloid cells, and T cells and analysed them separately using the same
224 functions described above. In all cases, upon subsetting, the resulting objects were
225 reprocessed using the functions *FindVariableFeatures*, *ScaleData*, *RunUMAP*,
226 *FindNeighbors*, and *FindClusters* with default parameters. The number of dimensions
227 used in each case varied depending on the cell type being analysed but ranged between
228 5 and 10 dimensions. Cell type-level differential expression analysis between
229 experimental conditions was conducted using the *FindMarkers* function (*min.pct* = 0.25,
230 *test.use* = Wilcox) and (*DefaultAssay* = “SCT”). Cell-cell interaction analysis mediated by
231 ligand-receptor expression level was conducted using NicheNet²⁵ with default
232 parameters using “mouse” as a reference organism, comparing differentially expressed
233 genes between experimental conditions (*condition_oi* = “Infected”, *condition_reference* =
234 “Uninfected”).

235 **10X Visium spatial sequencing library preparation and analysis**

236 **Tissue processing and library preparation.** Mice were shaved and dissected skin
237 stored in 4% paraformaldehyde for 24 h, before paraffin embedding. RNA was purified
238 from FFPE sections to measure integrity, using the Absolutely Total RNA FFPE
239 Purification Kit (Agilent Technologies) as per the manufacturer's instructions. RNA
240 integrity was then measured by BioAnalyzer (Agilent Technologies) using the RNA 6000
241 Pico Kit (Agilent Technologies). Samples selected for sequencing all had a DV200 >50%.
242 We then placed 10 μ m sections within the capture areas of Visium Spatial Slides (10X
243 Genomics) and proceeded to perform H&E staining and image capture, as per the
244 manufacturer's instructions. To deparaffinise, slides were incubated at 60 °C for 2 h
245 before incubating twice in xylene at room temperature, for 10 min each, three times in
246 100% ethanol for 3 min each, twice in 96% ethanol for 3 min each, 85% ethanol for 3
247 min, and then submerged in Milli-Q water until ready to stain. For H&E staining, slides
248 were incubated with Mayer's haematoxylin Solution (Sigma-Aldrich), Bluing Buffer (Dako)
249 and Alcoholic Eosin solution (Sigma-Aldrich), with thorough washing in ultrapure water
250 between each step. Stained slides were scanned under a microscope (EVOS M5000,
251 Thermo). De-crosslinking was performed by incubating sections twice with 0.1 N HCl for
252 1 min at room temperature. Sections were then incubated twice with Tris-EDTA (TE)
253 buffer pH 9.0 before incubating at 70 °C for 1 h. The Visium Spatial Gene Expression
254 Slide Kit (10X Genomics) was used for reverse transcription and second strand synthesis,
255 followed by denaturation, to allow the transfer of the cDNA from the slide to a collection
256 tube. These cDNA fragments were then used to construct spatially barcoded Illumina-
257 compatible libraries using the Dual Index Kit TS Set A (10x Genomics) was used to add
258 unique i7 and i5 sample indexes, enabling the spatial and UMI barcoding. The final
259 Illumina-compatible sequencing library underwent paired-end sequencing (150 bp) on a
260 NovaSeq 6000 (Illumina) at GenomeScan.

261 After sequencing, the FASTQ files were aligned to a merged reference transcriptome
262 combining the *Mus musculus* genome (mm10). After alignment, reads were grouped
263 based on spatial barcode sequences and demultiplexed using the UMIs, using the
264 SpaceRanger pipeline version 1.2.2 (10X Genomics). Downstream analyses of the
265 expression matrices were conducted using the Seurat pipeline for spatial RNA integration
266 (Hao et al., 2021b; Stuart et al., 2019) (Table S3A). Specifically, the data was scaled
267 using the SCTransform function with default parameters. We then proceeded with
268 dimensionality reduction and clustering analysis using *RunPCA* (assay = "SCT"),
269 *FindNeighbours* and *FindClusters* functions with default settings and a total of 30

270 dimensions. We then applied the *FindSpatiallyVariables* function to identify spatially
271 variable genes, using the top 1,000 most variable genes and “markvariogram” as
272 selection method. To integrate our skin scRNASeq with the 10X Visium dataset, we used
273 the *FindTransferAnchors* function with default parameters, using SCT as normalization
274 method. Then, the *TransferData* function (weight.reduction = “pca”, 30 dimensions) was
275 used to annotate brain regions based on transferred anchors from the scRNASeq
276 reference datasets. To predict the cell-cell communication mediated by ligand-receptor
277 co-expression patterns in the spatial context, we employed NICHEs v0.0.2 (Raredon et
278 al., 2022). Upon dimensionality reduction and data normalisation, NICHEs was run using
279 fanton5 as ligand-receptor database with default parameters. The resulting object was
280 then scaled using the functions *ScaleData*, *FindVariableFeatures* (selection.method =
281 “disp”), RunUMAP with default settings and a total of 15 dimensions. Spatially resolved
282 expression of ligand-receptor pairs was then identified using the *FindAllMarkers* function
283 (min.pct = 0.25, test.use = “roc”). For visualisation, we used the *SpatialFeaturePlot*
284 function with default parameters and min.cutoff = “q1”.

285 **Single molecule fluorescence *in situ* hybridisation (smFISH) using RNAscope.**
286 smFISH experiments were conducted as follows. Briefly, to prepare tissue sections for
287 smFISH, infected animals and naïve controls were anesthetized with isoflurane, and skin
288 sections from the flank were shaved off completely before placing in 4% PFA overnight
289 prior to embedding in paraffin. Paraffin-embedded skin sections (3 μ m) were
290 prepared placed on a SuperFrost Plus microscope slides. Sections were then then
291 dehydrated in 50, 70 and 100% ethanol. RNAscope 2.5 Assay (Advanced Cell
292 Diagnostics) was used for all smFISH experiments according to the manufacturer’s
293 protocols. All RNAscope smFISH probes were designed and validated by Advanced Cell
294 Diagnostics. For image acquisition, 16-bit laser scanning confocal images were acquired
295 with a 63x/1.4 plan-apochromat objective using an LSM 710 confocal microscope fitted
296 with a 32-channel spectral detector (Carl Zeiss). Lasers of 405nm, 488nm and 633 nm
297 excited all fluorophores simultaneously with corresponding beam splitters of 405nm and
298 488/561/633nm in the light path. 9.7nm binned images with a pixel size of 0.07um x
299 0.07um were captured using the 32-channel spectral array in Lambda mode. Single
300 fluorophore reference images were acquired for each fluorophore and the reference
301 spectra were employed to unmix the multiplex images using the Zeiss online

302 fingerprinting mode. smFISH images were acquired with minor contrast adjustments as
303 needed, and converted to grayscale, to maintain image consistency.

List of RNAscope probes used for smFISH				
Supplier	Cat. Number	Sequence	Channel	Dye used
<i>Trypanosoma brucei</i> probes				
Biotechne	1103198-C1	Tbr-Gapdh	Channel 1	Opal 520
Biotechne	1103208-C2	Tbr-Pyk1	Channel 2	Opal 650
Biotechne	1103218-C3	Tbr-Pad2	Channel 3	Opal 570
Biotechne	1103221-C4	Tbr-Ep1	Channel 4	Opal 540

304

305 **Histological analysis of adipocyte size**

306 Skin placed into 4% paraformaldehyde (PFA) and fixed overnight at room temperature.

307 PFA-fixed skin biopsies were then embedded in paraffin, sectioned, and stained by the

308 Veterinary Diagnostic Services facility (University of Glasgow, UK). Sections were

309 Haematoxylin and Eosin (H&E) stained for adipocyte size analysis. Slide imaging was

310 performed by the Veterinary Diagnostic Services facility (University of Glasgow, UK)

311 using an EasyScan Infinity slide scanner (Motic, Hong Kong) at 20X magnification. To

312 determine subcutaneous adipocyte size in skin sections, images were first opened in

313 QuPath (v. 0.3.2)²⁷, before selecting regions and exporting to Fiji²⁸. In Fiji, images were

314 converted to 16-bit format, and we used the Adiposoft plugin²⁹ to quantify adipocyte size

315 within different sections.

316 **Semi-quantitative evaluation of the parasite burden and inflammation in skin**

317 **sections.** Paraffin-embedded skin samples were cut into 2.5 µm sections and stained

318 for *T. brucei* parasites using a polyclonal rabbit antibody raised against *T. brucei* luminal

319 binding protein 1 (BiP) (J. Bangs, SUNY, USA) using a Dako Autostainer Link 48 (Dako,

320 Denmark) and were subsequently counterstained with Gill's Haematoxylin. The extent of

321 inflammatory cell infiltration in skin sections was assessed in haematoxylin and eosin-

322 stained sections. Stained slides were assessed by two independent pathologists blinded

323 to infection status and experimental procedures. Skin parasite burden was assessed for

324 both intravascular (parasites within the lumen of dermal or subcutaneous small to

325 medium-sized vessels) and extravascular locations (parasites outside blood vessels,

326 scattered in the connective tissue of the dermis or in the subcutaneous adipose tissue)

327 and was evaluated in 5 randomly selected fields at 40X magnification for each sample. A

328 semi-quantitative ordinal score was used to grade the trypanosomes burden in the skin,
329 as follows: 0 = no parasites; 1 = 1 to 19 trypanosomes; 2 = 20-50 trypanosomes; 3 = >
330 50 trypanosomes. An average parasite burden score per field of view was calculated for
331 each skin section. The severity of skin inflammation was assessed semi-quantitatively,
332 graded on a 0–3 scale: 0 (leukocytes absent or rarely present); 1, mild (low numbers of
333 mixed inflammatory cells present); 2, moderate (increased numbers of mixed
334 inflammatory cells), and 3, marked (extensive numbers/aggregates of inflammatory
335 cells). The average of 10 randomly selected fields at 20X objective magnification for each
336 skin section determined the inflammatory score.

337 **DNA extraction and Quantitative Polymerase Chain Reaction (qPCR) of *T. brucei***
338 **in murine skin tissue.** Genomic DNA (gDNA) was extracted from 25–30 mg skin tissue
339 preserved at -80°C. After defrosting on ice, skin was finely chopped with scissors, and
340 disrupted for 8 minutes in 300 µL ATL buffer (Qiagen) using a Qiagen Tissuelyser at 50Hz
341 with a ceramic bead (MPBio). Disrupted tissues was incubated at 56°C with 2mg/ml
342 proteinase K (Invitrogen) overnight and DNA extracted from digested tissue using the
343 Qiagen DNeasy Blood and Tissue Kit (Qiagen, Manchester (UK)). The resulting gDNA
344 was quantified using a Qubit Fluorimeter (Thermofisher Scientific). and diluted to 4 ng/µl.
345 Trypanosome load in the skin was determined using Taqman real-time PCR, using
346 primers and probe specifically designed to detect the trypanosome *Pfr2* gene, as
347 previously reported³⁰. Reactions were performed in a 25 µl reaction mix comprising 1X
348 Taqman Brilliant III master mix (Agilent, Stockport, UK), 0.2 pmol/µl forward primer
349 (CCAACCGTGTGTTCCCTC), 0.2 pmol/µl reverse primer
350 (CGGCAGTAGTTGACACCTTTTC), 0.1 pmol/µl probe (FAM-
351 CTTGTCTTCTCCTTTTGCTCTTCCCCCT-TAMRA) (Eurofins Genomics,
352 Germany) and 20 ng template DNA. A standard curve was constructed using a serial 10-
353 fold dilution range: 1x 10⁶ to 1x 10¹ copies of PCR 2.1 vector containing the
354 cloned *Pfr2* target sequence (Eurofins Genomics, Germany). The amplification was
355 performed on an ARIAMx system (Agilent, USA) with a thermal profile of 95°C for 3
356 minutes followed by 45 cycles of 95°C for 5 seconds and 60°C for 10 seconds. The *Pfr2*
357 copy number within each 20ng DNA skin sample was calculated from the standard curve
358 using the ARIAMx qPCR software (Agilent, USA) as a proxy for estimated trypanosome
359 load. Skin biopsies from naïve controls were included to determine the background signal
360 and detection threshold.

361 **Flow cytometry analysis of skin-dwelling T lymphocytes.** Murine skin biopsies were
362 harvested and digested as indicated above. The resulting single cell suspensions were
363 resuspended in ice-cold FACS buffer (2 mM EDTA, 5 U/ml DNase I, 25 mM HEPES and
364 2.5% Foetal calf serum (FCS) in 1× PBS), blocked with TruStain FcX (anti-mouse
365 CD16/32) antibody (Biolegend, 1:1,000), and stained for extracellular markers at 1:400
366 dilution. Macrophages (F4/80), B cells (CD19), and erythrocytes (TER119) were
367 excluded from the analysis by included them in a dump channel. For intracellular staining,
368 single-cell suspensions were stimulated as above in Iscove's modified Dulbecco's media
369 (supplemented with 1× non-essential amino acids, 50 U/ml penicillin,
370 50 µg/ml streptomycin, 50 µM β-mercaptoethanol, 1 mM sodium pyruvate and 10% FBS.
371 Gibco) containing 1X cell Stimulation cocktail containing phorbol 12-myristate 13-acetate
372 (PMA), Ionomycin, and Brefeldin A (eBioSciencesTM) for 5 hours at 37°C and 5% CO₂.
373 Unstimulated controls were also included in these analyses. After surface marker
374 staining, cells were fixed and permeabilized with a Foxp3/Transcription Factor Staining
375 Buffer Set (eBioscience) and stained overnight at 4 °C. The list of flow cytometry
376 antibodies used in this study were obtained from Biolegend and are presented in the table
377 below. For flow cytometry analysis, samples were run on a flow cytometer LSRII Fortessa
378 (BD Biosciences) and analysed using FlowJo software version 10 (Treestar).

Supplier	Target	Clone	Dilution
Thermo	Fixable viability dye eFluor 780	-	1:1,000
Biolegend	F4/80 PE-Cy7	BM8	1:400
Biolegend	CD19 PE-Cy7	1D3/CD19	1:400
Biolegend	Ter119 PE-Cy7	TER-119	1:400
Biolegend	CD45 PE	HI30	1:400
Biolegend	CD3e PE-Dazzle 594	KT3.1.1	1:400
Biolegend	TCRgd Brilliant Violet 421	GL3	1:400
Biolegend	CD27 APC	LG.3A10	1:400
Biolegend	CD45 PE-Dazzle 594	30-F11	1:400
Biolegend	CD4 APC	GK1.5	1:400
Biolegend	CD8a Brilliant Violet 711	53-6.7	1:400
Biolegend	IFN γ PE	XMG1.2	1:400
Biolegend	CD3e Alexa Fluor 488	500A2	1:400

379 **Data availability**

380 The transcriptome data generated in this study have been deposited in the Gene
381 Expression Omnibus (GSE226113). The processed transcript count data and cell
382 metadata generated in this study are available at Zenodo (DOI:
383 10.5281/zenodo.7677469). Additional data and files can also be sourced via
384 Supplementary Tables.

385 **Code availability**

386 Code used to perform analysis described can be accessed at Zenodo (DOI:
387 10.5281/zenodo.7677469).

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413 **Results**

414 **Spatially resolved single cell atlas of the murine skin chronically infected with**
415 **African trypanosomes**

416 To study the immune responses in the murine skin against African trypanosomes, we
417 conducted a combined single cell and spatial transcriptomic analysis using 10X
418 Genomics (**Materials and methods**). Skin from female BALB/c mice infected with *T.*
419 *brucei* Antat 1.1 displayed marked inflammation, as determined by H&E examination
420 (**Figure 1A**), compared to uninfected skin. Parasites were detected in extravascular
421 spaces (**Figure 1B**) at 25 days post-infection, as previously reported²¹. We chose to
422 explore this time point as the *T. brucei* skin infection is well established, enabling us to
423 explore how the skin adapts to such conditions. Following skin dissociation and
424 scRNAseq analysis, we obtained a total of 56,876 high-quality cells with an average of
425 1,622 genes and 29,651 reads per cell (**Figure 1C, S1 Figure, and S1 Table**) from naïve
426 ($n = 2$) and infected ($n = 2$) mice. These cells were broadly classified into 16 different
427 clusters (**Figure 1C**) based on common expression makers putatively associated with
428 these clusters (**Figure 1D**). The stromal compartment consisted of eight keratinocyte
429 clusters (46,591 cells; KC 1 to 8), characterised by a high expression level for *Krt14*,
430 *Krt15*, *Krt35*, *Krt25*, and *Fabp5*, in addition to one cluster with high expression of *Col1a1*,
431 *Ly6a*, *Thy1*, *Pdgfra*, and *Cd34* that we designated as fibroblast-like mesenchymal cells
432 (4,274 cells), one *Cd36*⁺ *Cldn5*⁺ *Pecam1*⁺ endothelial cell cluster (792 cells), one *Pparg*⁺
433 adipocyte (529 cells), and one *Mlana*⁺ melanocyte cluster (755 cells) (**Figure 1C and D**).
434 In the spatial context, the keratinocyte populations were mainly detected in the dermis
435 and epidermis, whereas the rest of the stromal cells were detected in the muscle layer
436 and subcutaneous adipose tissue in both naïve and infected samples (**Figure 1E, S2**
437 **Figure, and S2 Table**).

438 The immune compartment consisted of *Cd3g*⁺ *Trdc*⁺ T cells (1,103 cells), *Cd207*⁺
439 Langerhans cells (854 cells), *Lyz2*⁺ myeloid cells (1,499 cells), and erythrocytes (479
440 cells) (**Figure 1C and 1D**). The majority of these immune cells were lowly detected in
441 naïve skin but were readily found in the subcutaneous adipose tissue of infected samples
442 (**Figure 1E**). A closer examination of differences between experimental conditions
443 allowed us to detect the expansion of individual cell clusters in response to infection. For
444 example, the *Lyz2*⁺ myeloid and *Cd3g*⁺ T cell clusters have higher frequencies in the
445 infected skin compared to naïve controls (**Figure 1F**). Similarly, we noted the presence
446 of a small erythrocyte cluster exclusively in the infected sample, which may be indicative

447 of infection-induced vascular leakage (**Figure 1F**). These results are consistent with the
448 increased frequency of inflammatory cells in infected samples that we determined by
449 histopathological examination.

450 **Skin preadipocytes and keratinocytes provide inflammatory signals and antigen
451 presentation during chronic *T. brucei* infection**

452 Stromal cells are increasingly recognised as critical for initiating immunological
453 responses in many tissues, including the skin³¹. To capture as much stromal cell
454 resolution as possible, and to better understand how this compartment in the murine skin
455 responds to infection, we reclustered stromal cell clusters (keratinocytes, adipocytes,
456 endothelial cells, melanocytes, and fibroblast-like mesenchymal cells) and reanalysed
457 them separately. After re-clustering, we obtained a total of 13 different stromal clusters,
458 seven of which were *bona fide* keratinocytes expressing *Krt25*, *Krt14*, and *Krt15* (**Figure
459 2A and 2B**). In addition to these clusters, we also detected *Mlana*⁺ melanocytes, *Plin2*⁺
460 mature adipocytes, and *Cldn5*⁺ endothelial cells (**Figure 2A and 2B**). Interestingly, the
461 re-clustering analysis led us to identify a clear population of cells expressing bona fide
462 mesenchymal genes including *Cd34*, *Thy1*, *Ly6a*, *Pdgfra*, *Pdgfrb*, and *Col1a1*, which we
463 previously assigned as a fibroblast population (**Figure 2A and 2B**). We assigned these
464 cells as interstitial preadipocytes (stem-like adipocyte precursor cells) as they also
465 express *Dpp4*, *Pi16*, and *Dcn* (**Figure 2A and B**), markers previously shown to be
466 upregulated in this cell type³². Some stromal populations were altered during infection.
467 For instance, the frequency of KC2 and KC3 increased from around 15.02% and 10.92%
468 to approximately 19.3% and 14.07%, respectively. In contrast, the adipocyte population
469 decreased from 1.60% to 1.21%, indicating subcutaneous adipose tissue wasting
470 (**Figure 2C**), as previously reported^{24,33}. We also observed a higher frequency of
471 endothelial cells (ECs; from 6.67% to 8.02%) and interstitial preadipocyte population 2
472 (IPA2; from 1.98% to 3.81%) in infected compared with naïve skin (**Figure 2C**). Together
473 this indicates that during *T. brucei* infection there is a remodelling of the stromal
474 compartment within the skin. Stromal cells are recognised as drivers of inflammatory
475 responses via the production of cytokines and chemokines³¹, as well as the induction of
476 T cell activation via antigen presentation³⁴. To unbiasedly assess our transcriptomics
477 dataset, to determine whether stromal cells were influencing immune function, we
478 performed module scoring. This was used to determine the global expression levels of
479 cytokines (**Figure 2D**) and antigen presentation molecules (**Figure 2E**). This analysis
480 revealed that IPA2 (interstitial preadipocyte 2), and to a lesser extent KC2 (keratinocyte

481 2), were the main producers of cytokines and antigen presentation molecules (**Figure 2D**
482 **and 2E**). Indeed, almost exclusively in IPA2, we noted increased expression of *Il6*, *Il15*,
483 *Il18bp* and interferon-driven *Cxcl9*, *Cxcl10*, as well as the class Ib and II major
484 histocompatibility complex *H2-M3* and *H2-DMa*, respectively (**Figure 2F-2H**). In the
485 spatial context, most of these responses were identified as restricted foci in the dermis
486 and epidermis of naïve mice (**Figure 2I**), but significantly localised to the subcutaneous
487 adipose tissue in infected mice (**Figure 2I**). Taken together, these results indicate that
488 the IPA2 subcluster, located in the subcutaneous adipose tissue, is a key driver of
489 recruitment and activation of immune cells in the skin in response to *T. brucei* infection.
490 **Langerhans cells, dendritic cells, and Cd14⁺ monocytes contribute to antigen**
491 **presentation in the murine skin during chronic *T. brucei* infection**
492 In addition to the stroma, resident myeloid cells are also involved in the initial responses
493 to infection. Thus, we next examined transcriptional responses within the myeloid
494 compartment, encompassing *Lyz2⁺* myeloid and *Cd207⁺* Langerhans cells (**Figure 1C**
495 **and 1D**). To gain as much granularity as possible within this compartment, we reclustered
496 the myeloid subset leading to the identification of six subclusters including *Cd14⁺*
497 monocytes, *Mrc1⁺* macrophages, two clusters of *Cd207⁺* Langerhans cells, *Hdc⁺* *Gata2⁺*
498 mast cells, and *Clec9a⁺* *Btla⁺* *Xcr1⁺* dendritic cells, which we classed as cDC1s (**Figure**
499 **3A and 3B**). Interestingly, *Mrc1⁺* macrophages also expressed *Il10*, suggesting that
500 these cells may have anti-inflammatory properties (**Figure 3B**). We found that upon
501 infection, there is an expansion of all the myeloid cells, but notably so within the *Mrc1⁺*
502 macrophage and *Cd14⁺* monocyte and Langerhans cell subclusters (**Figure 3A**). These
503 subsets, as well as the mast cells and the cDC1s localise to the subcutaneous adipose
504 tissue (**Figure 3C**), mirroring the localisation of other stromal cells driving immune cell
505 recruitment and activation (**Figure 2I**). Given their role in initiating an adaptive immune
506 response, we next focussed on characterising myeloid cell function by measuring the
507 global expression levels of pro-inflammatory cytokines and molecules associated with
508 antigen presentation, as we did for the stromal compartment, using module scoring. This
509 analysis revealed that the *Cd14⁺* monocytes and *Mrc1⁺* macrophages express the
510 highest levels of cytokines within the myeloid compartment (**Figure 3D**). In contrast,
511 antigenic presentation was predominantly driven by Langerhans cells and DCs (**Figure**
512 **3E**). Taken together, these analyses reveal that myeloid cells located in the
513 subcutaneous adipose tissue drive the expression of pro-inflammatory cytokines and
514 antigen presentation concertedly with stromal cells during infection.

515 **Both $Cd4^+$ T cells and $V\gamma6^+$ cells expand in the skin during chronic *T. brucei*
516 infection**

517 We next examined the T cell compartment in our scRNAseq dataset. After re-clustering,
518 we identified a total of 1,043 cells encompassing $Il5^+$ $Gata3^+$ ILC2s (138 cells), $Ncr1^+$ NK
519 cells (172 cells), $Icos^+$ $Rora^+$ CD4 $^+$ T cells (426 cells), and two separate cell clusters of
520 $Trdc^+$ $\gamma\delta$ T cells, 1 (155 cells) and 2 (152 cells) (**Figure 4A and 4B**). Both of the $\gamma\delta$ T cell
521 clusters express high levels of $Tcrg-C1$, $Cd163/1$, but low levels of $Cd27$ (**Figure 4B**),
522 and based on recent literature, this indicates that they are likely to be IL-17-producing
523 $V\gamma6^+$ cells³⁵. *In vivo*, we observed a significant expansion of CD27 $^-$ (IL-17A-producing)
524 $\gamma\delta$ T cells and a concomitant reduction in the frequency of CD27 $^+$ (IFN γ -producing) $\gamma\delta$ T
525 cells in skin biopsies from infected BALB/c mice compared to naïve controls (**Figure 4C**),
526 following the same trend predicted by the scRNAseq data (**Figure 4A and 4B**), thus
527 validating our *in silico* prediction. Intriguingly, we noted that the $V\gamma6^+$ cell cluster 1 was
528 only present in the naïve skin but disappeared upon infection (**Figure 4A**). In contrast,
529 the $V\gamma6^+$ cell cluster 2 was not present in the naïve skin but appeared during infection
530 (**Figure 4A**). Based on this finding, we hypothesised that these two $\gamma\delta$ T cell clusters
531 represent different activation states, whereby $\gamma\delta$ T cells within cluster 1 represent “resting”
532 cells, and $\gamma\delta$ T cell within cluster 2 represent “activated” cells. To explore this hypothesis
533 in more detail, we examined the expression level of $\gamma\delta$ T cell activation and replication
534 markers, namely, $Cd44$, $Cd69$, $Nr4a1$, and $Mki67$. We found that, upon infection, the $\gamma\delta$ T
535 cells within cluster 2 robustly express $Cd69$ and $Nr4a1$, and to a lesser extent $Mki67$,
536 suggesting local activation and expansion of the $\gamma\delta$ T cells (**Figure 4D**). Spatial module
537 scoring analysis identified that $V\gamma6^+$ cells localise mainly to the dermis and epidermis of
538 naïve mice (**Figure 4E-F**), but their distribution changes in response to infection, and they
539 localised to the subcutaneous adipose tissue (**Figure 4E-F**). Together, these results
540 indicate that during infection, there is a population of $V\gamma6^+$ cells within the subcutaneous
541 adipose tissue compartment that exhibits features of local activation. During cold
542 challenge, $V\gamma6^+$ cells are known to drive thermogenesis and lipid mobilisation *via* lipolysis
543 through crosstalk with brown and beige adipocytes^{36,37}. However, interactions between
544 $V\gamma6^+$ cells and white adipocytes, in particular in the subcutaneous white adipose tissue
545 during infection, has yet to be explored.

546 We next examined whether there is a cell-cell communication axis between adipocytes
547 and all T cell clusters found in the skin during infection. NicheNet analysis indicates that

548 adipocytes provide several critical cues for T cell recruitment and activation, including the
549 activating factors *Cd40*, *Tnfsf18*, and *ICAM1*, chemokines *Ccl12*, *Ccl8*, and cytokines *Tnf*,
550 *Il10*, and *Il6* (**Figure 4G**). These adipocyte-derived ligands are predicted to be sensed by
551 skin-resident T cells via the expression of *Cd40lg*, *Itgax*, *Il10ra*, *Il6st*, *Tnfrsf1b*, and
552 *Tnfrsf18*. In the spatial context, we noted that the expression of adipocyte derived *Tnfsf18*
553 is restricted to the subcutaneous adipose tissue in the infected skin, coinciding with the
554 expression of T cells expressing their cognate receptor, *Tnfrsf18* (**Figure 4H**). Taken
555 together, these results demonstrate that chronic skin infection with *T. brucei* leads to the
556 local activation of a subpopulation of $V\gamma6^+$ cells in a process likely aided by subcutaneous
557 adipocytes.

558 **$V\gamma6^+$ cells are essential for controlling skin inflammation, local CD8⁺ T cell
559 activation, and subcutaneous adipose tissue wasting independently of skin-
560 resident TH1 T cells**

561 So far, our data indicates that $V\gamma6^+$ cells expand significantly in the chronically infected
562 skin, and we predicted that these populations receive activation signals from adipocytes
563 within the subcutaneous adipose tissue. To better understand if the skin-resident $V\gamma6^+$
564 cells are involved in a communication axis with subcutaneous adipocytes, we re-
565 clustered the T cells and adipocytes together to conduct ligand-receptor mediated cell-
566 cell communication analyses between these cell types. We found that $V\gamma6^+$ cells express
567 several key genes involved in driving mesenchymal (including preadipocyte)
568 differentiation and adipocyte lipolysis (**Figure 5A**). For instance, we detected an
569 upregulation of the Cardiotrophin-like cytokine factor 1 (*Clf1*) and Amphiregulin (*Areg*)
570 in the $V\gamma6^+$ cells during infection, which are predicted to engage with their cognate
571 receptors *Cntfr* and *Egfr*, respectively (**Figure 5A and B**). Other $V\gamma6^+$ cell-derived factors
572 promoting mesenchymal differentiation are *Cd24a*, the Placental growth factor (*Pgf*),
573 Sialophorin (*Spn*), and Pleiotrophin (*Ptn*), which are predicted to engage to *Pparg⁺*
574 adipocytes via Selectin P (*Se1p*), Neuropilin 1/2 (*Nrp1/Nrp2*), Syndecan 3 (*Sdc3*), and
575 Sialic Acid Binding Ig Like Lectin 1 (*Siglec1*), respectively (**Figure 5A**). Interestingly,
576 some of these $V\gamma6^+$ cell-derived factors are known to modulate thermogenesis, leading
577 to mobilisation of lipids via lipolysis³⁶⁻³⁸. Together, this suggests that during infection $V\gamma6^+$
578 $\gamma\delta$ T cells may be involved in promoting lipolysis to mobilise energy storage from
579 adipocytes. Based on these observations, we hypothesised that, during infection, $V\gamma6^+$
580 cells expand in the skin and are important for driving subcutaneous adipose tissue

581 wasting, limiting IFN γ -driven skin inflammation, and controlling parasite burden. To test
582 our hypothesis, we infected mice with a double V γ 4/6 T cell knockout (on an FVB/N
583 genetic background; V γ 4/6 $^{-/-}$) for a period of 25 days, and we monitored parasitaemia
584 and clinical scores throughout infection. We observed that both V γ 4/6 $^{-/-}$ and FVB/N mice
585 displayed the same levels of parasitaemia and parasite burden in the skin as measured
586 by qRT-PCR against the trypanosome-specific *Prf2* gene (**S3 Figure**). We also detected
587 both slender and stumpy forms in all dermal layers in both infected V γ 4/6 $^{-/-}$ and FVB/N
588 mice without significant differences between strains (**S4 Figure**), suggesting that V γ 4 $^{+}$
589 and V γ 6 $^{+}$ cells are dispensable for controlling parasite burden in the skin.
590 We next examined histological sections of skin samples from infected V γ 4/6 $^{-/-}$ and FVB/N
591 mice, as well as their counterpart naïve controls. Compared to infected FVB/N mice, the
592 V γ 4/6 $^{-/-}$ mice displayed more severe signs of skin inflammation. Specifically, we
593 observed higher follicular atrophy in the dermis and hypodermis, as well as diffuse
594 lymphocyte aggregates containing large number of plasma cells and oedema in the
595 subcutaneous adipose tissue compared to infected FVB/N mice (**Figure 5C and S3**
596 **Table**). Histological analysis indicated that, during infection, FVB/N mice lose a greater
597 proportion of subcutaneous adipocytes than their naïve counterparts, consistent with
598 previous reports in the trypanotolerant C57BL/6 background²⁴ (**Figure 5C**). In contrast,
599 infected V γ 4/6 $^{-/-}$ mice retain similar adipocyte numbers to their naïve counterparts
600 (**Figure 5C and 5D**), highlighting a critical role for V γ 4/6 $\gamma\delta$ T cells in modulating
601 subcutaneous adipose tissue wasting. Morphometric analysis revealed that adipocytes
602 in the V γ 4/6 $^{-/-}$ mice were significantly smaller in area in naïve animals compared to the
603 FVB/N background (**Figure 5D**), potentially highlighting a role for the V γ 4 $^{+}$ and V γ 6 $^{+}$ cells
604 in maintaining adipocyte function under homeostasis. Moreover, our morphometric
605 analyses revealed that adipocytes within the subcutaneous adipose tissue of infected
606 FVB/N mice were significantly smaller than those in naïve mice, whereas infection did
607 not significantly impact adipocyte size in the V γ 4/6 $^{-/-}$ mice (**Figure 5E**).
608 Lastly, within the T cell compartment, we failed to detect significant differences in the
609 frequency of skin-resident CD4 $^{+}$ and CD8 $^{+}$ T cells, or the frequency of IFN γ -producing
610 CD4 $^{+}$ T cells (**S5 and S6 Figures**), indicating a dispensable role for V γ 4 $^{+}$ and/or V γ 6 $^{+}$
611 cells in limiting T_H1-mediated T cell responses. However, we noted that in the skin of the
612 V γ 4/6 $^{-/-}$ mice there was a significant increase in the frequency of IFN γ -producing CD8 $^{+}$ T

613 cells compared to FVB/N controls, potentially suggesting that $V\gamma 4^+$ and/or $V\gamma 6^+$ cells may
614 regulate the activation threshold of CD8 $^+$ T cells under homeostatic conditions (**S6**
615 **Figure**). Taken together, our results demonstrate that $V\gamma 4^+$ and/or $V\gamma 6^+$ cells are critical
616 for limiting skin pathology, at least in part by controlling the activation state of skin-
617 resident IFN γ^+ CD8 $^+$ T cell, as well driving subcutaneous adipose tissue wasting, in a
618 process likely involving IL-17 signalling.

619 **Discussion**

620 To address key questions about the immune response of the skin to chronic infection with
621 *T. brucei*, this study aimed to characterise changes in skin cell populations using single
622 cell transcriptomics, as well as to determine how the cell populations detected by single
623 cell transcriptomics are distributed throughout the skin during infection using spatial
624 transcriptomics. With this information, we then modelled cell-cell interactions in the skin
625 during *T. brucei* infection, to understand immune-stromal crosstalk and how this
626 influences the immune response to infection. Here, using a combination of cutting-edge
627 technologies and genetic murine models, we demonstrated that IL-17-producing $V\gamma 6^+$
628 cells play a critical role in the controlling skin inflammation (**Figure 6**). Furthermore, our
629 data highlight a previously unappreciated interaction between subcutaneous interstitial
630 preadipocytes and mature adipocytes and skin-dwelling T cells (including $\gamma\delta$ T cells),
631 which mediates T cell responses and subcutaneous adipose tissue wasting (**Figure 6**).
632 We first generated a spatially resolved single cell atlas of the murine skin during chronic
633 *T. brucei* infection. From these analyses, several observations are worth discussing in
634 detail. First, we observed significant changes in the skin stromal and immune
635 compartment without the formation of granulomatous lesions, indicative of subclinical
636 inflammatory processes when compared to naïve controls. Using module scoring of
637 inflammatory cytokines and chemokines, as well as genes associated with antigen
638 presentation, we detected inflammatory signatures predominantly in populations of
639 $Cd14^+$ monocytes, Langerhans cells, and interstitial preadipocytes located in the
640 subcutaneous adipose tissue.

641 Following a reclustering of stromal cells, we identified two populations of $Dpp4^+$ interstitial
642 preadipocytes (IPA1 and IPA2) that upregulate inflammatory cytokines, chemokines, and
643 molecules associated with antigen presentation. The chemokines *Cxcl1*, *Cxcl9* and
644 *Cxcl10* were upregulated in both populations of interstitial preadipocytes but were higher
645 in IPA2. These chemokines are secreted to recruit neutrophils³⁹, CD4 $^+$ and $\gamma\delta$ T cells^{40,41},

646 and natural killer cells⁴², and their upregulation exclusively by preadipocytes suggests
647 that these cells are critical drivers of immune recruitment to the skin during *T. brucei*
648 infection. Supporting this, in the skin of infected mice we found expansion of CD4⁺ T cells,
649 $\gamma\delta$ T cells, and NK cells, and interestingly this may represent a feedback loop whereby
650 these immune cells suppress differentiation of preadipocytes to mature adipocytes, as
651 observed using *in vitro* models⁴³. In addition to preadipocytes, we also found that mature
652 adipocytes upregulate chemokines during infection, including *Ccl8* and *Ccl12*, which are
653 drivers of monocyte recruitment⁴⁴. Moreover, these cells upregulated *Il6* and *Il10*, which
654 were predicted to communicate with T cells through *Il6st* and *Il10ra*, respectively. To our
655 knowledge, although adipose tissue immune populations are known to express IL-10⁴⁵,
656 and adipocytes express the IL-10 receptor⁴⁶, this is the first time that adipocyte *Il10*
657 expression has been reported. In the subcutaneous adipose tissue, IL-10 signalling limits
658 energy expenditure and lipolysis in mouse models of cold exposure and obesity⁴⁶, but its
659 effects on adipocytes during infection remain unknown. Our observations may suggest
660 that during *T. brucei* infection, IL-10 acts in both an autocrine and paracrine fashion,
661 whereby adipocytes secrete the cytokine and it suppresses adipose tissue lipolysis,
662 whilst simultaneously suppressing CD4⁺ T cell activity⁴⁷. Conversely, IL-6 is a driver of
663 lipolysis and fatty acid oxidation⁴⁸ and is associated with weight loss and fat wasting in
664 diseases such as HIV⁴⁹ and cancer⁵⁰. It is, therefore, unclear how these two cytokines
665 impact adipocyte activity when both are present.

666 Importantly, we also identified a population of skin-resident V γ 6⁺ T cells that expand in
667 response to skin infection. These V γ 6⁺ cells are primed to produce IL-17A and IL-17F
668 during development in the thymus^{51,52}, and upon maturation they migrate to multiple
669 tissues throughout the body, including the skin, where they become resident immune
670 cells, offering a first line of response to infection⁵³. The $\gamma\delta$ T cells that we identified in our
671 dataset express markers putatively associated with activation, including *Cd44*, *Cd69*, and
672 *Nr4a1*, potentially suggesting the existence of local drivers of $\gamma\delta$ T cell activation in the
673 infected skin. Both *in silico* predictions and *in vivo* analyses indicate that these $\gamma\delta$ T cells
674 are likely to be IL-17A-producing V γ 6⁺ cells based on the expression levels of *Tcrg-C1*,
675 *Cd163l1*, and CD27, as previously reported³⁵. We also observed two populations of V γ 6⁺
676 cells, which we hypothesise represent “resting” and “activated” populations, based on
677 expression of *Cd44*, *Cd69*, and *Nr4a1*. However, unlike other $\gamma\delta$ T cell populations in the
678 skin, such as dendritic epidermal T cells that reside solely in the dermis, V γ 6⁺ cells may

679 be able to recirculate between tissues^{54,55}. In this scenario, our data may provide
680 evidence of one $V\gamma 6^+$ population exiting the skin and a separate population entering the
681 skin during infection. However, future studies are required to dissect the migratory
682 dynamics of skin $V\gamma 6^+$ cells in the context of skin infection.

683 Our findings further highlight the importance of IL-17A signalling in the skin of mice
684 infected with *T. brucei*, consistent with our previous work proposing IL-17A as a critical
685 driver of subcutaneous and inguinal adipose tissue wasting²⁴. Interestingly, in the spatial
686 context, these IL-17A-producing $V\gamma 6^+$ cells are located in the subcutaneous adipose
687 tissue layer of the skin, and are predicted to establish crosstalk with adipocytes via
688 several molecules, including T cell co-stimulatory signals such as *Tnfsf18*, which
689 engages with GITR (*Tnfrsf18*) to lower the T cell activation threshold⁵⁶. These cells also
690 express *Cd40*, indicating a previously unappreciated crosstalk between stromal
691 adipocytes and $V\gamma 6^+$ cells during *T. brucei* infection in the skin. Consistent with this, mice
692 lacking $V\gamma 4/6^+$ T cells display a higher number of plasma cells and more severe skin
693 inflammation compared to wild type controls. Mice deficient in $V\gamma 4^+$ and $V\gamma 6^+$ are known
694 to develop increased numbers of plasma cells and spontaneous germinal centre
695 formation⁵⁷, which may dysregulate the immune response to infection. We found that the
696 increased inflammation in the skin of infected $V\gamma 4/6^{-/-}$ mice may be in part mediated by
697 controlling the activation threshold of skin-resident CD8⁺ T cells. The increased capacity
698 of CD8⁺ T cells to produce IFN γ in the skin of naïve $V\gamma 4/6^{-/-}$ mice suggests that these cells
699 play a role in constraining CD8⁺ T cell activity under homeostasis. An alternative
700 possibility, is that the increased severity of skin inflammation in infected $V\gamma 4/6^{-/-}$ mice is
701 due to exacerbated recruitment of neutrophils, as reported in metastatic breast cancer⁵⁸.
702 Strikingly, we found that $V\gamma 4/6^{-/-}$ mice do not lose subcutaneous adipose tissue to the
703 same extent as wild type controls during infection, mirroring our previous studies where
704 we proposed IL-17A as a driver of infection-associated adipose tissue wasting²⁴. In both
705 wild type and $V\gamma 4/6^{-/-}$ mice we observed comparable parasite tissue burden, with both
706 slender and stumpy developmental forms of the parasite readily detected in all the dermal
707 layers of these mice. Furthermore, we failed to detect significant differences in the
708 frequency of skin-resident T_H1 T cells, which strongly suggest that both parasites and
709 T_H1 T cells are dispensable for driving subcutaneous adipose tissue wasting, which is
710 typically observed in this experimental infection setting^{24,33}. Thus, it is tempting to
711 speculate that IL-17A-producing $V\gamma 6^+$ cells (and potentially other sources of IL-17A such

712 as T_H17 T cells) promote subcutaneous adipose tissue lipolysis to fuel an efficient
713 immune response against the parasites, although the molecular mechanisms underlying
714 this process need to be investigated in more detail. However, in the study presented here
715 we were unable to dissect the relative contribution of V γ 4⁺ or V γ 6⁺ cells to skin
716 inflammation, or the interactions between different $\gamma\delta$ T cell subsets that reside in the skin
717 under both homeostatic conditions and inflammation.

718 Our data strongly indicate that the subcutaneous adipose tissue is an active site for
719 immune priming and activation, placing the adipocytes at the core of this process. Thus,
720 we propose a model whereby subcutaneous adipocytes (in addition to Langerhans cells
721 and keratinocytes) have a critical role as coordinators of local innate and adaptive
722 immune responses. In the context of trypanosome infection, subcutaneous adipocytes
723 may detect the presence of parasites (e.g., via Toll-like receptor signalling) to trigger the
724 recruitment and activation of innate immune cells such as $\gamma\delta$ T cells to mobilise energy
725 stores to meet the energetic requirements needed to control infection, as recently
726 proposed⁵⁹.

727 Together, our spatially resolved atlas of the murine skin during *T. brucei* infection offers
728 a resource to the community interested in understanding how chronic infections affect
729 skin homeostasis and immunity. Future work is required to examine the consequences
730 of infection on adipocyte differentiation and function, and whether these processes are
731 directly controlled by $\gamma\delta$ T cells, as shown during cold exposure^{36,37}. Furthermore, our
732 dataset provides strong evidence for an engagement of several cell types within the
733 stromal compartment in the skin in response to infection, and may suggest that the
734 efficacy, robustness, and timing of the local immune response may be determined by cell
735 types traditionally associated with non-immunological functions such as mesenchymal
736 cells (including interstitial preadipocytes). We envision that future work dissecting the role
737 of these various cell types and communication axis will address some of the fundamental
738 questions arising from this study.

739

740

741

742

743

744

745 **Acknowledgments and funding.**

746 We thank Julie Galbraith and Pawel Herzyk (Glasgow Polyomics, University of Glasgow)
747 for their support with library preparation and sequencing. Similarly, we would like to thank
748 the technical staff at the University of Glasgow Biological Services for their assistance in
749 maintaining optimal husbandry conditions and comfort for the animals used in this study.
750 We thank the Maria Kasper Lab, Karolinska Institutet, Sweden for their advice on single
751 cell skin dissociation. We thank Dr Jean Rodgers for the work conducted under her Home
752 Office Animal License (PPL No. PC8C3B25C). This work was funded by a Sir Henry
753 Wellcome postdoctoral fellowship (221640/Z/20/Z to JFQ), a Wellcome Trust
754 FutureScope grant (104111/Z/14/Z Wellcome Centre for Integrative Parasitology to JFQ),
755 and a Wellcome Trust Senior Research fellow (209511/Z/17/Z to AML). SBC is supported
756 by a grant from the Annie McNab Bequest (CRUK Beatson Institute), Breast Cancer Now
757 (2018JulPR1101, 2019DecPhD1349, 2019DecPR1424), Cancer Research Institute
758 (CLIP award), Cancer Research UK (RCCCEA-Nov21\100003, EDDPGM-
759 Nov21\100001, DRCNPG-Jun22\100007), and Pancreatic Cancer Research and
760 Worldwide Cancer Research (22-0135). PC and MCS are supported by a Wellcome Trust
761 Senior Research fellowship (209511/Z/17/Z) awarded to AML. RH is a Wellcome Trust
762 PhD student (Wellcome Trust 218518/Z/19/Z). The authors declare that the research was
763 conducted in the absence of any commercial or financial relationships that could be
764 construed as a potential conflict of interest.

765

766 **Author contributions**

767 **Conceptualisation:** JFQ, MCS. **Methodology:** JFQ, MCS, PC, RH, JO, BC, AL, AC,
768 NK, SBC, AML. **Formal analysis:** JFQ, MCS, PC, RH, JO, BC, AL. **Writing – original**
769 **draft:** JFQ, MCS. **Writing – reviewing and editing:** JFQ, MCS, PC, RH, JO, BC, AL,
770 AC, SBC, NK, AML. **Funding acquisition:** JFQ, AML. The authors declare that they
771 have no competing interests, commercial or otherwise. Correspondence and requests for
772 materials should be addressed to Annette MacLeod (Annette.macleod@glasgow.ac.uk)
773 or Juan F. Quintana (juan.quintana@glasgow.ac.uk)

774

775

776

777

778 **Figures**

779 **Figure 1. Integrative overview of the murine skin infected with *T. brucei* infection**
780 **using single cell transcriptomics.** **A)** H&E-stained images from naïve and infected
781 mice. Scale bar: 800 μ m (top) and 100 μ m (bottom). **B)** Immunohistochemistry against
782 the stumpy-specific marker PAD1 in naïve and infected samples, including insets
783 highlighting the presence of stumpy forms in both the epidermis-subcutaneous adipose
784 tissue and the subcutaneous adipose tissue-adipose tissue. Scale bar: 50 μ m. **C)** Uniform
785 manifold approximation and projection (UMAP) of 56,876 high-quality cells from both
786 naïve and infected samples, highlighting the major cell types detected in our dataset,
787 including stromal cells (Keratinocytes, fibroblasts, endothelial cells, and adipocytes) and
788 immune cells (myeloid cells, T cells, Langerhans cells, and macrophages). **D)** Top 10
789 marker genes defining all the major cell clusters detected in (C). The heatmap is colour-
790 coded based on gene expression intensity. **E)** Spatial feature plot for selected marker
791 genes defining keratinocytes (*Krt15*), fibroblast-like mesenchymal cells (*Col1a1*),
792 adipocytes (*Pparg*), T cells (*Cd3g*), myeloid cells (*Lyz2*), and Langerhans cells (*Cd207*).
793 The corresponding histological section is included on the left, including an annotation of
794 epidermis (Ep), dermis (D), adipose tissue (Ad), Muscle (M), and subcutaneous adipose
795 tissue (Sc). **F)** As in (C) but splitting the UMAP plot into naïve samples (25,800 cells; $n =$
796 2 mice) and infected (31,076 cells; $n = 2$). KC: keratinocytes, FB: Fibroblasts, EC:
797 endothelial cells, MCs: Macrophages, LC: Langerhans cells, Adipo: Adipocytes, Erythro:
798 Erythrocytes.

799 **Figure 2. The murine skin stromal cells respond to infection by upregulating genes**
800 **associated with antigen presentation and chemotaxis.** **A)** Uniform manifold
801 approximation and projection (UMAP) of 52,149 high-quality cells within the stromal
802 subcluster, encompassing seven keratinocyte clusters (KC1-7), fibroblasts (FB),
803 endothelial cells (ECs), melanocytes (MLCs), and interstitial preadipocytes (IPAs). **B)** Dot
804 plot representing the expression levels of top marker genes used to catalogue the
805 diversity of skin stromal cells. The side of the dots represent the percentage of cells that
806 express a given marker, and the colour intensity represent the level of expression. **C)**
807 Frequency plot the different stromal cell types detected in the murine skin in naïve ($n =$
808 2) and infected ($n = 2$) samples. Module scoring for the overall expression of inflammatory
809 cytokines (**D**) and genes associated with antigen presentation (**E**). Violin plot showing the
810 expression level of several significant adipocyte-specific cytokines (**F**), chemokines (**G**),

811 and major histocompatibility complex (MHC) I and II molecules (**H**). **I**) Spatial module
812 scoring for inflammation and antigen presentation in a naïve (top) and infected (bottom)
813 skin section. Scale bar, 100 μ m.

814 **Figure 3. The murine skin is colonised by a myriad of myeloid cells during chronic**
815 ***T. brucei* infection.** **A)** Uniform manifold approximation and projection (UMAP) of 2,353
816 high-quality cells within the myeloid cluster were re-analysed to identify a total four
817 subclusters, including dendritic cells (DCs), Mast cells, and two populations of
818 macrophages (*Mrc1*⁺ macs and *Cd14*⁺ mono), and two populations of Langerhans cells
819 (LCs 1 and LCs 2). **B)** Dot plot representing the expression levels of top marker genes
820 used to catalogue the diversity of myeloid cells. **C)** Spatial feature plot depicting the
821 expression levels of markers defining *Cd14*⁺ monocytes (*Cd14*, *Ccr2*), *Mrc1*⁺
822 macrophages (*Mrc1*, *Lyve1*), mast cells (*Hdc*), and DCs (*Xcr1*). The corresponding
823 histological section is included on the left, including an annotation of epidermis (Ep),
824 dermis (D), adipose tissue (Ad), Muscle (M), and subcutaneous adipose tissue (Sc).
825 Module scoring for the overall expression of inflammatory cytokines (**D**) and genes
826 associated with antigen presentation (**E**).

827 **Figure 4. Chronic *T. brucei* infection triggers the activation of skin-dwelling V γ 6 γ δ T**
828 **cells localised in the subcutaneous adipose tissue.** **A)** Uniform manifold
829 approximation and projection (UMAP) of 1,043 high-quality T cells from naïve (304 cells)
830 and infected skin samples (739 cells). After reclustering, we detected a total of five
831 subclusters including type 2 innate lymphoid cells (ILC2s), CD4⁺ T cells, NK cells, and
832 γ δ T cells. **B)** Dot Plot depicting the expression level of top marker genes for the skin T
833 cell subcluters. The dot size and the intensity of the colour represents the proportion of
834 cells expressing the genes and the level of expression. **C) Top panel:** Representative
835 flow cytometry analysis to determine the presence of CD27⁻ (IL-17-producing) and CD27⁺
836 (IFN γ -producing) γ δ T cells in murine skin infected ($n = 5$ mice) with *T. brucei* and naïve
837 controls ($n = 4$ mice). **Bottom panel:** Quantification of flow cytometry data. Statistical
838 analysis was conducted using a parametric *T* test. A *p* value <0.05 was considered
839 significant. **D)** Dot Plot depicting the expression level of top genes associated with T cell
840 activation and TCR engagement for the skin T cell subcluters. The dot size and the
841 intensity of the colour represents the proportion of cells expressing the genes and the
842 level of expression. **E)** Spatial feature plot of canonical V γ 6⁺ cell marker genes. **F)** Spatial
843 module scoring subclusters in the murine naïve and infected skin tissue for canonical γ δ

844 T cell marker genes. **G)** *In silico* cell-cell interaction analysis between adipocytes
845 (“senders”) and T cells (“receivers”) based on the upregulation of ligand-receptor pairs.
846 The heatmap is colour coded to represent the strength of the interaction. **H)** Spatial
847 feature plot depicting the expression of adipose-derived ligand *Tnfsf18* and T-cell specific
848 receptor *Tnfrsf18*, which is predicted to be one of the most robust interactions between
849 these cell types during infection.

850 **Figure 5. $V\gamma 6^+$ cells are essential for controlling skin inflammation and**

851 subcutaneous adipose tissue wasting independently of skin-resident T_{H1} T cells.

852 **A)** *In silico* cell-cell interaction analysis between $V\gamma 6^+$ cells (“senders”) and *Pparg⁺*
853 adipocytes (“receivers”) based on the upregulation of ligand-receptor pairs. The heatmap
854 is colour coded to represent the strength of the interaction. **B)** Expression level of *Clcf1*
855 and *Areg*, two of the most significant upregulated $V\gamma 6^+$ cells-derived ligands predicted to
856 interact with subcutaneous adipocytes. **C)** H&E staining from skin biopsies obtained from
857 FVB/N and $V\gamma 4/6^{-/-}$ naïve and infected mice. Scale bar: 100 μm . Ep, epidermis; D, dermis;
858 Ad, adipose tissue; M, muscle; Sc, subcutis. **D)** Analysis of mean adipocyte area (μm^2)
859 in naïve and infected FVB/N and $V\gamma 4/6^{-/-}$ mice. $N = 5$ biological replicates per group, from
860 two independent experiments. Lipid droplets were measured from 3 distinct areas in each
861 image and then combined for each biological replicate. A non-parametric, one-way
862 ANOVA was used to determine the level of significant. A p value <0.05 is considered
863 significant. **E)** Frequency plot of the adipocyte area represented in (D) for naïve and
864 infected FVB/N (left panel) and $V\gamma 4/6^{-/-}$ mice (right panel). $N = 5$ biological replicates per
865 group, from two independent experiments. Lipid droplets were measured from 3 distinct
866 areas in each image and then combined for each biological replicate. A non-parametric,
867 one-way ANOVA was used to determine the level of significant. A p value <0.05 is
868 considered significant.

869 **Figure 6. Proposed model of stromal-immune interactions in the skin during *T.***
870 ***brucei* infection.** Based on our spatially-resolved single cell atlas, we propose a model
871 whereby $V\gamma 6^+$ cells act concertedly with *Pparg⁺* adipocytes (and potentially
872 preadipocytes) to coordinate local immune responses, either *via* the recruitment of
873 immune cells (e.g., CD8⁺ T cells and NK cells). The *Pparg⁺* adipocytes in this context
874 provide important cues for T cell activation that we hypothesise might be involved in
875 triggering $V\gamma 6^+$ cells -mediated responses. Other stromal cells such as Langerhans cells
876 and keratinocytes are also likely to be involved in this process via antigenic presentation.

877

878 **Supplementary Figures**

879 **Supplementary figure 1. Quality control measurements of the murine single cell**
880 **transcriptomics dataset. A)** Number of Unique molecular identifies (UMIs), genes,
881 mitochondrial reads, and library complexity (Log10 UMIs/gene) before (left panel) and
882 after (right panel) applying filtering parameters. **B)** Clustree output representing the
883 relationship between different cell clusters at various levels of resolution using the
884 function *FindClusters*.

885 **Supplementary figure 2. Quality control of 10X Visium datasets from the mouse**
886 **skin over the course of infection with *T. brucei*.** Spatial clusters and marker genes for
887 each spatial cluster in the naïve (**A**) and infected (**B**) murine skin using 10X Visium spatial
888 transcriptomics.

889 **Supplementary figure 3. Characterisation of the $V\gamma4/6^{-/-}$ mice during *T. brucei***
890 **infection. A)** Measurement of circulating parasitaemia in both female FVB/N ($n = 4$) and
891 $V\gamma4/6^{-/-}$ mice ($n = 4$) for a period of 22 days. ANOVA test with multiple corrections. A p
892 value <0.05 is considered significant. **B)** qRT-PCR of skin-dwelling trypanosomes by
893 measuring the trypanosome-specific gene *Prf2* by qRT-PCR. The *Prf2* copy numbers
894 were normalised per ng of skin DNA from naïve and infected FVB/N and $V\gamma4/6^{-/-}$ mice (n
895 = 4 mice/group). *T* test comparison between infected samples. A p value <0.05 is
896 considered significant. The detection limit, as measured in skin biopsies from naïve
897 controls, is also indicated with a dotted line. **C)** Representative immunohistochemistry of
898 murine skin biopsies from naïve and infected FVB/N and $V\gamma4/6^{-/-}$ mice to detect the
899 presence of *T. brucei* using an antibody against the trypanosome-specific luminal binding
900 protein 1 (BiP). Scale bar = 50 μ m.

901 **Supplementary figure 4. Single molecule fluorescent *in situ* hybridisation (smFISH)**
902 **analysis showing the spatial distribution of *T. brucei* developmental stages in the**
903 **skin of FVB/N and $V\gamma4/6^{-/-}$ mice. Top panels:** skin sections from naïve FVB/N and $V\gamma4/6^{-/-}$
904 mice. **Middle panels:** skin sections from infected FVB/N and $V\gamma4/6^{-/-}$ mice depicting the
905 expression of the *T. brucei*-specific transcripts *Gapdh* and *Pyk1* (slender specific
906 markers) and *Pad2* (stumpy specific marker). The dotted square indicates an area
907 selected for magnification. **Bottom panels:** Magnified fields of the infected samples
908 showing the distribution of both slender and stumpy markers in the skin of FVB/N and
909 $V\gamma4/6^{-/-}$ mice. Scale bar: 50 μ m.

910 **Supplementary figure 5. Flow cytometry analysis of skin-resident T lymphocytes.**
911 Gating strategy for the identification of skin $\gamma\delta$ T cells (**A**) and CD4 $^+$ and CD8 $^+$ T cells (**B**).
912 **Supplementary figure 6. Quantification of skin-resident lymphocytes in the V γ 4/6 $^{-/-}$**
913 **mice during *T. brucei* infection. A)** Representative flow cytometry analysis of skin CD4 $^+$
914 and CD8 $^+$ T cells in naïve and infected FVB/N and V γ 4/6 $^{-/-}$ mice ($n = 4$ mice/group). **B)** Quantification of the frequency of skin CD4 $^+$ (left panel) and CD8 $^+$ T cells (right panel) in
915 naïve and infected FVB/N and V γ 4/6 $^{-/-}$ mice ($n = 4$ mice/group) as shown in (C). ANOVA
916 test with multiple corrections. A p value <0.05 is considered significant. **C)** Representative
917 flow cytometry analysis of ex vivo recall assay to determine the production of IFN γ in skin-
918 resident CD4 $^+$ and CD8 $^+$ T cells in naïve and infected FVB/N and V γ 4/6 $^{-/-}$ mice ($n = 4$
919 mice/group). **D)** Quantification of the frequency of skin CD4 $^+$ (top panel) and CD8 $^+$ T cells
920 (bottom panel) in naïve and infected FVB/N and V γ 4/6 $^{-/-}$ mice ($n = 4$ mice/group) as shown
921 in (C).
922

923 **Table legend**

924 **Supplementary table 1. Overview of the mouse skin single cell transcriptomics**
925 **during chronic *T. brucei* infection. S1A)** Quality control including mean reads per cell
926 and median genes per cell before and after filtering out low quality cell types. **S1B)**
927 Overview of the major cell types detected in the single cell dataset at a resolution of 0.4.
928 The marker genes are also included. **S1C)** Overview of the stromal cells detected in the
929 skin dataset at a resolution of 0.3. The marker genes for these clusters, as well as
930 representative UMAP plots are also included. **S1D)** As in S1C, but for the myeloid cells
931 at a resolution of 0.3. **S1E)** As in S1C, but for the T cells at a resolution of 0.3.

932 **Supplementary table 2. Overview of the spatial transcriptomics of the mouse skin**
933 **during chronic *T. brucei* infection. S2A)** Overview of the spatial transcriptomics
934 project, including total number of reads sequenced per biological replicate, the median
935 number of genes per spot and the percentage of mappable reads to the mouse genome
936 (mm10). **S2B)** Mouse marker genes identified in the 10X Visium spatial transcriptomics
937 datasets.

938 **Supplementary table 3. Histopathological analysis of biopsies taken from naïve**
939 **and infected FVB/NJ and V γ 4/6 $^{-/-}$ mice.** The skin biopsies were harvested at 21 days
940 post-infection ($n = 4$ mice/group), fixed in 10% PFA and counterstained with the *T. brucei*-
941 specific antibody TbBiP. Uninfected animals ($n = 4$) were included as naïve controls.
942 Histological examinations were scored using H&E staining and BiP staining and was

943 conducted double-blinded. The results reported in this table are in comparison to naïve
944 controls for the corresponding genetic background, and encompass a detailed analysis
945 of the epidermis, dermis, hypodermis, skeletal muscle, and the subcutaneous adipose
946 tissue. The column labelled “BiP” (columns AD to AI) represents the results from the
947 immunohistochemistry analysis against the anti-Trypanosoma anti-BiP antibody.

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977 **Bibliography**

978 1. Taylor, K. R., Costanzo, A. E. & Jameson, J. M. Dysfunctional $\gamma\delta$ T cells contribute to
979 impaired keratinocyte homeostasis in mouse models of obesity. *J Invest Dermatol*
980 **131**, 2409–2418 (2011).

981 2. Jameson, J. *et al.* A role for skin gammadelta T cells in wound repair. *Science* **296**,
982 747–749 (2002).

983 3. Chen, Y., Chou, K., Fuchs, E., Havran, W. L. & Boismenu, R. Protection of the
984 intestinal mucosa by intraepithelial $\gamma\delta$ T cells. *Proceedings of the National Academy
985 of Sciences* **99**, 14338–14343 (2002).

986 4. Sharp, L. L., Jameson, J. M., Cauvi, G. & Havran, W. L. Dendritic epidermal T cells
987 regulate skin homeostasis through local production of insulin-like growth factor 1. *Nat
988 Immunol* **6**, 73–79 (2005).

989 5. Roark, C. L., Simonian, P. L., Fontenot, A. P., Born, W. K. & O'Brien, R. L. $\gamma\delta$ T cells:
990 an important source of IL-17. *Curr Opin Immunol* **20**, 353–357 (2008).

991 6. Simonian, P. L. *et al.* $\gamma\delta$ T cells protect against lung fibrosis via IL-22. *Journal of
992 Experimental Medicine* **207**, 2239–2253 (2010).

993 7. Schilbach, K., Frommer, K., Meier, S., Handgretinger, R. & Eyrich, M. Immune
994 response of human propagated gammadelta-T-cells to neuroblastoma recommend
995 the V δ 1+ subset for gammadelta-T-cell-based immunotherapy. *J Immunother* **31**,
996 896–905 (2008).

997 8. Tan, L. *et al.* Single-Cell Transcriptomics Identifies the Adaptation of Scart1+ Vy6+ T
998 Cells to Skin Residency as Activated Effector Cells. *Cell Rep* **27**, 3657-3671.e4
999 (2019).

1000 9. Konieczny, P. *et al.* Interleukin-17 governs hypoxic adaptation of injured epithelium.
1001 *Science* **377**, eabg9302 (2022).

1002 10. Zaharie, R. D., Popa, C., Schlanger, D., Vălean, D. & Zaharie, F. The Role of IL-
1003 22 in Wound Healing. Potential Implications in Clinical Practice. *Int J Mol Sci* **23**,
1004 3693 (2022).

1005 11. Enhancement of Wound Healing by Topical Treatment with Epidermal Growth
1006 Factor | NEJM. <https://www.nejm.org/doi/full/10.1056/NEJM198907133210203>.

1007 12. Zaiss, D. M. W. *et al.* Amphiregulin enhances regulatory T cell-suppressive
1008 function via the epidermal growth factor receptor. *Immunity* **38**, 275–284 (2013).

1009 13. Patil, R. S. *et al.* IL17 producing $\gamma\delta$ T cells induce angiogenesis and are
1010 associated with poor survival in gallbladder cancer patients. *Int J Cancer* **139**, 869–
1011 881 (2016).

1012 14. Wu, X. *et al.* IL-17 promotes tumor angiogenesis through Stat3 pathway
1013 mediated upregulation of VEGF in gastric cancer. *Tumor Biol.* **37**, 5493–5501 (2016).

1014 15. Yan, J. & Huang, J. Innate $\gamma\delta$ T17 cells convert cancer-elicited inflammation into
1015 immunosuppression through myeloid-derived suppressor cells. *Oncoimmunology* **3**,
1016 e953423 (2014).

1017 16. Pan, B. *et al.* Interleukin-17 promotes angiogenesis by stimulating VEGF
1018 production of cancer cells via the STAT3/GIV signaling pathway in non-small-cell
1019 lung cancer. *Sci Rep* **5**, 16053 (2015).

1020 17. Cai, Y. *et al.* Differential Developmental Requirement and Peripheral Regulation
1021 for Dermal V γ 4 and V γ 6T17 Cells in Health and Inflammation. *Nat Commun* **5**, 3986
1022 (2014).

1023 18. LUNARDI, C., MARGUERIE, C., BOWNESS, P., WALPORT, M. J. & SO, A. K.
1024 Reduction in T $\gamma\delta$ cell numbers and alteration in subset distribution in systemic lupus
1025 erythematosus. *Clinical and Experimental Immunology* **86**, 203–206 (1991).

1026 19. Eiras, D. P., Kirkman, L. A. & Murray, H. W. Cutaneous Leishmaniasis: Current
1027 Treatment Practices in the USA for Returning Travelers. *Curr Treat Options Infect*
1028 *Dis* **7**, 52–62 (2015).

1029 20. Ferraresto, M. G., Torre, A. C., Piva, M. M. M. & Barcan, L. Chagas disease
1030 reactivation: cutaneous manifestations in a transplanted patient. *An Bras Dermatol*
1031 **93**, 890–892 (2018).

1032 21. Capewell, P. *et al.* The skin is a significant but overlooked anatomical reservoir
1033 for vector-borne African trypanosomes. *eLife* **5**, e17716 (2016).

1034 22. Camara, M. *et al.* Extravascular Dermal Trypanosomes in Suspected and
1035 Confirmed Cases of gambiense Human African Trypanosomiasis. *Clinical Infectious*
1036 *Diseases* **73**, 12–20 (2021).

1037 23. De Niz, M. *et al.* Intravital imaging of host–parasite interactions in skin and
1038 adipose tissues. *Cellular Microbiology* **21**, e13023 (2019).

1039 24. Sinton, M. C. *et al.* Interleukin-17 drives sex-dependent weight loss and changes
1040 in feeding behaviour during *Trypanosoma brucei* infection. 2022.09.23.509158
1041 Preprint at <https://doi.org/10.1101/2022.09.23.509158> (2022).

1042 25. Le Ray, D., Barry, J. D., Easton, C. & Vickerman, K. First tsetse fly transmission
1043 of the ‘AnTat’ serodeme of *Trypanosoma brucei*. *Ann Soc Belg Med Trop* **57**, 369–
1044 381 (1977).

1045 26. Zappia, L. & Oshlack, A. Clustering trees: a visualization for evaluating
1046 clusterings at multiple resolutions. *GigaScience* **7**, (2018).

1047 27. Bankhead, P. *et al.* QuPath: Open source software for digital pathology image
1048 analysis. *Sci Rep* **7**, 16878 (2017).

1049 28. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis.
1050 *Nat Methods* **9**, 676–682 (2012).

1051 29. Galarraga, M. *et al.* Adiposoft: automated software for the analysis of white
1052 adipose tissue cellularity in histological sections. *Journal of Lipid Research* **53**, 2791–
1053 2796 (2012).

1054 30. Girard, A. *et al.* Raman spectroscopic analysis of skin as a diagnostic tool for
1055 Human African Trypanosomiasis. *PLOS Pathogens* **17**, e1010060 (2021).

1056 31. Castro-Manreza, M. E. *et al.* Mesenchymal Stromal Cells from the Epidermis
1057 and Dermis of Psoriasis Patients: Morphology, Immunophenotype, Differentiation
1058 Patterns, and Regulation of T Cell Proliferation. *Stem Cells Int* **2019**, 4541797
1059 (2019).

1060 32. Stefkovich, M., Traynor, S., Cheng, L., Merrick, D. & Seale, P. Dpp4+ interstitial
1061 progenitor cells contribute to basal and high fat diet-induced adipogenesis. *Mol
1062 Metab* **54**, 101357 (2021).

1063 33. Trindade, S. *et al.* Trypanosoma brucei Parasites Occupy and Functionally Adapt
1064 to the Adipose Tissue in Mice. *Cell Host & Microbe* **19**, 837–848 (2016).

1065 34. Baptista, A. P. *et al.* Lymph node stromal cells constrain immunity via MHC class
1066 II self-antigen presentation. *eLife* **3**, e04433 (2014).

1067 35. Edwards, S. C. *et al.* PD-1 and TIM-3 differentially regulate subsets of mouse IL-
1068 17A-producing $\gamma\delta$ T cells. *Journal of Experimental Medicine* **220**, e20211431 (2022).

1069 36. Kohlgruber, A. C. *et al.* $\gamma\delta$ T cells producing interleukin-17A regulate adipose
1070 regulatory T cell homeostasis and thermogenesis. *Nat Immunol* **19**, 464–474 (2018).

1071 37. Hu, B. *et al.* $\gamma\delta$ T cells and adipocyte IL-17RC control fat innervation and
1072 thermogenesis. *Nature* **578**, 610–614 (2020).

1073 38. Dumas, S. N., Guo, C., Kim, J. K., Friedline, R. H. & Ntambi, J. M. Interleukin-6
1074 derived from cutaneous deficiency of stearoyl-CoA desaturase- 1 may mediate

1075 metabolic organ crosstalk among skin, adipose tissue and liver. *Biochem Biophys*
1076 *Res Commun* **508**, 87–91 (2019).

1077 39. Sawant, K. V. *et al.* Chemokine CXCL1 mediated neutrophil recruitment: Role of
1078 glycosaminoglycan interactions. *Sci Rep* **6**, 33123 (2016).

1079 40. Ochiai, E. *et al.* CXCL9 Is Important for Recruiting Immune T Cells into the Brain
1080 and Inducing an Accumulation of the T Cells to the Areas of Tachyzoite Proliferation
1081 to Prevent Reactivation of Chronic Cerebral Infection with *Toxoplasma gondii*. *Am J*
1082 *Pathol* **185**, 314–324 (2015).

1083 41. Ajuebor, M. N. *et al.* GammadeltaT cells initiate acute inflammation and injury in
1084 adenovirus-infected liver via cytokine-chemokine cross talk. *J Virol* **82**, 9564–9576
1085 (2008).

1086 42. Saudemont, A., Jouy, N., Hetuin, D. & Quesnel, B. NK cells that are activated by
1087 CXCL10 can kill dormant tumor cells that resist CTL-mediated lysis and can express
1088 B7-H1 that stimulates T cells. *Blood* **105**, 2428–2435 (2005).

1089 43. Wu, H. *et al.* T-Cell Accumulation and Regulated on Activation, Normal T Cell
1090 Expressed and Secreted Upregulation in Adipose Tissue in Obesity. *Circulation* **115**,
1091 1029–1038 (2007).

1092 44. Islam, S. A. *et al.* Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by
1093 recruiting IL-5+ TH2 cells. *Nat Immunol* **12**, 10.1038/ni.1984 (2011).

1094 45. Acosta, J. R. *et al.* Human-Specific Function of IL-10 in Adipose Tissue Linked to
1095 Insulin Resistance. *The Journal of Clinical Endocrinology & Metabolism* **104**, 4552–
1096 4562 (2019).

1097 46. Rajbhandari, P. *et al.* IL-10 Signaling Remodels Adipose Chromatin Architecture
1098 to Limit Thermogenesis and Energy Expenditure. *Cell* **172**, 218–233.e17 (2018).

1099 47. Akdis, C. A. & Blaser, K. Mechanisms of interleukin-10-mediated immune
1100 suppression. *Immunology* **103**, 131–136 (2001).

1101 48. van Hall, G. *et al.* Interleukin-6 stimulates lipolysis and fat oxidation in humans. *J*
1102 *Clin Endocrinol Metab* **88**, 3005–3010 (2003).

1103 49. Adedeji, T. A. *et al.* Serum Interleukin-6 and Weight Loss in Antiretroviral-naïve
1104 and Antiretroviral-treated Patients with HIV/AIDS: Relationships and Predictors. *Curr*
1105 *HIV Res* **20**, 441–456 (2022).

1106 50. Han, J. *et al.* Plasma concentration of interleukin-6 was upregulated in cancer
1107 cachexia patients and was positively correlated with plasma free fatty acid in female
1108 patients. *Nutrition & Metabolism* **16**, 80 (2019).

1109 51. Haas, J. D. *et al.* Development of Interleukin-17-Producing $\gamma\delta$ T Cells Is
1110 Restricted to a Functional Embryonic Wave. *Immunity* **37**, 48–59 (2012).

1111 52. Spidale, N. A. *et al.* Interleukin-17-Producing $\gamma\delta$ T Cells Originate from SOX13+
1112 Progenitors that Are Independent of $\gamma\delta$ TCR Signaling. *Immunity* **49**, 857-872.e5
1113 (2018).

1114 53. Fink, D. R. *et al.* Elevated numbers of SCART1+ $\gamma\delta$ T cells in skin inflammation
1115 and inflammatory bowel disease. *Molecular Immunology* **47**, 1710–1718 (2010).

1116 54. Audemard-Verger, A. *et al.* Macrophages Induce Long-Term Trapping of $\gamma\delta$ T
1117 Cells with Innate-like Properties within Secondary Lymphoid Organs in the Steady
1118 State. *The Journal of Immunology* **199**, 1998–2007 (2017).

1119 55. Romagnoli, P. A., Sheridan, B. S., Pham, Q.-M., Lefrançois, L. & Khanna, K. M.
1120 IL-17A-producing resident memory $\gamma\delta$ T cells orchestrate the innate immune
1121 response to secondary oral *Listeria monocytogenes* infection. *Proceedings of the*
1122 *National Academy of Sciences* **113**, 8502–8507 (2016).

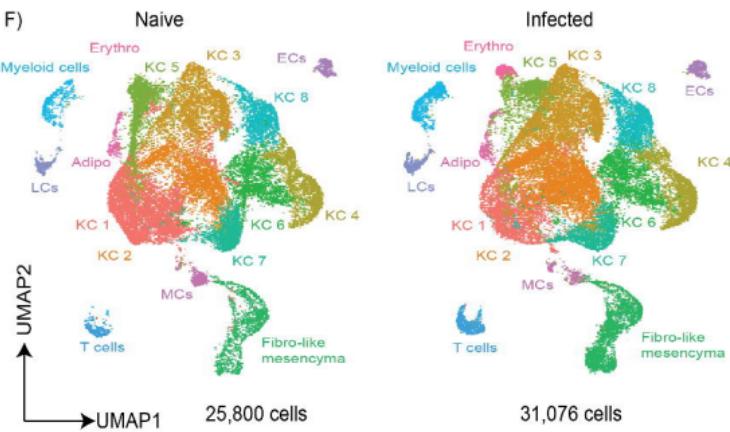
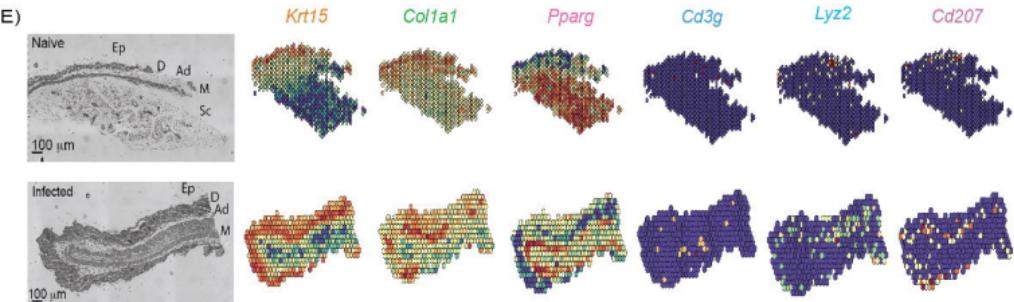
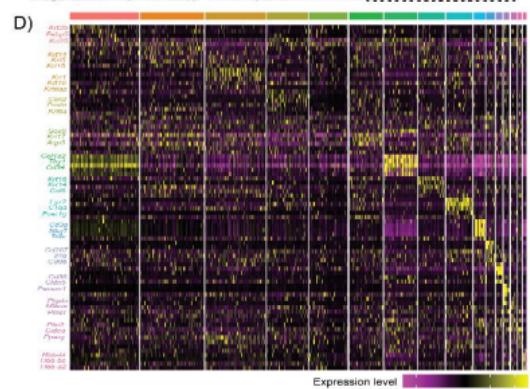
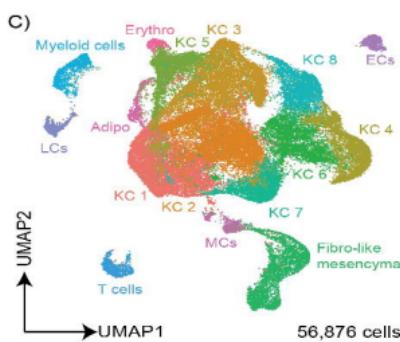
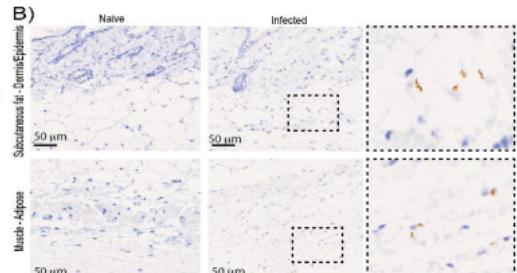
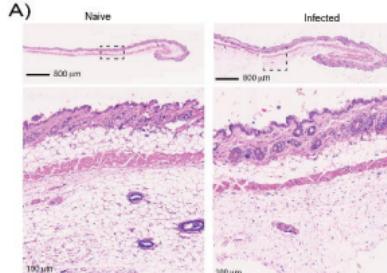
1123 56. Ronchetti, S. *et al.* Glucocorticoid-induced TNFR-related protein lowers the

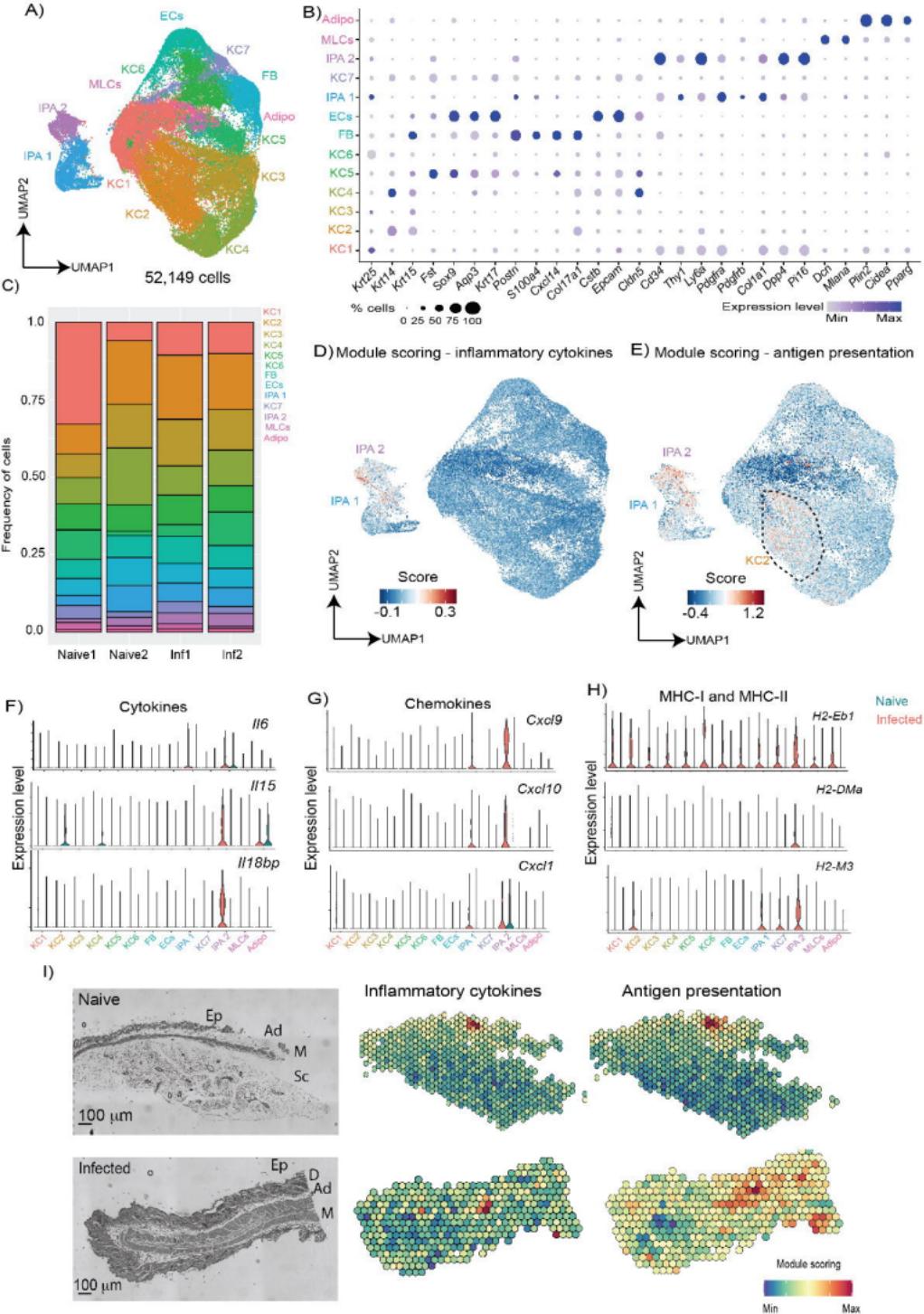
1124 threshold of CD28 costimulation in CD8+ T cells. *J Immunol* **179**, 5916–5926 (2007).

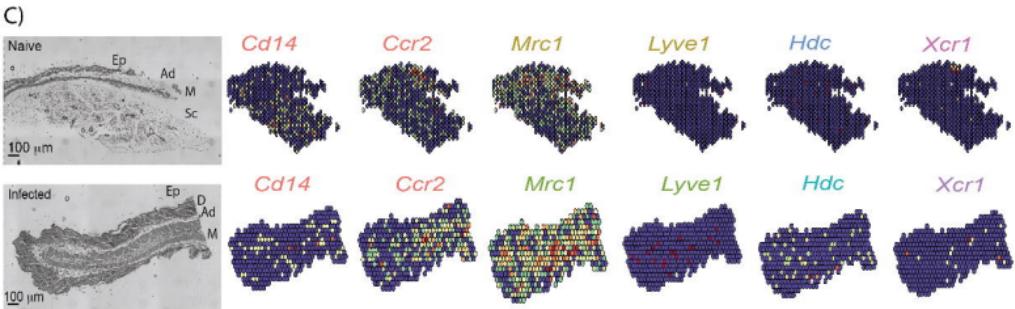
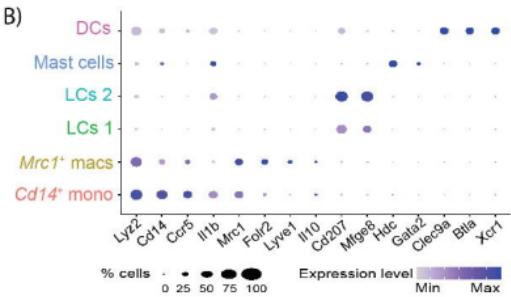
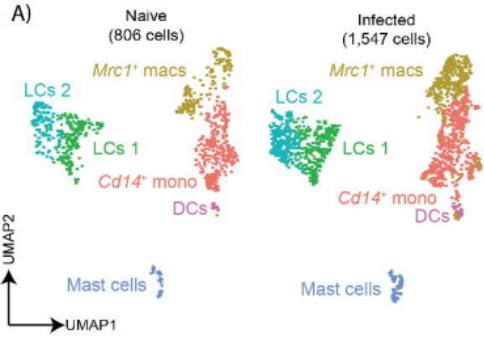
1125 57. Huang, Y. *et al.* $\gamma\delta$ T cells affect IL-4 production and B-cell tolerance.

1126 *Proceedings of the National Academy of Sciences* **112**, E39–E48 (2015).

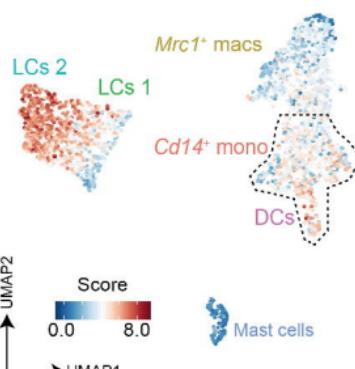
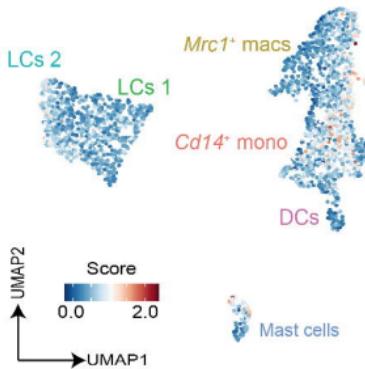
1127 58. Coffelt, S. B. *et al.* IL-17-producing $\gamma\delta$ T cells and neutrophils conspire to

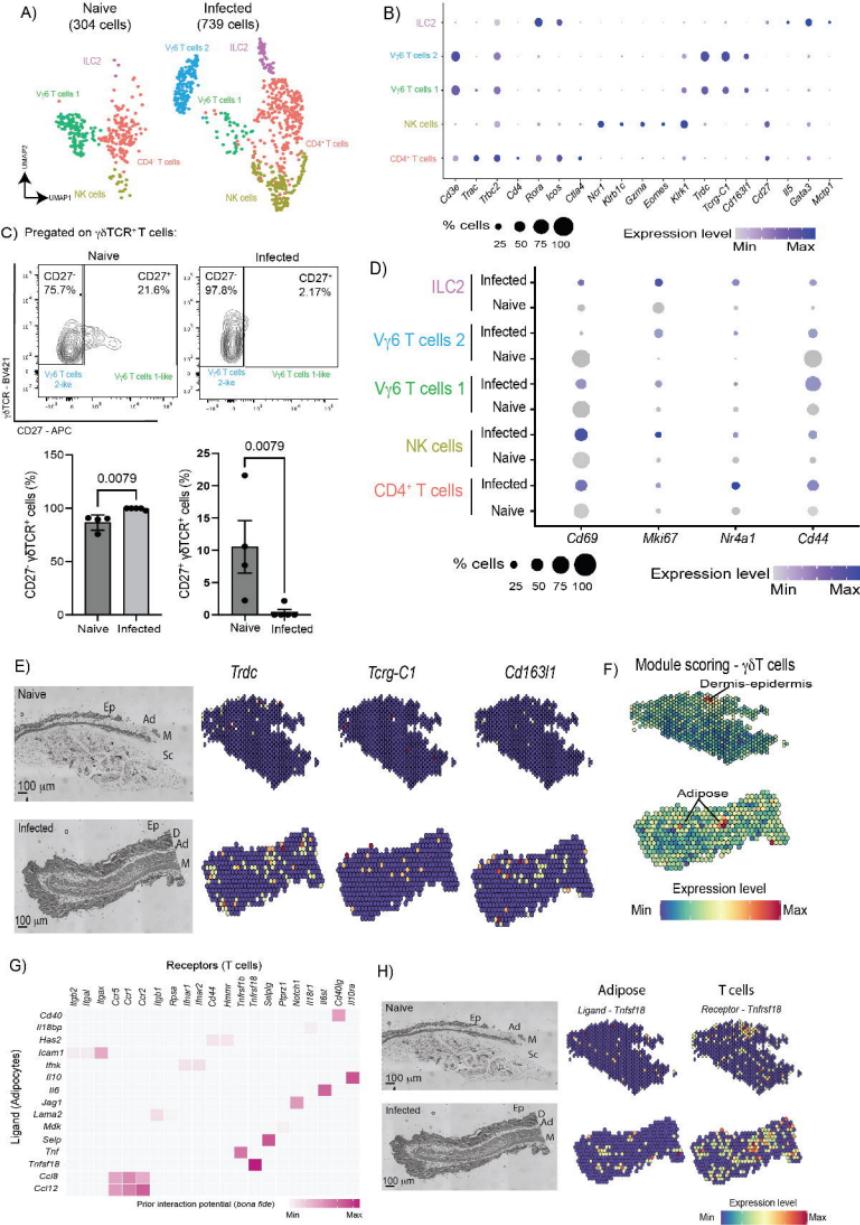






1128 promote breast cancer metastasis. *Nature* **522**, 345–348 (2015).

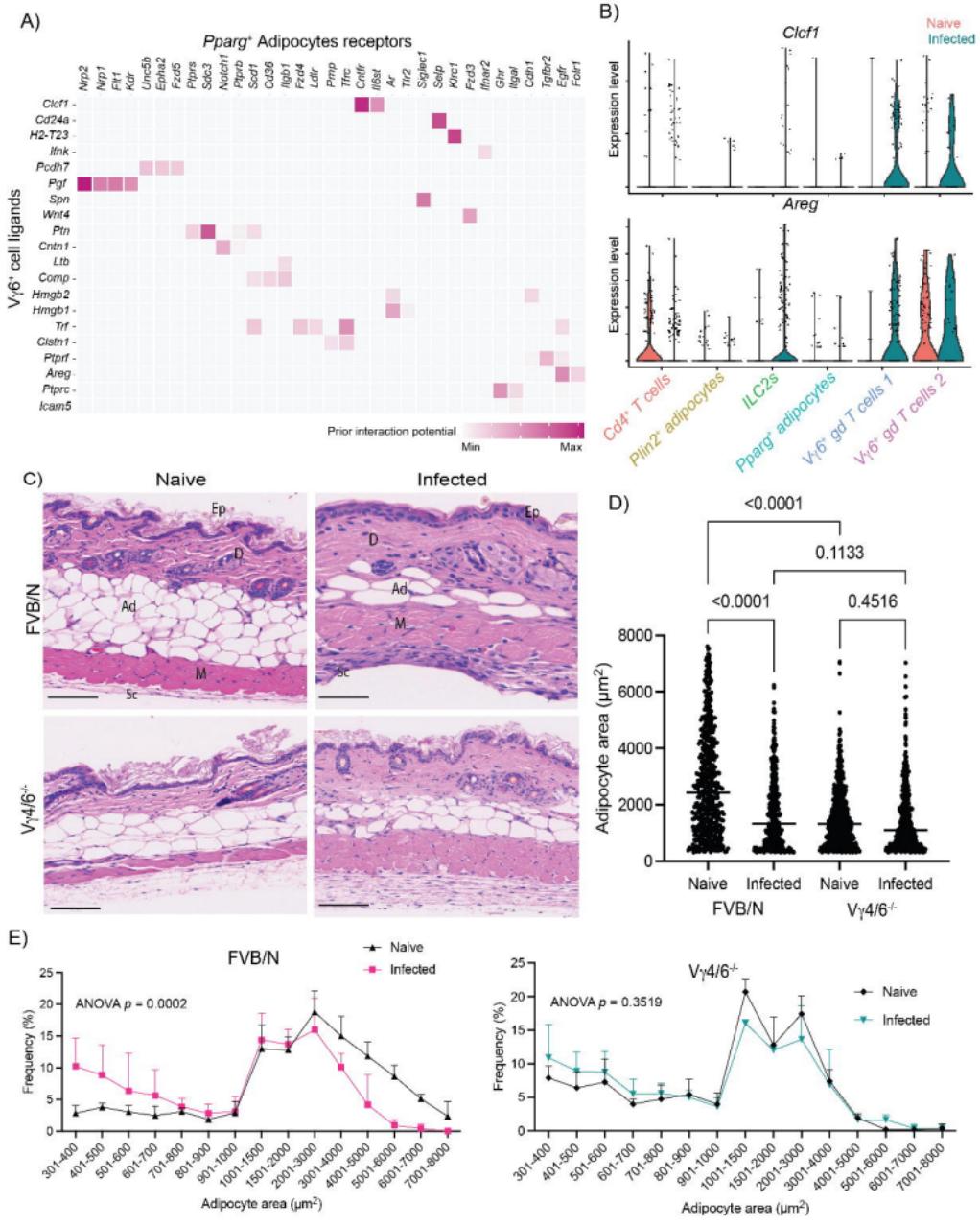

1129 59. Machado, H., Hofer, P., Zechner, R. & Figueiredo, L. M. Adipocyte lipolysis

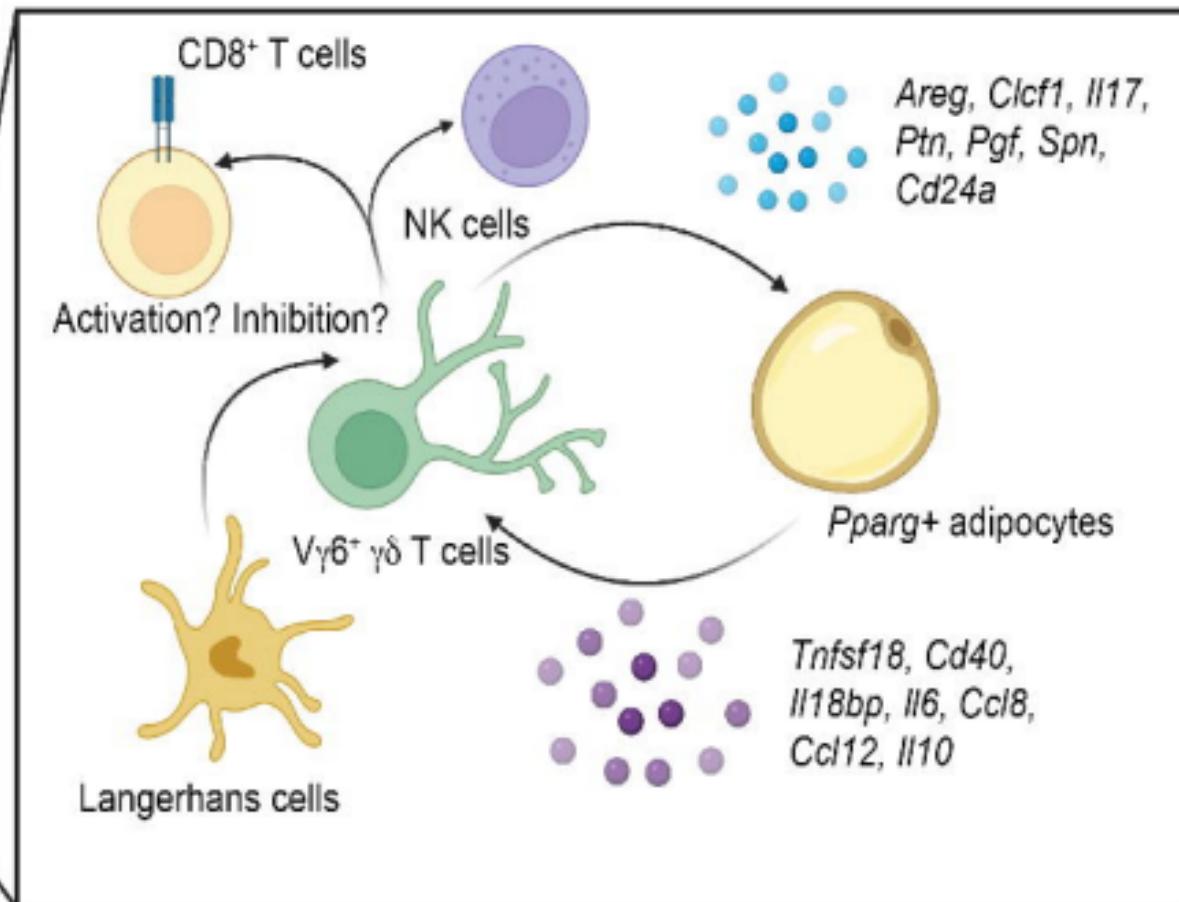
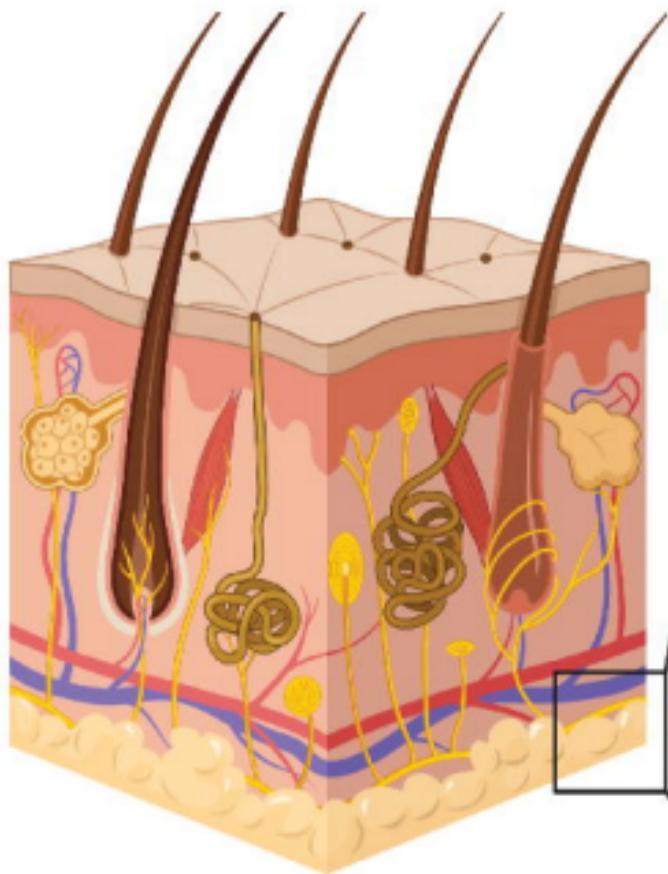



1130 protects the host against *Trypanosoma brucei* infection. 2022.11.05.515274 Preprint

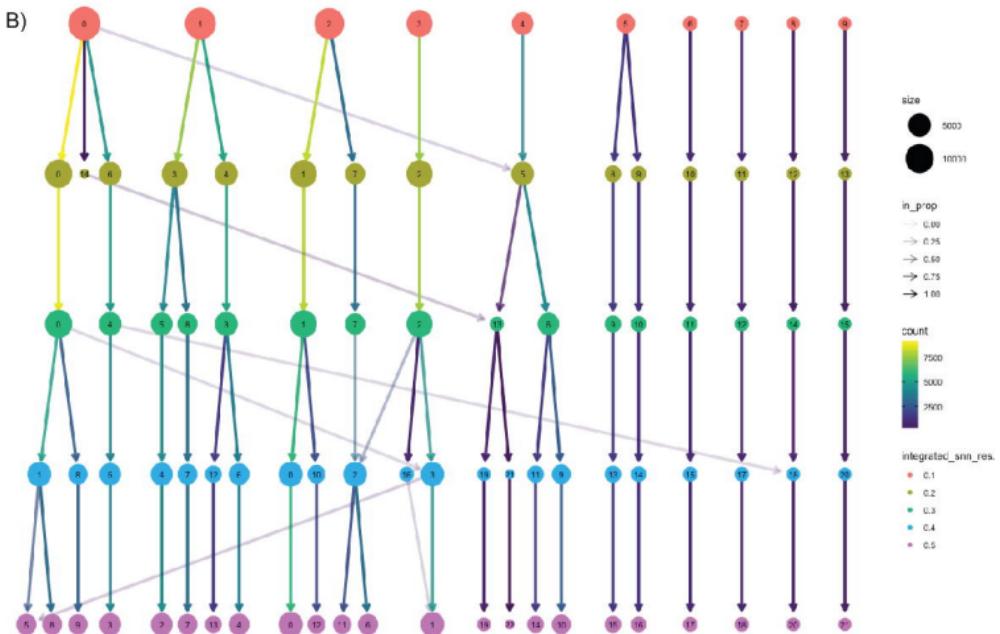
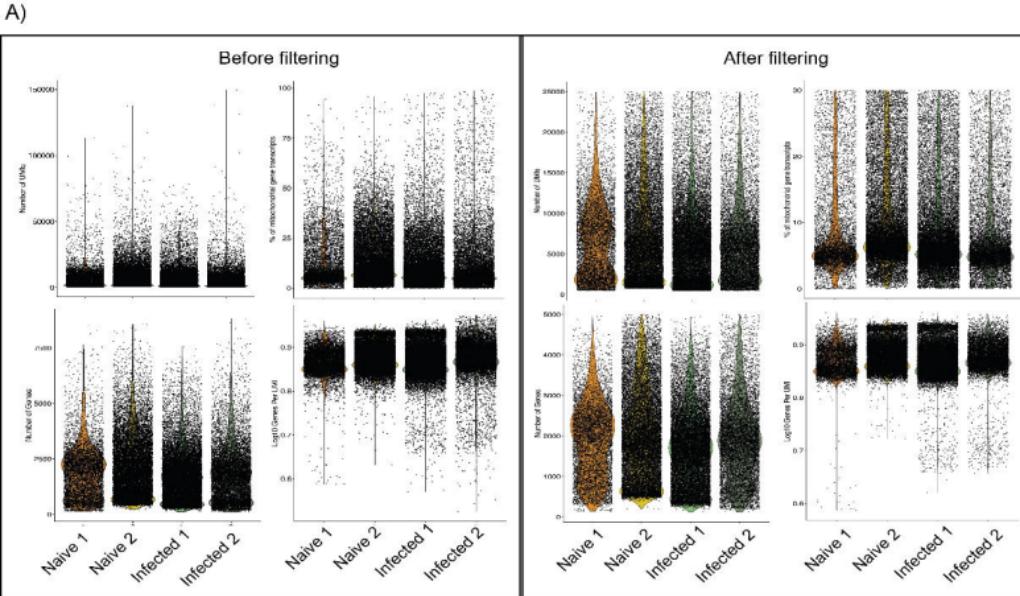
1131 at <https://doi.org/10.1101/2022.11.05.515274> (2022).

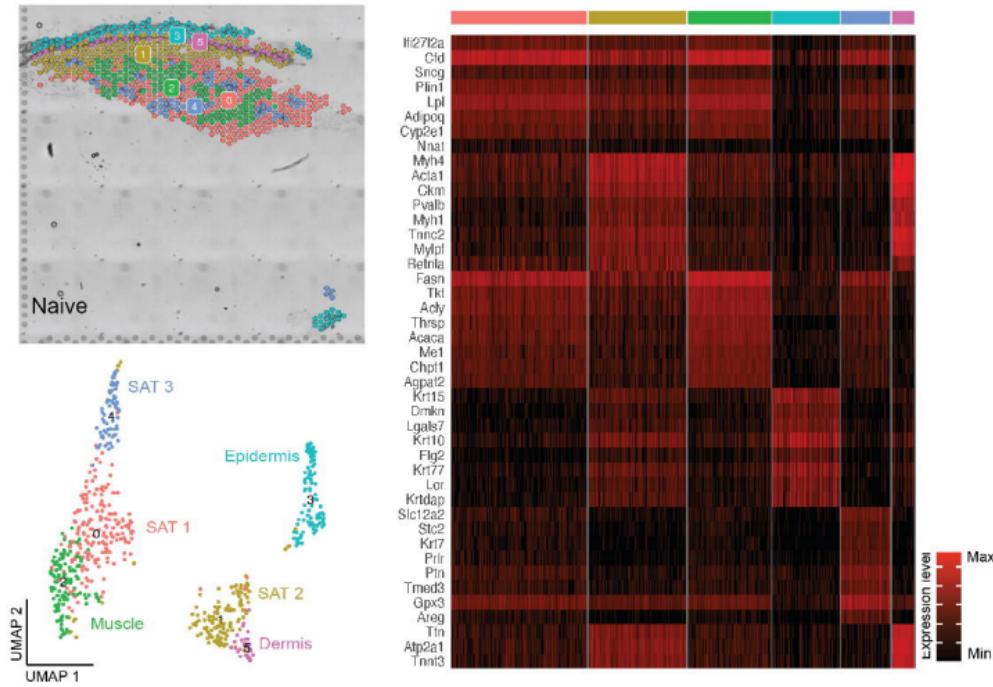


1132



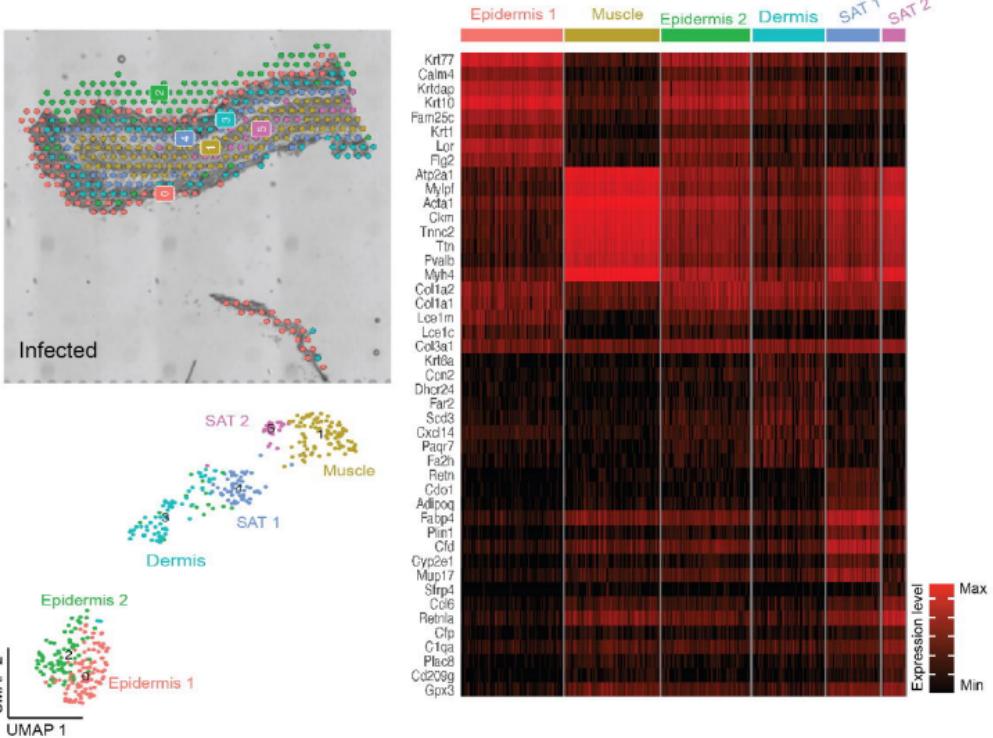


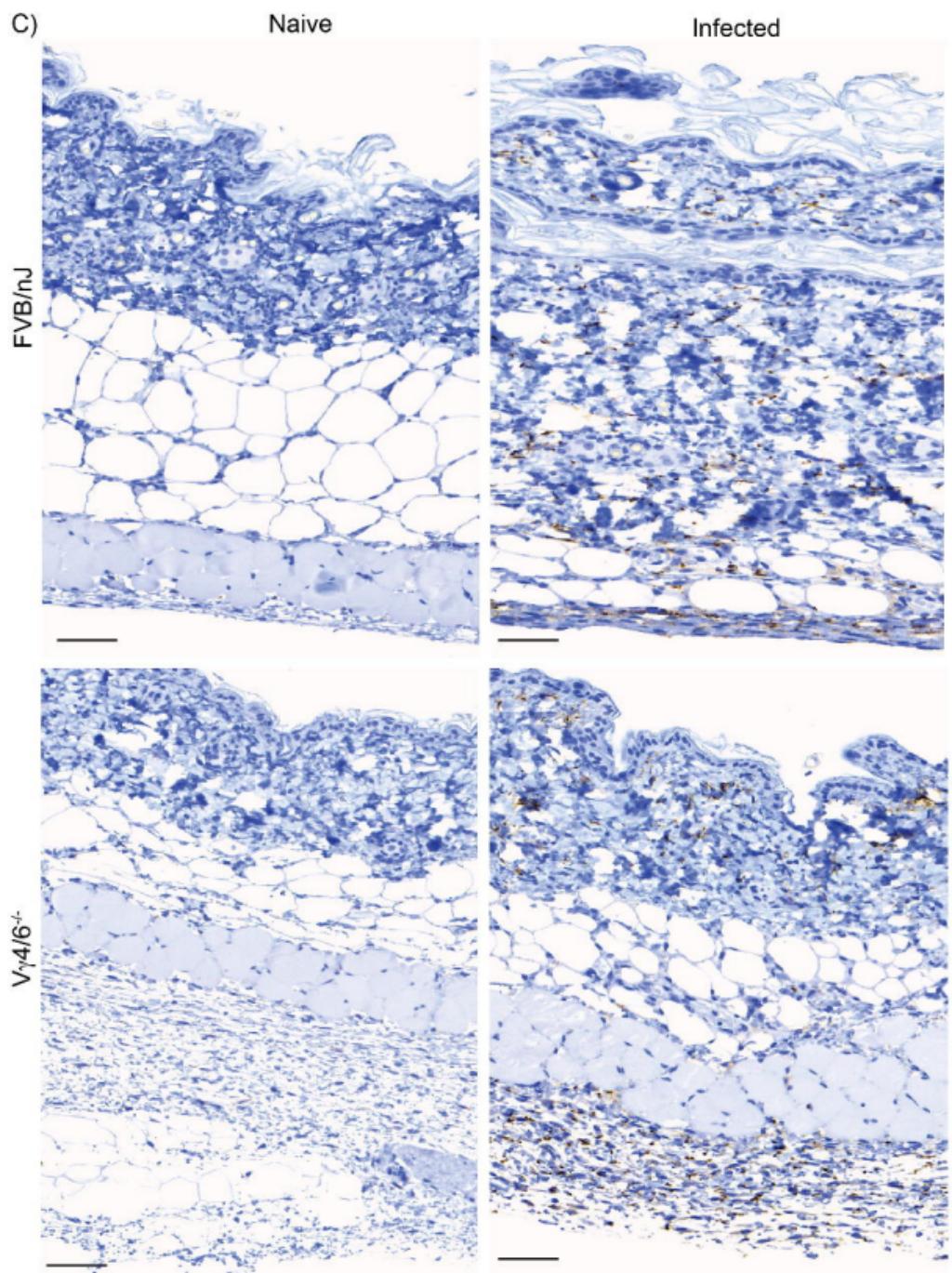
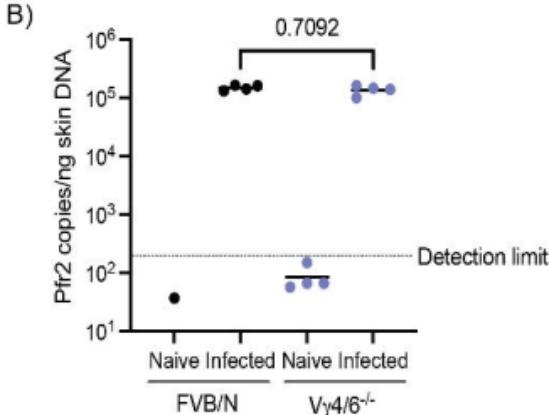
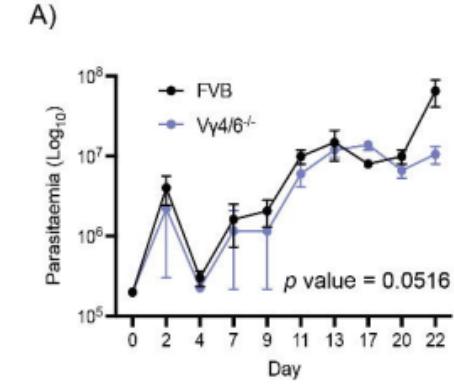


D) Module scoring - cytokine production E) Module scoring - Antigen presentation



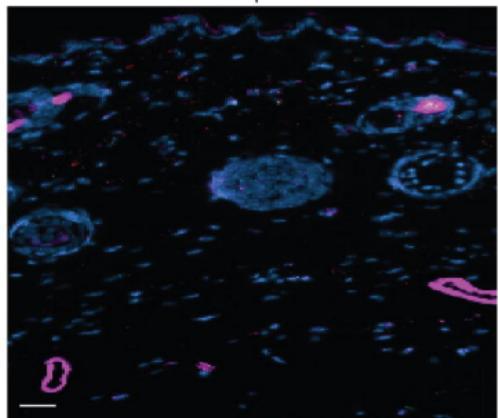
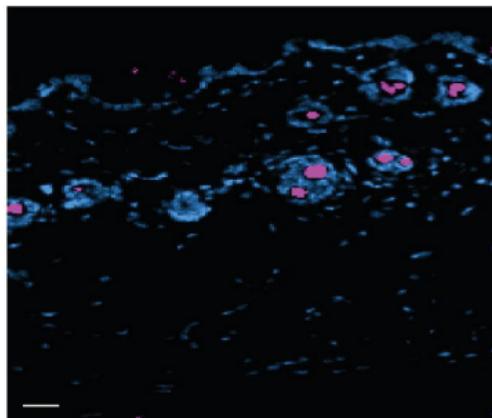
Subcutaneous adipose tissue

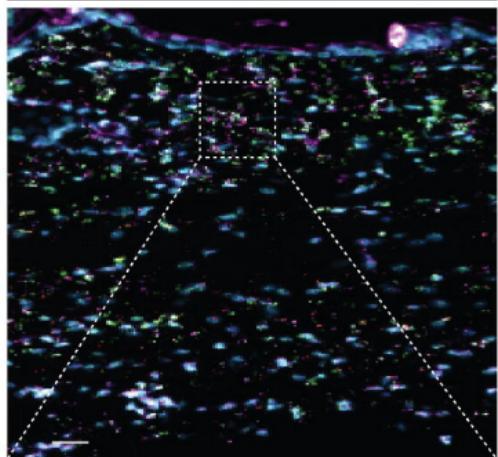
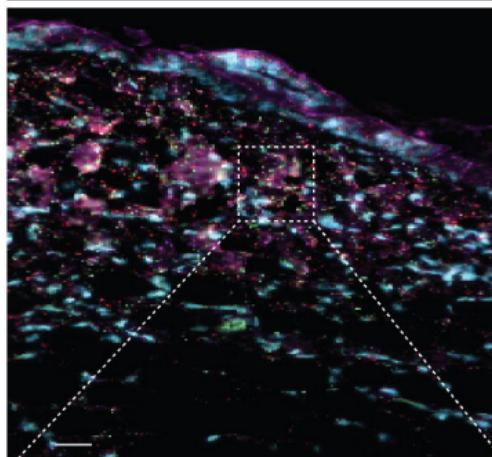


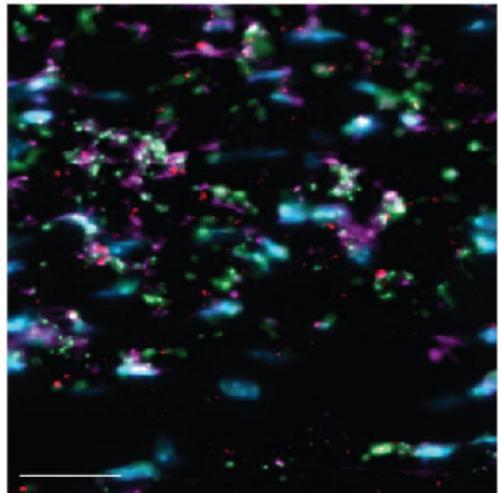
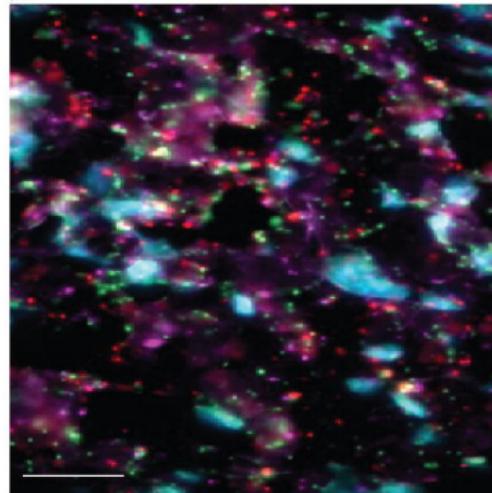
A)

B)

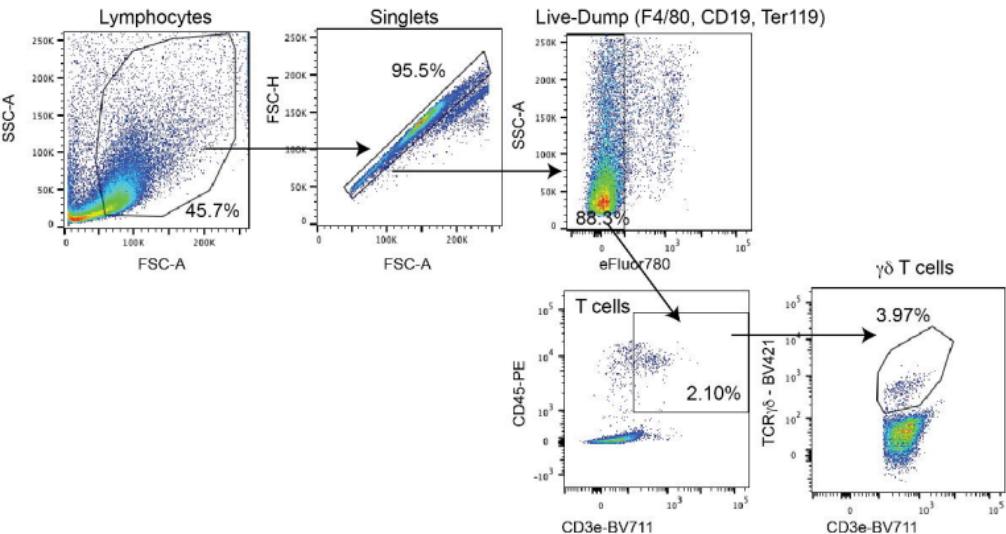


FVB/N

 $V_{\gamma}4/6^{-/-}$

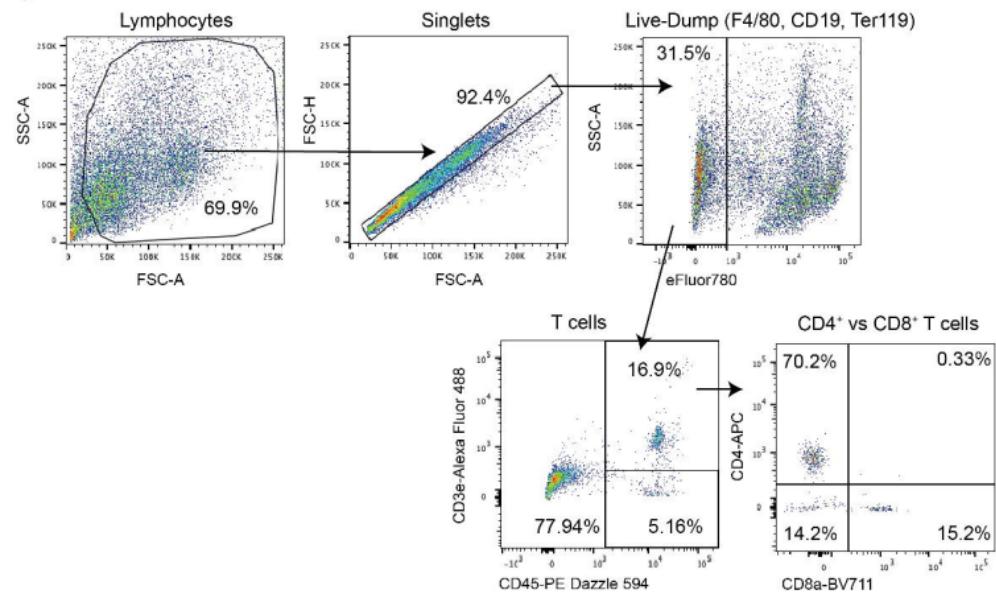


Naive

Infected

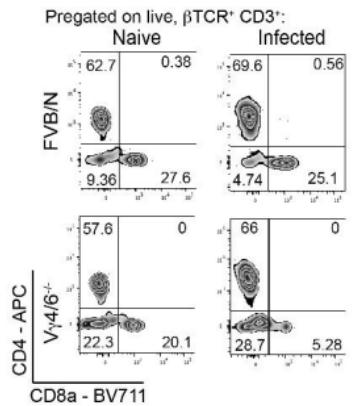
Infected

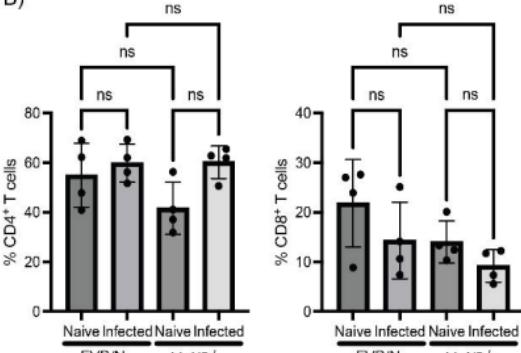

Gapdh

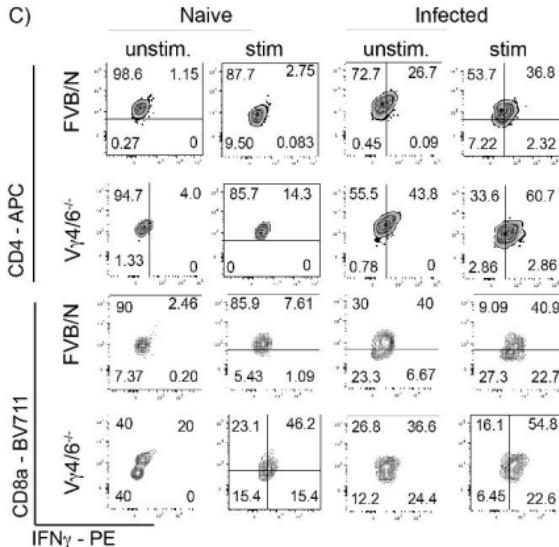
Pyk1

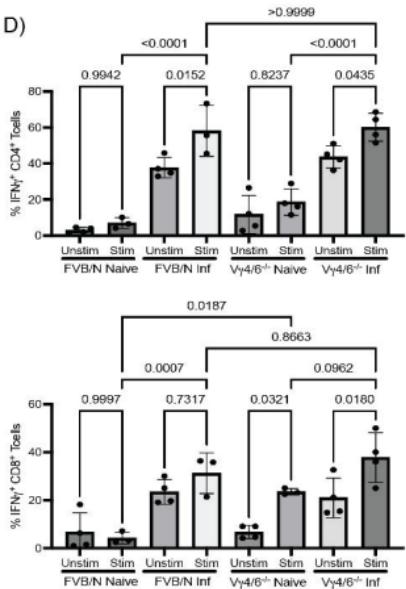

Pad2

DAPI


A)


B)


A)


B)

C)

D)

