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Abstract 8 

 Maintenance of sufficient healthy green leaf area after anthesis is key to ensuring an 9 

adequate assimilate supply for grain filling. Tightly regulated age-related physiological 10 

senescence and various biotic and abiotic stressors drive overall greenness decay dynamics 11 

under field conditions. Besides direct effects on green leaf area in terms of leaf damage, 12 

stressors often anticipate or accelerate physiological senescence, which may multiply their 13 

negative impact on grain filling. Here, we present an image processing methodology that 14 

enables the monitoring of chlorosis and necrosis separately for ears and shoots (stems + leaves) 15 

based on deep learning models for semantic segmentation and color properties of vegetation. A 16 

vegetation segmentation model was trained using semi-synthetic training data generated using 17 

image composition and generative adversarial neural networks, which greatly reduced the risk 18 

of annotation uncertainties and annotation effort. Application of the models to image time-19 

series revealed temporal patterns of greenness decay as well as the relative contributions of 20 

chlorosis and necrosis. Image-based estimation of greenness decay dynamics was highly 21 

correlated with scoring-based estimations (r ≈ 0.9). Contrasting patterns were observed for plots 22 

with different levels of foliar diseases, particularly septoria tritici blotch. Our results suggest 23 

that tracking the chlorotic and necrotic fractions separately may enable (i) a separate 24 

quantification of the contribution of biotic stress and physiological senescence on overall green 25 

leaf area dynamics and (ii) investigation of the elusive interaction between biotic stress and 26 

physiological senescence. The potentially high-throughput nature of our methodology paves 27 

the way to conducting genetic studies of disease resistance and tolerance.  28 
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Introduction 32 

Final crop yields are determined through a multitude of processes and events occurring 33 

throughout the growing season. Suboptimal wheat yields can be related to limitations in sink 34 

strength and source capacity, where sink strength is defined by the number of grains and their 35 

capacity to absorb assimilates, while source capacity is defined by the capability of 36 

photosynthetically active plant tissues to provide assimilates that sustain concurrent grain 37 

filling. Despite ample evidence indicating prevalent sink limitation of wheat yields under a 38 

broad range of environmental conditions (reviewed by Araus et al., 2008 and Borrás et al., 39 

2004), reports indicating source-limitation are not uncommon. For example, the stay-green 40 

phenotype that should increase the availability of assimilates during grain filling is often 41 

positively correlated with yields, particularly under end-of-season stress conditions (Anderegg 42 

et al., 2020; Christopher et al., 2016, 2008; Joshi et al., 2007; Verma et al., 2004). Similarly, 43 

yield-reducing effects of certain foliar diseases are thought to arise primarily as a consequence 44 

of increasing source limitation during grain filling through losses of photosynthetically active 45 

green leaf area resulting from the formation of chlorotic and necrotic lesions as well as induced 46 

necrosis (e.g., Robert et al., 2006, 2005). This is the case for septoria tritici blotch (STB) caused 47 

by Zymoseptoria tritici, a major fungal pathogen of wheat around the world. Even though STB 48 

lesions can be found over the majority of the growing season, a long latent period can allow 49 

several new leaf layers to develop at the top of the canopy during vegetative and reproductive 50 

growth stages before splash-dispersed spores originating from lower leaf layers reach the top 51 

leaf layers and cause new symptoms. Therefore, sink formation is not typically affected by 52 

STB, meaning that crop losses should not occur before heading or even anthesis (Bancal et al., 53 

2007). Instead, they occur primarily as a consequence of source limitations during grain filling, 54 

when losses in green leaf area due to leaf damage become substantial.  55 
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To explain the apparent contradiction between evidence indicating sink- and source-56 

limitation in the context of biological stresses such as foliar diseases, it may be necessary (i) to 57 

precisely quantify the time point in terms of particularly sensitive crop developmental stages at 58 

which the stress appears, as well as integrate its severity over time and (ii) understand if and 59 

how the presence of the disease interferes with whole plant functioning in ways reaching 60 

beyond the direct reduction of photosynthetically active leaf area. With respect to the latter 61 

point, it has often been suggested that, in addition to reducing green leaf area in proportion to 62 

the severity of the disease, foliar diseases may anticipate and/or accelerate senescence 63 

(Anderegg et al., 2020; Bancal et al., 2015; Simón et al., 2020), possibly through a modification 64 

of the balance between nitrogen supply by the source and demand by the sink during grain 65 

filling (Simón et al., 2020). However, detailed studies on artificially inoculated potted wheat 66 

plants under greenhouse conditions found no interaction between the presence of STB and 67 

temporal patterns of physiological senescence (Bancal et al., 2016; Slimane et al., 2012). These 68 

findings seem to contradict evidence from field experiments, where a significant anticipation 69 

of the generalized end-of-season decay in measures of canopy greenness is often observed and 70 

frequently reported to be closely related to STB-related yield losses (Bancal et al., 2015).  71 

Separating the effects of diseases and physiological senescence on overall greenness decay 72 

using visual assessments is a daunting task, even at the level of individual leaves. This also 73 

holds true for currently available assessment strategies relying on destructive sampling of plant 74 

material and subsequent image analysis, which is largely based on color properties of sampled 75 

materials (Anderegg et al., 2022, 2019; Stewart et al., 2016), that may perfectly overlap between 76 

senescent and diseased necrotic tissue. Yet, whereas the final outcome (necrosis) is the same 77 

for STB and physiological senescence, the latter is a more gradual and generalized process, 78 

typically encompassing a widespread yellowing (chlorosis) of plant tissues following controlled 79 

chlorophyll degradation. Some chlorosis is frequently observed surrounding necrotic STB 80 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.01.530609doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.530609
http://creativecommons.org/licenses/by/4.0/


lesions as well, however to a very limited spatial extent (typically less than 1% of the total leaf 81 

area; Anderegg et al., 2022). We therefore hypothesize that the occurrence and the relative 82 

contributions of chlorosis and necrosis to greenness decay may enable a quantification and a 83 

separation of the effects of (biotic) stresses and physiological senescence on the maintenance 84 

of source capacity during grain filling. However, currently available assessment strategies are 85 

either too laborious and interfere excessively with the development of epidemics when carried 86 

out frequently (destructive samplings) or are imprecise and subjective (visual scorings) which 87 

stands in contradiction with the need for temporally highly resolved data that is comparable 88 

across experiments.  89 

Recent advances in sensor and carrier platform technology as well as in processing and 90 

analysis of resulting data sets are increasingly enabling fast and objective sensor-based 91 

quantification of various crop traits under field conditions. For example, Grieder et al. (2015) 92 

used repeated close-range RGB imagery during winter to characterize the temperature response 93 

of early canopy growth in different wheat genotypes. Recently, deep convolutional neural 94 

networks (CNNs) have proven useful for various tasks related to phenotypic trait extraction 95 

from images, including object detection and counting (e.g., of wheat ears [David et al., 2020] 96 

or sorghum panicles [James et al., 2023]) and image segmentation (e.g., vegetation-soil 97 

segmentation [Serouart et al., 2022; Zenkl et al., 2022] or ear segmentation [Dandrifosse et al., 98 

2022b]). Serouart et al. (2022) used a deep learning model to segment vegetation from soil 99 

background and a support vector classifier to partition detected vegetation into chlorophyll-100 

active and inactive vegetation.  101 

Unfortunately, generating pixel-level image annotations from scratch for the training of 102 

semantic segmentation models can be extremely time consuming. In addition, if the annotation 103 

task is challenging, there is a high risk of annotation uncertainties significantly lowering the 104 

performance ceiling for segmentation models (Zenkl et al., 2022). Maximizing the quality and 105 
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efficiency of image annotations is therefore a key objective when generating training data. This 106 

is true particularly when diverse application scenarios (as encountered when monitoring diverse 107 

genetic material across different phenological stages under field conditions) require a broad 108 

training and evaluation data base to adequately represent most relevant scenarios. 109 

A key advantage of sensor-based phenotyping may lie in the possibility to accurately track 110 

even small changes in crop canopy characteristics over time at the plot level. For example, even 111 

though diseased and naturally senescent canopies appear similar at coarse optical resolution in 112 

terms of their reflectance properties at specific points in time, tracking changes in color 113 

properties over time can be informative of the causal processes underlying the loss of canopy 114 

greenness, facilitating a separate assessment of senescence-related and disease-related effects 115 

(Anderegg et al., 2019). Unfortunately, such reflectance-based approaches are limited by the 116 

fact that canopy architectural and morphological traits such as leaf angles or leaf glaucousness 117 

differ markedly across wheat genotypes while strongly affecting mixed reflectance signals. 118 

Additionally, the contribution of different components of a measured scene such as soil 119 

background or different organs (leaves, stems, and ears) change dynamically over time in a 120 

genotype-dependent manner, introducing significant bias even when only relative signal 121 

changes over time are analyzed (Anderegg et al., 2020).  High-resolution image data with a 122 

pixel-resolution in the sub-millimeter range facilitates the extraction of organ-level signals as 123 

well as an elimination of background signals (e.g., Dandrifosse et al., 2022a).  124 

The main objective of this work was to develop potentially high-throughput methods 125 

facilitating a dynamic quantification of the fraction of healthy, senescing/chlorotic, and 126 

senescent/necrotic vegetation at organ-scale from image time series. This in turn will enable (i) 127 

monitoring the effect of stresses on these fractions and their dynamics during critical stages of 128 

crop development, (ii) disentangling the effects of biotic stresses and physiological senescence 129 

on overall green leaf area dynamics after anthesis and (iii) an investigation of the elusive 130 
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interaction between biotic stressors and physiological senescence under field conditions. We 131 

hypothesize that such knowledge could enable the identification of STB-tolerant genotypes, 132 

because delayed physiological senescence has been identified as a promising compensation 133 

mechanism under disease pressure (Bancal et al., 2015). Here, we present a proof of concept by 134 

applying the proposed methods to time-series of high-resolution RGB images taken in a 135 

dedicated experiment with thorough ground truthing of disease intensity and senescence 136 

dynamics through established methodologies.  137 

Materials and Methods 138 

Plant materials and experimental design 139 

A set of sixteen registered bread wheat cultivars was grown at the ETH Research Station 140 

for Plant Sciences Lindau-Eschikon, Switzerland (47.449N, 8.682E, 520 m a.s.l.; soil type: 141 

eutric cambisol) in the wheat growing season of 2021-2022. Plots were sown on October 18, 142 

2021, with a drill sowing machine at a blade distance of 0.125 m resulting in 400 plants m-2. 143 

Cultivars with similar phenology and final height but with strongly contrasting canopy 144 

architectural and morphological traits were selected for this experiment, based on data from 145 

Anderegg et al. (2021). Specifically, the set comprised an equal number of cultivars with erect 146 

and planophile flag leaves and with high and low levels of flag leaf glaucousness 147 

(Supplementary Table S1). Three cultivars were selected for each factor combination. The 148 

resulting set of twelve cultivars was complemented with a highly STB-resistant and a highly 149 

STB-susceptible cultivar, with a cultivar harboring the Lr34 disease resistance gene that causes 150 

extensive leaf-tip necrosis, and with an awned cultivar. This selection resulted in a large 151 

variability in the physical appearance of wheat stands during grain filling (Supplementary 152 

Figure S1). Each cultivar was grown in nine plots sized 1 m × 1.7 m and one of the following 153 

three treatments was allocated to each plot with the aim of maximizing variability in STB 154 
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disease severity: (i) an early fungicide application at jointing followed by artificial inoculations 155 

with a Z. tritici spore suspension at booting and heading (FI); (ii) a fungicide application at 156 

jointing without artificial inoculation (F0I), and (iii) neither fungicide application nor artificial 157 

inoculation (0F0I). The developmental stages were reached on 22 April 2022 for jointing (GS 158 

31, according to BBCH scale of Lancashire et al., 1991), 16 May 2022 for booting (GS 45), and 159 

24 May 2022 for heading (GS55), respectively. The aim of the ‘FI’ treatment was to generate 160 

symptoms of STB in otherwise healthy plots, whereas the ‘0F0I’ treatment was expected to 161 

result in plots with natural co-infections of multiple foliar diseases. The ‘F0I’ treatment 162 

represents standard agricultural practice under low disease pressure and was expected to result 163 

in healthy canopies. The fungicide used was ‘Input’ (Bayer; a mixture of spiroxamine at 300 164 

g/L and prothioconazole at 150 g/L), with a dose of 1.25 L/ha. Preparation of the spore 165 

suspensions and field inoculations were done similarly as described in detail earlier (Anderegg 166 

et al., 2019). Briefly, 200 ml of a spore suspension with a total spore concentration of 106 spores 167 

ml-1 was applied to each plot using a backpack sprayer. The spore suspension was supplemented 168 

with 0.1% of TWEEN 20 surfactant. Inoculum was sprayed in the evening into the wet canopy 169 

of each plot. Spore suspensions for the first and the second inoculation contained a mixture of 170 

six and nine Z. tritici strains, respectively, selected according to their mean virulence and 171 

reproductive potential on a large number of wheat genotypes to maximize expected diversity in 172 

symptom phenotypes. Fungal strain selection was based on data from Dutta et al. (2021). The 173 

two-factorial experimental design was generated using the functions findblks() and 174 

facDiGGer() of the R-package ‘DiGGer’ (Coombes, 2009).  175 

Reference data collection and processing 176 

Heading date and flag leaf and canopy greenness were assessed for all experimental plots 177 

by means of visual scorings at two-day intervals. Given that Z. tritici primarily infects leaves 178 

and anticipating the feasibility of extracting vegetation color properties at the organ-level, 179 
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canopy greenness scorings were made with a focus on the total leaf area but neglecting stems 180 

and ears, in contrast to previous work (Anderegg et al., 2020). All visual scorings were 181 

performed by the same operator and recorded using the Field Book app (Rife and Poland, 2014).  182 

The amount of STB in each plot was assessed on three dates (16 June 2022 i.e. 31/23 days 183 

post inoculation [dpi]; 23 June 2022 i.e. 38/30 dpi;  and 29 June 2022 i.e. 44/36 dpi, referred to 184 

in the following as t1, t2 and t3, respectively) following a protocol described earlier (Anderegg 185 

et al., 2019). Briefly, visual assessments of disease incidence on flag leaves of 30 culms per 186 

plot were multiplied with a measurement of conditional severity in the form of the percentage 187 

leaf area covered by lesions (PLACL) obtained for eight detached and scanned infected flag 188 

leaves per plot, estimated using the method of Stewart et al. (2016).  189 

Image acquisition 190 

A full-frame mirrorless digital camera (EOS R5, Canon Inc., Tokyo, Japan; 45 megapixel, 191 

36 x 24 mm sensor) was mounted on a custom-made portable aluminum frame as in Grieder et 192 

al. (2015) to capture images from a nadir perspective with a fixed distance to the soil of 2.25 m 193 

(Supplementary Figure S2). Focal length of the camera zoom lens varied between 48 and 52 194 

mm between measurement dates. Focal distance was kept constant at 1.8 m, and lens aperture 195 

was also kept constant at f/16, providing a depth of field of 1.3 m. This setup resulted in a 196 

ground sampling distance of ~0.02 cm / pixel at ground level and ~0.012 cm / pixel at the top 197 

of the canopy, while still providing sufficient depth of field for all objects of interest (i.e., lowest 198 

leaves to ear tips) to be in focus. The resulting field of view at ground level was approximately 199 

1.0 x 0.66 m. Images were captured under stable light conditions, either under constant direct 200 

sunlight or under diffuse light conditions on 17 dates between heading and physiological 201 

maturity. An exposure compensation of -0.33 exposure values was used irrespective of the light 202 

conditions. This slightly reduced exposure represented a meaningful compromise between 203 

over-exposure of top-of-canopy flag leaves and ears while avoiding clipping of shadows in the 204 
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lower leaf layers deeper in the canopy. Sufficient exposure of shaded lower leaf layers is an 205 

important consideration here because STB moves from lower leaves to upper leaves by splash-206 

dispersed conidia, thus affecting lower leaf layers first. Data was recorded in raw format (.CR3) 207 

with 16 bits per color channel. Measurements were regularly completed for all 144 plots of the 208 

experiment within 1.0 – 1.5 hours and were carried out at different times of the day. For 209 

analysis, all images were converted to 8-bit portable graphics format (png).  210 

Training and validation datasets 211 

Training and validation data sets were generated (i) for segmentation of plant foreground 212 

from soil background and (ii) for segmentation of wheat ears from the rest of the image. The 213 

objective of this work was to enable an accurate segmentation of images taken with our or 214 

comparable imaging set-ups. We specifically selected genotypes and imaging time points to 215 

maximize variability in terms of physical appearance of crop stands. We anticipate that both 216 

the training data generation protocol as well as the data sets themselves will be useful for 217 

ongoing initiatives aimed at assembling diverse data sets that enable the training of robust 218 

segmentation models (similar as in e.g., David et al., 2020). Below, we provide a description of 219 

the training and validation data generation process.  220 

Vegetation Segmentation 221 

We found that precisely annotating senescent or senescing vegetation in fully developed 222 

wheat canopies was extremely time consuming and challenging, especially under direct 223 

sunlight, with often low agreement between annotators. To circumvent problems with human 224 

annotation and cover the different appearances of a crop canopy during grain filling, we tested 225 

an alternative approach to human annotations. The approach relied exclusively on semi-226 

synthetic training data generated requiring minimum human intervention (Figure 1). The two-227 

step approach consists of (i) creating composite images of soil backgrounds and plant 228 

foregrounds that are sampled from separate original images and (ii) a subsequent domain-229 
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transfer of composite images using generative adversarial neural networks (GANs). This 230 

approach essentially reduced the need for human intervention to reviewing of automatically 231 

generated pre-segmentations. 232 

 233 

Figure 1 Workflow for training data generation. (A) Original image of a plot with the soil background covered by blue foam 234 
rubber. The red rectangle represents the identified region of interest. (B) A 2400 x 2400 pixels patch sampled from the region 235 
of interest in the image displayed in Figure A. In this specific case, the patch was sampled starting from the upper-right corner 236 
of the identified region of interest. (C) Results of the initial color-based pixel-wise segmentation. Grey-scale values represent 237 
class probabilities output by the classification model; intermediate class probabilities indicating low confidence in the 238 
classification can be found primarily in underexposed parts of the image. (D) Post-processed grey-scale image. (E) Composite 239 
images created after manual reviewing. Red arrows indicate the border between two different soil images used as background. 240 
This image was created for illustration purposes only. (F) The corresponding manually reviewed vegetation mask. (G) The 241 
domain-transferred image, used to train the vegetation segmentation model with the mask in Figure G as the target. The soil 242 
background is equivalent to the one shown in the left part of Figure E. 243 

To generate composite images, soil in selected wheat plots was covered with readily 244 

available blue foam rubber (Rayher Hobby, Laupheim, Germany). This material could be easily 245 

placed between wheat rows, withstands weather, and is an excellent diffuse light reflector 246 

(Figure 1). Wheat plots manipulated in this way were imaged with the set-up described above 247 

under varying light conditions and at different stages of crop development. Wheat plots sown 248 

to 33 different cultivars and being part of the described experiment as well as of a neighboring 249 

wheat experiment on the same site were used. Areas in resulting images where soil was covered 250 

were then automatically cropped using simple thresholds in the HSV color space (95 ≤ H ≤ 115, 251 

150 ≤ S ≤ 200, 22 ≤ V ≤ 255) and a single patch of 2400 x 2400 pixels was sampled from this 252 
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area. These patches were then segmented pixel-wise into plant foreground and artificial 253 

background using a random forest classifier with different color spaces (RGB, L*a*b*, L*u*v*, 254 

HSV, HSI, YCbCr and YUV) as input features for each pixel. The resulting class probability 255 

maps were represented as 8-bit gray-scale images and post-processed using the Fast Bilateral 256 

Solver, an edge-aware smoothing algorithm (Barron and Poole, 2016)1. The post-processed 257 

probability maps were then converted into binary images by thresholding at a value of 165, 258 

which was optimized through visual inspection on a subset of images. Finally, the contours of 259 

the resulting foreground plant objects were exported as a list of polygons and imported into the 260 

Computer Vision Annotation Tool2 (cvat) for reviewing. Where needed, exposure was 261 

increased to ease reviewing of underexposed parts of images. A total of 206 patches of 2400 x 262 

2400 pixels size were processed in this manner.  263 

Each of the resulting plant foregrounds was then combined with 10 different images of bare 264 

soil which were randomly selected from a larger data base of soil images taken with the same 265 

imaging setup. Specifically, the artificial background was replaced by the corresponding areas 266 

of the selected soil image, with the light intensity pattern (gray scale values) observed on the 267 

artificial background transferred to the soil image. To compensate for the different reflectance 268 

properties of the artificial background material and natural soil, the contrast was increased by 269 

applying the simple linear transformation  270 

𝐼′ = {
𝑚𝑎𝑥(1.5 ∗ 𝐼 − 0.2, 0),
𝑚𝑖𝑛(1.5 ∗ 𝐼 − 0.2, 1),

  
𝑖𝑓 𝐼 ≤ 0.4

otherwise
 271 

where I’ is the modified and I the original intensity value. 272 

 
1The python implementation of the algorithm from https://github.com/kuan-wang/The_Bilateral_Solver was 

used. 
2https://www.cvat.ai/ 
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Although the above-described process resulted in realistic looking images in many cases, 273 

some readily recognizable differences to real images often remained, including differences in 274 

saturation between foreground and background of the composite images as well as 275 

segmentation artifacts along foreground object borders (often a faint blueish glow from mixed 276 

pixels). To resolve this issue, we performed a domain transfer using CycleGANs (Zhu et al., 277 

2017)3. The overall aim of this domain transfer is to render more realistic images from the 278 

created composite images with no loss of semantic information. This is highly desirable in our 279 

case, as we wanted to avoid an additional reviewing of annotations after this step. A separate 280 

CycleGAN was trained for images captured under diffuse and under direct lighting (categorized 281 

based on date of capture). Training and validation images for both scenarios were selected to 282 

contain both healthy, green, and senescent or diseased leaf material. The models were trained 283 

using patches of 360 x 360 pixels sampled from composites and real images in original 284 

resolution. Models were trained for 200 epochs. The resulting models were used to transfer the 285 

full-sized composites (2400 x 2400 pixels), which were then used for the training of 286 

segmentation models. No real images annotated from scratch were used for training of the 287 

segmentation model.  288 

For validation, a set of patches measuring 1200 x 1200 pixels were sampled from 74 real 289 

images and manually annotated from scratch. Images were selected to be approximately 290 

balanced with respect to date of capture, genotype, experimental treatment, STB incidence, 291 

lighting, and phenology. To reduce the annotation effort, twelve of the 16 genotypes in the 292 

experiment were sampled randomly, and some measurement dates excluded, which also 293 

reduced redundancy in the data set (e.g., from multiple measurements of the same genotype 294 

during its stay-green period).  295 

 
3https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix  
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Ear segmentation  296 

Compared to the annotation of all vegetation, the annotation of spikes with well-defined 297 

borders is fast and straightforward, resulting in much lower risk of annotation errors. We 298 

therefore chose a standard approach to annotate data manually. All spikes were annotated at 299 

pixel-level in a total of 180 images using the ‘intelligent scissors’ tool of cvat. Images originated 300 

from two experiments: (i) the experiment described above, and (ii) an experiment carried out 301 

in 2015 (Grieder et al., unpublished data). Images in the 2015 experiment were acquired with a 302 

similar measurement set-up, but with a different camera and different camera settings as well 303 

as different plant material (see Grieder et al., 2015 for details). 304 

Segmentation model training, evaluation, and inference 305 

Due to the different nature of the training and validation data sets for the segmentation of 306 

vegetation and ears, a separate model was trained, and model hyper-parameters were tuned 307 

separately, for each task. Tuned hyper-parameters were the depth of the ResNet encoder (He et 308 

al., 2016) and the segmentation framework, data augmentation applied (image resolution, image 309 

blurring, and the probability of applying jittering of brightness, contrast and saturation within a 310 

pre-defined range), and details of the training process (training strategy, batch size, learning 311 

rate, and momentum). Input transformations were performed using the python library ‘kornia’ 312 

(Riba et al., 2020). Random flipping, rotation, and cropping of the image were always included 313 

(i.e., not tuned). The searched parameter space and the determined optimal values are reported 314 

in Table 1. The default TPESampler of the python library ‘optuna’ (Akiba et al., 2019) was 315 

used for value suggestion. The training process was always based on a cross-entropy loss 316 

function and the stochastic gradient decent optimizer, model performance monitoring and 317 

model selection was always based on the overall validation F1-Score.  318 

The vegetation segmentation model was evaluated on the validation data set described 319 

above. For the ear segmentation model, the available 180 annotated images were randomly split 320 
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into a training and a validation data set with an 80:20 split (i.e., 144 training images and 36 321 

validation images). Inference on all images was performed for a central region of interest sized 322 

4000 x 4000 pixels. This cropping removed border rows from the images while keeping the 323 

central 4-5 rows. It should be noted that canopy height was not considered when cropping the 324 

images, meaning that the field of view at canopy height as well as the viewing angle distribution 325 

may differ somewhat depending on the genotype.  326 

Table 1 Searched hyperparameter space for the vegetation and ear segmentation models and determined optimal values.  327 

Category Tuning parameter Tested values 
Optimal value 

Vegetation model Ear model 

Network 
architecture 

Resnet encoder depth {resnet181, r’34, r’50, r’101} resnet34 resnet50 

Segmentation framework {fpn2, unet++3, deplabv3+4} unet++ deeplabv3+ 

Data 
augmentation 

Image size {100k∣k∈{4, …, 12}} k=7 k=6 

Blur kernel size (Gaussian) {1, …, 12} 3 7 

p(color jitter) {0.1k∣k∈{0, …, 10}} k=0 k=0 

Network 
training 

Strategy {train5, freeze6, no_freeze7} no_freeze no_freeze 

Batch size {2, …, max} 15 (i.e., max) 31 (i.e., max) 

Learning rate {10^-5, …, 10^-1} 0.09 0.066 

Momentum {0.5, …, 0.99} 0.88 0.90 

1He et al. (2016) 328 
2Lin et al. (2017) 329 
3Zhou et al. (2018) 330 
4Chen et al. (2018) 331 
5Encoder weights initialized randomly, optimized on the dataset 332 
6Encoder weights initialized to pre-trained on ImageNet (Deng et al., 2009), not optimized 333 
7Encoder weights initialized to pre-trained on ImageNet, optimized on the dataset 334 

Color-based classification of vegetation 335 

The overarching goal of this work was to develop a toolset enabling the monitoring of the 336 

relative amount of healthy, chlorotic/senescing, and necrotic/senescent vegetation in time-series 337 

of images for downstream physiological studies. Hence, the final stage of the image processing 338 

workflow consisted in a classification of vegetation pixels into one of these fractions. The 339 

difference between these is in general readily observable based on color properties in-field as 340 

well as in RGB images (Anderegg et al., 2020; Cai et al., 2016; Serouart et al., 2022), although 341 

it may be difficult to define exact thresholds separating them. Here, we took an approach very 342 

similar to the one proposed by Serouart et al. (2022). Specifically, pixels making up the 343 

vegetation fraction were classified into one of the three fractions using a multiclass random 344 
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forest classifier with different color spaces (RGB, L*a*b*, L*u*v*, HSV, HSI, YCbCr and 345 

YUV) as input features. In contrast to the procedure advocated by Serouart et al. (2022) for the 346 

sampling of training and validation data, we trained the model using selected patches of 347 

vegetation with an unambiguous status. This is likely to result in a biased performance estimate 348 

for the classifier, because easy-to-classify patches are preferably sampled in the process. We 349 

reasoned that a vast majority of vegetation pixels can always be confidently attributed to one 350 

of these classes, even in underexposed parts of images, with edge cases making up a very small 351 

fraction of an image. Therefore, and given the continuity between classes which renders a 352 

classification inherently subjective through the definition of arbitrary thresholds, we argue that 353 

this does not constitute a limiting factor, while greatly simplifying the generation of training 354 

data. Training data was sampled from 96 images which were selected to represent an equal 355 

number of images per genotype (n =16), per light condition (diffuse or direct sunlight) and per 356 

phenological phase during grain filling (stay-green, senescing, and senescent). Model hyper-357 

parameters were tuned first through a randomized search to reduce the parameter search space, 358 

and subsequently through an exhaustive grid search within the reduced space. The python 359 

library ‘scikit-learn’ (Pedregosa et al., 2011) was used for this purpose. To identify the most 360 

predictive color features for this classification, we also performed feature selection using the 361 

recursive feature elimination wrapper approach, as described in detail earlier (Anderegg et al., 362 

2020). 363 

Modelling of trait dynamics 364 

Image-based time-point specific trait values were further processed to capture the dynamics 365 

of vegetation cover and vegetation status throughout the grain filling phase. Four-parameter 366 

Gompertz models were used to fit the decrease of healthy green vegetation as well as the 367 

increase in necrotic/senescent vegetation over time  368 

𝑆 = 𝐴 + 𝐶 ∗ exp [− exp[−𝑏 ∗ (𝑡 − 𝑀)]] (eq. 1)  369 
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where S represents the trait value, A and (A + C) are the lower and upper asymptotes, 370 

respectively, b is the rate of change at time M and M is the time point when the rate is at its 371 

maximum (Gooding et al., 2000). Models were fitted using the R package ‘nls.multstart’ 372 

(Padfield and Matheson, 2018). Since the fraction of chlorotic plant material and vegetation 373 

cover at organ level did not show a monotonous change during the assessment period, P-splines 374 

were used for those cases. P-splines were fitted using the R package ‘scam’ (shape-constrained 375 

additive models; Pya and Wood, 2015), with the number of knots set to three quarters of the 376 

number of observations. From the fitted data, a set of dynamics parameters was then extracted 377 

(Figure 2): from the Gompertz model, all four parameters and the integral under the curve were 378 

extracted; from the P-spline fits, we extracted the maximum value, the time points when one 379 

quarter and one half of the maximum was reached in the increasing and the decaying phase (q1, 380 

q2, h1, h2) as well as the durations q2-q1 (intq) and h2-h1 (inth), and the integral under the 381 

fitted curve.  382 

 383 

Figure 2 Dynamics parameters extracted for the modelled temporal trends in chlorosis and greenness extracted from a time-384 
series of RGB images. Black circles are raw data points for one experimental plot (genotype ‘Aubusson’, treatment ‘F0I’), 385 
green lines show the model fits. Blue dots represent time-points extracted in days after sowing, blue lines indicate fractions or 386 
changes (dimensionless). For both curves, the integral was also extracted. For chlorosis, the parameter max represents the 387 
maximum of the chlorotic fraction reached; the parameters q1, q2, h1, and h2 denote the time points when one quarter and 388 
one half of the maximum was reached in the increasing and the decaying phase; the parameters intq and inth represent the 389 
durations q2 – q1 and h2 – h1, respectively. For the greenness decay, the parameters A, (A + C), b, and M are the four 390 
parameters fully describing the fitted curve, i.e., the lower and upper asymptotes, the rate of change at time M, and the time 391 
point when the rate is at its maximum, respectively. 392 
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Visual greenness scorings were linearly interpolated to daily resolution. We used linear 393 

interpolation rather than (semi-)parametric models as advocated previously (e.g., Anderegg et 394 

al., 2020; Christopher et al., 2014) because temporal patterns differed strongly across plots, 395 

likely due to the presence of treatments, which made the choice of an appropriate non-linear 396 

model difficult (Supplementary Figure S3). From the fitted data, a set of dynamics parameters 397 

were extracted: The onset, midpoint, and end of greenness decay were extracted as the time 398 

points when visual scorings fell below pre-defined thresholds (8 and 0.8, 5 and 0.5, 2 and 0.2 399 

for visual scorings and the green fraction, respectively). The curve integrals were also extracted.   400 

Statistical Analysis 401 

Spatial trends in all time-point specific and time-integrated image-based and reference traits 402 

were estimated by fitting two-dimensional P-splines to raw plot values using the R-package 403 

‘SpATS’ v.1.0-11 (Rodríguez-Álvarez et al., 2018). Row and column were modelled as 404 

additional random effects. To obtain spatially corrected plot values and an estimation of the 405 

spatial trend, we encoded each genotype-by-treatment combination as a factor with 48 levels 406 

(i.e., one level for each of the full-factorial combinations of the 16 genotypes and 3 treatments). 407 

For the disease incidence scorings, an additional fixed effect was included in the model that 408 

specified the scorer (3 levels), with the aim of accounting for possible scorer bias. Finally, using 409 

spatially corrected plot values, treatment contrasts per trait for each genotype were extracted 410 

based on treatment means. Pearson product moment correlations between treatment contrasts 411 

in different traits were computed across the 16 genotypes included in the experiment using the 412 

function cor.test() of the R-package ‘stats’.  413 

Code and data set availability and reproducibility 414 

All image processing and statistical analyses were implemented in python and R (R Core 415 

Team, 2018). All code and data sets pertaining to the described deep learning model 416 
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optimization and training will be open-sourced on Github, an archived version will be made 417 

available via the ETH Zürich publications and research data repository (https:// 418 

www.research-collection.ethz.ch/).  419 

Results 420 

Semi-synthetic data enabled the training of a powerful vegetation segmentation 421 

model with minimal annotation effort 422 

Our approach for a precise and objective annotation of all vegetation in senescing and/or 423 

diseased canopies (Figure 1) enabled the generation of 206 training patches sized 2400 x 2400 424 

pixels at the cost of approximately 80 h of annotation effort. In comparison, approximately 150 425 

h of annotation effort were invested in the annotation from scratch of 74 validation patches 426 

sized 1200 x 1200 pixels. This represents a 20-fold decrease in time spent on annotation. Our 427 

approach also limited annotation uncertainties to parts of images where reviewing was 428 

necessary, which regarded mostly underexposed parts of images, thus ensuring high-quality 429 

annotations. 430 

The vegetation segmentation model trained directly on the raw composite images achieved 431 

an overall validation F1-Score of 0.929, whereas the same model trained on style-transferred 432 

composite images achieved a validation F1-Score of 0.951 (Supplementary Figure S4). Thus, 433 

the CycleGAN-mediated style transfer decreased the error rate by approximately 30%. Whereas 434 

the performance of the model trained on style-transferred composites remained stable 435 

throughout the training process (validation F1-Score of approximately 0.945), the performance 436 

of models trained on raw composites tended to deteriorate as training progressed (validation 437 

F1-Score decreasing to below 0.90; Supplementary Figure S4), suggesting that these models 438 

increasingly extracted patterns found only in composite images and not representative of the 439 

real data set. These results are in good agreement with the general visual impression of style-440 
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transferred composite images being more representative of the real data. Most notably, the 441 

frequently observed dissonance between foreground and background in terms of saturation was 442 

eliminated during style transfer (Figure 3A-D).  443 

 444 

Figure 3 Composite images used for training of the vegetation segmentation models. Letters denote pairs of composite images 445 
before (raw; “.1”) and after style transfer (“.2”).  (A-D) Images were captured under direct sunlight; (E-F) Images were 446 
captured under diffuse lighting. A separate CycleGAN was used for direct and diffuse lighting. (E) and (F) show identical plant 447 
foregrounds combined with different soil backgrounds.  448 

Plant foregrounds could be combined with multiple randomly selected soil backgrounds 449 

(Figure 1F). Using a fixed CNN architecture and training procedure, training on ten instead of 450 

a single composite per plant foreground enabled an increase of the canopy segmentation 451 
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model’s overall F1-score from 0.941 to 0.948, corresponding to a reduction of incorrect 452 

classifications by approximately 10% (Supplementary Figure S5).  453 

CNN-based semantic segmentation of high-resolution RGB images enabled the 454 

extraction of ear and shoot properties throughout the grain filling phase 455 

Manual annotations of wheat ears from scratch on 180 image patches sized 1200 x 1200 456 

pixels was sufficient to achieve useful performance also for the ear segmentation model, with 457 

an overall validation F1-Score of 0.89. A more detailed analysis of the performance metrics for 458 

both segmentation models at the level of individual validation images suggested that models 459 

performed equally well under direct and diffuse lighting as well as across phenological phases, 460 

i.e., during the stay-green and throughout the senescence phase (Supplementary Figures S6-461 

S9). This allowed us to exclude a systematic bias from variable model performance across 462 

measurement dates. Some diverse examples illustrating the segmentation models’ 463 

performances are given in Figure 4.  464 

 465 

Figure 4 Inference on one randomly selected image for eight of the 17 measurement dates using the separate vegetation 466 
segmentation and ear segmentation models.  467 

The cross-validated training accuracy (class-frequency-balanced) of the random forest 468 

classifier for classification of vegetation pixels into healthy/green, chlorotic/senescing, and 469 
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necrotic/senescent tissue was 0.967 ± 0.006 (mean ± standard deviation across 10 folds). This 470 

high accuracy reflects the separability of the pixels in the training data set, particularly in HSV 471 

color space as well as some color indices (Supplementary Figure S10), which may in part be 472 

attributable to the somewhat biased training and validation data sampling strategy. However, 473 

training and validation data was sampled from numerous images representing strongly 474 

contrasting scenarios, and within those images from regions with strongly contrasting light 475 

exposure. Accordingly, the high accuracy also reflects the fact that, in comparison to the initial 476 

semantic segmentation, this 3-way classification is not a particularly challenging task (see 477 

Figure 5 for some examples). Interestingly, recursive feature elimination revealed that the RGB 478 

color space was not particularly useful for this classification. Instead, classifiers relying 479 

exclusively on the H channel of the HSV color space (H_HSV), u_Luv and the Excess 480 

greenness index (ExG) achieved near-optimal performance, with the addition of all other 481 

features having a negligible effect (Supplementary Figure S11).  482 

 483 

Figure 5 Prediction of vegetation status based on vegetation pixels color properties. Results are shown for one randomly 484 
selected image for four of the 17 measurement dates. Original images and corresponding prediction masks are shown, with 485 
green pixels indicating predicted healthy/green vegetation, yellow pixels indicating predicted senescing/chlorotic vegetation, 486 
brown pixels indicating predicted senescent/necrotic vegetation, and black pixels indicating predicted soil background.  487 

Segmentation of image time-series revealed dynamic patterns of vegetation cover 488 

and physiological status for ears and shoots  489 
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Plot-level time series of organ-level vegetation cover and vegetation status fractions further 490 

illustrate the high quality of the image segmentation. Both vegetation cover and vegetation 491 

status at the global and at the organ scale followed smooth temporal trends that were similar 492 

across all experimental plots and that could be very well explained (Figure 6, Figure 7, 493 

Supplementary Figures S12-S16). This is particularly noteworthy because our measurement 494 

setup did not guarantee that the exact same area of each plot was measured in subsequent 495 

images. Specifically, total vegetation cover showed a decreasing trend, whereas ear cover 496 

increased during grain filling in all plots. Consequently, shoot cover (i.e., vegetation cover 497 

without ears) showed a strongly decreasing trend, starting already approximately 10 d post-498 

anthesis (Figure 6) and thus about two weeks earlier than the visually detected onset of canopy 499 

senescence in the earliest genotypes. The smooth temporal trends in all extracted traits clearly 500 

indicate a stable performance of the segmentation models irrespective of lighting conditions, 501 

genotype, treatment, or growth stage of the crop (Supplementary Figures S12-S14).   502 

 503 

Figure 6 Fraction of images representing different components of vegetation, i.e., total vegetation, wheat ears, and vegetation 504 
without ears (i.e., leaves + stems = shoot) and their evolution over time between the first measurement at heading (May 25, 505 
2022 [219 DAS, GS 55]) and the last measurement at physiological maturity (July 7, 2022 [262 DAS, GS 91]). Black curves 506 
represent p-spline fits to 17 data points for each experimental plot. Colored lines represent treatment means. Refer to 507 
Supplementary Figures for model fits and raw data at plot level. 508 
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The dynamics of the green fraction in shoots extracted from images closely followed the 509 

dynamics of the visual canopy greenness scores. Dynamics parameters extracted from image 510 

time series and from scorings were highly correlated, except for the onset (r = 0.41, r = 0.86, r 511 

= 0.91 and r = 0.87 for the onset, midpoint, end, and Integral, respectively; Figure 8). The trivial 512 

reason for the low correlation at the onset is the difficulty of defining an adequate threshold 513 

value across all plots, as it seems inappropriate to rescale fractions to a constant scale 514 

(Supplementary Figure S15). The fraction of the chlorotic/senescing tissue in vegetation 515 

components showed a peak during physiological senescence but was very low outside of this 516 

peak. This peak was clearly distinguishable in all plots and was more pronounced for ears than 517 

for shoots (Figure 7).  518 

 519 

Figure 7 Relative contribution of healthy green, senescing/chlorotic, and senescent/necrotic tissue at organ level (total 520 
vegetation, shoot, and ears) and their evolution over time between the first measurement at heading (May 25, 2022 [219 DAS, 521 
GS 55]) and the last measurement at physiological maturity (July 7, 2022 [262 DAS, GS 91]). Black curves represent four-522 
parameter Gompertz model fits or p-spline fits to 17 data points for each experimental plot. Colored lines represent treatment 523 
means. Refer to Supplementary Figures for model fits and raw data at plot level. Vertical dashed lines mark time points when 524 
the amount of STB was quantified.  525 
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 526 

Figure 8 Pairwise correlation between canopy greenness decay dynamics parameters extracted from image time series and 527 
from visual scorings. Time points are reported in days after sowing (DAS). Pearson product moment correlation coefficients 528 
and p-values of the linear correlation are reported. The blue line represents the least squares line, the shaded ribbon represents 529 
the 95% confidence interval of the least squares line. 530 

 531 

Figure 9 Distribution of septoria tritici blotch (STB) severity measured on three assessment dates (t1 – t3) during grain filling, 532 
depending on the treatments applied. STB severity was assessed as the product of visually scored disease incidence and image-533 
based estimation of the percentage leaf area covered by STB lesions on infected leaves. At t1, assessments were made on a 534 
subset of plots where incidence was greater than or equal to 1/3, on flag leaf minus one. At t2 and t3, assessments were made 535 
on flag leaves. Points and horizontal whiskers below the bar plot represent per-treatment mean values and their standard 536 
deviations. Plot-based raw values are shown.  537 
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Experimental treatments and genotype selection created a large variability in 538 

incidence and severity of foliar diseases 539 

When averaging across all genotypes, there was a clear effect of the artificial inoculations 540 

on STB severity starting from t2 (Figure 9). The difference between inoculated and non-541 

inoculated plots was primarily attributable to a strongly increased STB incidence, whereas 542 

conditional STB severity was more similar across treatments (Supplementary Figure S17, 543 

Supplementary Figure S18). In contrast, no strong effect of the inoculations was observable yet 544 

at t1, consistent with the long latency period of the disease of approximately 4 weeks. The 545 

development of the STB epidemic resulting from the artificial inoculations coincided with the 546 

onset of physiological senescence in many plots (Figure 7). Specifically, STB severity was still 547 

low at t1 even on flag leaf-1 (Figure 9), when first plots already showed signs of physiological 548 

senescence as indicated by increasing chlorosis and necrosis (Figure 7, Supplementary Figure 549 

S3). This was primarily the result of a generally early onset of senescence, which occurred 550 

about 8 d earlier than in a neighboring wheat experiment sown on the same date. Additionally, 551 

there were very strong spatial effects in the timing of senescence which accounted for more 552 

than 6 d differences (Supplementary Figure S19).   553 

In terms of STB, there was no difference at the treatment level between the F0I and 0F0I 554 

treatments. This indicated that there was natural STB infection in these treatments which was 555 

not affected significantly by the early application of fungicide at GS 31. This is also supported 556 

by incidence assessments at t1 that revealed significant presence of STB infections especially 557 

at the flag leaf-1 and flag leaf-2 layers (Supplementary Figure S17). In contrast, the presence 558 

and severity of other foliar diseases, notably of yellow rust and brown rust, was strongly 559 

affected by the early application of fungicide (not shown). These diseases were clearly 560 

dominating in untreated plots, whereas they were virtually absent from fungicide-treated plots.  561 
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Besides the strong treatment effect, there was also ample variation of STB severity within 562 

treatments (Figure 9), largely attributable to genotypic differences in disease resistance and 563 

susceptibility. Genotypic means for STB severity based on individual, not spatially corrected 564 

plot values, at t2 ranged from 0.02 to 0.69, from 0.03 to 0.73, and from 0.10 to 0.84 for the 565 

treatments 0F0I, F0I, and FI, respectively.  566 

STB severity correlated with image-derived greenness decay dynamics and 567 

temporal patterns of chlorosis 568 

The near-complete temporal overlap between the onset of the STB epidemic and 569 

physiological senescence (Figure 7) as well as strong spatial heterogeneities (Supplementary 570 

Figure S19) complicated the analysis of the effects of these traits on vegetation dynamics as 571 

reported in Figure 6 and Figure 7. Despite this, an overall treatment effect was observable on 572 

the dynamics of the green/healthy and the necrotic/senescent fractions of vegetation, 573 

particularly for shoots (Figure 7). Specifically, artificial inoculations (‘FI’ treatment) caused an 574 

earlier and faster decline in the green fraction of shoots and a concomitant earlier and faster 575 

increase in the necrotic/senescent fraction, when averaging across all plots within a treatment 576 

(Figure 7). A similar shift did not occur for ears. At the treatment level, no effects were 577 

observable on the temporal patterns of chlorosis.  578 

When comparing treatment contrasts at the genotype-level based on spatially corrected plot 579 

values, a negative correlation between STB severity and the onset of canopy greenness decline 580 

was observed (Figure 10) suggesting that the developing STB epidemic was detected as an 581 

earlier decline in overall canopy greenness and confirming the above observation at the 582 

treatment level.    583 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.01.530609doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.530609
http://creativecommons.org/licenses/by/4.0/


 584 

Figure 10 Pairwise correlation between the difference in STB severity and in vegetation fraction dynamics at the genotype-585 
level (n = 16) as observed between the treatments ‘FI’ (early fungicide application + later inoculation – “clean STB”) and 586 
‘F0I’ (early fungicide application, no inoculation – “healthy control”). Trait contrasts between treatments at the genotype-587 
level were calculated as the difference of the mean corrected plot values for each genotype in each treatment. The parameters 588 
q1, q2, h1, and h2 denote the time points when one quarter and one half of the maximum was reached in the increasing and 589 
the decaying phase; the parameters intq and inth represent the durations q2 – q1 and h2 – h1, respectively (refer to Figure 2 590 
for a graphical representation).   591 

Besides the dynamics observed for the green and still healthy fraction, treatment contrasts 592 

in temporal patterns of chlorosis were also correlated with treatment contrasts in STB, which 593 

was not observed at the treatment level. A higher STB severity tended to result in a longer 594 

period during which significant chlorosis could be detected, but at the same time reduced the 595 

maximum chlorotic fraction detected in shoots (Figure 10). This suggested that, although no 596 

correlations between STB severity and the green fraction was observed during later stages, the 597 

relative contribution and timing of the necrotic and chlorotic fraction to the reduction in the 598 

green fraction differed depending on STB severity. Correlations for all extracted dynamics 599 

parameters are reported in Supplementary Table S2.  600 
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Discussion 601 

The main objective of this study was to develop methods enabling a detailed dynamic 602 

assessment of the physiological status of ears and shoots in wheat canopies throughout grain 603 

filling, as well as to develop perspectives on how such information may help elucidate the 604 

impact of stresses and stress responses. The following sections will therefore discuss the 605 

potential and limitations of the proposed methods and examine potential applications in the 606 

context of breeding for increased resistance and/or tolerance to biotic stress as well as optimized 607 

senescence dynamics.  608 

An efficient method to generate high-quality training data for vegetation 609 

segmentation under challenging conditions 610 

In contrast to the annotation of readily recognizable individual organs, annotation of all 611 

vegetation in high-resolution images is challenging and extremely time-consuming. This is true 612 

particularly for maturing wheat canopies which are characterized by fine structures, very similar 613 

color properties as the soil background, and a complex canopy architecture resulting in complex 614 

lighting and shading patterns. Though a subsequent partitioning of the vegetation fraction to 615 

the organ-level is also challenging, individual organs such as ears are easier to recognize and, 616 

provided they stand out from their background, even weak bounding box annotations may 617 

provide a sufficient basis for the development of useful segmentation models (Dandrifosse et 618 

al., 2022b).  619 

To overcome the limitation of generating sufficient training data for vegetation 620 

segmentation, we tested an approach based on image composition and domain transfer. Several 621 

earlier studies have implemented similar strategies or components of the strategy implemented 622 

here, especially in the context of weed detection or segmentation (e.g., Di Cicco et al., 2017; 623 

Fawakherji et al., 2020; Gao et al., 2020; Sapkota et al., 2022), although these studies typically 624 
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had a strong focus on the generation of scenes with sparse vegetation and weed plants with a 625 

rosette-like growth habit. The approach presented here was chosen because it was expected to 626 

have high chances of success, since composite images contain all the features that are typically 627 

observed in real images of wheat stands, including all components of a stay-green or senescing 628 

wheat canopy, complex lighting, and richly textured and highly variable soil background. In 629 

contrast to other studies (e.g., Gao et al., 2020; Sapkota et al., 2022), the isolation of foreground 630 

instances was more challenging in our case due to the need to segment senescent plant tissues, 631 

and some manual annotation could not be avoided (Figure 1E). Nevertheless, the annotation 632 

effort was reduced about 20-fold with respect to annotations from scratch, and the risk for 633 

annotation errors was minimized. Data augmentation procedures - especially the application of 634 

color jittering - did not improve the performance of the segmentation model (Table 1), 635 

indicating that the synthetic training images were highly representative of the real-world data 636 

set. Visual examination of the domain-transferred composite images occasionally revealed 637 

atypical features such as small patches of greenish soil (see e.g., Figure 3E, 3F), especially in 638 

cases where the original soil background image had low saturation. It may therefore be that the 639 

domain transfer introduced some noise that resulted in a more diverse training data set than 640 

could have been obtained through manual annotation of a set of images from the target domain.  641 

The datasets generated in the context of this study explicitly cover a wide range of scenarios 642 

in terms of genotype morphology, healthiness, canopy structure, soil background, lighting 643 

conditions, and phenology. In contrast, robustness of trained segmentation models to variation 644 

in imaging set-up, type of vegetation, or camera parameters was not addressed here and may 645 

limit the usefulness of the data sets in other contexts, as compared to the data set described by 646 

Serouart et al. (2022). However, our approach is directly applicable to additional scenarios 647 

(future wheat experiments, or even experiments involving other crops), which facilitates an 648 

expansion of the data set with low effort.  649 
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Our results encourage more detailed studies that should evaluate whether fully synthetic 650 

training data could be obtained, e.g., through a combination of functional-structural plant 651 

growth models such as ADEL-Wheat (Fournier et al., 2003) with open-source rendering 652 

software such as Blender (Blender foundation, https://www.blender.org). Promising results 653 

have been achieved using similar approaches in other contexts, e.g. for Arabidopsis (Ubbens et 654 

al., 2018) and sweet pepper (Barth et al., 2018). 655 

Color-based inference of vegetation status at organ-scale using high-resolution 656 

RGB imagery 657 

The identification of the vegetation fraction and the separation of ears and shoots enabled a 658 

component-level analysis of color properties in this study. The three-way classification done 659 

here represents one amongst several possible ways to gain insights into the relative contribution 660 

of different vegetation fractions. A similar approach was used by Makanza et al. (2018) who 661 

classified pixels in aerial images into ‘green’, ‘yellow’ and ‘dry brown’, interpreting these 662 

classes as representing differentially advanced stages of canopy senescence. Serouart et al. 663 

(2022) performed a two-way classification of previously segmented vegetation pixels into green 664 

and senescent pixels, considering both chlorotic and necrotic vegetation as ‘senescent’. In 665 

agreement with our results, this study also highlighted the need for color space conversion in 666 

order to achieve a robust classification (Serouart et al., 2022). Other studies used color indices 667 

to infer vegetation status or separate green from senescent vegetation (Anderegg et al., 2023; 668 

Rasmussen et al., 2019; Schirrmann et al., 2016). Here, it was reasoned that chlorosis and 669 

necrosis represent readily visually distinguishable vegetation fractions with a distinct 670 

physiological status. Widespread chlorosis is typically indicative of a tightly controlled 671 

senescence process encompassing a degradation of chloroplasts as well as major changes in the 672 

chlorophyll/carotenoid ratio resulting from differential breakdown rates of these pigments 673 

during early senescence (Fischer and Feller, 1994; Lim et al., 2007; Sanger, 1971). The 674 
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involved controlled degradation processes support nutrient remobilization and subsequent 675 

nutrient translocation to developing grains, which is critical for yield and quality formation in 676 

wheat (Kichey et al., 2007). In contrast, direct necrosis causes a complete loss of function and 677 

the trapping of resources in the affected tissues. Therefore, chlorotic and necrotic fractions 678 

should be considered separately. The color-based approach commonly used to achieve this 679 

separation may be limited in precision, because (i) the senescence-related transition from green 680 

to chlorotic and ultimately necrotic tissue is a continuous process, meaning that a definition of 681 

thresholds is inherently arbitrary and subjective, and (ii) reliance on the visible spectrum may 682 

be insufficient to precisely detect the switch from stay-green to senescence (Jagadish et al., 683 

2015; Merzlyak et al., 1999). However, even if some degree of subjectivity remains, the 684 

application of well-defined decision boundaries irrespective of the context should guarantee 685 

unbiased estimates of vegetation fractions across trials and genotypes. Furthermore, with a view 686 

towards high throughput applicability under field conditions, spatial resolution and thus the 687 

possibility to eliminate background signal and extract properties separately for different 688 

vegetation components may offer significantly larger benefits than a high spectral resolution, 689 

because vegetation cover and the relative contributions of different vegetation components 690 

change massively during the final growth stages (Figure 6). Such changes are highly likely to 691 

be genotype-specific, thus introducing a large bias in canopy-level signals if disregarded 692 

(Anderegg et al., 2020). In the future, merging different types of sensor data to extract 693 

component-level information beyond the visible spectral domain may offer significant potential 694 

for more precise and objective measurements (Dandrifosse et al., 2022a; Jagadish et al., 2015).  695 

Leveraging vegetation dynamics to track epidemics and separate effects of foliar 696 

diseases and physiological senescence on canopy greenness decay 697 

Repeated imaging enabled the extraction of temporal patterns in vegetation fractions for 698 

ears and shoots during the development of the STB epidemic and senescence using dynamic 699 
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modelling. Despite the challenging outdoor conditions varying strongly across imaging time 700 

points (see Figure 4), our segmentation pipeline enabled the extraction of clear temporal 701 

patterns from repeated imaging (Figure 2, Figure 7, Supplementary Figures S15 and S16). The 702 

observed patterns are in good agreement with the expectation that the green fraction should 703 

show a monotonous decrease that can be well described using parametric models (Figure 2, 704 

Figure 7, Supplementary Figure S15; Anderegg et al., 2020; Bogard et al., 2011; Christopher et 705 

al., 2014). The chlorotic fraction showed a peak during rapid physiological senescence but was 706 

virtually absent outside of this restricted time window, which is well in line with the 707 

interpretation of chlorosis as a phenotypic marker for physiological senescence.  708 

The ability to track the dynamic development of the green, chlorotic and necrotic fractions 709 

at component level offers new opportunities to assess the impact of stresses as well as stress 710 

responses. First, repeated assessments of the green, chlorotic and necrotic fractions may enable 711 

a precise detection of the moment when leaf senescence or leaf disorders start to affect the light 712 

absorption capacity of the upper-most leaf layers, irrespective of changes in organ or 713 

background contribution to the scene. While both foliar diseases and physiological senescence 714 

ultimately lead to widespread necrosis, the sequential development of the symptoms differs 715 

markedly: the development of necrotic lesions caused by pathogens is not typically preceded 716 

by chlorosis to a similar extent. Necrosis remains restricted to scattered regions on leaves, thus 717 

causing necrotic islands in green tissues. In contrast, widespread chlorosis should mark the 718 

onset of physiological senescence. Consequently, a separate quantification of the chlorotic and 719 

necrotic vegetation fractions should provide insights into the drivers of greenness decay, where 720 

a large contribution of chlorosis (both in terms of the fraction of vegetation affected and in 721 

terms of the duration of its persistence) indicates a strong contribution of physiological 722 

senescence, whereas prominent necrosis without a gradual transition through chlorosis indicates 723 

leaf damage. These leaf damages are likely to result from biotic stress, because abiotic stress is 724 
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well known to accelerate physiological senescence (Bogard et al., 2011; Distelfeld et al., 2014; 725 

Martre et al., 2006), but does not typically cause localized leaf damage.  726 

Despite the near-simultaneous onset of the STB epidemic and physiological senescence and 727 

pronounced field heterogeneity, our analysis revealed an effect of STB especially on the 728 

dynamics and prominence of chlorosis in shoots (i.e., the disease-affected fraction; Figure 10). 729 

Specifically, higher STB severity coincided with a lower contribution of chlorosis to the overall 730 

greenness decay, in line with our above interpretations. A detailed comparison of the temporal 731 

dynamics of chlorosis and necrosis is likely to reveal potential and currently elusive interactions 732 

between disease-induced necrosis and physiological senescence. This is highly relevant, since 733 

the capacity of genotypes to maintain the functionality of remaining healthy leaf area and avoid 734 

an anticipation of (or even delay) the onset of physiological senescence in the presence of 735 

disease may represent an important compensation mechanism leading to tolerance. Anticipating 736 

the onset of the STB epidemic with respect to the onset of physiological senescence (e.g., 737 

through earlier inoculations) will allow for more detailed investigations of the interactions 738 

between foliar diseases and physiological senescence. The potentially high-throughput nature 739 

of the proposed methods paves the road to genetic studies in this direction. 740 

Finally, an interesting observation was that ear senescence patterns appeared to be 741 

unaffected by the presence and severity of STB. In contrast, we frequently observed an extended 742 

persistence of green stems in heavily diseased inoculated plots. We hypothesize that this may 743 

represent a response to premature losses in green leaf area, facilitating a more complete 744 

remobilization of stem reserves to sustain concurrent grain filling. Further distinguishing 745 

between stems and leaves within the shoot may therefore reveal additional compensation 746 

mechanisms using the same data sets. Additionally, the separation of stems including peduncles 747 

would greatly enhance the scoring of physiological senescence, as peduncle senescence is 748 

considered a reliable measure for this trait (Chapman et al., 2021). 749 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.01.530609doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.530609
http://creativecommons.org/licenses/by/4.0/


Limitations of the approach in terms of disease detection and quantification 750 

Image data collected here has sufficient resolution to enable an easy recognition of 751 

individual disease symptoms such as necrotic lesions or rust pustules. However, a precise 752 

diagnosis especially for necrotrophic diseases requires an even higher resolution (Karisto et al., 753 

2018; Stewart et al., 2016), because unique features attributable to certain diseases such as black 754 

fruiting bodies (pycnidia) within necrotic lesions in the case of STB may be microscopic. 755 

Methods for in-field disease detection and quantification in stay-green canopies using very 756 

high-resolution imagery are currently being developed (Zenkl et al., unpublished), and will 757 

represent an important complement to the methodologies developed in this study.  758 

In terms of disease quantification, nadir imagery is always limited by the restricted visibility 759 

of lower leaf layers. This is particularly problematic in the case of STB as the symptoms are 760 

typically more visible on the lower leaves and the disease moves into the top leaf layers via 761 

splash-dispersed spores, followed by a long latent period. Hence an early detection of the 762 

disease using nadir images is practically impossible. Whereas early disease detection is not a 763 

primary objective in breeding, it is key for the implementation of concepts of precision 764 

agriculture. Successful early detection of STB will arguably always have to involve some sort 765 

of physical interaction with the crop to expose lower leaf layers. Here, we aimed to maximize 766 

the visibility of lower leaf layers by setting an optimal exposure bias within the tolerable range. 767 

High dynamic range cameras may offer interesting opportunities to minimize this issue, but 768 

occlusion will remain the dominant problem is this respect.  769 

Conclusions 770 

The use of state-of-the-art deep learning models for image segmentation and a subsequent 771 

color-based classification and dynamic modelling facilitated a time-resolved monitoring of the 772 

physiological status of vegetation separately for ears and shoots. Application of these methods 773 
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to image time series allowed for an accurate reproduction of visually observed greenness decay 774 

dynamics and revealed contrasting temporal patterns of greenness decay and chlorosis in plots 775 

differing with respect to their infestation levels with foliar diseases. The observed patterns are 776 

in good agreement with an interpretation of chlorosis as a phenotypic marker of physiological 777 

senescence, suggesting that a separate analysis of the chlorotic and necrotic vegetation fraction 778 

in disease-affected vegetation components may facilitate a separation of the effects of foliar 779 

diseases and physiological senescence on overall greenness dynamics. Thus, the developed 780 

tools hold significant potential for high throughput assessments of crop responses to biotic 781 

stress under field conditions.  782 
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