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g8 Abstract

9 Maintenance of sufficient healthy green leaf area after anthesis is key to ensuring an
10 adequate assimilate supply for grain filling. Tightly regulated age-related physiological
11  senescence and various biotic and abiotic stressors drive overall greenness decay dynamics
12 under field conditions. Besides direct effects on green leaf area in terms of leaf damage,
13  stressors often anticipate or accelerate physiological senescence, which may multiply their
14 negative impact on grain filling. Here, we present an image processing methodology that
15  enables the monitoring of chlorosis and necrosis separately for ears and shoots (stems + leaves)
16  based on deep learning models for semantic segmentation and color properties of vegetation. A
17  vegetation segmentation model was trained using semi-synthetic training data generated using
18  image composition and generative adversarial neural networks, which greatly reduced the risk
19  of annotation uncertainties and annotation effort. Application of the models to image time-
20  series revealed temporal patterns of greenness decay as well as the relative contributions of
21  chlorosis and necrosis. Image-based estimation of greenness decay dynamics was highly
22  correlated with scoring-based estimations (r = 0.9). Contrasting patterns were observed for plots
23 with different levels of foliar diseases, particularly septoria tritici blotch. Our results suggest
24  that tracking the chlorotic and necrotic fractions separately may enable (i) a separate
25 quantification of the contribution of biotic stress and physiological senescence on overall green
26  leaf area dynamics and (ii) investigation of the elusive interaction between biotic stress and
27  physiological senescence. The potentially high-throughput nature of our methodology paves

28  the way to conducting genetic studies of disease resistance and tolerance.

29  Keywords: Deep Learning, Semantic Segmentation, Synthetic Data, High-Throughput Field

30  Phenotyping, Septoria Tritici Blotch, Disease Tolerance
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Introduction

Final crop yields are determined through a multitude of processes and events occurring
throughout the growing season. Suboptimal wheat yields can be related to limitations in sink
strength and source capacity, where sink strength is defined by the number of grains and their
capacity to absorb assimilates, while source capacity is defined by the capability of
photosynthetically active plant tissues to provide assimilates that sustain concurrent grain
filling. Despite ample evidence indicating prevalent sink limitation of wheat yields under a
broad range of environmental conditions (reviewed by Araus et al., 2008 and Borras et al.,
2004), reports indicating source-limitation are not uncommon. For example, the stay-green
phenotype that should increase the availability of assimilates during grain filling is often
positively correlated with yields, particularly under end-of-season stress conditions (Anderegg
et al., 2020; Christopher et al., 2016, 2008; Joshi et al., 2007; Verma et al., 2004). Similarly,
yield-reducing effects of certain foliar diseases are thought to arise primarily as a consequence
of increasing source limitation during grain filling through losses of photosynthetically active
green leaf area resulting from the formation of chlorotic and necrotic lesions as well as induced
necrosis (e.g., Robert et al., 2006, 2005). This is the case for septoria tritici blotch (STB) caused
by Zymoseptoria tritici, a major fungal pathogen of wheat around the world. Even though STB
lesions can be found over the majority of the growing season, a long latent period can allow
several new leaf layers to develop at the top of the canopy during vegetative and reproductive
growth stages before splash-dispersed spores originating from lower leaf layers reach the top
leaf layers and cause new symptoms. Therefore, sink formation is not typically affected by
STB, meaning that crop losses should not occur before heading or even anthesis (Bancal et al.,
2007). Instead, they occur primarily as a consequence of source limitations during grain filling,

when losses in green leaf area due to leaf damage become substantial.


https://doi.org/10.1101/2023.03.01.530609
http://creativecommons.org/licenses/by/4.0/

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.01.530609; this version posted March 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY 4.0 International license.

To explain the apparent contradiction between evidence indicating sink- and source-
limitation in the context of biological stresses such as foliar diseases, it may be necessary (i) to
precisely quantify the time point in terms of particularly sensitive crop developmental stages at
which the stress appears, as well as integrate its severity over time and (ii) understand if and
how the presence of the disease interferes with whole plant functioning in ways reaching
beyond the direct reduction of photosynthetically active leaf area. With respect to the latter
point, it has often been suggested that, in addition to reducing green leaf area in proportion to
the severity of the disease, foliar diseases may anticipate and/or accelerate senescence
(Anderegg et al., 2020; Bancal et al., 2015; Simén et al., 2020), possibly through a modification
of the balance between nitrogen supply by the source and demand by the sink during grain
filling (Simén et al., 2020). However, detailed studies on artificially inoculated potted wheat
plants under greenhouse conditions found no interaction between the presence of STB and
temporal patterns of physiological senescence (Bancal et al., 2016; Slimane et al., 2012). These
findings seem to contradict evidence from field experiments, where a significant anticipation
of the generalized end-of-season decay in measures of canopy greenness is often observed and

frequently reported to be closely related to STB-related yield losses (Bancal et al., 2015).

Separating the effects of diseases and physiological senescence on overall greenness decay
using visual assessments is a daunting task, even at the level of individual leaves. This also
holds true for currently available assessment strategies relying on destructive sampling of plant
material and subsequent image analysis, which is largely based on color properties of sampled
materials (Anderegg et al., 2022, 2019; Stewart et al., 2016), that may perfectly overlap between
senescent and diseased necrotic tissue. Yet, whereas the final outcome (necrosis) is the same
for STB and physiological senescence, the latter is a more gradual and generalized process,
typically encompassing a widespread yellowing (chlorosis) of plant tissues following controlled

chlorophyll degradation. Some chlorosis is frequently observed surrounding necrotic STB
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81 lesions as well, however to a very limited spatial extent (typically less than 1% of the total leaf
82  area; Anderegg et al., 2022). We therefore hypothesize that the occurrence and the relative
83  contributions of chlorosis and necrosis to greenness decay may enable a quantification and a
84  separation of the effects of (biotic) stresses and physiological senescence on the maintenance
85  of source capacity during grain filling. However, currently available assessment strategies are
86 either too laborious and interfere excessively with the development of epidemics when carried
87  out frequently (destructive samplings) or are imprecise and subjective (visual scorings) which
88  stands in contradiction with the need for temporally highly resolved data that is comparable

89  across experiments.

90 Recent advances in sensor and carrier platform technology as well as in processing and
91 analysis of resulting data sets are increasingly enabling fast and objective sensor-based
92  quantification of various crop traits under field conditions. For example, Grieder et al. (2015)
93  used repeated close-range RGB imagery during winter to characterize the temperature response
94  of early canopy growth in different wheat genotypes. Recently, deep convolutional neural
95 networks (CNNs) have proven useful for various tasks related to phenotypic trait extraction
96 from images, including object detection and counting (e.g., of wheat ears [David et al., 2020]
97  or sorghum panicles [James et al., 2023]) and image segmentation (e.g., vegetation-soil
98  segmentation [Serouart et al., 2022; Zenkl et al., 2022] or ear segmentation [Dandrifosse et al.,
99  2022b]). Serouart et al. (2022) used a deep learning model to segment vegetation from soil
100  background and a support vector classifier to partition detected vegetation into chlorophyll-

101  active and inactive vegetation.

102 Unfortunately, generating pixel-level image annotations from scratch for the training of
103  semantic segmentation models can be extremely time consuming. In addition, if the annotation
104  task is challenging, there is a high risk of annotation uncertainties significantly lowering the

105  performance ceiling for segmentation models (Zenkl et al., 2022). Maximizing the quality and
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106 efficiency of image annotations is therefore a key objective when generating training data. This
107 s true particularly when diverse application scenarios (as encountered when monitoring diverse
108  genetic material across different phenological stages under field conditions) require a broad

109 training and evaluation data base to adequately represent most relevant scenarios.

110 A key advantage of sensor-based phenotyping may lie in the possibility to accurately track
111 evensmall changes in crop canopy characteristics over time at the plot level. For example, even
112  though diseased and naturally senescent canopies appear similar at coarse optical resolution in
113  terms of their reflectance properties at specific points in time, tracking changes in color
114  properties over time can be informative of the causal processes underlying the loss of canopy
115  greenness, facilitating a separate assessment of senescence-related and disease-related effects
116  (Anderegg et al., 2019). Unfortunately, such reflectance-based approaches are limited by the
117  fact that canopy architectural and morphological traits such as leaf angles or leaf glaucousness
118  differ markedly across wheat genotypes while strongly affecting mixed reflectance signals.
119  Additionally, the contribution of different components of a measured scene such as soil
120  background or different organs (leaves, stems, and ears) change dynamically over time in a
121  genotype-dependent manner, introducing significant bias even when only relative signal
122  changes over time are analyzed (Anderegg et al., 2020). High-resolution image data with a
123  pixel-resolution in the sub-millimeter range facilitates the extraction of organ-level signals as

124 well as an elimination of background signals (e.g., Dandrifosse et al., 2022a).

125 The main objective of this work was to develop potentially high-throughput methods
126  facilitating a dynamic quantification of the fraction of healthy, senescing/chlorotic, and
127  senescent/necrotic vegetation at organ-scale from image time series. This in turn will enable (i)
128  monitoring the effect of stresses on these fractions and their dynamics during critical stages of
129  crop development, (ii) disentangling the effects of biotic stresses and physiological senescence

130  on overall green leaf area dynamics after anthesis and (iii) an investigation of the elusive


https://doi.org/10.1101/2023.03.01.530609
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.01.530609; this version posted March 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

131 interaction between biotic stressors and physiological senescence under field conditions. We
132 hypothesize that such knowledge could enable the identification of STB-tolerant genotypes,
133  because delayed physiological senescence has been identified as a promising compensation
134  mechanism under disease pressure (Bancal et al., 2015). Here, we present a proof of concept by
135 applying the proposed methods to time-series of high-resolution RGB images taken in a
136  dedicated experiment with thorough ground truthing of disease intensity and senescence

137  dynamics through established methodologies.

138 Materials and Methods

139  Plant materials and experimental design

140 A set of sixteen registered bread wheat cultivars was grown at the ETH Research Station
141  for Plant Sciences Lindau-Eschikon, Switzerland (47.449N, 8.682E, 520 m a.s.l.; soil type:
142 eutric cambisol) in the wheat growing season of 2021-2022. Plots were sown on October 18,
143 2021, with a drill sowing machine at a blade distance of 0.125 m resulting in 400 plants m™.
144  Cultivars with similar phenology and final height but with strongly contrasting canopy
145  architectural and morphological traits were selected for this experiment, based on data from
146 Anderegg et al. (2021). Specifically, the set comprised an equal number of cultivars with erect
147 and planophile flag leaves and with high and low levels of flag leaf glaucousness
148  (Supplementary Table S1). Three cultivars were selected for each factor combination. The
149  resulting set of twelve cultivars was complemented with a highly STB-resistant and a highly
150  STB-susceptible cultivar, with a cultivar harboring the Lr34 disease resistance gene that causes
151  extensive leaf-tip necrosis, and with an awned cultivar. This selection resulted in a large
152  variability in the physical appearance of wheat stands during grain filling (Supplementary
153  Figure S1). Each cultivar was grown in nine plots sized 1 m x 1.7 m and one of the following

154  three treatments was allocated to each plot with the aim of maximizing variability in STB
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155  disease severity: (i) an early fungicide application at jointing followed by artificial inoculations
156  with a Z. tritici spore suspension at booting and heading (FI); (ii) a fungicide application at
157  jointing without artificial inoculation (FOI), and (iii) neither fungicide application nor artificial
158 inoculation (OFOI). The developmental stages were reached on 22 April 2022 for jointing (GS
159 31, according to BBCH scale of Lancashire et al., 1991), 16 May 2022 for booting (GS 45), and
160 24 May 2022 for heading (GS55), respectively. The aim of the ‘FI’ treatment was to generate
161  symptoms of STB in otherwise healthy plots, whereas the ‘OFOI’ treatment was expected to
162  result in plots with natural co-infections of multiple foliar diseases. The ‘FOI’ treatment
163  represents standard agricultural practice under low disease pressure and was expected to result
164 in healthy canopies. The fungicide used was ‘Input’ (Bayer; a mixture of spiroxamine at 300
165 g/L and prothioconazole at 150 g/L), with a dose of 1.25 L/ha. Preparation of the spore
166  suspensions and field inoculations were done similarly as described in detail earlier (Anderegg
167  etal., 2019). Briefly, 200 ml of a spore suspension with a total spore concentration of 10° spores
168  ml™* was applied to each plot using a backpack sprayer. The spore suspension was supplemented
169  with 0.1% of TWEEN 20 surfactant. Inoculum was sprayed in the evening into the wet canopy
170  of each plot. Spore suspensions for the first and the second inoculation contained a mixture of
171  six and nine Z. tritici strains, respectively, selected according to their mean virulence and
172  reproductive potential on a large number of wheat genotypes to maximize expected diversity in
173  symptom phenotypes. Fungal strain selection was based on data from Dutta et al. (2021). The
174  two-factorial experimental design was generated using the functions findblks() and

175  facDiGGer() of the R-package ‘DiGGer’ (Coombes, 2009).

176  Reference data collection and processing
177 Heading date and flag leaf and canopy greenness were assessed for all experimental plots
178 by means of visual scorings at two-day intervals. Given that Z. tritici primarily infects leaves

179  and anticipating the feasibility of extracting vegetation color properties at the organ-level,
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180  canopy greenness scorings were made with a focus on the total leaf area but neglecting stems
181 and ears, in contrast to previous work (Anderegg et al., 2020). All visual scorings were

182  performed by the same operator and recorded using the Field Book app (Rife and Poland, 2014).

183 The amount of STB in each plot was assessed on three dates (16 June 2022 i.e. 31/23 days
184  post inoculation [dpi]; 23 June 2022 i.e. 38/30 dpi; and 29 June 2022 i.e. 44/36 dpi, referred to
185 in the following as t1, t2 and t3, respectively) following a protocol described earlier (Anderegg
186 et al., 2019). Briefly, visual assessments of disease incidence on flag leaves of 30 culms per
187  plot were multiplied with a measurement of conditional severity in the form of the percentage
188 leaf area covered by lesions (PLACL) obtained for eight detached and scanned infected flag

189 leaves per plot, estimated using the method of Stewart et al. (2016).

190 Image acquisition

191 A full-frame mirrorless digital camera (EOS R5, Canon Inc., Tokyo, Japan; 45 megapixel,
192 36 x 24 mm sensor) was mounted on a custom-made portable aluminum frame as in Grieder et
193  al. (2015) to capture images from a nadir perspective with a fixed distance to the soil of 2.25m
194  (Supplementary Figure S2). Focal length of the camera zoom lens varied between 48 and 52
195  mm between measurement dates. Focal distance was kept constant at 1.8 m, and lens aperture
196  was also kept constant at f/16, providing a depth of field of 1.3 m. This setup resulted in a
197  ground sampling distance of ~0.02 cm / pixel at ground level and ~0.012 cm / pixel at the top
198  of the canopy, while still providing sufficient depth of field for all objects of interest (i.e., lowest
199  leaves to ear tips) to be in focus. The resulting field of view at ground level was approximately
200 1.0 x 0.66 m. Images were captured under stable light conditions, either under constant direct
201  sunlight or under diffuse light conditions on 17 dates between heading and physiological
202  maturity. An exposure compensation of -0.33 exposure values was used irrespective of the light
203  conditions. This slightly reduced exposure represented a meaningful compromise between

204  over-exposure of top-of-canopy flag leaves and ears while avoiding clipping of shadows in the
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205  lower leaf layers deeper in the canopy. Sufficient exposure of shaded lower leaf layers is an
206  important consideration here because STB moves from lower leaves to upper leaves by splash-
207  dispersed conidia, thus affecting lower leaf layers first. Data was recorded in raw format (.CR3)
208  with 16 bits per color channel. Measurements were regularly completed for all 144 plots of the
209  experiment within 1.0 — 1.5 hours and were carried out at different times of the day. For

210 analysis, all images were converted to 8-bit portable graphics format (png).

211  Training and validation datasets

212 Training and validation data sets were generated (i) for segmentation of plant foreground
213  from soil background and (ii) for segmentation of wheat ears from the rest of the image. The
214 objective of this work was to enable an accurate segmentation of images taken with our or
215 comparable imaging set-ups. We specifically selected genotypes and imaging time points to
216  maximize variability in terms of physical appearance of crop stands. We anticipate that both
217  the training data generation protocol as well as the data sets themselves will be useful for
218 ongoing initiatives aimed at assembling diverse data sets that enable the training of robust
219  segmentation models (similar as in e.g., David et al., 2020). Below, we provide a description of

220  the training and validation data generation process.

221 Vegetation Segmentation

222 We found that precisely annotating senescent or senescing vegetation in fully developed
223  wheat canopies was extremely time consuming and challenging, especially under direct
224 sunlight, with often low agreement between annotators. To circumvent problems with human
225  annotation and cover the different appearances of a crop canopy during grain filling, we tested
226  an alternative approach to human annotations. The approach relied exclusively on semi-
227  synthetic training data generated requiring minimum human intervention (Figure 1). The two-
228  step approach consists of (i) creating composite images of soil backgrounds and plant

229  foregrounds that are sampled from separate original images and (ii) a subsequent domain-
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230 transfer of composite images using generative adversarial neural networks (GANSs). This
231  approach essentially reduced the need for human intervention to reviewing of automatically

232  generated pre-segmentations.

233

234 Figure 1 Workflow for training data generation. (A) Original image of a plot with the soil background covered by blue foam
235 rubber. The red rectangle represents the identified region of interest. (B) A 2400 x 2400 pixels patch sampled from the region
236 of interest in the image displayed in Figure A. In this specific case, the patch was sampled starting from the upper-right corner
237 of the identified region of interest. (C) Results of the initial color-based pixel-wise segmentation. Grey-scale values represent
238  class probabilities output by the classification model; intermediate class probabilities indicating low confidence in the
239 classification can be found primarily in underexposed parts of the image. (D) Post-processed grey-scale image. (E) Composite
240 images created after manual reviewing. Red arrows indicate the border between two different soil images used as background.
241 This image was created for illustration purposes only. (F) The corresponding manually reviewed vegetation mask. (G) The
242 domain-transferred image, used to train the vegetation segmentation model with the mask in Figure G as the target. The soil
243  background is equivalent to the one shown in the left part of Figure E.

244 To generate composite images, soil in selected wheat plots was covered with readily
245  available blue foam rubber (Rayher Hobby, Laupheim, Germany). This material could be easily
246  placed between wheat rows, withstands weather, and is an excellent diffuse light reflector
247  (Figure 1). Wheat plots manipulated in this way were imaged with the set-up described above
248  under varying light conditions and at different stages of crop development. Wheat plots sown
249  to 33 different cultivars and being part of the described experiment as well as of a neighboring
250  wheat experiment on the same site were used. Areas in resulting images where soil was covered
251  were then automatically cropped using simple thresholds in the HSV color space (95 <H <115,

252 150 <S<200,22 <V <255) and a single patch of 2400 x 2400 pixels was sampled from this
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253 area. These patches were then segmented pixel-wise into plant foreground and artificial
254  background using a random forest classifier with different color spaces (RGB, L*a*b*, L*u*v*,
255 HSV, HSI, YCbCr and YUV) as input features for each pixel. The resulting class probability
256  maps were represented as 8-bit gray-scale images and post-processed using the Fast Bilateral
257  Solver, an edge-aware smoothing algorithm (Barron and Poole, 2016)!. The post-processed
258  probability maps were then converted into binary images by thresholding at a value of 165,
259  which was optimized through visual inspection on a subset of images. Finally, the contours of
260  the resulting foreground plant objects were exported as a list of polygons and imported into the
261  Computer Vision Annotation Tool®> (cvat) for reviewing. Where needed, exposure was
262  increased to ease reviewing of underexposed parts of images. A total of 206 patches of 2400 x

263 2400 pixels size were processed in this manner.

264 Each of the resulting plant foregrounds was then combined with 10 different images of bare
265  soil which were randomly selected from a larger data base of soil images taken with the same
266  imaging setup. Specifically, the artificial background was replaced by the corresponding areas
267  of the selected soil image, with the light intensity pattern (gray scale values) observed on the
268 artificial background transferred to the soil image. To compensate for the different reflectance
269  properties of the artificial background material and natural soil, the contrast was increased by
270  applying the simple linear transformation

max(1.5x1—0.2,0), if [ 0.4

271 I'= {min(l.S *[ —0.2,1), otherwise

272  where I’ is the modified and I the original intensity value.

The python implementation of the algorithm from https://github.com/kuan-wang/The_Bilateral Solver was
used.
2https://www.cvat.ai/
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273 Although the above-described process resulted in realistic looking images in many cases,
274 some readily recognizable differences to real images often remained, including differences in
275  saturation between foreground and background of the composite images as well as
276  segmentation artifacts along foreground object borders (often a faint blueish glow from mixed
277  pixels). To resolve this issue, we performed a domain transfer using CycleGANs (Zhu et al.,
278  2017)%. The overall aim of this domain transfer is to render more realistic images from the
279  created composite images with no loss of semantic information. This is highly desirable in our
280  case, as we wanted to avoid an additional reviewing of annotations after this step. A separate
281  CycleGAN was trained for images captured under diffuse and under direct lighting (categorized
282  based on date of capture). Training and validation images for both scenarios were selected to
283  contain both healthy, green, and senescent or diseased leaf material. The models were trained
284  using patches of 360 x 360 pixels sampled from composites and real images in original
285  resolution. Models were trained for 200 epochs. The resulting models were used to transfer the
286  full-sized composites (2400 x 2400 pixels), which were then used for the training of
287  segmentation models. No real images annotated from scratch were used for training of the

288  segmentation model.

289 For validation, a set of patches measuring 1200 x 1200 pixels were sampled from 74 real
290 images and manually annotated from scratch. Images were selected to be approximately
291  balanced with respect to date of capture, genotype, experimental treatment, STB incidence,
292  lighting, and phenology. To reduce the annotation effort, twelve of the 16 genotypes in the
293  experiment were sampled randomly, and some measurement dates excluded, which also
294  reduced redundancy in the data set (e.g., from multiple measurements of the same genotype

295  during its stay-green period).

3https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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296 Ear segmentation

297 Compared to the annotation of all vegetation, the annotation of spikes with well-defined
298  borders is fast and straightforward, resulting in much lower risk of annotation errors. We
299 therefore chose a standard approach to annotate data manually. All spikes were annotated at
300 pixel-level in a total of 180 images using the ‘intelligent scissors’ tool of cvat. Images originated
301 from two experiments: (i) the experiment described above, and (ii) an experiment carried out
302  in 2015 (Grieder et al., unpublished data). Images in the 2015 experiment were acquired with a
303  similar measurement set-up, but with a different camera and different camera settings as well

304 as different plant material (see Grieder et al., 2015 for details).

305 Segmentation model training, evaluation, and inference

306 Due to the different nature of the training and validation data sets for the segmentation of
307  vegetation and ears, a separate model was trained, and model hyper-parameters were tuned
308  separately, for each task. Tuned hyper-parameters were the depth of the ResNet encoder (He et
309 al., 2016) and the segmentation framework, data augmentation applied (image resolution, image
310  blurring, and the probability of applying jittering of brightness, contrast and saturation within a
311  pre-defined range), and details of the training process (training strategy, batch size, learning
312  rate, and momentum). Input transformations were performed using the python library ‘kornia’
313 (Ribaetal., 2020). Random flipping, rotation, and cropping of the image were always included
314  (i.e., not tuned). The searched parameter space and the determined optimal values are reported
315 in Table 1. The default TPESampler of the python library ‘optuna’ (Akiba et al., 2019) was
316  used for value suggestion. The training process was always based on a cross-entropy loss
317  function and the stochastic gradient decent optimizer, model performance monitoring and

318  model selection was always based on the overall validation F1-Score.

319 The vegetation segmentation model was evaluated on the validation data set described

320 above. For the ear segmentation model, the available 180 annotated images were randomly split
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321 into a training and a validation data set with an 80:20 split (i.e., 144 training images and 36
322  validation images). Inference on all images was performed for a central region of interest sized
323 4000 x 4000 pixels. This cropping removed border rows from the images while keeping the
324 central 4-5 rows. It should be noted that canopy height was not considered when cropping the
325  images, meaning that the field of view at canopy height as well as the viewing angle distribution

326  may differ somewhat depending on the genotype.

327 Table 1 Searched hyperparameter space for the vegetation and ear segmentation models and determined optimal values.

Optimal value

Category Tuning parameter Tested values Vegetation model _Ear model
Network Resnet encoder depth {resnet18?,r'34,r'50, 101}  resnet34 resnet>0
architecture  segmentation framework {fpn?, unet++3, deplabv3+4}  unet++ deeplabv3+

Image size {100k|ke{4, ..., 12}} k=7 k=6
aDS;?nentation Blur kernel size (Gaussian) {1, .., 12} 3 7

p(color jitter) {0.1k|ke{0, ..., 101} k=0 k=0

Strategy {train®, freeze®, no_freeze’} no_freeze no_freeze
Network Batch size {2, ..., max} 15 (i.e., max) 31 (i.e., max)
training Learning rate {1075, ..., 10~-1} 0.09 0.066

Momentum {0.5, ..., 0.99} 0.88 0.90

1He et al. (2016)

2Lin et al. (2017)

3Zhou et al. (2018)

4Chen et al. (2018)

SEncoder weights initialized randomly, optimized on the dataset

SEncoder weights initialized to pre-trained on ImageNet (Deng et al., 2009), not optimized
7Encoder weights initialized to pre-trained on ImageNet, optimized on the dataset

CGOCIGICOLININD
HOINFOWO00

335 Color-based classification of vegetation

336 The overarching goal of this work was to develop a toolset enabling the monitoring of the
337  relative amount of healthy, chlorotic/senescing, and necrotic/senescent vegetation in time-series
338  of images for downstream physiological studies. Hence, the final stage of the image processing
339  workflow consisted in a classification of vegetation pixels into one of these fractions. The
340  difference between these is in general readily observable based on color properties in-field as
341  well as in RGB images (Anderegg et al., 2020; Cai et al., 2016; Serouart et al., 2022), although
342 it may be difficult to define exact thresholds separating them. Here, we took an approach very
343  similar to the one proposed by Serouart et al. (2022). Specifically, pixels making up the

344  vegetation fraction were classified into one of the three fractions using a multiclass random
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345  forest classifier with different color spaces (RGB, L*a*b*, L*u*v*, HSV, HSI, YCbCr and
346  YUV) as input features. In contrast to the procedure advocated by Serouart et al. (2022) for the
347  sampling of training and validation data, we trained the model using selected patches of
348  vegetation with an unambiguous status. This is likely to result in a biased performance estimate
349  for the classifier, because easy-to-classify patches are preferably sampled in the process. We
350 reasoned that a vast majority of vegetation pixels can always be confidently attributed to one
351  of these classes, even in underexposed parts of images, with edge cases making up a very small
352 fraction of an image. Therefore, and given the continuity between classes which renders a
353 classification inherently subjective through the definition of arbitrary thresholds, we argue that
354  this does not constitute a limiting factor, while greatly simplifying the generation of training
355 data. Training data was sampled from 96 images which were selected to represent an equal
356  number of images per genotype (n =16), per light condition (diffuse or direct sunlight) and per
357  phenological phase during grain filling (stay-green, senescing, and senescent). Model hyper-
358  parameters were tuned first through a randomized search to reduce the parameter search space,
359 and subsequently through an exhaustive grid search within the reduced space. The python
360 library ‘scikit-learn’ (Pedregosa et al., 2011) was used for this purpose. To identify the most
361  predictive color features for this classification, we also performed feature selection using the
362  recursive feature elimination wrapper approach, as described in detail earlier (Anderegg et al.,

363  2020).

364 Modelling of trait dynamics

365 Image-based time-point specific trait values were further processed to capture the dynamics
366  of vegetation cover and vegetation status throughout the grain filling phase. Four-parameter
367  Gompertz models were used to fit the decrease of healthy green vegetation as well as the

368 increase in necrotic/senescent vegetation over time

369 S=A+C ~exp[—exp[—b * (t — M)]] (eq. 1)


https://doi.org/10.1101/2023.03.01.530609
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.01.530609; this version posted March 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

370 where S represents the trait value, A and (A + C) are the lower and upper asymptotes,
371  respectively, b is the rate of change at time M and M is the time point when the rate is at its
372  maximum (Gooding et al., 2000). Models were fitted using the R package ‘nls.multstart’
373  (Padfield and Matheson, 2018). Since the fraction of chlorotic plant material and vegetation
374 cover at organ level did not show a monotonous change during the assessment period, P-splines
375  were used for those cases. P-splines were fitted using the R package ‘scam’ (shape-constrained
376  additive models; Pya and Wood, 2015), with the number of knots set to three quarters of the
377  number of observations. From the fitted data, a set of dynamics parameters was then extracted
378  (Figure 2): from the Gompertz model, all four parameters and the integral under the curve were
379  extracted; from the P-spline fits, we extracted the maximum value, the time points when one
380  quarter and one half of the maximum was reached in the increasing and the decaying phase (g1,
381 @2, h1, h2) as well as the durations g2-ql (intg) and h2-h1 (inth), and the integral under the

382  fitted curve.
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384 Figure 2 Dynamics parameters extracted for the modelled temporal trends in chlorosis and greenness extracted from a time-
385 series of RGB images. Black circles are raw data points for one experimental plot (genotype ‘Aubusson’, treatment ‘FOI’),
386 green lines show the model fits. Blue dots represent time-points extracted in days after sowing, blue lines indicate fractions or
387 changes (dimensionless). For both curves, the integral was also extracted. For chlorosis, the parameter max represents the
388 maximum of the chlorotic fraction reached; the parameters g1, g2, h1, and h2 denote the time points when one quarter and
389 one half of the maximum was reached in the increasing and the decaying phase; the parameters intq and inth represent the
390 durations g2 — g1 and h2 — h1, respectively. For the greenness decay, the parameters A, (A + C), b, and M are the four
391 parameters fully describing the fitted curve, i.e., the lower and upper asymptotes, the rate of change at time M, and the time
392  point when the rate is at its maximum, respectively.
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393 Visual greenness scorings were linearly interpolated to daily resolution. We used linear
394 interpolation rather than (semi-)parametric models as advocated previously (e.g., Anderegg et
395 al., 2020; Christopher et al., 2014) because temporal patterns differed strongly across plots,
396 likely due to the presence of treatments, which made the choice of an appropriate non-linear
397  model difficult (Supplementary Figure S3). From the fitted data, a set of dynamics parameters
398  were extracted: The onset, midpoint, and end of greenness decay were extracted as the time
399  points when visual scorings fell below pre-defined thresholds (8 and 0.8, 5 and 0.5, 2 and 0.2

400 for visual scorings and the green fraction, respectively). The curve integrals were also extracted.

401  Statistical Analysis

402 Spatial trends in all time-point specific and time-integrated image-based and reference traits
403  were estimated by fitting two-dimensional P-splines to raw plot values using the R-package
404  ‘SpATS’ v.1.0-11 (Rodriguez-Alvarez et al., 2018). Row and column were modelled as
405  additional random effects. To obtain spatially corrected plot values and an estimation of the
406  spatial trend, we encoded each genotype-by-treatment combination as a factor with 48 levels
407  (i.e., one level for each of the full-factorial combinations of the 16 genotypes and 3 treatments).
408  For the disease incidence scorings, an additional fixed effect was included in the model that
409  specified the scorer (3 levels), with the aim of accounting for possible scorer bias. Finally, using
410  spatially corrected plot values, treatment contrasts per trait for each genotype were extracted
411  based on treatment means. Pearson product moment correlations between treatment contrasts
412  in different traits were computed across the 16 genotypes included in the experiment using the

413  function cor.test() of the R-package ‘stats’.

414  Code and data set availability and reproducibility

415 All image processing and statistical analyses were implemented in python and R (R Core

416  Team, 2018). All code and data sets pertaining to the described deep learning model
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417  optimization and training will be open-sourced on Github, an archived version will be made
418 available via the ETH Zirich publications and research data repository (https://

419  www.research-collection.ethz.ch/).

420 Results

421  Semi-synthetic data enabled the training of a powerful vegetation segmentation
422  model with minimal annotation effort

423 Our approach for a precise and objective annotation of all vegetation in senescing and/or
424 diseased canopies (Figure 1) enabled the generation of 206 training patches sized 2400 x 2400
425  pixels at the cost of approximately 80 h of annotation effort. In comparison, approximately 150
426  h of annotation effort were invested in the annotation from scratch of 74 validation patches
427  sized 1200 x 1200 pixels. This represents a 20-fold decrease in time spent on annotation. Our
428 approach also limited annotation uncertainties to parts of images where reviewing was
429  necessary, which regarded mostly underexposed parts of images, thus ensuring high-quality

430 annotations.

431 The vegetation segmentation model trained directly on the raw composite images achieved
432  an overall validation F1-Score of 0.929, whereas the same model trained on style-transferred
433  composite images achieved a validation F1-Score of 0.951 (Supplementary Figure S4). Thus,
434  the CycleGAN-mediated style transfer decreased the error rate by approximately 30%. Whereas
435 the performance of the model trained on style-transferred composites remained stable
436  throughout the training process (validation F1-Score of approximately 0.945), the performance
437  of models trained on raw composites tended to deteriorate as training progressed (validation
438  F1-Score decreasing to below 0.90; Supplementary Figure S4), suggesting that these models
439  increasingly extracted patterns found only in composite images and not representative of the

440  real data set. These results are in good agreement with the general visual impression of style-
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441  transferred composite images being more representative of the real data. Most notably, the
442  frequently observed dissonance between foreground and background in terms of saturation was

443  eliminated during style transfer (Figure 3A-D).

444

445 Figure 3 Composite images used for training of the vegetation segmentation models. Letters denote pairs of composite images
446  before (raw; “.17) and after style transfer (“.2”). (A-D) Images were captured under direct sunlight; (E-F) Images were
447 captured under diffuse lighting. A separate CycleGAN was used for direct and diffuse lighting. (E) and (F) show identical plant
448  foregrounds combined with different soil backgrounds.

449 Plant foregrounds could be combined with multiple randomly selected soil backgrounds
450  (Figure 1F). Using a fixed CNN architecture and training procedure, training on ten instead of

451  a single composite per plant foreground enabled an increase of the canopy segmentation
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452  model’s overall Fl-score from 0.941 to 0.948, corresponding to a reduction of incorrect

453  classifications by approximately 10% (Supplementary Figure S5).

454  CNN-based semantic segmentation of high-resolution RGB images enabled the
455  extraction of ear and shoot properties throughout the grain filling phase

456 Manual annotations of wheat ears from scratch on 180 image patches sized 1200 x 1200
457  pixels was sufficient to achieve useful performance also for the ear segmentation model, with
458  anoverall validation F1-Score of 0.89. A more detailed analysis of the performance metrics for
459  both segmentation models at the level of individual validation images suggested that models
460  performed equally well under direct and diffuse lighting as well as across phenological phases,
461 i.e., during the stay-green and throughout the senescence phase (Supplementary Figures S6-
462  S9). This allowed us to exclude a systematic bias from variable model performance across
463 measurement dates. Some diverse examples illustrating the segmentation models’

464  performances are given in Figure 4.
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466 Figure 4 Inference on one randomly selected image for eight of the 17 measurement dates using the separate vegetation
467 segmentation and ear segmentation models.

468 The cross-validated training accuracy (class-frequency-balanced) of the random forest

469  classifier for classification of vegetation pixels into healthy/green, chlorotic/senescing, and
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470  necrotic/senescent tissue was 0.967 = 0.006 (mean + standard deviation across 10 folds). This
471  high accuracy reflects the separability of the pixels in the training data set, particularly in HSV
472  color space as well as some color indices (Supplementary Figure S10), which may in part be
473  attributable to the somewhat biased training and validation data sampling strategy. However,
474  training and validation data was sampled from numerous images representing strongly
475  contrasting scenarios, and within those images from regions with strongly contrasting light
476  exposure. Accordingly, the high accuracy also reflects the fact that, in comparison to the initial
477  semantic segmentation, this 3-way classification is not a particularly challenging task (see
478  Figure 5 for some examples). Interestingly, recursive feature elimination revealed that the RGB
479  color space was not particularly useful for this classification. Instead, classifiers relying
480  exclusively on the H channel of the HSV color space (H_HSV), u_Luv and the Excess
481  greenness index (ExG) achieved near-optimal performance, with the addition of all other

482  features having a negligible effect (Supplementary Figure S11).

483

484 Figure 5 Prediction of vegetation status based on vegetation pixels color properties. Results are shown for one randomly
485 selected image for four of the 17 measurement dates. Original images and corresponding prediction masks are shown, with
486 green pixels indicating predicted healthy/green vegetation, yellow pixels indicating predicted senescing/chlorotic vegetation,
487 brown pixels indicating predicted senescent/necrotic vegetation, and black pixels indicating predicted soil background.

488  Segmentation of image time-series revealed dynamic patterns of vegetation cover

489  and physiological status for ears and shoots
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490 Plot-level time series of organ-level vegetation cover and vegetation status fractions further
491  illustrate the high quality of the image segmentation. Both vegetation cover and vegetation
492  status at the global and at the organ scale followed smooth temporal trends that were similar
493 across all experimental plots and that could be very well explained (Figure 6, Figure 7,
494  Supplementary Figures S12-S16). This is particularly noteworthy because our measurement
495  setup did not guarantee that the exact same area of each plot was measured in subsequent
496  images. Specifically, total vegetation cover showed a decreasing trend, whereas ear cover
497  increased during grain filling in all plots. Consequently, shoot cover (i.e., vegetation cover
498  without ears) showed a strongly decreasing trend, starting already approximately 10 d post-
499 anthesis (Figure 6) and thus about two weeks earlier than the visually detected onset of canopy
500 senescence in the earliest genotypes. The smooth temporal trends in all extracted traits clearly
501 indicate a stable performance of the segmentation models irrespective of lighting conditions,

502  genotype, treatment, or growth stage of the crop (Supplementary Figures S12-S14).
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504 Figure 6 Fraction of images representing different components of vegetation, i.e., total vegetation, wheat ears, and vegetation
505 without ears (i.e., leaves + stems = shoot) and their evolution over time between the first measurement at heading (May 25,
506 2022 [219 DAS, GS 55]) and the last measurement at physiological maturity (July 7, 2022 [262 DAS, GS 91]). Black curves
507 represent p-spline fits to 17 data points for each experimental plot. Colored lines represent treatment means. Refer to
508 Supplementary Figures for model fits and raw data at plot level.
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509 The dynamics of the green fraction in shoots extracted from images closely followed the
510 dynamics of the visual canopy greenness scores. Dynamics parameters extracted from image
511  time series and from scorings were highly correlated, except for the onset (r = 0.41, r=0.86, r
512 =0.91andr =0.87 for the onset, midpoint, end, and Integral, respectively; Figure 8). The trivial
513  reason for the low correlation at the onset is the difficulty of defining an adequate threshold
514  value across all plots, as it seems inappropriate to rescale fractions to a constant scale
515  (Supplementary Figure S15). The fraction of the chlorotic/senescing tissue in vegetation
516  components showed a peak during physiological senescence but was very low outside of this
517  peak. This peak was clearly distinguishable in all plots and was more pronounced for ears than

518  for shoots (Figure 7).
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520 Figure 7 Relative contribution of healthy green, senescing/chlorotic, and senescent/necrotic tissue at organ level (total
521 vegetation, shoot, and ears) and their evolution over time between the first measurement at heading (May 25, 2022 [219 DAS,
522  GS55]) and the last measurement at physiological maturity (July 7, 2022 [262 DAS, GS 91]). Black curves represent four-
523 parameter Gompertz model fits or p-spline fits to 17 data points for each experimental plot. Colored lines represent treatment
524 means. Refer to Supplementary Figures for model fits and raw data at plot level. Vertical dashed lines mark time points when
525  the amount of STB was quantified.
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Figure 8 Pairwise correlation between canopy greenness decay dynamics parameters extracted from image time series and
from visual scorings. Time points are reported in days after sowing (DAS). Pearson product moment correlation coefficients
and p-values of the linear correlation are reported. The blue line represents the least squares line, the shaded ribbon represents
the 95% confidence interval of the least squares line.
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STB Severity

Figure 9 Distribution of septoria tritici blotch (STB) severity measured on three assessment dates (t1 — t3) during grain filling,
depending on the treatments applied. STB severity was assessed as the product of visually scored disease incidence and image-
based estimation of the percentage leaf area covered by STB lesions on infected leaves. At t1, assessments were made on a
subset of plots where incidence was greater than or equal to 1/3, on flag leaf minus one. At t2 and t3, assessments were made
on flag leaves. Points and horizontal whiskers below the bar plot represent per-treatment mean values and their standard
deviations. Plot-based raw values are shown.
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538 Experimental treatments and genotype selection created a large variability in
539 incidence and severity of foliar diseases

540 When averaging across all genotypes, there was a clear effect of the artificial inoculations
541 on STB severity starting from t2 (Figure 9). The difference between inoculated and non-
542  inoculated plots was primarily attributable to a strongly increased STB incidence, whereas
543  conditional STB severity was more similar across treatments (Supplementary Figure S17,
544  Supplementary Figure S18). In contrast, no strong effect of the inoculations was observable yet
545  at t1, consistent with the long latency period of the disease of approximately 4 weeks. The
546  development of the STB epidemic resulting from the artificial inoculations coincided with the
547  onset of physiological senescence in many plots (Figure 7). Specifically, STB severity was still
548 low at t1 even on flag leaf-1 (Figure 9), when first plots already showed signs of physiological
549  senescence as indicated by increasing chlorosis and necrosis (Figure 7, Supplementary Figure
550 S3). This was primarily the result of a generally early onset of senescence, which occurred
551  about 8 d earlier than in a neighboring wheat experiment sown on the same date. Additionally,
552  there were very strong spatial effects in the timing of senescence which accounted for more

553  than 6 d differences (Supplementary Figure S19).

554 In terms of STB, there was no difference at the treatment level between the FOI and OFOI
555  treatments. This indicated that there was natural STB infection in these treatments which was
556  not affected significantly by the early application of fungicide at GS 31. This is also supported
557 by incidence assessments at t1 that revealed significant presence of STB infections especially
558 at the flag leaf-1 and flag leaf-2 layers (Supplementary Figure S17). In contrast, the presence
559  and severity of other foliar diseases, notably of yellow rust and brown rust, was strongly
560 affected by the early application of fungicide (not shown). These diseases were clearly

561 dominating in untreated plots, whereas they were virtually absent from fungicide-treated plots.
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562 Besides the strong treatment effect, there was also ample variation of STB severity within
563 treatments (Figure 9), largely attributable to genotypic differences in disease resistance and
564  susceptibility. Genotypic means for STB severity based on individual, not spatially corrected
565  plot values, at t2 ranged from 0.02 to 0.69, from 0.03 to 0.73, and from 0.10 to 0.84 for the

566  treatments OFOI, FOI, and FI, respectively.

567 STB severity correlated with image-derived greenness decay dynamics and
568 temporal patterns of chlorosis

569 The near-complete temporal overlap between the onset of the STB epidemic and
570  physiological senescence (Figure 7) as well as strong spatial heterogeneities (Supplementary
571  Figure S19) complicated the analysis of the effects of these traits on vegetation dynamics as
572  reported in Figure 6 and Figure 7. Despite this, an overall treatment effect was observable on
573 the dynamics of the green/healthy and the necrotic/senescent fractions of vegetation,
574  particularly for shoots (Figure 7). Specifically, artificial inoculations (‘FI’ treatment) caused an
575  earlier and faster decline in the green fraction of shoots and a concomitant earlier and faster
576  increase in the necrotic/senescent fraction, when averaging across all plots within a treatment
577  (Figure 7). A similar shift did not occur for ears. At the treatment level, no effects were

578  observable on the temporal patterns of chlorosis.

579 When comparing treatment contrasts at the genotype-level based on spatially corrected plot
580 values, a negative correlation between STB severity and the onset of canopy greenness decline
581  was observed (Figure 10) suggesting that the developing STB epidemic was detected as an
582 earlier decline in overall canopy greenness and confirming the above observation at the

583 treatment level.


https://doi.org/10.1101/2023.03.01.530609
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.01.530609; this version posted March 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

h2_chir_shoot inth_chir_shoot intg_chlir_shoot
29 R=054p=003 @ R=05p=0046 @ 104 R=052,p=0038 ®

0-
L]
L

-4 [
'r:u' max_chlir_shoot g1_chlir_shoot q2_chir_veg
i 0057 R= 057 p=0021 ©R= 057,p=0022
& 51 . 4] R=054pg=0031
=
)
% 0.00+ 04
(]
=
—~—
S -0.054 57
T ®

| ]

i 101 27
ot T
<] 00 02 04 06 00 02 04 08

t20_green_veg

® R= 055 p=002P
s

584 A(Fl-FQl) STB Severity

585 Figure 10 Pairwise correlation between the difference in STB severity and in vegetation fraction dynamics at the genotype-
586 level (n = 16) as observed between the treatments ‘FI’ (early fungicide application + later inoculation — “clean STB”) and
587 ‘FOI’ (early fungicide application, no inoculation — “healthy control”). Trait contrasts between treatments at the genotype-
588 level were calculated as the difference of the mean corrected plot values for each genotype in each treatment. The parameters
589 g1, g2, hl, and h2 denote the time points when one quarter and one half of the maximum was reached in the increasing and
590 the decaying phase; the parameters intq and inth represent the durations g2 — q1 and h2 — h1, respectively (refer to Figure 2
591  for agraphical representation).

592 Besides the dynamics observed for the green and still healthy fraction, treatment contrasts
593 in temporal patterns of chlorosis were also correlated with treatment contrasts in STB, which
594  was not observed at the treatment level. A higher STB severity tended to result in a longer
595  period during which significant chlorosis could be detected, but at the same time reduced the
596  maximum chlorotic fraction detected in shoots (Figure 10). This suggested that, although no
597  correlations between STB severity and the green fraction was observed during later stages, the
598 relative contribution and timing of the necrotic and chlorotic fraction to the reduction in the
599  green fraction differed depending on STB severity. Correlations for all extracted dynamics

600 parameters are reported in Supplementary Table S2.
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601 Discussion

602 The main objective of this study was to develop methods enabling a detailed dynamic
603 assessment of the physiological status of ears and shoots in wheat canopies throughout grain
604  filling, as well as to develop perspectives on how such information may help elucidate the
605 impact of stresses and stress responses. The following sections will therefore discuss the
606 potential and limitations of the proposed methods and examine potential applications in the
607  context of breeding for increased resistance and/or tolerance to biotic stress as well as optimized

608  senescence dynamics.

609 An efficient method to generate high-quality training data for vegetation
610 segmentation under challenging conditions

611 In contrast to the annotation of readily recognizable individual organs, annotation of all
612  vegetation in high-resolution images is challenging and extremely time-consuming. This is true
613  particularly for maturing wheat canopies which are characterized by fine structures, very similar
614  color properties as the soil background, and a complex canopy architecture resulting in complex
615 lighting and shading patterns. Though a subsequent partitioning of the vegetation fraction to
616 the organ-level is also challenging, individual organs such as ears are easier to recognize and,
617  provided they stand out from their background, even weak bounding box annotations may
618 provide a sufficient basis for the development of useful segmentation models (Dandrifosse et

619  al., 2022b).

620 To overcome the limitation of generating sufficient training data for vegetation
621  segmentation, we tested an approach based on image composition and domain transfer. Several
622  earlier studies have implemented similar strategies or components of the strategy implemented
623  here, especially in the context of weed detection or segmentation (e.g., Di Cicco et al., 2017;

624  Fawakherji et al., 2020; Gao et al., 2020; Sapkota et al., 2022), although these studies typically
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625 had a strong focus on the generation of scenes with sparse vegetation and weed plants with a
626  rosette-like growth habit. The approach presented here was chosen because it was expected to
627  have high chances of success, since composite images contain all the features that are typically
628  observed in real images of wheat stands, including all components of a stay-green or senescing
629  wheat canopy, complex lighting, and richly textured and highly variable soil background. In
630  contrast to other studies (e.g., Gao et al., 2020; Sapkota et al., 2022), the isolation of foreground
631 instances was more challenging in our case due to the need to segment senescent plant tissues,
632 and some manual annotation could not be avoided (Figure 1E). Nevertheless, the annotation
633  effort was reduced about 20-fold with respect to annotations from scratch, and the risk for
634  annotation errors was minimized. Data augmentation procedures - especially the application of
635 color jittering - did not improve the performance of the segmentation model (Table 1),
636 indicating that the synthetic training images were highly representative of the real-world data
637  set. Visual examination of the domain-transferred composite images occasionally revealed
638 atypical features such as small patches of greenish soil (see e.g., Figure 3E, 3F), especially in
639  cases where the original soil background image had low saturation. It may therefore be that the
640 domain transfer introduced some noise that resulted in a more diverse training data set than

641  could have been obtained through manual annotation of a set of images from the target domain.

642 The datasets generated in the context of this study explicitly cover a wide range of scenarios
643 in terms of genotype morphology, healthiness, canopy structure, soil background, lighting
644  conditions, and phenology. In contrast, robustness of trained segmentation models to variation
645 in imaging set-up, type of vegetation, or camera parameters was not addressed here and may
646  limit the usefulness of the data sets in other contexts, as compared to the data set described by
647  Serouart et al. (2022). However, our approach is directly applicable to additional scenarios
648  (future wheat experiments, or even experiments involving other crops), which facilitates an

649  expansion of the data set with low effort.
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650 Our results encourage more detailed studies that should evaluate whether fully synthetic
651 training data could be obtained, e.g., through a combination of functional-structural plant
652  growth models such as ADEL-Wheat (Fournier et al., 2003) with open-source rendering
653  software such as Blender (Blender foundation, https://www.blender.org). Promising results
654  have been achieved using similar approaches in other contexts, e.g. for Arabidopsis (Ubbens et

655 al., 2018) and sweet pepper (Barth et al., 2018).

656 Color-based inference of vegetation status at organ-scale using high-resolution
657 RGB imagery

658 The identification of the vegetation fraction and the separation of ears and shoots enabled a
659  component-level analysis of color properties in this study. The three-way classification done
660  here represents one amongst several possible ways to gain insights into the relative contribution
661  of different vegetation fractions. A similar approach was used by Makanza et al. (2018) who
662 classified pixels in aerial images into ‘green’, ‘yellow’ and ‘dry brown’, interpreting these
663  classes as representing differentially advanced stages of canopy senescence. Serouart et al.
664  (2022) performed a two-way classification of previously segmented vegetation pixels into green
665 and senescent pixels, considering both chlorotic and necrotic vegetation as ‘senescent’. In
666  agreement with our results, this study also highlighted the need for color space conversion in
667  order to achieve a robust classification (Serouart et al., 2022). Other studies used color indices
668  to infer vegetation status or separate green from senescent vegetation (Anderegg et al., 2023;
669  Rasmussen et al., 2019; Schirrmann et al., 2016). Here, it was reasoned that chlorosis and
670 necrosis represent readily visually distinguishable vegetation fractions with a distinct
671  physiological status. Widespread chlorosis is typically indicative of a tightly controlled
672  senescence process encompassing a degradation of chloroplasts as well as major changes in the
673  chlorophyll/carotenoid ratio resulting from differential breakdown rates of these pigments

674  during early senescence (Fischer and Feller, 1994; Lim et al., 2007; Sanger, 1971). The
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675 involved controlled degradation processes support nutrient remobilization and subsequent
676  nutrient translocation to developing grains, which is critical for yield and quality formation in
677  wheat (Kichey et al., 2007). In contrast, direct necrosis causes a complete loss of function and
678  the trapping of resources in the affected tissues. Therefore, chlorotic and necrotic fractions
679  should be considered separately. The color-based approach commonly used to achieve this
680  separation may be limited in precision, because (i) the senescence-related transition from green
681  to chlorotic and ultimately necrotic tissue is a continuous process, meaning that a definition of
682  thresholds is inherently arbitrary and subjective, and (ii) reliance on the visible spectrum may
683  be insufficient to precisely detect the switch from stay-green to senescence (Jagadish et al.,
684  2015; Merzlyak et al., 1999). However, even if some degree of subjectivity remains, the
685 application of well-defined decision boundaries irrespective of the context should guarantee
686  unbiased estimates of vegetation fractions across trials and genotypes. Furthermore, with a view
687  towards high throughput applicability under field conditions, spatial resolution and thus the
688  possibility to eliminate background signal and extract properties separately for different
689  vegetation components may offer significantly larger benefits than a high spectral resolution,
690 because vegetation cover and the relative contributions of different vegetation components
691  change massively during the final growth stages (Figure 6). Such changes are highly likely to
692  be genotype-specific, thus introducing a large bias in canopy-level signals if disregarded
693  (Anderegg et al., 2020). In the future, merging different types of sensor data to extract
694  component-level information beyond the visible spectral domain may offer significant potential

695  for more precise and objective measurements (Dandrifosse et al., 2022a; Jagadish et al., 2015).

696 Leveraging vegetation dynamics to track epidemics and separate effects of foliar

697 diseases and physiological senescence on canopy greenness decay

698 Repeated imaging enabled the extraction of temporal patterns in vegetation fractions for

699 ears and shoots during the development of the STB epidemic and senescence using dynamic
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700  modelling. Despite the challenging outdoor conditions varying strongly across imaging time
701  points (see Figure 4), our segmentation pipeline enabled the extraction of clear temporal
702  patterns from repeated imaging (Figure 2, Figure 7, Supplementary Figures S15 and S16). The
703  observed patterns are in good agreement with the expectation that the green fraction should
704  show a monotonous decrease that can be well described using parametric models (Figure 2,
705  Figure 7, Supplementary Figure S15; Anderegg et al., 2020; Bogard et al., 2011; Christopher et
706 al., 2014). The chlorotic fraction showed a peak during rapid physiological senescence but was
707  virtually absent outside of this restricted time window, which is well in line with the

708 interpretation of chlorosis as a phenotypic marker for physiological senescence.

709 The ability to track the dynamic development of the green, chlorotic and necrotic fractions
710  at component level offers new opportunities to assess the impact of stresses as well as stress
711  responses. First, repeated assessments of the green, chlorotic and necrotic fractions may enable
712  aprecise detection of the moment when leaf senescence or leaf disorders start to affect the light
713  absorption capacity of the upper-most leaf layers, irrespective of changes in organ or
714  background contribution to the scene. While both foliar diseases and physiological senescence
715  ultimately lead to widespread necrosis, the sequential development of the symptoms differs
716  markedly: the development of necrotic lesions caused by pathogens is not typically preceded
717 by chlorosis to a similar extent. Necrosis remains restricted to scattered regions on leaves, thus
718  causing necrotic islands in green tissues. In contrast, widespread chlorosis should mark the
719  onset of physiological senescence. Consequently, a separate quantification of the chlorotic and
720  necrotic vegetation fractions should provide insights into the drivers of greenness decay, where
721  a large contribution of chlorosis (both in terms of the fraction of vegetation affected and in
722  terms of the duration of its persistence) indicates a strong contribution of physiological
723  senescence, whereas prominent necrosis without a gradual transition through chlorosis indicates

724  leaf damage. These leaf damages are likely to result from biotic stress, because abiotic stress is
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725  well known to accelerate physiological senescence (Bogard et al., 2011; Distelfeld et al., 2014;

726  Martre et al., 2006), but does not typically cause localized leaf damage.

727 Despite the near-simultaneous onset of the STB epidemic and physiological senescence and
728  pronounced field heterogeneity, our analysis revealed an effect of STB especially on the
729  dynamics and prominence of chlorosis in shoots (i.e., the disease-affected fraction; Figure 10).
730  Specifically, higher STB severity coincided with a lower contribution of chlorosis to the overall
731 greenness decay, in line with our above interpretations. A detailed comparison of the temporal
732 dynamics of chlorosis and necrosis is likely to reveal potential and currently elusive interactions
733  between disease-induced necrosis and physiological senescence. This is highly relevant, since
734 the capacity of genotypes to maintain the functionality of remaining healthy leaf area and avoid
735 an anticipation of (or even delay) the onset of physiological senescence in the presence of
736  disease may represent an important compensation mechanism leading to tolerance. Anticipating
737  the onset of the STB epidemic with respect to the onset of physiological senescence (e.g.,
738  through earlier inoculations) will allow for more detailed investigations of the interactions
739  between foliar diseases and physiological senescence. The potentially high-throughput nature

740  of the proposed methods paves the road to genetic studies in this direction.

741 Finally, an interesting observation was that ear senescence patterns appeared to be
742  unaffected by the presence and severity of STB. In contrast, we frequently observed an extended
743  persistence of green stems in heavily diseased inoculated plots. We hypothesize that this may
744  represent a response to premature losses in green leaf area, facilitating a more complete
745  remobilization of stem reserves to sustain concurrent grain filling. Further distinguishing
746  between stems and leaves within the shoot may therefore reveal additional compensation
747  mechanisms using the same data sets. Additionally, the separation of stems including peduncles
748  would greatly enhance the scoring of physiological senescence, as peduncle senescence is

749  considered a reliable measure for this trait (Chapman et al., 2021).
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750  Limitations of the approach in terms of disease detection and quantification

751 Image data collected here has sufficient resolution to enable an easy recognition of
752  individual disease symptoms such as necrotic lesions or rust pustules. However, a precise
753  diagnosis especially for necrotrophic diseases requires an even higher resolution (Karisto et al.,
754  2018; Stewart et al., 2016), because unique features attributable to certain diseases such as black
755  fruiting bodies (pycnidia) within necrotic lesions in the case of STB may be microscopic.
756  Methods for in-field disease detection and quantification in stay-green canopies using very
757  high-resolution imagery are currently being developed (Zenkl et al., unpublished), and will

758  represent an important complement to the methodologies developed in this study.

759 In terms of disease quantification, nadir imagery is always limited by the restricted visibility
760  of lower leaf layers. This is particularly problematic in the case of STB as the symptoms are
761  typically more visible on the lower leaves and the disease moves into the top leaf layers via
762  splash-dispersed spores, followed by a long latent period. Hence an early detection of the
763  disease using nadir images is practically impossible. Whereas early disease detection is not a
764  primary objective in breeding, it is key for the implementation of concepts of precision
765  agriculture. Successful early detection of STB will arguably always have to involve some sort
766  of physical interaction with the crop to expose lower leaf layers. Here, we aimed to maximize
767  the visibility of lower leaf layers by setting an optimal exposure bias within the tolerable range.
768  High dynamic range cameras may offer interesting opportunities to minimize this issue, but

769  occlusion will remain the dominant problem is this respect.

770  Conclusions

771 The use of state-of-the-art deep learning models for image segmentation and a subsequent
772  color-based classification and dynamic modelling facilitated a time-resolved monitoring of the

773  physiological status of vegetation separately for ears and shoots. Application of these methods
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774  to image time series allowed for an accurate reproduction of visually observed greenness decay
775  dynamics and revealed contrasting temporal patterns of greenness decay and chlorosis in plots
776  differing with respect to their infestation levels with foliar diseases. The observed patterns are
777  in good agreement with an interpretation of chlorosis as a phenotypic marker of physiological
778  senescence, suggesting that a separate analysis of the chlorotic and necrotic vegetation fraction
779 in disease-affected vegetation components may facilitate a separation of the effects of foliar
780  diseases and physiological senescence on overall greenness dynamics. Thus, the developed
781  tools hold significant potential for high throughput assessments of crop responses to biotic

782  stress under field conditions.
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