

1 **Evaluating The Efficacy Of Endotracheal Epinephrine Administration At Standard**
2 **Versus High Dose During Resuscitation Of Severely Asphyxiated Newborn Lambs: A**
3 **Randomized Preclinical Study**

4 Graeme R. Polglase^{1*}, Yoveena Brian^{1*}, Darcy Tantanis¹, Douglas A. Blank^{1,2}, Shiraz
5 Badurdeen^{1,4}, Kelly J. Crossley¹, Martin Kluckow⁵, Andrew W. Gill⁶, Emily Camm¹, Robert
6 Galinsky¹, Nils Thomas Songstad⁷, Claus Klingenberg⁷, Stuart B. Hooper¹ and Calum T.
7 Roberts^{1,2,3}

8 *Joint first author.

9

10 ¹ The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and
11 Gynaecology, Monash University, Melbourne, VIC, Australia

12 ² Department of Paediatrics, Monash University, Melbourne, VIC, Australia

13 ³ Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia

14 ⁴ Newborn Research Centre, The Royal Women's Hospital, Melbourne, Australia

15 ⁵ Department of Neonatology, Royal North Shore Hospital & University of Sydney, Sydney,
16 NSW, Australia

17 ⁶ Centre for Neonatal Research and Education, The University of Western Australia, Subiaco,
18 WA, Australia

19 ⁷ University Hospital of North Norway, Tromsø, Norway,

20

21 **Corresponding author:**

22 Dr Calum T. Roberts

23 Monash Newborn, Monash Children's Hospital

24 246 Clayton Road, Clayton, Victoria 3168, Australia

25 Email: calum.roberts@monash.edu

26 Phone: +613 85722823

27 **Running Title:** Endotracheal epinephrine at standard versus high dose

28

29 **Manuscript word count:** 4656

30 **Abstract word count:** 298

31 **Keywords:** Resuscitation; Infant, newborn; Animal, Epinephrine; Infusions,

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51 **Abstract**

52 **Background**

53 Epinephrine treatment is recommended during neonatal resuscitation, if ventilation and chest
54 compressions are ineffective. Endotracheal administration is an option, if the preferred
55 intravenous route is unavailable. We aimed to determine the efficacy of endotracheal
56 epinephrine for achieving return of spontaneous circulation (ROSC), and maintaining
57 physiological stability after ROSC, at standard and higher dose, in severely asphyxiated
58 newborn lambs.

59 **Methods**

60 Near-term fetal lambs were instrumented for physiological monitoring, and asphyxiated until
61 asystole. Resuscitation was commenced with ventilation and chest compressions as per
62 ILCOR recommendations. Lambs were randomly allocated to: IV Saline placebo (5 ml/kg,
63 n=6), IV Epinephrine (20 micrograms/kg, n=9), Standard-dose ET Epinephrine (100
64 micrograms/kg, n=9), and High-dose ET Epinephrine (1 mg/kg, n=9). After three allocated
65 treatment doses, rescue IV Epinephrine was administered if ROSC had not occurred. Lambs
66 achieving ROSC were ventilated and monitored for 60 minutes before euthanasia. Brain
67 histology was assessed for micro-hemorrhage.

68 **Results**

69 ROSC in response to allocated treatment (without rescue IV Epinephrine) occurred in 1/6
70 Saline, 9/9 IV Epinephrine, 0/9 Standard-dose ET Epinephrine, and 7/9 High-dose ET
71 Epinephrine lambs respectively. Three Saline, six Standard-dose ET Epinephrine, and one
72 High-dose ET Epinephrine lambs achieved ROSC after rescue IV Epinephrine. Blood

73 pressure during CPR increased after treatment with IV Epinephrine and High-dose ET
74 Epinephrine, but not Saline or Standard-dose ET Epinephrine.
75 After ROSC, both ET Epinephrine groups had lower pH, higher lactate, and higher blood
76 pressure than the IV Epinephrine group. Cortex micro-hemorrhage was more frequent in the
77 High-dose ET Epinephrine lambs (8/8 lambs examined, versus 3/8 in IV Epinephrine lambs).

78 **Conclusions**

79 The currently recommended dose of ET Epinephrine was ineffective in achieving ROSC. In
80 the absence of convincing clinical or preclinical evidence of efficacy, use of ET Epinephrine
81 at this dose may not be appropriate.

82 High-dose ET Epinephrine requires further evaluation before clinical translation.

83

84

85

86

87

88

89

90

91 **Introduction**

92 Globally, birth asphyxia secondary to intrapartum-related conditions is a major cause of
93 neonatal mortality (second only to prematurity), resulting in more than 700,000 deaths
94 annually.(1) Amongst survivors, >400,000 infants per year will be neurologically impaired as
95 a result of birth asphyxia.(2) Infants exposed to asphyxia are likely to require resuscitation at
96 birth. Although the majority of infants that receive resuscitation will respond to basic measures
97 such as provision of positive pressure ventilation, those more severely affected by asphyxia
98 will require advanced measures. Current recommendations advise that cardiopulmonary
99 resuscitation (CPR) with chest compressions is commenced for infants who are asystolic, or
100 bradycardic with heart rate <60 bpm, despite adequate ventilation. For those most severely
101 compromised, the delivery of epinephrine is often essential to achieve return of spontaneous
102 circulation (ROSC). Although required in only a minority, those infants treated with
103 epinephrine have particularly high rates of neurodevelopmental impairment and death.(3)
104 Neonatal resuscitation guidelines include several potential routes for epinephrine
105 administration, with intravenous (IV) administration via an umbilical venous catheter (UVC)
106 preferred.(4, 5) However, gaining IV access may be time-consuming, or challenging to achieve
107 with limited numbers of resuscitation staff, thus delaying epinephrine administration and
108 placing the newborn at increased risk of prolonged hypoxia and ischemia due to poor cardiac
109 function. Alternatively, epinephrine can be administered via an endotracheal tube, which may
110 be placed early during the resuscitation for airway management. (4, 5) In simulated neonatal
111 resuscitation, endotracheal intubation is achieved four minutes earlier than UVC placement,
112 representing a clear advantage in achieving timely administration of epinephrine.(6)
113 However, epinephrine can only manifest its desired cardiovascular effects if it is sufficiently
114 available within the systemic circulation. Early preclinical data suggested that endotracheal
115 epinephrine administration could effectively achieve ROSC.(7) Studies in anaesthetised dogs

116 showed that endotracheally administered epinephrine was effectively absorbed into the
117 plasma,(8) but studies in both animals with spontaneous circulation, and those receiving CPR
118 after cardiac arrest, suggested that increased dosing was required in comparison with the
119 recommended IV dose to produce an elevation in plasma levels.(9, 10) These studies were all
120 conducted in older animals rather than newborns, so did not allow for important physiological
121 differences present in the newborn infant immediately after birth. Prior to lung aeration,
122 newborn infants have low pulmonary blood flow with a patent ductus arteriosus, and their
123 airways are filled with liquid.(11, 12) These differences could potentially have significant
124 effects on absorption and bioavailability of any drug administered into the trachea, including
125 epinephrine. More recent preclinical work in newborn lambs has shown that administration of
126 endotracheal epinephrine at the current recommended maximum dose (100 micrograms/kg)
127 results in lower plasma levels and lower rates of ROSC without the use of 'rescue' IV
128 epinephrine, when compared with standard dose IV epinephrine (10-30 micrograms/kg).(13,
129 14)

130 Clinical outcome data for the use of endotracheal epinephrine are limited: a systematic review
131 conducted in 2020 identified four observational studies that were suitable for inclusion, with
132 no randomised trials conducted in neonates.(15) The included observational studies contained
133 94 infants treated with endotracheal epinephrine. In the two largest studies combined, 54/74
134 infants (73%) receiving endotracheal epinephrine did not respond, and subsequently received
135 at least one IV epinephrine dose.(16, 17)

136 Resuscitation guidelines must take several factors into consideration, including ease of use,
137 time for device insertion, and effectiveness of treatment, when recommending routes of
138 epinephrine administration in the clinical setting (Figure 1). Current data suggest that the
139 endotracheal route may provide some advantage in speed of administration, but has relatively
140 poor efficacy. It is conceivable that the dose of endotracheal epinephrine required to achieve

141 ROSC in the newborn infant is substantially higher than that currently recommended, and that
142 this may explain the reduced rates of ROSC seen in both preclinical and clinical reports.
143 However, endotracheal epinephrine administration appears to produce a sustained and
144 amplified peak plasma level after spontaneous circulation has been restored,(13, 14) so such
145 an escalated dose may result in adverse effects in the post-resuscitation period.
146 We therefore aimed to determine the efficacy of endotracheal epinephrine for restoring cardiac
147 function, and maintaining physiological stability after ROSC, at both a standard dose and a
148 higher dose, in severely asphyxiated newborn lambs. We hypothesised that regardless of dose,
149 the endotracheal route would be less effective than the IV route in achieving ROSC.

150

151 **Methods**

152 Monash Medical Centre Animal Ethics Committee A, Monash University (MMCA2020/04)
153 approved all experimental procedures. The study was conducted in accordance with the
154 National Health and Medical Research Council of Australia's guidelines, and ARRIVE
155 guidelines(18).

156

157 **Instrumentation and delivery**

158 Pregnant Border-Leicester ewes (*Ovis Aries*) at $(139 \pm 2\text{d})$ days gestation (mean \pm SD; term
159 ~ 148 days) were initially anaesthetised with intravenous thiopentone sodium (20 mg/kg) and
160 anaesthesia was maintained, following intubation, by inhalation of isofluorane (1.5-5%) in
161 air/oxygen; the gas mixture was adjusted to maintain maternal arterial oxygen saturations
162 (SaO_2) of $>95\%$.

163 The fetus was partially exteriorised (head, chest and forelimbs) from the uterus and flow probes
164 of appropriate size were placed around the left main pulmonary artery and carotid artery
165 (Transonic Systems, Ithaca, NY, USA). Heparinized saline-filled catheters were inserted into

166 a carotid artery, brachial artery and jugular vein as described previously.(19) The carotid artery
167 catheter was connected to a pressure transducer (PD10; DTX Plus Transducer, Becton
168 Dickinson, Singapore) to measure systemic blood pressure. The lamb was completely removed
169 from the uterus and a rectal temperature probe was placed. A peripheral oxygen saturation
170 (SpO₂) probe (Masimo, Radical 4, CA, USA) was placed around the right forelimb and a Near
171 Infrared Spectroscopy (NIRS) Optode (Casmed Foresight, CAS Medical Systems Inc,
172 Branford, CT, USA) was placed over the scalp to continuously measure cerebral tissue oxygen
173 saturation (SctO₂). Blood pressures and flows, temperature and oxygen saturation were
174 digitally recorded throughout the study (1kHz, Powerlab; ADInstruments, Castle Hill, NSW,
175 Australia). The fetal trachea was intubated with a 4.5mm cuffed endotracheal tube, lung liquid
176 was drained passively and the endotracheal tube clamped.

177 The umbilical cord was clamped and the lamb was weighed before it was transferred to an
178 infant warmer (Fisher and Paykel Healthcare, Auckland, New Zealand). Asphyxia of the lamb
179 was induced by withholding respiratory support and progressed until the mean blood pressure
180 was reduced to ~0 mmHg, and no discernible activity was visible on the blood pressure/flow
181 traces, as per previous studies.(19)

182

183 **Treatment Allocation**

184 Immediately prior to surgery, lambs were randomly allocated, using a web-based random
185 sequence generator (www.random.org/lists), to one of four treatment groups:
186 1. ‘Saline’ (n=6), treated with intravenous 0.9% saline placebo (5ml)
187 2. ‘IV Epinephrine’ (n=9), treated with intravenous epinephrine (20 micrograms/kg)
188 according to standard neonatal resuscitation guidelines, followed by 0.9% saline flush (5ml)
189 3. ‘Standard-dose ET Epinephrine’ (n=9), treated with endotracheal epinephrine (100
190 micrograms/kg) at the maximum dose included in current neonatal resuscitation guidelines

191 4. ‘High-dose ET Epinephrine’ (n=9), treated with endotracheal epinephrine (1 mg/kg) at a
192 dose 10 times greater than the maximum dose in current neonatal resuscitation guidelines
193 The researcher leading the resuscitation team was aware of the route of epinephrine
194 administration, but blinded to the dose of ET epinephrine, which was provided as an identical
195 volume (1ml/kg) of either 1:10,000 (standard dose) or 1:1,000 (High-dose) epinephrine
196 solution.

197

198 **Resuscitation and Post-Resuscitation Care**

199 Resuscitation was initiated in air using positive pressure ventilation via a T-piece device
200 (Neopuff; Fisher and Paykel Healthcare, Auckland, New Zealand) with peak inflation
201 pressure 30 cmH₂O and end-expiratory pressure 5 cmH₂O, targeting 60 inflations per minute.
202 One minute after ventilation onset, chest compressions were initiated with a target of 90
203 compressions and 30 inflations per minute, and the fraction of inspired oxygen was increased
204 to 1.00 as per resuscitation guidelines.(5).

205 One minute after initiation of CPR and every three minutes thereafter, saline or epinephrine
206 was administered via the allocated route. ROSC was defined as diastolic blood pressure >20
207 mmHg and spontaneous heart rate at >100 bpm, and determined by the researcher leading the
208 resuscitation. If ROSC was not achieved after three allocated treatment doses, two ‘rescue’
209 doses of standard dose IV Epinephrine could be administered. CPR ceased at 15 minutes in
210 lambs that failed to achieve ROSC by this time. If ROSC was achieved, CPR and treatment
211 administration ceased, and the lambs were ventilated (Dräger Babylog 8000+, Dräger,
212 Lübeck, Germany) with heated humidified gas (F&P 950 System, Fisher and Paykel,
213 Auckland, New Zealand) for a further 60 minutes.

214 In the two ET epinephrine groups, plasma samples were collected from the brachial artery
215 before cord clamping (fetal), at end asphyxia, and at 3, 6, 9, and 15 min after ROSC, and

216 epinephrine concentrations were determined by enzyme immunoassay (Epinephrine 162
217 Research ELISA, catalogue #BA E-5100; LDN, Germany).

218 Blood gas samples (ABL30, Radiometer, Copenhagen, Denmark) were collected every 3
219 minutes until 15 minutes, then at 20, 25, 30, 40, 50, and 60 minutes. During the first 10 minutes
220 after ROSC, lambs received pressure-limited ventilation at 30/5 cmH₂O, after which volume
221 guarantee ventilation was commenced at tidal volume of 7ml/kg. Ventilation parameters were
222 also digitally recorded. Ventilation settings were adjusted to target SpO₂ 90-95% and PaCO₂
223 35-45 mmHg. Lambs received sedation to ensure comfort (Alfaxan 5-15mg/kg/hr in 5%
224 dextrose).

225 Following the experiment, ewes and lambs were euthanized using an intravenous overdose
226 injection of sodium pentobarbitone (100 mg/kg IV, Lethobarb, Virbac, Australia).

227

228 **Histological analysis of microbleeds**

229 The brains from all lambs were removed post mortem, weighed and the two hemispheres
230 separated along the midline. The cerebellum was removed from the brain at the level of the
231 cerebellar peduncles. The whole brain was immersion-fixed in 10% formalin for ~5 days at
232 4°C.

233 After fixation, the right hemisphere was cut into coronal slices (5mm in thickness), processed
234 and wax embedded, then sectioned at the level of the parietal lobe (10-micron sections).
235 Sections were mounted on Superfrost microscope slides for histological staining with a 0.5%
236 Cresyl Violet and 1% Acid Fuchsin solution.

237

238 **Quantitative Analysis**

239 Quantitative analysis was performed on coded slides (observer blinded to group) using image
240 analysis software (ImageScope, Aperio technologies, Vista, CA, USA). Micro-bleeds were
241 identified according to the following criteria:

242 1. Indistinguishable basement membrane
243 2. Random dispersion of erythrocytes in tissue
244 3. Irregular shape of perimeter

245 These criteria are characteristic of extravasation.(20) The number of microbleeds per slide were
246 measured within four brain regions: cortex, white matter, deep grey matter (including
247 thalamus) and hippocampus. All analysis was performed in two sections per animal.

248

249 **Statistical analysis**

250 All lambs were analysed for the assessments made during CPR while only lambs achieving
251 ROSC were included in the post-ROSC analysis. All baseline fetal and physiological data
252 during CPR were compared using a one-way ANOVA (GraphPad Prism; GraphPad Software,
253 CA, USA). A Fisher's exact test was used to compare dichotomous outcomes. A one-way
254 ANOVA was also used to analyse the number of microbleeds in different regions of the brain.
255 A two-way repeated measures ANOVA with "group" and "time" as the factors was used to
256 compare groups during CPR. A two-way repeated measures ANOVA with Holm-Sidak *post*
257 *hoc* comparison was used to compare the blood gases, post-ROSC physiological data and
258 plasma epinephrine concentration during the experiment. Statistical significance was accepted
259 at $p < 0.05$. Data are reported as mean \pm standard deviation unless otherwise stated.

260 Eight animals per group were required to demonstrate a reduction in rate of ROSC from 100%,
261 as expected with the IV Epinephrine group, to 50% in a comparator group, with 80% power
262 and alpha = 5%. We planned, *a priori*, to include 9 animals per group to optimise availability

263 of post-ROSC physiological data for analysis, assuming reduced survival in some treatment
264 groups. Allocation to the Saline Group was ceased at six animals as, based on ROSC rates in
265 this and a previous study,(14) this treatment was clearly ineffective and the investigators felt it
266 was unethical to continue allocating animals to this group.

267

268 **Results**

269 **FETAL CHARACTERISTICS**

270 Fetal characteristics for each treatment group, and post-mortem organ weights used in blood
271 flow analysis, are shown in Table 1. Blood gas parameters were similar in the four groups prior
272 to initiation of the study.

273

274 **RESPONSE TO TREATMENT AND SURVIVAL**

275 Rates of ROSC, in response to allocated treatment alone, and following IV 'rescue'
276 Epinephrine use if needed, are shown in Table 2. While overall survival did not differ
277 significantly, higher rates of ROSC in response to allocated treatment were achieved in the IV
278 Epinephrine and High-dose ET Epinephrine groups. Three lambs that achieved ROSC after
279 rescue IV Epinephrine in the Standard-dose ET Epinephrine group subsequently had cardiac
280 arrest prior to study completion, with 3/9 surviving to study end at 60 min.

281

282 **PHYSIOLOGY DURING CPR**

283 The response to treatment of the individual lambs in each group is shown in Figure 2.
284 Diastolic blood pressure significantly increased after allocated treatment in comparison with
285 chest compressions alone in the IV Epinephrine and High-dose ET Epinephrine groups (p
286 <0.0001), but this was not seen in the Saline or Standard-dose ET Epinephrine groups.

287 Diastolic blood pressure significantly increased after rescue IV Epinephrine doses in the Saline
288 group and in both ET Epinephrine groups ($p<0.0001$).

289 Mean values for mean and diastolic blood pressure, and pulmonary and carotid blood flow, are
290 shown in Figure 3. Changes in pulmonary blood flow during resuscitation were less apparent,
291 with a significant increase after allocated treatment in the IV Epinephrine group ($p<0.0001$),
292 and after rescue IV Epinephrine was given to the Standard-dose ET Epinephrine group
293 ($p<0.05$).

294 Similarly, mean carotid blood flow did not change substantially, with a significant increase
295 seen only in the IV Epinephrine group in response to allocated treatment ($p<0.01$).

296

297 PHYSIOLOGICAL STABILITY AFTER ROSC

298 The arterial blood pH of the Standard-dose ET Epinephrine group was significantly lower than
299 the other three treatment groups for the first 20 minutes after ROSC, and was lower than the
300 IV Epinephrine and Saline group at 60 min (Figure 4). From 15 minutes after ROSC, the High-
301 dose ET Epinephrine group had a lower pH than the Saline and IV Epinephrine groups. Mean
302 lactate concentration in the IV Epinephrine group was significantly lower than the saline group
303 for the majority of the study, with minimal differences between the other groups.

304 The mean partial pressures of oxygen and carbon dioxide in arterial blood, and arterial oxygen
305 saturation levels were similar in all four groups for the majority of the study duration. The
306 mean regional cerebral tissue oxygenation ($SctO_2$) was significantly higher in the IV
307 Epinephrine and Saline groups, compared with the ET Epinephrine groups, for the majority of
308 the study duration.

309 Relative to the IV Epinephrine group, all three other treatment groups were observed to have
310 significantly higher mean blood pressure at multiple time points throughout the study (Figure

311 5). These increases were most pronounced for the High-dose ET Epinephrine group in the first
312 25 minutes after ROSC and for the Standard-dose ET Epinephrine group in the final 25 minutes
313 of the study.

314 Mean carotid and pulmonary blood flow were similar in all groups for the majority of the study.
315 Heart rate tended to be higher in the High-dose ET group compared to the others throughout
316 the study ($p=0.060$) and both ET Epinephrine groups had significantly higher heart rates than
317 the IV Epinephrine and saline groups from 45 minutes.

318

319 **MICRO HEMORRHAGE**

320 The occurrence of cerebral micro-hemorrhage in the resuscitated lambs in the four assessed
321 brain regions is expressed as a dichotomous outcome in Table 3, with quantitative findings
322 shown in Supplementary Figure 1. The High-dose ET Epinephrine group had an increased
323 rate of microbleeds relative to the Saline and IV Epinephrine groups. Findings in the other
324 brain regions were similar in all groups.

325
326 **PLASMA EPINEPHRINE CONCENTRATION**

327 Plasma epinephrine levels were measured in the two ET Epinephrine groups. These are shown
328 in Supplementary Figure 2. High-dose ET Epinephrine lambs had significantly higher plasma
329 epinephrine levels from 3 minutes compared to the Standard dose ET lambs. Standard dose ET
330 Epinephrine lambs showed an increase to mean (SD) 45 ± 20 ng/ml at ROSC, which gradually
331 decreased over 15 minutes. In contrast, the level in High-dose ET Epinephrine lambs was
332 substantially higher, reaching 157 ± 120 ng/ml at 3 minutes and remaining elevated at >150
333 ng/ml for at least 15 minutes, at which time it was 178 ± 118 ng/ml.

334

335 **Discussion**

336 We conducted this study to evaluate the effectiveness of ET epinephrine in achieving ROSC
337 and maintaining cardiovascular stability after ROSC, in asystolic asphyxiated newborn lambs.
338 Our findings indicate that administration of ET epinephrine at the current maximum
339 recommended “standard dose” (100 micrograms/kg) is ineffective, with none of the lambs
340 allocated to this treatment group achieving ROSC, without the additional use of ‘rescue’ IV
341 epinephrine. These outcomes contrasted with the lambs allocated to initial IV Epinephrine
342 treatment, where ROSC was achieved with allocated treatment in all cases. In particular, lambs
343 receiving Standard-dose ET epinephrine showed no improvement compared with the Saline
344 placebo group, where 1/6 lambs achieved ROSC without rescue IV treatment.
345 It is likely that the poor response in the Standard-dose ET Epinephrine treated lambs is a
346 consequence of limited bioavailability of the administered epinephrine to the myocardium.
347 This could be due to the presence of airway liquid and low pulmonary blood flow, which is a
348 common feature of newborns as they transition from fetal to newborn life.(11, 12) This concept
349 is supported by the observation that during CPR, the mean and diastolic blood pressures
350 observed in Standard-dose ET Epinephrine treated lambs during chest compressions did not
351 increase, relative to the values seen during chest compressions alone. This, again, was similar
352 to the findings in the Saline placebo group.
353 In contrast to our initial hypothesis, the use of High-dose ET Epinephrine resulted in a rate of
354 ROSC following allocated treatment (7/9) that was significantly greater than that obtained with
355 Standard-dose ET Epinephrine or Saline, and close to that obtained with IV Epinephrine. This
356 suggests that increasing the administered dose by a magnitude of ten is sufficient to overcome
357 some of the limitations in absorption from the airways into the central circulation, and produce
358 the desired physiological effect on the heart. This was apparent in the physiological
359 observations during CPR, where the diastolic blood pressure significantly increased during the

360 period of chest compressions and allocated treatment, in comparison with the values during
361 chest compressions alone.

362 Differences were also apparent in the time taken to achieve ROSC. Although slower than the
363 response seen to IV Epinephrine, the High-dose ET Epinephrine group achieved ROSC, on
364 average, approximately 5 minutes earlier than the Standard-dose ET Epinephrine group. In the
365 clinical setting, a reduction in time of asystole by 5 minutes would have the potential to reduce
366 the severity of hypoxic-ischemic brain injury.

367 Our assessment of plasma epinephrine levels demonstrated that, at the time of ROSC, the level
368 in the High-dose ET Epinephrine group was approximately twice that seen with the standard
369 dose, supporting the concept that greater systemic absorption occurs with elevated ET dosing.

370 We found that both ET groups had elevated plasma epinephrine levels for a sustained period
371 after ROSC, which differs from IV administration, which we have previously observed to peak
372 between 10-20 ng/mL and return to <10 ng/mL by 15 minutes after ROSC, in asphyxiated
373 lambs receiving an IV dose of approximately 10 micrograms/kg body weight.(14, 21) It
374 appears that much of the ET Epinephrine dose administered remains in the airways during
375 CPR, but is absorbed after ROSC is achieved, producing persistently high plasma levels. Whilst
376 the Standard-dose ET Epinephrine group had levels that were clearly decreasing by 15 minutes
377 after ROSC, the level seen in High-dose ET Epinephrine lambs did not show any apparent
378 decrease between 3 and 15 minutes after ROSC. Sustained exposure to such high epinephrine
379 levels could have adverse effects on the heart, and other vital organs, in the post-resuscitation
380 period.

381 Some of the other physiological variables we evaluated suggested that the lambs exposed to
382 ET Epinephrine were not recovering as effectively after resuscitation. Both ET Epinephrine
383 groups demonstrated a lower pH relative to the IV Epinephrine group. Both ET Epinephrine
384 groups had a much higher blood pressure after ROSC, and a lower SctO₂. These findings could

385 be explained by a sustained vasoconstriction effect due to epinephrine, which could adversely
386 impact tissue perfusion, most concerningly to the brain. The elevation in blood pressure, the
387 prolonged period of asphyxia before ROSC, or both factors in combination, would present a
388 potential explanation for the increased frequency of brain micro-hemorrhage observed in the
389 High-dose ET Epinephrine lambs on histological analysis. Micro-hemorrhage was also seen in
390 all but one of the standard dose ET Epinephrine group that underwent histological examination.
391 Within the Standard-dose ET Epinephrine group, 3/6 lambs that initially achieved ROSC (after
392 rescue IV Epinephrine) subsequently had a second cardiac arrest, resulting in death prior to
393 study endpoint. While the reason for such a deterioration cannot be accurately determined, this
394 group had the longest time to ROSC, mean 766 seconds, and therefore were exposed to the
395 most prolonged period of myocardial ischemia. It is also possible that the elevated plasma
396 epinephrine levels seen after ET Epinephrine administration have an adverse effect on cardiac
397 function and circulatory stability, perhaps influenced by the persistent tachycardia seen in this
398 group. However, the High-dose ET Epinephrine lambs were exposed to substantially higher
399 plasma levels, had a similar degree of tachycardia, and all 8 lambs achieving ROSC survived
400 for 60 minutes. It may be that elevated epinephrine levels are more likely to produce adverse
401 effects in the context of greater ischaemic damage to the myocardium.
402 While there are limitations in how preclinical data can be applied to the clinical setting, and it
403 is unclear how some of the outcomes we identified would translate into clinical outcomes in
404 newborn infants (e.g., the impact of micro-hemorrhage on neurodevelopment), this study has
405 several strengths, including the use of a well-established protocol for asphyxia and
406 resuscitation in ovine studies, and the randomised allocation to the four treatment groups.
407 Other preclinical studies of ET Epinephrine have similarly shown reduced rates of ROSC,
408 when used at the current maximum recommended “standard dose” (100 micrograms/kg)
409 without the use of rescue IV Epinephrine. Songstad reported a rate of ROSC in response to

410 allocated treatment of 2/5 with “standard dose” ET Epinephrine versus 6/6 with IV
411 Epinephrine.(14) Vali treated a total of 22 lambs with ET Epinephrine, either before or after
412 initiating CPR, and 12/22 achieved ROSC without IV rescue dosing, whereas lambs receiving
413 IV Epinephrine (either via UVC or RA) achieved ROSC in 19/22 cases.(13) While the exact
414 rates of ROSC observed differ slightly between studies, which may be accounted for by slight
415 variations in treatment protocols or study population, a clear pattern is evident that ET
416 Epinephrine administration is less likely to achieve ROSC than IV Epinephrine treatment.
417 ET Epinephrine administration was included in the first published version of consensus
418 resuscitation recommendations specific to the newborn infant, produced by ILCOR in
419 1999.(22) At this time, the recommended dose for either the ET or IV group was identical (10-
420 30 micrograms/kg), and neither route was specifically identified as preferred, although the
421 recommendation document did highlight “concerns that the endotracheal route may not result
422 in as effective a level of epinephrine as does the intravenous route”. On revision of these
423 recommendations in 2005,(23) the authors noted “past guidelines recommended that initial
424 doses of epinephrine be given through an endotracheal tube because the dose can be
425 administered more quickly”, but highlighted that the only preclinical study using a dose of 10-
426 30 micrograms/kg, conducted in piglets at 2-4 days of age, showed no effect.(24) They
427 therefore recommended that IV was the preferred route for epinephrine administration, and
428 advised that while IV access was being obtained, a higher dose (up to 100 micrograms/kg)
429 could be considered.(23) Updates to these guidelines published between 2010 and 2020 (the
430 most recent version) have consistently identified IV administration as the preferred route, but
431 included ET Epinephrine as an option if intravenous access is not yet available.(4, 25) The
432 2020 document specifically highlights that “administration of endotracheal epinephrine
433 (adrenaline) should not delay attempts to establish vascular access”.(4) It remains the case that
434 there are no randomised trial data to support ET Epinephrine use in newborn infants.(15)

435 Intraosseous access is another option for epinephrine administration. While the 2005 ILCOR
436 document simply stated that “intraosseous lines are not commonly used in newly born infants”,
437 the intraosseous (IO) route has been increasingly acknowledged in more recent revisions. In
438 the 2020 treatment recommendations state that “if umbilical venous access is not feasible, the
439 intraosseous route is a reasonable alternative” and that either the IV or IO route is suitable for
440 neonatal resuscitation outside the delivery room setting.(4) However, the published clinical
441 data for IO use in neonates are restricted to case series and case reports, and important
442 complications have been reported.(26) Subgroup analysis of a recent adult RCT showed that
443 IO and IV Epinephrine produced almost identical rates of ROSC in the setting of out-of-
444 hospital cardiac arrest.(27) A recent preclinical study conducted in asystolic newborn lambs
445 found that IO administration of epinephrine produced similar rates of ROSC (7/9 IO versus
446 10/12 IV), a similar time taken to achieve ROSC, and similar plasma epinephrine levels.(21)
447 Our findings raise questions about the role of ET Epinephrine in newborn resuscitation. The
448 efficacy of the ET route has been consistently lower in achieving ROSC than that obtained
449 with IV Epinephrine, in this study, and other recent preclinical studies of asystolic lambs.(13,
450 14) Published clinical neonatal data do not include any randomised trials. Observational data,
451 despite including limited numbers of infants, have consistently shown that a minority of infants
452 improve after ET Epinephrine, with high rates of additional IV Epinephrine administration
453 prior to achievement of ROSC.(15-17) Whilst there is a long-established historical precedent
454 for ET Epinephrine use in neonatal resuscitation, it is unlikely that any new treatment would
455 be readily accepted into treatment guidelines if it were associated with a similar profile of
456 clinical and preclinical outcomes. Neonatal resuscitation guidelines currently include two
457 alternatives, the IV route, which is clearly preferable, and IO access, which despite being
458 limited to clinical case series evidence in neonates, has similar preclinical outcomes to IV

459 treatment, and is widely used in resuscitation of older patients.(4, 21) Given this context, should

460 ET Epinephrine, at the current dose, continue to feature in consensus guidance?

461 In contrast, our finding that a much higher dose of ET Epinephrine, 1 mg/kg, can produce

462 similar rates of ROSC to IV Epinephrine treatment may have some promise. However, it is

463 unclear whether this approach is ready for translation into a clinical trial. Although 7/9 High-

464 dose ET Epinephrine lambs achieved ROSC without rescue IV Epinephrine, all required either

465 two or three doses to do so. The need for multiple doses may negate any advantage in time to

466 administration that the ET route presents over other alternatives.(6)

467 The evidence of micro-hemorrhage associated with High-dose Epinephrine in the preclinical

468 setting also raises the concern of adverse neurological effects in those that achieve ROSC. A

469 trial of IV Epinephrine versus placebo for adult out-of-hospital cardiac arrest identified such a

470 ‘trade-off’ situation, as epinephrine use significantly increased survival, but also significantly

471 increased severe neurological impairment in survivors.(28)

472 Given the urgency, and infrequent and unpredictable nature of epinephrine use at birth, clinical

473 trials may be better focused on comparing routes with higher likelihood of achieving ROSC,

474 such as IV and IO administration. Further preclinical studies, focused on dose-finding, or

475 evaluation of epinephrine formulations with enhanced absorption characteristics, may identify

476 an approach to ET epinephrine that has more promise for clinical assessment.

477

478 **Conclusions**

479 In this preclinical randomised study assessing different routes of epinephrine administration in

480 asystolic newborn lambs, we found the current recommended “standard dose” of ET

481 Epinephrine to be significantly less effective in achieving ROSC than IV Epinephrine,

482 performing similarly to saline placebo. This finding, in the context of other preclinical data and

483 observational clinical data showing reduced efficacy, calls into question whether ET

484 Epinephrine administration should be recommended in neonatal resuscitation guidelines. The
485 use of a higher ET dose, 1 mg/kg epinephrine, produced a high rate of ROSC similar to that
486 seen with IV administration, but with evidence of increased micro-haemorrhage in survivors.
487 Generation of high quality preclinical and clinical data to guide the use of epinephrine during
488 neonatal resuscitation is a priority.

489
490 **What is known?**

491 • ILCOR neonatal resuscitation recommendations suggest administering Endotracheal
492 Epinephrine for infants with heart rate of 60 beats per minute or less, if intravascular
493 access is not yet available

494 • The suggested Endotracheal Epinephrine dose is higher than the standard IV
495 Epinephrine dose (50-100 micrograms/kg, versus 10-20 micrograms/kg) due to
496 concerns about absorption into the systemic circulation

497 • There are no randomized clinical trial data to support Endotracheal Epinephrine use in
498 newborns, and observational studies suggest most infants subsequently also require IV
499 Epinephrine before achieving return of spontaneous circulation (ROSC)

500 **What new information does this article contribute?**

501 • Endotracheal epinephrine, administered at the standard dose currently recommended in
502 neonatal resuscitation guidelines (100 micrograms/kg), was ineffective in achieving
503 ROSC in a preclinical study of asystolic newborn lambs (0/9 responded to allocated
504 treatment)

505 • High-dose Endotracheal Epinephrine (1 mg/kg) produced similar rates of ROSC to IV
506 Epinephrine (7/9 versus 9/9 responded to allocated treatment)

507 • Endotracheal Epinephrine-treated lambs had lower pH and cerebral oxygen saturations,
508 and elevated blood pressure and lactate levels after ROSC, and High-dose Endotracheal
509 Epinephrine resulted in an increased rate of micro-hemorrhage

510 **Novelty and Significance**

511 In this randomized preclinical study, we found that the currently recommended ‘Standard-dose’
512 (100 micrograms/kg) of Endotracheal Epinephrine was ineffective in achieving ROSC in
513 asystolic newborn lambs, performing similarly to the use of IV saline placebo. Lambs receiving
514 Standard-dose Endotracheal Epinephrine achieved ROSC only after rescue IV Epinephrine
515 use. We evaluated a novel High-dose of Endotracheal Epinephrine (1 mg/kg), finding that it
516 produced rates of ROSC similar to IV Epinephrine, indicating that increasing the administered
517 dose may overcome issues with systemic absorption in the fluid-filled newborn lung. However,
518 both Endotracheal Epinephrine groups demonstrated adverse effects after ROSC, including
519 low pH and cerebral oxygen saturations, and elevated lactate and blood pressure. Given the
520 lack of clinical data suggesting efficacy, and the challenges of conducting clinical trials in this
521 population of infants, these findings from a randomized preclinical study call into question
522 whether Standard-dose Endotracheal Epinephrine should continue to be recommended in
523 neonatal resuscitation guidelines. Use of a higher Endotracheal Epinephrine dose, while
524 potentially promising in achieving ROSC, requires further evaluation of both efficacy and post-
525 resuscitation effects before any consideration of clinical translation.

526

527 **ACKNOWLEDGEMENTS**

528 The authors would like to thank Alison Moxham, Valerie Zahra and Karyn Rodgers for their
529 technical support.

530

531 **CONTRIBUTOR STATEMENT**

532 All named authors contributed to one or more of: conception and design of the study, data
533 acquisition, analysis and interpretation of the data. GRP, YB and CTR co-wrote the first draft

534 of the manuscript. All authors revised the final manuscript and approved it prior to submission.

535 The authors have no conflicts of interest to disclose.

536

537 **FUNDING**

538 This research was supported by National Health and Medical Research Council (NHMRC)

539 Project Grant APP1158494 and Fellowships (GRP: APP1173731, SBH:APP545921,

540 SM:APP1136216, CTR:APP1175634), a National Heart Foundation of Australia Vanguard

541 Grant (103022) and the Victorian Government's Operational Infrastructure Support Program.

542

543 **PROTOCOL AND DATA ACCESS**

544 A protocol was included in research ethics submission, but was not publicly registered. Data

545 access will be considered on reasonable request to the authors.

546

547 **References:**

- 548 1. Lawn JE, Blencowe H, Oza S, You D, Lee ACC, Waiswa P, et al. Every Newborn: 549 progress, priorities, and potential beyond survival. *The Lancet*. 2014;384(9938):189-205.
- 550 2. Lee AC, Kozuki N, Blencowe H, Vos T, Bahalim A, Darmstadt GL, et al. Intrapartum- 551 related neonatal encephalopathy incidence and impairment at regional and global levels for 552 2010 with trends from 1990. *Pediatric research*. 2013;74 Suppl 1:50-72.
- 553 3. O'Donnell AI, Gray PH, Rogers YM. Mortality and neurodevelopmental outcome for 554 infants receiving adrenaline in neonatal resuscitation. *Journal of paediatrics and child health*. 555 1998;34(6):551-6.
- 556 4. Wyckoff MH, Wyllie J, Aziz K, de Almeida MF, Fabres J, Fawke J, et al. Neonatal 557 Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and 558 Emergency Cardiovascular Care Science With Treatment Recommendations. *Circulation*. 559 2020;142(16_suppl_1):S185-S221.
- 560 5. Madar J, Roehr CC, Ainsworth S, Ersdal H, Morley C, Rudiger M, et al. European 561 Resuscitation Council Guidelines 2021: Newborn resuscitation and support of transition of 562 infants at birth. *Resuscitation*. 2021;161:291-326.
- 563 6. McKinsey S, Perlman JM. Resuscitative interventions during simulated asystole 564 deviate from the recommended timeline. *Archives of disease in childhood Fetal and neonatal 565 edition*. 2016;101(3):F244-7.
- 566 7. Redding JS, Asuncion JS, Pearson JW. Effective routes of drug administration during 567 cardiac arrest. *Anesthesia and analgesia*. 1967;46(2):253-8.
- 568 8. Roberts JR, Greenberg MI, Knaub MA, Kendrick ZV, Baskin SI. Blood levels 569 following intravenous and endotracheal epinephrine administration. *JACEP*. 1979;8(2):53-6.
- 570 9. Crespo SG, Schoffstall JM, Fuhs LR, Spivey WH. Comparison of two doses of 571 endotracheal epinephrine in a cardiac arrest model. *Ann Emerg Med*. 1991;20(3):230-4.
- 572 10. Roberts JR, Greenburg MI, Knaub M, Baskin SI. Comparison of the pharmacological 573 effects of epinephrine administered by the intravenous and endotracheal routes. *JACEP*. 574 1978;7(7):260-4.
- 575 11. Hooper SB, Harding R. Role of aeration in the physiological adaptation of the lung to 576 air-breathing at birth. *Current Respiratory Medicine Reviews*. 2005;1:185-95.
- 577 12. Polglase GR, Hooper SB. Role of Intra-luminal Pressure in Regulating PBF in the Fetus 578 and After Birth. *Current Pediatric Reviews*. 2006;2(4):287-99.
- 579 13. Vali P, Chandrasekharan P, Rawat M, Gugino S, Koenigsknecht C, Helman J, et al. 580 Evaluation of Timing and Route of Epinephrine in a Neonatal Model of Asphyxial Arrest. *J 581 Am Heart Assoc*. 2017;6(2).
- 582 14. Songstad NT, Klingenberg C, McGillick EV, Polglase GR, Zahra V, Schmolzer GM, 583 et al. Efficacy of Intravenous, Endotracheal, or Nasal Adrenaline Administration During 584 Resuscitation of Near-Term Asphyxiated Lambs. *Front Pediatr*. 2020;8:262.
- 585 15. Isayama T, Mildenhall L, Schmolzer GM, Kim H-S, Rabi Y, Ziegler C, et al. The Route, 586 Dose, and Interval of Epinephrine for Neonatal Resuscitation: A Systematic Review. 587 *Pediatrics*. 2020;146(4).
- 588 16. Barber CA, Wyckoff MH. Use and efficacy of endotracheal versus intravenous 589 epinephrine during neonatal cardiopulmonary resuscitation in the delivery room. *Pediatrics*. 590 2006;118(3):1028-34.
- 591 17. Halling C, Sparks JE, Christie L, Wyckoff MH. Efficacy of Intravenous and 592 Endotracheal Epinephrine during Neonatal Cardiopulmonary Resuscitation in the Delivery 593 Room. *The Journal of pediatrics*. 2017;185:232-6.

594 18. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience
595 research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol.
596 2010;8(6):e1000412. doi: 10.1371/journal.pbio..

597 19. Polglase GR, Schmolzer GM, Roberts CT, Blank DA, Badurdeen S, Crossley KJ, et al.
598 Cardiopulmonary Resuscitation of Asystolic Newborn Lambs Prior to Umbilical Cord
599 Clamping; the Timing of Cord Clamping Matters! Front Physiol. 2020;11:902.

600 20. Craggs LJ, Yamamoto Y, Deramecourt V, Kalaria RN. Microvascular pathology and
601 morphometrics of sporadic and hereditary small vessel diseases of the brain. Brain Pathol.
602 2014;24(5):495-509.

603 21. Roberts CT, Klink S, Schmolzer GM, Blank DA, Badurdeen S, Crossley KJ, et al.
604 Comparison of intraosseous and intravenous epinephrine administration during resuscitation
605 of asphyxiated newborn lambs. Archives of Disease in Childhood - Fetal and Neonatal Edition.
606 2022;107(3):311-6.

607 22. Kattwinkel J, Niermeyer S, Nadkarni V, Tibballs J, Phillips B, Zideman D, et al.
608 ILCOR advisory statement: resuscitation of the newly born infant. An advisory statement from
609 the pediatric working group of the International Liaison Committee on Resuscitation.
610 Circulation. 1999;99(14):1927-38.

611 23. Association AH. 2005 American Heart Association Guidelines for Cardiopulmonary
612 Resuscitation and Emergency Cardiovascular Care. Part 13: Neonatal Resuscitation
613 Guidelines. Circulation. 2005;112(24 Suppl):IV188-95.

614 24. Kleinman ME, Oh W, Stonestreet BS. Comparison of intravenous and endotracheal
615 epinephrine during cardiopulmonary resuscitation in newborn piglets. Critical care medicine.
616 1999;27(12):2748-54.

617 25. Perlman JM, Wyllie J, Kattwinkel J, Atkins DL, Chameides L, Goldsmith JP, et al. Part
618 11: Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation
619 and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation.
620 2010;122(16 Suppl 2):S516-38.

621 26. Scrivens A, Reynolds PR, Emery FE, Roberts CT, Polglase GR, Hooper SB, et al. Use
622 of Intraosseous Needles in Neonates: A Systematic Review. Neonatology. 2019;116(4):305-
623 14.

624 27. Nolan JP, Deakin CD, Ji C, Gates S, Rosser A, Lall R, et al. Intraosseous versus
625 intravenous administration of adrenaline in patients with out-of-hospital cardiac arrest: a
626 secondary analysis of the PARAMEDIC2 placebo-controlled trial. Intensive care medicine.
627 2020;46(5):954-62.

628 28. Perkins GD, Ji C, Deakin CD, Quinn T, Nolan JP, Scomparin C, et al. A Randomized
629 Trial of Epinephrine in Out-of-Hospital Cardiac Arrest. The New England journal of medicine.
630 2018;379(8):711-21.

631

632 **TABLES**

633

634 **Table 1: Fetal characteristics and blood gases, and post-mortem organ weights**

	Saline	IV Epinephrine	Standard-dose ET Epinephrine	High-dose ET Epinephrine
n	6	9	9	9
Gestational age	139 ± 0.9	139 ± 1.0	139 ± 1.7	139 ± 1.4
Birthweight	4.74 ± 1.30	4.61 ± 0.98	4.24 ± 0.77	4.06 ± 1.05
Males (%)	3 (50%)	3 (33%)	3 (33%)	2 (22%)
Fetal blood gas: taken after instrumentation and prior to asphyxia				
pH	7.29 ± 0.06	7.27 ± 0.03	7.23 ± 0.09	7.30 ± 0.03
PaO ₂ (mmHg)	21.9 ± 7.3	16.9 ± 4.0	22.0 ± 5.0	20.7 ± 7.0
PaCO ₂ (mmHg)	61.1 ± 11.4	57.7 ± 5.3	62.9 ± 6.3	58.4 ± 4.8
SaO ₂ (%)	55.1 ± 21.0	41.9 ± 15.5	54.4 ± 16.5	54.4 ± 20.5
SctO ₂ (%)	53.2 ± 13.8	49.3 ± 9.8	49.4 ± 10.6	50.3 ± 12.5
Lactate	3.57 ± 1.2	3.72 ± 0.64	3.6 ± 2.1	2.8 ± 0.67
End asphyxia blood gas: taken after asphyxia immediately before resuscitation				
pH	6.90 ± 0.05	6.90 ± 0.07	6.86 ± 0.06	6.88 ± 0.03
PaO ₂ (mmHg)	2.2 ± 2.2	1.4 ± 1.0	0.8 ± 0.7	0.8 ± 1.0
PaCO ₂ (mmHg)	118.3 ± 14.9	119.7 ± 12.3	120.9 ± 8.2	124.4 ± 12.9
SaO ₂ (%)	2.8 ± 1.0	2.0 ± 0.9	2.0 ± 0.4	1.6 ± 0.3
SctO ₂ (%)	35.2 ± 5.7	33.5 ± 6.8	33.7 ± 6.5	37.6 ± 11.5
Lactate	9.5 ± 2.2	9.6 ± 1.9	9.7 ± 2.2	10.0 ± 0.9
Lung weight (kg)	0.144 ± 0.04	0.151 ± 0.01	0.135 ± 0.02	0.159 ± 0.05
Brain weight (kg)	0.057 ± 0.00	0.055 ± 0.01	0.057 ± 0.00	0.052 ± 0.00

635 Values are mean \pm SD

636

637 **Table 2. Response to treatment, survival, and brain histology**

	Saline (n=6)	IV Epinephrine (n=9)	Standard dose ET Epinephrine (n=9)	High-dose ET Epinephrine (n=9)
ROSC with allocated treatment alone	1/6*#	9/9	0/9*** ##	7/9
ROSC in response to rescue IV Epinephrine	3/5	not applicable	6/9	1/2
Allocated treatment doses received:				
• 1 dose	1/6	9/9	0/9	0/9
• 2 doses	0/6	0/9	0/9	5/9
• 3 doses	5/6	0/9	9/9	4/9
Rescue IV Epinephrine doses received:				
• 1 dose	3/6	0/9	3/9	1/9
• 2 doses	2/6	0/9	6/9	1/9

Mean time (SD) to ROSC, seconds	586 ± 216***	186 ± 33	766 ± 75*** ###	463 ± 117**
Survival to study end	4/6	9/9	3/9*#	8/9

638 ROSC: return of spontaneous circulation. Survival to study end was assessed at 60 minutes

639 after ROSC. Time to ROSC was measured from initiation of ventilation.

640 Histological analysis was possible for lambs achieving ROSC only, with availability of tissue

641 in the following numbers per group: Saline (n=3), IV Epinephrine (n=8), Standard-dose ET

642 Epinephrine (n=5) or High-dose ET Epinephrine (n=8).

643 * p <0.01 vs IV Epinephrine. ** p <0.001 vs IV Epinephrine. *** p <0.0001 vs IV Epinephrine.

644 # p <0.05 vs High-dose ET Epinephrine. ## p <0.01 vs High-dose ET Epinephrine. ### p <0.001

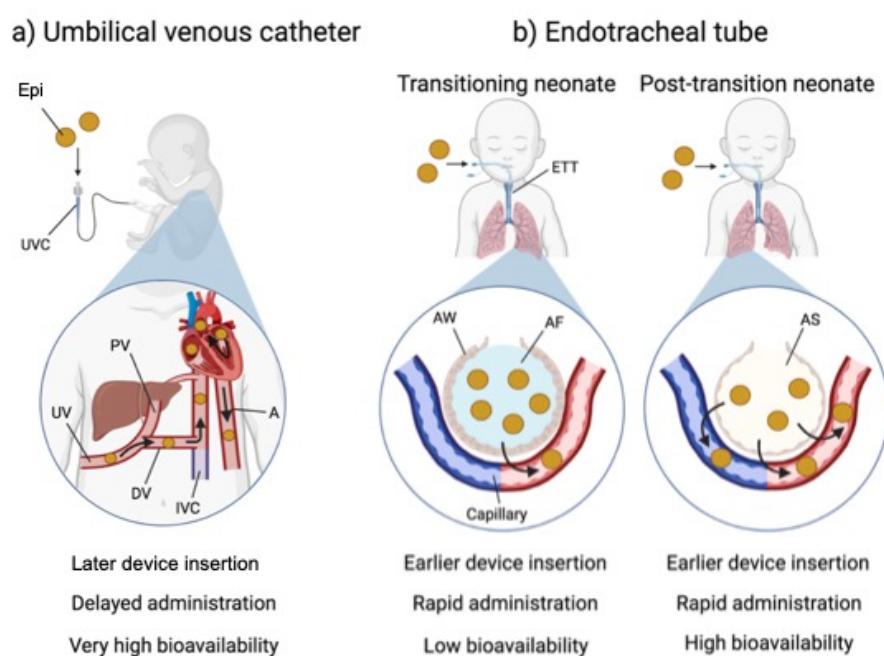
645 vs High-dose ET Epinephrine.

646

647 **Table 3. Brain histology and organ weights**

	Saline	IV Epinephrine	Standard dose ET Epinephrine	High-dose ET epinephrine
Microbleeds in cortex	1/3#	3/8##	4/5	8/8
Microbleeds in white matter	0/3	5/8	4/5	7/8
Microbleeds in deep grey matter	0/3	0/8	0/5	2/8
Microbleeds in hippocampus	0/3	0/8	0/5	0/8

648 Histological analysis was performed for lambs achieving ROSC only, with availability of tissue
649 in the following numbers per group: Saline (n=3), IV Epinephrine (n=8), Standard-dose ET
650 Epinephrine (n=5) or High-dose ET Epinephrine (n=8).

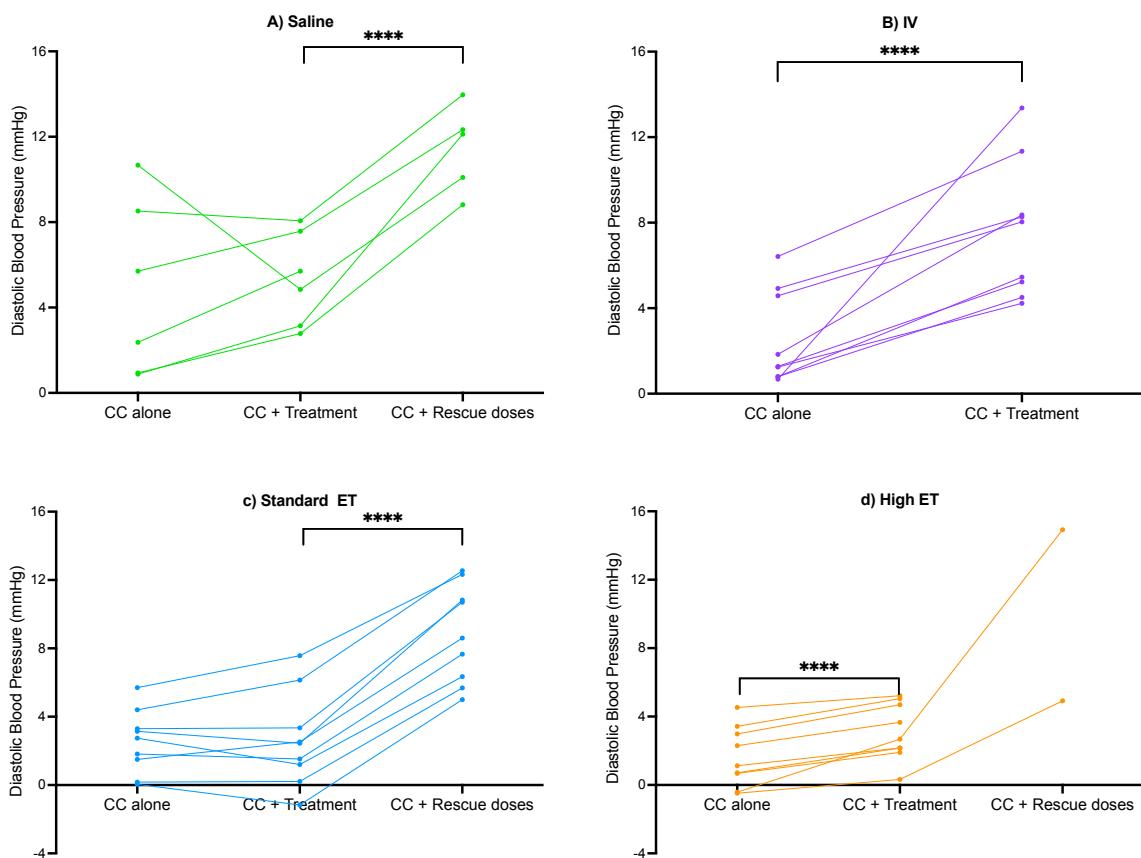

651 [#] p <0.05 vs High-dose ET Epinephrine. ^{##} p <0.01 vs High-dose ET Epinephrine.

652

653 FIGURES

654

655 **Figure 1. Contrasting features of intravenous and endotracheal epinephrine**
656 **administration in neonatal resuscitation.** a) IV epinephrine administration by umbilical
657 venous catheter results in very high bioavailability in the central circulation, but may be more
658 challenging or time-consuming. b) Endotracheal epinephrine administration may be achieved
659 earlier in resuscitation but with lower resulting bioavailability. Epi: Epinephrine; UVC:
660 Umbilical venous catheter; UV: Umbilical vein; PV: Portal vein; DV: Ductus venosus; IVC:
661 Inferior vena cava; A: Aorta; ETT: Endotracheal tube; AW: Alveolar wall; AF: Alveolar fluid;
662 AS: Alveolar space.

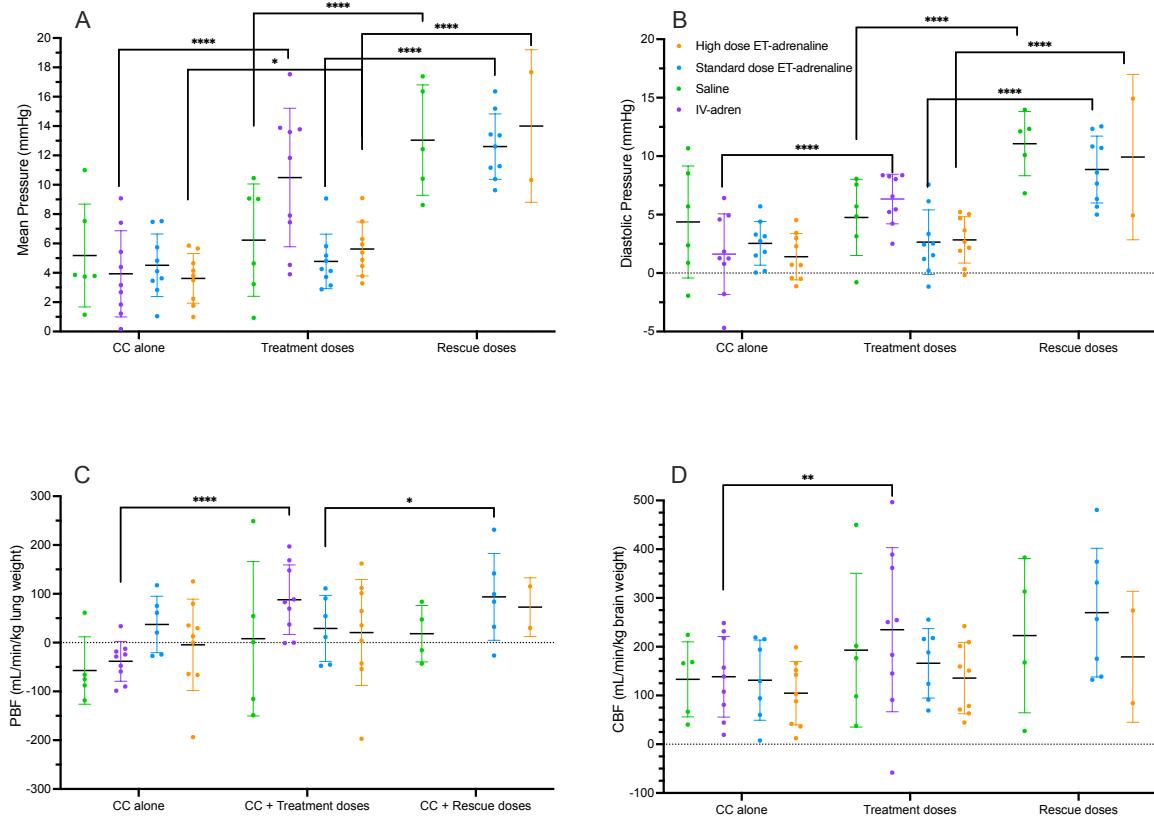


663

664 **Figure 2: Individual changes to diastolic blood pressure during CPR.**
665 Mean diastolic blood pressure of individual lambs during chest compressions (CC) alone,
666 after 1-3 doses of allocated treatment (CC + treatment), and in conjunction with IV rescue
667 epinephrine administration (CC + Rescue doses) in lambs administered A) Saline, B) IV
668 Epinephrine, C) Standard-dose ET Epinephrine and D) High-dose ET Epinephrine. ****
669 indicates $p < 0.0001$. A two-way repeated measures ANOVA with “group” and “time” as the
670 factors was used to compare groups during CPR.

671

672

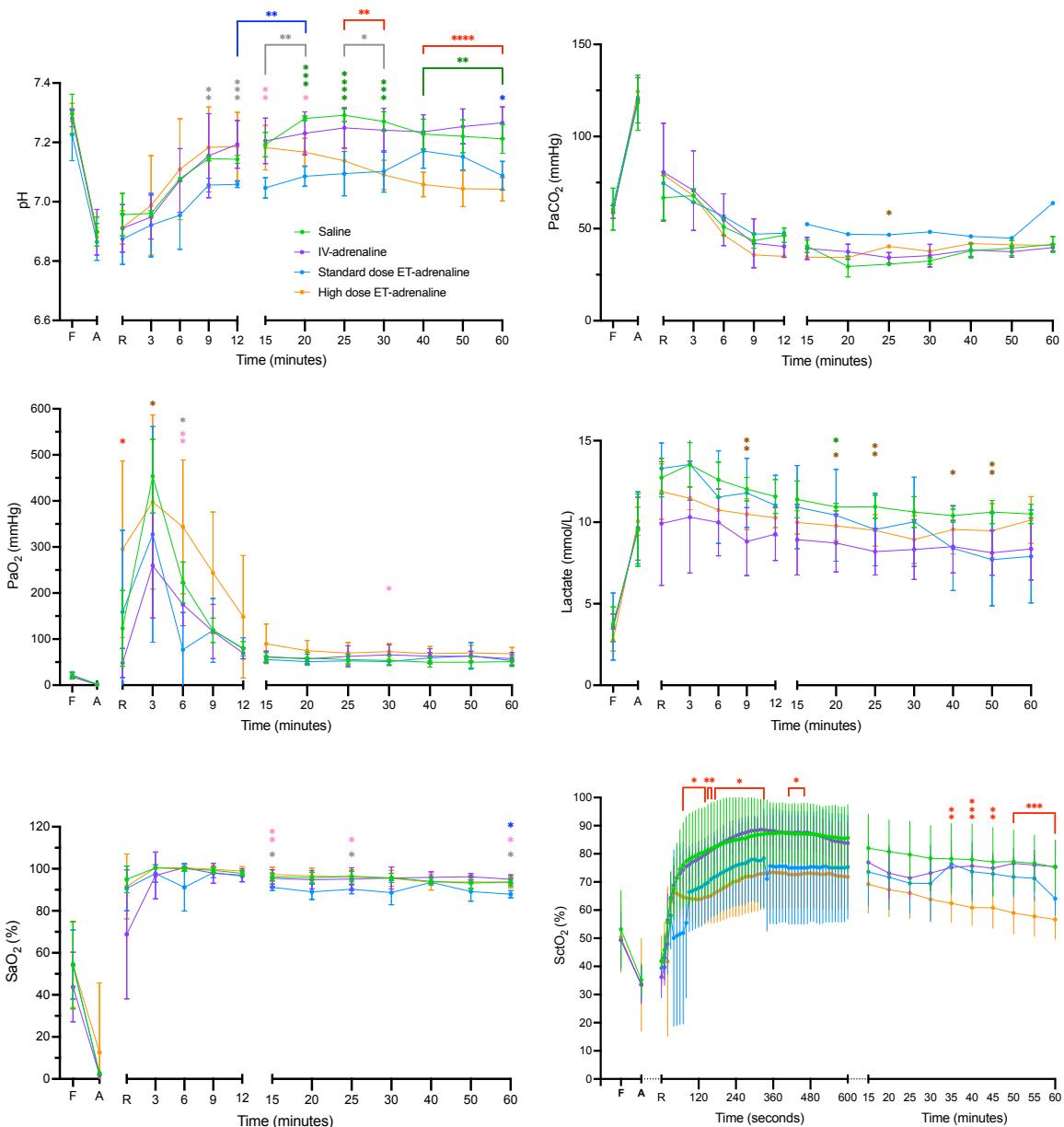

673

674

675 **Figure 3: Physiology during CPR**

676 A) mean blood pressure, B) Diastolic blood pressure, C) mean pulmonary blood flow (PBF)
677 and D) mean carotid artery blood flow (CBF) during chest compressions (CC) alone, after
678 allocated treatment (CC + treatment) and in response to rescue IV epinephrine (CC + Rescue
679 doses) in lambs administered Saline (green), IV Epinephrine (purple), Standard-dose ET
680 Epinephrine (blue) and High-dose ET Epinephrine (orange). * indicates $p < 0.05$. ** indicates
681 $p < 0.01$. *** indicates $p < 0.001$. **** indicates $p < 0.0001$. Data are presented as mean \pm SD

682 with individual data points for each lamb shown. A two-way repeated measures ANOVA
683 with was used to compare groups during CPR. Note that the comparisons shown are within
684 groups at different time points, while comparisons between groups are not shown.

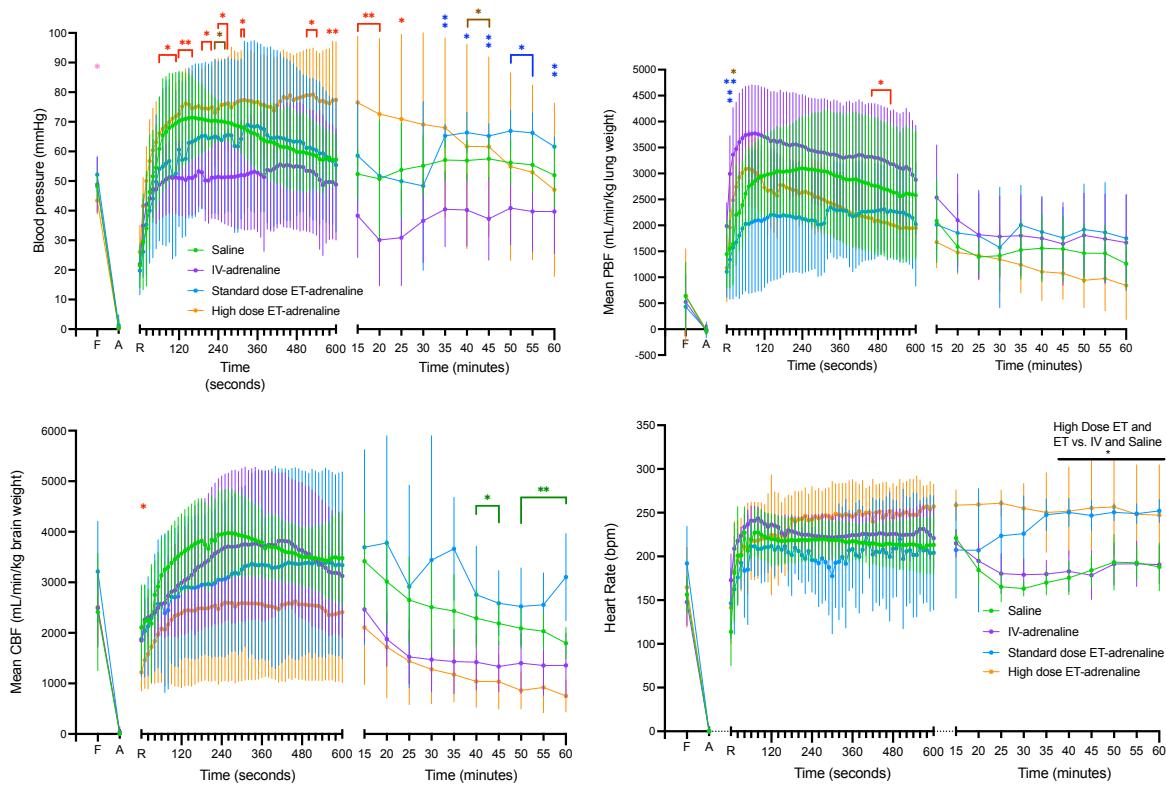

685

686

687 **Figure 4: Blood Gas and Oxygenation**

688 A) Arterial pH, B) partial pressure of arterial (Pa) carbon dioxide (PaCO₂), C) oxygen (PaO₂),
689 D) arterial lactate concentration, E) arterial oxygen saturation (SaO₂), F) cerebral oxygenation
690 (SctO₂) measured at control (fetal, F), end of asphyxia (A), upon ROSC (R) and for one hour
691 of the study. Data are shown for lambs that achieved ROSC: Saline (n=4, green), IV
692 Epinephrine (n=9, purple), Standard-dose ET Epinephrine (n=6, blue) or High-dose ET
693 Epinephrine (n=8, orange). Data are presented as mean \pm SD. A two-way repeated measures
694 ANOVA with Holm-Sidak *post hoc* comparison was used to compare post-ROSC
695 physiological data. * indicates p<0.05. ** indicates p<0.01. *** indicates p<0.001. ****
696 indicates p<0.0001. Grey (●) indicates statistical significance between the Saline and Standard-

697 dose ET Epinephrine groups. Dark blue (●) indicates statistical significance between the IV
698 Epinephrine and ET Epinephrine groups. Light pink (●) indicates statistical significance
699 between the Standard-dose ET Epinephrine and High-dose ET Epinephrine groups. Dark green
700 (●) indicates statistical significance between the Saline and High-dose ET Epinephrine groups.
701 Red (●) indicates statistical significance between the IV Epinephrine and High-dose ET
702 Epinephrine groups. Brown (●) indicates statistical significance between the IV Epinephrine
703 and Saline groups.

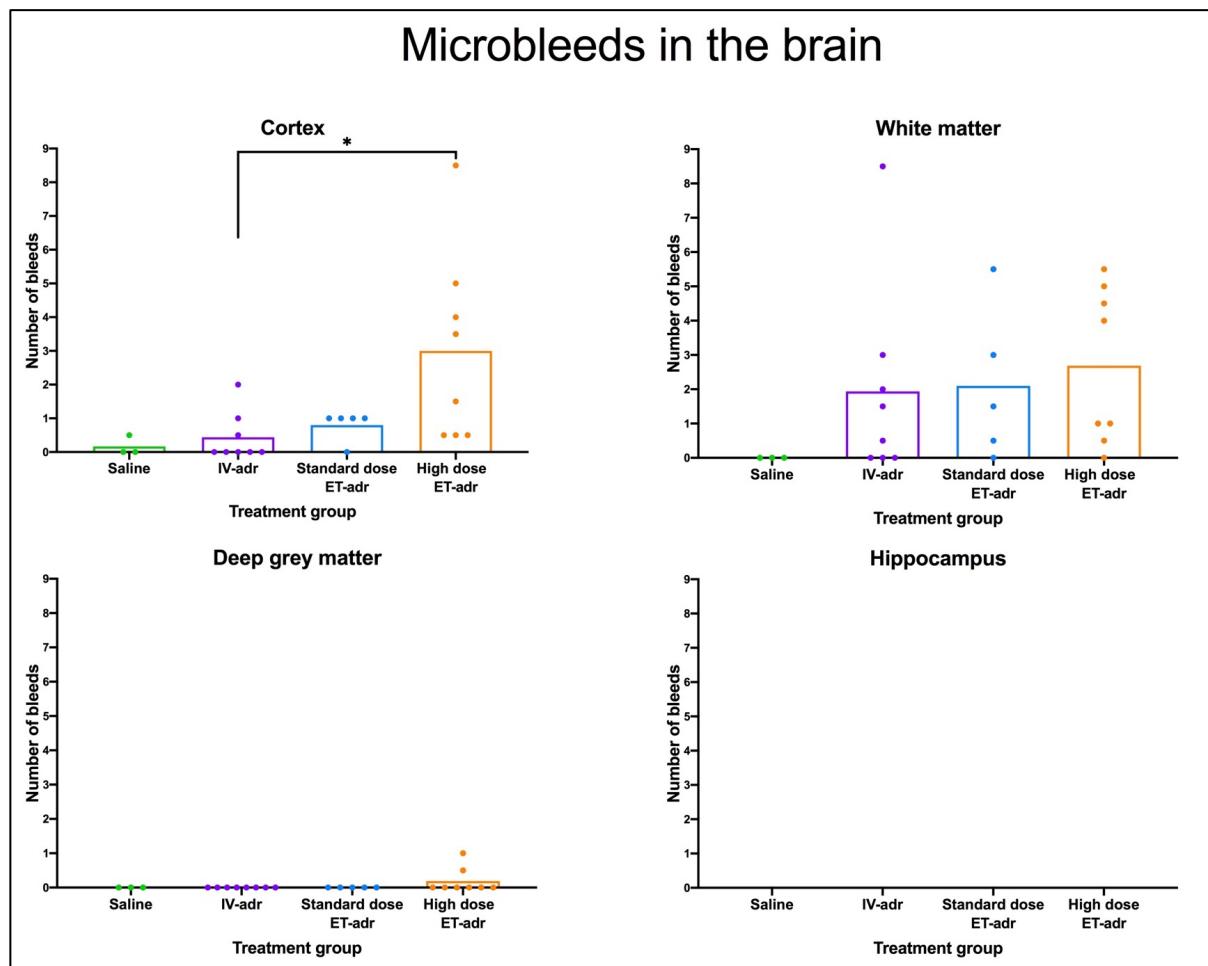

704

705

706 **Figure 5: Physiology after ROSC**

707 A) Mean systemic blood pressure, B) mean pulmonary blood flow (PBF) and C) mean carotid
708 arterial blood flow (CBF) and D) Heart rate, measured at control (fetal, F), end of asphyxia
709 (A), upon ROSC (R) and for one hour after ROSC. Data are shown for lambs that achieved
710 ROSC: Saline (n=4, green), IV Epinephrine (n=9, purple), Standard-dose ET Epinephrine
711 (n=6, blue) or High-dose ET Epinephrine (n=8, orange). Data are presented as mean \pm SD. *
712 indicates $p<0.05$. ** indicates $p<0.01$. Light pink (●) indicates statistical significance between
713 the Standard-dose ET Epinephrine and High-dose ET Epinephrine groups. Red (●) indicates
714 statistical significance between the IV Epinephrine and High-dose ET Epinephrine groups.
715 Brown (●) indicates statistical significance between the IV Epinephrine and Saline groups.
716 Dark blue (●) indicates statistical significance between the IV Epinephrine and Standard-dose
717 ET Epinephrine groups.

718

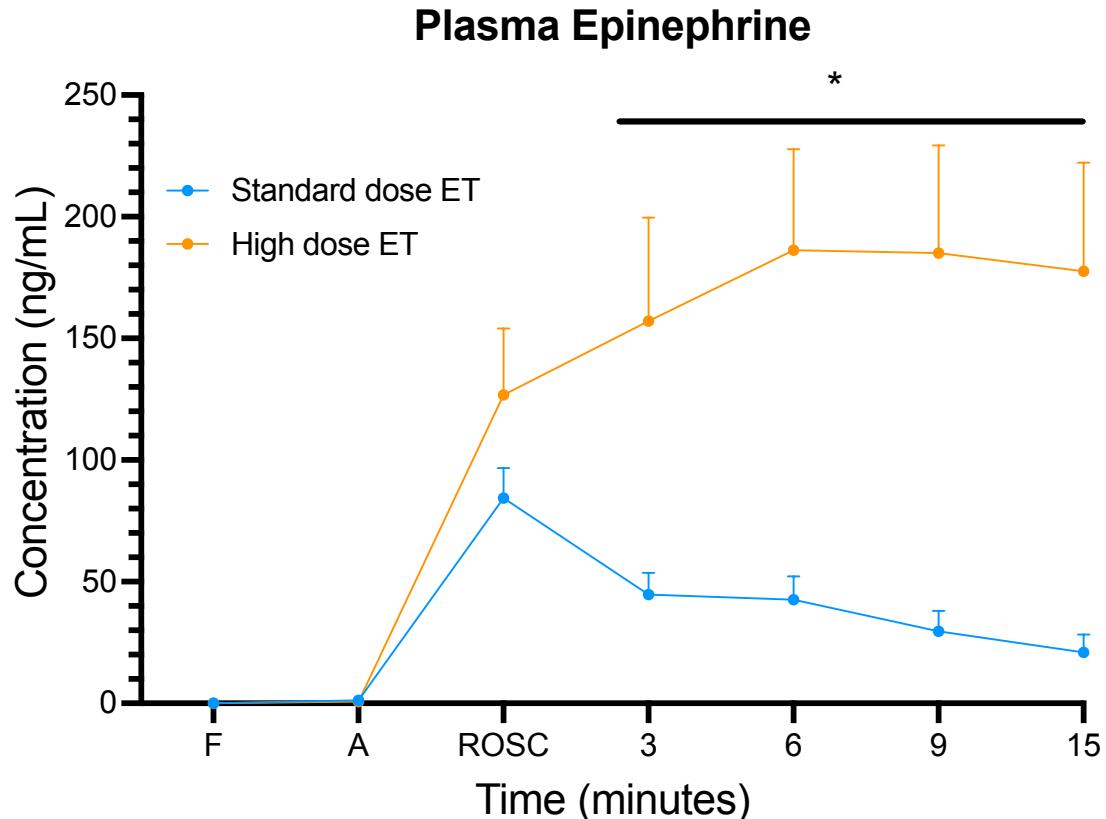

719

720

721 **SUPPLEMENTARY FIGURES (for online publication)**

722

723 **Supplementary Figure 1: Number of microbleeds in different brain regions the**
724 **resuscitated lambs.** Data are shown for lambs which achieved ROSC: saline (n=3), IV
725 Epinephrine (n=8), Standard-dose ET Epinephrine (n=5) or High-dose ET Epinephrine (n=8).
726 The number of bleeds in each animal is an average of the number of bleeds found on
727 duplicated slides. Data are presented as mean. Significance was measured by multiple
728 comparisons one-way ANOVA. * indicates p<0.05. *IV*: *intravenous*; *ET*: *endotracheal*; *Adr*:
729 *adrenaline*



730
731

732 **Supplementary Figure 2: Plasma epinephrine concentration of asphyxiated lambs**

733 Data are shown for lambs which achieved ROSC: Standard-dose ET Epinephrine (n=5),
734 High-dose ET Epinephrine (n=8). Data are presented as mean \pm SD. A two-way repeated
735 measures ANOVA with Holm-Sidak *post hoc* comparison was used to compare the plasma
736 epinephrine levels. * indicates $p < 0.05$. *F*: fetal; *A*: end of asphyxiation; *ROSC*: return of
737 spontaneous circulation.

738

739