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ABSTRACT

Protein-protein interactions are crucial to many biological processes, and predict-
ing the effect of amino acid mutations on binding is important for protein engi-
neering. While data-driven approaches using deep learning have shown promise,
the scarcity of annotated experimental data remains a major challenge. In this
work, we propose a new approach that predicts mutational effects on binding us-
ing the change in conformational flexibility of the protein-protein interface. Our
approach, named Rotamer Density Estimator (RDE), employs a flow-based gen-
erative model to estimate the probability distribution of protein side-chain confor-
mations and uses entropy to measure flexibility. RDE is trained solely on protein
structures and does not require the supervision of experimental values of changes
in binding affinities. Furthermore, the unsupervised representations extracted by
RDE can be used for downstream neural network predictions with even greater
accuracy. Our method outperforms empirical energy functions and other machine
learning-based approaches.

1 INTRODUCTION

Proteins rarely act alone and usually interact with other proteins to perform a diverse range of bio-
logical functions (Alberts & Miake-Lye, 1992; Kastritis & Bonvin, 2013). For example, antibodies,
a type of immune system protein, recognize and bind to proteins on pathogens’ surfaces, eliciting
immune responses by interacting with the receptor protein of immune cells (Lu et al., 2018). Given
the importance of protein-protein interactions in many biological processes, developing methods to
modulate these interactions is critical. A common strategy to modulate protein-protein interactions
is to mutate amino acids on the interface: some mutations enhance the strength of binding, while
others weaken or even disrupt the interaction (Gram et al., 1992; Barderas et al., 2008). Biologists
may choose to increase or decrease binding strength depending on their specific goals. For example,
enhancing the effect of a neutralizing antibody against a virus usually requires increasing the bind-
ing strength between the antibody and the viral protein. However, the combinatorial space of amino
acid mutations is large, so it is not always feasible or affordable to conduct wet-lab assays to test
all viable mutations. Therefore, computational approaches are needed to guide the identification of
desirable mutations by predicting their mutational effects on binding strength, typically measured
by the change in binding free energy (AAG).

Traditional computational approaches are mainly based on biophysics and statistics (Schymkowitz
et al., 2005; Park et al., 2016; Alford et al., 2017). Although these methods have dominated the
field for years, they have several limitations. Biophysics-based methods face a trade-off between
efficiency and accuracy since they rely on sampling from energy functions. Statistical methods are
more efficient, but their capacity is limited by the descriptors considered in the model. Furthermore,
both biophysics and statistics-based methods heavily rely on human knowledge, preventing it to
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benefit from the growing availability of protein structures. As a result, predicting the effects of
mutations on protein-protein binding remains an open problem.

Recently, deep learning has shown significant promise in modeling proteins, making data-driven
approaches more attractive than ever (Rives et al., 2019; Jumper et al., 2021). However, developing
deep learning-based models to predict mutational effects on protein-protein binding is challenging
due to the scarcity of experimental data. Only a few thousand protein mutations, annotated with
changes in binding affinity, are publicly available (Geng et al., 2019b), making supervised learning
challenging due to the potential for overfitting with insufficient training data. Another difficulty
is the absence of the structure of mutated protein-protein complexes. Mutating amino acids on a
protein complex leads to changes mainly in sidechain conformations (Najmanovich et al., 2000;
Gaudreault et al., 2012), which contribute to the change in binding free energy. However, the exact
conformational changes upon mutation are unknown.

In this work, we draw inspiration from the thermody-
namic principle that protein-protein binding usually leads
to entropy loss on the binding interface, which can be
used to determine binding affinity (Brady & Sharp, 1997;
Cole & Warwicker, 2002; Kastritis & Bonvin, 2013).
When two proteins bind, the residues located at the in-
terface tend to become less flexible (i.e. having lower en-
tropy) due to the physical and geometric constraints im-
posed by the binding partner (Figure 1). A higher amount
of entropy loss corresponds to a stronger binding affinity.
Therefore, by comparing the entropy losses of wild-type
and mutated protein complexes, we can estimate the ef-
fect of mutations on binding affinity. Please refer to Sec- A-B Complex
tion B in the appendix for a detailed discussion.

Unbound state

o

Flexible / Higher Entropy

b

Rigid / Lower Entropy

A

Bound state

Based on this principle, we introduce a novel approach Figure 1: The conformational flexibil-
to predict the impact of amino acid mutations on protein- ity of the interface generally decreases
protein interaction. The core of our method is Rotamer upon binding.

Density Estimator (RDE), a conditional generative model

that estimates the density of amino acid sidechain conformations (rotamers). We use the entropy
of the estimated density as a metric of conformational flexibility. By subtracting the entropy of the
separated proteins from the entropy of the complex, we obtain an estimation of binding affinity.
Finally, we can assess the effect of mutations by comparing the estimated binding affinities of wild-
type and mutant protein complexes. In addition to directly comparing entropy, we also employ
neural networks to predict AAG from the representations learned by RDE.

Our method is an attempt to address the aforementioned challenges. Rotamer Density Estimator is
trained solely on protein structures, not requiring other labels, making it an unsupervised learner
of the mutation effect on protein-protein interaction. This feature mitigates the challenge posed by
the scarcity of annotated mutation data. Moreover, our method does not require the mutated protein
structure as input. Instead, it treats mutated structures as latent variables, which are approximated
by RDE. Our method outperforms both empirical energy functions and machine learning models
for predicting AAG. Additionally, as a generative model for rotamers, RDE accurately predicts
sidechain conformations.

2 RELATED WORK

2.1 MUTATIONAL EFFECT PREDICTION FOR PROTEIN-PROTEIN INTERACTION

Traditional approaches to predicting the effect of mutation on protein binding can be roughly divided
into two classes: biophysical and statistical methods. Biophysical methods utilize energy functions
to model inter-atomic interactions. These methods sample conformations of the mutated protein
complex and predict changes in binding free energy (Schymkowitz et al., 2005; Park et al., 2016;
Alford et al., 2017; Steinbrecher et al., 2017). Statistical methods rely on feature engineering, which
uses descriptors summarizing geometric, physical, evolutionary, and motif properties of proteins to
predict mutational effects (Geng et al., 2019a; Zhang et al., 2020). Traditional methods face the
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trade-off between speed and accuracy. Their performance depends heavily on human expertise,
which limits their pace to improve with the fast-growing of available protein structures.

Recently, deep learning-based approaches have emerged. We group them into three categories: end-
to-end models, pre-training-based models, and unsupervised models. End-to-end models directly
predict the difference in binding free energy by taking both mutant and wild-type protein struc-
tures as input (Shan et al., 2022). Pre-training-based models attempt to address data scarcity by
pre-training a feature extraction network (Liu et al., 2021; Yang et al., 2022; Zhang et al., 2022).
However, most pre-training tasks are not designed to capture the foundation of protein-protein inter-
actions. Unsupervised models adopt the mask-predict paradigm to protein 3D structures, partially
masking amino acid types on a given protein backbone, and recovering the masked information
using neural networks (Wang et al., 2018; Shroff et al., 2020; Jing et al., 2020; Yang et al., 2022;
Hsu et al., 2022). These models can serve as unsupervised predictors of the mutational effects on
binding, as the difference in the probability of amino acid types before and after mutation correlates
mildly to the change in binding free energy.

2.2 MUTATIONAL EFFECT PREDICTION FOR SINGLE PROTEINS

The prediction of mutational effects for single proteins can be achieved using either structure-based
or sequence-based (evolution-based) approaches. Structure-based methods can be categorized into
biophysical, statistical, and deep learning-based methods, which aim to predict the thermal stability
or fitness of the protein rather than the binding free energy between proteins (Schymkowitz et al.,
2005; Park et al., 2016; Alford et al., 2017; Lei et al., 2023). Sequence-based methods rely on
the mining of evolutionary history, done by performing statistics on multiple sequence alignments
(MSAs) constructed from large-scale sequence databases (Hopf et al., 2017; Riesselman et al., 2018;
Raoetal., 2021; Luo et al., 2021; Frazer et al., 2021), or leveraging protein language models (PLMs)
(Meier et al., 2021; Notin et al., 2022).

However, it is important to note that sequence-based methods are not suitable for predicting muta-
tional effects on general protein-protein interactions due to the lack of evolutionary information in
many cases. Protein-protein interactions typically involve two or more chains, which may belong
to different species or may not experience inter-chain co-evolution. As such, it is infeasible to pre-
dict mutational effects via mining sequence databases using existing powerful tools such as MSAs
or PLMs. Thus, effective ways for predicting mutational effects on protein-protein interaction rely
on structure-based approaches rather than sequences alone. We present a detailed discussion and
supporting experimental results in Section C.1 of the appendix.

3 METHOD

3.1 OVERVIEW AND PRELIMINARIES

Overview Our method comprises three main components. The first is Rotamer Density Estimator
(RDE), which is a conditional normalizing flow that models the probability density of sidechain
conformations (rotamers) based on the amino acid type and backbone structures (Section 3.2). The
second component is an algorithm that estimates the entropy of the distribution parameterized by the
normalizing flow (Section 3.3). Lastly, we describe how we use the entropy of the protein-protein
interfaces in both the mutated and wild-type states, both bound and unbound, to estimate the change
in binding free energy (AAG). We also detail how we use neural networks to achieve more accurate
predictions of AAG using the unsupervised representations from RDE (Section 3.4).

Definitions and Notations A protein-protein complex is a multi-chain protein structure that can
be divided into two groups. Each group contains at least one protein chain and each chain consists of
multiple (amino acid) residues. For a protein complex containing n residues, we number them from
1 to n. The two groups of the complex can be represented by two disjoint sets of indices A, B C
{1...n}. A residue is characterized by its type, position, orientation, and sidechain conformation.
We denote the type, position, and orientation of the i-th (i € {1...n}) residue as a; € {1...20},
p; € R3,and O; € SO(3) respectively. The sidechain conformation of the residue is called rotamer.
As the conformational degree of freedom of the sidechain is defined by rotatable bonds, a rotamer
can be parameterized by torsional angles w.r.t. the rotatable bonds. The number of torsional angles
varies between 0 to 4 depending on the residue type. For a residue with d torsional angles, we denote

the k-th (k € {1...4}) torsional angle by XZ(.k) € [0,27). Collectively, all the torsional angles are
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denoted by a vector x; = (xf-k));jzl. Using the language of geometry, an angle can be represented
by a point on the unit circle S'. A vector consisting of d angular values resides on the product of d

unit circle, known as the d-dimensional torus T? = (S1).

In this work, our first goal is to model the conditional probability density of rotamers, given the type,
., . . . . . ~ n
position, orientation, and prior rotamer of itself and other residues: p(x; | {a;j,p;. O}, X; }jzl).
The prior rotamers x; are often inaccurate or unknown. For example, if we mutate some residues,
the rotamers of the mutated residues are unknown, and the rotamers of residues nearby the mutated
ones are inaccurate because they are affected by the mutation. The probability density is defined
over the d-dimensional torus T? = (S)P, and we describe below the flow-based architecture to

model the density.

3.2 ROTAMER DENSITY ESTIMATOR

Rotamer Density Estimator (RDE) is designed to estimate the conditional distribution of the rotamer
of the i-th residue, given the information of itself and other residues: p(x; | {a;j, ;. Oj, X; };:1)
In this section, we first introduce the encoder network that produces hidden representations for each
residue, taking into account its environment {a;, p;, O;, )2,;}?:1. Next, we present a conditional
normalizing flow defined on S' for rotamers with only 1 torsional angle. Based on the S' flow, we
further extend the flows to d-dimensional torus T (D > 1) for rotamers with more than 1 torsional
angle.

Encoder Network The encoder network starts with two multi-layer perceptrons (MLPs) that gen-
erate embeddings for each individual single residue and each pair of residues respectively. The MLP
for single residues encodes the residue type, backbone dihedral angles, and local atom coordinates
into a vector €; (¢ = 1...n). The other MLP for residue pairs encodes the distance and the rela-
tive position between two residues. We denote a pair embedding vector as z;; (¢,7 = 1...n). To
transform the single embeddings e; and pair embeddings z;; into hidden representations h;, we use
a self-attention-based network that is invariant to rotation and translation (Jumper et al., 2021). The
hidden representation h; aims to capture both the information of the i-th residue itself and its struc-
tural environment. It serves as an encoding of the condition {a;, p;, O;, X; }?:1 for the probability

density with respect to x;.

Conditional Flow on S' To model the distribution of a rotamer with 1 torsional angle, we utilize
conditional normalizing flows on S' (Rezende et al., 2020). A normalizing flow is a bijective func-
tion, and to construct one on S', we parameterize it by an angle 6 € [0, 27], and define a bijective
function on [0, 27] that is equivalent to a bijective over S!. A common method for constructing a
bijective function is to ensure strict monotonicity, which we adopt by constructing a strictly mono-
tonically increasing function on [0, 27|, denoted by f : [0,27] — [0,2x]. Notably, due to the
periodicity of angular values, 0 and 27 are the same point, so to preserve continuity at both ends, we
must ensure that f(0) = 0, f(27) = 27, and f/(0) = f’(27). To achieve this, we use the rational
quadratic spline flow (Durkan et al., 2019; Rezende et al., 2020), a piece-wise function that contains
K pieces delimited by K + 1 knots. Each piece takes the form:

(k1 — yn) [skER () + 0 (1 — & () Ex ()]
sk + [Ok1 + 0x — 28%] (1 — &k (2)) Ex(z) 7

k+1 — Yk T — Tk
where s;, = u, and §(a:) =
Tht1 — Tk Th4+1 — Tk

where the spline is parameterized by the coordinates and derivatives of the & + 1 knots denoted
by xk, yx, and §; (kK = 1... K + 1). To fulfill the requirement of monotonicity, continuity, and
periodicity, we impose the following constraints on the knots: i. 0 = 1 < 29 < ... < Tg41 = 27,
i. 0 = Y1 < Yo < ... < Yg41 = 27, iiil. 0 > O(k =1...K + 1), and iv. §; = §K+1~
These parameters are produced by transforming the hidden representation h; of residues using neural
networks, so the probability distribution defined by the bijective is conditional on the residue and its
environment. Therefore, we may also denote the spline by f(z|h;).

(D

Jr(®| @k k15 Uk k15 Ok k1) = Yk +

(7 € [zr, TR41]), (D)

We choose the uniform distribution on [0, 27] as the base distribution, represented by p.(z) = 5

(z € [0,27]). The mapping from the target distribution to the base distribution is denoted by f.
According to the change-of-variable formula, the target rotamer density of the i-th residue is given
by:

log p(x|h;) = logp: (f(x)) +log | f'(z|h:)| = —log 27 +log | f' (x[hi)| - 3)
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Figure 2: (A) The overall architecture of Rotamer Density Estimator (RDE) for estimating distri-
butions of rotamers with one torsional angle. (B) Invertible coupling layers alternating between
different dimensions enable modeling distributions of rotamers with multiple torsional angles.

The derivative f’ can be computed analytically according to Eq.1. See Figure 2A for an illustration
of the model.

In practice, we stack multiple bijectives to enable more complex transformation. The derivative of
the composite can be computed efficiently using the chain rule. At inference time, we can efficiently
compute the inverse mapping f~!(y)(Rezende et al., 2020): To find the solution of f~!(y), the first
step is to locate the unique bin that contains y. Assuming y belongs to the k-th bin, finding its corre-
sponding = amounts to finding the root of the quadratic equation fx (| k+1, Yk k+1, Ok k+1) = Y
in the interval [z, xk41], for which a closed-form solution exists.

Conditional Flow on T” Rotamers with D torsional angles can be viewed as points on the D-
dimensional torus which is the product of D circles S, i.e. TP = S! x --- x S'. To model the
distribution on T, we adopt the coupling layer technique to model the joint distribution (Dinh
et al., 2016). Each coupling layer updates one dimension using the bijective for S', keeping the
other D — 1 dimensions fixed, and uses the D — 1 dimensions along with the hidden representation
of the residue as the conditioner to parameterize the bijective (Figure 2B):

_ leyv hi), j=d d D
ga(x|hi)[j] = {iC(,%'w\J ) ? £d EZd D’ @
75

where d is the dimension to update. The coupling layer g4 preserves invertibility and has closed-
form inversion. The determinant of its Jacobian is equal to the derivative of f(x;|x\;, ;). We stack
multiple spline-based coupling layers to ensure that all the dimensions are updated at least once,
resulting in a stack of L coupling layers: g = g1 0o ga0---0gr, (L > D).

We choose the uniform distribution as the base distribution, denoted by p.(z) = (5 )" and let
g map the target distribution to the base distribution. The log-likelihood is computed using the

change-of-variable rule:
log p(x|h;) = log pz(g(x)) + log |det Vag(x)|
. 5)

=-D IOg 21 + Z IOg |fl,(xd(l) |w\d(l)7 h,)| .
=1

Training Objective To train RDE, we minimize the negative log-likelihood of native (ground
truth) rotamers:

min By, §)paua [ 102D (XilRi(S))], (6)

where S = {a;,p;,0;,X;} é}f:l is a protein structure sampled from the dataset. Since the model is
designed for mutation analysis, the prior rotamers should emulate the rotamers after some residues
are mutated. Thus, we mask the rotamers of a random portion of residues and add noise to the ro-
tamers of the neighbors of the masked ones. The negative log-likelihood training objective function
is evaluated on the masked residues and a random part of the perturbed residues.
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3.3 ROTAMER ENTROPY ESTIMATION

RDE models the distribution of possible rotamers of residue, making the entropy of the rotamer
distribution a natural measure of conformational flexibility (Brady & Sharp, 1997):

H(S,1) = Ex~p [—log p(x|hi(S))] - @)

To estimate the entropy, we use a stochastic method: First, we sample a set of rotamers from the
distribution using the inverted flows (Eq.1, 4). Then, we compute the negative log probability of
the samples and take their average as an estimate of the entropy. Computing these steps is efficient
thanks to the ability to compute the exact likelihood of normalizing flows.

For residues without rotatable sidechains (alanine, glycine, and proline), we consider their con-
formational entropy to be constant. Nonetheless, we can still estimate the entropy of neighboring
residues to evaluate their impact on conformational flexibility.

3.4 MUTATIONAL EFFECT (AAG) PREDICTION

Let us consider a protein-protein complex Wrr = {a;,p;, O;, X} consisting of N residues,
where M of them belong to the first group L = {1,..., M}, and the remaining N — M be-
long to the second group R = {M + 1,...,N}. We refer to group L as the ligand group
since it contains mutations, and group R as the receptor group. In the unbound state, we rep-
resent the two separated structures by Wy, and Wg respectively. If we mutate m residues in
group L, numbered by {1,...,m} C L, the mutated structure in the bound state is denoted by
Mg = {ai, pi, Oi, D} U{ai, Pi, Oi, Xi Funmutated> Where a; represents the mutated residue type
and @ indicates that the rotamers of the mutated residues are unknown. The two groups in the
unbound state are denoted by M, and My respectively. Note that M = Wk if there are no
mutations in the receptor group.

We introduce two predictors to predict AAG: The linear predictor directly estimates AAG from
entropy, and the neural network predictor uses the hidden representation from the encoder network
to predict AAG.

Linear Predictor The entropy loss upon binding of a protein complex S (S = W, M) is defined
as the difference of entropy between the bound and the unbound states (Kastritis & Bonvin, 2013).
We approximate the entropy loss A Hs using a linear model and our estimated entropy '

AHs = [0l 37 (H(Spa.) + Bla) +uly® S (H(Spmi) + Ela) | -

i€L i€ER
Hp bound ligand H%ud bound receptor
unbnd unbnd .
[ Z (S,i) + E(a;)) +wdy (H(Sg,1) +E(a¢))],(S:W,M). (8)
ieL i€ER
HEP unbound ligand Hd unbound receptor

where wsy; > 0(S = W, M;J = L, R) is the coefficient that controls the contribution of entropy
to the binding free energy, and F(-) is the entropy bias for 20 different amino acid types. The ther-
modynamic definition states that the core component in binding AAG is the difference in entropy
loss between the wild-type and mutant structure. Therefore, we estimate AAG by:

AAGpreq = AHp — AHyy + b

_ ( bound Hbound bound Hbound ) ( unbnd Hunbnd unbnd Hunbnd ) (9)
bound bound bound bound unbnd unbnd unbnd unbnd
(Wi T H T 4+ win B Hyo ) + (Wit Hyn 1 + win s Hypp) + b.

Note that as we assume there are no mutations in the receptor group (Mg = Wg), H}} ““bnd and
Hyy ““b“d cancel out each other and do not contribute to AAG.

To calibrate the parameters in Eq.9, we use the block coordinate descent method, which alternates
between optimizing the coefficients (ws s, b) and the entropy biases (£) using the mean squared
error (MSE) loss

"We use the letter H to represent entropy here following the convention in information theory, as it is a
statistical quantity estimated by our model rather than a thermodynamic quantity. Please do not confuse it with
enthalpy commonly denoted as H.
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Neural Network Predictor Each residue’s hidden representation h; used to parameterize the nor-
malizing flows contains sufficient information about the rotamer distribution. To extract binding in-
formation from these representations in a more flexible way, we employed neural networks. Specif-
ically, we utilized a network that shares the same architecture as the encoder to transform the repre-
sentation h; and applied max-pooling to obtain a global structure representation. We then subtracted
the representation of the wild-type structure from the mutant representation and fed it into another

MLP to predict AAG. To enforce anti-symmetry, we swapped the wild-type and mutant to predict
~AAG, and computed (m - (—/AKG)) /2 as the final prediction. The network was trained

using the MSE loss. During training, we freeze the weights of RDE and do not back-propagate
gradients through h; to fully exploit the unsupervised representations learned by RDE.

3.5 MODEL TRAINING

The dataset for training RDE is derived from PDB-REDO (Joosten et al., 2014), which is a database
containing refined X-ray structures in PDB. The protein chains are clustered based on 50% sequence
identity, leading to 38,413 chain clusters, which are randomly divided into the training, validation,
and test sets by 95%/0.5%/4.5% respectively. During training, the data loader randomly selects a
cluster and then randomly chooses a chain from the cluster to ensure balanced sampling. We crop
structures into patches containing 128 residues by first choosing a seed residue, and then selecting its
127 nearest neighbors based on C-beta distances. To simulate mutations, we masked the rotamers of
10% of residues in the patch, and we added noise to the rotamers of residues whose C-beta distance
to the closest masked residue was less than 8A.

The SKEMPI2 database (Jankauskaité et al., 2019) is used to train the models for AAG prediction
described in Section 3.4. We split the dataset into 3 folds by structure, each containing unique
protein complexes that do not appear in other folds. Two folds are used for training and validation,
and the remaining fold is used for testing. This approach yields 3 different sets of parameters and
ensures that every data point in SKEMPI2 is tested once.

4 RESULTS
4.1 PREDICTION OF THE EFFECT OF MUTATIONS ON BINDING

Baselines We evaluate the performance of our two AAG predictors, RDE-Linear and RDE-
Network, against several categories of baseline methods. The first category comprises traditional
empirical energy functions, including Rosetta Cartesian ddG (Park et al., 2016; Alford et al.,
2017; Leman et al., 2020) and FoldX (Delgado et al., 2019). The second category consists of
sequence/evolution-based methods, represented by ESM-1v (Meier et al., 2021), PSSM (position-
specific scoring matrix), MSA Transformer (Rao et al., 2021), and Tranception (Notin et al.,
2022). The third category includes end-to-end learning models, such as DDGPred (Shan et al.,
2022), and a model that shares the same encoder architecture as RDE but uses an MLP to di-
rectly predict AAG (End-to-End). The fourth category consists of unsupervised/semi-supervised
learning methods, including ESM-IF (Hsu et al., 2022) and Masked Inverse Folding (MIF) (Yang
et al., 2022). Similar to our RDE-Network, this class of methods pre-train a network on structures
and use the pretrained representations to predict AAGSs. The baseline MIF network also uses the
same encoder architecture as RDE for comparison. There are two variants for AAG prediction:
MIF-Alogit, which uses the difference in log-probability of amino acid types to predict AAG, and
MIF-Network, which predicts AAG from the learned representations using the same network ar-
chitecture as RDE-Network. Finally, given that our method is based on conformational flexibility,
we train a network to predict the B-factor of residues and use predicted B-factors in place of entropy
to predict AAG.

Metrics We use five metrics to evaluate the accuracy of AAG prediction: Pearson correlation
coefficient, Spearman’s rank correlation coefficient, minimized RMSE (root mean squared error),
minimized MAE (mean absolute error), and AUROC (area under the receiver operating charac-
teristic). To calculate AUROC, mutations are classified based on the sign of AAG. In practical
applications, the correlation for one specific protein complex is often of greater interest. There-
fore, we group mutations by structure, discard groups with less than 10 mutation data points and
calculate correlations for each structure separately. This leads to two additional metrics: average
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Table 1: Evaluation of AAG prediction on the SKEMPI2 dataset. RDE-Network outperforms base-
line methods. Most notably, RDE-Network significantly improves per-structure correlations, which
are more relevant to practical applications.

Per-Structure Overall
Category  Method Pearson Spearman | Pearson Spearman RMSE MAE AUROC
ESM-1v 0.0073 -0.0118 0.1921 0.1572 1.9609 13683 0.5414
Sequence PSSM 0.0826 0.0822 0.0159 0.0666 1.9978 1.3895  0.5260
Based MSA Transf. | 0.1031 0.0868 0.1173 0.1313 1.9835 13816 0.5768
Tranception 0.1348 0.1236 0.1141 0.1402 2.0382 1.3883  0.5885
Energy Rosetta 0.3284 0.2988 0.3113 0.3468 1.6173 1.1311  0.6562
Function  FoldX 0.3789 0.3693 0.3120 0.4071 1.9080 1.3089  0.6582

DDGPred 0.3750 0.3407 0.6580 0.4687 1.4998 1.0821 0.6992

Supervised b ito-End | 03873 03587 | 0.6373 04882  1.6198 1.1761 0.7172
B-factor 02042 01686 | 02390 02625 20411 14402 0.6044
Unsup./  ESM-IF 02241 02019 | 03194 02806 1.8860 12857 0.5899
Semisup. MIF-Alogit | 0.1585  0.1166 | 02918 02192 19092 13301 0.5749
MIF-Net, 03965 03509 | 06523 05134 15932 1.1469 07329
Ours RDE-Linear | 02903 02632 | 04185 03514 17832 12159  0.6059
RDE-Net. | 0.4448 04010 | 0.6447  0.5584 15799 1.1123 0.7454
c ‘|O<
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Figure 3: Left: The distribution of per-structure Spearman correlation coefficients. Middle: Cor-
relation between experimental AAGSs and AAGSs predicted by RDE-Linear. Right: Correlation
between experimental AAGs and AAGS predicted by RDE-Network.

per-structure Pearson correlation coefficient and average per-structure Spearman correlation co-
efficient.

Results According to Table 1, our RDE-Network outperforms all the baselines. Notably, it demon-
strates a significant improvement in per-structure correlations, indicating its greater reliability for
practical applications. The superior performance of RDE-Network over MIF-Network suggests that
representations derived from fitting rotamer densities are more effective than those from masked in-
verse folding, as RDE captures atomic interactions well by modeling the conformation of sidechain
atoms.

RDE-Linear achieves comparable performance to Rosetta and outperforms some unsupervised
learning baselines. While it does not surpass most baseline methods over the entire SKEMPI2
dataset, we observe that its performance is better when considering only single-point mutations
(Table 6 in the appendix). This might be attributed to the fact that simple linear models cannot cap-
ture well the non-linear relationship dominating multi-point mutations. Nevertheless, RDE-Linear
demonstrates that using the basic statistics of the estimated rotamer density alone can predict AAG,
which lays the foundation for the more accurate RDE-Network.

Sequence-based models do not accurately predict AAG for protein-protein binding, as discussed in
Section 2.2. Figure 3 shows the distribution of per-complex correlation coefficients. Please refer to
Section C of the appendix for more results and discussion.

4.2 OPTIMIZATION OF HUMAN ANTIBODIES AGAINST SARS-CoV-2

In Shan et al. (2022), the authors report five single-point mutations on a human antibody against
SARS-CoV-2 that enhance neutralization effectiveness. These mutations are among the 494 possible
single-point mutations on the heavy chain CDR region of the antibody. We use the most competitive
methods benchmarked in Section 4.1 to predict AAG s for all the single-point mutations and rank
them in ascending order (lowest AAG in the top). The effectiveness of a predictor is determined
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Table 2: Rankings of the five favorable mutations on the ~ Table 3: Linear regression shows that
human antibody against SARS-CoV-2 by various compet-  the relevant terms estimated by RDE
itive methods. RDE-Network ranks 3 of the 5 mutations  correlate significantly to AAG.

in the top place (<10%). Var. | Sign  Coef. P-value = Signif.

Method | TH31W AH53F NH57L RH103M LH104F HYMd |+ 05122 <0.001
bound o

Rosetta 1073% 76.72% 93.93% 1134%  27.94% Him |+ 01808 0005 = **

FoldX 13.56% 6.88% 5.67% 16.60%  66.19% Hyr | - 02849 <0001

DDGPred | 68.22% 2.63% 1235% 830%  8.50% Hyp | - 04939 <0.001 -

End-to-End | 29.96% 2.02% 14.17% 5243%  17.21% Hyr |- 02315 <0.001 =

MIF-Net. | 24.49% 4.05% 6.48% 8036%  36.23% Hypp + 02471 <0.001 e
HWOM |/ 00325 0.230 .

RDE-Net. ‘ 1.62% 2.02% 20.65% 61.54% 5.47 % Bias / 0.1888 <0.001 sk

by the number of favorable mutations ranked in the top place. As shown in Table 2, RDE-Network
and DDGPred successfully identify three mutations (Ranking < 10%), with RDE-Network ranking
them higher.

4.3 ANALYSIS OF THE ENTROPY ESTIMATED BY ROTAMER DENSITY ESTIMATOR

Statistical Significance To demonstrate a statistically significant relationship between the entropy
estimated by RDE and experimental AAG values, we conduct linear regression analysis using the

RDE-Linear model defined in Eq. 9. The linear model consists of seven coefficients and one bias
. bound bound unbnd bound bound unbnd unbnd __ unbnd unbnd
term: w74, winpS, WnTS, WL, wids s wints, wipt = (Wi — wivg’), and b. Note that

wﬂ\‘}lbgd and w%bﬁd are merged into w‘l‘%“bnd, as the receptor is not mutated. We perform linear re-
gression on the SKEMPI2 single-mutation dataset and present the regression coefficients, bias, and
P-values in Table 3. According to the statistics, all entropy terms, except the entropy of unbound
receptor HW (coefficient w'™), show a significant relationship with experimental AAGSs. The
coefficients of the significant terms are all positive and roughly similar. The entropy of the un-
bound receptor H }‘%"’“d has no contribution because the receptor alone does not involve in the muta-
tion. These results agree with the thermodynamic definition of the change in binding free energy:
AAG = AGM — AGY = (G4 — G — G — (GW, — G} — GW), where G and G
cancel each other out as the receptor is unmutated, therefore indicating that our model captures well
the thermodynamics underlying protein-protein interactions. For a detailed discussion about the
thermodynamic background, please refer to Section B in the appendix.

Correlation Between Estimated Entropy and B-factors B-factor is an experimental measure-
ment that quantifies the conformational flexibility. We calculate the average b-factor of sidechain
atoms of residues in the test split of the PDB-REDO dataset. Then, we estimate the conformational
entropy for each residue in the test split using RDE. The average Pearson correlation coefficient
between these two quantities is 0.4637, and the average Spearman coefficient is 0.4282. Detailed
results are presented in Table 8 in the appendix. In summary, this indicates that there is a correlation
between the entropy estimated by RDE and experimentally determined conformational flexibility
measured by B-factor.

4.4 PREDICTION OF SIDECHAIN CONFORMATIONS

RDE is a generative model for protein sidechain Taple 4: Mean absolute error of the predicted
structures, which can predict sidechain conforma-  gjdechain torsional angles.

tions by sampling from the estimated distribution. |
We use RDE to sample sidechain torsional angles SOWRLA | 2435° sk 4742 36.15°
(rotamers) for structures with 10% sidechains re- O o ae BN
moved in our test split of PDB-REDO. For each Rosetta 23.98" 32147 48497 5878
residue, 10 rotamers are sampled independently, and ~_RDE | 16.02° 28.75° 45.38° 53.26°
the one with the highest probability is selected as the

final prediction. We compare RDE with two baseline methods Rosetta (fixbb) (Leman et al., 2020)
and SCWRL4 (Krivov et al., 2009). Our results shown in Table 4 demonstrate that RDE outperforms
the baselines on all four torsional angles in terms of angular errors. For a detailed per-amino-acid
accuracy, please refer to Table 9 in the appendix.

X1 X2 X3 X4

5 CONCLUSIONS

In this work, we introduce Rotamer Density Estimator (RDE) which estimates the distribution of
rotamers for protein sidechains. We demonstrate that RDE leads to improved accuracy in predicting
binding AAG compared to other methods. One limitation of RDE is the inability to model back-
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bone flexibility directly which is an important future direction for extending the proposed model.
Nonetheless, our work highlights the potential of using machine learning techniques to improve
mutational effect prediction for protein-protein interaction.
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A IMPLEMENTATION DETAILS

A.1 NETWORK ARCHITECTURE

The encoder of the rotamer density estimator is a stack of attention layers invariant to the rotation
and translation (Jumper et al., 2021) of the input protein structure. Let h{ denote the embedding of
the ¢-th amino acid output by the previous attention layer. The logit of attention weights between
residue ¢ and residue j is defined as:

ai; = (Q(h{), K (hY)) + G(zi;) + H ({O] (z¥ — 2F)}y) , (10)

where ), K, G, and H are MLP networks that transform the embeddings into queries, keys, pairwise
bias, and distance bias, respectively. The attention weight is computed by taking the softmax on the j
dimension: w;; = softmax;(a;;). In practice, we use multiple attention heads. Each attention head
has different attention weights. The vector to update the representation of residue ¢ from residue j
is computed by:

vi; =V (hf, zi;, {O] (x} — x})}x) . (11

Finally, the sum of {v;; }; weighted by {w;; }; is used to update the representation of residue j using
residual connection and layer normalization, similar to the standard transformer architecture.

The rotamer density estimator has 6 encoder layers. Node features and pairwise features have 128
channels and 64 channels respectively. The normalizing flow has 8 blocks and each spline has 65
knots, dividing [0, 27] into 64 bins.

A.2 TRAINING

The rotamer density estimator is trained using the Adam optimizer for 200K iterations. The initial
learning rate is 0.0001. The learning rate decays by 0.8 if the validation loss does not decrease in the
last 5 validation steps (the model is validated every 1000 iterations), until the learning rate reaches
0.000001. The batch size is 64. It takes 8h56m in total on a single A100 GPU.

To emulate mutations, the rotamers of 10% of amino acids are masked. Noise is added to the
rotamers of amino acids whose C-beta distance to the closest masked amino acid is less than 8.0A.
The noise added to x angles consists of two components. The first component is Gaussian noise
centered at 0 wrapped into [—, 7). It standard deviation is dependent on the C-beta distance: o;; =
f%,ﬁij + 1, where ¢ is the index of the nearest masked amino of the j-th amino acid that the noise
is added to, and f3;; is the C-beta distance between them. The second component is random flipping
(adding 7 to the angle). Every x angle in the 8A neighborhood has 25% chance of being flipped.
Our noise model is totally empirical. There are other ways to perturb rotamers, for example, using
rotamer libraries (Dunbrack Jr & Karplus, 1993; Bower et al., 1997; Dunbrack Jr, 2002; Shapovalov
& Dunbrack Jr, 2011). We leave the problem of finding an optimal noise model that emulates
mutations in future work.

A.3 BASELINES

Baselines that require training and calibration using the SKEMPI2 dataset (DDGPred, End-to-End,
B-factor, MIF-Alogit, MIF-Network) are trained independently using the 3 different splits of the
dataset as described in Section 3.5. This is to ensure that every data point in the SKEMPI2 dataset
is tested on once. Below are descriptions of the implementation of baseline methods.

Rosetta (Alford et al.,, 2017; Leman et al., 2020) The version we used is 2021.16, and
the scoring function is ref2015_cart. Every protein structures in the SKEMPI2 dataset
are first pre-processed using the relax application. = The mutant structure is built by
cartesian_ddg. The binding free energies of both wild-type and mutant structures are predicted
by interface_energy (dG_separated/dSASAx100). Finally, the binding AAG is calculated by
substracting the binding energy of the wild-type structure from the binding energy of the mutant.

FoldX (Delgado et al., 2019) Structures are first relaxed by the RepairPDB command. Mutant
structures are built with the BuildModel command based on the repaired structure. The change in
binding free energy AAG is calculated by subtracting the wild-type energy from the mutant energy.
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ESM-1v (Meier et al., 2021) We use the implementation provided in the ESM open-source reposi-
tory. Protein language models can only predict the effect of mutations for single protein sequences.
Therefore, we ignore cases where mutations are on multiple sequences. We extract the sequence of
the mutated protein chain from the SEQRES entry of the PDB file. We use masked-marginals

mode to score both wild-type and mutant sequences and use their difference as the estimation of
AAG.

PSSM We construct MSAs from the Uniref90 database (Suzek et al., 2007) for chains with mutation
annotations in the SKEMPI dataset. We use Jackhmmer (Johnson et al., 2010) version 3.3.1 follow-
ing the setting in Meier et al. (2021). The MSAs are filtered using HHfilter (Steinegger et al., 2019)
with coverage 75 and sequence identity 90. This HHfilter parameter is reported to have the best
performance for MSA Transformer according to Meier et al. (2021). We calculate position-specific
scoring matrices (PSSM) and use the change in probability as the prediction of AAG.

MSA Transformer (Rao et al., 2021) We use the implementation provided in the ESM open-source
repository. We input the MSAs constructed during the evaluation of PSSM to MSA Transformer.
We used masked-marginals mode to score both wild-type and mutant sequences and use their
difference as the prediction of AAG.

Tranception (Notin et al., 2022) We use the implementation provided in the Tranception open-
source repository. We predict mutation effects using the large model checkpoint. Previously built
MSAs (not filtered by HHfilter) are used for inference-time retrieval.

DDGPred (Shan et al., 2022) We use the implementation accompanying the paper by Shan et al.
(2022). Since this model requires predicted sidechain structures of the mutant, we use mutant struc-
tures packed during our evaluation of Rosetta to train the model and run prediction.

End-to-End The end-to-end model shares the same encoder architecture as the rotamer density
estimator. The difference is that in the RDE normalizing flows follow the encoder to model rotamer
distributions, but in the end-to-end model, the embeddings are directly fed to an MLP to predict
AAG.

B-factor This model predicts per-atom b-factors for proteins. It has the same encoder architecture
as the RDE. Following the encoder is an MLP that predicts a vector for each amino acid where
each dimension is the predicted b-factor of different atoms in the amino acid. The amino acid-level
b-factor is calculated by averaging the atom-level b-factors. The predicted b-factors are used as a
measurement of conformational flexibility. They are used to predict AAG using the linear model
same as RDE-Linear defined in Eq.9.

ESM-IF (Hsu et al., 2022) ESM-IF can score protein sequences using the log-likelihood.
The scoring function implementation is provided in the ESM repository. We enable the
-—-multichain_backbone flag to let the model see the whole protein-protein complex. We
subtract the log-likelihood of the wild-type from the mutant to predict AAG.

MIF Architecture The masked inverse folding (MIF) network uses the same encoder architecture
as RDE. Following the encoder is a per-amino-acid 20-category classifier that predicts the type of
masked amino acids. We use the same PDB-REDO train-test split to train the model. At training
time, we randomly crop a patch consisting of 128 residues, and randomly mask 10% amino acids.
The model learns to recover the type of masked amino acids with the standard cross entropy loss.

MIF-Alogit To score mutations, we first mask the type of mutated amino acids. Then, we use the
log probability of the amino acid type as the score. Analogously, we have the score of the wild-
type bound ligand, wild-type bound receptor, wild-type unbound ligand, unbound receptor, mutated
bound ligand, mutated bound receptor, and mutated unbound ligand. Therefore, we use the linear
model identical to RDE-Linear (Eq.9) to predict AAG from the scores.

MIF-Network This is similar to RDE-Network. The difference is that we use the pre-trained en-
coder of MIF rather than the encoder of RDE. We also freeze the MIF encoder as we aim to utilize
the unsupervised representations.

A.4 SOURCE CODE

Available at https://github.com/luost26/RDE-PPT.
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B BACKGROUND

This section introduces the thermodynamic principle underlying the design of RDE, which connects
entropy and binding affinity.

The Gibbs free energy of association is the physical quantity used to measure the binding affinity
between two groups of protein:
AG, = AH —TAS. (12)

In this equation, A H is the change in enthalpy upon the formation of the complex, which is currently
beyond the consideration of this work. 7 is the temperature parameter, and AS is the change in
entropy upon binding (Kastritis & Bonvin, 2013). By ignoring AH and expanding AS, we can
rewrite AG, as AG, = T(S4q — S,), where S, is the entropy of the proteins in the bound state
(complex), and Sy is the entropy in the unbound state (separated). To predict binding affinity, we
need to calculate the entropy of the separated proteins (Sy) and the entropy of the protein complex

(Sa).
The entropy S is defined by the Boltzmann expression:

S =—kp /p(az) log p(x)dx = —kpEg~, log p(x), (13)

where p(x) is the distribution of conformation @ and & s is the Boltzmann constant (Brady & Sharp,
1997). To calculate the entropy of the protein complex S,, we need to evaluate the integral with
respect to the distribution of the complex conformation denoted by p,,. To calculate the entropy of the
separated proteins Sg, we can factorize the probability density pg = Piigand (Tiigand) - Preceptor (Lreceptor)
and then evaluate —kp (Eg~pjpn 108 Pligand (T) + Eamprocoer 108 Dreceptor () ). Substituting S and S,
in AG, with these expressions, we can obtain the formula:

AG, = —kpT (Ew~pugaud log pligand(a’) + Em""pl‘cccplor log preceptor(iB) - ]Em~pﬂ log pa(:c)) , (14
which indicates that we can predict binding affinity by estimating the entropy of the conformation
distributions of the protein complex p, and each separated protein piigand, Preceptor-

We assume that sidechain conformation changes are the major determinant of protein-protein bind-
ing, so we can keep the protein backbone fixed and model only the distribution of sidechain confor-
mations (rotamers) (Najmanovich et al., 2000; Cole & Warwicker, 2002). This assumption leads to
the core component of this work, Rotamer Density Estimator (RDE), which approximates p,, Piigand.
and Precepror, €Nabling us to estimate AG,, by evaluating the entropy of these distributions.

Finally, to evaluate the effect of mutations, we apply RDE to estimate G, for both the wild-type and
the mutant. We then calculate the difference between the G, values of the mutant and wild-type,
yielding the quantity AAG:

AAG = A(;’mutam -A Gwild—type . ( 1 5)

We refer the reader to Brady & Sharp (1997) and Kastritis & Bonvin (2013) for a comprehensive
treatment of the relationship between binding affinity and entropy.
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C ADDITIONAL RESULTS

C.1 FURTHER ANALYSIS ON THE PERFORMANCE OF SEQUENCE-BASED METHODS

As discussed in Section 2.2, sequence-based (evolution-based) methods are unsuitable for predicting
protein-protein interactions due to the lack of co-evolutionary information between the two proteins.
This is supported by the results in Table 1, which indicate that sequence-based methods are inaccu-
rate in predicting AAG. We analyzed two classes of PPIs to better understand the performance of
sequence-based methods on PPIs.

Antibody-antigen binding is a typical class of PPI that lacks co-evolutionary information. The vari-
ability of the binding interface of antibodies (complementarity determining region, CDR) means
that there is no evolutionary history in the region, making it infeasible to mine the preference of
mutations from sequence databases. Additionally, in most cases, antigens do not evolve to increase
binding to specific antibodies, so sequence databases provide little information about mutational ef-
fects on antibody-antigen binding. We evaluated per-structure Spearman correlation coefficients of
MSA Transformer and RDE-Network on antibody-antigen complexes from the SKEMPI datasets.
The average Spearman score of MSA Transformer is 0.0744 and the average score of RDE-Network
is 0.4284. Figure 4 shows the results, where the x-axis and y-axis are the per-structure Spearman co-
efficients of MSA Transformer and RDE-Network respectively. Orange crosses represent antibody-
antigen complexes, and blue dots represent other complexes. The results indicate that when we
have little co-evolutionary information such as in antibody-antigen binding, structure-based meth-
ods, represented by our RDE, perform better than evolution-based methods, represented by MSA
Transformer.

When the proteins in a complex come from the same organism, evolution-based methods are more
likely to be effective. These proteins usually function together in the organism, so they evolve
together. Mutations that enhance the complexation may be more favorable, and this preference
might be reflected in evolutionary history. We inspected 10 complexes on which MSA Transformer
performed the best in terms of Spearman coefficients and found that 9 of them consist of proteins
from a single organism (Table 5). However, when evaluating MSA Transformer on all the single-
organism complexes, its Spearman score is 0.1651, which is still low. The reason may be that even
if the proteins in a complex come from the same organism, the member protein might also bind to
other proteins to be functional. In this case, it is more challenging to predict its binding in a specific
complex according to its general evolutionary history.

Figure 4: Per-structure Spearman correlation coef-
ficients of the prediction by MSA Transformer and
RDE-Network. Orange crosses represent antibody-
antigen complexes and blue dots represent other types
of complexes. Axes are cropped to [0, 1].

Table 5: Protein complexes on which MSA
Transformer performs the best in terms of
Spearman coefficients.

1.0 MSA Transf. Number of
Complex Spearman Organisms
081 . 40FY_A_D 0.7454 1
g o 2J0T_AD 0.6990 1
5 1AK4_A D 0.6578 2
& 067 e 2SICE 1 0.5915 1
£ 1BRS_A_D 0.5755 1
2044 ¢ 3SE3_B_A 0.5213 1
= IEMV_A_B 0.5082 1
8 ) 1B41_A_B 0.4972 1
0.2 1ZTX W X 0.4647 1
3SE4.B_C 0.4268 1
0.0

0.0 0.2 0.4 0.6 0.8 1.0
MSA Transformer (Spearman)
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C.2 SINGLE-MUTATION AND MULTI-MUTATION

Table 6: Evaluation of AAG predictors on the single-mutation subset of SKEMPI2.

Per-Struct.  Per-Struct. | Overall Overall RMSE MAE AUROC
Method Pearson Spearman | Pearson Spearman (kcal/mol) (kcal/mol)
ESM-1v 0.0422 0.0273 0.1914 0.1572 1.7226 1.1917 0.5492
PSSM 0.1215 0.1229 0.1224 0.0997 1.7420 1.2055 0.5659
MSA Transf. 0.1415 0.1293 0.1755 0.1749 1.7294 1.1942 0.5917
Tranception 0.1912 0.1816 0.1871 0.1987 1.7455 1.1708 0.6089
Rosetta 0.3284 0.2988 0.3113 0.3468 1.6173 1.1311 0.6562
FoldX 0.3908 0.3640 0.3560 0.3511 1.5576 1.0713 0.6478
DDGPred 0.3711 0.3427 0.6515 0.4390 1.3285 0.9618 0.6858
End-to-End 0.3818 0.3426 0.6605 0.4594 1.3148 0.9569 0.7019
B-factor 0.1884 0.1661 0.1748 0.2054 1.7242 1.1889 0.6100
ESM-IF 0.2308 0.2090 0.2957 0.2866 1.6728 1.1372 0.6051
MIF-Alogit 0.1616 0.1231 0.2548 0.1927 1.6928 1.1671 0.5630
MIF-Net. 0.3952 0.3479 0.6667 0.4802 1.3052 0.9411 0.7175
RDE-Linear 0.3192 0.2837 0.3796 0.3394 1.5997 1.0805 0.6027
RDE-Net. 0.4687 0.4333 0.6421 0.5271 1.3333 0.9392 0.7367

Table 7: Evaluation of AAG predictors on the multi-mutation subset of SKEMPI2.

Per-Struct.  Per-Struct. | Overall Overall RMSE MAE AUROC
Method Pearson Spearman | Pearson Spearman (kcal/mol) (kcal/mol)
ESM-1v -0.0599 -0.1284 0.1923 0.1749 2.7586 2.1193 0.5415
PSSM -0.0174 -0.0504 -0.1126 -0.0458 2.7937 2.1499 0.4442
MSA Transf. -0.0097 -0.0400 0.0067 0.0030 2.8115 2.1591 0.4870
Tranception -0.0688 -0.0120 -0.0185 -0.0184 2.9280 2.2359 0.4874
Rosetta 0.1915 0.0836 0.1991 0.2303 2.6581 2.0246 0.6207
FoldX 0.2801 0.2771 0.2347 0.4137 2.5290 1.8639 0.6828
DDGPred 0.3912 0.3896 0.5938 0.5150 2.1813 1.6699 0.7590
End-to-End 0.4178 0.4034 0.5858 0.4942 2.1971 1.7087 0.7532
B-factor 0.2078 0.1850 0.2009 0.2445 2.6557 2.0186 0.5876
ESM-IF 0.2016 0.1491 0.3260 0.3353 2.6446 1.9555 0.6373
MIF-Alogit 0.1053 0.0783 0.3358 0.2886 2.5361 1.8967 0.6066
MIF-Net. 0.3968 0.3789 0.6139 0.5370 2.1399 1.6422 0.7735
RDE-Linear 0.1763 0.2056 0.4583 0.4247 2.4460 1.8128 0.6573
RDE-Net. 0.4233 0.3926 0.6288 0.5900 2.0980 1.5747 0.7749
10 4
44 » 64 75
g 2 ‘» ‘ é \ ‘ g , g 251 r‘(-/,
2 ] P E N ! g ,] g 00 f
-24
2 104 5.0

-10 0 10 -10 0 10 -5 0 5 10 -10 -5 0 5 10
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Figure 5: Correlation between experimen-  Figure 6: Correlation between experimen-
tal AAGs and AAGs predicted by RDE- tal AAGs and AAGSs predicted by RDE-
Linear and RDE-Network on SKEMPI2 single-  Linear and RDE-Network on SKEMPI2 multi-
mutation subset. mutation subset.
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C.3 CORRELATION WITH B-FACTOR

Table 8: Correlation between average sidechain B-factors and entropy estimated by RDE. Scatter
plots of each amino acid type are in Figure 7.

Type | Pearson  Spearman
ARG 0.4683 0.4904
ASN 0.4329 0.3826
ASP 0.4680 0.4408
CYS 0.4099 0.4099
GLN 0.4691 0.4463
GLU 0.4683 0.4861
HIS 0.3743 0.3261
ILE 0.5288 0.4677
LEU 0.5281 0.4638
LYS 0.5479 0.5777
MET 0.5026 0.4758
PHE 0.3615 0.2667
SER 0.5368 0.5247
THR 0.5945 0.5263
TRP 0.3263 0.2910
TYR 0.3588 0.2493
VAL 0.5068 0.4536

Average | 0.4637 0.4282
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51 =z
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o 0> _— _—
€ 4 o g™ ; aa t—=
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Figure 7: Scatter plots of average sidechain B-factors and estimated entropy.
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C.4 SIDECHAIN CONFORMATION PREDICTION

Table 9: Mean absolute error of the predicted sidechain torsional angles.

Type x SCWRL4 Rosetta RDE Type x SCWRL4 Rosetta RDE
1 2930 30.50  20.90 Ly L 1397 1415 941
ARG 2 28.68 36.12 28.72 2 23.76 27.61 19.32
3 57.89 60.73 56.83 1 31.32 33.88 21.64
4 60.35 63.62 56.76 LYs 2 30.95 33.15 32.90
1 21.70 1939  17.26 3 38.90 42.07 37.70
ASNC o 4400 4341 4136 4 5194 5394 4976
1 25.75 2262  17.54 1 26.36 26.07  16.87
ASP 5 5390 2126 2115 MET 2 3852 3609 27.09
3 5511 58.77  50.21
CYS 1 2483 2590 1274
pHE | 12.30 13.08  9.22
1 33.16 3153 2278 2 1240 1235 945
GLN 2 4633 3396 35.16
3 53.72 56.52  52.80 SER 1 47.19 46.83  25.66
1 35.45 34.69 26.14 THR 1 28.05 22.67 16.85
GLU 2 38.23 38.43 34.60 TRP 1 14.52 18.64 8.50
3 3150 30.85  29.35 2 3174 3144 2442
1 23.15 19.12 17.88 1 11.39 14.56 925
HIS . . .
2 7062 6197  69.69 YR 137 1445 835
e L 1392 14.65  8.86 VAL 1 2131 19.41  10.82
2 2643 27.54  21.54
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