

1 Spontaneous allelic variant in *Ush1g* resulting in 2 an expanded phenotype

3 Running head: *Ush1g* backwards-walking allele

4 Vladimir Vartanian¹, Jocelyn F. Krey², Paroma Chatterjee², Sherri M. Jones³, Allison Curtis⁴,
5 Renee Ryals⁴, R. Stephen Lloyd^{1,5,‡,†}, Peter G. Barr-Gillespie^{2,‡,†}

6 ¹ Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR
7 97239, USA

8 ² Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland,
9 OR 97239, USA

10 ³ Department of Special Education and Communication Disorders, University of Nebraska-Lincoln,
11 Lincoln, NE 68588, USA

12 ⁴ Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland,
13 OR 97239, USA

14 ⁵ Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
15 97239, USA

16 [‡]Co-senior authors.

17 [†]Manuscript correspondence at gillespp@ohsu.edu; lloydst@ohsu.edu

18 Abbreviations: ABR, auditory brainstem response; GCL, ganglion cell layer; INL, inner nuclear layer;
19 ONL, outer nuclear layer; RPE, retinal pigmented epithelium; s.e.m., standard error of the mean; SEM,
20 scanning electron microscopy; USH1, Usher I; VsEP, vestibular evoked potential.

21 Acknowledgements

22 We carried out confocal microscopy in the OHSU Advanced Light Microscopy Core @ The Jungers
23 Center and electron microscopy in the OHSU Multiscale Microscopy Core. PGBG was supported by
24 National Institutes of Health grant R01DC002368. RSL was supported by National Institute of
25 Environmental Health Sciences grant R01ES031086, as well as the Oregon Institute of Occupational
26 Health Sciences at Oregon Health & Science University (via funds from the Division of Consumer and
27 Business Services of the State of Oregon; ORS 656.630). RR was supported by Casey Eye Institute
28 Core Grant P30 EY010572 from the National Institutes of Health and unrestricted departmental funding
29 from Research to Prevent Blindness.

30 **Abstract**

31 Strategies to reveal the discovery of the relationships between novel phenotypic behaviors and specific
32 genetic alterations can be achieved via either target-specific, directed mutagenesis or phenotypic
33 selection following random chemical mutagenesis. As an alternative approach, one can exploit
34 deficiencies in DNA repair pathways that are responsible for the maintenance of genetic integrity in
35 response to spontaneously-induced damage. In the genetic background of mice deficient in the DNA
36 glycosylase NEIL1, elevated numbers of spontaneous mutations arise from translesion DNA synthesis
37 past unrepaired, oxidatively-induced base damage. Several litters of *Neil1* knockout mice included
38 animals that were distinguished by their backwards-walking behavior in open-field environments, while
39 maintaining frantic forward movements in their home cage environment. Other phenotypic
40 manifestations included swim test failures, head tilting, and circling. Mapping of the mutation that
41 conferred these behaviors revealed the introduction of a stop codon at amino acid 4 of the *Ush1g* gene;
42 the allele was *Ush1g^{bw}*, reflecting the backwards-walking phenotype. *Ush1g^{bw/bw}* null mice displayed
43 auditory and vestibular defects that are commonly seen with mutations affecting inner-ear hair-cell
44 function, including a complete lack of auditory brainstem responses and vestibular-evoked potentials.
45 As in other Usher syndrome type I mutant mouse lines, hair-cell phenotypes included disorganized and
46 split hair bundles, as well as altered distribution of proteins for stereocilia that localize to the tips of row
47 1 or row 2. Disruption to the bundle and kinocilium displacement suggested that USH1G is essential for
48 forming the hair cell's kinociliary links. Due to the vestibular dysfunction, however, visual behavior as
49 measured with optokinetic tracking could not be assessed in *Ush1g^{bw/bw}* mice. Consistent with other
50 Usher type 1 models, however, *Ush1g^{bw/bw}* mice had no substantial retinal degeneration compared to
51 *Ush1g^{bw/+}* controls out to six months. In contrast to previously-described *Ush1g* alleles, this new allele
52 provides the first knockout model for this gene.

53 **Keywords**

54 DNA repair, cochlea, hair cell, stereocilia, retina, backward walking mouse, hyperactivity

55 **Introduction**

56 Strategies to identify and establish the functional significance of genes and their products has been
57 pioneered through manipulation of genomes via increasingly complex experimental designs¹. Many of
58 these advances have been reduced to practice using the mouse genome as an experimental and
59 screening platform. Insights gained into establishing the functional significance of individual genes has
60 provided both the foundation from which to understand specific structure-function relationships and the
61 framework to dissect complex pathways and processes. Although not a perfect surrogate for analyses
62 of human genes or therapeutic design and validation, the mouse genome shares an 80% synteny with

63 the organization of the human genome and a high percentage of readily identifiable orthologs. Thus,
64 analyses of the phenotypic consequences of genotypic manipulation in the mouse serves as a strong
65 foundational point from which to understand human disease¹. The International Mouse Genotyping
66 Consortium, whose primary objective is to coordinate the cataloging, design, production, and
67 documentation of all human gene orthologs found within the mouse genome is close to achieving this
68 goal, with documentation of nearly 17,000 gene knockouts and covering nearly 80% of the target goal².

69 Along this discovery pathway, significant advances were made via the observation and collection of
70 mouse phenotypes arising from not only spontaneous mutations, but also large-scale, random
71 mutagenesis induced by exposures to ionizing radiation and chemical mutagenesis¹. For strategies
72 organized around chemical mutagenesis, several large international consortia utilized DNA alkylating
73 agents such as ethylnitrosourea and ethylmethanesulfonate to create widespread base damage,
74 located primarily on purines. The expectation was that these base modifications would ultimately lead
75 to randomized mutagenesis of the entire genome. However, to mitigate the potentially deleterious
76 effects of these base damages, cells possess a variety of DNA repair pathways, with small molecule
77 DNA alkylation damage primarily removed by the base excision repair pathway (BER). BER consists of
78 a series of coordinated sequential steps that are initiated by DNA glycosylases, which scan the genome
79 for altered bases, flip the damaged nucleotide into a catalytic pocket, and initiate chemistry for base
80 release via glycosyl bond cleavage, with the potential cleavage of the phosphodiester backbone.
81 Following base release, the remainder of the pathway is devoted to the creation and filling in of short
82 gaps in the strand from which the base was released followed by sealing the nick³. This is a generally
83 high-fidelity pathway that relies on an undamaged complementary strand as a template for high-fidelity
84 gap filling. However, if the base damage is not removed prior to DNA replication by high-fidelity DNA
85 polymerases (α , δ and ϵ), blocked replication can be rescued following translesion DNA synthesis that
86 is catalyzed by low-fidelity, low-processivity DNA polymerases⁴. This damage-tolerance mechanism is
87 the primary mechanism for introducing point mutations and short deletions and insertions.

88 Thus, random chemical mutagenesis strategies to create saturation mutagenesis for phenotypic
89 selection have relied on overwhelming DNA-repair pathways without inducing cytotoxicity. To the best
90 of our knowledge, mice deficient in DNA-repair mechanisms have not been used in conjunction with
91 large-scale chemical mutagenesis and subsequent selection. However, it would be anticipated that
92 deficiencies in repair of spontaneously-induced base damage, including depurination, deamination,
93 alkylation, and oxidation, as well as damage produced by exogenous sources, would continuously
94 generate point mutations and short deletions. In this regard, base modification by exposure to reactive
95 oxygen species is not only a by-product of normal biochemical reactions, but also from ionizing
96 radiation, ultraviolet irradiation, heavy metal exposures, and inflammation⁵. Repair of the plethora of
97 oxidatively-induced damages is initiated by a series of DNA glycosylases including NEIL1, NEIL2,
98 NEIL3, NTH1, and OGG1 (ref. 6). NEIL1 is responsible for the removal of several saturated

99 pyrimidines, both ring-fragmented purines, alkylated ring-fragmented purines, psoralen-induced DNA
100 crosslinks, and secondary oxidation products of 8-oxoGua (ref. 7). Given the very broad substrate
101 specificity of NEIL1, it would be anticipated that mice which are deficient in *Neil1* would show elevated
102 levels of spontaneous mutagenesis. For over 20 years, the Lloyd laboratory has maintained *Neil*^{−/−}
103 mice, which are frequently bred as knockouts for metabolic and carcinogenesis studies. As part of
104 routine colony expansion, mice are systematically monitored for unusual phenotypes. The current
105 investigation arose by the observation of mice exhibiting a backwards-walking phenotype in an open-
106 field environment, as well as exhibiting a variety of other abnormal behaviors. Since literature reviews
107 did not yield matches to a backwards-walking phenotype, studies were initiated to identify the genetic
108 alteration that produced this phenotype.

109 We mapped the backwards-walking trait to the *Ush1g* gene, and found that it was caused by a
110 nonsense mutation that truncated the protein after the third amino acid. We found that *Ush1g*^{*bw/bw*} mice
111 had auditory and vestibular defects, as well as disruption of the sensory hair bundle of cochlear hair
112 cells, much like that seen with other mouse lines mutant for Usher syndrome type I (USH1) genes.
113 Examination of protein distribution by immunocytochemistry revealed that loss of *Ush1g* affects row 1
114 and row 2 tip proteins similarly to loss of *Cdh23* or *Pcdh15*. We noted defects in kinocilial location that
115 support the hypothesis that USH1G assists in stabilizing CDH23-PCDH15 kinocilial links. Finally, like
116 other mouse USH1 models, we detected no visual phenotypes in these mice. We conclude that
117 *Ush1g*^{*bw*} is a null *Ush1g* allele that will be useful for investigation of auditory and vestibular function.

118 Materials & Methods

119 Animal models

120 All animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at
121 Oregon Health & Science University (IP00000145 for RSL, IP00000610 for RR, and IP00000714 for
122 PGBG). *Neil*^{−/−} mice have been described previously^{8,9}. Mice arising from the original mutagenic event
123 creating *Ush1g*^{*bw*} were backcrossed to C57BL/6J (B6) mice (RRID:IMSR_JAX:000664, Jackson
124 Laboratories, Bar Harbor, ME) and were maintained on a B6 background. Mouse pups were assumed
125 to be born at midnight, so the animal age on the first day is referred to as P0.5. Both female and male
126 pups were used for all experiments.

127 Statistical analysis

128 Unless otherwise stated, statistical comparisons between two sets of data used the Student's t-test with
129 unpaired data and the untested assumption of equal variance. In figures, asterisks indicate: *, p < 0.05;
130 **, p < 0.01; ***, p < 0.001.

131 **Optokinetic tracking**

132 Optokinetic tracking (OKT) thresholds were used to identify spatial frequencies of gratings
133 (cycles/degree), which define visual performance for animals (OptoMotry; CerebralMechanics,
134 Lethbridge, Alberta, Canada). Briefly, animals were placed on the pedestal in the OptoMotry system
135 and given five minutes to acclimate to the new environment. A simple staircase method at 100%
136 contrast in normal lighting conditions was used for testing. Right and left eyes were tested separately
137 and averaged together to get one spatial frequency per animal.

138 **Electroretinography**

139 Mice were dark-adapted overnight. Under dim red light, mice were anesthetized with ketamine
140 (100 mg/kg) and xylazine (10 mg/kg). Mouse pupils were dilated with 1% tropicamide and 2.5%
141 phenylephrine and lubricated during the procedure with hydromellose 2.5% ophthalmic lubricant.
142 Bilateral platinum electrodes were placed on the corneal surface to record the light-induced
143 electroretinography (ERG) potentials. The reference and ground electrodes placed subcutaneously in
144 the forehead and tail, respectively. Flashes with increasing light intensity from -4 to 3.39 log cd•s/m²
145 were used for the recordings. A 2-way ANOVA with Šídák's multiple comparisons test was used to
146 compare amplitudes between the groups.

147 **Retinal spectral domain-optical coherence tomography**

148 At P180, mouse retinas were imaged with a Heidelberg Spectralis Multimodal Imaging Platform
149 (Heidelberg Engineering Inc., Franklin, MA, USA) using spectral domain-optical coherence tomography
150 (SD-OCT). Images were segmented using the Heidelberg Eye Explorer software included with the
151 imaging platform. To measure photoreceptor thickness, REC+ was defined as the thickness from the
152 base of the RPE to the interface of the inner nuclear layer and outer plexiform layer. REC+ values were
153 taken from ten locations spanning superior, inferior, nasal and temporal retina. REC+ values from both
154 eyes were averaged for each animal. A one-way ANOVA was used to compare photoreceptor
155 thickness between groups.

156 **Retina histology**

157 At P180, enucleated eyes were placed immediately in 4% formaldehyde and incubated overnight at
158 4°C. Eyes were processed and embedded in paraffin for sectioning (Tissue-Tek VIP 6, Tissue-Tek TEC
159 5; Sakura Finetek USA, Inc., Torrance, CA, USA). Sections were cut with a microtome to a thickness of
160 4 µm, stained with hematoxylin-eosin, and viewed on a Leica DMI3000 B microscope (Leica
161 Microsystems GmbH, Wetzlar, Germany). A total of 12 images per eye encompassing the nasal,
162 temporal, superior and inferior retinal quadrants were captured with a 40x objective. The number of
163 photoreceptor nuclei in a row were counted and averaged from these 12 images, to obtain an outer
164 nuclear layer (ONL) cell count per animal. A one-way ANOVA was used to compare ONL cell counts
165 between groups.

166 **Retina immunofluorescence**

167 At P180, WT, Het, and KO eyes were harvested and placed in 4% formaldehyde. At 24 hours after
168 fixation, whole eyes were placed in a 30% sucrose solution for 4 hours, and then frozen in Scigen
169 Tissue-Plus O.C.T. Compound (Thermo Fisher Scientific, Waltham, MA, USA) at -78°C. Eyes were
170 sectioned at 12 µm on a Leica CM1860 cryostat. Cross-sections were incubated at 4°C in primary
171 antibody consisting of anti-rhodopsin (1D4) (1:200, Cat# NBP1-30046; RRID:AB_1968611; Novus
172 Biologicals, Centennial, CO, USA), 0.3% Triton X-100, and 1% bovine serum albumin overnight.
173 Tissues were rinsed and incubated in secondary antibody containing goat anti-rabbit Alexa 488 (1:500,
174 Thermo Fisher Scientific Cat# A11008; RRID:AB_143165), 1% bovine serum albumin, and PBS (1X)
175 for two hours at 20 °C. After incubation in secondary antibody, retinas were rinsed again and placed in
176 a DAPI solution (1:2400, Thermo Fisher Scientific Cat# D1306) for 5 minutes. Retinas were imaged
177 with a white light laser confocal microscope (Leica Microsystems TCS SP8 X). Z-stacks (spanning 14-
178 23 µm in 1 µm intervals) were collected using a 63x objective. Confocal images were processed using
179 the maximum intensity tool in ImageJ software (version 1.49; National Institutes of Health, Bethesda,
180 MD, USA).

181 **Functional tests for hearing and balance**

182 Auditory brainstem response (ABR) experiments were carried out as described previously¹⁰ with
183 7 *Ush1g^{bw}*/+ animals and 7 *Ush1g^{bw/bw}* animals. Animals were anesthetized with xylazine (10 mg/kg,
184 i.m.; Animal Health Inc., Greeley, CO, USA) and ketamine (40 mg/kg, i.m.; Hospira, Inc., Lake Forest,
185 IL, USA), and placed on a heating pad in a sound-isolated chamber. Needle electrodes were placed
186 subcutaneously near the test ear, both at the vertex and at the shoulder of the test ear side. A closed-
187 tube sound-delivery system, sealed into the ear canal, was used to stimulate each ear. ABR
188 measurements used tone bursts with a 1 ms rise time, applied at 4, 8, 16, 24, and 32 kHz. Responses
189 were obtained for each ear, and the tone-burst stimulus intensity was increased in steps of 5 dB. The
190 threshold was defined as an evoked response of 0.2 µV from the electrodes.

191 Vestibular evoked potential (VsEP) experiments were carried out as described previously¹¹ with
192 7 *Ush1g^{bw}*/+ animals and 7 *Ush1g^{bw/bw}* animals. Mice were anesthetized by intraperitoneal injection of
193 ketamine and xylazine (18 and 2 mg/ml; 5-7 µl/g body weight), followed by maintenance doses as
194 needed to maintain adequate anesthesia. Core body temperature was maintained at 37.0 ± 0.2°C using
195 a homeothermic heating pad (FHC Inc., Bowdoin, ME, USA). For VsEP testing, linear acceleration
196 ramps producing rectangular jerk pulses were generated and controlled using a National Instruments
197 (Austin, TX, USA) data acquisition system and custom software. Mice were placed supine on a
198 stationary platform and the head was secured within a spring clip coupled to a voltage-controlled
199 mechanical shaker (Model 132-2; Labworks, Costa Mesa, CA, USA). The head was oriented with nose
200 up and linear translation stimuli were presented in the naso-occipital axis parallel to the Earth-vertical
201 axis. Vestibular stimuli consisted of 2 ms linear jerk pulses, delivered to the head using two stimulus

202 polarities—normal, with an initial upward jerk, and inverted, with an initial downward jerk—at a rate of
203 17 pulses per second. Stimulus amplitudes ranged from +6 dB to -18 dB re: 1.0 g/ms (where 1 g =
204 9.8 m/s²), adjusted in 3 dB steps. A broadband forward masker (50-50,000 Hz, 94 dB SPL) was
205 presented during VsEP measurements to confirm the absence of auditory components¹². Signal
206 averaging was used to extract the VsEP responses from the background electrophysiological activity.
207 Ongoing electroencephalographic (EEG) activity was amplified (200,000x), filtered (300-3000 Hz, -6 dB
208 points), and digitized beginning at the onset of each jerk stimulus (1024 points, 10 μ s/point) to produce
209 one primary response trace. For each stimulus intensity and polarity, 128 primary responses were
210 averaged to produce an averaged response waveform. Four averaged response waveforms were
211 recorded for each stimulus intensity (two waveforms recorded for normal stimulus polarity and two for
212 inverted polarity). Final individual response traces were produced by summing one averaged response
213 to each stimulus polarity and dividing the result by two, thus producing two response traces for each
214 stimulus intensity for each animal.

215 **Scanning electron microscopy**

216 Periotic bones with cochleas were dissected in Leibovitz's L-15 medium (Thermo Fisher Scientific) from
217 P8.5 or P21.5 littermates from *Ush1g^{bw}* crosses. After isolating the periotic bone, several small holes
218 were made to provide access for fixative solutions; encapsulated cochleas were fixed for an hour in
219 2.5% glutaraldehyde in 0.1 M cacodylate buffer supplemented with 2 mM CaCl₂. Next, cochleas were
220 washed with distilled water and the cochlear sensory epithelium was dissected out; the tectorial
221 membrane was manually removed. The cochlear tissues were then transferred to scintillation vials and
222 dehydrated in a series of ethanol and critical-point dried using liquid CO₂. Samples were immobilized
223 on aluminum specimen holders using a carbon tape and sputter coated with 3-4 nm of platinum.
224 Samples were imaged using the Helios scanning electron microscope.

225 **Immunofluorescence sample preparation for cochlea**

226 Inner ears from *Ush1g^{bw}* littermates were dissected at the indicated ages in cold Hank's balanced salt
227 solution (Thermo Fisher Scientific Cat# 14025076), supplemented with 5 mM HEPES, pH 7.4
228 (dissection buffer). Small openings were made within the periotic bones to allow perfusion of the
229 fixative. Cochleas were fixed in 4% formaldehyde (Cat# 1570; Electron Microscopy Sciences, Hatfield,
230 PA, USA) in dissection buffer for 20-60 min at room temperature. In experiments using row 2 protein
231 antibodies (EPS8L2, CAPZB), fixation was for 20 min; row 1 protein antibodies were not sensitive to
232 fixative duration and were usually fixed for 60 min. Ears were washed in PBS, then cochleas were
233 dissected out from the periotic bone and the lateral wall was removed. Cochleas were permeabilized in
234 0.2% Triton X-100 diluted in 1x PBS for 10 min and blocked in 5% normal donkey serum (Cat# 017-
235 000-121; Jackson ImmunoResearch, West Grove, PA, USA) for 1 hour at room temperature. For
236 staining against USH1C, cochleas were permeabilized and blocked for one hour in 10% normal donkey
237 serum (Cat# 017-000-121; Jackson ImmunoResearch, West Grove, PA, USA) and 0.2% Triton X-100

238 diluted in 1x PBS. Organs were incubated overnight at 4°C with primary antibodies in blocking buffer
239 (5% normal donkey serum diluted in 1x PBS) and then washed three times in 1x PBS. Dilutions were
240 1:250 for anti-acetylated tubulin; 1:250 for anti-GPSM2, 1:500 for anti-GNAI3; 1:250 for anti-EPS8,
241 1:200 for USH1C; 1:250 for anti-EPS8L2, 1:250 for anti-CAPZB. Tissue was then incubated with
242 secondary antibodies, which were 2 µg/ml donkey anti-rabbit Alexa Fluor 488 (Thermo Fisher Scientific
243 Cat# A21206; RRID:AB_2535792) and 2 µg/ml donkey anti-mouse Alexa Fluor 568 (Thermo Fisher
244 Scientific Cat# A10037; RRID:AB_2534013); 1 U/ml CF405 phalloidin (Cat# 00034; Biotium, Fremont,
245 CA, USA) was also included for the 3-4 hr room treatment. Cochleas were washed three times in PBS
246 and mounted on a glass slides in ~50 µl of Vectashield and covered with a #1.5 thickness 22 x 22 mm
247 cover glass (Cat# 2850-22, Corning) or a #1.5 thickness 22 x 40 mm cover glass (Thermo Fisher
248 Scientific Cat# CLS-1764-2240).

249 Primary antibodies were as follows. Mouse anti-acetylated tubulin (clone 6-11B-1) was Cat# T6793
250 (RRID:AB_477585) from Sigma-Aldrich (St. Louis, MO). Rabbit anti-GPSM2 Cat# HPA007327 (RRID:
251 AB_1849941) from Sigma-Aldrich. Rabbit anti-GNAI3, directed against a C-terminal mouse GNAI3
252 peptide (KNNLKECGLY), was Cat# G4040 (RRID: AB_259896) from Sigma-Aldrich. Mouse
253 monoclonal anti-EPS8 (clone 15), against mouse EPS8 amino acids 628-821, was Cat# 610143 (RRID:
254 AB_397544) from BD Bioscience (San Jose, CA). Mouse monoclonal anti-CAPZB2, against a C-
255 terminal peptide of human CAPZB2, was Cat# AB6017 (RRID: AB_10806205) from EMD Millipore
256 (Burlington, MA). Mouse monoclonal anti-EPS8L2, against human EPS8L2 amino acids 615-715, was
257 Cat# ab57571 (RRID: AB_941458) from Abcam (Cambridge, UK). Rabbit anti-pan-MYO15A was
258 antibody PB48 from the Thomas Friedman lab¹³. We used Genemed Biosynthesis (San Antonio, TX) to
259 generate a rabbit anti-USH1C antiserum using recombinantly expressed PDZ3 of mouse *Ush1c*. For
260 attempted immunolocalization of USH1G, we used anti-sans J63 rabbit 73 (a gift from Amel El Bahloul-
261 Jaziri).

262 **Fluorescence microscopy of stereocilia proteins**

263 Organs were imaged using a 63x, 1.4 NA Plan-Apochromat objective on a Zeiss (Oberkochen,
264 Germany) Elyra PS.1/LSM710 system equipped with an Airyscan detector and ZEN 2012 (black
265 edition, 64-bit software) acquisition software. Settings for x-y pixel resolution, z-spacing, as well as
266 pinhole diameter and grid selection, were set according to software-suggested settings for optimal
267 Nyquist-based resolution. Raw data processing for Airyscan-acquired images was performed using
268 manufacturer-implemented automated settings. Settings for x-y pixel resolution, z-spacing, as well as
269 pinhole diameter and grid selection, were set according to software-suggested settings for optimal
270 Nyquist-based resolution. Raw data processing for Airyscan-acquired images was performed using
271 manufacturer-implemented automated settings. Display adjustments in brightness and contrast and
272 reslices and/or maximum intensity Z-projections were made in Fiji software
(<https://imagej.net/software/fiji/>).

274 **Results**

275 **Discovery and identification of *Ush1g^{bw}* mutant allele**

276 As part of ongoing investigations into the role of the NEIL1 DNA glycosylase, routine expansion and
277 health monitoring of the *Neil1^{-/-}* colony revealed an unexpected phenotype. Because NEIL1 plays a
278 major role in the initiation of base-excision repair of oxidatively-induced DNA damage and alkylated
279 ring-fragmented purines⁷, throughout the maintenance of this strain, spontaneous mutations arise.
280 Offspring of *Neil1^{-/-}* crosses have generated mice with a variety of readily observable phenotypes,
281 including but not limited to the generation of petite mice (<20 g at maturity), alopecia, microphthalmia,
282 staggering, and seizures (unpublished observations).

283 In the current study and part of routine colony expansion of phenotypically normal *Neil1^{-/-}* mice⁹, we
284 observed a hyperactive male mouse. This mouse was mated with *Neil1^{-/-}* females, generating
285 phenotypically normal F1 offspring. When these offspring were set up in pair-wise mating, a portion of
286 this F2 generation, representing both males and females, exhibited hyperactivity, head-tilting, and
287 unresponsiveness to auditory stimuli. Further observation of these mice revealed that when picked up
288 by the tail, they displayed tremors and rapid spinning. If they were placed in an open space context,
289 such as a hood or a tabletop, they immediately stopped all forward motion and only walked backwards
290 (Supplemental Video 1). Backward walking was also associated with backward circling, raising their
291 heads to a vertical position, and head wagging. The affected mice could not perceive the edge of a
292 surface and would routinely fall off the table top, mandating vigilance during behavioral monitoring. In
293 their home cage, affected mice only walk or run forward and boxes containing only affected mice show
294 rapid and sustained forward running in circular patterns within the cage. Affected mice were also unable
295 to function in a swim test, rapidly swimming to the bottom of the tank and requiring rescue.

296 Subsequent mating in which both genders were phenotypically affected, or mating that used an
297 affected female with a phenotypically normal male, resulted in successful pregnancies, albeit with small
298 litters. All pups died within days after birth, however, presumably due to maternal disinterest or from
299 being trampled during frantic, in-cage running. Analyses of mice generated from the mating of affected
300 males with wild-type C57BL/6J females, followed by subsequent generation of F2 pups, revealed that
301 the acquisition of these phenotypes was independent of the *Neil1* genotype.

302 To map the mutation, affected C57BL/6 males were mated with BALB/c females; the F1 generation
303 mice were all phenotypically normal (Fig. 1). Offspring resulting from matings within this F1 generation
304 produced a total of nine open-field, backwards-walking mice out of a total of 37 pups. Tails from a total
305 of these nine mice and two additional backwards-walking mice and nine phenotypically normal mice
306 were sent to The Jackson Laboratory for differential single nucleotide polymorphic (SNP) analyses. In
307 this analysis, the approximate chromosomal location of the mutated gene was anticipated to map to
308 inherited regions that were homozygous for C57BL/6 SNPs in the 11 affected mice and either

309 heterozygotic or homozygotic for BALB/c SNPs in unaffected mice. Analyses of a total of 126 SNPs for
310 each mouse revealed a single chromosomal location, extreme distal 11q that mapped to the mutated
311 site (Fig. 1). The linkage was evident from SNP #11-117818566-N, marker RS3023766 at
312 116,784,04 bp. The boundaries of the gene of interest were established by SNP #11-105306632-N,
313 marker RS3024066 at 104,384,279 bp and the end of chromosome 11 as the lower limit. Genes
314 mapping to this general region were analyzed for potential functional interest, with *Ush1g* being the
315 leading candidate. Sequence analyses revealed that the DNA encoding codon 4 of *Ush1g* (CAG,
316 encoding glutamine) had been mutated to a stop codon (TAG). The mutant USH1G protein thus should
317 be truncated after the third amino acid. Because of the previously-unreported backwards-walking
318 phenotype of this allele, we designated it as *Ush1g^{bw}* (MGI:7432804). Given the location of the
319 introduced stop codon, we presume that the allele is a complete null.

320 **Visual phenotype**

321 USH1G causes progressive retinal degeneration in humans¹⁴. In *Ush1g^{bw}* mice, visual behavior was
322 measured in normal lighting conditions at P30, P90, and P180 using OKT; there were no significant
323 differences between wild type and heterozygous *Ush1g* animals at these time points (Fig. 2A). By
324 contrast, these measurements highlighted the *Ush1g^{bw/bw}* phenotype; these animals were unable to
325 balance on the platform, and measurements could not be acquired (Fig. 2A). Scotopic ERGs were
326 recorded at these time points; while *Ush1g^{bw/bw}* mice had significantly lower b-wave amplitudes than
327 *Ush1g^{bw/+}* controls (Fig. 2C), a-wave amplitudes (corresponding to photoreceptor function) were
328 essentially unchanged between the genotypes (Fig. 2B). At P180, prior to eye harvest for histology and
329 immunofluorescence, SD-OCT was used to collect *in vivo* retinal images (Fig. 2D). Photoreceptor
330 thickness calculated from SD-OCT images showed no difference between *Ush1g^{+/+}*, *Ush1g^{bw/+}* and
331 *Ush1g^{bw/bw}* animals (Fig. 2E). These results were confirmed with photoreceptor nuclei counts from
332 histology images (Fig. 2F-G). Immunofluorescence of eyes harvested at P180 showed that rhodopsin
333 levels in the photoreceptor outer segments were consistent between groups (Fig. 2H).

334 **Auditory and vestibular functional phenotype**

335 USH1G mutations also cause profound deafness and constant vestibular dysfunction in humans at
336 birth¹⁵. The behaviors that led to the initial isolation of the *Ush1g^{bw}* allele are largely similar to those
337 seen in other mouse lines with mutations affecting the vestibular system; the allele descriptors “*circler*,”
338 “*shaker*,” and “*waltzer*,” commonly used for these lines¹⁶, all indicate hyperactivity and stereotyped
339 motor behavior. Because most mouse lines with vestibular dysfunction also lack auditory function, we
340 predicted that *Ush1g^{bw/bw}* mice would have disruptions in hearing and balance. Indeed, *Ush1g^{bw/bw}* mice
341 had profound hearing loss, objectively shown with ABR measurements¹⁷. None of the *Ush1g^{bw/bw}* mice
342 tested had an ABR response at 8, 16, or 32 kHz, while heterozygote mice had normal ABR thresholds
343 (Fig. 3A). Likewise, *Ush1g^{bw/bw}* mice had profound vestibular dysfunction, objectively shown by

344 threshold elevation in VsEP measurements¹⁸. None of the *Ush1g^{bw/bw}* mice tested had a VsEP
345 response, while heterozygote mice had normal VsEP thresholds (Fig. 3B).

346 **Morphology of inner-ear hair bundles**

347 The disruption to auditory and vestibular function and the known role of USH1G in hair cells suggested
348 examination of their sensory hair bundles would be illuminating. Mutations in other genes that cause
349 USH1 have severe disruption of their bundles, in large part due to loss of tip links, transient lateral links,
350 and kinociliary links, all of which are formed by CDH23 and PCDH15 (ref. 19). Scanning electron
351 microscopy (SEM) revealed significant disorganization of P8.5 *Ush1g^{bw/bw}* bundles (Fig. 4A, E),
352 although the disruption was not as severe as seen with homozygotes from USH1 mutant lines,
353 including *Pcdh15^{av3J/av3J}*, *Cdh23^{v2J/v2J}*, and *Myo7a^{8J/8J}* (Fig. 4B-D, F-H). Stereocilia were more coherent
354 in *Ush1g^{bw/bw}* bundles than in bundles of homozygous mice from the other strains. The most notable
355 disruption in *Ush1g^{bw/bw}* bundles was the loss of connection of the stereocilia with the kinocilium, the
356 axonemal structure that orients a bundle. While the kinocilium degenerates after P10 (ref. 20), it still
357 can be seen in the scanning electron micrographs of *Ush1g^{KO/+}* control bundles (Fig. 4, arrows). In
358 *Ush1g^{bw/bw}* hair cells, the kinocilium was usually detached from the bundle (Fig. 4, arrows); in addition,
359 there was a striking notch in most bundles, where the central stereocilia of each row were displaced
360 medially (Fig. 4, arrowheads). The notch phenotype was also seen in hair cells of the other
361 homozygous USH1 mutant lines (Fig. 4C-D, G-H), with the strongest effect seen in *Myo7a^{8J/8J}* bundles
362 (Fig. 4H).

363 Many row 2 stereocilia in USH1 heterozygotes had beveled tips (Fig 4A-D), indicative of force
364 production via the tip link and resulting actin remodeling^{21,22}. All stereocilia tips in *Ush1g^{bw/bw}* hair
365 bundles were rounded, which suggests that functional tip links were not present (Fig. 4E); this
366 observation was consistent with the extreme elevation of ABR thresholds. A similar rounded stereocilia
367 tip phenotype was seen in *Pcdh15^{av3J/av3J}*, *Cdh23^{v2J/v2J}*, and *Myo7a^{8J/8J}* stereocilia (Fig. 4F-H). Other
368 links were still present in *Ush1g^{bw/bw}* bundles (Fig. 4E), which may account for the increased bundle
369 coherence compared to the other USH1 mutants (Fig. 4F-H).

370 At P21.5, *Ush1g^{bw/bw}* OHC hair bundles were particularly disrupted compared to controls (Fig. 4I-J).
371 Adjacent stereocilia in P21.5 *Ush1g^{bw/bw}* IHC bundles were not as coordinated in length as those in
372 *Ush1g^{KO/+}* controls (Fig. 4I-J).

373 Using phalloidin labeling to highlight the actin cytoskeleton, we noted that utricle hair bundles were
374 disrupted in *Ush1g^{bw/bw}* mice; their stereocilia were not coherent, and projected in multiple directions
375 (Fig. 5A). Cochlear bundles remained relatively coherent in *Ush1g^{bw/bw}* mice (Fig. 5B-C), although a
376 notch in the bundle was usually obvious (Fig. 5C, arrow).

377 **Distribution of row-specific proteins in cochlear hair cells**

378 In our hands, immunolocalization with an antibody reported to be specific for USH1G²³ showed similar
379 patterns in *Ush1g^{bw/+}* controls and *Ush1g^{bw/bw}* mutants (not shown), i.e., it was not specific. We also
380 used antibodies against acetylated tubulin to mark the tip of the kinocilium²⁴. Similar to results seen
381 when the kinocilium was localized using scanning electron microscopy, acetylated tubulin was
382 associated with the central stereocilia in *Ush1g^{bw/+}* hair bundles (arrows in Fig. 6A-B), while it was less
383 consistently found adjacent to stereocilia in *Ush1g^{bw/bw}* bundles (Fig. 6A-B). The immunolocalization
384 and scanning electron microscopy results indicate that USH1G is essential for function of the kinociliary
385 links.

386 A protein complex made of GPSM2, GNAI3, WHRN, MYO15A, and EPS8 concentrates at the tips of
387 row 1 stereocilia in cochlear inner hair cells²⁵⁻²⁷; each of these proteins is required for normal
388 lengthening of row 1 stereocilia²⁷. We used immunocytochemistry to localize proteins of the row 1
389 complex in *Ush1g^{bw}* IHCs (Fig. 6). GPSM2 is normally exclusively found at row 1 tips; in *Ush1g^{bw/bw}* hair
390 bundles, it was also concentrated only in row 1 (Fig. 6A). GNAI3 had a similar distribution (Fig. 6C-D),
391 although more GNAI3 was found at tips of row 2 stereocilia in *Ush1g^{bw/bw}* bundles (asterisk in Fig. 6D).
392 By contrast, EPS8 shifted from having most labeling at row 1 tips in *Ush1g^{bw/+}* bundles (arrow in Fig.
393 6C) to nearly identical levels at both row 1 and 2 tips in *Ush1g^{bw/bw}* bundles (double arrow in Fig. 6D).
394 This broadened distribution of EPS8 resembled that seen in *Pcdh15^{av3J/av3J}* and *Cdh23^{v2J/v2J}* mutants²⁸.
395 MYO15A showed a similar altered distribution; while most MYO15A was found at row 1 tips in
396 *Ush1g^{bw/+}* bundles (Fig. 6E), its overall level was reduced in *Ush1g^{bw/bw}* bundles and it was evenly
397 distributed between rows 1 and 2 (Fig. 6F).

398 USH1C (harmonin) is a binding partner for USH1G at the upper insertion of the tip link²⁹. In *Ush1g^{bw/+}*
399 bundles, USH1C was distributed throughout the hair bundle, but appeared to concentrate in a line on
400 row 1 stereocilia that could correspond to the tip-link upper insertions (arrow in Fig. 6G). USH1C
401 labeling disappeared in *Ush1g^{bw/bw}* bundles (Fig. 6H), consistent with a requirement of USH1G for
402 proper localization of USH1C.

403 Several proteins concentrate at tips of row 2 stereocilia in developing hair bundles, including EPS8L2,
404 ESPNL, BAIAP2L2, CAPZB, TWF2, DSTN, and CFL1, and the locations of most of these are regulated
405 by mechanotransduction³⁰⁻³⁵. We examined the location of two of these, EPS8L2 and CAPZB, in
406 *Ush1g^{bw}* hair cells. In *Ush1g^{bw/+}* bundles, EPS8L2 was found along the shafts of all stereocilia, but was
407 also strongly concentrated at row 2 tips (Fig. 6I); the distribution of EPS8L2 was similar in *Ush1g^{bw/bw}*
408 bundles (Fig. 6J). By contrast, CAPZB no longer was found at row 2 tips in *Ush1g^{bw/bw}* bundles (Fig.
409 6L), unlike its robust tip localization in row 2 of *Ush1g^{bw/+}* controls (Fig. 6K).

410 **Discussion**

411 The *Jackson shaker* (*js*) allele of *Ush1g* was originally identified in 1967 (ref. 36). The *js* allele was
412 mapped to the distal part of chromosome 11, allowing identification of the *Ush1g* gene³⁷.
413 Simultaneously, human Usher syndrome type 1G (USH1G) was mapped to the *USH1G* gene¹⁴. The
414 protein product was termed sans (scaffold protein containing ankyrin repeats and SAM domain),
415 although we refer it to here by the protein symbol derived from its gene symbol (USH1G).

416 As with other USH1 genes, including *Cdh23*, *Pcdh15*, *Ush1c*, and *Myo7a*, *Ush1g* is primarily expressed
417 in the brain, testis, eye, and inner ear^{37,38}. USH1G is particularly well characterized in the inner ear.
418 There, CDH23 and PCDH15 form the hair cell's tip links, and USH1G, USH1C, and MYO7A anchor the
419 CDH23 end of the tip link³⁹. MYO7A, which interacts with USH1C, also forms a strong complex with
420 USH1G^{40,41}; moreover, USH1G and USH1C bind tightly together^{40,42}. Finally, MYO7A, USH1C, and
421 USH1G form a liquid-phase biomolecular condensate in vitro, which suggests that these three proteins
422 form a multivalent, stable complex⁴³. Thus in the inner ear, and probably in the retina too, MYO7A,
423 USH1C, and USH1G form a stable protein complex that can anchor CDH23 and transmit force
424 generated by MYO7A's motor activity.

425 We identified a new allele for *Ush1g*, called *Ush1g^{bw}*, which occurred unexpectedly when *Neil1^{-/-}* mice
426 developed spontaneous behavioral changes, presumably because of the lack of base-excision repair
427 with the loss of NEIL1 protein. The *Ush1g^{bw}* allele may be useful for dissection of auditory and
428 vestibular function; this allele replicates the constellation of behavioral and morphological phenotypes
429 seen in mouse lines with disruptive mutations in other USH1 genes, including *Cdh23*, *Pcdh15*, and
430 *Myo7a*. Results with the new allele confirmed the essential role USH1G plays in establishing and
431 operating key links within the hair bundle, including tip links, transient lateral links, and kinociliary links.

432 **Backwards walking phenotype**

433 Backwards walking has not been reported as a phenotype for other *Jackson shaker* alleles of *Ush1g*
434 (<https://www.informatics.jax.org/marker/MGI:2450757>). The original *js* allele has a frameshift mutation
435 that leads to a truncated protein at amino acid 245, which deletes the C-terminal SAM domain but
436 leaves intact the ankyrin repeats, sterile α-motif (SAM) domain, and 95-aa central region. The *js-2J*, *js-*
437 *3J*, and *js-seal* alleles all introduce mutations that may produce truncated proteins but not fully eliminate
438 expression. Given polypeptide chain termination following the third amino acid, *Ush1g^{bw}* is surely a true
439 null; consequentially, it may have more disruptive phenotypes compared to the other *Jackson shaker*
440 alleles. Indeed, it is not uncommon for phenotypes of mouse alleles with naturally occurring mutations
441 to be less profound than those of nulls, so the *Ush1g^{bw}* mouse line may be particularly useful for further
442 characterization of auditory and vestibular function.

443 Backwards walking has also been reported as a phenotype in other auditory and vestibular mutant
444 mouse lines, including *tailchaser* (*Myo6*)⁴⁴ and *spinner* (*Tmie*)⁴⁵. Whether backwards walking also is
445 present in other mutant lines that show hyperactivity, circling, and other connected vestibular
446 phenotypes is not clear. All evidence suggests that this phenotype is due to auditory and vestibular
447 disruption, however, not due to a new role for USH1G in other tissues.

448 **Retinal phenotype**

449 Mouse models of USH1 are congenitally deaf but show minimal signs of retinal degeneration^{46–48}.
450 Although some models showed modest reductions in ERG, these changes could either be due to a
451 phenotype resulting from the loss of an USH1 protein or be a result of variation⁴⁶. Our model was
452 consistent with previous USH1 models in that there was no measurable retinal degeneration in
453 *Ush1g^{bw/bw}* mice by P180. The USH1 proteins co-localize at the calyceal processes in the retina, which
454 is a membrane-membrane connection site between a photoreceptor's outer segment and its inner
455 segment. Mouse photoreceptors lack calyceal processes, however, and USH1 proteins cannot be
456 detected in the outer-segment basal region⁴⁷. Without the proper cellular structure, mouse models
457 cannot recapitulate the retinal phenotype associated with USH1. To overcome this limitation,
458 CRISPR/Cas9 editing of the *MYO7A* gene has recently been used to generate an *USH1B* rhesus
459 macaque model⁴⁹, while the *USH1C* gene was edited to produce an *USH1C* pig model⁵⁰; each model
460 will be useful in characterizing retinal degeneration.

461 **Hair-cell phenotype**

462 USH1G interacts with both CDH23 and PCDH15²³, and we found that the morphological phenotype of
463 *Ush1g^{bw}* strongly resembled those of *Cdh23^{v2J}* and *Pcdh15^{av3J}*. One of the more striking alterations
464 seen in hair bundles from these three mutant lines was the loss of attachment of the kinocilium to the
465 bundle and a resulting notch in the bundle. As CDH23-PCDH15 kinociliary links anchor the tallest
466 stereocilia to the kinocilium^{51,52}, these results suggest that USH1G is an essential component of the
467 intracellular anchors for these links. USH1G is well known for its critical role in forming the motor
468 complex at the bundle's upper tip-link density²³, which controls tension in tip links; while the bundle
469 fragmentation and kinociliary displacement has been noted previously in outer hair cells using a late-
470 knockout *Ush1g* model²³, a role of USH1G role in kinocilia links themselves has not been previously
471 proposed.

472 As previously noted¹⁹, USH1C labeling is absent in hair bundles from mice with disruptions in *Ush1g*.
473 Given that USH1C interacts strongly with USH1G^{40,42}, we agree that USH1C is incapable of being
474 delivered to stereocilia in the absence of USH1G⁵³. The USH1G PDZ binding motif (PBM) and SAM
475 domain form a highly stable complex ($K_D \approx 2$ nM) with the combined N-terminus/PDZ1 domain (NPDZ1)
476 of USH1C⁵³. In this tight complex, USH1C is still capable of binding to CDH23⁵³. USH1G is also
477 essential for tight interaction of USH1C with MYO7A⁵³.

478 Interaction of USH1G with PCDH15 is less well understood. Double heterozygous
479 *Pcdh15^{av3J/+};Ush1g^{is/+}* mice showed elevated ABR thresholds, however, demonstrating a genetic
480 interaction that may reflect a physical association⁵⁴. In support of a direct USH1G-PCDH15 interaction,
481 tagged USH1G was recruited to the plasma membrane of COS-7 cells when PCDH15 was co-
482 expressed but not when it was expressed on its own²³. MYO7A interacts with PCDH15⁵⁵, and since
483 MYO7A and USH1G interact strongly⁴¹, it is likely that the functional complex of PCDH15 and USH1G
484 also includes MYO7A. Indeed, PCDH15 is mislocalized in *Myo7a^{sh1/sh1}* mutants⁵⁵.

485 Homozygous null mutations in *Cdh23* and *Pcdh15* lead to altered distribution of proteins that
486 concentrate at the tips of row 1 stereocilia in postnatal hair bundle development²⁸. While localization of
487 GPSM2 and GNAI3 was only modestly affected, EPS8 shifted from being primarily found at row 1 tips
488 to being equally distributed between row 1 and 2 tips. We also showed that CDH23 and PCDH15 play
489 an underappreciated role in coordinating the lengths of adjacent stereocilia²⁸. Row 1 proteins showed
490 similar altered distribution in *Ush1g^{bw/bw}*, and adjacent stereocilia lengths were less coordinated, albeit
491 not as profoundly disrupted as in *Cdh23^{v2J/v2J}* and *Pcdh15^{av3J/av3J}* hair cells. The protein redistribution
492 seen in *Ush1g^{bw/bw}* hair cells highlights the importance of CDH23-PCDH15 links and their intracellular
493 partners—like USH1G—in controlling the location of proteins important for control of actin
494 polymerization, like the row 1 complex.

495 Distribution of the row 2 protein EPS8L2 was relatively unaffected in *Ush1g^{bw/bw}*, *Cdh23^{v2J/v2J}*, and
496 *Pcdh15^{av3J/av3J}* hair cells, but the concentration of CAPZB at row 2 tips was eliminated in all three
497 mutant lines. Because functional transduction is required for CAPZB localization at row 2 tips⁵⁶, these
498 results are consistent with there being no mechanotransduction in *Ush1g^{bw/bw}* hair cells, as also
499 suggested by the profound elevation of both ABR and VsEP thresholds.

500 **Conclusions**

501 The *Ush1g^{bw}* mouse line is a null mutation of *Ush1g*, which will be of utility for characterizing USH1G in
502 tissues that express the protein, including the retina, cochlea, and vestibular system. Alterations in hair-
503 bundle structure in *Ush1g^{bw/bw}* mice suggest that USH1G contributes to anchoring kinocilia links, not
504 just tip links. In cochlear hair cells, the *Ush1g^{bw/bw}* phenotype is similar to those seen in *Cdh23^{v2J/v2J}* and
505 *Pcdh15^{av3J/av3J}* mice, suggesting that USH1G is a necessary subunit in complexes with these two large
506 cadherins.

508 **References**

- 509 1. Gridley T, Murray SA. Mouse mutagenesis and phenotyping to generate models of development
510 and disease. *Curr Top Dev Biol.* 2022; 148: 1-12.
- 511 2. Peterson KA, Murray SA. Progress towards completing the mutant mouse null resource. *Mamm*
512 *Genome.* 2022; 33: 123-134.
- 513 3. Sampath H, McCullough AK, Lloyd RS. Regulation of DNA glycosylases and their role in limiting
514 disease. *Free Radic Res.* 2012; 46: 460-478.
- 515 4. Ling JA, Frevert Z, Washington MT. Recent Advances in Understanding the Structures of
516 Translesion Synthesis DNA Polymerases. *Genes (Basel).* 2022; 13: 915.
- 517 5. Dizdaroglu M, Coskun E, Jaruga P. Measurement of oxidatively induced DNA damage and its
518 repair, by mass spectrometric techniques. *Free Radic Res.* 2015; 49: 525-548.
- 519 6. Dizdaroglu M, Coskun E, Jaruga P. Repair of oxidatively induced DNA damage by DNA
520 glycosylases: Mechanisms of action, substrate specificities and excision kinetics. *Mutat Res Rev*
521 *Mutat Res.* 2017; 771: 99-127.
- 522 7. Lloyd RS. Complex Roles of NEIL1 and OGG1: Insights Gained from Murine Knockouts and
523 Human Polymorphic Variants. *DNA.* 2022; 2: 279-301.
- 524 8. Calkins MJ, Vartanian V, Owen N et al. Enhanced sensitivity of *Neil1*^{-/-} mice to chronic UVB
525 exposure. *DNA Repair (Amst).* 2016; 48: 43-50.
- 526 9. Vartanian V, Minko IG, Chawanthyatham S et al. NEIL1 protects against aflatoxin-induced
527 hepatocellular carcinoma in mice. *Proc Natl Acad Sci U S A.* 2017; 114: 4207-4212.
- 528 10. Krey JF, Drummond M, Foster S et al. Annexin A5 is the most abundant membrane-associated
529 protein in stereocilia but is dispensable for hair-bundle development and function. *Sci Rep.* 2016; 6:
530 27221.
- 531 11. Krey JF, Krystofiaik ES, Dumont RA et al. Plastin 1 widens stereocilia by transforming actin filament
532 packing from hexagonal to liquid. *J Cell Biol.* 2016; 215: 467-482.
- 533 12. Jones TA, Jones SM. Short latency compound action potentials from mammalian gravity receptor
534 organs. *Hear Res.* 1999; 136: 75-85.
- 535 13. Liang Y, Wang A, Belyantseva IA et al. Characterization of the human and mouse unconventional
536 myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2. *Genomics.* 1999; 61:
537 243-258.
- 538 14. Weil D, El-Amraoui A, Masmoudi S et al. Usher syndrome type I G (USH1G) is caused by mutations
539 in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin. *Hum Mol*
540 *Genet.* 2003; 12: 463-471.
- 541 15. Mustapha M, Chouery E, Torchard-Pagnez D et al. A novel locus for Usher syndrome type I,
542 USH1G, maps to chromosome 17q24-25. *Hum Genet.* 2002; 110: 348-350.
- 543 16. Brown SD, Hardisty-Hughes RE, Mburu P. Quiet as a mouse: dissecting the molecular and genetic
544 basis of hearing. *Nat Rev Genet.* 2008; 9: 277-290.
- 545 17. Willott JF. Overview of methods for assessing the mouse auditory system. *Curr Protoc Neurosci.*
546 2006; Chapter 8: Unit8.21A.

547 18. Jones SM, Jones TA. Genetics of peripheral vestibular dysfunction: lessons from mutant mouse
548 strains. *J Am Acad Audiol.* 2014; 25: 289-301.

549 19. Lefevre G, Michel V, Weil D et al. A core cochlear phenotype in USH1 mouse mutants implicates
550 fibrous links of the hair bundle in its cohesion, orientation and differential growth. *Development.*
551 2008; 135: 1427-1437.

552 20. Kaltenbach JA, Falzarano PR, Simpson TH. Postnatal development of the hamster cochlea. II.
553 Growth and differentiation of stereocilia bundles. *J Comp Neurol.* 1994; 350: 187-198.

554 21. Kachar B, Parakkal M, Kurc M, Zhao Y, Gillespie PG. High-resolution structure of hair-cell tip links.
555 *Proc Natl Acad Sci USA.* 2000; 97: 13336-13341.

556 22. Vélez-Ortega AC, Freeman MJ, Indzhykulian AA, Grossheim JM, Frolenkov GI.
557 Mechanotransduction current is essential for stability of the transducing stereocilia in mammalian
558 auditory hair cells. *eLife.* 2017; 6:

559 23. Caberlotto E, Michel V, Foucher I et al. Usher type 1G protein sans is a critical component of the
560 tip-link complex, a structure controlling actin polymerization in stereocilia. *Proc Natl Acad Sci U S A.*
561 2011; 108: 5825-5830.

562 24. Lu X, Sipe CW. Developmental regulation of planar cell polarity and hair-bundle morphogenesis in
563 auditory hair cells: lessons from human and mouse genetics. *Wiley Interdiscip Rev Dev Biol.* 2016;
564 5: 85-101.

565 25. Tarchini B, Tadenev AL, Devanney N, Cayouette M. A link between planar polarity and staircase-
566 like bundle architecture in hair cells. *Development.* 2016; 143: 3926-3932.

567 26. Mauriac SA, Hien YE, Bird JE et al. Defective Gpsm2/Gai3 signalling disrupts stereocilia
568 development and growth cone actin dynamics in Chudley-McCullough syndrome. *Nat Commun.*
569 2017; 8: 14907.

570 27. Tadenev ALD, Akturk A, Devanney N et al. GPSM2-GNAI specifies the tallest stereocilia and
571 defines hair bundle row identity. *Curr Biol.* 2019; 29: 921-934.e4.

572 28. Krey JF, Chatterjee P, Halford J, Cunningham CL, Perrin BJ, Barr-Gillespie PG. Control of
573 stereocilia length during development of hair bundles. *bioRxiv.* 2023; 520962 [preprint].

574 29. Grati M, Kachar B. Myosin VIIa and sans localization at stereocilia upper tip-link density implicates
575 these Usher syndrome proteins in mechanotransduction. *Proc Natl Acad Sci U S A.* 2011; 108:
576 11476-11481.

577 30. Furness DN, Johnson SL, Manor U et al. Progressive hearing loss and gradual deterioration of
578 sensory hair bundles in the ears of mice lacking the actin-binding protein Eps8L2. *Proc Natl Acad
579 Sci U S A.* 2013; 110: 13898-13903.

580 31. Ebrahim S, Avenarius MR, Grati M et al. Stereocilia-staircase spacing is influenced by myosin III
581 motors and their cargos espin-1 and espin-like. *Nat Commun.* 2016; 7: 10833.

582 32. Halford J, Bateschell M, Barr-Gillespie PG. Ca^{2+} entry through mechanotransduction channels
583 localizes BAIAP2L2 to stereocilia tips. *Mol Biol Cell.* 2022; 33: br6.

584 33. Peng AW, Belyantseva IA, Hsu PD, Friedman TB, Heller S. Twinfilin 2 regulates actin filament
585 lengths in cochlear stereocilia. *J Neurosci.* 2009; 29: 15083-15088.

586 34. Avenarius MR, Krey JF, Dumont RA et al. Heterodimeric capping protein is required for stereocilia
587 length and width regulation. *J Cell Biol.* 2017; 216: 3861-3881.

588 35. McGrath J, Tung CY, Liao X et al. Actin at stereocilia tips is regulated by mechanotransduction and
589 ADF/cofilin. *Curr Biol.* 2021; 31: 1141-1153.e7.

590 36. Deol MS, DICKIE MARGARETM. Rotating, a new gene affecting behavior and the inner ear in the
591 mouse. *Journal of Heredity.* 1967; 58: 69-72.

592 37. Kikkawa Y, Shitara H, Wakana S et al. Mutations in a new scaffold protein Sans cause deafness in
593 Jackson shaker mice. *Hum Mol Genet.* 2003; 12: 453-461.

594 38. Overlack N, Maerker T, Latz M, Nagel-Wolfrum K, Wolfrum U. SANS (USH1G) expression in
595 developing and mature mammalian retina. *Vision Res.* 2008; 48: 400-412.

596 39. Michalski N, Petit C. Genetics of auditory mechano-electrical transduction. *Pflugers Arch.* 2015;
597 467: 49-72.

598 40. Adato A, Michel V, Kikkawa Y et al. Interactions in the network of Usher syndrome type 1 proteins.
599 *Hum Mol Genet.* 2005; 14: 347-356.

600 41. Wu L, Pan L, Wei Z, Zhang M. Structure of MyTH4-FERM domains in myosin VIIa tail bound to
601 cargo. *Science.* 2011; 331: 757-760.

602 42. Yan J, Pan L, Chen X, Wu L, Zhang M. The structure of the harmonin/sans complex reveals an
603 unexpected interaction mode of the two Usher syndrome proteins. *Proc Natl Acad Sci U S A.* 2010;
604 107: 4040-4045.

605 43. He Y, Li J, Zhang M. Myosin VII, USH1C, and ANKS4B or USH1G Together Form Condensed
606 Molecular Assembly via Liquid-Liquid Phase Separation. *Cell Rep.* 2019; 29: 974-986.e4.

607 44. Kiernan AE, Zalzman M, Fuchs H et al. Tailchaser (Tlc): a new mouse mutation affecting hair
608 bundle differentiation and hair cell survival. *J Neurocytol.* 1999; 28: 969-985.

609 45. D'Amico E, Stygelbout V, Schurmans S. The Spinner-IBMM mouse is a new spontaneous mutant in
610 the Tmie gene. *Genes & Genomics.* 2012; 34: 107-110.

611 46. Williams DS. Usher syndrome: animal models, retinal function of Usher proteins, and prospects for
612 gene therapy. *Vision Res.* 2008; 48: 433-441.

613 47. Sahly I, Dufour E, Schietroma C et al. Localization of Usher 1 proteins to the photoreceptor calyceal
614 processes, which are absent from mice. *J Cell Biol.* 2012; 199: 381-399.

615 48. Zalocchi M, Binley K, Lad Y et al. EIAV-based retinal gene therapy in the shaker1 mouse model for
616 usher syndrome type 1B: development of UshStat. *PLoS One.* 2014; 9: e94272.

617 49. Ryu J, Statz JP, Chan W et al. CRISPR/Cas9 editing of the MYO7A gene in rhesus macaque
618 embryos to generate a primate model of Usher syndrome type 1B. *Sci Rep.* 2022; 12: 10036.

619 50. Grotz S, Schäfer J, Wunderlich KA et al. Early disruption of photoreceptor cell architecture and loss
620 of vision in a humanized pig model of usher syndromes. *EMBO Mol Med.* 2022; 14: e14817.

621 51. Goodyear RJ, Forge A, Legan PK, Richardson GP. Asymmetric distribution of cadherin 23 and
622 protocadherin 15 in the kinocilial links of avian sensory hair cells. *J Comp Neurol.* 2010; 518: 4288-
623 4297.

624 52. Webb SW, Grillet N, Andrade LR et al. Regulation of PCDH15 function in mechanosensory hair
625 cells by alternative splicing of the cytoplasmic domain. *Development.* 2011; 138: 1607-1617.

626 53. Pan L, Zhang M. Structures of usher syndrome 1 proteins and their complexes. *Physiology*
627 (*Bethesda*). 2012; 27: 25-42.

628 54. Zheng QY, Scarborough JD, Zheng Y, Yu H, Choi D, Gillespie PG. Digenic inheritance of deafness
629 caused by 8J allele of myosin-VIIA and mutations in other Usher I genes. *Hum Mol Genet*. 2012;
630 21: 2588-2598.

631 55. Senften M, Schwander M, Kazmierczak P et al. Physical and functional interaction between
632 protocadherin 15 and myosin VIIa in mechanosensory hair cells. *J Neurosci*. 2006; 26: 2060-2071.

633 56. Krey JF, Chatterjee P, Dumont RA et al. Mechanotransduction-dependent control of stereocilia
634 dimensions and row identity in inner hair cells. *Curr Biol*. 2020; 30: 442-454.e7.

635 **Figure Legends**

636 **Figure 1. Scheme for identification of gene responsible for backwards walking.** The mapping
637 scheme used to identify *Ush1g^{bw}* is shown. A backwards-walking *Neil1*^{-/-} mouse was mated with a
638 female BALB/c mouse; the F1 generation (all phenotypically wild type) was intercrossed to generate F2
639 mice. Roughly a quarter of the F2 generation had the backwards-walking phenotype. SNP analysis
640 showed that SNP #11-117818566 was present in backwards-walking mice but not their phenotypically
641 normal littermates. A nonsense mutation was identified in the *Ush1g* gene that terminates the protein
642 after the third amino acid.

643 **Figure 2. Retinal phenotype associated with the *Ush1g^{bw}* mice.** **A**, Visual performance measured by
644 optokinetic tracking (OKT). **B-C**, Amplitudes of a-wave (B) and b-wave (C) generated from scotopic
645 ERGs at range of light intensities. In each case, the three panels show results at P30, P90, and P180.
646 Legend in A applies to panels B and C as well. Two-way ANOVA analyses were used to compare
647 heterozygote and homozygote responses. **D**, Representative SD-OCT images of the retina from
648 *Ush1g*^{+/+}, *Ush1g^{bw}*^{+/}, and *Ush1g^{bw/bw}* mice. Yellow lines indicate photoreceptor layer thickness
649 (REC+). **E**, REC+ values were compared between groups. **F**, Representative images of retinal
650 histology from each of the genotypes. **G**, Quantitation of photoreceptor nuclei number in a row in the
651 ONL. **H**, Representative confocal images of retinal cross-sections stained with anti-rhodopsin (green)
652 and DAPI (magenta). Key: GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer;
653 RPE, retinal pigmented epithelium. Panel widths: D, 4 mm; F, 297 μ m (*Ush1g*^{+/+}), 230 μ m (*Ush1g^{bw}*^{+/}),
654 365 μ m (*Ush1g^{bw/bw}*); H, 150 μ m.

655 **Figure 3. Auditory and vestibular function in *Ush1g^{bw}* mice.** **A**, ABR measurements. None of the
656 seven *Ush1g^{bw/bw}* mice had an ABR response; ABRs in the seven *Ush1g^{bw}*^{+/} control mice were normal.
657 **B**, VsEP measurements. None of the seven *Ush1g^{bw/bw}* mice had a VsEP response; VsEPs in the
658 seven *Ush1g^{bw}*^{+/} control mice were normal. NR, no response. Mean \pm s.e.m. plotted.

659 **Figure 4. Scanning electron microscopy of hair bundles from Usher 1 mouse models.** **A-H**,
660 Scanning electron micrographs of single IHC hair bundles from P8.5 cochleas of indicated genotypes.
661 For each genotype, two examples (i and ii) are provided. Arrows indicate kinocilia; arrowheads indicate
662 notch in bundles of mutant hair cells. **I-J**, Scanning electron micrographs of P21.5 cochleas of indicated
663 genotypes. Panel widths: A-H, 6 μ m; I-J, 50 μ m.

664 **Figure 5. Phalloidin-labeled hair bundles from utricle and cochlea *Ush1g^{bw}* hair cells.** **A**, Utricle
665 from P7.5 through P21.5. **B-C**, Cochlea. Panels in B are 3D projections of an x-y-z stack. Panels in C
666 show single x-y slices through IHCs indicated with asterisks in B. Arrow in right panel of C indicates
667 prominent notch in the hair bundle. Panel widths: A, 84 μ m; C, 10 μ m.

668 Figure 6. **Localization of row-specific proteins and other proteins in *Ush1g^{bw}* hair cells. A-B**,
669 GPSM2 and acetylated tubulin (Ac-TUB). GPSM2 levels decrease in *Ush1g^{bw/bw}* hair bundles but the
670 row 1 concentration is unchanged. Arrows indicate kinocilia tips. **C-D**, GNAI3 and EPS8. GNAI3 is
671 largely still row 1-specific (arrows) in *Ush1g^{bw/bw}* bundles but some row 2 labeling is apparent (asterisk).
672 EPS8 shifts from highly row 1-specific in *Ush1g^{bw/+}* bundles (arrow) to equally distributed in rows 1 and
673 2 in *Ush1g^{bw/bw}* bundles (double arrows). **E-F**, MYO15A. MYO15A is abundant in row 1 tips in
674 *Ush1g^{bw/+}* bundles (arrow) but reduced there in *Ush1g^{bw/bw}* bundles. **G-H**, Punctate USH1C labeling in
675 *Ush1g^{bw/+}* bundles (arrow) is missing in *Ush1g^{bw/bw}* bundles. **I-J**, EPS8L2. EPS8L2 is normally
676 concentrated at row 2 tips but is found throughout stereocilia membranes at low levels; this pattern is
677 unchanged in *Ush1g^{bw/bw}* bundles. **K-L**, CAPZB. CAPZB labeling is present at row 2 tips in *Ush1g^{bw/+}*
678 bundles (arrow) but is found throughout *Ush1g^{bw/bw}* bundles in a punctate pattern. Panel widths, 30 μ m.

679 **Supplemental Video**

680 Supplemental Video S1. **Backwards-walking and hyperactivity phenotypes in *Ush1g^{bw}* mice.**

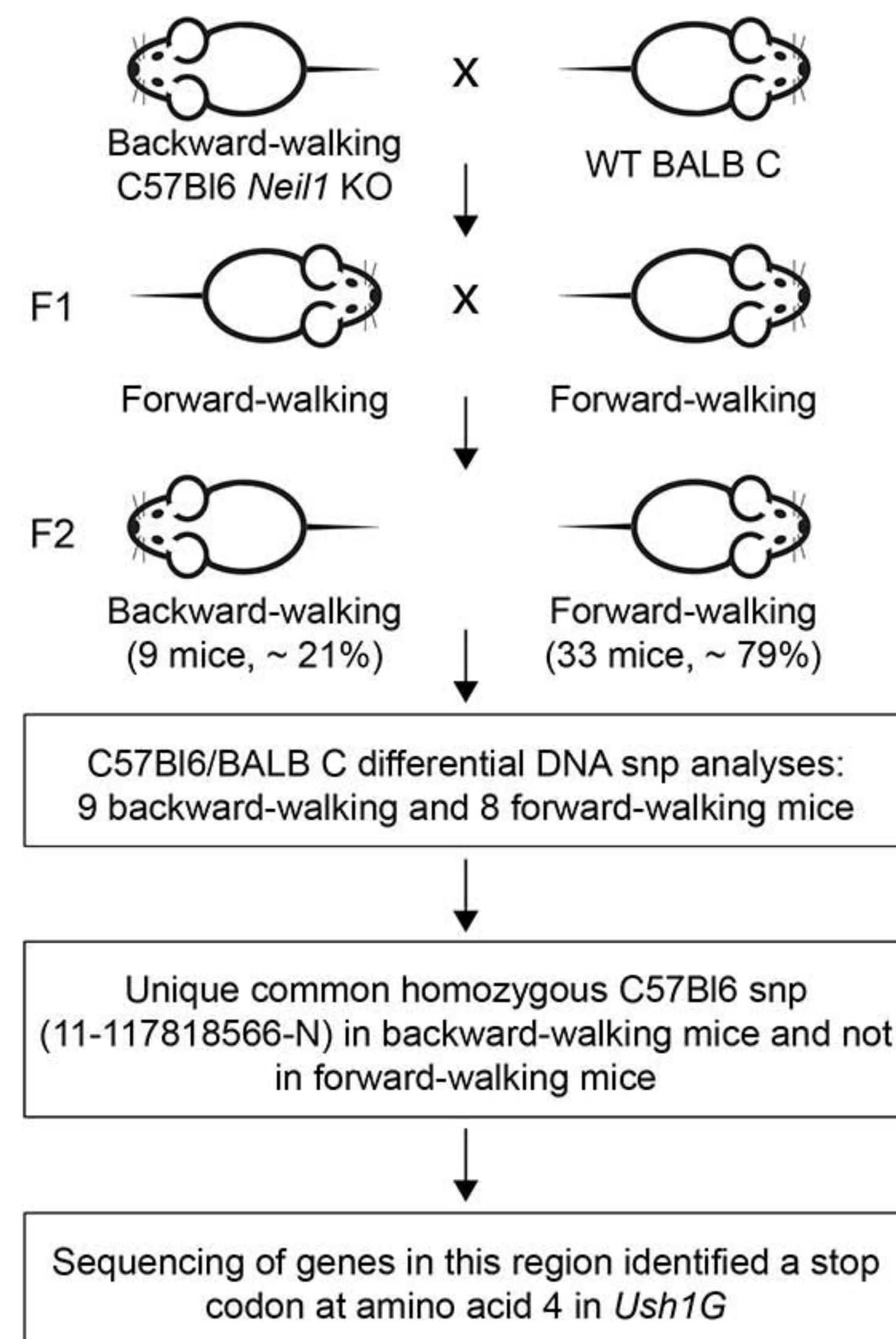


Figure 1
Vartanian et al.

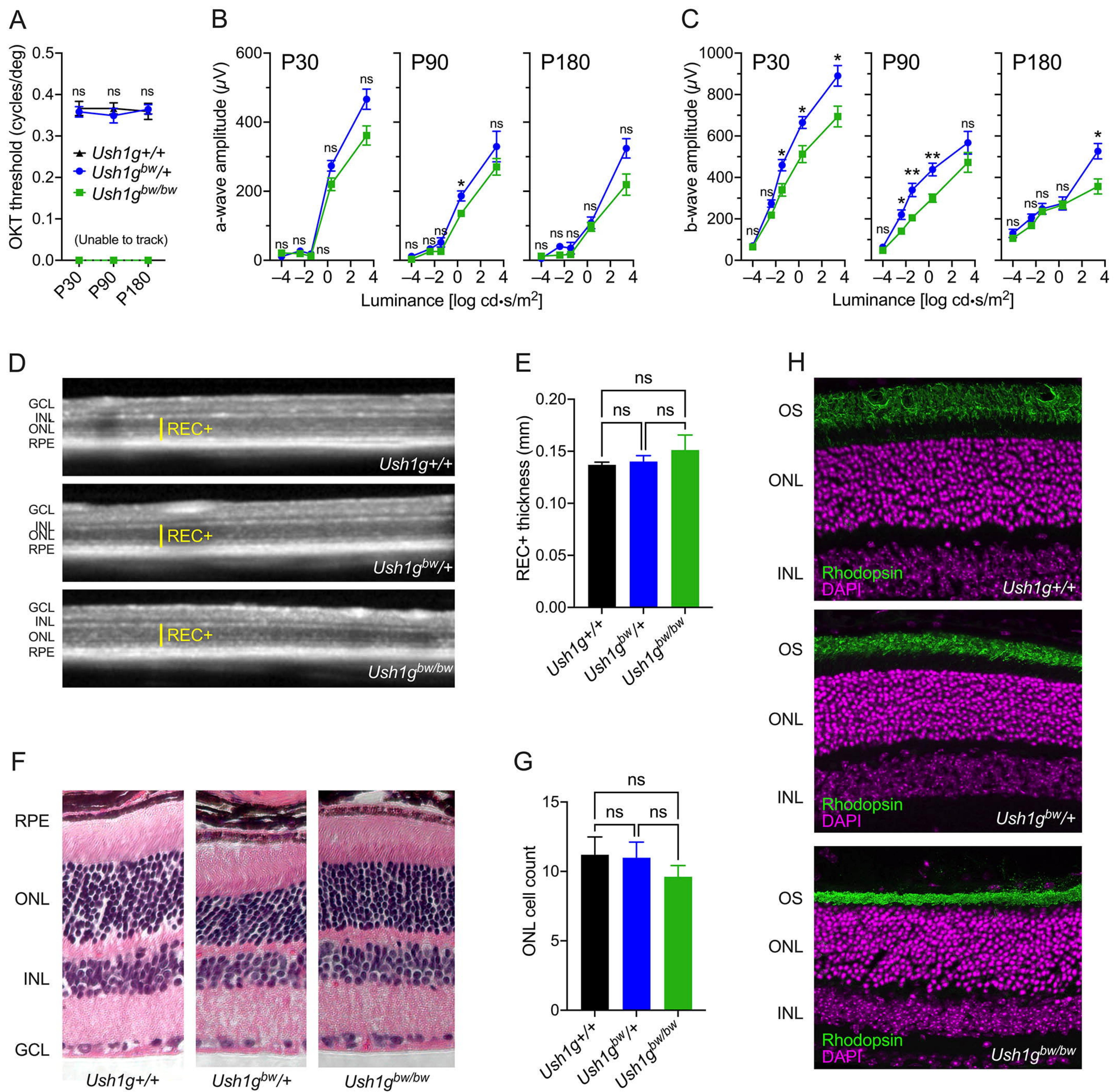


Figure 2
Vartanian et al.

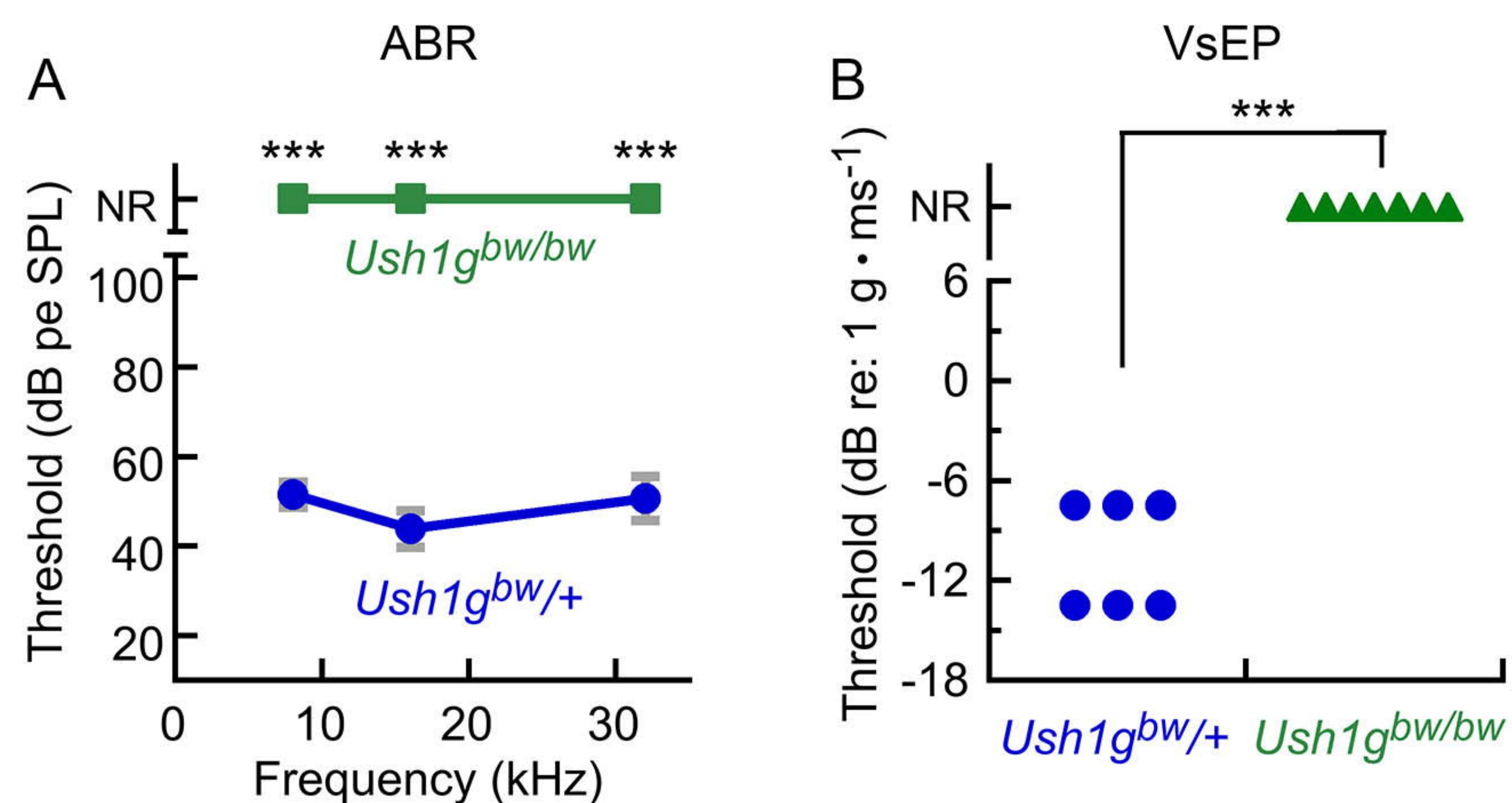


Figure 3
Vartanian et al.

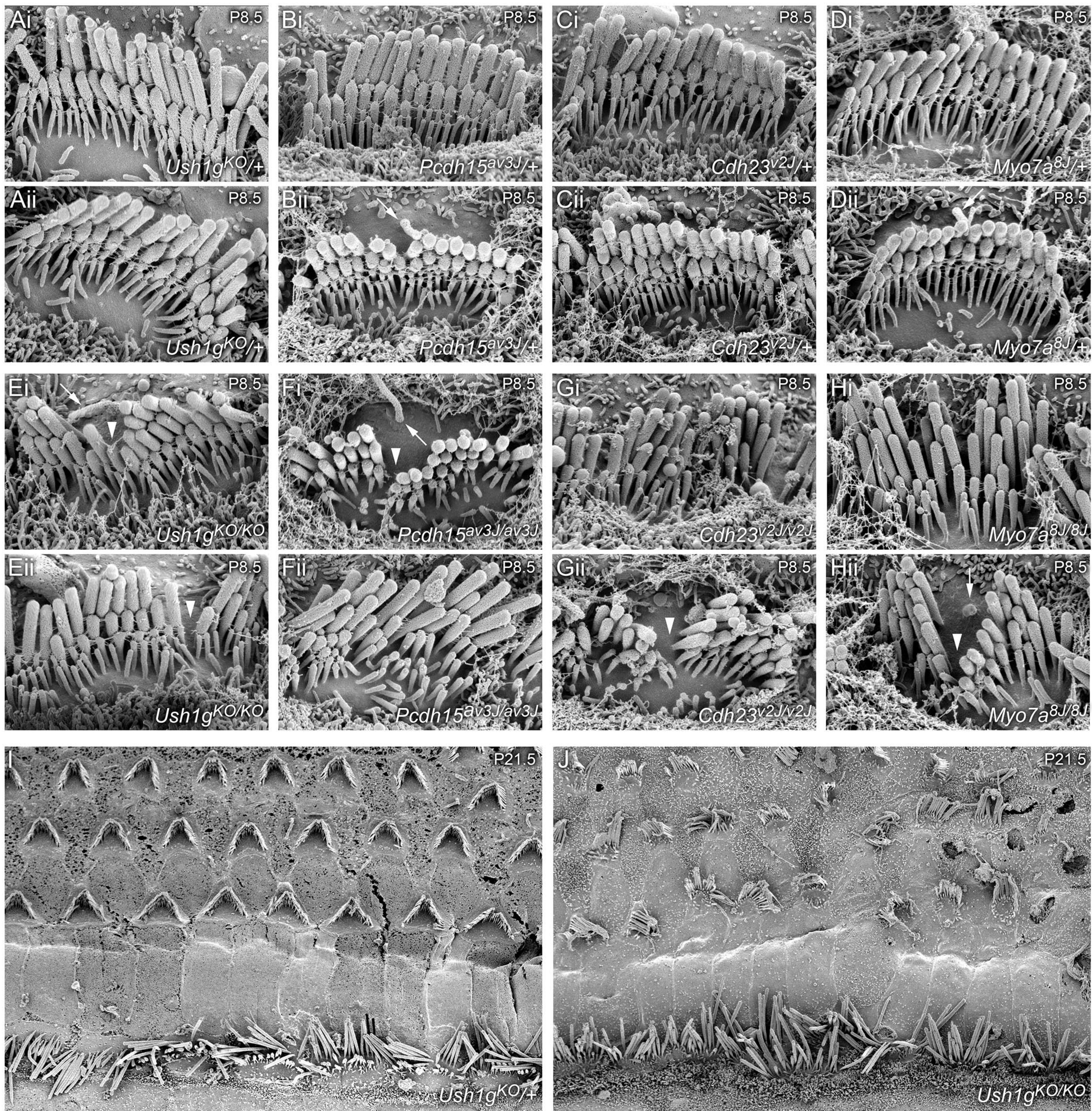


Figure 4
Vartanian et al.

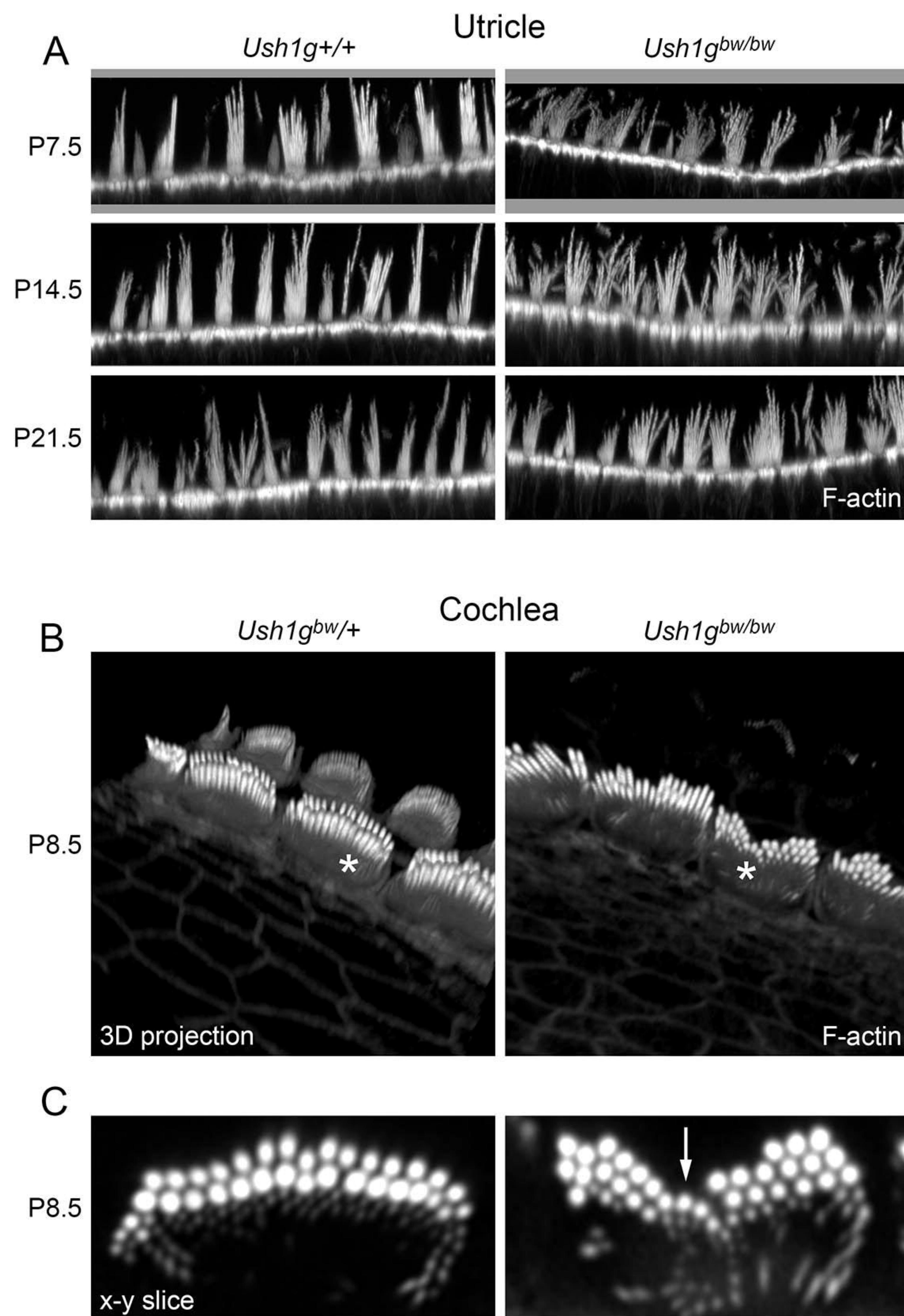


Figure 5
Vartanian et al.

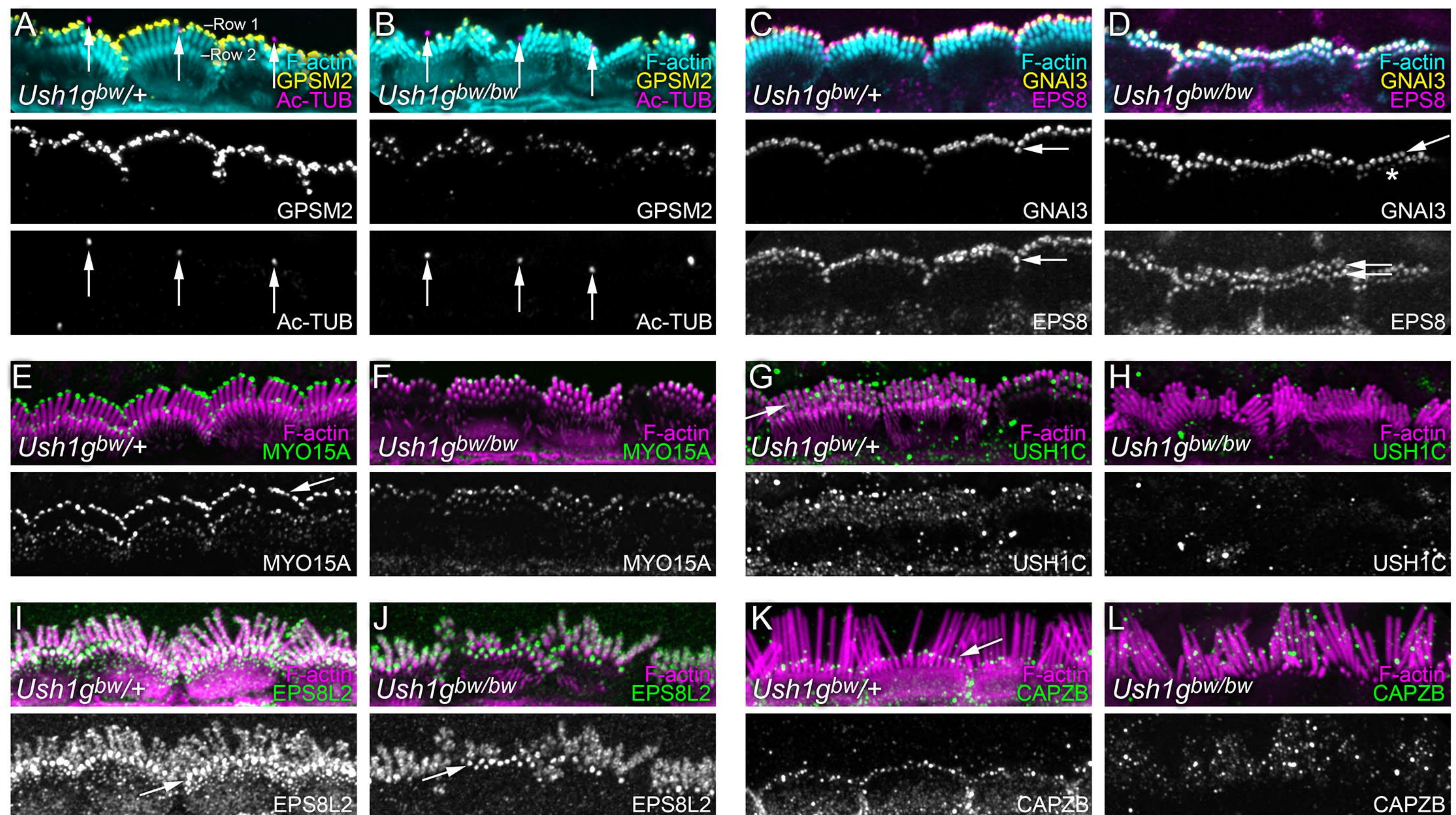


Figure 6
Vartanian et al.