

1 **Improving the annotation of the cattle genome by annotating transcription start sites in**
2 **a diverse set of tissues and populations using CAGE sequencing**

4 M. Salavati^{1*}, R. Clark², D. Becker³, C. Kühn^{3,4}, G. Plastow⁵, S. Dupont⁶, G.C.M. Moreira⁶,
5 C. Charlier^{6,7} and E.L. Clark¹ on behalf of the BovReg consortium

6
7 ¹ The Roslin Institute, University of Edinburgh, EH25 9RG, Edinburgh, UK; ² Genetics Core,
8 Edinburgh Clinical Research Facility, The University of Edinburgh, EH4 2XU, Edinburgh, UK;
9 ³ Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196,
10 Dummerstorf, Germany; ⁴ Faculty of Agricultural and Environmental Sciences, University
11 Rostock, 18059, Rostock, Germany; ⁵ Livestock Gentec, Department of Agricultural, Food and
12 Nutritional Science, University of Alberta, T6G 2H1, Edmonton, Canada; ⁶ Unit of Animal
13 Genomics, GIGA Institute, University of Liège, 4000, Liège, Belgium; ⁷ Faculty of Veterinary
14 Medicine, University of Liège, 4000, Liège, Belgium; * Mazdak.Salavati@roslin.ed.ac.uk

15
16 **Abstract**

17 Understanding the genomic control of tissue-specific gene expression and regulation can help
18 to inform the application of genomic technologies in farm animal breeding programmes. The
19 fine mapping of promoters (transcription start sites [TSS]) and enhancers (divergent amplifying
20 segments of the genome local to TSS) in different populations of cattle across a wide diversity
21 of tissues provides information to locate and understand the genomic drivers of breed- and
22 tissue-specific phenotypes. To this aim we used Cap Analysis Gene Expression (CAGE)
23 sequencing to define TSS and their co-expressed short-range enhancers (<1kb) in the ARS-
24 UCD1.2_Btau5.0.1Y reference genome (1000bulls run9) and analysed tissue- and population
25 specificity of expressed promoters. We identified 51,295 TSS and 2,328 TSS-Enhancer regions
26 shared across the three populations (Holstein, Charolais x Holstein and Kinsella beef composite
27 [KC]). In addition, we performed a comparative analysis of our cattle dataset with available
28 data for seven other species to identify TSS and TSS-Enhancers that are specific to cattle. The
29 CAGE dataset will be combined with other transcriptomic information for the same tissues
30 generated in the BovReg project to create a new high-resolution map of transcript diversity
31 across tissues and populations in cattle. Here we provide the CAGE dataset and annotation
32 tracks for TSS and TSS Enhancers in the cattle genome. This new annotation information will

33 improve our understanding of the drivers of gene expression and regulation in cattle and help
34 to inform the application of genomic technologies in breeding programmes.

35

36 **Introduction**

37 The reference genome for domestic cattle, ARS-UCD1.2, now has a very high-quality
38 annotation of both expressed and regulatory regions generated for the Hereford breed e.g.
39 (Gosczynski et al, 2021; Halstead et al. 2020). There is, however, still very little available
40 information about how the genome is expressed and regulated across different populations of
41 domestic cattle. This lack of knowledge hinders efforts to define and predict the effects of
42 genetic variants and link genotype to phenotype. To address this knowledge gap transcriptomic
43 resources that include both multiple different tissue types and populations of cattle are required.

44 High resolution mapping of the actively transcribed regions of the genome can help to
45 identify the drivers of gene expression, regulation and phenotypic variation (Tippens et al.
46 2018). Defining transcription start sites (TSS) within promoter regions provides information
47 about how genes controlling traits of interest are expressed and regulated. Recently, the theory
48 of multiple expression clusters within promoters has been used to annotate and fine map TSS
49 within mammalian transcriptomes (Frith et al. 2008; Andersson et al. 2014). These putative
50 core promoter and associated enhancer regions are defined using 5' cap transcript sequencing
51 e.g. via RAMPAGE (RNA Annotation and Mapping of Promoters for the Analysis of Gene
52 Expression) (Batut and Gingeras 2013; Gosczynski et al. 2021) and CAGE (Cap Analysis
53 Gene Expression) (Forrest et al. 2014; Robert et al. 2015; Deviatiiarov et al. 2017; Noguchi et
54 al. 2017; Salavati et al. 2020; Ross et al. 2022). The fine mapping of promoters and enhancers,
55 in this way, in different populations of farmed animals, across a wide diversity of tissues,
56 provides information to link genotype to phenotype, by locating and understand the genomic
57 drivers of breed- and tissue-specific phenotypes.

58 To improve TSS and enhancer annotation of the current reference genome for cattle
59 (ARS-UCD1.2), we employed a diverse sampling approach to include transcriptomes from both
60 sexes and multiple age categories (calves < 4 weeks, peri-puberty juveniles ~ 7-8 months and
61 adults > 1.5 years) from 3 divergent populations of cattle: Dairy (Belgian Holstein Friesian),
62 Beef-dairy cross (German Charolais X Holstein F2) and Canadian Kinsella cattle (beef
63 composite). Capture of gene promoters from different cattle breeds is important in identifying
64 functional genomic features impacting selected or adapted traits in both dairy and beef
65 populations (Halstead et al. 2020; Alexandre et al. 2021). Defining robust genomic annotations

66 has proven to be useful in the sustained genetic improvement of farmed animals (Georges et al.
67 2018).

68 To this aim we used CAGE sequencing to define TSS and their co-expressed short-
69 range enhancers (<1kb) (TSS-Enhancers) in the ARS-UCD1.2_Btau5.0.1Y reference genome
70 (1000bulls run9) (Hayes and Daetwyler 2019) and analysed tissue- and population specificity
71 of expressed promoters. We also utilised publicly available CAGE datasets (Forrest et al. 2014)
72 for human, chicken, mouse, rat, macaque monkey and dog from the FANTOM5 project, and
73 for sheep (Salavati et al. 2020), to provide a cross-species comparative analysis of TSS and
74 TSS-Enhancers. Using comparative analysis this study provides a cattle-specific set of TSS and
75 TSS-Enhancers in multiple tissues from dairy (Belgian Holstein), beef-dairy cross (Charolais x
76 Holstein) and multi-breed composite beef (KC) cattle. Several transcriptomic datasets (RNA-
77 Seq and small RNA-Seq) are being generated from the same set of tissues, as part of a wider
78 effort in the BovReg project, to generate a high resolution transcriptomic map to improve the
79 annotation of the ARS-UCD1.2 reference assembly, by adding transcriptomic information for
80 multiple tissue samples across the three different populations. Additional annotation
81 information will improve our understanding of the drivers of gene expression and promoter
82 diversity/plasticity in cattle and help to inform the application of genomic technologies in
83 breeding programmes.

84

85 **Materials & Methods**

86 *Animals*

87 Samples from three diverse cattle populations were chosen for the purpose of this study: Dairy
88 (Holstein Friesian), beef x dairy (Charolais x Holstein F2) and composite beef (Kinsella
89 composite [KC; Angus, Hereford and Gelbvieh breeds account for approx. 65% of the breed
90 composition of the samples with signals from 9 other cattle breeds including Brown Swiss,
91 Limousin, Simmental, Holstein and Jersey]) lineages. Tissues were collected from two animals
92 (1 male and 1 female per population = 6 animals in total) from each population. These 6 animals
93 included three different age groups: Holstein Friesian calves from Belgium (neonatal: male calf
94 24 days and female calf 22 days), KC steer (bullock 217 days) and heifer (juvenile, 210 days)
95 from Canada and Charolais x Holstein F2 cow and bull (adult: bull 18 months and cow 3 years,
96 7months and 13days) from Germany. Necropsy and tissue collections were performed under
97 site-specific ethics approval by qualified research personnel at University of Alberta Canada
98 (Animal Use Protocol #00002592), University of Liege, Belgium (*Commission d'Etique*

99 *Animale; Dossier #17-1948*) and the Research Institute for Farm Animal Biology, Germany.
100 In Germany, all experimental procedures were performed according to the German animal care
101 guidelines and were approved and supervised by the relevant authorities of the State
102 Mecklenburg-Vorpommern, Germany (State Office for Agriculture, Food Safety and Fishery;
103 LALLF M-V/ TSD/7221.3-2.1-010/03).

104

105 **Sample collection**

106 A total of 102 samples from 24 different tissues were collected from the 6 animals (3
107 populations, different ages and 2 sexes). Tissue representation for each population was as
108 follows: dairy (Holstein, n=43 tissues), beef x dairy cross (Charolais x Holstein, n=31 tissues)
109 and composite beef (KC, n=31 tissues). Details of the collected tissues are shown in Table 1.
110 Tissue samples were snap frozen immediately upon collection, stored at -80°C for downstream
111 RNA extraction and for the beef x dairy cross and composite beef samples shipped on dry ice
112 to a central location (GIGA, University of Liège, Belgium) for RNA isolation.

113

114 Table 1. List of all the samples collected and sequenced by CAGE-Seq including 24 tissue
115 types, from 6 animals (3 populations, 3 ages and 2 sexes). Belgian Holstein Friesian: HF,
116 German Charolais x Holstein F2: Char x Hol, Canadian Kinsella composite: KC.

117

Tissue	Male calf HF	Female calf HF	Bull Char x Hol F2	Cow Char x Hol F2	Steer/bullock KC	Heifer KC
Adrenal Gland Cortex	X	X	X	X	X	-
Cerebellum	X	X	X	-	-	X
Cerebrum Cortex	X	X	X	X	X	-
Colon	X	X	X	X	X	X
Duodenum	X	X	X	X	X	X
Heart	X	X	X	-	X	X
Hypothalamus	X	X	-	-	-	-
Ileum	X	X	X	X	X	X
Jejunum	X	X	X	X	X	X
Kidney	X	-	X	X	X	X
Liver	X	X	X	X	X	X
Lung	X	-	X	X	X	X
Lymph Node	X	X	X	X	X	X
Mammary Gland	-	X	-	X	-	X
Ovary	-	X	-	-	-	X

Pancreas	X	X	-	-	-	-
Pituitary Gland	-	X	-	-	X	X
Rumen	X	X	X	X	X	X
Skeletal Muscle	X	X	-	-	-	-
Spleen	X	X	X	X	X	X
Subcutaneous Fat	X	X	-	-	-	-
Testis	X	-	X	-	-	-
Thyroid Gland	X	X	X	X	-	-
Uterus	-	X	-	X	-	X

118

119 ***RNA extraction and quality control***

120 Total RNA was extracted using miRNeasy kit (QIAGEN) from the snap-frozen tissues samples,
121 following the protocol provided by the manufacturer for the purification of Total RNA from
122 Animal Tissues. The RNA integrity (RIN) was detected by the Agilent Bioanalyzer system
123 (Agilent Technologies, Santa Clara, CA, USA). Aliquots containing 5 μ g of total RNA (RIN
124 >7) were then stored at -80°C before shipping to Edinburgh Clinical Research Facility,
125 Edinburgh, UK.

126

127 ***CAGE-Seq library preparation and sequencing***

128 CAGE libraries were prepared from 5 μ g of total RNA (post DNase treatment) according to
129 (Takahashi et al. 2012). A modification of the original barcodes from the Takahashi et al. (2012)
130 protocol (3nt length) was required in order to perform sequencing on the Illumina NextSeq 550.
131 This modification introduced 6nt length barcodes for multiplexing of the libraries. The original
132 barcodes: ACG, GAT, CTT, ATG, GTA, GCC, TAG, and TGG were extended to a set of 21
133 unique 6nt barcodes. Overall 13 library pools were produced and sequenced on an Illumina
134 NextSeq 550 (50nt single end as previously described in (Salavati et al. 2020) in 7 different
135 runs. The details of the barcode assignments to each sample and the pool ids are described in
136 Supplementary_file_1.xlsx.

137

138 ***CAGE-Seq data analysis***

139 The analysis pipeline was developed using NextFlow workflow scripting (di Tommaso et al.
140 2017). The pipeline was built using the previously described steps in
141 https://bitbucket.org/msalavat/cagewrap_public/src/master/. After demultiplexing, trimming
142 and quality control, the reads were mapped against the ARS-UCD1.2_Btau5.0.1Y assembly run
143 9 (Hayes and Daetwyler 2019) using the nf-cage pipeline (Salavati and Espinosa-Carrasco 2022

144 Jul 18). The base-pair resolution output bigWig files (2 files per sample +ve and -ve strand;
145 n=204 for 102 samples) were loaded in RStudio (RStudio Team 2015) (R > v4.0.0) for
146 downstream analysis using the CAGEfightR v1.16.0 package (Thodberg et al. 2019).

147

148 ***Transcription start site and enhancer prediction analysis***

149 The putative transcription start sites (TSS) and TSS-Enhancer regions were identified using the
150 uni- and bi-directional clustering algorithms in CAGEfightR v1.16.0 as described in (Thodberg
151 et al. 2019). Clustering overlapping same-strand CAGE tags mapped to either strands of the
152 DNA was considered uni-directional, compared to clustering of non-overlapping tags mapped
153 within 400-1000bp of each other to opposing strands (e.g. gene +ve with a nearby eRNA -ve or
154 *vice versa*) using a bi-directional clustering approach. CAGE tag TSS clusters (CTSS) and their
155 normalised expression profile (CTPM; CAGE tags-per-million mapped) were produced using
156 quickTSS and quickEnhancers functions of the CAGEfightR package v1.16.0. For both TSS
157 and TSS-Enhancer regions a minimum 10 reads per CTSS and 2/3rd sample support (i.e. if the
158 CTSS was present in a minimum of 66/102 tissues) were imposed as filtration criteria, as
159 previously described in (Salavati et al. 2020). The putative regions were annotated using the
160 assignTxID, assignTxType, assignGeneID and assignMissingID functions of the CAGEfightR
161 v1.16.0. The Txdb object used for annotating the CAGE-Seq dataset was built using the
162 [*Bos_taurus.ARS-UCD1.2.106.gff3.gz*](#) file from Ensembl v106.

163

164 ***Mapping significant TSS and TSS-Enhancer co-expression links***

165 Co-expression of the predicted TSS and TSS-Enhancer regions was tested using a Kendall
166 correlation test ($p < 0.05$ sig. followed by Benjamini-Hochberg adjustment; FDR < 0.01). The
167 co-expressed pairs were identified using the findLinks function of the CAGEfightR v1.16.0 as
168 previously described (Thodberg et al. 2019; Thodberg and Sandelin 2019) and annotated using
169 the *Bos_taurus.ARS-UCD1.2* Ensembl v106 gene models. Using the gap (in bp) between the
170 TSS (query) and Enhancer (subject) and the assigned gene symbol to either region, 3 groups of
171 links were created: *cis* [same gene] where TSS and Enhancer regions had a gap less than 1kb,
172 *trans* [nearby gene] where the gap was larger than 1kb and *novel* (*cis* or *trans*) where there was
173 no gene annotation available for either of the linked pair. The gap size (in bp) and the Kendall
174 correlation coefficient (range = [-1,1]) of this co-expression analysis was then used for further
175 investigation of these links. A two dimensional kernel density estimate was calculated for the
176 gap between linked TSS and Enhancers versus the link's correlation coefficient. This analysis

177 was performed using the MASS package v7.3-58.1 (Venables and Ripley 2002)
178 (MASS::kde2d) and visualised using ggplot2 v 3.3.6 (Wickham 2009)
179 (ggplot2::geom_density2d_filled) in R.

180

181 ***Identification of long range enhancer stretches present in the cattle genome***

182 A hierarchical clustering of the TSS-Enhancer regions (obtained using the bi-directional
183 analysis method in the CAGEfightR package) was performed to identify any super-enhancers.
184 A 10kb window scan was performed to locate stretches of the genome containing at least 3
185 Enhancers within a window. This analysis was performed using the findStretches function of
186 the CAGEfightR v1.16.0 followed by a Kendal correlation test of the expression matrix (CTPM
187 values as input).

188 Three genomic regions harbouring copy number variants associated with milk traits
189 (CNV6 [chr13:70,496,054-70,623,303], CNV28 [chr7:42,700,425- 42,788,788], and CNV33
190 [chr17:73,055,503-75,058,715]) within the cattle genome (UMD3.1), previously reported by
191 Xu et al. (Xu et al. 2014), were lifted over to the ARS-UCD1.2 coordinates using the UCSC
192 liftover tool (Hinrichs et al. 2006). The super-enhancer stretches identified in the cattle CAGE
193 dataset were overlaid with the lifted over CNV regions using IGVtools (Robinson et al. 2011;
194 Thorvaldsdóttir et al. 2013)

195

196 ***Characterising tissue-specific TSS and TSS-Enhancers***

197 Tissue specific sets of TSS and TSS-Enhancers were produced in 24 separate runs of the 2
198 clustering algorithms (quickTSS and quickEnhancers). All samples of the same tissue type were
199 used to create tissue specific outputs (min 10 reads/CTSS and support $2 \leq n \leq 6$). The tissue
200 (Raivo Kolde) specific TSS and TSS-Enhancer regions were also annotated using the Ensembl
201 v106 gene models as described in the TSS and Enhancer prediction analysis section. The
202 expression matrix (CTPM) of all identified TSS across all tissue types was used to produce a
203 heat map based on tissue specificity indexes (TSI ranging from 0 = no expression in a particular
204 tissue to 1 = only expressed in a particular tissue). The TSI indexes for each TSS were produced
205 using tspex v0.6.1 (Camargo et al. 2020 Aug 4) and visualised using pheatmap v1.0.12 (Julien
206 et al. 2012) in R.

207

208 ***Characterising population specific TSS and TSS-Enhancers in the cattle dataset***

209 Population specific sets of TSS and TSS-Enhancers were analysed by applying the uni- and bi-
210 directional clustering algorithms three times to all tissue samples from each population of cattle:
211 2 Holsteins (41 samples), 2 Charolais x Holstein F2s (31 samples) and 2 KC composite (30
212 samples). In each run only TSS and TSS-Enhancers present in all tissue types (100% support)
213 were kept for further analysis i.e. to define a TSS or TSS-Enhancer as Holstein specific it had
214 to be present in all Holstein derived samples. A Holstein signature of TSS and TSS-Enhancers
215 (based on start-end coordinates) was established as follows: Firstly a set of TSS and TSS-
216 Enhancer regions present in all 3 population sets (CHAR:KC:HOL_signature) was created, then
217 a set shared only between Holstein Friesian and Charolais x Holstein F2 sets
218 (CHAR:HOL_signature) was created and finally a set shared only between Holstein Friesian
219 and Kinsella composite sets (KC:HOL_signature) was created. An intersection analysis was
220 then performed using UpSetR v1.4.0 (Lex et al. 2014).

221

222 ***Comparative analysis using the Fantom5 and sheep CAGE datasets***

223 Mapped CAGE datasets from human (hg19, n = 152), rat (rn6, n=13), mouse (mm9. n=17),
224 chicken (galGal5, n=32), dog (canFam3, n= 13) and Macaque monkey (rheMac8, n=15) were
225 obtained from (Bertin et al. 2017). The CAGE dataset for sheep (PRJEB34864) (Salavati et al.
226 2020) was re-analysed by mapping against the ARS-UI_Ramb_v2.0 (GCF_016772045.1)
227 reference genome from NCBI v106. After re-mapping of these 56 ovine tissue samples, the
228 TSS regions were annotated using the CAGEfightR v1.16.0 and GCF_016772045.1_ARS-
229 UI_Ramb_v2.0_genomic.gff.gz gene models. The identified TSS regions and their annotated
230 gene symbols (i.e. Ensembl attribute GENE NAME and NCBI RefSeq GENE SYMBOL) were
231 extracted from each of the datasets for comparative analysis. TSS regions were annotated by
232 gene symbols in all 8 datasets (in sheep and cattle using CAGEfightR assignGeneID plugin).
233 Then merged based on sharing the same gene symbol (i.e. homologues) or not to form 5 groups:
234 Avian/Mammalian homologues for TSSs present in all 8 species datasets, Mammalian specific
235 TSS found in all 7 mammalian species, Human specific for TSS present only in human and
236 species specific for all other uniquely assigned TSS. This analysis reduced the number of TSS
237 in each dataset to only those with a gene symbol annotation nearby. The majority of species
238 specific TSS for each dataset had either a unique gene symbol or were novel genes followed by
239 unannotated TSS regions.

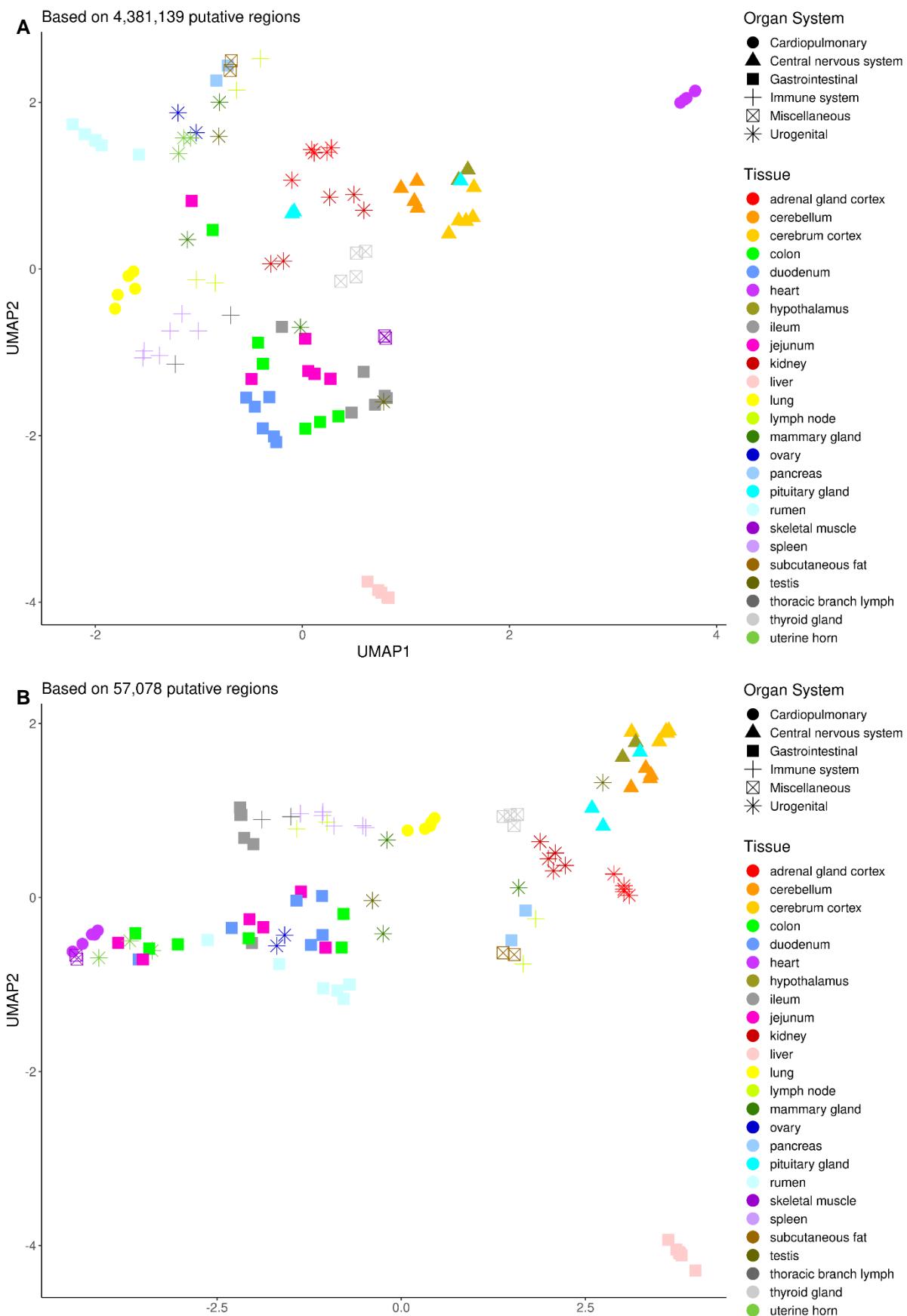
240

241 ***Statistical analysis and data visualisation***

242 All statistical analysis and data visualisations were carried out in R > v4.0.0 using RStudio
243 (RStudio Team 2015) and tidyverse suite v1.3.2 (Wickham et al. 2019). The nf-cage pipeline
244 was run on the high performance computing cluster of the University of Edinburgh (Eddie)
245 (Edinburgh 2020).

246

247 **Results**


248 ***CAGE-Seq library size and mapping metrics***

249 An average (\pm SE) of 15.5 ± 0.53 million reads per CAGE sample were generated. After mapping
250 to the ARS-UCD1.2_Btau5.0.1Y (Hayes and Daetwyler 2019) reference genome a 94%
251 average mapping rate was achieved for all of the tissues (24 types) within the dataset (n=102) .

252

253 ***CAGE-Seq initial clustering and quality control***

254 After Initial CAGE tag clustering (CTSS) more than 4.3 million putative TSS (uni-directional)
255 and 57,078 TSS-Enhancer (bi-directional) regions were identified in total. A minimum of 10
256 reads per region was the only filtering criteria set at this stage of the analysis, with the 2/3rds
257 rule being applied later. The tissue grouping of the TSS and TSS-Enhancer regions is shown in
258 Figure 1.

261 Figure 1 – Dimension reduction of the cattle CAGE-seq dataset using uniform manifold
262 approximation and projection (UMAP). A) The putative TSSs (4,381,139 regions of the cattle
263 genome) and their expression values (CTPM) for all the 102 tissue samples were used as the
264 input matrix for UMAP. The first 2 components are visualised with tissue name (colour) and
265 organ systems (shapes) as labels. B) The putative TSS-Enhancers (57,078 regions of the cattle
266 genome) and the respective CTPM values were used as the input matrix for UMAP. The first 2
267 components are visualised with tissue name (colour) and organ systems (shapes) as labels.

268

269 The gastrointestinal (GI) tract tissues (shown as squares in Figure 1A) and immune system
270 tissues (lymph nodes and spleen indicated by a + sign in Figure 1A) formed relatively distinct
271 clusters as expected. Although this grouping was less pronounced in the TSS-Enhancer profiles
272 for the immune system tissues, the GI tissues kept the original grouping structure, as shown in
273 Figure 1B. Specific tissues e.g. rumen, liver and heart were clustered very distinctly and
274 consistently across TSS and TSS-Enhancers profiles.

275

276 ***Identifying pervasive TSS and TSS-Enhancers across tissues***

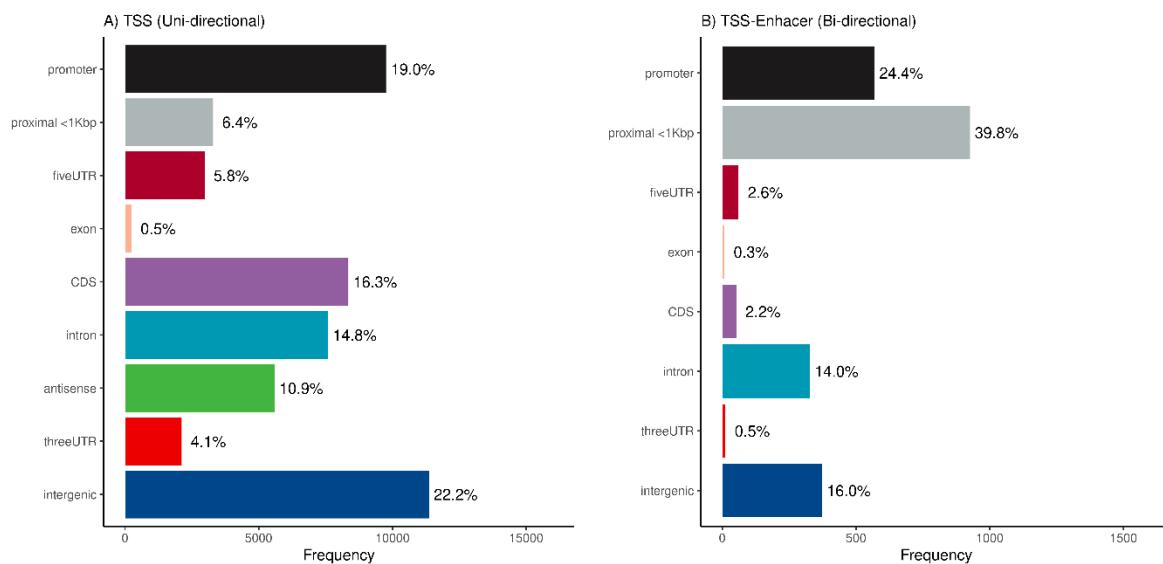
277 We considered a putative TSS or TSS-Enhancer region, real/reproducible only when it was
278 present across at least 2/3rds of the tissues. After filtering using the 2/3rds rule 51,295 TSS and
279 2,328 TSS-Enhancers were detected for cattle with a mean of 91 ± 0.04 (median 94) samples
280 supporting each putative region. This sample support translated into mean 23.7 ± 0.002 (median
281 24) tissue-type support for each region. Similar metrics for the sheep dataset (PRJEB34864)
282 were captured after remapping and applying the same tissue representation criteria (Table 2).
283 Overall 15,364 genes and 27,588 corresponding transcripts were annotated using the CAGE
284 dataset we generated for cattle. We identified 51,295 TSS regions of which 16,957 (33%) were
285 novel and 34,338 overlapped current gene models (Ensembl v106). From the novel putative
286 TSS regions more than 2/3rds (67%) resided within intergenic coordinates from the ARS-
287 UCD1.2 gene build models (Ensembl v106) and 5,592 mapped to antisense features.

288

289 Table2. Mapped and annotated CAGE-Seq uni-directional clusters (TSS regions) in sheep
290 mapped to (ARS-UI_Ramb_v2.0) and cattle mapped to (ARS-UCD1.2_Btau5.0.1Y) using
291 reference assembly gene models (using the min 2/3rd tissue representation threshold).

Genomic Region	Sheep - ARS-UI_Ramb_v2.0				Cattle - ARS-UCD1.2_Btau5.0.1Y			
	Novel	Anno [*]	Total	% ^{\$}	Novel	Anno [*]	Total	% ^{\$}
Promoter	0	13,372	13,372	39.4	0	9,763	9,763	19
proximal	0	944	944	6	0	3,296	3,296	6.4
fiveUTR	0	873	873	6.7	0	2,975	2,975	5.8
threeUTR	0	2,197	2,197	7.9	0	2,118	2,118	4.1
CDS	0	4,513	4,513	16.1	0	8,355	8,355	16.3
exon	0	295	295	1.9	0	238	238	0.5
intron	0	2,386	2,386	10	0	7,593	7,593	14.8
antisense	1,034	0	1,034	4.2	5,592	0	5,592	10.9
intergenic	1,397	0	1,397	7.9	11,365	0	11,365	22.2
Total TSS	2,431	24,580	27,011	100	16,957	34,338	51,295	100
Total TSS- En [£]	34	1,459	1,493		373	1,955	2,328	
Annotated genes/transcripts		13,771 / 45,298				15,364 / 27,588		

292 * Annotated using the reference assembly gff3 track


293 ^{\$} Percentage calculated based on total per genomic region category / total TSS clusters

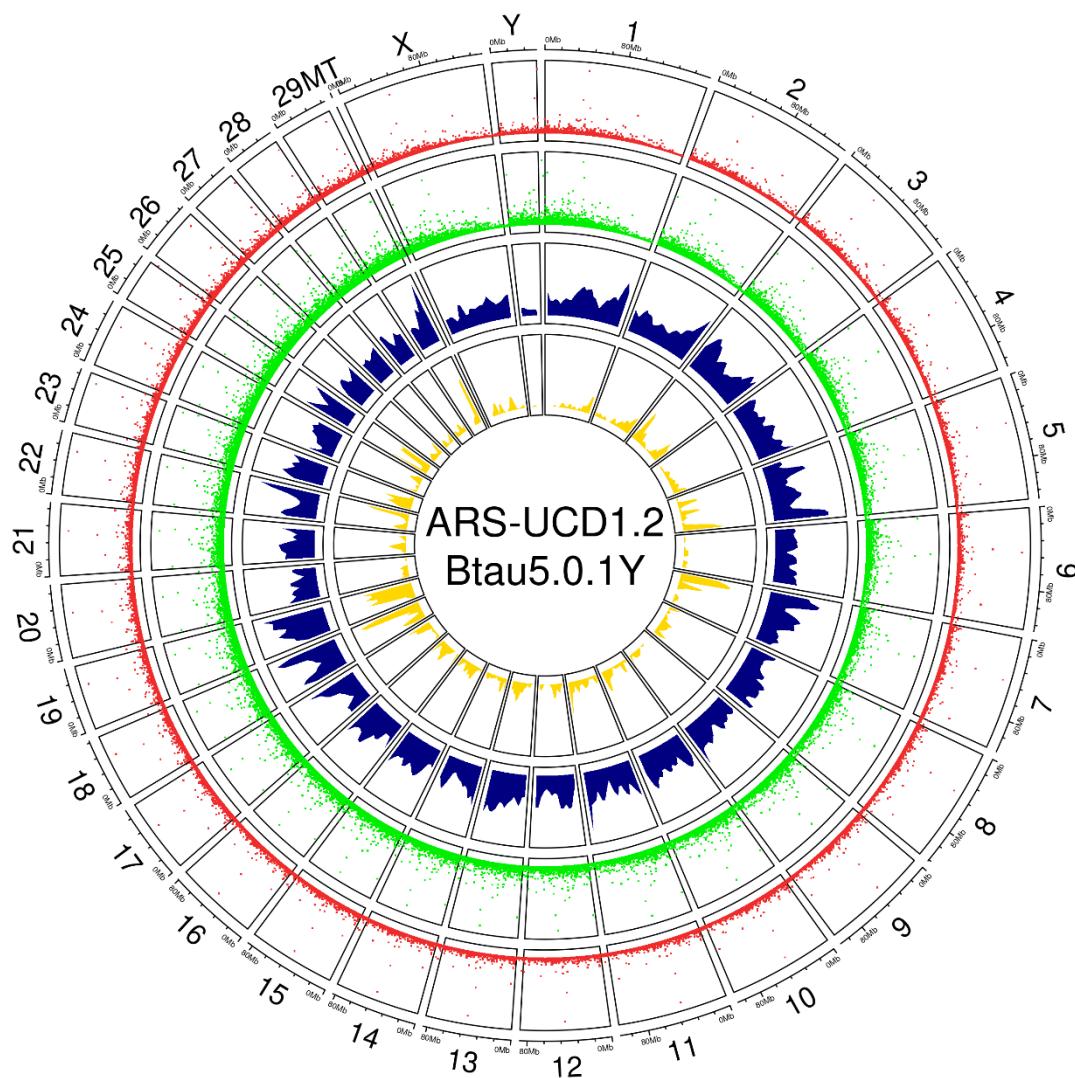
294 £ TSS-Enhancers (Bi-directional clustering)

295

296 The median number of putative TSS regions per gene and transcript model were 1 and 2
297 respectively (mean 1.6 TSS/gene and 3.1 TSS/transcript). All the identified TSS and TSS-
298 regions were annotated using the current Ensembl v106 gene builds. The majority of the
299 annotated regions resided within the promoter and/or 1kb proximal of the first exon. A larger
300 portion of the TSS regions (22.2%) in the cattle dataset fell within intergenic (no gene
301 annotation in ARS-UCD1.2 Ensembl gff3) coordinates compared to the sheep dataset (ARS-
302 UI_Ramb_v2.0 NCBI gff3). The breakdown of the cattle CAGE dataset annotation based on
303 genomic feature category is shown in Figure 2.

304

305

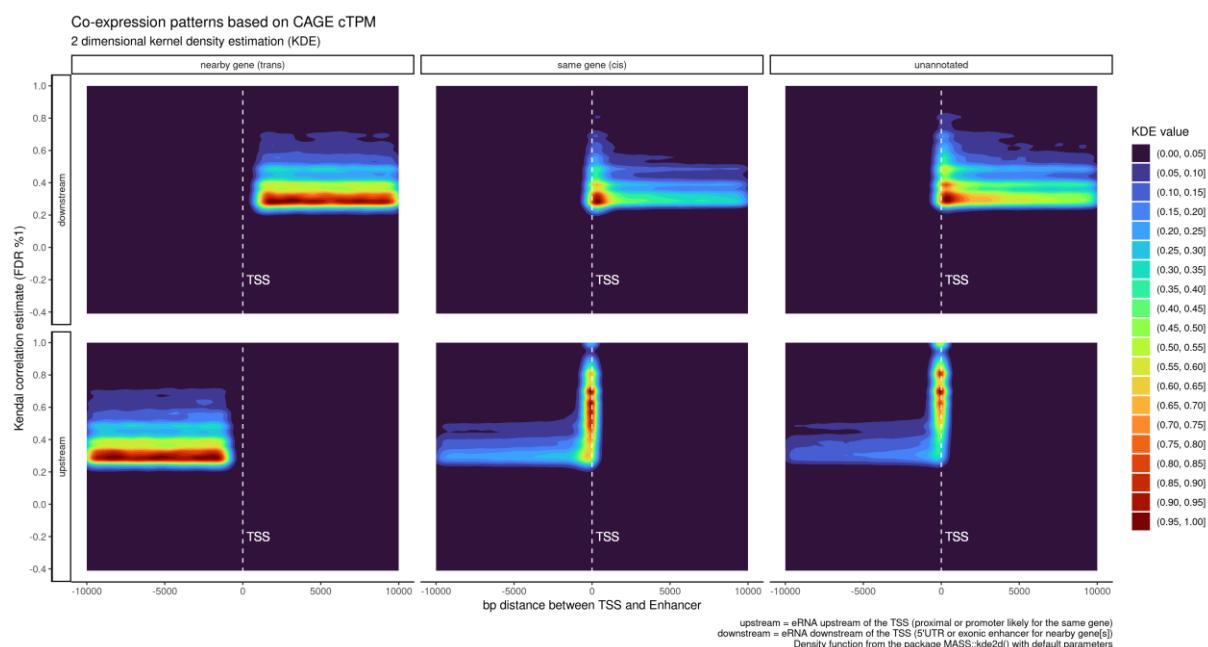

306 Figure 2 – Genomic feature annotation of the cattle CAGE dataset based on the Ensembl v106
307 annotation. A) Frequency distribution of the putative TSS regions identified in at least 2/3rd of
308 the sampled tissues. B) Frequency distribution of the putative TSS-Enhancer regions identified
309 in more than 2/3rd of the sampled tissues.

310

311 ***Identifying co-expressed TSS and Enhancers regions***

312 We identified significant (Kendal correlation adjusted $p < 0.01$) co-expression between bi-
313 directional clusters (TSS-Enhancer region) and multiple uni-directional clusters (TSS) in both
314 the cattle and sheep CAGE datasets. After applying the 2/3rds of tissues representation
315 threshold, an average 3.73 ± 0.05 (median 3) TSS in sheep and 6.62 ± 0.12 (median 5) TSS in
316 cattle showed significant co-expression with a neighbouring Enhancer region. We identified
317 3,641 co-expression links in sheep and 15,600 in the cattle dataset. The average Kendall
318 estimates of these significantly co-expressed links were 0.46 ± 0.003 and 0.34 ± 0.001 for the
319 sheep and cattle tissues respectively. The expression patterns and correlation estimates for the
320 cattle dataset are shown in Figure 3.

321


322

323 Figure 3. Distribution of uni-directional (TSS) and bi-directional (TSS-Enhancer) CAGE
324 clusters within the cattle genome (ARS-UCD1.2_Btau5.0.1Y). The TSS clusters (red), TSS-
325 Enhancer (green), significant positive (blue) and negative (yellow) correlation between co-
326 expressed Enhancer and TSS(s) are shown in genomic tracks. The height of the tracks shows
327 scaled expression or correlation coefficients (0-1).

328

329 We further analysed the co-expression of TSS and Enhancer regions using a 2 dimensional
330 density map. The Kernel Density Estimate (KDE) was used to identify co-expression signals
331 based on correlation estimates vs relative distance from TSS. These signals in both annotated
332 and unannotated genomic coordinates of the cattle dataset have been visualised in Figure 4.

333

334

335 Figure 4 – Kernel density estimates of correlation coefficient (0-1) and distance to TSS (bp) of
336 all significant co-expression profiles within the cattle CAGE dataset. The Kendal correlation
337 estimates and the distance between the Enhancer region and associated TSS were used in the
338 KDE analysis. Enhancer activity within 1kb vicinity of the TSS was considered as the “same
339 gene”, between 1kb-10kb “near by gene” while all unannotated putative TSS (termed ‘Novel’)
340 were linked with annotated Enhancer regions marked as “unannotated”.

341

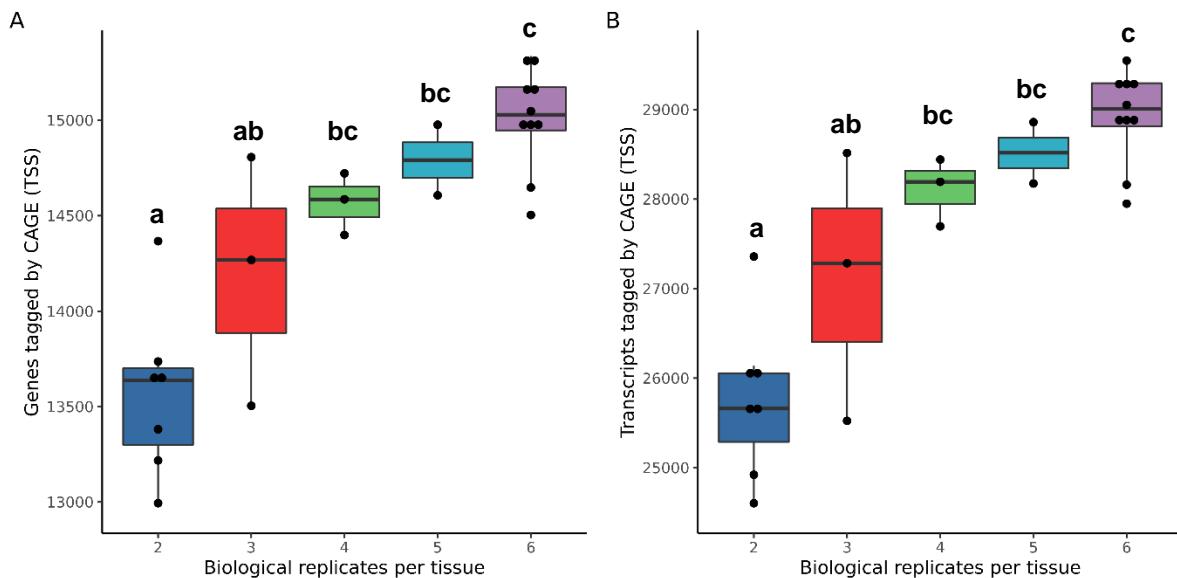
342 The KDE analysis showed a stronger co-expression (average estimate of 0.44; Welch test $p <$
343 0.01) for short range (< 1kb to TSS) in both upstream and downstream enhancer RNA (eRNA)
344 compared to long range (average estimate 0.38). The longer genomic distance between TSS
345 and co-expressed Enhancers was expected to result in smaller correlation estimates. The
346 average (up- and downstream) co-expression correlation estimate of 0.38 was with nearby
347 genes (1kb-10kb windows) pointing to this decay of co-expression due to the distance.
348 Unannotated TSS and Enhancer links showed the highest average correlation estimates (0.47
349 Welch test $p < 0.01$) compared to the other 2 categories. Further details of the comparison
350 between groups can be found in Supplementary Figure 1.

351

352 ***Identifying long stretches of Enhancer activity in the cattle genome***

353 The analysis of the ‘super enhancers’ (stretches of bi-directional CAGE clusters) encompassing
354 multiple enhancers within each stretch in the sheep dataset resulted in 2 super enhancer

355 predictions. These stretches were formed of 6 TSS-Enhancer clusters with the longest stretch
356 of 5,172bp [cluster of 3 enhancers]. Similar analysis of the cattle CAGE dataset from 3
357 populations resulted in 16 super enhancer stretches from 53 TSS-Enhancer clusters. The longest
358 stretch was 25,679bp which contained 6 TSS-Enhancers. The number of discovered super
359 enhancer regions overall was higher in the cattle dataset (3 populations) compared to the sheep
360 (which came from a single individual). The detail of the enhancer stretches and their coordinates
361 can be found in supplementary File 2.zip.

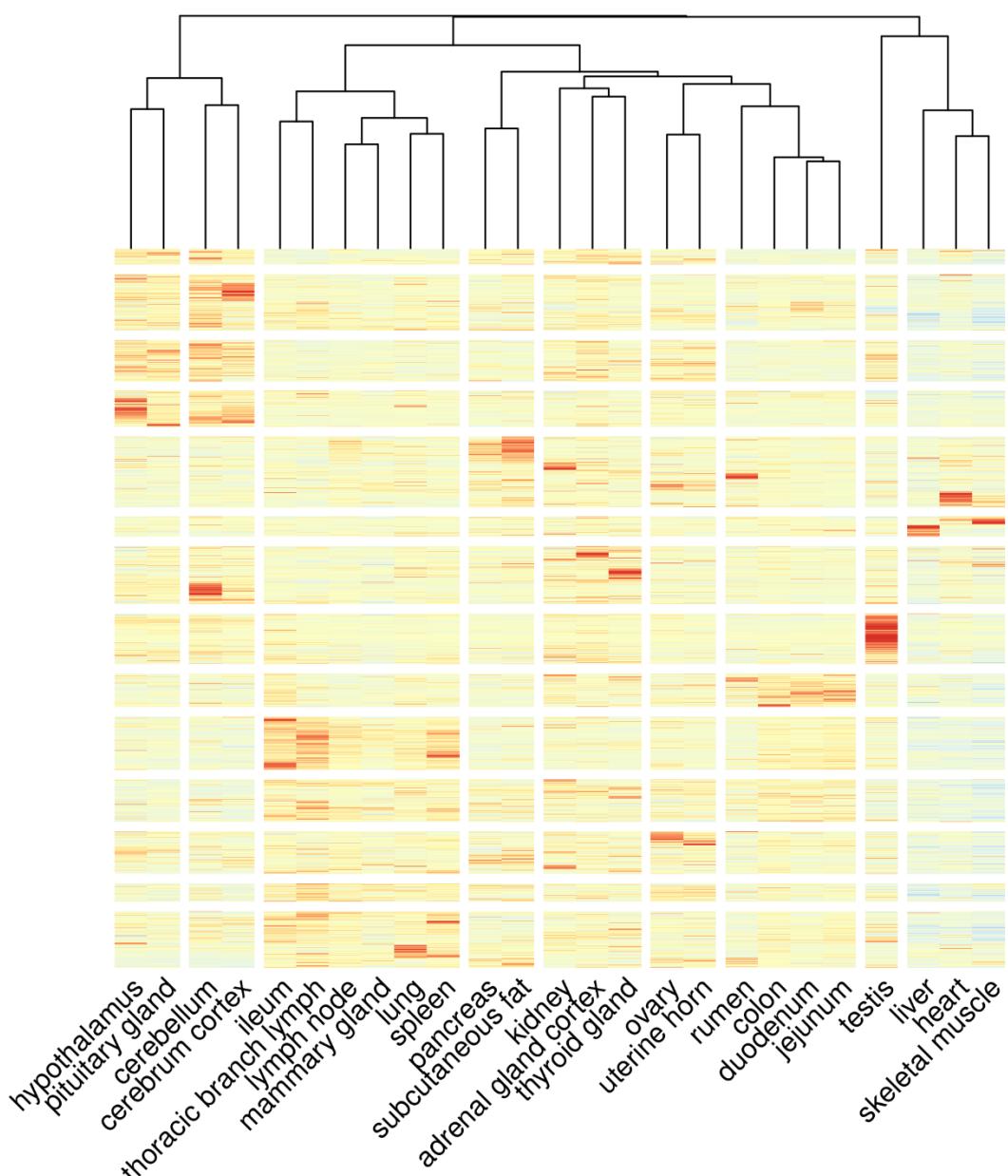

362

363 We also overlaid the enhancer stretches with previously reported copy number variant (CNV)
364 regions of the cattle genome associated with milk production traits in Holsteins (Xu et al. 2014)
365 Three milk trait associated CNVs (chr7, ch13 and chr17 of UMD3.1 lifted to ARS-UCD1.2)
366 had large overlaps with TSS-Enhancers identified in the following genes: *PLCG1* (CNV at
367 chr13: 13:69,794,566-69,921,810), *PPM1F* (CNV at chr17:71,988,770-71,998,055) , *TOP3B*
368 (CNV at chr17:71,964,684-71,967,648) and *TANGO2* (CNV at chr17:72,965,809-72,970,736).

369

370 ***Identifying tissue specific TSS and TSS-Enhancer regions***

371 Tissue-specific analysis captured, on average $253,852 \pm 24,713$ (\pm SE) TSS clusters per tissue,
372 41.6% of which were novel. On average $12,138 \pm 889$ TSS-Enhancer clusters per tissue were
373 captured (27.6% novel). Including multiple biological replicates per tissue type resulted in a
374 higher number of genes being annotated by the cattle CAGE dataset compared to the Ensembl
375 v106 reference annotation. We captured significantly (adjusted $p < 0.05$ Tukey HSD post
376 ANOVA) less genes and transcripts annotated by CAGE tags in tissue types with 2-3 replicates
377 compared to higher ($n > 4$) biological replicates (Figure 5)



378

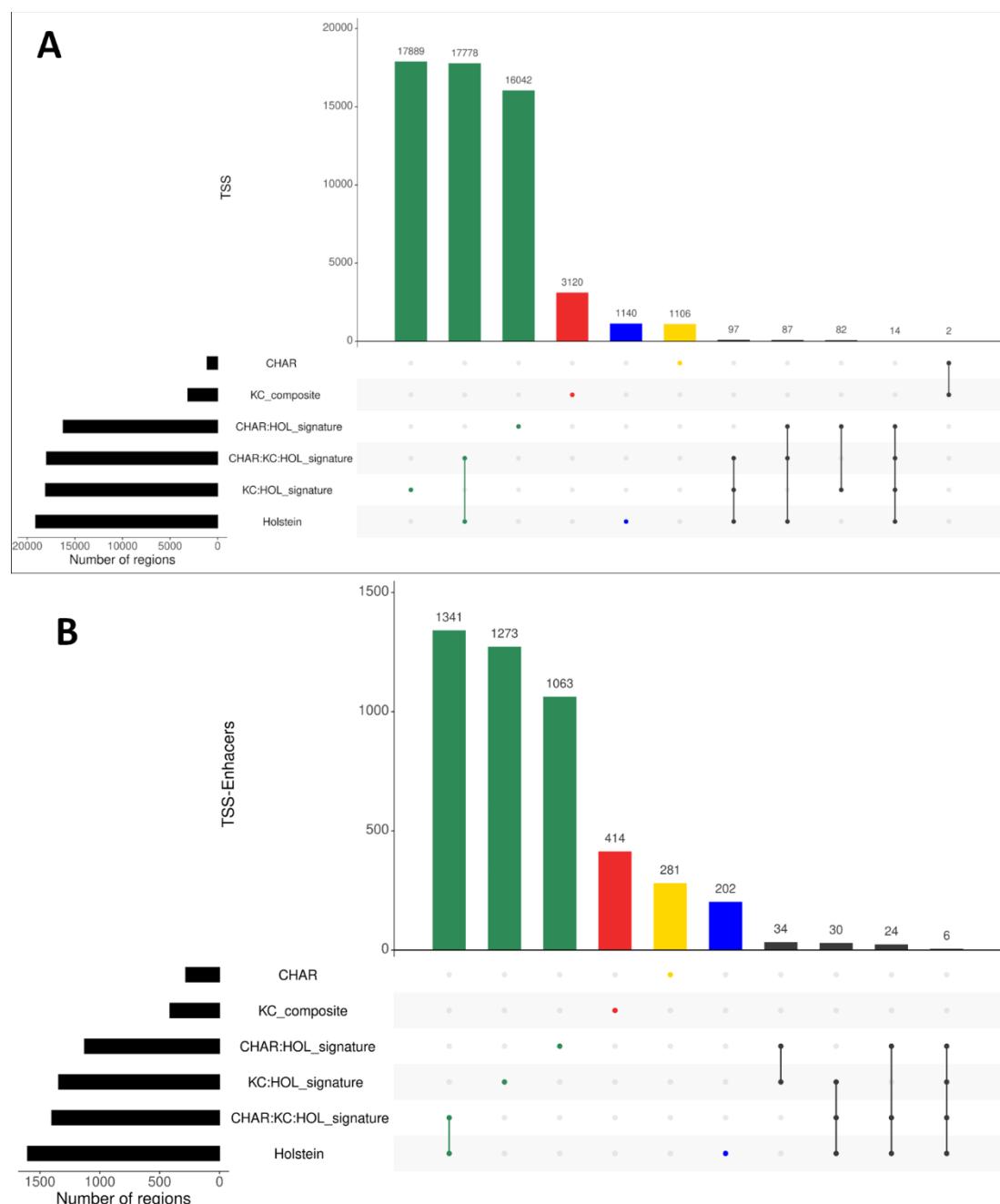
379 Figure 5 – Number of replicates per tissue type and its effect on genes (A) and transcripts (B)
380 annotated by the cattle CAGE dataset. All 24 tissue types were grouped by the number of
381 biological replicates/samples previously described in Table 1. The significant difference
382 between 5 groups was tested using ANOVA followed by stats::TukeyHSD in R. The significant
383 adjusted p values are marked by letters “a”, “b” and “c”.

384

385 Clustering of the tissues based on the tissue specificity index (TSI) (row wise transformed
386 CTPM) (Figure 6) showed tissue-specific promoter activity present in testis, central nervous
387 system tissues, gastrointestinal tract and tissues with a higher epithelial density of immune cells
388 e.g. ileum, mammary gland, lungs, spleen and lymph nodes.

389

390 Figure 6 – Tissue specificity indices (TSI) of the all the putative TSS regions (rows) based on
391 CTPM and tissue type (columns). The heatmap was built using a row and column wise
392 clustering algorithm (hclust ~ Manhattan distances) and the averaged TSI of the TSS across
393 tissue replicates.


394

395 ***Population specific TSS and TSS-Enhancer regions***

396

397 Population-specific analysis showed differences in TSS coordinates and expression levels
398 between the 3 populations of cattle (Holstein Friesian [HOL], Charolais x Holstein and Kinsella
399 composite [KC] beef cattle). The highest number of population-specific TSS were found in the

400 KC-composite (3,120) followed by 1,140 in Holstein and 1,106 in Charolais x Holstein. The
401 same pattern was observed in the TSS-Enhancer regions (414 in KC-composite, 281 in
402 Charolais x Holstein and 202 in Holstein). The detailed population-specific sets of TSS and
403 TSS-Enhancer regions are shown in Figure 7.

404
405 Figure 7 – The population-specific analysis of the (A) TSS and (B) TSS-Enhancers regions in
406 3 populations of cattle. The intersection analysis produced 6 sets of TSS and TSS-Enhancers as
407 following: CHAR regions only present in tissues derived from Charolais x Holstein F2 animals,
408 KC_composite regions only present in tissues derived from Kinsella composite animals,

409 Holstein regions only present in tissues derived from Holstein Friesian animals.
410 CHAR:HOL_signature, KC:HOL_signature were regions shared between the Holstein Friesian
411 dataset and 2 other populations separately. CHAR:KC:HOL_signature a commonly shared set
412 of regions amongst all 3 population of cattle.

413

414 ***Multi species comparative analysis using the Fantom5 and sheep CAGE datasets***

415

416 We compared the predicted TSS regions identified within the sheep and cattle CAGE dataset
417 with the previously released Fantom5 CAGE datasets (Bertin et al. 2017). Multi species metrics
418 for these CAGE datasets are shown in Table 3.

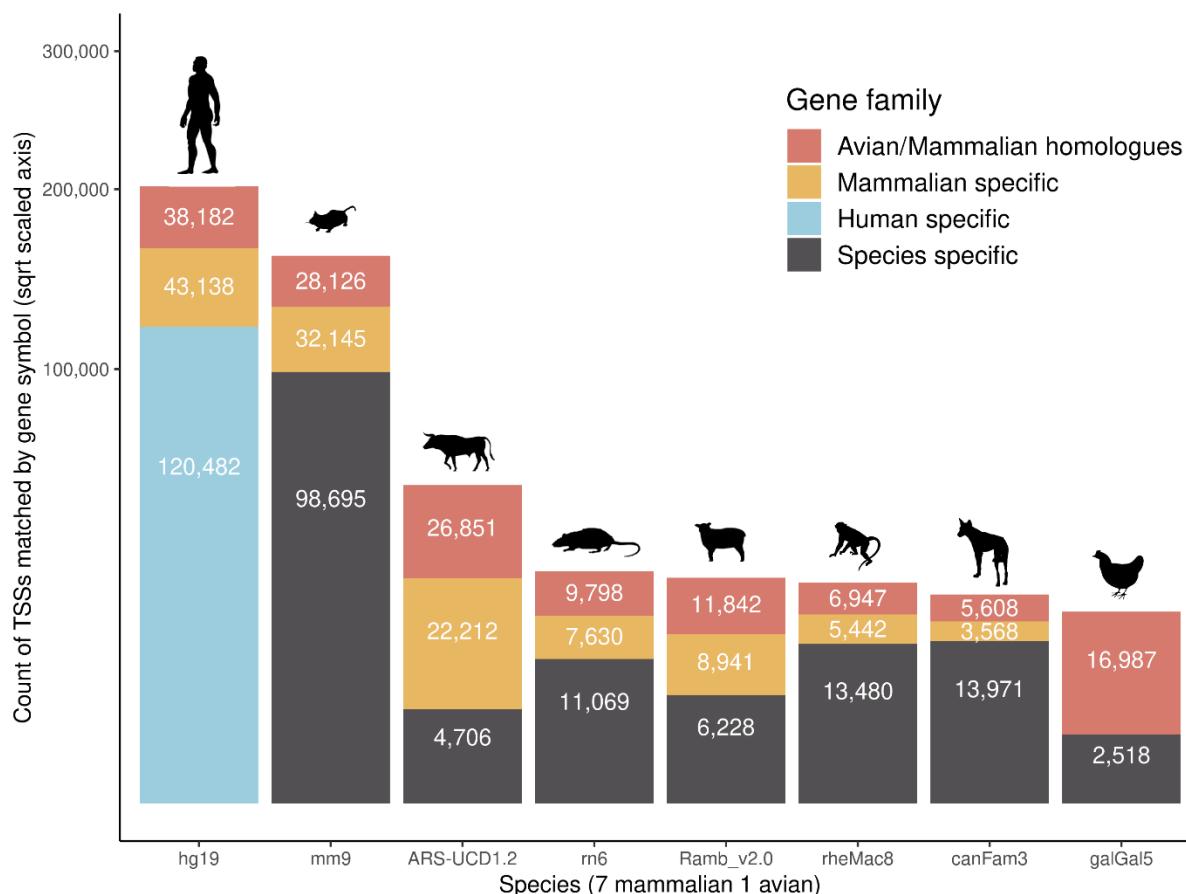
419

420 Table 3. Comparison of the mapped TSS and annotated genes identified in other CAGE datasets
421 (Fantom5, OvineFAANG and BovReg). Column ‘Genes’ corresponds to only the genes that
422 were annotated using the CAGE data (using the 2/3rd tissue representation threshold). The table
423 is sorted (in descending order) by the number of unique TSS identified in each genome.

Species	Genome	TSS↓	Genes
Human	hg38	209,911	31,184
Mouse	mm10	164,672	30,501
Cow	ARS-UCD1.2_Btau5.0.1Y\$	51,295	15,364
Chicken	galGal5	32,015	7,759
Rat	rn6	28,497	13,719
Sheep	Oar rambouillet v1.0£	28,148	13,912
Sheep	ARS-UI_Ramb_v2.0*	27,011	13,771
Rhesus monkey	rheMac8	25,869	8,047
Dog	canFam3	23,147	5,288

424 * NCBI RefSeq gff3 annotation v104

425 \$ Ensembl gff3 annotation v106 track lifted over to 1000bulls reference genome


426 £ NCBI RefSeq gff3 annotation v100

427

428 In this study we have identified the largest number of TSS/promoter activity regions in a non-
429 model organism to date, annotating more than 15,364 genes in the cattle genome. By remapping
430 of the data to the current ARS-UI_Ramb_v2.0 compared to the original reference assembly
431 Oar_rambouillet_v1.0, the number of TSS identified in the sheep CAGE dataset was slightly

432 reduced (~ 5% less TSS and ~ 2% less annotated genes). A comparison of the CAGE (TSS)
433 annotated genes from different avian and mammalian species showed high levels of overlap
434 with both cattle and the remapped sheep CAGE datasets. Overall we were able to identify
435 11,069 genes and their associated TSS unique to the cattle genome (Figure 8).

436

437

438 Figure 8 – Distribution of the annotated TSS regions (gene symbols) across 8 species. The
439 Fantom5 human, mouse, rat, dog, rhesus monkey and chicken CAGE predicted promotor
440 regions were analysed and compared with the cattle and sheep annotated datasets. The TSS
441 regions, annotated by gene symbols, were coloured in each dataset based on Avian/mammalian
442 origin (gene symbols present in all 8 species), Mammalian specific (7 mammalian species),
443 Human or species specific (gene symbol unique to human or each species).

444

445 Discussion

446 High resolution mapping of the actively transcribed regions of the genome can help to
447 identify the drivers of gene expression, regulation and phenotypic plasticity (Tippens et al.
448 2018). Defining transcription start sites (TSS) within promoter regions can provide information

449 about how genes controlling traits of interest are expressed and regulated. To improve TSS and
450 enhancer annotation of the current reference genome for cattle (ARS-UCD1.2), we used CAGE
451 sequencing. We identified more than 51k unique putative TSS coordinates (22% un-annotated
452 regions of the cattle genome) compared to 27k TSS in sheep (7% unannotated regions). The
453 promoter plasticity captured by employing sampling of 24 tissue types from 3 divergent cattle
454 populations for this study resulted in identifying multiple TSS per transcript (mean 3.1 median
455 2) in the cattle dataset with high reproducibility across tissue types (support mean 23.7 median
456 24; n=24) and samples (support mean 91 median 94; n=102). This dataset provides a high
457 confidence set of promoter annotations for the cattle transcriptome including ‘novel’ promotors
458 not previously annotated in the available NCBI v.106 and Ensembl v.106 annotations (25% of
459 TSS overlapped with currently annotated promoters and were 1<kb proximal to annotated gene
460 models).

461 Similar to previously reported studies in cattle (Gosczynski et al. 2021), pig (Halstead
462 et al. 2020; Kern et al. 2021) and human (Andersson et al. 2014) we also identified both tissue
463 and population specific sets of TSS and TSS-Enhancers. Recently new genomic resources have
464 been generated for farmed animal species, including pangenomes and breed-specific reference
465 quality assemblies e.g.(Li et al. 2019; Crysantho et al. 2021; Talenti et al. 2022). Usage of
466 breed specific genome assemblies can provide a more accurate picture of structural variants
467 specific to a population of animals and ensure better mapability for sequence data in reference
468 guided approaches. Identifying breed-, population- or species-specific promoter complexity can
469 help to harness the full potential of these assemblies as tools to inform genomics enabled
470 breeding programmes e.g. reviewed in (Georges et al. 2018; Clark et al. 2020). We identified
471 full tissue support for TSS and TSS-Enhancer regions unique to each of the 3 populations of
472 cattle in this dataset. The highest number of TSS and TSS-Enhancers regions were present in
473 the most diverse population (Kinsella composite). This finding further highlights the value of
474 including samples from more than one breed in creating reference annotation datasets.

475 Using methodology for identifying longer stretches of super-enhancers (Thodberg et al.
476 2019) we also identified 16 genomic stretches (the longest of which was 25kb) from 53
477 candidate bi-directional TSS-Enhancer clusters. The overlay of these super-enhancers that we
478 performed with previously reported copy number variants for the *PCLG1* gene provides a
479 valuable insight to the regulatory landscape for this gene. *PCLG1* has been identified as a stature
480 (chest width) phenotype associated quantitative trait loci (QTL) target in Simmental (dual
481 purpose) cattle by (Doyle et al. 2020). It has also been reported as a differentially expressed

482 gene between high/low gain vs high/low intake amongst n=143 cross-bred steers from 15
483 different beef breeds by (Zarek et al. 2017). In addition, the expression of *PLCG1* has been
484 shown to be downregulated due to maternal under nutrition in the muscle tissues of Japanese
485 Black calves raised on a low nutritional value diet (Muroya et al. 2021). Given the critical role
486 of *PLCG1* in both muscle growth and metabolism in beef cattle the knowledge of its associated
487 super-enhancer coordinates and co-expressed promoter regions across tissues could serve as a
488 guide for future functional validation, gene editing or marker selection studies. Another CNV
489 associated super-enhancer region identified in our dataset was *TANGO2*, a golgi system
490 associated protein coding gene mainly associated with mitochondrial disease (Heiman et al.
491 2022). *TANGO2* has been shown to be over-expressed in seminal plasma of lowly/sub fertile
492 bulls (Muhammad Aslam et al. 2014) and is highly associated with multiple heifer fertility traits
493 in the Holstein cattle population (Chen et al. 2021). Knowledge of the regulatory landscape of
494 genes such as *TANGO2* provides a path for understanding the role of these genes in cattle
495 fertility phenotypes.

496 We also compared the sheep and cattle datasets with other publicly available TSS and
497 TSS Enhancer genomic tracks for mammalian and avian species to further identify promoters
498 specific to the cattle genome. Using a homologue matching approach the TSS annotation of the
499 cattle dataset captured the highest number of mammalian and (or) avian genes families
500 represented in the datasets, after human and mouse, demonstrating how comprehensive the
501 dataset generated for cattle is. Such information could be used to understand how the genome
502 controls traits in different species, and to identify regions that are important for conservation in
503 breeding programmes.

504 The CAGE data produced for this study when combined with transcriptomic datasets
505 (mRNA, miRNA and total RNA-Seq) produced by BovReg partners will provide a new
506 comprehensive transcriptome annotation for the cattle genome, as a resource for the farmed
507 animal genomics community. These improved promoter annotation (TSS and TSS-Enhancers
508 tracks per tissue type) will also be available to the community using the FAANG data portal
509 Genome Browser at (https://api.faang.org/files/trackhubs/BOVREG_CAGE_EUROFAANG/)
510 upon publication.

511

512 **Data availability**

513 The raw sequence data for all the CAGE-Seq libraries is available via the European Nucleotide
514 Archive and the <https://data.faang.org> (BovReg/EuroFAANG portal) under BioProject ID

515 PRJEB43235. The tissue level TSS and TSS-Enhancers regions tracks are also available
516 FAANG data portal Genome Browser at
517 (https://api.faang.org/files/trackhubs/BOVREG_CAGE_EUROFAANG/) and [FAANG](#)
518 [Genome Browser](#).

519

520 **Code availability**

521 The code and documented analysis pipeline developed in NextFlow DSL2 syntax (di Tommaso
522 et al. 2017), is available at <https://github.com/mazdax/nf-cage>.

523

524 **Supplementary materials**

525 All the supplementary files and figures associated with this publication are available at the
526 following link: <https://doi.org/10.6084/m9.figshare.21769649>

527

528 **Ethics statement**

529 The Canadian sampling study was approved by Animal Care and Use Committee at the
530 University of Alberta (AUP00002592). Animals were transported and euthanized according to
531 the NFACC Code of Practice for beef cattle (National Farm Animal Care Council (DCF-
532 NFACC) 2013). Necropsy and tissue collections were performed under site-specific ethics
533 approval by qualified research personnel at University of Alberta Canada (Animal Use Protocol
534 #00002592), University of Liege, Belgium and the Research Institute for Farm Animal Biology,
535 Germany. The Belgian sampling study had local ethical approval (*Commission d'Etique
536 Animale; Dossier #17-1948*) and complied with the relevant national and EU legislation. In
537 Germany, all experimental procedures were carried out according to the German animal care
538 guidelines and were approved and supervised by the relevant authorities of the State
539 Mecklenburg-Vorpommern, Germany (State Office for Agriculture, Food Safety and Fishery;
540 LALLF M-V/ TSD/7221.3-2.1-010/03).

541

542 **Authors contribution**

543 MS developed the nf-cage pipeline, analysed the data, produced all the figures and drafted the
544 initial draft of the manuscript. ELC designed the study, co-wrote the manuscript with MS and
545 edited the final version. RC prepared the CAGE-Seq libraries and undertook sequencing. CK
546 designed the experiment and coordinated the sampling/shipment process for the German
547 samples with DB. GP designed the experiment and organised the sampling/shipment process

548 for the Canadian samples. SD, CC and GCMM collected, processed and shipped extracted RNA
549 from all the collected samples and arranged shipment of these to RC. CK coordinates the
550 BovReg project as a whole. CC, EC and GCMM coordinated the transcriptomic analyses for
551 the BovReg project.

552

553 **Funding**

554

555 This project has received funding from the European Union’s Horizon 2020 research and
556 innovation programme under grant agreement No 815668. Disclaimer: the sole responsibility
557 of this presentation lies with the authors. The Research Executive Agency is not responsible for
558 any use that may be made of the information contained therein. EC and MS were partially
559 supported by Institute Strategic Programme grants awarded to the Roslin Institute by BBSRC
560 “Farm Animal Genomics” (BBS/E/D/2021550), and “Prediction of genes and regulatory
561 elements in farm animal genomes” (BBS/E/D/10002070) as well as BBSRC grant “Ensembl—
562 adding value to animal genomes through high-quality annotation” (BB/S02008X/1). E.L.C. was
563 supported by a University of Edinburgh Chancellors’ Fellowship. This research was also funded
564 in part by the Bill & Melinda Gates Foundation and with UK aid from the UK Foreign,
565 Commonwealth and Development Office (Grant Agreement OPP1127286) under the auspices
566 of the Centre for Tropical Livestock Genetics and Health (CTLGH), established jointly by the
567 University of Edinburgh, SRUC (Scotland’s Rural College), and the International Livestock
568 Research Institute. The Edinburgh Clinical Research Facility is funded by the Wellcome Trust.
569 The funders had no role in study design, data collection and analysis, decision to publish, or
570 preparation of the article. The Canadian sampling was supported by a grant from the Alberta
571 Livestock and Meat Agency and Alberta Agriculture and Forestry (#2016R029R).

572

573 **Conflict of interest**

574 No commercial or academic conflict of interest were declared by any of the authors for this
575 manuscript.

576

577 **Acknowledgements**

578 We would like to thank Dr. Haruko Takeda, MSc. Lijing Tang, and Miyako Sakai (GIGA,
579 University of Liège, Belgium) for their help in sampling, storage and shipment of the samples.
580 We would also like to thank Dr Tim Regan for his advice and input for the KDE analysis, Dr

581 Jose Antonio Espinosa-Carrasco for NextFlow code development, rechecking and
582 troubleshooting of the nf-cage pipeline. The contribution of the following are acknowledged
583 for their work in collecting tissue samples from the Kinsella Composite animals: Janelle
584 Jiminez and Carolyn Fitzsimmons for the selection of animals, organization of the tissue
585 sampling team, and maintenance of tissue inventories, Leanna Greenwich, Leluo Guan, ChangXi
586 Li, and Manuel Juarez and their staff as well as the facility staff at the Roy Berg Kinsella
587 Research Station and the abattoir staff at the Agriculture and Agri-Food Canada (AAFC)
588 Lacombe Research and Development Centre, AB, Canada, for cattle husbandry and tissue
589 sampling.

590

591 **References**

592 Alexandre PA, Naval-Sánchez M, Menzies M, Nguyen LT, Porto-Neto LR, Fortes MRS,
593 Reverter A. 2021. Chromatin accessibility and regulatory vocabulary across indicine cattle
594 tissues. *Genome Biol.* 22(1):273. doi:10.1186/s13059-021-02489-7.

595 Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X,
596 Schmidl C, Suzuki T, et al. 2014. An atlas of active enhancers across human cell types and
597 tissues. *Nature.* 507(7493):455–461. doi:10.1038/nature12787.

598 Bertin N, Mendez M, Hasegawa A, Lizio M, Abugessaisa I, Severin J, Sakai-Ohno M,
599 Lassmann T, Kasukawa T, Kawaji H, et al. 2017. Linking FANTOM5 CAGE peaks to
600 annotations with CAGEscan. *Sci Data.* 4(1):170147. doi:10.1038/sdata.2017.147.

601 Camargo AP, Vasconcelos AA, Fiamenghi MB, Pereira GAG, Carazzolle MF. 2020 Aug 4.
602 *tspex: a tissue-specificity calculator for gene expression data.* :1–7. doi:10.21203/RS.3.RS-
603 51998/V1.

604 Chen S-Y, Schenkel FS, Melo ALP, Oliveira HR, Pedrosa VB, Araujo AC, Melka MG, Brito
605 LF. 2021. Identifying pleiotropic variants and candidate genes for fertility and reproduction
606 traits in Holstein cattle via association studies based on imputed whole-genome sequence
607 genotypes. *BMC Genomics.* doi:10.1186/s12864-022-08555-z.

608 Clark E, Archibald AL, Daetwyler HD, Groenen MAM, Harrison PW, Houston RD, Kühn C,
609 Lien S, Macqueen DJ, Reecy JM, et al. 2020. From FAANG to fork: application of highly
610 annotated genomes to improve farmed animal production. *Genome Biol.* 21(1):1–9.
611 doi:10.1186/s13059-020-02197-8.

612 Crysantho D, Leonard AS, Fang ZH, Pausch H. 2021. Novel functional sequences uncovered
613 through a bovine multiassembly graph. *Proc Natl Acad Sci U S A.* 118(20):e2101056118.
614 doi:10.1073/pnas.2101056118.

615 Deviatiiarov R, Lizio M, Gusev O. 2017. Application of a CAGE Method to an Avian
616 Development Study. *Methods Mol Biol.* 1650:101–109. doi:10.1007/978-1-4939-7216-6_6.

617 Doyle JL, Berry DP, Veerkamp RF, Carthy TR, Walsh SW, Evans RD, Purfield DC. 2020.
618 Genomic Regions Associated With Skeletal Type Traits in Beef and Dairy Cattle Are Common
619 to Regions Associated With Carcass Traits, Feed Intake and Calving Difficulty. *Front Genet.*
620 11:20. doi:10.3389/FGENE.2020.00020/BIBTEX.

621 Edinburgh U of. 2020. Edinburgh Compute and Data Facility. [accessed 2020 Jul 6].
622 <https://www.ed.ac.uk/is/research-computing-service>.

623 Forrest ARR, Kawaji H, Rehli M, Baillie JK, de Hoon MJL, Haberle V, Lassmann T,
624 Kulakovskiy I v., Lizio M, Itoh M, et al. 2014. A promoter-level mammalian expression atlas.
625 *Nature.* 507(7493):462–470. doi:10.1038/nature13182.

626 Frith MC, Valen E, Krogh A, Hayashizaki Y, Carninci P, Sandelin A. 2008. A code for
627 transcription initiation in mammalian genomes. *Genome Res.* 18(1):1–12.
628 doi:10.1101/gr.6831208.

629 Georges M, Charlier C, Hayes B. 2018. Harnessing genomic information for livestock
630 improvement. *Nat Rev Genet.* 20(3):1. doi:10.1038/s41576-018-0082-2.

631 Gosczynski DE, Halstead MM, Islas-Trejo AD, Zhou H, Ross PJ. 2021. Transcription
632 initiation mapping in 31 bovine tissues reveals complex promoter activity, pervasive
633 transcription, and tissue-specific promoter usage. *Genome Res.* 31(4):732–744.
634 doi:10.1101/GR.267336.120.

635 Halstead MM, Kern C, Saelao P, Wang Y, Chanthavixay G, Medrano JF, van Eenennaam AL,
636 Korf I, Tuggle CK, Ernst CW, et al. 2020. A comparative analysis of chromatin accessibility in
637 cattle, pig, and mouse tissues. *BMC Genomics.* 21(1):1–16. doi:10.1186/s12864-020-07078-9.

638 Hayes BJ, Daetwyler HD. 2019. 1000 Bull Genomes Project to Map Simple and Complex
639 Genetic Traits in Cattle: Applications and Outcomes. *Annu Rev Anim Biosci.* 7(1):89–102.
640 doi:10.1146/annurev-animal-020518-115024.

641 Heiman P, Mohsen AW, Karunanidhi A, St Croix C, Watkins S, Koppes E, Haas R, Vockley
642 J, Ghaloul-Gonzalez L. 2022. Mitochondrial dysfunction associated with TANGO2 deficiency.
643 *Sci Rep.* 12(1). doi:10.1038/S41598-022-07076-9.

644 Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, Diekhans M, Furey
645 TS, Harte RA, Hsu F, et al. 2006. The UCSC Genome Browser Database: update 2006. Nucleic
646 Acids Res. 34(Database issue). doi:10.1093/NAR/GKJ144.

647 Julien P, Brawand D, Soumillon M, Necsulea A, Liechti A, Schütz F, Daish T, Grützner F,
648 Kaessmann H. 2012. Mechanisms and Evolutionary Patterns of Mammalian and Avian Dosage
649 Compensation. PLoS Biol. 10(5):e1001328. doi:10.1371/JOURNAL.PBIO.1001328.

650 Kern C, Wang Y, Xu X, Pan Z, Halstead M, Chanthavixay G, Saelao P, Waters S, Xiang R,
651 Chamberlain A, et al. 2021. Functional annotations of three domestic animal genomes provide
652 vital resources for comparative and agricultural research. Nat Commun. 12(1).
653 doi:10.1038/s41467-021-22100-8.

654 Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. 2014. UpSet: Visualization of
655 Intersecting Sets. IEEE Trans Vis Comput Graph. 20(12):1983–1992.
656 doi:10.1109/TVCG.2014.2346248.

657 Li R, Fu W, Su R, Tian X, Du D, Zhao Y, Zheng Z, Chen Q, Gao S, Cai Y, et al. 2019. Towards
658 the Complete Goat Pan-Genome by Recovering Missing Genomic Segments From the
659 Reference Genome. Front Genet. 10:1169. doi:10.3389/fgene.2019.01169.

660 Muhammad Aslam MK, Kumaresan A, Sharma VK, Tajmul M, Chhillar S, Chakravarty AK,
661 Manimaran A, Mohanty TK, Srinivasan A, Yadav S. 2014. Identification of putative fertility
662 markers in seminal plasma of crossbred bulls through differential proteomics. Theriogenology.
663 82(9):1254-1262.e1. doi:10.1016/J.THERIOGENOLOGY.2014.08.007.

664 Muroya S, Zhang Y, Kinoshita A, Otomaru K, Oshima K, Gotoh Y, Oshima I, Sano M, Roh S,
665 Oe M, et al. 2021. Maternal Undernutrition during Pregnancy Alters Amino Acid Metabolism
666 and Gene Expression Associated with Energy Metabolism and Angiogenesis in Fetal Calf
667 Muscle. Metabolites 2021, Vol 11, Page 582. 11(9):582. doi:10.3390/METABO11090582.

668 Noguchi S, Arakawa T, Fukuda S, Furuno M, Hasegawa A, Hori F, Ishikawa-Kato S, Kaida K,
669 Kaiho A, Kanamori-Katayama M, et al. 2017. FANTOM5 CAGE profiles of human and mouse
670 samples. Scientific Data 2017 4:1. 4(1):1–10. doi:10.1038/sdata.2017.112.

671 Raivo Kolde. raivokolde/pheatmap: Pretty heatmaps. [accessed 2022 Aug 29].
672 <https://github.com/raivokolde/pheatmap>.

673 Robert C, Kapetanovic R, Beraldí D, Watson M, Archibald AL, Hume DA. 2015. Identification
674 and annotation of conserved promoters and macrophage-expressed genes in the pig genome.
675 BMC Genomics. 16(1). doi:10.1186/S12864-015-2111-2.

676 Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP.
677 2011. Integrative genomics viewer. *Nat Biotechnol.* 29(1):24–26. doi:10.1038/nbt.1754.

678 Ross EM, Sanjana H, Nguyen LT, Cheng YY, Moore SS, Hayes BJ. 2022. Extensive Variation
679 in Gene Expression is Revealed in 13 Fertility-Related Genes Using RNA-Seq, ISO-Seq, and
680 CAGE-Seq From Brahman Cattle. *Front Genet.* 13. doi:10.3389/FGENE.2022.784663/PDF.

681 RStudio Team. 2015. RStudio: Integrated Development for R. <http://www.rstudio.com/>.

682 Salavati M, Caulton A, Clark R, Gazova I, Smith TPL, Worley KC, Cockett NE, Archibald AL,
683 Clarke SM, Murdoch BM, et al. 2020. Global Analysis of Transcription Start Sites in the New
684 Ovine Reference Genome (Oar rambouillet v1.0). *Front Genet.* 11:1184.
685 doi:10.3389/fgene.2020.580580.

686 Salavati M, Espinosa-Carrasco J. 2022 Jul 18. *MazdaX/nf-cage: nf-cage.*
687 doi:10.5281/ZENODO.6855541.

688 Takahashi H, Kato S, Murata M, Carninci P. 2012. CAGE (Cap Analysis of Gene Expression):
689 A Protocol for the Detection of Promoter and Transcriptional Networks. In: *Methods in
690 Molecular Biology.* Vol. 786. p. 181–200. http://link.springer.com/10.1007/978-1-61779-292-2_11.

692 Thodberg M, Thieffry A, Vitting-Seerup K, Andersson R, Sandelin A. 2019. CAGEfightR:
693 analysis of 5'-end data using R/Bioconductor. *BMC Bioinformatics.* 20(1):487.
694 doi:10.1186/s12859-019-3029-5.

695 Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): High-
696 performance genomics data visualization and exploration. *Brief Bioinform.* 14(2):178–192.
697 doi:10.1093/bib/bbs017.

698 Tippens ND, Vihervaara A, Lis JT. 2018. Enhancer transcription: what, where, when, and why?
699 *Genes Dev.* 32(1):1–3. doi:10.1101/GAD.311605.118.

700 di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. 2017. Nextflow
701 enables reproducible computational workflows. *Nat Biotechnol.* 35(4):316–319.
702 doi:10.1038/nbt.3820

703 Venables WN, Ripley BD. 2002. *Modern Applied Statistics with S.* Fourth. New York:
704 Springer. <http://www.stats.ox.ac.uk/pub/MASS4/>.

705 Wickham H. 2009. *ggplot2: Elegant Graphics for Data Analysis.* <http://had.co.nz/ggplot2/book>.

706 Wickham H, Averick M, Bryan J, Chang W, D' L, McGowan A, François R, Grolemund G,
707 Hayes A, Henry L, et al. 2019. Welcome to the Tidyverse. *J Open Source Softw.* 4(43):1686.
708 doi:10.21105/JOSS.01686.

709 Xu L, Cole JB, Bickhart DM, Hou Y, Song J, VanRaden PM, Sonstegard TS, van Tassell CP,
710 Liu GE. 2014. Genome wide CNV analysis reveals additional variants associated with milk
711 production traits in Holsteins. *BMC Genomics.* 15(1):1–10. doi:10.1186/1471-2164-15-
712 683/FIGURES/4.

713 Zarek CM, Lindholm-Perry AK, Kuehn LA, Freetly HC. 2017. Differential expression of genes
714 related to gain and intake in the liver of beef cattle. *BMC Res Notes.* 10:1. doi:10.1186/s13104-
715 016-2345-3.

716