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Abstract 22 

Alzheimer’s disease (AD) is characterized by neurodegeneration, pathology accumulation, and 23 

progressive cognitive decline. There is significant variation in age at onset and severity of 24 

symptoms highlighting the importance of genetic diversity in the study of AD. To address this, we 25 

analyzed cell and pathology composition of 6- and 14-month-old AD-BXD mouse brains using 26 

the semi-automated workflow (QUINT); which we expanded to allow for nonlinear refinement of 27 

brain atlas-registration, and quality control assessment of atlas-registration and brain section 28 

integrity. Near global age-related increases in microglia, astrocyte, and amyloid-beta 29 

accumulation were measured, while regional variation in neuron load existed among strains. 30 

Furthermore, hippocampal immunohistochemistry analyses were combined with bulk RNA-31 

sequencing results to demonstrate the relationship between cell composition and gene 32 

expression. Overall, the additional functionality of the QUINT workflow delivers a highly effective 33 

method for registering and quantifying cell and pathology changes in diverse disease models.  34 
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Introduction 35 

Alzheimer’s Disease (AD) is a multifaceted neurodegenerative condition that currently has no 36 

cure and impacts millions around the globe1. AD is characterized by the accumulation of 37 

amyloid-beta (AB) plaques, neurofibrillary tau tangles, severe gliosis, and progressive 38 

neurodegeneration2, leading to clinical symptoms and cognitive decline that eventually lead to 39 

death3. There is significant variation in the age at symptom onset and severity of cognitive 40 

decline, with highly susceptible individuals exhibiting early onset and rapid decline, while resilient 41 

individuals remain cognitively intact late in life4,5. Further characterization of pathology 42 

development including neurodegeneration, amyloid-beta deposition, and neuroinflammation is 43 

needed to better understand the impact of this variation on clinical disease outcomes. Moreover, 44 

this characterization is highly relevant since changes in the composition of brain tissue and the 45 

development of neuropathology can precede (and might even predict) clinical symptoms, and 46 

therefore serves as a valuable resource for defining disease subtypes and possible mechanisms 47 

of resilience6–8.  48 

 49 

Mouse models of AD offer the opportunity to study changes in brain pathology in a controlled 50 

manner to gain a better understanding of how AD manifests and may progress in humans9,10. In 51 

these models, organism-wide, brain-wide, or region-specific imaging and omics approaches can 52 

be implemented for the investigation of disease stages using cross-sectional or longitudinal 53 

study designs. To combat the lack of heterogeneity of traditional inbred AD mouse models, the 54 

AD-BXD mouse population that better recapitulates the complex heterogeneity of genetic, 55 

molecular, and cognitive features of human aging and AD was utilized in this study11,12. The AD-56 

BXD population was generated by crossing the C57BL/6J(B6)-5XFAD AD mouse model with 57 

strains from the BXD panel11. Despite being driven by alleles typically found in cases of early-58 

onset AD, in the genetically diverse BXD strains, the 5XFAD transgene leads to a spectrum of 59 

phenotypes that recapitulate the clinical and pathological variation of late-onset AD11,13–16. Since 60 

the relationship between symptomatology and changes in the composition of brain tissue is not 61 

fully understood, assessing changes in cell and pathology organization across a mouse 62 

population that models the heterogeneity of human AD may highlight brain regions and cell 63 

types associated with cognitive susceptibility or resilience to neurodegeneration, gliosis, and 64 

pathology17–23. 65 

 66 

In addition to characterizing AD with imaging outcomes of cell composition in mouse models, 67 

changes with AD can be described by investigating deviations in gene expression among 68 
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different cell types of the brain. Bulk RNA-sequencing (RNAseq) is a common method to study 69 

gene expression profiles of brain regions of interest; however, it is crucial to note that gene 70 

expression data generated from a tissue sample reflects an average gene expression profile 71 

across heterogeneous populations of cells24. Consequently, consideration of individual 72 

differences in regional cell composition is vital when interpreting the results from RNAseq data 73 

from different mouse strains and patient samples. Since AD has a substantial impact on brain 74 

structure, observed changes in gene expression in bulk tissue are likely to be masked by 75 

changes in cell-type composition across varying disease stages. In many AD studies that 76 

conduct RNAseq to determine disease signatures, it is not clear whether observed differences in 77 

gene expression among AD samples or between AD samples and controls are due to changes 78 

in transcriptional regulation or the relative proportions of different cell types in the tissue 79 

samples14,25,26. Measuring cell composition and recognizing the contribution of cell abundance 80 

when associating gene expression to disease traits is important for reducing spurious 81 

associations between AD phenotypes and gene expression27,28. Deconvolution methods have 82 

been created in an attempt to estimate the proportions of different cell types in RNAseq results 83 

and to distinguish changes in gene expression stemming from changes in cell-type compositions 84 

versus alterations in gene activity29–34; however, the performance of deconvolution tools are 85 

highly variable27,35.  86 

 87 

Immunohistochemistry (IHC) quantification is the gold standard for measuring the cell 88 

composition of a tissue sample. When combined with brain-wide analysis methods that utilize 89 

reference atlases of the brain36,37, IHC is a powerful tool that can be used to better understand 90 

the changes in cell composition that occur with age and AD, and the relative relationship 91 

between cellular load and gene expression. The QUINT workflow38 is one such semi-automated 92 

analysis method that combines a tool for registering histological brain section images 93 

(QuickNII39) to a reference atlas of the brain, with tools for extracting (ilastik40) and quantifying 94 

IHC-stained features (Nutil41). A key step in the QUINT workflow is that customized atlas-plates, 95 

derived from a three-dimensional brain atlas, are linearly registered to brain section images39. 96 

However, with morphological differences seen among mouse strains, disease states, and 97 

ages42–46, and morphological distortions occurring during histological processing, linear 98 

registration is often insufficient to achieve accurate anatomical registration. This motivated the 99 

expansion of the QUINT workflow with new functionality to increase the quality of the atlas-100 

registration by application of nonlinear refinements (VisuAlign); as well as providing a means to 101 

verify the atlas-registration by systematic random sampling (QCAlign). Here, we utilize the 102 
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expanded QUINT workflow to characterize regional composition of neurons, reactive astrocytes, 103 

microglia, and amyloid beta pathology across brains of AD-BXD mice at different ages, in 104 

regions defined by the Allen Mouse Brain Common Coordinate Framework v3 (CCFv3). By 105 

completing this analysis, we provide an expansive brain-wide characterization of diverse 5XFAD 106 

mice and 1). assess changes in cell and pathology composition between AD-BXD animals at 6 107 

and 14-months of age, 2). assess variation in cellular abundance among AD-BXD strains, and 108 

3). interpret bulk RNAseq data with respect to the cellular-abundance, in order to differentiate 109 

effects driven by AD from effects driven by cellular composition in the hippocampal formation. 110 

 111 

Methods 112 

Method relating to the mice and IHC 113 

Bioethics 114 

All mouse experiments occurred at the University of Tennessee Health Science Center and were 115 

carried out in accordance with the principles of the Basel Declaration and standards of the 116 

Association for the Assessment and Accreditation of Laboratory Animal Care (AAALAC), as well 117 

as the recommendations of the National Institutes of Health Guide for the Care and Use of 118 

Laboratory Animals. The protocol was approved by the Institutional Animal Care and Use 119 

Committee (IACUC) at the University of Tennessee Health Science Center. 120 

 121 

Animals 122 

All data used in this study are from the AD-BXD panel, which have been previously described11 123 

(Figure 1b). Briefly, female B6 mice hemizygous for the 5XFAD transgene (B6.Cg-124 

Tg(APPSweF1LonPSEN1*M146L*L286V)6799Vas/ Mmjax, Stock No. #24848-JAX) were mated 125 

to males from the BXD genetic reference panel resulting in sets of isogenic F1 AD-BXD strains 126 

that either harbor the 5XFAD transgene or are nontransgenic (Ntg)-BXD littermate “normal 127 

aging”  controls. Male and female AD-BXD mice were group housed as a mix of 5XFAD and Ntg 128 

same-sex littermates (2-5 per cage) and maintained on a 12-hour light–dark cycle with ad 129 

libitum access to food and water. All mice were genotyped for the 5XFAD transgene through a 130 

combination of in-house genotyping according to The Jackson Laboratory Transgenic 131 

Genotyping Services protocols for strain #34848-JAX and outside services (Transnetyx, TN, 132 

USA). This study included a total of 40 mice (2 males and 38 females) of 6 months (6m; n=20) 133 

and 14 months (14m; n=20). These included 29 mice from 14 AD-BXD strains (n = 1-4 mice per 134 

strain); 8 mice from founder strains C57BI/6J (B6) 5XFAD (n = 2), and F1 B6/DBA/2J (D2) 135 
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5XFAD (n = 6); and 3 Ntg-BXD mice (all 6 m). An overview of all the animals included in the 136 

study is given in Supplementary Table 1.   137 

 138 

Immunohistochemistry  139 

Tissue collection and shipment: 140 

Mice were deeply anesthetized using isoflurane before decapitation and rapid removal of the 141 

brain at appropriate time points (6m or 14m). The hypothalamus was dissected out and the brain 142 

was bisected down the sagittal midline. One half of the brain was immediately further dissected 143 

and snap frozen to be used for RNAseq and the other hemisphere was placed in 4% 144 

paraformaldehyde and kept at 4oC to be used for IHC as previously described11,13,16. In order to 145 

minimize technical variation in IHC, hemibrains were sent overnight to Neuroscience Associates 146 

(Knoxville, TN), where the cerebellum was removed and hemibrains were embedded, 147 

processed, and stained simultaneously in blocks of 40.  148 

 149 

Neurohistology Embedding and Sectioning: 150 

Hemibrains received at Neuroscience Associates were examined for overall tissue integrity (no 151 

major damage or tissue breakdown), then treated overnight with 20% glycerol and 2% 152 

dimethylsulfoxide to prevent freeze-artifacts. The specimens were then embedded in a gelatin 153 

matrix using MultiBrain®/ MultiCord® Technology (Neuroscience Associates, Knoxville, TN). 154 

The blocks were rapidly frozen, after curing by immersion in 2-Methylbutane chilled with crushed 155 

dry ice and mounted on a freezing stage of an AO 860 sliding microtome. The MultiBrain®/ 156 

MultiCord® blocks were sectioned in coronally with desired micrometer (40µ) setting on the 157 

microtome. All sections were cut through the entire length of the specimen and collected 158 

sequentially into series of 24 containers. All containers contained Antigen Preserve solution 159 

(50% PBS pH7.0, 50% Ethylene Glycol, 1% Polyvinyl Pyrrolidone); no sections were discarded. 160 

 161 

IHC staining: 162 

Free floating sections were stained for Aβ1-42 (amyloid beta pathology), glial fibrillary acidic 163 

protein (GFAP, reactive astrocytes) and ionized calcium binding adapter protein 1 (Iba1, 164 

microglia) on every 24th section spaced at 960 μm, yielding approximately 9 sections per 165 

hemibrain. Staining for NeuN (neurons) and thionine (Nissl, cell bodies) was performed on every 166 

12th section spaced at 480 μm, yielding approximately 19 sections per hemibrain. For Aβ1-42, 167 

GFAP, Iba1 and NeuN, all incubation solutions from the blocking serum onward used Tris 168 

buffered saline (TBS) with Triton X-100 as the vehicle; all rinses were with TBS. After a 169 
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hydrogen peroxide treatment and blocking serum, the sections were immunostained with the 170 

primary antibodies, as shown in Supplemental Table 2, overnight at room temperature. Vehicle 171 

solutions contained Triton X-100 for permeabilization. Following rinses, a biotinylated secondary 172 

antibody was applied. After further rinses Vector Lab’s ABC solution (avidin-biotin-HRP complex; 173 

VECTASTAIN® Elite ABC, Vector, Burlingame, CA) was applied. The sections were again 174 

rinsed, then treated with diaminobenzidine tetrahydrochloride (DAB) and hydrogen peroxide to 175 

create a visible reaction product. Following further rinses, the sections were mounted on gelatin-176 

coated glass slides and air dried. The slides were dehydrated in alcohols, cleared in xylene and 177 

cover slipped. For thionine-Nissl Staining sections were mounted on gelatin-coated glass slides, 178 

air dried and carried through the following sequence: 95% ethanol, 95% ethanol/Formaldehyde; 179 

95% ethanol, Chloroform/Ether/absolute ethanol (8:1:1), 95% ethanol; 10% HCl/ethanol, 95% 180 

ethanol, 70% ethanol, deionized water, thionine (0.05% thionine/acetate buffer, pH 4.5) (Fisher, 181 

T40925), deionized water, 70% ethanol, 95% ethanol, Acetic Acid/ethanol, 95% ethanol, 100% 182 

ethanol, 100% ethanol, 1:1 100% ethanol/xylene, xylene, xylene, coverslip.  183 

 184 

Slide identification and imaging:  185 

Each slide was laser etched with the block number and the stain. Following serial ordering of the 186 

slides, rostral to caudal for each stain, the slides were numbered by permanent ink in the upper 187 

right corner. 188 

Neuroscience Associates (NSA) performed scanning of each slide at 20x using a Huron Digital 189 

Pathology TissueScope LE120 (0.4 microns/pixel). Brain image series were compiled by 190 

reconstructing the IHC sections as sliced and indicated by NSA.  191 

 192 

Further information and requests for resources and reagents should be directed to and will be 193 

fulfilled by the Corresponding author. 194 

 195 

Methods Related to QUINT Workflow Utilization 196 

QUINT workflow development 197 

The QUINT workflow supports brain-wide quantification of IHC data in relation to a reference 198 

atlas such as the Allen Mouse Brain Common Coordinate Framework v3 (CCFv3). In the 199 

workflow (Figure 1a), the QuickNII software39 is used to spatially register atlas-plates from a 3D 200 

digital brain atlas to serial section images, the ilastik software40 is used to extract features from 201 

the images, and the Nutil software41 is used to quantify features per atlas-region. To meet the 202 

needs of the current project, two new software, VisuAlign (RRID: SCR_017978) and QCAlign 203 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2023. ; https://doi.org/10.1101/2023.02.27.530226doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.27.530226
http://creativecommons.org/licenses/by/4.0/


7 
 

(RRID:SCR_023088), were developed and integrated in the QUINT workflow. VisuAlign is used 204 

to apply in-plane nonlinear refinements of the atlas to achieve the best fit over the section 205 

images. This task is performed by visually identifying mismatches between section images and 206 

the corresponding atlas plates, and manually assigning a set of anchor points denoting 207 

corrections. VisuAlign then uses these anchor points to create a continuous, nonlinear 208 

deformation field covering the entire section image. QCAlign is used to 1. detect sections or 209 

regions not suited for QUINT analysis (i.e., due to damage), and 2. to assess the quality of the 210 

atlas-registration to each region in the sections. Both QCAlign assessments are performed by 211 

systematic random sampling. The second assessment is based on anatomical expertise by 212 

evaluating how well delineations supplied by the atlas match up with boundaries revealed by 213 

IHC-staining. Since validation of the atlas-registration is only possible for regions that have 214 

visible boundaries in the sections, and reference atlases are structured in systematic hierarchies 215 

that group related regions47, functionality was also implemented in QCAlign for adjusting the 216 

hierarchy to a customized level that supports verification of the regional registration  (i.e. a level 217 

where the delineations from the atlas roughly matching the boundaries that are visible in the 218 

sections). This customized hierarchy level can be exported as a TXT file and used in the Nutil 219 

software to define customized regions to use for the brain-wide quantification.  220 

 221 

Image Pre-processing 222 

To perform stain segmentation in ilastik, the images were inspected, cropped, and downscaled 223 

using different scaling factors for the different stains (AB1-42: 0.20, GFAP: 0.40, Iba1: 0.40, 224 

NeuN: 0.40, thionine: 0.35). Scaling factors were determined by gradually increasing the scaling 225 

factor and manually determining the level at which the image file size was maximally reduced 226 

without visually losing information and inducing blur.  Images were then further downsampled  to 227 

fulfil the image size requirements of QuickNII (scaling factor: 0.50) (detail at: 228 

https://quicknii.readthedocs.io/en/latest/imageprepro.html ).  229 

 230 

Image Registration to the CCFv3 with QuickNII and VisuAlign 231 

Serial section images from one brain (irrespective of stain) were combined into a descriptor XML 232 

file using the QuickNII Filebuilder application (included in the QuickNII download package). 233 

QuickNII (RRID:SCR_016854, QuickNII-ABAMouse-v3-2015 version 2.2) was used to perform 234 

linear registration to the CCFv3 2015 followed by nonlinear refinement with VisuAlign (RRID: 235 

SCR_017978, version 0.8). For each image series, the thionine-stained sections were registered 236 

first since they provided the greatest visualization of region boundaries. Subsequently, all 237 
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remaining sections were registered in a serial manner. Two independent raters evaluated the 238 

registration of each section performed with QuickNII and the refinements made with VisuAlign. 239 

Spatial registration data was exported from both QuickNII and VisuAlign in JSON and FLAT files 240 

to be used in the Nutil software. 241 

 242 

Cell Segmentation with ilastik 243 

The ilastik software (RRID:SCR_015246) supports feature extraction by segmentation based on 244 

supervised machine learning algorithms. For each stain, ten training images with representative 245 

staining were loaded into the Pixel Classification workflow in ilastik (v.1.3.3). Two classes termed 246 

“label” and “background” were created, and annotations of each class were applied in all the 247 

training images until the segmentation was deemed satisfactory and confirmed by two 248 

independent raters. The trained classifiers were applied to all the images of that stain using the 249 

batch processing function in ilastik. Segmented images were exported in 8-bit indexed PNG 250 

format. Red-green-blue (RGB) colors were applied to the images with the Glasbey Lookup Table 251 

in FIJI48. 252 

 253 

Evaluation of Section Image Quality with QCAlign 254 

The QCAlign software (RRID:SCR_023088, version 0.7) was used to assess the integrity of the 255 

sections for each brain image series (all 40 brains were assessed) using a 5-voxel grid spacing. 256 

This involved marking up points that overlapped areas of damage (representing tears in the 257 

tissue, folds, artifacts, and errors in image acquisition) for all sections. Results were exported in 258 

TXT format and used to calculate percentage damage per section by dividing the number of 259 

damage markers by the total number of markers overlapping the section (damage = # damage 260 

markers per section / # of total markers per section). Section images with more than 30% 261 

damage were deemed unsuited for QUINT analysis (Supplemental Table 3). Nutil results per 262 

brain were re-calculated in R following removal of results from the damaged sections. 263 

 264 

Creation of a Customized Atlas Hierarchy with QCAlign  265 

Brain reference atlases such as the CCFv3 are organized in systematic hierarchies that group 266 

related regions47. A customized hierarchy level was created with QCAlign to be used for the 267 

quality control assessment of the atlas-registration, and to define customized regions to be 268 

quantified (hereafter referred to as the “intermediate hierarchy”). To create this intermediate 269 

hierarchy, the atlas delineations supplied by the workflow were overlaid on the thionine-stained 270 

sections at the finest level of atlas granularity (full expansion of the CCFv3). A grid of points with 271 
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a 15-voxel grid spacing was applied to the images, with the registration accuracy of each point 272 

marked up based on anatomical expertise (“accurate”, “inaccurate” or “uncertain”). If a region 273 

received many “uncertain” markers due to obscure region boundaries, the hierarchy level was 274 

adjusted one level up, and the process was repeated until the position of most of the markers 275 

could be verified (either “accurate” or “inaccurate”). The customized hierarchy was exported as a 276 

TXT file to be used in the Nutil software to define the regions for quantification (Supplemental 277 

Table 4).  278 

 279 

Quality Control Assessment of Atlas-Registration to the Section Images using QCAlign 280 

In the QUINT workflow, 2D atlas-plates are created to match the cutting angle of the sections 281 

and registered to the section images in a linear manner using QuickNII. Next, these atlas-282 

registrations are warped (in-plane) to provide a better fit to the sections using VisuAlign.  To 283 

determine the quality of the atlas-registration to each region in the intermediate hierarchy, ten 284 

raters across two academic institutions were recruited to perform a quality assessment using the 285 

QCAlign software. Raters varied in anatomical knowledge with expertise ranging from 286 

postbaccalaureate researchers, Ph.D. students, senior post-doctoral fellows, and associate 287 

research scientists in the field of neuroscience and neuroanatomy. Assessments were 288 

performed on the atlas-registration achieved using QuickNII only (2 raters), and on the atlas-289 

registration achieved using both QuickNII and VisuAlign (10 raters). All assessments were 290 

performed on the thionine-stained sections from five brains (selected at random) at the 291 

intermediate hierarchy level established by the method described above. To perform the 292 

assessment, markers with a 15-voxel grid spacing were overlaid on the sections and the position 293 

of each marker was assigned as either “accurate”, “inaccurate” or “uncertain” based on 294 

anatomical expertise. This was determined by inspecting the position of the marker with respect 295 

to visual landmarks in the section and comparing that to the name of the region, which was 296 

revealed by hovering over each marker. The atlas-delineations were switched “off” during this 297 

assessment because the delineations obscure boundaries in the sections and may bias the 298 

outcome.  299 

 300 

The QCAlign results were exported in TXT format with counts of accurate, inaccurate, and 301 

uncertain markers indicated per region, per section, and per brain. Regional accuracy, 302 

inaccuracy, and uncertainty scores were calculated per rater/brain and per brain overall with R-303 

Studio (shared at https://github.com/Neural-Systems-at-UIO/BRAINSPACE). Uncertainty scores 304 

were calculated by dividing the number of uncertain markers by the total number of markers in 305 
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the region, reflecting the percentage of the region for which the registration could not be verified 306 

as either accurate or inaccurate (Uncertainty Score = (# uncertain markers)/(# accurate markers 307 

+ # inaccurate markers + # uncertain markers). Since it was not possible to verify the registration 308 

of all the points in the regions (some points were assigned uncertain markers due to a lack of 309 

landmarks or limited expertise), the calculation of accuracy and inaccuracy scores correspond to 310 

the parts of each region for which the registration could be verified. Thereby, accuracy scores 311 

should be inspected together with the uncertainty scores, since a high uncertainty means that 312 

the accuracy corresponds to a limited part of the region only. Regional accuracy scores were 313 

calculated by dividing the total number of accuracy markers by the total number of accurate and 314 

inaccurate markers within that region (uncertain markers did not contribute to this calculation) 315 

(Accuracy Score = # accurate markers/ (# accurate markers + # inaccurate markers)). Mean 316 

regional accuracy and uncertainty scores were calculated by dividing the summed score of all 317 

assessments by the total number of assessments. For each intermediate hierarchy region, the 318 

number of assessments contributing to the calculation of the mean accuracy and uncertainty 319 

scores depended on the number of raters and number of brains assessed, as well as how often 320 

accurate or inaccurate markers could be assigned by the raters (depending on presence of grid 321 

markers in that region, tissue quality, and/or anatomical expertise, etc.). In some cases, regions 322 

were marked entirely as uncertain by raters; therefore, excluding these assessments from the 323 

mean accuracy calculation.  For the registration achieved with QuickNII only, a maximum of 10 324 

assessments were averaged across all raters/brains (Brain 1: two raters’ assessments, Brain 2: 325 

two raters’ assessments, Brain 3: two raters’ assessments, Brain 4: two raters’ assessments, 326 

Brain 5: two raters’ assessments). For the registration achieved with QuickNII and VisuAlign a 327 

maximum of 36 assessments were averaged across all raters/brains (Brain 1: ten raters’ 328 

assessments, Brain 2: seven raters’ assessments, Brain 3: seven raters’ assessments, Brain 4: 329 

six raters’ assessments, Brain 5: six raters’ assessments). 330 

 331 

Regional quantification of stain load with Nutil  332 

Nutil (RRID: SCR_017183) supports regional quantification of IHC-stained features by applying 333 

the Quantifier feature to combine the output from the atlas-registration (QuickNII and VisuAlign) 334 

and feature extraction (ilastik) steps. Nutil (v0.7.0) was used to quantify the percentage of IHC-335 

stained area per region area (hereafter referred to as “load”) in the customized regions defined 336 

by the intermediate hierarchy level per stain and brain series. Since hemibrain sections rather 337 

than whole brain sections were analyzed in the study, customized masks were created and used 338 

to exclude the atlas regions located in the missing hemibrain from the quantification. The 339 
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hemibrain masks were created with the QNLMask software that is shared with the VisuAlign 340 

software (https://www.nitrc.org/projects/visualign). Nutil analysis was performed separately for 341 

each stain, with quantification of regional load of neurons (NeuN), microglia (Iba1), reactive 342 

astrocytes (GFAP), all nuclei (thionine), and beta-amyloid 1-42 pathology (AB1-42) achieved 343 

according to the parameters defined in the NUT file (shared in the BRAINSPACE GitHub 344 

repository). The object splitting feature was switched “on” to ensure correct calculation of the 345 

regional loads. The NUT files were created and read into Nutil via the command line to batch-346 

process multiple brains in succession. The regional load values obtained from the Nutil reports 347 

were used in downstream analysis. Regional load was quantified after QuickNII registration 348 

alone, and following QuickNII registration supplemented with VisuAlign refinement. Regional 349 

stain loads can either increase or decrease following nonlinear refinement compared to load 350 

calculated after QuickNII alone depending on the changes made to regional boundaries, the 351 

overall density of pathology or cells in that region, and the stain being evaluated. 352 

 353 

Sample and Region Exclusion from Post Analyses: 354 

Data from one female 6m mouse of AD-BXD strain 44 was removed from the downstream 355 

analysis because the majority of the sections were severely ripped prohibiting successful atlas-356 

registration.  Quantification output from all of the 77 regions in the intermediate hierarchy file are 357 

included in the Nutil reports (shared as the BRAINSPACE project on EBRAINS Knowledge 358 

Graph Search, https://search.kg.ebrains.eu/). In the present study, 55 of these regions were 359 

included in the QCAlign assessment of the atlas-registration across 5 brains; and 43 of these 360 

regions were included in the assessment of cell and pathology load across 37 brains (5XFAD 361 

mice only). Specific region exclusion criteria are reported in Supplemental Table 5. As a brief 362 

summary, some of the atlas regions did not have results in the reports since they were not 363 

represented in the sections or corresponded to a parent structure with results provided at a finer 364 

level of atlas granularity. Regions with no biological results were disregarded from all analyses. 365 

Furthermore, results from several regions were not analyzed in the present study due to low 366 

representation in the sections.  367 

 368 

Statistical analysis of QUINT data: 369 

For each stain, the load values of 43 intermediate hierarchy provided by the Nutil software were 370 

used for comparative analysis across 5XFAD brains at 6 m (n = 17) and 14 m (n = 20).  Data 371 

have been expressed as means ± standard error of the mean (SEM) or as otherwise indicated in 372 

graphs. Statistical analysis of data was performed using R version 4.0.0 (2020-04-24) -- "Arbor 373 
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Day”.  Wilcoxon two-way assessment (strain and age factors) was implemented to determine if 374 

there were significant differences in the stain load as registered using QuickNII alone vs 375 

registered using QuickNII and VisuAlign. Analysis of variance (ANOVA) (age and strain factors) 376 

was used to determine whether there were significant differences in regional stain load between 377 

6m and 14m groups. Multilevel Pearson correlations with and without age corrections were used 378 

to evaluate the relationship between hippocampal stain load and gene expression. Multiple 379 

testing corrections for each test was performed using false discovery rate (FDR) correction. 380 

Criterion for measures to be considered uncorrected significant was p-value < 0.05 and 381 

significant after correction was FDR p-value < 0.05.  382 

 383 

Immunohistochemistry and Bulk RNA Sequencing Integration 384 

To identify genes associated with variation in hippocampal cell and pathology load we integrated 385 

our IHC quantification with RNAseq data. The goal of this analysis was to determine whether 386 

changes in cell composition contributed to subsequent changes in hippocampal gene expression 387 

detected via RNAseq. Only 5XFAD samples with paired IHC and RNAseq data were selected (n 388 

=34); therefore, all animals in this analysis had one hemisphere fixed for IHC and the 389 

contralateral hippocampus dissected for bulk RNAseq. The RNAseq data used in the current 390 

study was previously published and the dataset series (GSE) are accessible via the National 391 

Center for Biotechnology Information Gene Expression Omnibus (GEO) (GEO: GSE101144, 392 

GEO:GSE119215, GEO:GSE119408)11,13,16. Expected read counts (ERCs) were filtered to 393 

include genes with >10 ERCs in more than 50% of the samples from 5XFAD mice, resulting in 394 

15,703 of 47,645 genes that passed filtering. Following the exclusion of genes with low read 395 

counts, datasets were batch-corrected using the R Combat-Seq package, then normalized and 396 

transformed using the default pipeline of R DESeq249. The relationship between gene 397 

expression and stain load (AB1-42, NeuN, GFAP, and Iba1) from the hippocampal formation 398 

summary region was assessed using Pearson’s correlation from linear mixed models50, which 399 

allowed the effect of age on the association between gene expression and load to be accounted 400 

for by including age as a random effect (correlation(partial = TRUE, multilevel = TRUE). P-401 

values per stain and gene correlation were corrected for multiple comparisons via FDR 402 

correction and considered significant if the FDR p-value < 0.05.  Genes that were exclusively 403 

significantly correlated (uncorrected p-value < 0.05) prior to age adjustment were deemed to be 404 

age-dependent correlates. Genes that were exclusively significantly correlated (uncorrected p-405 

value < 0.05) following age adjustment were deemed to be age-independent correlates. Gene 406 

Set Enrichment Analysis (GSEA) queried against Reactome pathways was carried out in 407 
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WebGestalt51–54 using the output correlation coefficients per gene and stain for each multi-level 408 

correlation method (age-adjusted and non-age-adjusted). Advanced GSEA parameters used 409 

included: Minimum number of IDs in the category: 20, Maximum number of IDs in the category: 410 

2000, Significance Level: FDR < 0.05, and Number of permutations: 1000). Lastly, individual 411 

ERC and hippocampal load data were incorporated into a DESeq model, and the design was run 412 

on the intercept (~1). Transformed normalized counts for boxplots in figure 5 were obtained 413 

using the DESeqDataSetFromMatrix() and counts() functions. Scripts used for RNAseq 414 

normalization and modeling, IHC and RNAseq correlations and visualization can be accessed on 415 

GitHub at:https://github.com/Neural-Systems-at-UIO/BRAINSPACE/tree/main/Scripts . 416 

 417 

Data Availability 418 

The collection of section images, accompanying meta data, atlas-registration files and output, as 419 

well as Nutil output are shared as the BRAINSPACE project via the EBRAINS Knowledge Graph 420 

Search (https://search.kg.ebrains.eu). R scripts used to complete statistical analyses are publicly 421 

available on GitHub at: https://github.com/Neural-Systems-at-UIO/BRAINSPACE.  422 

 423 

Sharing of QUINT tools and disclaimer 424 

All the software in the QUINT workflow are open-source and shared on GitHub and nitrc.org 425 

under MIT license for QuickNII and VisuAlign; GNU General Public License (GPL) v3.0 for Nutil; 426 

and GPL v2 / GPL v3 for ilastik. While the software are validated based on multiple ground truth 427 

datasets shared on the Nutil GitHub page, we recommend independent validation of data from 428 

QUINT prior to use. To validate the QUINT workflow for the present study, Nutil v0.7.0 was used 429 

to analyze two synthetic datasets with objects of known size and anatomical location based on 430 

the parameters selected for the study. The validator feature in Nutil confirmed that the results 431 

were identical to the ground truth. The dataset, ground truth and results of Nutil v0.7.0 are 432 

shared on GitHub at https://github.com/Neural-Systems-at-433 

UIO/BRAINSPACE/tree/main/Nutil_Validation. The QUINT workflow is shared on EBRAINS 434 

(ebrains.eu/service/quint), with user documentation (https://quint-workflow.readthedocs.io) and 435 

user support available through EBRAINS. 436 

  437 

Results   438 

New functionality added to the QUINT workflow supports high-throughput analysis of 439 

diverse AD-BXD strains 440 
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The original QUINT workflow was designed to support the quantification of IHC-stained features 441 

in images of serial brain sections by linear registration to a reference brain atlas in combination 442 

with feature extraction by supervised machine learning38. While this method works well for serial 443 

sections that closely resemble 2D atlas-planes throughout the reference atlas template (typically 444 

generated based on intact whole brain tissue); in practice, the technical procedures of fixing, 445 

sectioning, staining, and mounting sections often lead to distortions, tears in the sections, and 446 

artifacts that impact the quality of the linear atlas-registration. Since reference atlases are 447 

created based on standard reference animals (young adult male B6 mice in the case of the 448 

CCFv3)47, sections originating from strains and/or ages that genetically differ from such animals 449 

may also have anatomical differences relative to the reference template. Recognizing the need 450 

to customize the linear atlas-registration and provide a better match of the atlas overlay on 451 

individual sections, a new tool that supports nonlinear refinement was created and incorporated 452 

in the workflow (VisuAlign) (Figure 1a). Nonlinear refinements are manually applied based on 453 

visual landmarks in the sections. Furthermore, a quality control tool based on systematic random 454 

sampling was created for validating the quality of the atlas-registration to each region (QCAlign). 455 

This manual assessment is based on the overlap between the delineations supplied by the atlas 456 

and landmarks revealed by IHC staining. Since only a limited number of landmarks can be 457 

revealed by IHC staining, a method was also implemented for adjusting the granularity of the 458 

reference atlas to a level that supports the verification of the atlas registration. This functionality 459 

of QCAlign provides users a platform for flexible assessment of the Allen Mouse Brain Atlas, 460 

which can be manipulated to display a complete or reduced atlas hierarchy overlaid on the 461 

sections. Individual reference atlas regions can be compiled into larger themed regions (e.g. 462 

isocortex), allowing users to tailor the assessment to their unique experimental design and 463 

research interests. Lastly, since there are other factors that can affect the quality of the results 464 

that can be achieved with QUINT (for example, artifacts that obscure the staining, or tissue 465 

damage too extensive to account for by nonlinear warping), a method within QCAlign was also 466 

introduced to promote the systematic screening of sections, and for assessing their suitability for 467 

QUINT analysis. This feature is particularly useful in the context of high-throughput studies since 468 

it allows exclusion of sections according to systematic criteria. The expanded QUINT workflow 469 

was applied to serial section images from the diverse AD-BXD mice (Figure 1b) to quantify all 470 

nuclei (thionine), neurons (NeuN), microglia (Iba1), reactive astrocytes (GFAP) and amyloid beta 471 

pathology (AB1-42) in customized regions compiled from CCFv3 regions. Examples of these 472 

IHC-stained sections are shown in Figure 1c. Each step of the QUINT workflow generates a 473 
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visual output that can be shared together with the final results of the workflow to support 474 

independent verification of findings (Examples of the visual output are shown in Figure 1d).  475 

 476 

Quality of the atlas-registration performed in the QUINT workflow can be confirmed using 477 

QCAlign 478 

The new QCAlign tool was implemented to assess the quality of the atlas-registration achieved 479 

using QuickNII and VisuAlign. First, the full CCFv3 2015 was condensed into 77 regions to 480 

create an intermediate hierarchy of regions that was exported from the QCAlign software 481 

(Supplemental Table 4). These regions have visually discernable boundaries as detected in the 482 

thionine-stained sections (example images with superimposed atlas-delineations are shown in 483 

Supplemental Figure 1a).  Next, with the hierarchy level set in QCAlign, a rater can perform an 484 

independent assessment and rate the accuracy of the atlas-registration as performed in the 485 

workflow (Supplemental Figure 1b). This entails assigning grid markers positioned at a set 486 

density over the sections as either accurate, inaccurate, or uncertain based on anatomical 487 

expertise (Figure 2a). A grid point is marked as “accurate” if the assigned atlas-registration 488 

correctly matches the region depicted in the section. This is determined by the investigator 489 

based on landmarks; therefore, the region boundaries in question must be distinct enough to 490 

make this call. If there is a discrepancy between the registered atlas region and what the rater 491 

identifies the region to be in the brain section, the “inaccurate” marker is assigned. Inaccurate 492 

markers can be the result of incorrect registration using QuickNII, and/or incomplete adjustment 493 

during VisuAlign refinement. If a high frequency of inaccurate markers is assigned, the initial 494 

registration of brain sections should be reevaluated. Lastly, an “uncertain” marker is placed 495 

when the rater lacks the anatomical knowledge to apply an accurate or inaccurate marker with 496 

confidence, or when the borders between regions are ambiguous hindering the ability to 497 

differentiate regions. If a high frequency of uncertain markers is assigned, the rater should 498 

reconsider the hierarchy level chosen for the evaluation.  499 

 500 

To confirm the atlas-registration following VisuAlign adjustment, ten researchers across two 501 

academic institutions were recruited to perform a quality control assessment of atlas-502 

registrations using QCAlign. The assessment was performed on the thionine-stained sections 503 

from 5 brains selected at random from the cohort of 39 brains.  A maximum of 36 assessments 504 

were averaged per intermediate hierarchy region (6-10 raters assessing up to 5 brains) 505 

(Supplemental Figure 2). There was high consensus among raters that the registration to the 506 

intermediate hierarchy regions was highly accurate (100%-78.7% accuracy score) (Figure 2b, 507 
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green). Regions with the greatest accuracy scores were regions compiled of many subregions 508 

(e.g. isocortex, 99.7%,  SEM + 0.057) and/or that have very distinct anatomical borders (e.g. 509 

caudoputamen, 99.4%, SEM + 0.129).  Smaller regions had the potential to have zero grid 510 

markers randomly placed within their area resulted in reduced number of assessments 511 

contributing to the mean accuracy score (e.g. subparafascicular area, n= 9 assessments). 512 

Regions with the lowest rater sampling rate were among the regions with the highest variation 513 

and lowest accuracy scores. Regions with appropriate rater sampling (n>20 assessments) but 514 

low accuracy scores included the posterior amygdalar nucleus (89.1%, SEM + 5.37) and the 515 

ventricular systems (78.7%, SEM + 3.11). The low accuracy attributed to the posterior 516 

amygdalar nucleus could be due to its relatively ambiguous border with the posterior olfactory 517 

area and the subiculum. Also, regions of the ventricular system were consistently difficult to align 518 

in both QuickNII and VisuAlign since they are prone to distortion (e.g. lateral ventricle) or are 519 

located in medial locations along the midline where the brain was bisected into hemibrains (e.g. 520 

third ventricle), resulting in low accuracy overall. To summarize, we created a new tool for quality 521 

control assessment of the atlas-registration and, by using this tool, were able to confirm the 522 

ability of the QUINT workflow to achieve highly accurate registration of the regions in the 523 

intermediate hierarchy.   524 

 525 

Nonlinear adjustment increases regional registration accuracy, and impacts cell and 526 

pathology load estimates  527 

VisuAlign offers the unique ability to refine and improve the atlas-registration to diverse AD 528 

model mouse brain sections by allowing users to make nonlinear adjustments to the atlas plates 529 

set in QuickNII. The importance of completing nonlinear warping following linear registration was 530 

highlighted by comparing the QCAlign output following each atlas-registration step in the QUINT 531 

workflow (Figure 2a). Linear registration achieved using QuickNII alone is susceptible to error as 532 

indicated by the higher frequency of inaccurate markers. The hippocampus is a particularly 533 

vulnerable region that requires non-linear adjustment due to the distinct shape and relatively 534 

small size of the dentate gyrus (Figure 2a inset). Regional accuracy scores of five brains were 535 

calculated and compared following atlas-registration performed using QuickNII only (2 raters) 536 

relative to the registration performed using QuickNII then adjusted in VisuAlign (6-10 raters) 537 

(Figure 2b). The completion of nonlinear warping in VisuAlign greatly improved the registration of 538 

atlas regions to the brain sections (Figure 2b, green vs white). Regions that exhibited the 539 

greatest increases in accuracy scores included those that are often not prioritized when initially 540 

aligning atlas plates to the brain sections in QuickNII, thereby requiring more extensive nonlinear 541 
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adjustment (i.e. regions comprising the mid- and hindbrain). Regional quantification of cellular 542 

and pathology load was also impacted by the increased accuracy of registration achieved 543 

following nonlinear warping. Regions that required the most adjustment in VisuAlign, thereby 544 

exhibiting the greatest increases in accuracy, also had the greatest difference in load values 545 

when comparing regional load output from registration using QuickNII alone versus registration 546 

completed in QuickNII and refined in VisuAlign (Figure 2c, Supplemental Table 6).  547 

 548 

AD-BXD strains exhibit widespread increases of glial and amyloid pathology from 6m to 549 

14m 550 

Differences in cell composition and amyloid pathology load were compared between 5XFAD 551 

carriers of 6m and 14m to detect regional changes that occur with age and AD (Figure 3, 552 

Supplemental Table 7). Among 5XFADs, there are only minor changes in NeuN load between 553 

6m and 14m animals overall (Figure 3, i). The only regions that exhibited significant age-related 554 

(FDR-corrected p-value<0.05) decreases in NeuN load were the Ammon’s horn(p-value=0.0472) 555 

and dentate gyrus, polymorph layer(p-value=0.00299). Slight, but significant (FDR-corrected p-556 

value<0.05) increases in NeuN load were observed with age in the posterior amygdalar nucleus 557 

(p-value = 0.0327) and striatum-like amygdalar nuclei (p-value=0.0258) (Figure 3a, i). Increased 558 

glial proliferation and reactivity are also hallmark symptoms of AD progression with age. Within 559 

this dataset, we confirmed that regional astrocyte and microglial cell load increased from 6m to 560 

14m in 5XFAD animals. Regionally, the caudoputamen exhibited the most significant increases 561 

in GFAP load (p= 2.91E-10, FDR-corrected) (Figure 3a, ii). The midbrain (motor-related) regions 562 

(FDR-corrected p-value= 1.26E-08) and olfactory tubercle (FDR-corrected p-value=1.55E-08) 563 

exhibited the greatest microglial load increase from 6 to 14m (Figure 3a, iii). Aligned with 564 

previous reports in 5XFAD animals, amyloid pathology was most prevalent within the subiculum 565 

at the earlier 6m time point55 (3.41% + 0.227% SEM, Figure 3a, iv). In addition to the subiculum, 566 

amygdalar regions were highly susceptible to increased amyloid deposition by adulthood (6m) 567 

(Figure 3a, iv). As an aggressive amyloidosis AD model, the 5XFAD animals exhibited a near 568 

global increase in amyloid deposition between 6m and 14m. Amyloid deposition was strongly 569 

associated with the hippocampus and hippocampal-projected regions, including the cortex, 570 

thalamus, and amygdalar regions as previously noted (Figure 3a, iv)56. All regions besides the 571 

claustrum, lateral amygdalar nucleus, parasubiculum, midbrain (behavioral state related), pons 572 

(behavioral state related), pons (motor related), and pons (sensory related) regions exhibited a 573 

significant increase in amyloid load from 6m to 14m. 574 

 575 
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Individual AD-BXD strains exhibit variation in region neuronal load 576 

The hippocampus, known as a structure involved in cognitive processing, memory formation and 577 

storage57, has been elaborately studied in the context of aging and AD. Compared to the near 578 

global increase in glia and pathology among AD-BXD strains between 6m and 14m, fewer age-579 

related differences in neuron load were detected (Fig 3a, i). Of the four regions that displayed a 580 

significant difference in NeuN load between 6m and 14m  after FDR correction, two of those 581 

regions were within the hippocampus. While regional variation in NeuN load was minimal overall 582 

within the age groups, age-related strain-specific variation was revealed by investigating 583 

changes in NeuN load in hippocampal subregions on a per strain basis (Figure 3b, 584 

Supplemental figure 3). AD-BXD strains displayed a range from neurodegeneration to neuronal 585 

maintenance between 6m and 14m, modeling the heterogeneity observed in human AD58. No 586 

strain effect was detected in stain load among the 43 intermediate atlas regions quantified 587 

(uncorrected p-value> 0.05, 2-way ANOVA), but since sample sizes per strain were relatively 588 

small in this analysis, a potential strain effect cannot be firmly excluded and will be evaluated 589 

when the sample size is increased in future analyses. 590 

 591 

Integration of paired IHC and bulk RNA sequencing data reveals cell load is a 592 
confounding factor in age by gene expression correlations among AD-BXDs 593 

Using the QUINT workflow, we reported variation in cell and pathology load between age groups 594 

and among AD-BXD strains (Figure 3). As mentioned earlier, due to the inherent properties of 595 

bulk RNAseq, which allow for single, tissue-averaged, gene expression measurements, the 596 

influence of cell composition is often overlooked in the interpretation of analyses and may 597 

conflate expression differences driven by other experimental factors such as age and 598 

pathology27,59,60. Here, using output from our QUINT workflow analysis, we demonstrate that 599 

~15-35% of genes expressed in the hippocampus are correlated with load and vary based on 600 

both cell-type and age. To do this, we integrated hippocampal formation cell (NeuN, GFAP, 601 

Iba1) and pathology (AB1-42) load output with gene expression data measured via bulk RNAseq 602 

obtained from the contralateral hippocampus of the same mice at two age time points 603 

(previously published11,13,16). 604 

 605 

Hippocampal load per stain type (NeuN, GFAP, Iba1, and AB1-42) was correlated with 606 

normalized read counts to identify age-dependent relationships between load and gene 607 

expression. The percentage of the 15,703 genes analyzed in the RNAseq dataset that were 608 

significantly correlated (uncorrected p-value < 0.05) with load varied by stain type (NeuN: 609 
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16.35%, GFAP: 36.76%, Iba1: 34.78%, AB1-42: 31.86%) (Figure 4a; labeled genes indicate the 610 

top 5 positively and 5 negatively correlated significant genes (FDR-corrected p-value < 0.05). 611 

Non-coincidentally, stains that had the most significant gene correlates had the greatest age-612 

related changes in load. Since our population is comprised of mixed ages and age is a primary 613 

driver of variation in load (Figure 3), this effect of age may be masking genes that are related to 614 

load in an age-independent manner. We aimed to elucidate this subset of genes by testing the 615 

role of age as a mediator of the relationship between stain load and gene expression in our 616 

5XFAD population by using a multilevel correlation approach adjusting for the effect of age. 617 

Similar to the outcomes of the age-dependent correlation above (Figure 4a), the percentage of 618 

genes significantly correlated after age adjustment (uncorrected p-value < 0.05) with load also 619 

varied by stain type (NeuN: 12.56%, GFAP: 23.53%, Iba1: 18.30%, AB1-42: 12.34%, Figure 4b). 620 

The number of correlated genes (uncorrected p-value < 0.05) was reduced following age-621 

adjustment across all stains, with AB1-42 exhibiting the greatest reduction of significantly 622 

correlated genes (19.52%, Figure 4a, 4b). Next, we sought to differentiate genes that were 623 

exclusively correlated with load either before or after age-adjustment. By further comparing both 624 

analyses (age-unadjusted, Figure 4a and age-adjusted, Figure 4b), we classified genes into 1) 625 

exclusively significantly associated with variation in load in an age-dependent manner (non-age-626 

adjusted output (orange in figure 4c)), 2) exclusively significantly associated with load 627 

irrespective of age (age-adjusted output (blue in figure 4c)), or 3) significantly associated with 628 

both load and age (non-age-adjusted and age-adjusted output (green in figure 4c)) 629 

(Supplemental Table 8). The majority of correlations between gene expression and load were 630 

driven by age as indicated by the greater abundance of non-adjusted significant genes per stain 631 

(Figure 4c). This age-driven relationship is illustrated by the correlation between Iba1 load and 632 

polypeptide N-acetylgalactosaminyltransferase 6 (Galnt6) expression, which was identified to be 633 

a top gene that is highly associated with variation in Iba1 load in an age-dependent manner 634 

(Figure 4d, i). Galnt6 has been found to have increased mRNA expression in the brains of AD 635 

patients and be related to AB production61,62. Here, Galnt6 exhibited increased expression with 636 

age that parallels the increase in Iba1 load observed from 6m to 14m (Figure 4d, i-ii). This trend 637 

of increased load matched by a change in gene expression between 6m and 14m was unique to 638 

the most highly correlated genes prior to age adjustment. On the contrary, 0.78%-5.86% of the 639 

genes per stain were exclusively significant only after age-adjustment, indicating that these 640 

genes are likely associated with load in an age-independent manner (Figure 4c). These age-641 

independent genes exhibited a pattern of increased cell (GFAP and Iba1) and pathology (AB1-642 

42) load but no difference in gene expression between 6m and 14m. This pattern is exemplified 643 
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by looking at the relationship between gene expression and load with age for transmembrane 644 

protein 39A (Tmem39a), a topmost correlated gene with Iba1 load after age-adjustment (Figure 645 

4d, ii). Tmem39a is a known contributor to pathways implicated in AD, including inflammation, 646 

dysregulated type I interferon responses, and other immune processes63; and like other highly 647 

correlated genes following age-adjustment, Tmem39a exhibited specific within-age-group 648 

associations between load and gene expression (Fig4d, ii). These genes with stronger 649 

significance following age adjustment may be driven by load differences seen between the 650 

groups independent of the effect of age on load. Identifying and differentiating age-dependent 651 

and age-independent gene correlates promotes the prioritization of gene candidates and 652 

recognition of whether the expression of  these genes are relative to the proportions of different 653 

cell types that are altered with age and AD. 654 

 655 

Mediation of age reveals differential overrepresentation of Reactome pathways 656 

Next, using the correlation coefficients displayed in Figure 4a and b, gene set enrichment 657 

analysis (GSEA) was performed to identify pathways that may be biased by individual 658 

differences in cell and pathology load (Figure 5). As expected, immune pathways were highly 659 

enriched for GFAP, Iba1, and AB1-42 correlations. We also observed a negative relationship 660 

between the enrichment of neuronal pathways and GFAP, Iba1, and AB1-42, highlighting the 661 

potentially detrimental impact these cell types may have on neuronal functioning in the context of 662 

AD. Fewer significantly enriched pathways were associated with NeuN load (age-adjusted and 663 

non-age-adjusted), consistent with the subtle changes in load between 5XFADs of 6m and 14m. 664 

The most highly enriched pathways for each stain and method (as labeled on the right of the 665 

heatmap) were involved in chromatin organization, extracellular matrix organization, immune 666 

system, metabolism of RNA, and the neuronal system. In comparing enriched pathways for age-667 

adjusted and non-age adjusted correlations per stain, the greatest difference in the presence of 668 

significantly enriched pathways was observed within the cell cycle category for Iba1, GFAP, and 669 

AB1-42 stain types. The enrichment of these pathways is consistent with the proliferation of 670 

these cell types and pathology and the potential increase in immunoreactive cell cycle proteins64. 671 

A total of 42 cell cycle pathways were represented across these stain types after age 672 

adjustment, while only 2 are present prior to adjustment. Moreover, many negatively enriched 673 

pathways including those in the gene expression (transcription) and metabolism of RNA parent 674 

pathways were observed almost exclusively within the non-age-adjusted category for GFAP, 675 

Iba1, and AB1-42. This pattern of enrichment suggest a more pronounced involvement of these 676 

types of pathways with AD-related deterioration with age than necessarily with increased glial 677 
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and pathology composition65,66. Ultimately, by using these methods we have begun to 678 

disseminate the effects of cell and pathology composition in the hippocampal formation and their 679 

implication in biologically relevant pathways.  680 

 681 

Discussion 682 

Here, we report on the output from IHC sections of 37 mice from the AD BXD-panel obtained 683 

using the expanded QUINT workflow. By adding new functionality to the QUINT workflow to 684 

enhance the atlas-registration and perform quality control assessments, we increased the quality 685 

of the regional quantification11. We quantified age-related differences and characterized the 686 

influence of genetic diversity among AD-BXD strains on NeuN, GFAP, Iba1, and AB1-42 load 687 

across a validated list of Allen Mouse Brain Atlas CCFv3 2015 subregions44. The importance of 688 

recognizing this variation in cell and pathology composition was also reflected when integrating 689 

gene expression and cell composition data from varying AD-BXD strains. The mouse panel used 690 

in this study is considered translationally relevant since it includes strains that incorporate high 691 

risk AD mutations (5XFAD) on backgrounds of genetic diversity, thus better recapitulating the 692 

complex genotype-phenotype interactions in humans that contribute to symptom variability. The 693 

AD-BXD panel provides a unique platform for exploring the effect of genetic background 694 

variability on resilience to neurodegeneration, gliosis, and pathology with the potential to reveal 695 

resilience genes or pathways that could be targeted for therapeutics.  696 

 697 

We demonstrate the capacity of the QUINT workflow to effectively detect subtle differences in 698 

regional loads in an accurate manner across the whole brain, which is paramount in the context 699 

of high-throughput imaging studies that incorporate genetic diversity models of disease. The 700 

quantification of these brains was made possible through the expansion of the QUINT workflow 701 

through the development of VisuAlign and QCAlign, as well as through the addition of new 702 

functionality to the existing Nutil software. The VisuAlign and QCAlign software were added to 703 

the QUINT workflow for a number of reasons. While linear atlas-registration is a useful first step, 704 

it often does not produce the required registration precision67–70. VisuAlign provides the 705 

capability to make nonlinear adjustments to the linear atlas-registration achieved using QuickNII, 706 

thus correcting for distortions in the sections introduced during the IHC section preparation as 707 

well as for structural differences among brain regions in diverse disease models and age groups. 708 

The importance of applying nonlinear refinements was demonstrated by the regional differences 709 

in accuracy scores and loads achieved with QUINT-based registration using QuickNII only, 710 

relative to registration using QuickNII and VisuAlign. Moreover, since changes driven by genetic 711 
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differences across strains are likely to be subtle and region-specific, it was crucial to have a 712 

method for verifying that the atlas-registration output was accurate. This verification was 713 

provided by the QCAlign tool. The limited variability in QCAlign accuracy scores between raters 714 

and brains quantified in our 5-brain assessment heighten our confidence that the present cohort 715 

of brains was consistently registered to a high standard. Another key functionality of QCAlign is 716 

its ability to produce customized hierarchies, which aid in compensating for the difficulty of 717 

accurately registering small regions that lack anatomical boundaries. To combat this issue, many 718 

investigators generate lists of regions of interest (ROIs) that consist of compiled subregions71–73.  719 

Our QCAlign tool offers the functionality to create these customized hierarchies by parsing 720 

through the 461 regions of the CCFv3 2015 and selecting subregions to compile into related 721 

summary regions. Creating a custom hierarchy file from the standard atlas in QCAlign also 722 

promotes the labeling of consistent ROIs among laboratories and the ability for anatomists to 723 

subsequently verify that the regions selected in the chosen hierarchy are correctly aligned during 724 

the registration process. The final feature of QCAlign was developed to detect sections or 725 

regions not suited for QUINT analysis due to damage (tears, folds, etc.), artifacts, errors in 726 

image acquisition, or other reasons that could potentially skew results. Percentage damage per 727 

section or per region can be calculated after marking up sections in QCAlign with the damage 728 

marker. This calculation supports removal of results according to transparent, systematic, and 729 

reproducible criteria for streamlined high-throughput application.  730 

 731 

Overall, the QUINT workflow has a number of advantages over alternative methods. Utilization 732 

of the QUINT workflow promotes comprehensive regional analysis as defined by a standardized 733 

reference atlas, which facilitates comparison, integration, and reproducibility of results across 734 

studies in compliance with the FAIR guiding principles36,37. The ability to share the intermediate 735 

results of the workflow (the atlas maps and segmentations) as well as the final results (Nutil 736 

Quantifier output) provides transparency and open science, which is important since the atlas-737 

registration and feature extraction steps are inherently subjective processes guided by user-738 

based expertise. Traditional IHC analysis methods that rely on manual delineation of brain 739 

regions and counting via stereology are inefficient for brain-wide exploration in studies with large 740 

numbers of animals74–77. As demonstrated in the present study, the QUINT workflow has the 741 

capacity to characterize transgenic models of disease of varying strains, ages, and genotypes; 742 

and is designed to support large-scale comparative studies78,79. The workflow is customizable, 743 

enabling analysis at different levels of atlas granularity, and with optional features such as the 744 

application of masks for hemisphere or other region-based comparisons. Also of note, QUINT is 745 
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highly accessible irrespective of coding ability since all the steps are performed in software that 746 

have user-friendly graphical user interfaces (GUIs). While the subjective nature of the 747 

registrations tools is a limitation of the QUINT workflow, it is countered by the addition of the 748 

QCAlign software that provides a means to evaluate and document the quality of the atlas-749 

registration performed in the workflow. Another limitation of QUINT is that nonlinear VisuAlign 750 

adjustment can be labor intensive, especially for sections that deviate considerably from 751 

standard atlas plates. In these instances, nonlinear adjustments have to be applied manually to 752 

match deviations in individual sections. Though this step is time consuming, our results 753 

demonstrate that it is important since nonlinear refinement considerably improves the quality of 754 

the atlas-registration, as well as the quality of the regional results. Efforts to further automate the 755 

atlas-registration step using deep neural networks are underway (DeepSlice)68. This QUINT 756 

compatible software automates the linear registration step (task currently completed in QuickNII) 757 

for whole brain coronal mouse sections, with versions for sagittal and horizontal sections in the 758 

pipeline.  759 

 760 

The QUINT workflow is a powerful approach for the high-throughput exploration that is needed 761 

to unravel the complexity of AD. Using this approach, we further validated the severity of 762 

neuroinflammation and pathology accumulation within the brains of aging 5XFAD animals55,80–82 763 

and expanded the extent of anatomical regions investigated in a diverse AD population. AB1-42 764 

levels increased in a widespread manner as 5XFAD mice aged from 6m to 14m. This trend was 765 

also seen as near global increases in GFAP and Iba1 were observed across this AD-BXD 766 

population55,82. The hippocampus is particularly susceptible to pathology accumulation and 767 

atrophy in human patients and a similar decline is also detected in mouse models that display 768 

hippocampal degeneration measured via magnetic resonance imaging/IHC55,80,82–90. We 769 

demonstrate that regions that exhibited neurodegeneration, like the Ammon’s horn, were also 770 

among those that exhibited the greatest increase in amyloid and neuroinflammation.  Previous 771 

literature in the 5XFAD model has described visible loss in Layer 5 of the cortex by 9m of age in 772 

comparison to Ntg animals55,81, but due to the nature of our current study and the 773 

overrepresentation of female 5XFADs we were unable to make this comparison; however, we 774 

did detect variation in NeuN load among strains within our AD-BXD population. We can begin to 775 

highlight the effect of the 5XFAD transgene and genetic diversity on brain tissue composition in 776 

the AD-BXD panel. Genetic differences amongst strains may influence how each strain copes 777 

with neuropathology, and the extent of neurodegeneration that occurs with age. Strains can be 778 

stratified as resilient or susceptible to AD pathology: with resilient strains potentially mitigating 779 
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neuron loss in response to neuroinflammation and pathology accumulation, or alternatively 780 

staving off severe pathology accumulation all together.  781 

 782 

Moreover, we establish an example of how the output from the QUINT workflow can be 783 

integrated with a range of data types, including omics data. RNAseq is a common method of 784 

profiling gene expression changes between cases and controls and at different disease stages; 785 

however, results from bulk tissue samples reflect an average gene expression profile across 786 

heterogeneous populations of cells24, meaning that expression differences may reflect cell-787 

composition differences across tissue samples, in addition to true transcriptional differences 788 

across groups. Determining whether gene hits, established while analyzing bulk RNAseq data, 789 

are driven by changes in transcriptional regulation or relative proportions of different cell types in 790 

the samples is crucial to establish and properly validate gene candidates of resilience or 791 

susceptibility to AD14,25,26.  Recent AD case/control single-nucleus RNA-sequencing  datasets 792 

offer the opportunity to better resolve such cellular differences14,91–94, but have restrictive 793 

technical and cost constraints that can limit the size of such datasets in terms of cells collected 794 

and individuals sampled95. These limitations as well as the variable performance of 795 

deconvolution methods can make it difficult to establish distinct robust cell-type specific 796 

differences in gene expression among heterogenous AD populations. While traditional methods 797 

for determining cell-type composition, such as IHC or flow cytometry, rely on a limited set of 798 

molecular markers and lack in scalability relative to the current rate of data generation, the use 799 

of the QUINT workflow can expedite this process. Here we were able to quantify IHC from 39 800 

brains using the QUINT workflow, which streamlined our analysis resulting in high-quality output, 801 

and enabled the integration of multiple data types. 802 

 803 

To combat the limitations of RNAseq, we integrated IHC-quantified cell composition and 804 

RNAseq using mixed modelling correlations. By controlling for age, we were able to establish 805 

candidate genes associated with cell composition dependent and independent of the effect of 806 

age with AD on variation in load and changes in gene expression. The resulting substantial 807 

proportion of genes correlated with load highlights the importance of considering cell 808 

composition when analyzing RNAseq data. We also unmasked a unique subset of genes that 809 

exhibited no age-related changes in gene expression yet were correlated with variation in load 810 

within the age groups examined. Many of the genes that were exclusively significantly correlated 811 

with hippocampal formation load following age adjustment were enriched for cell cycle and 812 

immune system pathways. By establishing which genes in our dataset are driven by cell and 813 
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pathology load before and after adjusting for age, we can establish a series of guidelines for 814 

prioritizing gene candidates, optimal approaches for modulating genes of interest, and criteria to 815 

determine whether candidates should be targeted in a cell-type- specific manner. This study 816 

serves as proof-of-concept that IHC data, quantified by the QUINT workflow, can be used as a 817 

proxy for cell-type composition in the analysis of RNAseq data, and to demonstrate that changes 818 

in gene expression may be relative to variation in cell composition exhibited with age and AD. 819 

Due to the nature of this dataset, our analysis was a partial mediation that was only able to begin 820 

to disentangle the effect of load, gene expression, and age with AD. Further unravelling this 821 

relationship and the effect of the 5XFAD transgene and amyloid accumulation will require 822 

additional analyses including nontransgenic animals.  823 

 824 

Future investigations will aim to increase the sample size of various AD-BXD strains to confirm 825 

and expand upon the current findings.  Moreover, the AD-BXD panel has proven to be a strong 826 

population to complete genetic mapping of behavioral traits11,13–16,96,97, and current efforts are 827 

underway to perform genetic mapping of these heritable cell and pathology load traits to identify 828 

candidate genes of resilience and susceptibility to AD98. These future studies will include non-829 

transgenic littermates, improved intra-strain power by increasing the number of replicates per 830 

strain, and the consideration of sex as a biological factor by having equal number of male and 831 

female counterparts in each experimental group. Furthermore, this upcoming analysis will utilize 832 

the latest version of the CCFv3 (2017) at the intermediate hierarchy established in this study as 833 

a baseline for detecting changes in regional cell and pathology load.  834 

 835 

In conclusion, we provide the most detailed regional characterization of the 5XFAD mice known 836 

to date. The QUINT workflow, with the recent addition of VisuAlign and QCAlign, proved to be a 837 

highly effective method and a necessary tool for registering and quantifying cell and pathology 838 

changes in diverse disease models like the AD-BXD panel. Achieving high confidence regional 839 

output of AD-relevant cell types and pathology also facilitated the exploration of genotype and 840 

cell composition relationships. We aim to improve rigor and reproducibility by characterizing the 841 

effects of genetic diversity with AD on cell composition and therefore we suggest that bulk-842 

RNAseq data needs to be integrated with cell load to generate robust and reproducible results. 843 

By achieving cell and pathology quantification in hemibrains of these mice, we provide a 844 

framework for investigators to characterize diverse disease models and integrate their data with 845 

a range of behavior and/or omics data.  846 
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Main Figure Legends  881 

 882 

Figure 1. Study design and QUINT workflow overview. 883 

a.) Regional pathology and cell composition were quantified using the expanded QUINT 884 

workflow. 1) Raw images were processed to meet size requirements. 2.) Brain sections were 885 

registered to the Allen Mouse Brain Atlas CCFv3 2015 in QuickNII and refined using VisuAlign. 886 

Hemibrain masks were created in QNLMask 3.) Ilastik pixel classification was used to establish 887 

cell detection parameters for each stain and converted to RBG format in FIJI. 4.) Post-888 

registration quality control assessment was performed using the novel QCAlign tool. 5.) 889 

Segmentation, registration, and mask creation steps were combined using Nutil to receive 890 

percent stain-positive cell coverage per region area. b.) Immunohistochemistry was completed 891 

for an experimental cohort of 40 mice from the AD-BXD mouse model of AD (see Supplemental 892 

Table 1). Adapted from Neuner et al., 2019. c.) Brain sections of 6m and 14m mice were 893 

sectioned and stained for thionine, NeuN, GFAP, Iba1, and AB1-42 via Neuroscience 894 

Associates. d.) Representative images from each step in the QUINT workflow. 895 

 896 

Figure 2. QCAlign verification of regional atlas-registration at the selected intermediate 897 

hierarchy level 898 

a.) QCAlign quality control assessment can be completed after rigid QuickNII registration alone 899 

or following the use of QuickNII and VisuAlign to verify the registration to each region in the 900 

sections. Inset) Example of completed QCAlign assessment in the hippocampal formation after 901 

QuickNII Only and QuickNII + VisuAlign registration. b.) Mean accuracy scores per intermediate 902 

hierarchy region after QuickNII registration alone (white) or after QuickNII and VisuAlign 903 

registration (green). Two raters scored the same 5 randomly selected brains after QuickNII 904 

registration alone, max n=10 per region (Raters: n= 2 per brain). Up to 10 raters scored the 905 

same 5 randomly selected brains after QuickNII and VisuAlign registration, max n=36 per region 906 

(Raters: n= 6-10 per brain). Dots represent the mean score across raters per region for 5 brains 907 

+ SEM, with the numbers labels representing the number of assessments contributing to each 908 

calculation (QuickNII alone labels are below white points, QuickNII + VisuAlign labels are above 909 

green points). c.) The impact of VisuAlign refinement on regional stain load (%-stain-positive 910 

coverage/per region area) was measuring by calculating the difference in load following Nutil 911 

quantification after each method (regional (QuickNII + VisuAlign output (%) –  regional (QuickNII 912 

output(%) = regional load difference (%)). Dots represent mean regional load difference + SEM 913 

for all 5XFAD animals at 6m and 14m (6m: n=17, 14m: n=20). 914 
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 915 

Figure 3. Regional pathology and cell load vary from adulthood (6m) to middle age (14m) in 916 

5XFAD mice.  917 

a.) Regional cell and pathology load of the intermediate hierarchy regions of 5XFAD mice. i. 918 

Differences in NeuN load between the age groups were limited across the intermediate 919 

hierarchy regions. ii-iv. GFAP, Iba1, and AB1-42 load increased with age across most 920 

intermediate hierarchy regions. Bars represent regional averages + SEM for 6m and 14m 921 

groups. (5XFAD mice only, 6m: n=17, 14m: n=20). FDR corrected p-values represented. P-922 

value: * <0.05, ** <0.01, *** <0.001. b.) Strain averages of NeuN load across the hippocampal 923 

formation and hippocampal intermediate hierarchy subregions. Points are mean load per strain. 924 

Lines connect strain matches across the two age groups: 6m and 14m. Only strains with an 925 

aged match counterpart are represented (5XFAD mice only, 6m: n=17, 14m: n=18, n= 1-3 per 926 

strain). The B6 founder strain is labeled for reference. 927 

 928 

Figure 4. Stain-specific load correlations with RNAseq gene expression to identify genes 929 

impacted by changes in load within the hippocampal formation.  930 

a.) Gene expression by load Pearson R correlation coefficients and p-value relationships without 931 

age adjustment for each stain. Significantly correlated genes (uncorrected p-value < 0.05) are 932 

colored in each plot. The percentage of uncorrected significant genes is indicated within the plot. 933 

The top five positive and negative FDR significant (FDR p-value < 0.05) correlated genes are 934 

labeled. b.) Gene expression by load Pearson R correlation coefficients and p-value 935 

relationships after age adjustment for each stain. Significantly correlated genes (uncorrected p-936 

value < 0.05) are colored according to stain. The percentage of uncorrected significant genes is 937 

indicated within the plot. The top five positive and negative FDR significant (FDR p-value < 0.05) 938 

correlated genes are labeled. c.) Comparison of Pearson R correlation coefficients without and 939 

with age adjustment per stain. Gene correlations that were exclusively significant (uncorrect-p-940 

value < 0.05) without age adjustment are considered age-dependent (orange). Gene 941 

correlations that were exclusively significant (uncorrect-p-value < 0.05) with age adjustment are 942 

considered age-independent (blue). The specific influence of age and load cannot be 943 

disseminated in gene correlations that were significant (uncorrect-p-value < 0.05) under both 944 

correlation conditions (green). All nonsignificant (uncorrect-p-value < 0.05) genes are labeled in 945 

gray. The percentage of significant genes per category is represented in the bottom right corner. 946 

The top 3 most significant genes per correlation method category are labeled per stain plot (FDR 947 

p-value< 0.05). d.) Individual relationship between gene expression and load with age for the top 948 
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age-dependent and independently correlated genes with Iba1. i. Galnt6 was exclusively 949 

significantly correlated with Iba1 without age adjustment. An increase in Iba1 load and Galnt6 950 

expression occurs between 6m and 14m. A positive relationship between Iba1 load and Galnt6 951 

expression exists across both age groups as well as within each age group. ii. Tmem39a was 952 

exclusively significantly correlated with Iba1 after age adjustment. An increase in Iba1 load but 953 

not in Tmem39a expression occurs between 6m and 14m. A weak relationship between Iba1 954 

load and Tmem39a expression exists across both age groups, but separate age-specific 955 

correlations with load and gene expression exist. 5XFAD mice only, 6m: n=17, 14m: n=20.  956 

 957 

Figure 5. Gene Set Enrichment Analysis (GSEA) of gene correlations per method categorized 958 

by Reactome parent pathway. 959 

a.) Pearson R correlation coefficients from Figure 4a and Figure 4b were input into WebGestalt 960 

GSEA to obtain significantly enriched pathways associated with each stain and correlation 961 

method (normalized enrichment, non-age-adjusted and age-adjusted). The top three most 962 

significant pathways per stain and methods are labeled (FDR p-value< 0.05) (right). 963 

 964 

Supplemental Information: Figure and Table Legends 965 

 966 

Supplemental Figure 1: Intermediate hierarchy and QCAlign quality control assessment of 967 

atlas registration of thionine sections.  968 

a.) Intermediate hierarchy depiction over every thionine section of a representative brain 969 

following atlas registration using QuickNII and VisuAlign. Allen Mouse Brain Atlas CCFv3 970 

regions were compiled to make an intermediate hierarchy that promotes the assessment of 971 

regional registration. b.) Representative quality control assessment of the atlas registration of a 972 

thionine slice in QCAlign. Raters assigned grid markers verifying the registration of each point as 973 

either accurate, inaccurate, or uncertain.  974 

 975 

Supplemental Figure 2: QCAlign scores achieved based on quality control assessment of 976 

intermediate hierarchy regions. 977 

a.) Heatmap of regional accuracy scores per rater per brain. b). Heatmap of regional uncertainty 978 

scores per rater per brain. Gray regions were not represented in the brain series and/or did not 979 

receive QCAlign scores for the measure. c.) Averaged uncertainty scores per intermediate 980 

hierarchy region after QuickNII registration alone (white) or after QuickNII and VisuAlign 981 

registration (green). Two raters scored the same 5 randomly selected brains after QuickNII 982 
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registration alone, max n=10 per region (Raters: n= 2 per brain). Up to 10 raters scored the 983 

same 5 randomly selected brains after QuickNII and VisuAlign registration, max n=36 per region 984 

(Raters: n= 6-10 per brain). Dots represent the mean score across raters per region for 5 brains 985 

+SEM, with the numbers labels representing the number of assessments contributing to each 986 

calculation (QuickNII alone labels are below white points, QuickNII + VisuAlign labels are above 987 

green points). 988 

 989 

Supplemental Figure 3. Variation in stain load exists among AD-BXD strains. 990 

Strain averages of a.) GFAP, b.) Iba1, and c.) AB1-42 load across the hippocampal formation 991 

and hippocampal intermediate hierarchy subregions. Points are mean load per strain. Each line 992 

connects a pair of strain averages across the age groups: 6m and 14m. Only strains with an 993 

aged match counterpart are represented (5XFAD mice only, 6m: n=17, 14m: n=18, n= 1-3 per 994 

strain). The B6 founder strain is labeled for reference.  995 

 996 

Supplemental Table 1. Strain, sex, age, 5XFAD genotype, and hemisphere metadata for all 997 

animals with IHC completed for this study. 998 

 999 

Supplemental Table 2. Antibody and dilution information used by NSA for IHC staining. 1000 

 1001 

Supplemental Table 3. List of sections removed from individual stain and brain Nutil 1002 

quantification. Listed sections include those that had greater than 30% damage as measured in 1003 

QCAlign or were excluded following manual inspection indicating that the majority of the section 1004 

was distorted and unfit for quantification.  1005 

 1006 

Supplemental Table 4. Customized intermediate hierarchy output from QCAlign. List of the 77 1007 

intermediate hierarchy regions and the Allen Mouse Brain Atlas IDs that each region is 1008 

comprised of. 1009 

 1010 

Supplemental Table 5. Post-analysis region exclusion parameters. List of 77 regions (compiled 1011 

by QCAlign from CCFv3 regions) and 5 additional summary regions (Nutil default regions, also 1012 

compiled from CCFv3 regions) organized by their inclusion or exclusion from QCAlign analysis 1013 

as represented in figure 2b, Nutil analysis as represented in figure 3a, or IHC and RNAseq 1014 

integration in figures 4 and 5. “Parent term” are parent IDs, which do not represent any pixels in 1015 

the CCFv3 and therefore did not generate results; “unassigned pixels” are pixels that are not 1016 
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assigned to a subregion but are instead labeled according to the parent region to which they 1017 

belong within the Allen Mouse Brain Atlas CCFv3 2015; “low sampling” indicates that less than 1018 

20 assessments out of 36 total possible assessments contributed to the mean accuracy QCAlign 1019 

score for these regions. Some regions were excluded as they had been removed from the brain 1020 

prior to IHC.  1021 

 1022 

Supplemental Table 6. Wilcoxon test results assessing the difference in stain load quantified 1023 

using QuickNII alone or using QuickNII and VisuAlign for the 55 regions assessed in Figure 2. 1024 

The regional load per stain per age group among 5XFAD animals was compared between the 1025 

two methods. 1026 

 1027 

Supplemental Table 7. ANOVA results as output from R comparing regional stain load for all 1028 

intermediate hierarchy regions between 6m and 14m animals. The regional load per stain per 1029 

age group among 5XFAD animals was compared between the two age groups. FDR-corrected 1030 

p-values are indicated as FDR_adjusted_pval. 1031 

 1032 

Supplemental Table 8.  Multilevel correlation results comparing gene expression and 1033 

hippocampal load correlations both before and after age adjustment for 34 5XFAD animals. 1034 

FDR-corrected p-values are indicated Age/Non-adjusted p-value (FDR corrected).  1035 
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