

1 **Detecting the effect of genetic diversity on brain composition in an Alzheimer's disease**
2 **mouse model**

3
4 Brianna Gurdon^{1,2*}, Sharon C. Yates^{3*}, Gergely Csucs³, Nicolaas E. Groeneboom³, Niran
5 Hadad¹, Maria Telpoukhovskaia¹, Andrew Ouellette^{1,2}, Tionna Ouellette^{1,4}, Kristen O'Connell^{1,2,4},
6 Surjeet Singh¹, Tom Murdy¹, Erin Merchant¹, Ingvild Bjerke³, Heidi Kleven³, Ulrike Schlegel³,
7 Trygve B. Leergaard³, Maja A. Puchades³, Jan G. Bjaalie^{3#}, and Catherine C. Kaczorowski^{1,2,4#}

8
9 *, contributed equally

10 #, co-corresponding

11

12 1. The Jackson Laboratory, Bar Harbor, ME
13 2. The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono,
14 ME
15 3. Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo,
16 Norway
17 4. Tufts University Graduate School of Biomedical Sciences, Medford, MA

18
19 **Keywords:** mouse brain, reference atlas, immunohistochemistry, deconvolution, Alzheimer's
20 disease, neurodegeneration, cell composition, genetic diversity

21
22 **Abstract**

23 Alzheimer's disease (AD) is characterized by neurodegeneration, pathology accumulation, and
24 progressive cognitive decline. There is significant variation in age at onset and severity of
25 symptoms highlighting the importance of genetic diversity in the study of AD. To address this, we
26 analyzed cell and pathology composition of 6- and 14-month-old AD-BXD mouse brains using
27 the semi-automated workflow (QUINT); which we expanded to allow for nonlinear refinement of
28 brain atlas-registration, and quality control assessment of atlas-registration and brain section
29 integrity. Near global age-related increases in microglia, astrocyte, and amyloid-beta
30 accumulation were measured, while regional variation in neuron load existed among strains.
31 Furthermore, hippocampal immunohistochemistry analyses were combined with bulk RNA-
32 sequencing results to demonstrate the relationship between cell composition and gene
33 expression. Overall, the additional functionality of the QUINT workflow delivers a highly effective
34 method for registering and quantifying cell and pathology changes in diverse disease models.

35 **Introduction**

36 Alzheimer's Disease (AD) is a multifaceted neurodegenerative condition that currently has no
37 cure and impacts millions around the globe¹. AD is characterized by the accumulation of
38 amyloid-beta (AB) plaques, neurofibrillary tau tangles, severe gliosis, and progressive
39 neurodegeneration², leading to clinical symptoms and cognitive decline that eventually lead to
40 death³. There is significant variation in the age at symptom onset and severity of cognitive
41 decline, with highly susceptible individuals exhibiting early onset and rapid decline, while resilient
42 individuals remain cognitively intact late in life^{4,5}. Further characterization of pathology
43 development including neurodegeneration, amyloid-beta deposition, and neuroinflammation is
44 needed to better understand the impact of this variation on clinical disease outcomes. Moreover,
45 this characterization is highly relevant since changes in the composition of brain tissue and the
46 development of neuropathology can precede (and might even predict) clinical symptoms, and
47 therefore serves as a valuable resource for defining disease subtypes and possible mechanisms
48 of resilience⁶⁻⁸.

49

50 Mouse models of AD offer the opportunity to study changes in brain pathology in a controlled
51 manner to gain a better understanding of how AD manifests and may progress in humans^{9,10}. In
52 these models, organism-wide, brain-wide, or region-specific imaging and omics approaches can
53 be implemented for the investigation of disease stages using cross-sectional or longitudinal
54 study designs. To combat the lack of heterogeneity of traditional inbred AD mouse models, the
55 AD-BXD mouse population that better recapitulates the complex heterogeneity of genetic,
56 molecular, and cognitive features of human aging and AD was utilized in this study^{11,12}. The AD-
57 BXD population was generated by crossing the C57BL/6J(B6)-5XFAD AD mouse model with
58 strains from the BXD panel¹¹. Despite being driven by alleles typically found in cases of early-
59 onset AD, in the genetically diverse BXD strains, the 5XFAD transgene leads to a spectrum of
60 phenotypes that recapitulate the clinical and pathological variation of late-onset AD^{11,13-16}. Since
61 the relationship between symptomatology and changes in the composition of brain tissue is not
62 fully understood, assessing changes in cell and pathology organization across a mouse
63 population that models the heterogeneity of human AD may highlight brain regions and cell
64 types associated with cognitive susceptibility or resilience to neurodegeneration, gliosis, and
65 pathology¹⁷⁻²³.

66

67 In addition to characterizing AD with imaging outcomes of cell composition in mouse models,
68 changes with AD can be described by investigating deviations in gene expression among

69 different cell types of the brain. Bulk RNA-sequencing (RNAseq) is a common method to study
70 gene expression profiles of brain regions of interest; however, it is crucial to note that gene
71 expression data generated from a tissue sample reflects an average gene expression profile
72 across heterogeneous populations of cells²⁴. Consequently, consideration of individual
73 differences in regional cell composition is vital when interpreting the results from RNAseq data
74 from different mouse strains and patient samples. Since AD has a substantial impact on brain
75 structure, observed changes in gene expression in bulk tissue are likely to be masked by
76 changes in cell-type composition across varying disease stages. In many AD studies that
77 conduct RNAseq to determine disease signatures, it is not clear whether observed differences in
78 gene expression among AD samples or between AD samples and controls are due to changes
79 in transcriptional regulation or the relative proportions of different cell types in the tissue
80 samples^{14,25,26}. Measuring cell composition and recognizing the contribution of cell abundance
81 when associating gene expression to disease traits is important for reducing spurious
82 associations between AD phenotypes and gene expression^{27,28}. Deconvolution methods have
83 been created in an attempt to estimate the proportions of different cell types in RNAseq results
84 and to distinguish changes in gene expression stemming from changes in cell-type compositions
85 versus alterations in gene activity^{29–34}; however, the performance of deconvolution tools are
86 highly variable^{27,35}.

87
88 Immunohistochemistry (IHC) quantification is the gold standard for measuring the cell
89 composition of a tissue sample. When combined with brain-wide analysis methods that utilize
90 reference atlases of the brain^{36,37}, IHC is a powerful tool that can be used to better understand
91 the changes in cell composition that occur with age and AD, and the relative relationship
92 between cellular load and gene expression. The QUINT workflow³⁸ is one such semi-automated
93 analysis method that combines a tool for registering histological brain section images
94 (QuickNII³⁹) to a reference atlas of the brain, with tools for extracting (ilastik⁴⁰) and quantifying
95 IHC-stained features (Nutil⁴¹). A key step in the QUINT workflow is that customized atlas-plates,
96 derived from a three-dimensional brain atlas, are linearly registered to brain section images³⁹.
97 However, with morphological differences seen among mouse strains, disease states, and
98 ages^{42–46}, and morphological distortions occurring during histological processing, linear
99 registration is often insufficient to achieve accurate anatomical registration. This motivated the
100 expansion of the QUINT workflow with new functionality to increase the quality of the atlas-
101 registration by application of nonlinear refinements (VisuAlign); as well as providing a means to
102 verify the atlas-registration by systematic random sampling (QCAlign). Here, we utilize the

103 expanded QUINT workflow to characterize regional composition of neurons, reactive astrocytes,
104 microglia, and amyloid beta pathology across brains of AD-BXD mice at different ages, in
105 regions defined by the Allen Mouse Brain Common Coordinate Framework v3 (CCFv3). By
106 completing this analysis, we provide an expansive brain-wide characterization of diverse 5XFAD
107 mice and 1). assess changes in cell and pathology composition between AD-BXD animals at 6
108 and 14-months of age, 2). assess variation in cellular abundance among AD-BXD strains, and
109 3). interpret bulk RNAseq data with respect to the cellular-abundance, in order to differentiate
110 effects driven by AD from effects driven by cellular composition in the hippocampal formation.
111

112 **Methods**

113 **Method relating to the mice and IHC**

114 ***Bioethics***

115 All mouse experiments occurred at the University of Tennessee Health Science Center and were
116 carried out in accordance with the principles of the Basel Declaration and standards of the
117 Association for the Assessment and Accreditation of Laboratory Animal Care (AAALAC), as well
118 as the recommendations of the National Institutes of Health Guide for the Care and Use of
119 Laboratory Animals. The protocol was approved by the Institutional Animal Care and Use
120 Committee (IACUC) at the University of Tennessee Health Science Center.
121

122 ***Animals***

123 All data used in this study are from the AD-BXD panel, which have been previously described¹¹
124 (Figure 1b). Briefly, female B6 mice hemizygous for the 5XFAD transgene (B6.Cg-
125 Tg(APPSeF1LonPSEN1*M146L*L286V)6799Vas/ Mmjjax, Stock No. #24848-JAX) were mated
126 to males from the BXD genetic reference panel resulting in sets of isogenic F1 AD-BXD strains
127 that either harbor the 5XFAD transgene or are nontransgenic (Ntg)-BXD littermate “normal
128 aging” controls. Male and female AD-BXD mice were group housed as a mix of 5XFAD and Ntg
129 same-sex littermates (2-5 per cage) and maintained on a 12-hour light–dark cycle with *ad*
130 *libitum* access to food and water. All mice were genotyped for the 5XFAD transgene through a
131 combination of in-house genotyping according to The Jackson Laboratory Transgenic
132 Genotyping Services protocols for strain #34848-JAX and outside services (Transnetyx, TN,
133 USA). This study included a total of 40 mice (2 males and 38 females) of 6 months (6m; n=20)
134 and 14 months (14m; n=20). These included 29 mice from 14 AD-BXD strains (n = 1-4 mice per
135 strain); 8 mice from founder strains C57Bl/6J (B6) 5XFAD (n = 2), and F1 B6/DBA/2J (D2)

136 5XFAD (n = 6); and 3 Ntg-BXD mice (all 6 m). An overview of all the animals included in the
137 study is given in Supplementary Table 1.

138

139 ***Immunohistochemistry***

140 *Tissue collection and shipment:*

141 Mice were deeply anesthetized using isoflurane before decapitation and rapid removal of the
142 brain at appropriate time points (6m or 14m). The hypothalamus was dissected out and the brain
143 was bisected down the sagittal midline. One half of the brain was immediately further dissected
144 and snap frozen to be used for RNAseq and the other hemisphere was placed in 4%
145 paraformaldehyde and kept at 4°C to be used for IHC as previously described^{11,13,16}. In order to
146 minimize technical variation in IHC, hemibrains were sent overnight to Neuroscience Associates
147 (Knoxville, TN), where the cerebellum was removed and hemibrains were embedded,
148 processed, and stained simultaneously in blocks of 40.

149

150 *Neurohistology Embedding and Sectioning:*

151 Hemibrains received at Neuroscience Associates were examined for overall tissue integrity (no
152 major damage or tissue breakdown), then treated overnight with 20% glycerol and 2%
153 dimethylsulfoxide to prevent freeze-artifacts. The specimens were then embedded in a gelatin
154 matrix using MultiBrain®/ MultiCord® Technology (Neuroscience Associates, Knoxville, TN).
155 The blocks were rapidly frozen, after curing by immersion in 2-Methylbutane chilled with crushed
156 dry ice and mounted on a freezing stage of an AO 860 sliding microtome. The MultiBrain®/
157 MultiCord® blocks were sectioned in coronally with desired micrometer (40μ) setting on the
158 microtome. All sections were cut through the entire length of the specimen and collected
159 sequentially into series of 24 containers. All containers contained Antigen Preserve solution
160 (50% PBS pH7.0, 50% Ethylene Glycol, 1% Polyvinyl Pyrrolidone); no sections were discarded.

161

162 *IHC staining:*

163 Free floating sections were stained for Aβ1-42 (amyloid beta pathology), glial fibrillary acidic
164 protein (GFAP, reactive astrocytes) and ionized calcium binding adapter protein 1 (Iba1,
165 microglia) on every 24th section spaced at 960 μm, yielding approximately 9 sections per
166 hemibrain. Staining for NeuN (neurons) and thionine (Nissl, cell bodies) was performed on every
167 12th section spaced at 480 μm, yielding approximately 19 sections per hemibrain. For Aβ1-42,
168 GFAP, Iba1 and NeuN, all incubation solutions from the blocking serum onward used Tris
169 buffered saline (TBS) with Triton X-100 as the vehicle; all rinses were with TBS. After a

170 hydrogen peroxide treatment and blocking serum, the sections were immunostained with the
171 primary antibodies, as shown in Supplemental Table 2, overnight at room temperature. Vehicle
172 solutions contained Triton X-100 for permeabilization. Following rinses, a biotinylated secondary
173 antibody was applied. After further rinses Vector Lab's ABC solution (avidin-biotin-HRP complex;
174 VECTASTAIN® Elite ABC, Vector, Burlingame, CA) was applied. The sections were again
175 rinsed, then treated with diaminobenzidine tetrahydrochloride (DAB) and hydrogen peroxide to
176 create a visible reaction product. Following further rinses, the sections were mounted on gelatin-
177 coated glass slides and air dried. The slides were dehydrated in alcohols, cleared in xylene and
178 cover slipped. For thionine-Nissl Staining sections were mounted on gelatin-coated glass slides,
179 air dried and carried through the following sequence: 95% ethanol, 95% ethanol/Formaldehyde;
180 95% ethanol, Chloroform/Ether/absolute ethanol (8:1:1), 95% ethanol; 10% HCl/ethanol, 95%
181 ethanol, 70% ethanol, deionized water, thionine (0.05% thionine/acetate buffer, pH 4.5) (Fisher,
182 T40925), deionized water, 70% ethanol, 95% ethanol, Acetic Acid/ethanol, 95% ethanol, 100%
183 ethanol, 100% ethanol, 1:1 100% ethanol/xylene, xylene, xylene, coverslip.

184

185 *Slide identification and imaging:*

186 Each slide was laser etched with the block number and the stain. Following serial ordering of the
187 slides, rostral to caudal for each stain, the slides were numbered by permanent ink in the upper
188 right corner.

189 Neuroscience Associates (NSA) performed scanning of each slide at 20x using a Huron Digital
190 Pathology TissueScope LE120 (0.4 microns/pixel). Brain image series were compiled by
191 reconstructing the IHC sections as sliced and indicated by NSA.

192

193 Further information and requests for resources and reagents should be directed to and will be
194 fulfilled by the Corresponding author.

195

196 **Methods Related to QUINT Workflow Utilization**

197 ***QUINT workflow development***

198 The QUINT workflow supports brain-wide quantification of IHC data in relation to a reference
199 atlas such as the Allen Mouse Brain Common Coordinate Framework v3 (CCFv3). In the
200 workflow (Figure 1a), the QuickNII software³⁹ is used to spatially register atlas-plates from a 3D
201 digital brain atlas to serial section images, the ilastik software⁴⁰ is used to extract features from
202 the images, and the Nutil software⁴¹ is used to quantify features per atlas-region. To meet the
203 needs of the current project, two new software, VisuAlign (RRID: SCR_017978) and QCAAlign

204 (RRID:SCR_023088), were developed and integrated in the QUINT workflow. VisuAlign is used
205 to apply in-plane nonlinear refinements of the atlas to achieve the best fit over the section
206 images. This task is performed by visually identifying mismatches between section images and
207 the corresponding atlas plates, and manually assigning a set of anchor points denoting
208 corrections. VisuAlign then uses these anchor points to create a continuous, nonlinear
209 deformation field covering the entire section image. QCAlign is used to 1. detect sections or
210 regions not suited for QUINT analysis (i.e., due to damage), and 2. to assess the quality of the
211 atlas-registration to each region in the sections. Both QCAlign assessments are performed by
212 systematic random sampling. The second assessment is based on anatomical expertise by
213 evaluating how well delineations supplied by the atlas match up with boundaries revealed by
214 IHC-staining. Since validation of the atlas-registration is only possible for regions that have
215 visible boundaries in the sections, and reference atlases are structured in systematic hierarchies
216 that group related regions⁴⁷, functionality was also implemented in QCAlign for adjusting the
217 hierarchy to a customized level that supports verification of the regional registration (i.e. a level
218 where the delineations from the atlas roughly matching the boundaries that are visible in the
219 sections). This customized hierarchy level can be exported as a TXT file and used in the Nutil
220 software to define customized regions to use for the brain-wide quantification.

221

222 ***Image Pre-processing***

223 To perform stain segmentation in ilastik, the images were inspected, cropped, and downsampled
224 using different scaling factors for the different stains (AB1-42: 0.20, GFAP: 0.40, Iba1: 0.40,
225 NeuN: 0.40, thionine: 0.35). Scaling factors were determined by gradually increasing the scaling
226 factor and manually determining the level at which the image file size was maximally reduced
227 without visually losing information and inducing blur. Images were then further downsampled to
228 fulfil the image size requirements of QuickNII (scaling factor: 0.50) (detail at:
229 <https://quicknii.readthedocs.io/en/latest/imageprepro.html>).

230

231 ***Image Registration to the CCFv3 with QuickNII and VisuAlign***

232 Serial section images from one brain (irrespective of stain) were combined into a descriptor XML
233 file using the QuickNII Filebuilder application (included in the QuickNII download package).
234 QuickNII (RRID:SCR_016854, QuickNII-ABAMouse-v3-2015 version 2.2) was used to perform
235 linear registration to the CCFv3 2015 followed by nonlinear refinement with VisuAlign (RRID:
236 SCR_017978, version 0.8). For each image series, the thionine-stained sections were registered
237 first since they provided the greatest visualization of region boundaries. Subsequently, all

238 remaining sections were registered in a serial manner. Two independent raters evaluated the
239 registration of each section performed with QuickNII and the refinements made with VisuAlign.
240 Spatial registration data was exported from both QuickNII and VisuAlign in JSON and FLAT files
241 to be used in the Nutil software.

242

243 ***Cell Segmentation with ilastik***

244 The ilastik software (RRID:SCR_015246) supports feature extraction by segmentation based on
245 supervised machine learning algorithms. For each stain, ten training images with representative
246 staining were loaded into the Pixel Classification workflow in ilastik (v.1.3.3). Two classes termed
247 “label” and “background” were created, and annotations of each class were applied in all the
248 training images until the segmentation was deemed satisfactory and confirmed by two
249 independent raters. The trained classifiers were applied to all the images of that stain using the
250 batch processing function in ilastik. Segmented images were exported in 8-bit indexed PNG
251 format. Red-green-blue (RGB) colors were applied to the images with the Glasbey Lookup Table
252 in FIJI⁴⁸.

253

254 ***Evaluation of Section Image Quality with QCAlign***

255 The QCAlign software (RRID:SCR_023088, version 0.7) was used to assess the integrity of the
256 sections for each brain image series (all 40 brains were assessed) using a 5-voxel grid spacing.
257 This involved marking up points that overlapped areas of damage (representing tears in the
258 tissue, folds, artifacts, and errors in image acquisition) for all sections. Results were exported in
259 TXT format and used to calculate percentage damage per section by dividing the number of
260 damage markers by the total number of markers overlapping the section (damage = # damage
261 markers per section / # of total markers per section). Section images with more than 30%
262 damage were deemed unsuited for QUINT analysis (Supplemental Table 3). Nutil results per
263 brain were re-calculated in R following removal of results from the damaged sections.

264

265 ***Creation of a Customized Atlas Hierarchy with QCAlign***

266 Brain reference atlases such as the CCFv3 are organized in systematic hierarchies that group
267 related regions⁴⁷. A customized hierarchy level was created with QCAlign to be used for the
268 quality control assessment of the atlas-registration, and to define customized regions to be
269 quantified (hereafter referred to as the “intermediate hierarchy”). To create this intermediate
270 hierarchy, the atlas delineations supplied by the workflow were overlaid on the thionine-stained
271 sections at the finest level of atlas granularity (full expansion of the CCFv3). A grid of points with

272 a 15-voxel grid spacing was applied to the images, with the registration accuracy of each point
273 marked up based on anatomical expertise (“accurate”, “inaccurate” or “uncertain”). If a region
274 received many “uncertain” markers due to obscure region boundaries, the hierarchy level was
275 adjusted one level up, and the process was repeated until the position of most of the markers
276 could be verified (either “accurate” or “inaccurate”). The customized hierarchy was exported as a
277 TXT file to be used in the Nutil software to define the regions for quantification (Supplemental
278 Table 4).

279

280 ***Quality Control Assessment of Atlas-Registration to the Section Images using QCAlign***

281 In the QUINT workflow, 2D atlas-plates are created to match the cutting angle of the sections
282 and registered to the section images in a linear manner using QuickNII. Next, these atlas-
283 registrations are warped (in-plane) to provide a better fit to the sections using VisuAlign. To
284 determine the quality of the atlas-registration to each region in the intermediate hierarchy, ten
285 raters across two academic institutions were recruited to perform a quality assessment using the
286 QCAlign software. Raters varied in anatomical knowledge with expertise ranging from
287 postbaccalaureate researchers, Ph.D. students, senior post-doctoral fellows, and associate
288 research scientists in the field of neuroscience and neuroanatomy. Assessments were
289 performed on the atlas-registration achieved using QuickNII only (2 raters), and on the atlas-
290 registration achieved using both QuickNII and VisuAlign (10 raters). All assessments were
291 performed on the thionine-stained sections from five brains (selected at random) at the
292 intermediate hierarchy level established by the method described above. To perform the
293 assessment, markers with a 15-voxel grid spacing were overlaid on the sections and the position
294 of each marker was assigned as either “accurate”, “inaccurate” or “uncertain” based on
295 anatomical expertise. This was determined by inspecting the position of the marker with respect
296 to visual landmarks in the section and comparing that to the name of the region, which was
297 revealed by hovering over each marker. The atlas-delineations were switched “off” during this
298 assessment because the delineations obscure boundaries in the sections and may bias the
299 outcome.

300

301 The QCAlign results were exported in TXT format with counts of accurate, inaccurate, and
302 uncertain markers indicated per region, per section, and per brain. Regional accuracy,
303 inaccuracy, and uncertainty scores were calculated per rater/brain and per brain overall with R-
304 Studio (shared at <https://github.com/Neural-Systems-at-UIO/BRAINSPACE>). Uncertainty scores
305 were calculated by dividing the number of uncertain markers by the total number of markers in

306 the region, reflecting the percentage of the region for which the registration could not be verified
307 as either accurate or inaccurate (Uncertainty Score = (# uncertain markers)/(# accurate markers
308 + # inaccurate markers + # uncertain markers). Since it was not possible to verify the registration
309 of all the points in the regions (some points were assigned uncertain markers due to a lack of
310 landmarks or limited expertise), the calculation of accuracy and inaccuracy scores correspond to
311 the parts of each region for which the registration could be verified. Thereby, accuracy scores
312 should be inspected together with the uncertainty scores, since a high uncertainty means that
313 the accuracy corresponds to a limited part of the region only. Regional accuracy scores were
314 calculated by dividing the total number of accuracy markers by the total number of accurate and
315 inaccurate markers within that region (uncertain markers did not contribute to this calculation)
316 (Accuracy Score = # accurate markers/ (# accurate markers + # inaccurate markers)). Mean
317 regional accuracy and uncertainty scores were calculated by dividing the summed score of all
318 assessments by the total number of assessments. For each intermediate hierarchy region, the
319 number of assessments contributing to the calculation of the mean accuracy and uncertainty
320 scores depended on the number of raters and number of brains assessed, as well as how often
321 accurate or inaccurate markers could be assigned by the raters (depending on presence of grid
322 markers in that region, tissue quality, and/or anatomical expertise, etc.). In some cases, regions
323 were marked entirely as uncertain by raters; therefore, excluding these assessments from the
324 mean accuracy calculation. For the registration achieved with QuickNII only, a maximum of 10
325 assessments were averaged across all raters/brains (Brain 1: two raters' assessments, Brain 2:
326 two raters' assessments, Brain 3: two raters' assessments, Brain 4: two raters' assessments,
327 Brain 5: two raters' assessments). For the registration achieved with QuickNII and VisuAlign a
328 maximum of 36 assessments were averaged across all raters/brains (Brain 1: ten raters'
329 assessments, Brain 2: seven raters' assessments, Brain 3: seven raters' assessments, Brain 4:
330 six raters' assessments, Brain 5: six raters' assessments).

331

332 **Regional quantification of stain load with Nutil**

333 Nutil (RRID: SCR_017183) supports regional quantification of IHC-stained features by applying
334 the *Quantifier* feature to combine the output from the atlas-registration (QuickNII and VisuAlign)
335 and feature extraction (ilastik) steps. Nutil (v0.7.0) was used to quantify the percentage of IHC-
336 stained area per region area (hereafter referred to as "load") in the customized regions defined
337 by the intermediate hierarchy level per stain and brain series. Since hemibrain sections rather
338 than whole brain sections were analyzed in the study, customized masks were created and used
339 to exclude the atlas regions located in the missing hemibrain from the quantification. The

340 hemibrain masks were created with the QNLMask software that is shared with the VisuAlign
341 software (<https://www.nitrc.org/projects/visualign>). Nutil analysis was performed separately for
342 each stain, with quantification of regional load of neurons (NeuN), microglia (Iba1), reactive
343 astrocytes (GFAP), all nuclei (thionine), and beta-amyloid 1-42 pathology (AB1-42) achieved
344 according to the parameters defined in the NUT file (shared in the BRAINSPACE GitHub
345 repository). The object splitting feature was switched “on” to ensure correct calculation of the
346 regional loads. The NUT files were created and read into Nutil via the command line to batch-
347 process multiple brains in succession. The regional load values obtained from the Nutil reports
348 were used in downstream analysis. Regional load was quantified after QuickNII registration
349 alone, and following QuickNII registration supplemented with VisuAlign refinement. Regional
350 stain loads can either increase or decrease following nonlinear refinement compared to load
351 calculated after QuickNII alone depending on the changes made to regional boundaries, the
352 overall density of pathology or cells in that region, and the stain being evaluated.

353

354 **Sample and Region Exclusion from Post Analyses:**

355 Data from one female 6m mouse of AD-BXD strain 44 was removed from the downstream
356 analysis because the majority of the sections were severely ripped prohibiting successful atlas-
357 registration. Quantification output from all of the 77 regions in the intermediate hierarchy file are
358 included in the Nutil reports (shared as the BRAINSPACE project on EBRAINS Knowledge
359 Graph Search, <https://search.kg.ebrains.eu/>). In the present study, 55 of these regions were
360 included in the QCAlign assessment of the atlas-registration across 5 brains; and 43 of these
361 regions were included in the assessment of cell and pathology load across 37 brains (5XFAD
362 mice only). Specific region exclusion criteria are reported in Supplemental Table 5. As a brief
363 summary, some of the atlas regions did not have results in the reports since they were not
364 represented in the sections or corresponded to a parent structure with results provided at a finer
365 level of atlas granularity. Regions with no biological results were disregarded from all analyses.
366 Furthermore, results from several regions were not analyzed in the present study due to low
367 representation in the sections.

368

369 **Statistical analysis of QUINT data:**

370 For each stain, the load values of 43 intermediate hierarchy provided by the Nutil software were
371 used for comparative analysis across 5XFAD brains at 6 m (n = 17) and 14 m (n = 20). Data
372 have been expressed as means \pm standard error of the mean (SEM) or as otherwise indicated in
373 graphs. Statistical analysis of data was performed using R version 4.0.0 (2020-04-24) -- "Arbor

374 Day". Wilcoxon two-way assessment (strain and age factors) was implemented to determine if
375 there were significant differences in the stain load as registered using QuickNII alone vs
376 registered using QuickNII and VisuAlign. Analysis of variance (ANOVA) (age and strain factors)
377 was used to determine whether there were significant differences in regional stain load between
378 6m and 14m groups. Multilevel Pearson correlations with and without age corrections were used
379 to evaluate the relationship between hippocampal stain load and gene expression. Multiple
380 testing corrections for each test was performed using false discovery rate (FDR) correction.
381 Criterion for measures to be considered uncorrected significant was p-value < 0.05 and
382 significant after correction was FDR p-value < 0.05.

383

384 **Immunohistochemistry and Bulk RNA Sequencing Integration**

385 To identify genes associated with variation in hippocampal cell and pathology load we integrated
386 our IHC quantification with RNAseq data. The goal of this analysis was to determine whether
387 changes in cell composition contributed to subsequent changes in hippocampal gene expression
388 detected via RNAseq. Only 5XFAD samples with paired IHC and RNAseq data were selected (n
389 =34); therefore, all animals in this analysis had one hemisphere fixed for IHC and the
390 contralateral hippocampus dissected for bulk RNAseq. The RNAseq data used in the current
391 study was previously published and the dataset series (GSE) are accessible via the National
392 Center for Biotechnology Information Gene Expression Omnibus (GEO) (GEO: GSE101144,
393 GEO:GSE119215, GEO:GSE119408)^{11,13,16}. Expected read counts (ERCs) were filtered to
394 include genes with >10 ERCs in more than 50% of the samples from 5XFAD mice, resulting in
395 15,703 of 47,645 genes that passed filtering. Following the exclusion of genes with low read
396 counts, datasets were batch-corrected using the R Combat-Seq package, then normalized and
397 transformed using the default pipeline of R DESeq2⁴⁹. The relationship between gene
398 expression and stain load (AB1-42, NeuN, GFAP, and Iba1) from the hippocampal formation
399 summary region was assessed using Pearson's correlation from linear mixed models⁵⁰, which
400 allowed the effect of age on the association between gene expression and load to be accounted
401 for by including age as a random effect (correlation(partial = TRUE, multilevel = TRUE). P-
402 values per stain and gene correlation were corrected for multiple comparisons via FDR
403 correction and considered significant if the FDR p-value < 0.05. Genes that were exclusively
404 significantly correlated (uncorrected p-value < 0.05) prior to age adjustment were deemed to be
405 age-dependent correlates. Genes that were exclusively significantly correlated (uncorrected p-
406 value < 0.05) following age adjustment were deemed to be age-independent correlates. Gene
407 Set Enrichment Analysis (GSEA) queried against Reactome pathways was carried out in

408 WebGestalt^{51–54} using the output correlation coefficients per gene and stain for each multi-level
409 correlation method (age-adjusted and non-age-adjusted). Advanced GSEA parameters used
410 included: Minimum number of IDs in the category: 20, Maximum number of IDs in the category:
411 2000, Significance Level: FDR < 0.05, and Number of permutations: 1000). Lastly, individual
412 ERC and hippocampal load data were incorporated into a DESeq model, and the design was run
413 on the intercept (~1). Transformed normalized counts for boxplots in figure 5 were obtained
414 using the DESeqDataSetFromMatrix() and counts() functions. Scripts used for RNAseq
415 normalization and modeling, IHC and RNAseq correlations and visualization can be accessed on
416 GitHub at: <https://github.com/Neural-Systems-at-UIO/BRAINSPACE/tree/main/Scripts> .
417

418 **Data Availability**

419 The collection of section images, accompanying meta data, atlas-registration files and output, as
420 well as Nutil output are shared as the BRAINSPACE project via the EBRAINS Knowledge Graph
421 Search (<https://search.kg.ebrains.eu>). R scripts used to complete statistical analyses are publicly
422 available on GitHub at: <https://github.com/Neural-Systems-at-UIO/BRAINSPACE>.
423

424 **Sharing of QUINT tools and disclaimer**

425 All the software in the QUINT workflow are open-source and shared on GitHub and nitrc.org
426 under MIT license for QuickNII and VisuAlign; GNU General Public License (GPL) v3.0 for Nutil;
427 and GPL v2 / GPL v3 for ilastik. While the software are validated based on multiple ground truth
428 datasets shared on the Nutil GitHub page, we recommend independent validation of data from
429 QUINT prior to use. To validate the QUINT workflow for the present study, Nutil v0.7.0 was used
430 to analyze two synthetic datasets with objects of known size and anatomical location based on
431 the parameters selected for the study. The validator feature in Nutil confirmed that the results
432 were identical to the ground truth. The dataset, ground truth and results of Nutil v0.7.0 are
433 shared on GitHub at https://github.com/Neural-Systems-at-UIO/BRAINSPACE/tree/main/Nutil_Validation. The QUINT workflow is shared on EBRAINS
434 (ebrains.eu/service/quint), with user documentation (<https://quint-workflow.readthedocs.io>) and
435 user support available through EBRAINS.
436

438 **Results**

439 **New functionality added to the QUINT workflow supports high-throughput analysis of
440 diverse AD-BXD strains**

441 The original QUINT workflow was designed to support the quantification of IHC-stained features
442 in images of serial brain sections by linear registration to a reference brain atlas in combination
443 with feature extraction by supervised machine learning³⁸. While this method works well for serial
444 sections that closely resemble 2D atlas-planes throughout the reference atlas template (typically
445 generated based on intact whole brain tissue); in practice, the technical procedures of fixing,
446 sectioning, staining, and mounting sections often lead to distortions, tears in the sections, and
447 artifacts that impact the quality of the linear atlas-registration. Since reference atlases are
448 created based on standard reference animals (young adult male B6 mice in the case of the
449 CCFv3)⁴⁷, sections originating from strains and/or ages that genetically differ from such animals
450 may also have anatomical differences relative to the reference template. Recognizing the need
451 to customize the linear atlas-registration and provide a better match of the atlas overlay on
452 individual sections, a new tool that supports nonlinear refinement was created and incorporated
453 in the workflow (VisuAlign) (Figure 1a). Nonlinear refinements are manually applied based on
454 visual landmarks in the sections. Furthermore, a quality control tool based on systematic random
455 sampling was created for validating the quality of the atlas-registration to each region (QCAlign).
456 This manual assessment is based on the overlap between the delineations supplied by the atlas
457 and landmarks revealed by IHC staining. Since only a limited number of landmarks can be
458 revealed by IHC staining, a method was also implemented for adjusting the granularity of the
459 reference atlas to a level that supports the verification of the atlas registration. This functionality
460 of QCAlign provides users a platform for flexible assessment of the Allen Mouse Brain Atlas,
461 which can be manipulated to display a complete or reduced atlas hierarchy overlaid on the
462 sections. Individual reference atlas regions can be compiled into larger themed regions (e.g.
463 isocortex), allowing users to tailor the assessment to their unique experimental design and
464 research interests. Lastly, since there are other factors that can affect the quality of the results
465 that can be achieved with QUINT (for example, artifacts that obscure the staining, or tissue
466 damage too extensive to account for by nonlinear warping), a method within QCAlign was also
467 introduced to promote the systematic screening of sections, and for assessing their suitability for
468 QUINT analysis. This feature is particularly useful in the context of high-throughput studies since
469 it allows exclusion of sections according to systematic criteria. The expanded QUINT workflow
470 was applied to serial section images from the diverse AD-BXD mice (Figure 1b) to quantify all
471 nuclei (thionine), neurons (NeuN), microglia (Iba1), reactive astrocytes (GFAP) and amyloid beta
472 pathology (AB1-42) in customized regions compiled from CCFv3 regions. Examples of these
473 IHC-stained sections are shown in Figure 1c. Each step of the QUINT workflow generates a

474 visual output that can be shared together with the final results of the workflow to support
475 independent verification of findings (Examples of the visual output are shown in Figure 1d).

476

477 **Quality of the atlas-registration performed in the QUINT workflow can be confirmed using**
478 **QCAlign**

479 The new QCAlign tool was implemented to assess the quality of the atlas-registration achieved
480 using QuickNII and VisuAlign. First, the full CCFv3 2015 was condensed into 77 regions to
481 create an intermediate hierarchy of regions that was exported from the QCAlign software
482 (Supplemental Table 4). These regions have visually discernable boundaries as detected in the
483 thionine-stained sections (example images with superimposed atlas-delineations are shown in
484 Supplemental Figure 1a). Next, with the hierarchy level set in QCAlign, a rater can perform an
485 independent assessment and rate the accuracy of the atlas-registration as performed in the
486 workflow (Supplemental Figure 1b). This entails assigning grid markers positioned at a set
487 density over the sections as either accurate, inaccurate, or uncertain based on anatomical
488 expertise (Figure 2a). A grid point is marked as “accurate” if the assigned atlas-registration
489 correctly matches the region depicted in the section. This is determined by the investigator
490 based on landmarks; therefore, the region boundaries in question must be distinct enough to
491 make this call. If there is a discrepancy between the registered atlas region and what the rater
492 identifies the region to be in the brain section, the “inaccurate” marker is assigned. Inaccurate
493 markers can be the result of incorrect registration using QuickNII, and/or incomplete adjustment
494 during VisuAlign refinement. If a high frequency of inaccurate markers is assigned, the initial
495 registration of brain sections should be reevaluated. Lastly, an “uncertain” marker is placed
496 when the rater lacks the anatomical knowledge to apply an accurate or inaccurate marker with
497 confidence, or when the borders between regions are ambiguous hindering the ability to
498 differentiate regions. If a high frequency of uncertain markers is assigned, the rater should
499 reconsider the hierarchy level chosen for the evaluation.

500

501 To confirm the atlas-registration following VisuAlign adjustment, ten researchers across two
502 academic institutions were recruited to perform a quality control assessment of atlas-
503 registrations using QCAlign. The assessment was performed on the thionine-stained sections
504 from 5 brains selected at random from the cohort of 39 brains. A maximum of 36 assessments
505 were averaged per intermediate hierarchy region (6-10 raters assessing up to 5 brains)
506 (Supplemental Figure 2). There was high consensus among raters that the registration to the
507 intermediate hierarchy regions was highly accurate (100%-78.7% accuracy score) (Figure 2b,

508 green). Regions with the greatest accuracy scores were regions compiled of many subregions
509 (e.g. isocortex, 99.7%, SEM \pm 0.057) and/or that have very distinct anatomical borders (e.g.
510 caudoputamen, 99.4%, SEM \pm 0.129). Smaller regions had the potential to have zero grid
511 markers randomly placed within their area resulted in reduced number of assessments
512 contributing to the mean accuracy score (e.g. subparafascicular area, n= 9 assessments).
513 Regions with the lowest rater sampling rate were among the regions with the highest variation
514 and lowest accuracy scores. Regions with appropriate rater sampling (n>20 assessments) but
515 low accuracy scores included the posterior amygdalar nucleus (89.1%, SEM \pm 5.37) and the
516 ventricular systems (78.7%, SEM \pm 3.11). The low accuracy attributed to the posterior
517 amygdalar nucleus could be due to its relatively ambiguous border with the posterior olfactory
518 area and the subiculum. Also, regions of the ventricular system were consistently difficult to align
519 in both QuickNII and VisuAlign since they are prone to distortion (e.g. lateral ventricle) or are
520 located in medial locations along the midline where the brain was bisected into hemibrains (e.g.
521 third ventricle), resulting in low accuracy overall. To summarize, we created a new tool for quality
522 control assessment of the atlas-registration and, by using this tool, were able to confirm the
523 ability of the QUINT workflow to achieve highly accurate registration of the regions in the
524 intermediate hierarchy.

525

526 **Nonlinear adjustment increases regional registration accuracy, and impacts cell and**
527 **pathology load estimates**

528 VisuAlign offers the unique ability to refine and improve the atlas-registration to diverse AD
529 model mouse brain sections by allowing users to make nonlinear adjustments to the atlas plates
530 set in QuickNII. The importance of completing nonlinear warping following linear registration was
531 highlighted by comparing the QCAlign output following each atlas-registration step in the QUINT
532 workflow (Figure 2a). Linear registration achieved using QuickNII alone is susceptible to error as
533 indicated by the higher frequency of inaccurate markers. The hippocampus is a particularly
534 vulnerable region that requires non-linear adjustment due to the distinct shape and relatively
535 small size of the dentate gyrus (Figure 2a inset). Regional accuracy scores of five brains were
536 calculated and compared following atlas-registration performed using QuickNII only (2 raters)
537 relative to the registration performed using QuickNII then adjusted in VisuAlign (6-10 raters)
538 (Figure 2b). The completion of nonlinear warping in VisuAlign greatly improved the registration of
539 atlas regions to the brain sections (Figure 2b, green vs white). Regions that exhibited the
540 greatest increases in accuracy scores included those that are often not prioritized when initially
541 aligning atlas plates to the brain sections in QuickNII, thereby requiring more extensive nonlinear

542 adjustment (i.e. regions comprising the mid- and hindbrain). Regional quantification of cellular
543 and pathology load was also impacted by the increased accuracy of registration achieved
544 following nonlinear warping. Regions that required the most adjustment in VisuAlign, thereby
545 exhibiting the greatest increases in accuracy, also had the greatest difference in load values
546 when comparing regional load output from registration using QuickNII alone versus registration
547 completed in QuickNII and refined in VisuAlign (Figure 2c, Supplemental Table 6).

548

549 **AD-BXD strains exhibit widespread increases of glial and amyloid pathology from 6m to**
550 **14m**

551 Differences in cell composition and amyloid pathology load were compared between 5XFAD
552 carriers of 6m and 14m to detect regional changes that occur with age and AD (Figure 3,
553 Supplemental Table 7). Among 5XFADs, there are only minor changes in NeuN load between
554 6m and 14m animals overall (Figure 3, i). The only regions that exhibited significant age-related
555 (FDR-corrected p-value<0.05) decreases in NeuN load were the Ammon's horn(p-value=0.0472)
556 and dentate gyrus, polymorph layer(p-value=0.00299). Slight, but significant (FDR-corrected p-
557 value<0.05) increases in NeuN load were observed with age in the posterior amygdalar nucleus
558 (p-value = 0.0327) and striatum-like amygdalar nuclei (p-value=0.0258) (Figure 3a, i). Increased
559 glial proliferation and reactivity are also hallmark symptoms of AD progression with age. Within
560 this dataset, we confirmed that regional astrocyte and microglial cell load increased from 6m to
561 14m in 5XFAD animals. Regionally, the caudoputamen exhibited the most significant increases
562 in GFAP load (p= 2.91E-10, FDR-corrected) (Figure 3a, ii). The midbrain (motor-related) regions
563 (FDR-corrected p-value= 1.26E-08) and olfactory tubercle (FDR-corrected p-value=1.55E-08)
564 exhibited the greatest microglial load increase from 6 to 14m (Figure 3a, iii). Aligned with
565 previous reports in 5XFAD animals, amyloid pathology was most prevalent within the subiculum
566 at the earlier 6m time point⁵⁵ (3.41% \pm 0.227% SEM, Figure 3a, iv). In addition to the subiculum,
567 amygdalar regions were highly susceptible to increased amyloid deposition by adulthood (6m)
568 (Figure 3a, iv). As an aggressive amyloidosis AD model, the 5XFAD animals exhibited a near
569 global increase in amyloid deposition between 6m and 14m. Amyloid deposition was strongly
570 associated with the hippocampus and hippocampal-projected regions, including the cortex,
571 thalamus, and amygdalar regions as previously noted (Figure 3a, iv)⁵⁶. All regions besides the
572 claustrum, lateral amygdalar nucleus, parasubiculum, midbrain (behavioral state related), pons
573 (behavioral state related), pons (motor related), and pons (sensory related) regions exhibited a
574 significant increase in amyloid load from 6m to 14m.

575

576 **Individual AD-BXD strains exhibit variation in region neuronal load**

577 The hippocampus, known as a structure involved in cognitive processing, memory formation and
578 storage⁵⁷, has been elaborately studied in the context of aging and AD. Compared to the near
579 global increase in glia and pathology among AD-BXD strains between 6m and 14m, fewer age-
580 related differences in neuron load were detected (Fig 3a, i). Of the four regions that displayed a
581 significant difference in NeuN load between 6m and 14m after FDR correction, two of those
582 regions were within the hippocampus. While regional variation in NeuN load was minimal overall
583 within the age groups, age-related strain-specific variation was revealed by investigating
584 changes in NeuN load in hippocampal subregions on a per strain basis (Figure 3b,
585 Supplemental figure 3). AD-BXD strains displayed a range from neurodegeneration to neuronal
586 maintenance between 6m and 14m, modeling the heterogeneity observed in human AD⁵⁸. No
587 strain effect was detected in stain load among the 43 intermediate atlas regions quantified
588 (uncorrected p-value > 0.05, 2-way ANOVA), but since sample sizes per strain were relatively
589 small in this analysis, a potential strain effect cannot be firmly excluded and will be evaluated
590 when the sample size is increased in future analyses.

591

592 **Integration of paired IHC and bulk RNA sequencing data reveals cell load is a
593 confounding factor in age by gene expression correlations among AD-BXDs**

594 Using the QUINT workflow, we reported variation in cell and pathology load between age groups
595 and among AD-BXD strains (Figure 3). As mentioned earlier, due to the inherent properties of
596 bulk RNAseq, which allow for single, tissue-averaged, gene expression measurements, the
597 influence of cell composition is often overlooked in the interpretation of analyses and may
598 conflate expression differences driven by other experimental factors such as age and
599 pathology^{27,59,60}. Here, using output from our QUINT workflow analysis, we demonstrate that
600 ~15-35% of genes expressed in the hippocampus are correlated with load and vary based on
601 both cell-type and age. To do this, we integrated hippocampal formation cell (NeuN, GFAP,
602 Iba1) and pathology (AB1-42) load output with gene expression data measured via bulk RNAseq
603 obtained from the contralateral hippocampus of the same mice at two age time points
604 (previously published^{11,13,16}).

605

606 Hippocampal load per stain type (NeuN, GFAP, Iba1, and AB1-42) was correlated with
607 normalized read counts to identify age-dependent relationships between load and gene
608 expression. The percentage of the 15,703 genes analyzed in the RNAseq dataset that were
609 significantly correlated (uncorrected p-value < 0.05) with load varied by stain type (NeuN:

610 16.35%, GFAP: 36.76%, Iba1: 34.78%, AB1-42: 31.86%) (Figure 4a; labeled genes indicate the
611 top 5 positively and 5 negatively correlated significant genes (FDR-corrected p-value < 0.05).
612 Non-coincidentally, stains that had the most significant gene correlates had the greatest age-
613 related changes in load. Since our population is comprised of mixed ages and age is a primary
614 driver of variation in load (Figure 3), this effect of age may be masking genes that are related to
615 load in an age-independent manner. We aimed to elucidate this subset of genes by testing the
616 role of age as a mediator of the relationship between stain load and gene expression in our
617 5XFAD population by using a multilevel correlation approach adjusting for the effect of age.
618 Similar to the outcomes of the age-dependent correlation above (Figure 4a), the percentage of
619 genes significantly correlated after age adjustment (uncorrected p-value < 0.05) with load also
620 varied by stain type (NeuN: 12.56%, GFAP: 23.53%, Iba1: 18.30%, AB1-42: 12.34%, Figure 4b).
621 The number of correlated genes (uncorrected p-value < 0.05) was reduced following age-
622 adjustment across all stains, with AB1-42 exhibiting the greatest reduction of significantly
623 correlated genes (19.52%, Figure 4a, 4b). Next, we sought to differentiate genes that were
624 exclusively correlated with load either before or after age-adjustment. By further comparing both
625 analyses (age-unadjusted, Figure 4a and age-adjusted, Figure 4b), we classified genes into 1)
626 exclusively significantly associated with variation in load in an age-dependent manner (non-age-
627 adjusted output (orange in figure 4c)), 2) exclusively significantly associated with load
628 irrespective of age (age-adjusted output (blue in figure 4c)), or 3) significantly associated with
629 both load and age (non-age-adjusted and age-adjusted output (green in figure 4c))
630 (Supplemental Table 8). The majority of correlations between gene expression and load were
631 driven by age as indicated by the greater abundance of non-adjusted significant genes per stain
632 (Figure 4c). This age-driven relationship is illustrated by the correlation between Iba1 load and
633 polypeptide N-acetylgalactosaminyltransferase 6 (*Galnt6*) expression, which was identified to be
634 a top gene that is highly associated with variation in Iba1 load in an age-dependent manner
635 (Figure 4d, i). *Galnt6* has been found to have increased mRNA expression in the brains of AD
636 patients and be related to AB production^{61,62}. Here, *Galnt6* exhibited increased expression with
637 age that parallels the increase in Iba1 load observed from 6m to 14m (Figure 4d, i-ii). This trend
638 of increased load matched by a change in gene expression between 6m and 14m was unique to
639 the most highly correlated genes prior to age adjustment. On the contrary, 0.78%-5.86% of the
640 genes per stain were exclusively significant only after age-adjustment, indicating that these
641 genes are likely associated with load in an age-independent manner (Figure 4c). These age-
642 independent genes exhibited a pattern of increased cell (GFAP and Iba1) and pathology (AB1-
643 42) load but no difference in gene expression between 6m and 14m. This pattern is exemplified

644 by looking at the relationship between gene expression and load with age for transmembrane
645 protein 39A (*Tmem39a*), a topmost correlated gene with Iba1 load after age-adjustment (Figure
646 4d, ii). *Tmem39a* is a known contributor to pathways implicated in AD, including inflammation,
647 dysregulated type I interferon responses, and other immune processes⁶³; and like other highly
648 correlated genes following age-adjustment, *Tmem39a* exhibited specific within-age-group
649 associations between load and gene expression (Fig4d, ii). These genes with stronger
650 significance following age adjustment may be driven by load differences seen between the
651 groups independent of the effect of age on load. Identifying and differentiating age-dependent
652 and age-independent gene correlates promotes the prioritization of gene candidates and
653 recognition of whether the expression of these genes are relative to the proportions of different
654 cell types that are altered with age and AD.

655

656 **Mediation of age reveals differential overrepresentation of Reactome pathways**

657 Next, using the correlation coefficients displayed in Figure 4a and b, gene set enrichment
658 analysis (GSEA) was performed to identify pathways that may be biased by individual
659 differences in cell and pathology load (Figure 5). As expected, immune pathways were highly
660 enriched for GFAP, Iba1, and AB1-42 correlations. We also observed a negative relationship
661 between the enrichment of neuronal pathways and GFAP, Iba1, and AB1-42, highlighting the
662 potentially detrimental impact these cell types may have on neuronal functioning in the context of
663 AD. Fewer significantly enriched pathways were associated with NeuN load (age-adjusted and
664 non-age-adjusted), consistent with the subtle changes in load between 5XFADs of 6m and 14m.
665 The most highly enriched pathways for each stain and method (as labeled on the right of the
666 heatmap) were involved in chromatin organization, extracellular matrix organization, immune
667 system, metabolism of RNA, and the neuronal system. In comparing enriched pathways for age-
668 adjusted and non-age adjusted correlations per stain, the greatest difference in the presence of
669 significantly enriched pathways was observed within the cell cycle category for Iba1, GFAP, and
670 AB1-42 stain types. The enrichment of these pathways is consistent with the proliferation of
671 these cell types and pathology and the potential increase in immunoreactive cell cycle proteins⁶⁴.
672 A total of 42 cell cycle pathways were represented across these stain types after age
673 adjustment, while only 2 are present prior to adjustment. Moreover, many negatively enriched
674 pathways including those in the gene expression (transcription) and metabolism of RNA parent
675 pathways were observed almost exclusively within the non-age-adjusted category for GFAP,
676 Iba1, and AB1-42. This pattern of enrichment suggest a more pronounced involvement of these
677 types of pathways with AD-related deterioration with age than necessarily with increased glial

678 and pathology composition^{65,66}. Ultimately, by using these methods we have begun to
679 disseminate the effects of cell and pathology composition in the hippocampal formation and their
680 implication in biologically relevant pathways.

681

682 **Discussion**

683 Here, we report on the output from IHC sections of 37 mice from the AD BXD-panel obtained
684 using the expanded QUINT workflow. By adding new functionality to the QUINT workflow to
685 enhance the atlas-registration and perform quality control assessments, we increased the quality
686 of the regional quantification¹¹. We quantified age-related differences and characterized the
687 influence of genetic diversity among AD-BXD strains on NeuN, GFAP, Iba1, and AB1-42 load
688 across a validated list of Allen Mouse Brain Atlas CCFv3 2015 subregions⁴⁴. The importance of
689 recognizing this variation in cell and pathology composition was also reflected when integrating
690 gene expression and cell composition data from varying AD-BXD strains. The mouse panel used
691 in this study is considered translationally relevant since it includes strains that incorporate high
692 risk AD mutations (5XFAD) on backgrounds of genetic diversity, thus better recapitulating the
693 complex genotype-phenotype interactions in humans that contribute to symptom variability. The
694 AD-BXD panel provides a unique platform for exploring the effect of genetic background
695 variability on resilience to neurodegeneration, gliosis, and pathology with the potential to reveal
696 resilience genes or pathways that could be targeted for therapeutics.

697
698 We demonstrate the capacity of the QUINT workflow to effectively detect subtle differences in
699 regional loads in an accurate manner across the whole brain, which is paramount in the context
700 of high-throughput imaging studies that incorporate genetic diversity models of disease. The
701 quantification of these brains was made possible through the expansion of the QUINT workflow
702 through the development of VisuAlign and QCAlign, as well as through the addition of new
703 functionality to the existing Nutil software. The VisuAlign and QCAlign software were added to
704 the QUINT workflow for a number of reasons. While linear atlas-registration is a useful first step,
705 it often does not produce the required registration precision^{67–70}. VisuAlign provides the
706 capability to make nonlinear adjustments to the linear atlas-registration achieved using QuickNII,
707 thus correcting for distortions in the sections introduced during the IHC section preparation as
708 well as for structural differences among brain regions in diverse disease models and age groups.
709 The importance of applying nonlinear refinements was demonstrated by the regional differences
710 in accuracy scores and loads achieved with QUINT-based registration using QuickNII only,
711 relative to registration using QuickNII and VisuAlign. Moreover, since changes driven by genetic

712 differences across strains are likely to be subtle and region-specific, it was crucial to have a
713 method for verifying that the atlas-registration output was accurate. This verification was
714 provided by the QCAlign tool. The limited variability in QCAlign accuracy scores between raters
715 and brains quantified in our 5-brain assessment heighten our confidence that the present cohort
716 of brains was consistently registered to a high standard. Another key functionality of QCAlign is
717 its ability to produce customized hierarchies, which aid in compensating for the difficulty of
718 accurately registering small regions that lack anatomical boundaries. To combat this issue, many
719 investigators generate lists of regions of interest (ROIs) that consist of compiled subregions^{71–73}.
720 Our QCAlign tool offers the functionality to create these customized hierarchies by parsing
721 through the 461 regions of the CCFv3 2015 and selecting subregions to compile into related
722 summary regions. Creating a custom hierarchy file from the standard atlas in QCAlign also
723 promotes the labeling of consistent ROIs among laboratories and the ability for anatomists to
724 subsequently verify that the regions selected in the chosen hierarchy are correctly aligned during
725 the registration process. The final feature of QCAlign was developed to detect sections or
726 regions not suited for QUINT analysis due to damage (tears, folds, etc.), artifacts, errors in
727 image acquisition, or other reasons that could potentially skew results. Percentage damage per
728 section or per region can be calculated after marking up sections in QCAlign with the damage
729 marker. This calculation supports removal of results according to transparent, systematic, and
730 reproducible criteria for streamlined high-throughput application.

731
732 Overall, the QUINT workflow has a number of advantages over alternative methods. Utilization
733 of the QUINT workflow promotes comprehensive regional analysis as defined by a standardized
734 reference atlas, which facilitates comparison, integration, and reproducibility of results across
735 studies in compliance with the FAIR guiding principles^{36,37}. The ability to share the intermediate
736 results of the workflow (the atlas maps and segmentations) as well as the final results (Nutil
737 Quantifier output) provides transparency and open science, which is important since the atlas-
738 registration and feature extraction steps are inherently subjective processes guided by user-
739 based expertise. Traditional IHC analysis methods that rely on manual delineation of brain
740 regions and counting via stereology are inefficient for brain-wide exploration in studies with large
741 numbers of animals^{74–77}. As demonstrated in the present study, the QUINT workflow has the
742 capacity to characterize transgenic models of disease of varying strains, ages, and genotypes;
743 and is designed to support large-scale comparative studies^{78,79}. The workflow is customizable,
744 enabling analysis at different levels of atlas granularity, and with optional features such as the
745 application of masks for hemisphere or other region-based comparisons. Also of note, QUINT is

746 highly accessible irrespective of coding ability since all the steps are performed in software that
747 have user-friendly graphical user interfaces (GUIs). While the subjective nature of the
748 registrations tools is a limitation of the QUINT workflow, it is countered by the addition of the
749 QCAlign software that provides a means to evaluate and document the quality of the atlas-
750 registration performed in the workflow. Another limitation of QUINT is that nonlinear VisuAlign
751 adjustment can be labor intensive, especially for sections that deviate considerably from
752 standard atlas plates. In these instances, nonlinear adjustments have to be applied manually to
753 match deviations in individual sections. Though this step is time consuming, our results
754 demonstrate that it is important since nonlinear refinement considerably improves the quality of
755 the atlas-registration, as well as the quality of the regional results. Efforts to further automate the
756 atlas-registration step using deep neural networks are underway (DeepSlice)⁶⁸. This QUINT
757 compatible software automates the linear registration step (task currently completed in QuickNII)
758 for whole brain coronal mouse sections, with versions for sagittal and horizontal sections in the
759 pipeline.

760
761 The QUINT workflow is a powerful approach for the high-throughput exploration that is needed
762 to unravel the complexity of AD. Using this approach, we further validated the severity of
763 neuroinflammation and pathology accumulation within the brains of aging 5XFAD animals^{55,80-82}
764 and expanded the extent of anatomical regions investigated in a diverse AD population. AB1-42
765 levels increased in a widespread manner as 5XFAD mice aged from 6m to 14m. This trend was
766 also seen as near global increases in GFAP and Iba1 were observed across this AD-BXD
767 population^{55,82}. The hippocampus is particularly susceptible to pathology accumulation and
768 atrophy in human patients and a similar decline is also detected in mouse models that display
769 hippocampal degeneration measured via magnetic resonance imaging/IHC^{55,80,82-90}. We
770 demonstrate that regions that exhibited neurodegeneration, like the Ammon's horn, were also
771 among those that exhibited the greatest increase in amyloid and neuroinflammation. Previous
772 literature in the 5XFAD model has described visible loss in Layer 5 of the cortex by 9m of age in
773 comparison to Ntg animals^{55,81}, but due to the nature of our current study and the
774 overrepresentation of female 5XFADs we were unable to make this comparison; however, we
775 did detect variation in NeuN load among strains within our AD-BXD population. We can begin to
776 highlight the effect of the 5XFAD transgene and genetic diversity on brain tissue composition in
777 the AD-BXD panel. Genetic differences amongst strains may influence how each strain copes
778 with neuropathology, and the extent of neurodegeneration that occurs with age. Strains can be
779 stratified as resilient or susceptible to AD pathology: with resilient strains potentially mitigating

780 neuron loss in response to neuroinflammation and pathology accumulation, or alternatively
781 staving off severe pathology accumulation all together.

782
783 Moreover, we establish an example of how the output from the QUINT workflow can be
784 integrated with a range of data types, including omics data. RNAseq is a common method of
785 profiling gene expression changes between cases and controls and at different disease stages;
786 however, results from bulk tissue samples reflect an average gene expression profile across
787 heterogeneous populations of cells²⁴, meaning that expression differences may reflect cell-
788 composition differences across tissue samples, in addition to true transcriptional differences
789 across groups. Determining whether gene hits, established while analyzing bulk RNAseq data,
790 are driven by changes in transcriptional regulation or relative proportions of different cell types in
791 the samples is crucial to establish and properly validate gene candidates of resilience or
792 susceptibility to AD^{14,25,26}. Recent AD case/control single-nucleus RNA-sequencing datasets
793 offer the opportunity to better resolve such cellular differences^{14,91–94}, but have restrictive
794 technical and cost constraints that can limit the size of such datasets in terms of cells collected
795 and individuals sampled⁹⁵. These limitations as well as the variable performance of
796 deconvolution methods can make it difficult to establish distinct robust cell-type specific
797 differences in gene expression among heterogenous AD populations. While traditional methods
798 for determining cell-type composition, such as IHC or flow cytometry, rely on a limited set of
799 molecular markers and lack in scalability relative to the current rate of data generation, the use
800 of the QUINT workflow can expedite this process. Here we were able to quantify IHC from 39
801 brains using the QUINT workflow, which streamlined our analysis resulting in high-quality output,
802 and enabled the integration of multiple data types.

803
804 To combat the limitations of RNAseq, we integrated IHC-quantified cell composition and
805 RNAseq using mixed modelling correlations. By controlling for age, we were able to establish
806 candidate genes associated with cell composition dependent and independent of the effect of
807 age with AD on variation in load and changes in gene expression. The resulting substantial
808 proportion of genes correlated with load highlights the importance of considering cell
809 composition when analyzing RNAseq data. We also unmasked a unique subset of genes that
810 exhibited no age-related changes in gene expression yet were correlated with variation in load
811 within the age groups examined. Many of the genes that were exclusively significantly correlated
812 with hippocampal formation load following age adjustment were enriched for cell cycle and
813 immune system pathways. By establishing which genes in our dataset are driven by cell and

814 pathology load before and after adjusting for age, we can establish a series of guidelines for
815 prioritizing gene candidates, optimal approaches for modulating genes of interest, and criteria to
816 determine whether candidates should be targeted in a cell-type- specific manner. This study
817 serves as proof-of-concept that IHC data, quantified by the QUINT workflow, can be used as a
818 proxy for cell-type composition in the analysis of RNAseq data, and to demonstrate that changes
819 in gene expression may be relative to variation in cell composition exhibited with age and AD.
820 Due to the nature of this dataset, our analysis was a partial mediation that was only able to begin
821 to disentangle the effect of load, gene expression, and age with AD. Further unravelling this
822 relationship and the effect of the 5XFAD transgene and amyloid accumulation will require
823 additional analyses including nontransgenic animals.

824
825 Future investigations will aim to increase the sample size of various AD-BXD strains to confirm
826 and expand upon the current findings. Moreover, the AD-BXD panel has proven to be a strong
827 population to complete genetic mapping of behavioral traits^{11,13–16,96,97}, and current efforts are
828 underway to perform genetic mapping of these heritable cell and pathology load traits to identify
829 candidate genes of resilience and susceptibility to AD⁹⁸. These future studies will include non-
830 transgenic littermates, improved intra-strain power by increasing the number of replicates per
831 strain, and the consideration of sex as a biological factor by having equal number of male and
832 female counterparts in each experimental group. Furthermore, this upcoming analysis will utilize
833 the latest version of the CCFv3 (2017) at the intermediate hierarchy established in this study as
834 a baseline for detecting changes in regional cell and pathology load.

835
836 In conclusion, we provide the most detailed regional characterization of the 5XFAD mice known
837 to date. The QUINT workflow, with the recent addition of VisuAlign and QCAlign, proved to be a
838 highly effective method and a necessary tool for registering and quantifying cell and pathology
839 changes in diverse disease models like the AD-BXD panel. Achieving high confidence regional
840 output of AD-relevant cell types and pathology also facilitated the exploration of genotype and
841 cell composition relationships. We aim to improve rigor and reproducibility by characterizing the
842 effects of genetic diversity with AD on cell composition and therefore we suggest that bulk-
843 RNAseq data needs to be integrated with cell load to generate robust and reproducible results.
844 By achieving cell and pathology quantification in hemibrains of these mice, we provide a
845 framework for investigators to characterize diverse disease models and integrate their data with
846 a range of behavior and/or omics data.

847 **Acknowledgements**

848 This study is part of the National Institute on Aging Resilience-AD program and is supported
849 through the NIA parent grant Systems Genetics Analysis of Resilience to Alzheimer's disease:
850 [R01AG057914](#) and supplements R01AG057914-02S1 R01AG057914-03S1 awarded to Dr.
851 Catherine Kaczorowski, The Jackson Laboratory.

852

853 The software tools, developed by the Nesys laboratory, University of Oslo, Norway, were funded
854 by EU Horizon 2020, Specific Grant Agreement No. 945539 (Human Brain Project SGA3)
855 awarded to Dr. Jan G. Bjaalie. Workflow optimization for brain-wide spatial analysis to identify
856 regional and cell-type correlates of resilience to Alzheimer's in the AD-BXD mouse population
857 (BRAINSPACE project) received support from the HBP Voucher Programme call 2019 (ID 66)
858 awarded to Dr. Catherine Kaczorowski, The Jackson Laboratory and Dr. Maja Puchades,
859 University of Oslo.

860

861 **Author Contributions**

862 Writing of manuscript: B.G. and S.C.Y.

863 Revision of manuscript: B.G., S.C.Y., N.H., M.T., K.O., T.M., I.B., H.K., T.B.L., M.A.P., J.G.B.,
864 and C.C.K.

865 Registration and segmentation of brains: B.G.

866 Curation of registration and segmentation of brains: S.C.Y. and M.A.P.

867 Generation of results for QUINT workflow validation in QCAlign: B.G., S.C.Y., MT, AO, TO, SS,
868 TM, IB, HK, and US

869 Data analysis (QCAlign output, Nutil output, IHC-RNAseq integration): B.G., S.C.Y., N.H., and
870 M.T.

871 Data interpretation: B.G., S.C.Y., N.H., M.T., C.C.K., K.O., M.A.P., J.G.B.

872 Development of experimental design: C.C.K., J.G.B., M.A.P.

873 Development of QUINT tools (VisuAlign, QCAlign, QNLMask, Nutil): S.C.Y., G.C., N.E.G., T.B.L.,
874 M.A.P., J.G.B.

875

876 All authors reviewed and approved of the final manuscript.

877

878 **Declaration of Interests**

879 The authors declare no competing interests.

880

881 **Main Figure Legends**

882

883 **Figure 1.** Study design and QUINT workflow overview.

884 **a.)** Regional pathology and cell composition were quantified using the expanded QUINT
885 workflow. 1) Raw images were processed to meet size requirements. 2.) Brain sections were
886 registered to the Allen Mouse Brain Atlas CCFv3 2015 in QuickNII and refined using VisuAlign.
887 Hemibrain masks were created in QNLMask 3.) Ilastik pixel classification was used to establish
888 cell detection parameters for each stain and converted to RBG format in FIJI. 4.) Post-
889 registration quality control assessment was performed using the novel QCAlign tool. 5.)
890 Segmentation, registration, and mask creation steps were combined using Nutil to receive
891 percent stain-positive cell coverage per region area. **b.)** Immunohistochemistry was completed
892 for an experimental cohort of 40 mice from the AD-BXD mouse model of AD (see Supplemental
893 Table 1). Adapted from Neuner et al., 2019. **c.)** Brain sections of 6m and 14m mice were
894 sectioned and stained for thionine, NeuN, GFAP, Iba1, and AB1-42 via Neuroscience
895 Associates. **d.)** Representative images from each step in the QUINT workflow.

896

897 **Figure 2.** QCAlign verification of regional atlas-registration at the selected intermediate
898 hierarchy level

899 **a.)** QCAlign quality control assessment can be completed after rigid QuickNII registration alone
900 or following the use of QuickNII and VisuAlign to verify the registration to each region in the
901 sections. Inset) Example of completed QCAlign assessment in the hippocampal formation after
902 QuickNII Only and QuickNII + VisuAlign registration. **b.)** Mean accuracy scores per intermediate
903 hierarchy region after QuickNII registration alone (white) or after QuickNII and VisuAlign
904 registration (green). Two raters scored the same 5 randomly selected brains after QuickNII
905 registration alone, max n=10 per region (Raters: n= 2 per brain). Up to 10 raters scored the
906 same 5 randomly selected brains after QuickNII and VisuAlign registration, max n=36 per region
907 (Raters: n= 6-10 per brain). Dots represent the mean score across raters per region for 5 brains
908 \pm SEM, with the numbers labels representing the number of assessments contributing to each
909 calculation (QuickNII alone labels are below white points, QuickNII + VisuAlign labels are above
910 green points). **c.)** The impact of VisuAlign refinement on regional stain load (%-stain-positive
911 coverage/per region area) was measuring by calculating the difference in load following Nutil
912 quantification after each method (regional (QuickNII + VisuAlign output (%)) – regional (QuickNII
913 output(%)) = regional load difference (%)). Dots represent mean regional load difference \pm SEM
914 for all 5XFAD animals at 6m and 14m (6m: n=17, 14m: n=20).

915

916 **Figure 3.** Regional pathology and cell load vary from adulthood (6m) to middle age (14m) in
917 5XFAD mice.

918 **a.)** Regional cell and pathology load of the intermediate hierarchy regions of 5XFAD mice. i.
919 Differences in NeuN load between the age groups were limited across the intermediate
920 hierarchy regions. ii-iv. GFAP, Iba1, and AB1-42 load increased with age across most
921 intermediate hierarchy regions. Bars represent regional averages \pm SEM for 6m and 14m
922 groups. (5XFAD mice only, 6m: n=17, 14m: n=20). FDR corrected p-values represented. P-
923 value: * <0.05, ** <0.01, *** <0.001. **b.)** Strain averages of NeuN load across the hippocampal
924 formation and hippocampal intermediate hierarchy subregions. Points are mean load per strain.
925 Lines connect strain matches across the two age groups: 6m and 14m. Only strains with an
926 aged match counterpart are represented (5XFAD mice only, 6m: n=17, 14m: n=18, n= 1-3 per
927 strain). The B6 founder strain is labeled for reference.

928

929 **Figure 4.** Stain-specific load correlations with RNAseq gene expression to identify genes
930 impacted by changes in load within the hippocampal formation.

931 **a.)** Gene expression by load Pearson R correlation coefficients and p-value relationships without
932 age adjustment for each stain. Significantly correlated genes (uncorrected p-value < 0.05) are
933 colored in each plot. The percentage of uncorrected significant genes is indicated within the plot.
934 The top five positive and negative FDR significant (FDR p-value < 0.05) correlated genes are
935 labeled. **b.)** Gene expression by load Pearson R correlation coefficients and p-value
936 relationships after age adjustment for each stain. Significantly correlated genes (uncorrected p-
937 value < 0.05) are colored according to stain. The percentage of uncorrected significant genes is
938 indicated within the plot. The top five positive and negative FDR significant (FDR p-value < 0.05)
939 correlated genes are labeled. **c.)** Comparison of Pearson R correlation coefficients without and
940 with age adjustment per stain. Gene correlations that were exclusively significant (uncorrect-p-
941 value < 0.05) without age adjustment are considered age-dependent (orange). Gene
942 correlations that were exclusively significant (uncorrect-p-value < 0.05) with age adjustment are
943 considered age-independent (blue). The specific influence of age and load cannot be
944 disseminated in gene correlations that were significant (uncorrect-p-value < 0.05) under both
945 correlation conditions (green). All nonsignificant (uncorrect-p-value < 0.05) genes are labeled in
946 gray. The percentage of significant genes per category is represented in the bottom right corner.
947 The top 3 most significant genes per correlation method category are labeled per stain plot (FDR
948 p-value < 0.05). **d.)** Individual relationship between gene expression and load with age for the top

949 age-dependent and independently correlated genes with Iba1. i. *Galnt6* was exclusively
950 significantly correlated with Iba1 without age adjustment. An increase in Iba1 load and *Galnt6*
951 expression occurs between 6m and 14m. A positive relationship between Iba1 load and *Galnt6*
952 expression exists across both age groups as well as within each age group. ii. *Tmem39a* was
953 exclusively significantly correlated with Iba1 after age adjustment. An increase in Iba1 load but
954 not in *Tmem39a* expression occurs between 6m and 14m. A weak relationship between Iba1
955 load and *Tmem39a* expression exists across both age groups, but separate age-specific
956 correlations with load and gene expression exist. 5XFAD mice only, 6m: n=17, 14m: n=20.
957

958 **Figure 5.** Gene Set Enrichment Analysis (GSEA) of gene correlations per method categorized
959 by Reactome parent pathway.

960 **a.)** Pearson R correlation coefficients from Figure 4a and Figure 4b were input into WebGestalt
961 GSEA to obtain significantly enriched pathways associated with each stain and correlation
962 method (normalized enrichment, non-age-adjusted and age-adjusted). The top three most
963 significant pathways per stain and methods are labeled (FDR p-value< 0.05) (right).
964

965 **Supplemental Information: Figure and Table Legends**

966
967 **Supplemental Figure 1:** Intermediate hierarchy and QCAlign quality control assessment of
968 atlas registration of thionine sections.

969 **a.)** Intermediate hierarchy depiction over every thionine section of a representative brain
970 following atlas registration using QuickNII and VisuAlign. Allen Mouse Brain Atlas CCFv3
971 regions were compiled to make an intermediate hierarchy that promotes the assessment of
972 regional registration. **b.)** Representative quality control assessment of the atlas registration of a
973 thionine slice in QCAlign. Raters assigned grid markers verifying the registration of each point as
974 either accurate, inaccurate, or uncertain.
975

976 **Supplemental Figure 2:** QCAlign scores achieved based on quality control assessment of
977 intermediate hierarchy regions.

978 **a.)** Heatmap of regional accuracy scores per rater per brain. **b.)** Heatmap of regional uncertainty
979 scores per rater per brain. Gray regions were not represented in the brain series and/or did not
980 receive QCAlign scores for the measure. **c.)** Averaged uncertainty scores per intermediate
981 hierarchy region after QuickNII registration alone (white) or after QuickNII and VisuAlign
982 registration (green). Two raters scored the same 5 randomly selected brains after QuickNII

983 registration alone, max n=10 per region (Raters: n= 2 per brain). Up to 10 raters scored the
984 same 5 randomly selected brains after QuickNII and VisuAlign registration, max n=36 per region
985 (Raters: n= 6-10 per brain). Dots represent the mean score across raters per region for 5 brains
986 \pm SEM, with the numbers labels representing the number of assessments contributing to each
987 calculation (QuickNII alone labels are below white points, QuickNII + VisuAlign labels are above
988 green points).

989

990 **Supplemental Figure 3.** Variation in stain load exists among AD-BXD strains.
991 Strain averages of **a.)** GFAP, **b.)** Iba1, and **c.)** AB1-42 load across the hippocampal formation
992 and hippocampal intermediate hierarchy subregions. Points are mean load per strain. Each line
993 connects a pair of strain averages across the age groups: 6m and 14m. Only strains with an
994 aged match counterpart are represented (5XFAD mice only, 6m: n=17, 14m: n=18, n= 1-3 per
995 strain). The B6 founder strain is labeled for reference.

996

997 **Supplemental Table 1.** Strain, sex, age, 5XFAD genotype, and hemisphere metadata for all
998 animals with IHC completed for this study.

999

1000 **Supplemental Table 2.** Antibody and dilution information used by NSA for IHC staining.

1001

1002 **Supplemental Table 3.** List of sections removed from individual stain and brain Nutil
1003 quantification. Listed sections include those that had greater than 30% damage as measured in
1004 QCAlign or were excluded following manual inspection indicating that the majority of the section
1005 was distorted and unfit for quantification.

1006

1007 **Supplemental Table 4.** Customized intermediate hierarchy output from QCAlign. List of the 77
1008 intermediate hierarchy regions and the Allen Mouse Brain Atlas IDs that each region is
1009 comprised of.

1010

1011 **Supplemental Table 5.** Post-analysis region exclusion parameters. List of 77 regions (compiled
1012 by QCAlign from CCFv3 regions) and 5 additional summary regions (Nutil default regions, also
1013 compiled from CCFv3 regions) organized by their inclusion or exclusion from QCAlign analysis
1014 as represented in figure 2b, Nutil analysis as represented in figure 3a, or IHC and RNAseq
1015 integration in figures 4 and 5. “Parent term” are parent IDs, which do not represent any pixels in
1016 the CCFv3 and therefore did not generate results; “unassigned pixels” are pixels that are not

1017 assigned to a subregion but are instead labeled according to the parent region to which they
1018 belong within the Allen Mouse Brain Atlas CCFv3 2015; “low sampling” indicates that less than
1019 20 assessments out of 36 total possible assessments contributed to the mean accuracy QCAlign
1020 score for these regions. Some regions were excluded as they had been removed from the brain
1021 prior to IHC.

1022

1023 **Supplemental Table 6.** Wilcoxon test results assessing the difference in stain load quantified
1024 using QuickNII alone or using QuickNII and VisuAlign for the 55 regions assessed in Figure 2.
1025 The regional load per stain per age group among 5XFAD animals was compared between the
1026 two methods.

1027

1028 **Supplemental Table 7.** ANOVA results as output from R comparing regional stain load for all
1029 intermediate hierarchy regions between 6m and 14m animals. The regional load per stain per
1030 age group among 5XFAD animals was compared between the two age groups. FDR-corrected
1031 p-values are indicated as FDR_adjusted_pval.

1032

1033 **Supplemental Table 8.** Multilevel correlation results comparing gene expression and
1034 hippocampal load correlations both before and after age adjustment for 34 5XFAD animals.
1035 FDR-corrected p-values are indicated Age/Non-adjusted p-value (FDR corrected).

1036 **References**

1037 1. 2020 Alzheimer's disease facts and figures. *Alzheimer's & Dementia* **16**, 391–460 (2020).

1038 2. Congdon, E. E. & Sigurdsson, E. M. Tau-targeting therapies for Alzheimer disease. *Nat Rev Neurol* **14**, 399–415 (2018).

1039

1040 3. Breijeh, Z. & Karaman, R. Comprehensive Review on Alzheimer's Disease: Causes and Treatment. *Molecules* **25**, E5789 (2020).

1041

1042 4. Gómez-Tortosa, E. *et al.* Variability of Age at Onset in Siblings With Familial Alzheimer Disease. *Archives of Neurology* **64**, 1743–1748 (2007).

1043

1044 5. Ryman, D. C. *et al.* Symptom onset in autosomal dominant Alzheimer disease: A systematic review and meta-analysis. *Neurology* **83**, 253–260 (2014).

1045

1046 6. Dubois, B. *et al.* Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria. *Alzheimers Dement* **12**, 292–323 (2016).

1047

1048 7. Long, J. M. *et al.* Preclinical Alzheimer's disease biomarkers accurately predict cognitive and neuropathological outcomes. *Brain* **145**, 4506–4518 (2022).

1049

1050 8. Chen, Y.-H., Lin, R.-R., Huang, H.-F., Xue, Y.-Y. & Tao, Q.-Q. Microglial Activation, Tau Pathology, and Neurodegeneration Biomarkers Predict Longitudinal Cognitive Decline in

1051

1052 Alzheimer's Disease Continuum. *Frontiers in Aging Neuroscience* **14**, (2022).

1053 9. Moore, S. J., Murphy, G. G. & Cazares, V. A. Turning strains into strengths for

1054 understanding psychiatric disorders. *Mol Psychiatry* **25**, 3164–3177 (2020).

1055 10. Onos, K. D., Sukoff Rizzo, S. J., Howell, G. R. & Sasner, M. Toward more predictive genetic

1056 mouse models of Alzheimer's disease. *Brain Research Bulletin* **122**, 1–11 (2016).

1057 11. Neuner, S. M., Heuer, S. E., Huentelman, M. J., O'Connell, K. M. S. & Kaczorowski, C. C.

1058 Harnessing Genetic Complexity to Enhance Translatability of Alzheimer's Disease Mouse

1059 Models: A Path toward Precision Medicine. *Neuron* **101**, 399-411.e5 (2019).

1060 12. Neuner, S. M. *et al.* Translational approaches to understanding resilience to Alzheimer's

1061 disease. *Trends in Neurosciences* **0**, (2022).

1062 13. Heuer, S. E. *et al.* Identifying the molecular systems that influence cognitive resilience to
1063 Alzheimer's disease in genetically diverse mice. *Learn. Mem.* **27**, 355–371 (2020).

1064 14. Telpoukhovskaia, M. A. *et al.* Conserved cell-type specific signature of resilience to
1065 Alzheimer's disease nominates role for excitatory cortical neurons. 2022.04.12.487877
1066 Preprint at <https://doi.org/10.1101/2022.04.12.487877> (2022).

1067 15. Dai, M. *et al.* Hypothalamic gene network dysfunction is associated with cognitive decline
1068 and body weight loss in Alzheimer's disease mice. 2022.04.08.487664 Preprint at
1069 <https://doi.org/10.1101/2022.04.08.487664> (2022).

1070 16. Neuner, S. M., Heuer, S. E., Zhang, J.-G., Philip, V. M. & Kaczorowski, C. C. Identification of
1071 Pre-symptomatic Gene Signatures That Predict Resilience to Cognitive Decline in the
1072 Genetically Diverse AD-BXD Model. *Frontiers in Genetics* **10**, (2019).

1073 17. Guzmán-Vélez, E. *et al.* Amyloid- β and tau pathologies relate to distinctive brain
1074 dysconnectomics in preclinical autosomal-dominant Alzheimer's disease. *Proceedings of the
1075 National Academy of Sciences* **119**, e2113641119 (2022).

1076 18. Quiroz, Y. T. *et al.* Association Between Amyloid and Tau Accumulation in Young Adults
1077 With Autosomal Dominant Alzheimer Disease. *JAMA Neurol* **75**, 548–556 (2018).

1078 19. Sperling, R. A. *et al.* Toward defining the preclinical stages of Alzheimer's disease:
1079 recommendations from the National Institute on Aging-Alzheimer's Association workgroups
1080 on diagnostic guidelines for Alzheimer's disease. *Alzheimers Dement* **7**, 280–292 (2011).

1081 20. Guennewig, B. *et al.* Defining early changes in Alzheimer's disease from RNA sequencing of
1082 brain regions differentially affected by pathology. *Sci Rep* **11**, 4865 (2021).

1083 21. Hohman, T. J. *et al.* Asymptomatic Alzheimer disease: Defining resilience. *Neurology* **87**,
1084 2443–2450 (2016).

1085 22. Bocancea, D. I. *et al.* Measuring Resilience and Resistance in Aging and Alzheimer Disease
1086 Using Residual Methods: A Systematic Review and Meta-analysis. *Neurology* **97**, 474–488
1087 (2021).

1088 23. Whitepaper: Defining and investigating cognitive reserve, brain reserve and brain
1089 maintenance. *Alzheimers Dement* **16**, 1305–1311 (2020).

1090 24. Li, X. & Wang, C.-Y. From bulk, single-cell to spatial RNA sequencing. *Int J Oral Sci* **13**, 1–6
1091 (2021).

1092 25. Srinivasan, K. *et al.* Untangling the brain's neuroinflammatory and neurodegenerative
1093 transcriptional responses. *Nat Commun* **7**, 11295 (2016).

1094 26. Consens, M. E. *et al.* Bulk and Single-Nucleus Transcriptomics Highlight Intra-Telencephalic
1095 and Somatostatin Neurons in Alzheimer's Disease. *Frontiers in Molecular Neuroscience* **15**,
1096 (2022).

1097 27. Patrick, E. *et al.* Deconvolving the contributions of cell-type heterogeneity on cortical gene
1098 expression. *PLOS Computational Biology* **16**, e1008120 (2020).

1099 28. Pascal, L. E. *et al.* Correlation of mRNA and protein levels: Cell type-specific gene
1100 expression of cluster designation antigens in the prostate. *BMC Genomics* **9**, 246 (2008).

1101 29. Racle, J. & Gfeller, D. EPIC: A Tool to Estimate the Proportions of Different Cell Types from
1102 Bulk Gene Expression Data. *Methods Mol Biol* **2120**, 233–248 (2020).

1103 30. Jew, B. *et al.* Accurate estimation of cell composition in bulk expression through robust
1104 integration of single-cell information. *Nat Commun* **11**, 1971 (2020).

1105 31. Anene, C. A., Taggart, E., Harwood, C. A., Pennington, D. J. & Wang, J. Decosus: An R
1106 Framework for Universal Integration of Cell Proportion Estimation Methods. *Frontiers in
1107 Genetics* **13**, (2022).

1108 32. Avila Cobos, F., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P. & De Preter, K.
1109 Benchmarking of cell type deconvolution pipelines for transcriptomics data. *Nat Commun* **11**,
1110 5650 (2020).

1111 33. Kang, K., Huang, C., Li, Y., Umbach, D. M. & Li, L. CDSeqR: fast complete deconvolution for
1112 gene expression data from bulk tissues. *BMC Bioinformatics* **22**, 262 (2021).

1113 34. Sutton, G. J. *et al.* Comprehensive evaluation of deconvolution methods for human brain
1114 gene expression. *Nat Commun* **13**, 1358 (2022).

1115 35. Doostparast Torshizi, A., Duan, J. & Wang, K. A computational method for direct imputation
1116 of cell type-specific expression profiles and cellular compositions from bulk-tissue RNA-Seq
1117 in brain disorders. *NAR Genomics and Bioinformatics* **3**, lqab056 (2021).

1118 36. Bjerke, I. E. *et al.* Data integration through brain atlasing: Human Brain Project tools and
1119 strategies. *Eur Psychiatry* **50**, 70–76 (2018).

1120 37. Bolline, J., Lee, E.-F. & Toga, A. Digital atlases as a framework for data sharing. *Frontiers in*
1121 *Neuroscience* **2**, (2008).

1122 38. Yates, S. C. *et al.* QUINT: Workflow for Quantification and Spatial Analysis of Features in
1123 Histological Images From Rodent Brain. *Frontiers in Neuroinformatics* **13**, (2019).

1124 39. Puchades, M. A., Csucs, G., Ledergerber, D., Leergaard, T. B. & Bjaalie, J. G. Spatial
1125 registration of serial microscopic brain images to three-dimensional reference atlases with
1126 the QuickNII tool. *PLOS ONE* **14**, e0216796 (2019).

1127 40. Berg, S. *et al.* ilastik: interactive machine learning for (bio)image analysis. *Nat Methods* **16**,
1128 1226–1232 (2019).

1129 41. Groeneboom, N. E., Yates, S. C., Puchades, M. A. & Bjaalie, J. G. Nutil: A Pre- and Post-
1130 processing Toolbox for Histological Rodent Brain Section Images. *Frontiers in*
1131 *Neuroinformatics* **14**, (2020).

1132 42. Hammelrath, L. *et al.* Morphological maturation of the mouse brain: An in vivo MRI and
1133 histology investigation. *NeuroImage* **125**, 144–152 (2016).

1134 43. Hikishima, K. *et al.* In vivo microscopic voxel-based morphometry with a brain template to
1135 characterize strain-specific structures in the mouse brain. *Sci Rep* **7**, 85 (2017).

1136 44. Wang, N. *et al.* Variability and heritability of mouse brain structure: Microscopic MRI atlases
1137 and connectomes for diverse strains. *NeuroImage* **222**, 117274 (2020).

1138 45. Purger, D. *et al.* A histology-based atlas of the C57BL/6J mouse brain deformably registered
1139 to in vivo MRI for localized radiation and surgical targeting. *Phys Med Biol* **54**, 7315–7327
1140 (2009).

1141 46. Chen, X. J. *et al.* Neuroanatomical differences between mouse strains as shown by high-
1142 resolution 3D MRI. *Neuroimage* **29**, 99–105 (2006).

1143 47. Wang, Q. *et al.* The Allen Mouse Brain Common Coordinate Framework: A 3D Reference
1144 Atlas. *Cell* **181**, 936-953.e20 (2020).

1145 48. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat Methods*
1146 **9**, 676–682 (2012).

1147 49. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for
1148 RNA-seq data with DESeq2. *Genome Biology* **15**, 550 (2014).

1149 50. Makowski, D., Ben-Shachar, M., Patil, I. & Lüdecke, D. Methods and Algorithms for
1150 Correlation Analysis in R. *JOSS* **5**, 2306 (2020).

1151 51. Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt 2019: gene set analysis
1152 toolkit with revamped UIs and APIs. *Nucleic Acids Research* **47**, W199–W205 (2019).

1153 52. Wang, J., Vasaikar, S., Shi, Z., Greer, M. & Zhang, B. WebGestalt 2017: a more
1154 comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit.
1155 *Nucleic Acids Research* **45**, W130–W137 (2017).

1156 53. Wang, J., Duncan, D., Shi, Z. & Zhang, B. WEB-based GEne SeT AnaLysis Toolkit
1157 (WebGestalt): update 2013. *Nucleic Acids Research* **41**, W77–W83 (2013).

1158 54. Zhang, B., Kirov, S. & Snoddy, J. WebGestalt: an integrated system for exploring gene sets
1159 in various biological contexts. *Nucleic Acids Res* **33**, W741-748 (2005).

1160 55. Oakley, H. *et al.* Intraneuronal beta-Amyloid Aggregates, Neurodegeneration, and Neuron
1161 Loss in Transgenic Mice with Five Familial Alzheimer's Disease Mutations: Potential Factors
1162 in Amyloid Plaque Formation. *Journal of Neuroscience* **26**, 10129–10140 (2006).

1163 56. Tsui, K. C. *et al.* Distribution and inter-regional relationship of amyloid-beta plaque
1164 deposition in a 5xFAD mouse model of Alzheimer's disease. *Frontiers in Aging*
1165 *Neuroscience* **14**, (2022).

1166 57. Rao, Y. L. *et al.* Hippocampus and its involvement in Alzheimer's disease: a review. *3*
1167 *Biotech* **12**, 55 (2022).

1168 58. Habes, M. *et al.* Disentangling Heterogeneity in Alzheimer's Disease and Related Dementias
1169 Using Data-Driven Methods. *Biol Psychiatry* **88**, 70–82 (2020).

1170 59. Altschuler, S. J. & Wu, L. F. Cellular heterogeneity: when do differences make a difference?
1171 *Cell* **141**, 559–563 (2010).

1172 60. Wang, X. *et al.* Deciphering cellular transcriptional alterations in Alzheimer's disease brains.
1173 *Molecular Neurodegeneration* **15**, 38 (2020).

1174 61. Akasaka-Manya, K. & Manya, H. The Role of APP O-Glycosylation in Alzheimer's Disease.
1175 *Biomolecules* **10**, 1569 (2020).

1176 62. Akasaka-Manya, K. *et al.* Excess APP O-glycosylation by GalNAc-T6 decreases A β
1177 production. *The Journal of Biochemistry* **161**, 99–111 (2017).

1178 63. Zhang, L. *et al.* Sex-specific DNA methylation differences in Alzheimer's disease pathology.
1179 *Acta Neuropathol Commun* **9**, 77 (2021).

1180 64. Jordan-Sciutto, K. L., Malaiyandi, L. M. & Bowser, R. Altered Distribution of Cell Cycle
1181 Transcriptional Regulators during Alzheimer Disease. *J Neuropathol Exp Neurol* **61**, 358–
1182 367 (2002).

1183 65. Barash, S. *et al.* Alzheimer's brains show inter-related changes in RNA and lipid
1184 metabolism. *Neurobiology of Disease* **106**, 1–13 (2017).

1185 66. Liu, E. Y., Cali, C. P. & Lee, E. B. RNA metabolism in neurodegenerative disease. *Dis Model*
1186 *Mech* **10**, 509–518 (2017).

1187 67. Lauridsen, K. *et al.* A Semi-Automated Workflow for Brain Slice Histology Alignment,
1188 Registration, and Cell Quantification (SHARCQ). *eNeuro* **9**, (2022).

1189 68. Carey, H. *et al.* DeepSlice: rapid fully automatic registration of mouse brain imaging to a
1190 volumetric atlas. 2022.04.28.489953 Preprint at <https://doi.org/10.1101/2022.04.28.489953>
1191 (2022).

1192 69. Ju, T. *et al.* 3D volume reconstruction of a mouse brain from histological sections using warp
1193 filtering. *Journal of Neuroscience Methods* **156**, 84–100 (2006).

1194 70. Wahlsten, D., Hudspeth, W. J. & Bernhardt, K. Implications of genetic variation in mouse
1195 brain structure for electrode placement by stereotaxic surgery. *J. Comp. Neurol.* **162**, 519–
1196 531 (1975).

1197 71. Johnson, G. A. *et al.* HiDiver: A Suite of Methods to Merge Magnetic Resonance Histology,
1198 Light Sheet Microscopy, and Complete Brain Delineations. 2022.02.10.479607 Preprint at
1199 <https://doi.org/10.1101/2022.02.10.479607> (2022).

1200 72. Johnson, G. A. *et al.* Waxholm Space: An image-based reference for coordinating mouse
1201 brain research. *NeuroImage* **53**, 365–372 (2010).

1202 73. Takata, N., Sato, N., Komaki, Y., Okano, H. & Tanaka, K. F. Flexible annotation atlas of the
1203 mouse brain: combining and dividing brain structures of the Allen Brain Atlas while
1204 maintaining anatomical hierarchy. *Sci Rep* **11**, 6234 (2021).

1205 74. Ni, H. *et al.* DeepMap: a Fully Automatic Registration Method for Mesoscopic Optical Brain
1206 Images Using Convolutional Neural Networks. *Neuroinform* **19**, 267–284 (2021).

1207 75. Fürth, D. *et al.* An interactive framework for whole-brain maps at cellular resolution. *Nat
1208 Neurosci* **21**, 139–149 (2018).

1209 76. Lein, E. S. *et al.* Genome-wide atlas of gene expression in the adult mouse brain. *Nature*
1210 **445**, 168–176 (2007).

1211 77. Osten, P. & Margrie, T. W. Mapping brain circuitry with a light microscope. *Nature Methods*
1212 **10**, 515–523 (2013).

1213 78. Gurdon, B. *et al.* Brain-wide spatial analysis to identify region-specific changes in cell
1214 composition associated with resilience to Alzheimer's disease in the AD-BXD mouse
1215 population. *Alzheimer's & Dementia* **16**, e047613 (2020).

1216 79. Gurdon, B. & Kaczorowski, C. Pursuit of precision medicine: Systems biology approaches in
1217 Alzheimer's disease mouse models. *Neurobiol Dis* **161**, 105558 (2021).

1218 80. Jawhar, S., Trawicka, A., Jennekens, C., Bayer, T. A. & Wirths, O. Motor deficits, neuron
1219 loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal A β
1220 aggregation in the 5XFAD mouse model of Alzheimer's disease. *Neurobiology of Aging* **33**,
1221 196.e29-196.e40 (2012).

1222 81. Eimer, W. A. & Vassar, R. Neuron loss in the 5XFAD mouse model of Alzheimer's disease
1223 correlates with intraneuronal A β 42 accumulation and Caspase-3 activation. *Molecular*
1224 *Neurodegeneration* **8**, 2 (2013).

1225 82. Forner, S. *et al.* Systematic phenotyping and characterization of the 5xFAD mouse model of
1226 Alzheimer's disease. *Sci Data* **8**, 270 (2021).

1227 83. Oblak, A. L. *et al.* Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical
1228 Testing Applications: A MODEL-AD Study. *Front Aging Neurosci* **13**, 713726 (2021).

1229 84. Frankó, E., Joly, O. & Initiative, for the A. D. N. Evaluating Alzheimer's Disease Progression
1230 Using Rate of Regional Hippocampal Atrophy. *PLOS ONE* **8**, e71354 (2013).

1231 85. Apostolova, L. G. *et al.* Subregional hippocampal atrophy predicts Alzheimer's dementia in
1232 the cognitively normal. *Neurobiology of Aging* **31**, 1077–1088 (2010).

1233 86. Uysal, G. & Ozturk, M. Hippocampal atrophy based Alzheimer's disease diagnosis via
1234 machine learning methods. *Journal of Neuroscience Methods* **337**, 108669 (2020).

1235 87. Mueller, S. G. *et al.* Hippocampal atrophy patterns in mild cognitive impairment and
1236 Alzheimer's disease. *Human Brain Mapping* **31**, 1339–1347 (2010).

1237 88. DeTure, M. A. & Dickson, D. W. The neuropathological diagnosis of Alzheimer's disease.
1238 *Molecular Neurodegeneration* **14**, 32 (2019).

1239 89. Coupé, P., Manjón, J. V., Lanuza, E. & Catheline, G. Lifespan Changes of the Human Brain
1240 In Alzheimer's Disease. *Sci Rep* **9**, 3998 (2019).

1241 90. Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H. & Del Tredici, K. Staging of Alzheimer
1242 disease-associated neurofibrillary pathology using paraffin sections and
1243 immunocytochemistry. *Acta Neuropathol* **112**, 389–404 (2006).

1244 91. Mathys, H. *et al.* Single-cell transcriptomic analysis of Alzheimer's disease. *Nature* **570**,
1245 332–337 (2019).

1246 92. Cain, A. *et al.* Multi-cellular communities are perturbed in the aging human brain and
1247 Alzheimer's disease. 2020.12.22.424084 Preprint at
1248 <https://doi.org/10.1101/2020.12.22.424084> (2022).

1249 93. Zhou, Y. *et al.* Human and mouse single-nucleus transcriptomics reveal TREM2-dependent
1250 and TREM2-independent cellular responses in Alzheimer's disease. *Nat Med* **26**, 131–142
1251 (2020).

1252 94. Leng, K. *et al.* Molecular characterization of selectively vulnerable neurons in Alzheimer's
1253 disease. *Nat Neurosci* **24**, 276–287 (2021).

1254 95. Park, Y. *et al.* Single-cell deconvolution of 3,000 post-mortem brain samples for eQTL and
1255 GWAS dissection in mental disorders.
1256 <http://biorxiv.org/lookup/doi/10.1101/2021.01.21.426000> (2021)
1257 doi:10.1101/2021.01.21.426000.

1258 96. Neuner, S. M. *et al.* TRPC3 channels critically regulate hippocampal excitability and
1259 contextual fear memory. *Behav Brain Res* **281**, 69–77 (2015).

1260 97. Neuner, S. M. *et al.* Systems genetics identifies Hp1bp3 as a novel modulator of cognitive
1261 aging. *Neurobiology of Aging* **46**, 58–67 (2016).

1262 98. Gurdon, B. *et al.* Brain-wide spatial analysis reveals cell-type-specific genetic modifiers of
1263 Alzheimer's disease progression. *Alzheimer's & Dementia* **18**, e061853 (2022).

1264

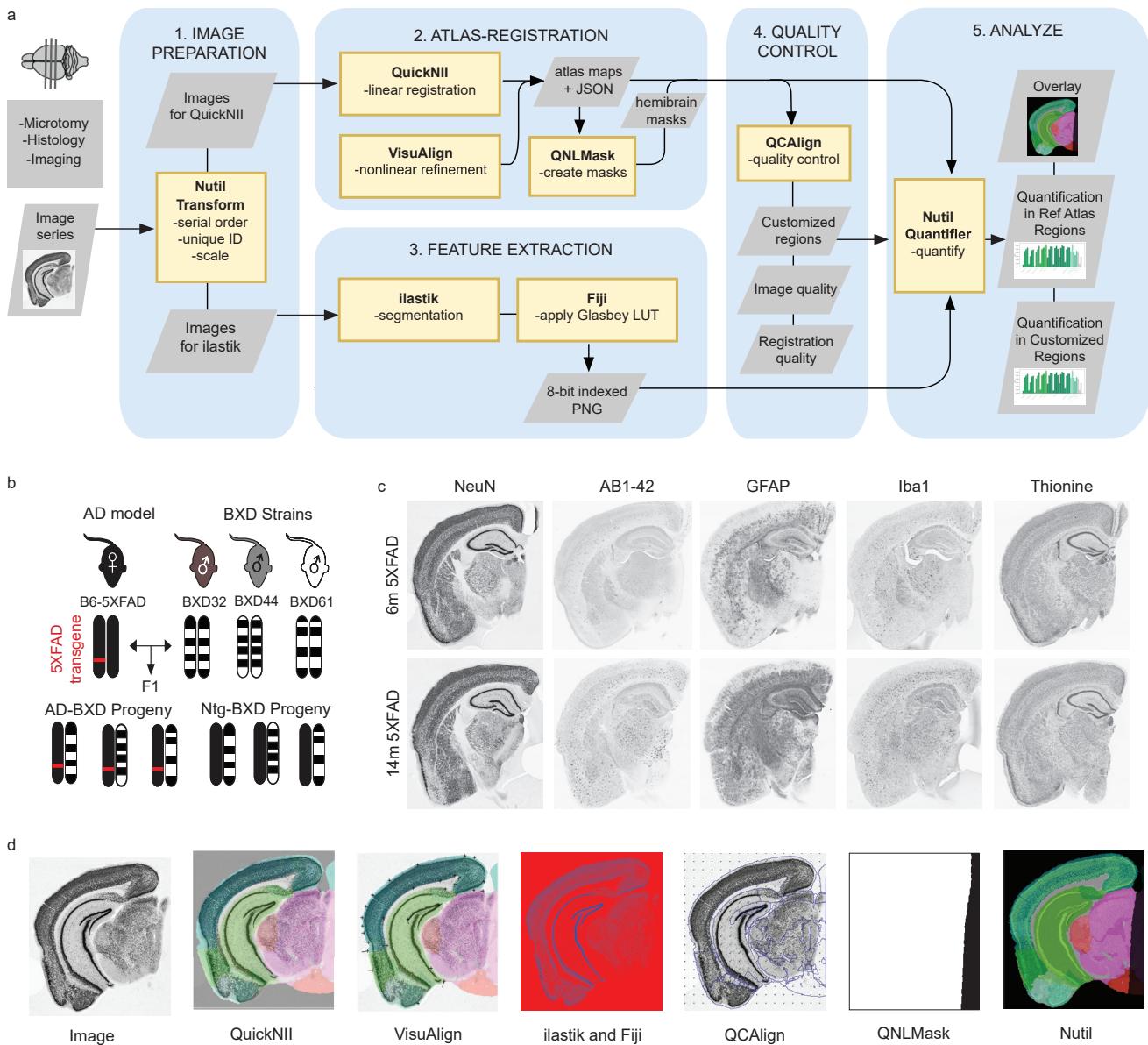


Figure 2

bioRxiv preprint doi: <https://doi.org/10.1101/2023.02.27.530226>; this version posted February 28, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

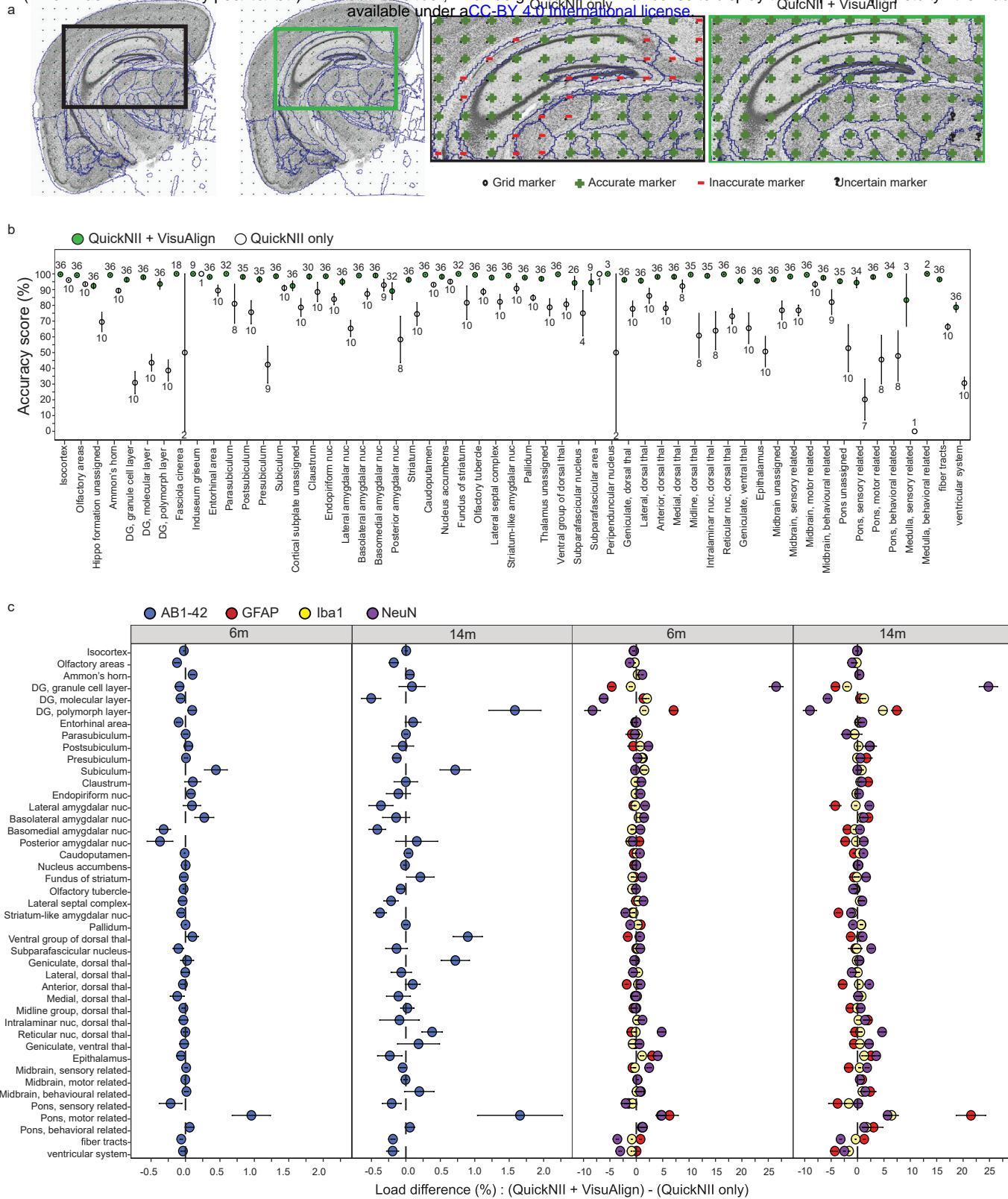


Figure 3

bioRxiv preprint doi: <https://doi.org/10.1101/2023.02.27.530226>; this version posted February 28, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

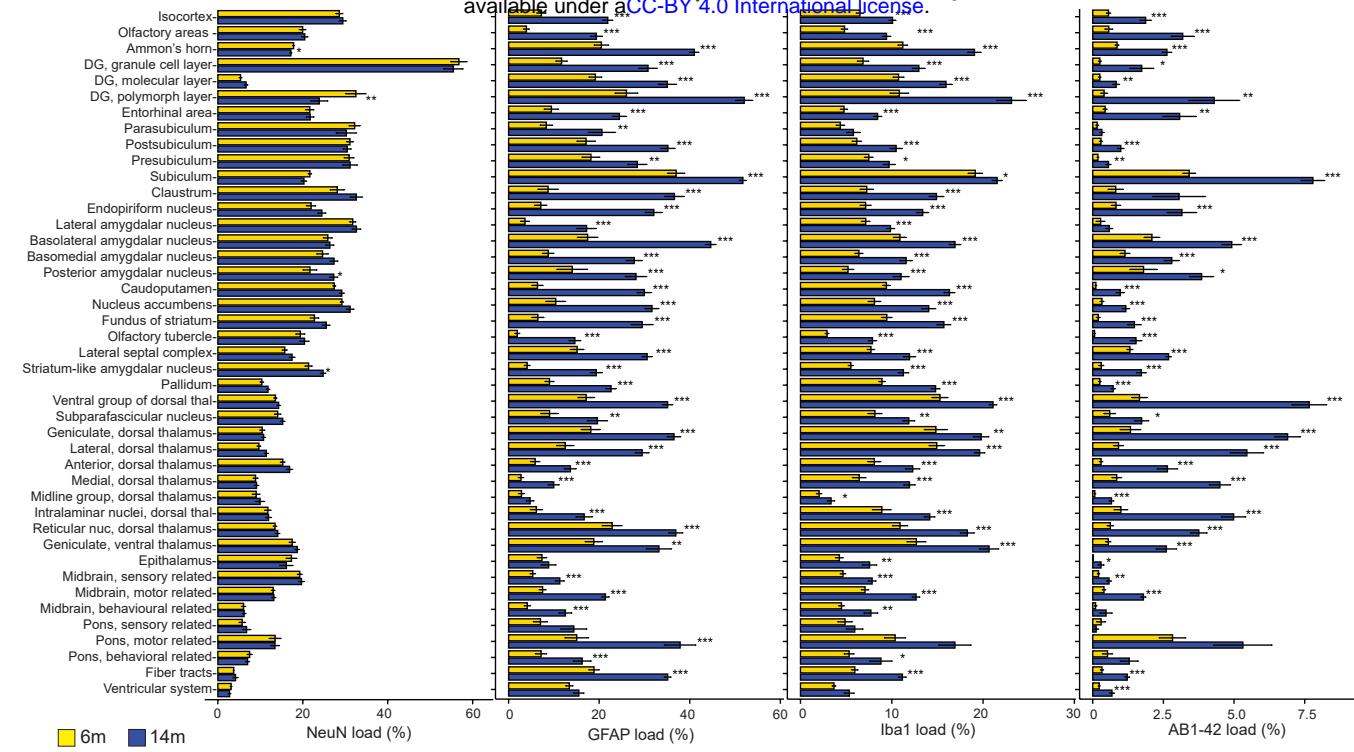
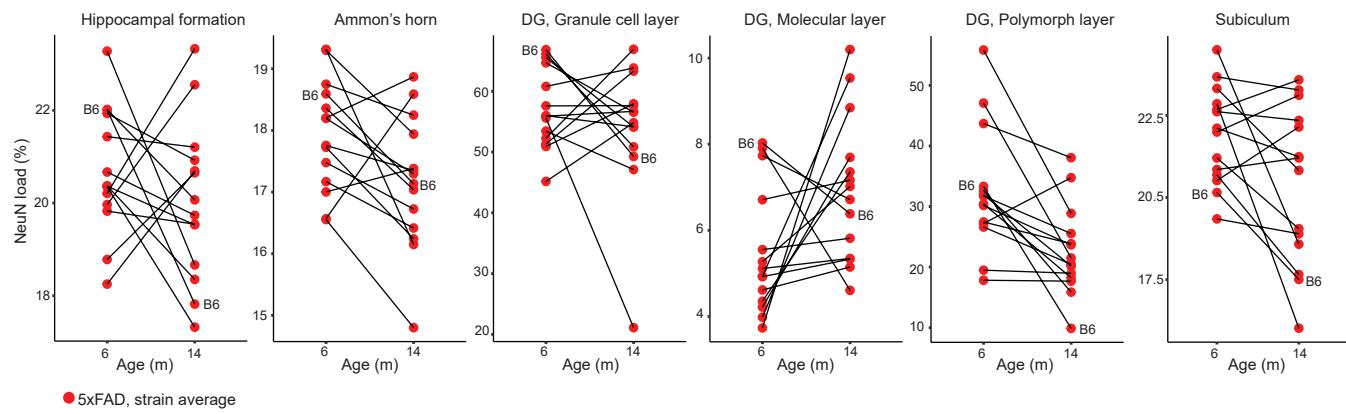
**b**

Figure 4

bioRxiv preprint doi: <https://doi.org/10.1101/2023.02.27.530226>; this version posted February 28, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

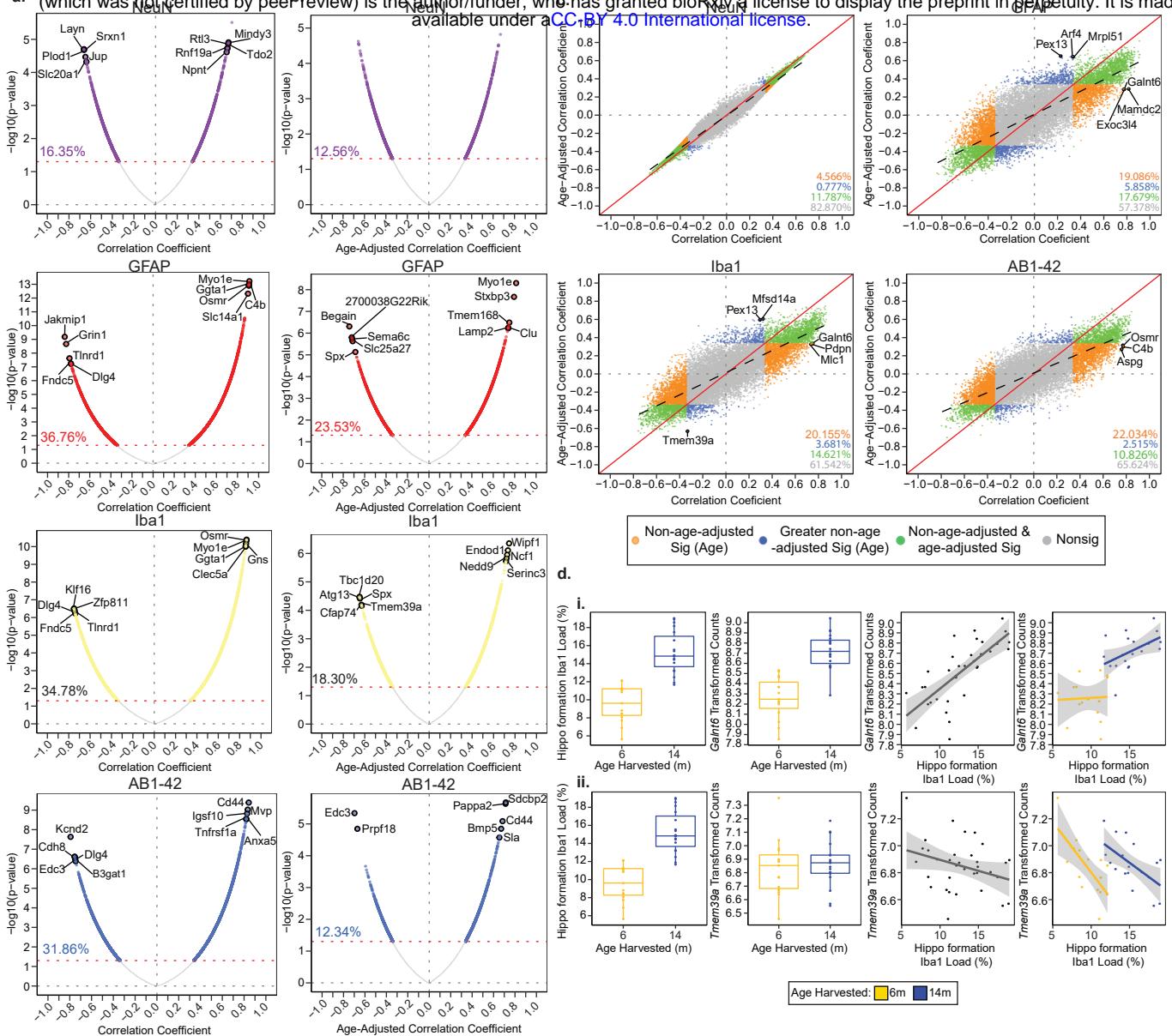


Figure 5.

