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22 Abstract

23 Alzheimer’s disease (AD) is characterized by neurodegeneration, pathology accumulation, and
24 progressive cognitive decline. There is significant variation in age at onset and severity of

25  symptoms highlighting the importance of genetic diversity in the study of AD. To address this, we
26 analyzed cell and pathology composition of 6- and 14-month-old AD-BXD mouse brains using
27  the semi-automated workflow (QUINT); which we expanded to allow for nonlinear refinement of
28  brain atlas-registration, and quality control assessment of atlas-registration and brain section
29 integrity. Near global age-related increases in microglia, astrocyte, and amyloid-beta

30 accumulation were measured, while regional variation in neuron load existed among strains.

31  Furthermore, hippocampal immunohistochemistry analyses were combined with bulk RNA-

32 sequencing results to demonstrate the relationship between cell composition and gene

33 expression. Overall, the additional functionality of the QUINT workflow delivers a highly effective

34  method for registering and quantifying cell and pathology changes in diverse disease models.
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Introduction

Alzheimer’s Disease (AD) is a multifaceted neurodegenerative condition that currently has no
cure and impacts millions around the globe'. AD is characterized by the accumulation of
amyloid-beta (AB) plaques, neurofibrillary tau tangles, severe gliosis, and progressive
neurodegeneration?, leading to clinical symptoms and cognitive decline that eventually lead to
death®. There is significant variation in the age at symptom onset and severity of cognitive
decline, with highly susceptible individuals exhibiting early onset and rapid decline, while resilient
individuals remain cognitively intact late in life*5. Further characterization of pathology
development including neurodegeneration, amyloid-beta deposition, and neuroinflammation is
needed to better understand the impact of this variation on clinical disease outcomes. Moreover,
this characterization is highly relevant since changes in the composition of brain tissue and the
development of neuropathology can precede (and might even predict) clinical symptoms, and
therefore serves as a valuable resource for defining disease subtypes and possible mechanisms

of resilience®8.

Mouse models of AD offer the opportunity to study changes in brain pathology in a controlled
manner to gain a better understanding of how AD manifests and may progress in humans®. In
these models, organism-wide, brain-wide, or region-specific imaging and omics approaches can
be implemented for the investigation of disease stages using cross-sectional or longitudinal
study designs. To combat the lack of heterogeneity of traditional inbred AD mouse models, the
AD-BXD mouse population that better recapitulates the complex heterogeneity of genetic,
molecular, and cognitive features of human aging and AD was utilized in this study'"'?. The AD-
BXD population was generated by crossing the C57BL/6J(B6)-5XFAD AD mouse model with
strains from the BXD panel''. Despite being driven by alleles typically found in cases of early-
onset AD, in the genetically diverse BXD strains, the 5XFAD transgene leads to a spectrum of
phenotypes that recapitulate the clinical and pathological variation of late-onset AD'":'*-'6, Since
the relationship between symptomatology and changes in the composition of brain tissue is not
fully understood, assessing changes in cell and pathology organization across a mouse
population that models the heterogeneity of human AD may highlight brain regions and cell
types associated with cognitive susceptibility or resilience to neurodegeneration, gliosis, and

pathology'’=23,

In addition to characterizing AD with imaging outcomes of cell composition in mouse models,

changes with AD can be described by investigating deviations in gene expression among
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69  different cell types of the brain. Bulk RNA-sequencing (RNAseq) is a common method to study
70  gene expression profiles of brain regions of interest; however, it is crucial to note that gene
71  expression data generated from a tissue sample reflects an average gene expression profile
72 across heterogeneous populations of cells?*. Consequently, consideration of individual
73  differences in regional cell composition is vital when interpreting the results from RNAseq data
74  from different mouse strains and patient samples. Since AD has a substantial impact on brain
75  structure, observed changes in gene expression in bulk tissue are likely to be masked by
76  changes in cell-type composition across varying disease stages. In many AD studies that
77  conduct RNAseq to determine disease signatures, it is not clear whether observed differences in
78  gene expression among AD samples or between AD samples and controls are due to changes
79 in transcriptional regulation or the relative proportions of different cell types in the tissue
80 samples™?526 Measuring cell composition and recognizing the contribution of cell abundance
81  when associating gene expression to disease traits is important for reducing spurious
82  associations between AD phenotypes and gene expression?’28, Deconvolution methods have
83  been created in an attempt to estimate the proportions of different cell types in RNAseq results
84  and to distinguish changes in gene expression stemming from changes in cell-type compositions
85  versus alterations in gene activity?®-*; however, the performance of deconvolution tools are
86  highly variable?°.
87
88  Immunohistochemistry (IHC) quantification is the gold standard for measuring the cell
89  composition of a tissue sample. When combined with brain-wide analysis methods that utilize
90 reference atlases of the brain®’, IHC is a powerful tool that can be used to better understand
91 the changes in cell composition that occur with age and AD, and the relative relationship
92  between cellular load and gene expression. The QUINT workflow® is one such semi-automated
93 analysis method that combines a tool for registering histological brain section images
94  (QuickNII®*) to a reference atlas of the brain, with tools for extracting (ilastik*®) and quantifying
95  IHC-stained features (Nutil*'). A key step in the QUINT workflow is that customized atlas-plates,
96 derived from a three-dimensional brain atlas, are linearly registered to brain section images®.
97  However, with morphological differences seen among mouse strains, disease states, and
98 ages*?*%, and morphological distortions occurring during histological processing, linear
99 registration is often insufficient to achieve accurate anatomical registration. This motivated the

100 expansion of the QUINT workflow with new functionality to increase the quality of the atlas-

101  registration by application of nonlinear refinements (VisuAlign); as well as providing a means to

102  verify the atlas-registration by systematic random sampling (QCAlign). Here, we utilize the
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103  expanded QUINT workflow to characterize regional composition of neurons, reactive astrocytes,
104  microglia, and amyloid beta pathology across brains of AD-BXD mice at different ages, in

105 regions defined by the Allen Mouse Brain Common Coordinate Framework v3 (CCFv3). By

106 completing this analysis, we provide an expansive brain-wide characterization of diverse 5XFAD
107 mice and 1). assess changes in cell and pathology composition between AD-BXD animals at 6
108 and 14-months of age, 2). assess variation in cellular abundance among AD-BXD strains, and
109  3). interpret bulk RNAseq data with respect to the cellular-abundance, in order to differentiate
110 effects driven by AD from effects driven by cellular composition in the hippocampal formation.
111

112  Methods

113  Method relating to the mice and IHC

114  Bioethics

115  All mouse experiments occurred at the University of Tennessee Health Science Center and were
116  carried out in accordance with the principles of the Basel Declaration and standards of the

117  Association for the Assessment and Accreditation of Laboratory Animal Care (AAALAC), as well
118  as the recommendations of the National Institutes of Health Guide for the Care and Use of

119  Laboratory Animals. The protocol was approved by the Institutional Animal Care and Use

120 Committee (IACUC) at the University of Tennessee Health Science Center.

121

122 Animals

123 All data used in this study are from the AD-BXD panel, which have been previously described
124  (Figure 1b). Briefly, female B6 mice hemizygous for the 5XFAD transgene (B6.Cg-

125  Tg(APPSweF1LonPSEN1*M146L*L286V)6799Vas/ Mmjax, Stock No. #24848-JAX) were mated
126  to males from the BXD genetic reference panel resulting in sets of isogenic F1 AD-BXD strains
127  that either harbor the 5XFAD transgene or are nontransgenic (Ntg)-BXD littermate “normal

128 aging” controls. Male and female AD-BXD mice were group housed as a mix of 5XFAD and Ntg
129  same-sex littermates (2-5 per cage) and maintained on a 12-hour light—dark cycle with ad

130  libitum access to food and water. All mice were genotyped for the 5XFAD transgene through a
131  combination of in-house genotyping according to The Jackson Laboratory Transgenic

132 Genotyping Services protocols for strain #34848-JAX and outside services (Transnetyx, TN,

133  USA). This study included a total of 40 mice (2 males and 38 females) of 6 months (6m; n=20)
134  and 14 months (14m; n=20). These included 29 mice from 14 AD-BXD strains (n = 1-4 mice per
135  strain); 8 mice from founder strains C57Bl/6J (B6) 5XFAD (n = 2), and F1 B6/DBA/2J (D2)


https://doi.org/10.1101/2023.02.27.530226
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.27.530226; this version posted February 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

136  5XFAD (n = 6); and 3 Ntg-BXD mice (all 6 m). An overview of all the animals included in the

137  study is given in Supplementary Table 1.

138

139  Immunohistochemistry

140  Tissue collection and shipment:

141  Mice were deeply anesthetized using isoflurane before decapitation and rapid removal of the
142  brain at appropriate time points (6m or 14m). The hypothalamus was dissected out and the brain
143  was bisected down the sagittal midline. One half of the brain was immediately further dissected
144  and snap frozen to be used for RNAseq and the other hemisphere was placed in 4%

145  paraformaldehyde and kept at 4°C to be used for IHC as previously described''3'® In order to
146  minimize technical variation in IHC, hemibrains were sent overnight to Neuroscience Associates
147  (Knoxville, TN), where the cerebellum was removed and hemibrains were embedded,

148  processed, and stained simultaneously in blocks of 40.

149

150  Neurohistology Embedding and Sectioning:

151  Hemibrains received at Neuroscience Associates were examined for overall tissue integrity (no
152  major damage or tissue breakdown), then treated overnight with 20% glycerol and 2%

153  dimethylsulfoxide to prevent freeze-artifacts. The specimens were then embedded in a gelatin
154  matrix using MultiBrain®/ MultiCord® Technology (Neuroscience Associates, Knoxville, TN).
155  The blocks were rapidly frozen, after curing by immersion in 2-Methylbutane chilled with crushed
156  dry ice and mounted on a freezing stage of an AO 860 sliding microtome. The MultiBrain®/

157  MultiCord® blocks were sectioned in coronally with desired micrometer (40p) setting on the

158  microtome. All sections were cut through the entire length of the specimen and collected

159  sequentially into series of 24 containers. All containers contained Antigen Preserve solution

160  (50% PBS pH7.0, 50% Ethylene Glycol, 1% Polyvinyl Pyrrolidone); no sections were discarded.
161

162  |HC staining:

163  Free floating sections were stained for AB1-42 (amyloid beta pathology), glial fibrillary acidic

164  protein (GFAP, reactive astrocytes) and ionized calcium binding adapter protein 1 (lba1,

165  microglia) on every 24th section spaced at 960 um, yielding approximately 9 sections per

166  hemibrain. Staining for NeuN (neurons) and thionine (Nissl, cell bodies) was performed on every
167  12th section spaced at 480 um, yielding approximately 19 sections per hemibrain. For AR1-42,
168 GFAP, Iba1l and NeuN, all incubation solutions from the blocking serum onward used Tris

169  buffered saline (TBS) with Triton X-100 as the vehicle; all rinses were with TBS. After a
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170  hydrogen peroxide treatment and blocking serum, the sections were immunostained with the
171  primary antibodies, as shown in Supplemental Table 2, overnight at room temperature. Vehicle
172 solutions contained Triton X-100 for permeabilization. Following rinses, a biotinylated secondary
173  antibody was applied. After further rinses Vector Lab’s ABC solution (avidin-biotin-HRP complex;
174  VECTASTAIN® Elite ABC, Vector, Burlingame, CA) was applied. The sections were again

175  rinsed, then treated with diaminobenzidine tetrahydrochloride (DAB) and hydrogen peroxide to
176  create a visible reaction product. Following further rinses, the sections were mounted on gelatin-
177  coated glass slides and air dried. The slides were dehydrated in alcohols, cleared in xylene and
178  cover slipped. For thionine-Nissl Staining sections were mounted on gelatin-coated glass slides,
179  air dried and carried through the following sequence: 95% ethanol, 95% ethanol/Formaldehyde;
180  95% ethanol, Chloroform/Ether/absolute ethanol (8:1:1), 95% ethanol; 10% HCl/ethanol, 95%
181  ethanol, 70% ethanol, deionized water, thionine (0.05% thionine/acetate buffer, pH 4.5) (Fisher,
182  T40925), deionized water, 70% ethanol, 95% ethanol, Acetic Acid/ethanol, 95% ethanol, 100%
183  ethanol, 100% ethanol, 1:1 100% ethanol/xylene, xylene, xylene, coverslip.

184

185  Slide identification and imaging:

186  Each slide was laser etched with the block number and the stain. Following serial ordering of the
187  slides, rostral to caudal for each stain, the slides were numbered by permanent ink in the upper
188  right corner.

189  Neuroscience Associates (NSA) performed scanning of each slide at 20x using a Huron Digital
190 Pathology TissueScope LE120 (0.4 microns/pixel). Brain image series were compiled by

191  reconstructing the IHC sections as sliced and indicated by NSA.

192

193  Further information and requests for resources and reagents should be directed to and will be
194  fulfilled by the Corresponding author.

195

196 Methods Related to QUINT Workflow Utilization

197  QUINT workflow development

198 The QUINT workflow supports brain-wide quantification of IHC data in relation to a reference
199 atlas such as the Allen Mouse Brain Common Coordinate Framework v3 (CCFv3). In the

200  workflow (Figure 1a), the QuickNIl software®® is used to spatially register atlas-plates from a 3D
201 digital brain atlas to serial section images, the ilastik software*’ is used to extract features from
202 the images, and the Nutil software*' is used to quantify features per atlas-region. To meet the
203  needs of the current project, two new software, VisuAlign (RRID: SCR_017978) and QCAlign
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204 (RRID:SCR_023088), were developed and integrated in the QUINT workflow. VisuAlign is used
205  to apply in-plane nonlinear refinements of the atlas to achieve the best fit over the section

206  images. This task is performed by visually identifying mismatches between section images and
207  the corresponding atlas plates, and manually assigning a set of anchor points denoting

208  corrections. VisuAlign then uses these anchor points to create a continuous, nonlinear

209 deformation field covering the entire section image. QCAlign is used to 1. detect sections or

210 regions not suited for QUINT analysis (i.e., due to damage), and 2. to assess the quality of the
211  atlas-registration to each region in the sections. Both QCAlign assessments are performed by
212 systematic random sampling. The second assessment is based on anatomical expertise by

213  evaluating how well delineations supplied by the atlas match up with boundaries revealed by
214  IHC-staining. Since validation of the atlas-registration is only possible for regions that have

215 visible boundaries in the sections, and reference atlases are structured in systematic hierarchies
216 that group related regions*’, functionality was also implemented in QCAlign for adjusting the
217  hierarchy to a customized level that supports verification of the regional registration (i.e. a level
218  where the delineations from the atlas roughly matching the boundaries that are visible in the
219  sections). This customized hierarchy level can be exported as a TXT file and used in the Nutil
220  software to define customized regions to use for the brain-wide quantification.

221

222 Image Pre-processing

223 To perform stain segmentation in ilastik, the images were inspected, cropped, and downscaled
224  using different scaling factors for the different stains (AB1-42: 0.20, GFAP: 0.40, Iba1: 0.40,

225  NeuN: 0.40, thionine: 0.35). Scaling factors were determined by gradually increasing the scaling
226  factor and manually determining the level at which the image file size was maximally reduced
227  without visually losing information and inducing blur. Images were then further downsampled to
228  fulfil the image size requirements of QuickNIl (scaling factor: 0.50) (detail at:

229  https://quicknii.readthedocs.io/en/latest/imageprepro.html ).

230

231  Image Registration to the CCFv3 with QuickNIl and VisuAlign

232 Serial section images from one brain (irrespective of stain) were combined into a descriptor XML

233 file using the QuickNII Filebuilder application (included in the QuickNIl download package).

234 QuickNIl (RRID:SCR_016854, QuickNII-ABAMouse-v3-2015 version 2.2) was used to perform
235  linear registration to the CCFv3 2015 followed by nonlinear refinement with VisuAlign (RRID:
236 SCR_017978, version 0.8). For each image series, the thionine-stained sections were registered

237  first since they provided the greatest visualization of region boundaries. Subsequently, all
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238  remaining sections were registered in a serial manner. Two independent raters evaluated the
239  registration of each section performed with QuickNII and the refinements made with VisuAlign.
240  Spatial registration data was exported from both QuickNII and VisuAlign in JSON and FLAT files
241  to be used in the Nutil software.

242

243  Cell Segmentation with ilastik

244  The ilastik software (RRID:SCR_015246) supports feature extraction by segmentation based on
245  supervised machine learning algorithms. For each stain, ten training images with representative
246  staining were loaded into the Pixel Classification workflow in ilastik (v.1.3.3). Two classes termed
247  “label’” and “background” were created, and annotations of each class were applied in all the
248  training images until the segmentation was deemed satisfactory and confirmed by two

249 independent raters. The trained classifiers were applied to all the images of that stain using the
250  batch processing function in ilastik. Segmented images were exported in 8-bit indexed PNG

251 format. Red-green-blue (RGB) colors were applied to the images with the Glasbey Lookup Table
252 in FIJI*8,

253

254  Evaluation of Section Image Quality with QCAlign

255  The QCAlign software (RRID:SCR_023088, version 0.7) was used to assess the integrity of the
256  sections for each brain image series (all 40 brains were assessed) using a 5-voxel grid spacing.
257  This involved marking up points that overlapped areas of damage (representing tears in the

258  tissue, folds, artifacts, and errors in image acquisition) for all sections. Results were exported in
259  TXT format and used to calculate percentage damage per section by dividing the number of
260 damage markers by the total number of markers overlapping the section (damage = # damage
261  markers per section / # of total markers per section). Section images with more than 30%

262  damage were deemed unsuited for QUINT analysis (Supplemental Table 3). Nutil results per
263  brain were re-calculated in R following removal of results from the damaged sections.

264

265  Creation of a Customized Atlas Hierarchy with QCAlign

266  Brain reference atlases such as the CCFv3 are organized in systematic hierarchies that group
267 related regions*’. A customized hierarchy level was created with QCAlign to be used for the

268  quality control assessment of the atlas-registration, and to define customized regions to be

269  quantified (hereafter referred to as the “intermediate hierarchy”). To create this intermediate

270 hierarchy, the atlas delineations supplied by the workflow were overlaid on the thionine-stained

271  sections at the finest level of atlas granularity (full expansion of the CCFv3). A grid of points with
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272 a 15-voxel grid spacing was applied to the images, with the registration accuracy of each point
273  marked up based on anatomical expertise (“accurate”, “inaccurate” or “uncertain”). If a region
274  received many “uncertain” markers due to obscure region boundaries, the hierarchy level was
275  adjusted one level up, and the process was repeated until the position of most of the markers
276  could be verified (either “accurate” or “inaccurate”). The customized hierarchy was exported as a
277  TXT file to be used in the Nutil software to define the regions for quantification (Supplemental
278  Table 4).

279

280  Quality Control Assessment of Atlas-Registration to the Section Images using QCAlign
281 Inthe QUINT workflow, 2D atlas-plates are created to match the cutting angle of the sections
282  and registered to the section images in a linear manner using QuickNII. Next, these atlas-

283  registrations are warped (in-plane) to provide a better fit to the sections using VisuAlign. To

284  determine the quality of the atlas-registration to each region in the intermediate hierarchy, ten
285 raters across two academic institutions were recruited to perform a quality assessment using the
286  QCAlign software. Raters varied in anatomical knowledge with expertise ranging from

287 postbaccalaureate researchers, Ph.D. students, senior post-doctoral fellows, and associate

288  research scientists in the field of neuroscience and neuroanatomy. Assessments were

289  performed on the atlas-registration achieved using QuickNIl only (2 raters), and on the atlas-
290 registration achieved using both QuickNII and VisuAlign (10 raters). All assessments were

291  performed on the thionine-stained sections from five brains (selected at random) at the

292  intermediate hierarchy level established by the method described above. To perform the

293  assessment, markers with a 15-voxel grid spacing were overlaid on the sections and the position
294  of each marker was assigned as either “accurate”, “inaccurate” or “uncertain” based on

295 anatomical expertise. This was determined by inspecting the position of the marker with respect
296  tovisual landmarks in the section and comparing that to the name of the region, which was

297  revealed by hovering over each marker. The atlas-delineations were switched “off” during this
298 assessment because the delineations obscure boundaries in the sections and may bias the

299  outcome.

300

301  The QCAlign results were exported in TXT format with counts of accurate, inaccurate, and

302 uncertain markers indicated per region, per section, and per brain. Regional accuracy,

303 inaccuracy, and uncertainty scores were calculated per rater/brain and per brain overall with R-
304  Studio (shared at https://github.com/Neural-Systems-at-UIO/BRAINSPACE). Uncertainty scores

305  were calculated by dividing the number of uncertain markers by the total number of markers in
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306 the region, reflecting the percentage of the region for which the registration could not be verified
307  as either accurate or inaccurate (Uncertainty Score = (# uncertain markers)/(# accurate markers
308 + #inaccurate markers + # uncertain markers). Since it was not possible to verify the registration
309 of all the points in the regions (some points were assigned uncertain markers due to a lack of
310 landmarks or limited expertise), the calculation of accuracy and inaccuracy scores correspond to
311 the parts of each region for which the registration could be verified. Thereby, accuracy scores
312  should be inspected together with the uncertainty scores, since a high uncertainty means that
313  the accuracy corresponds to a limited part of the region only. Regional accuracy scores were
314  calculated by dividing the total number of accuracy markers by the total number of accurate and
315 inaccurate markers within that region (uncertain markers did not contribute to this calculation)
316  (Accuracy Score = # accurate markers/ (# accurate markers + # inaccurate markers)). Mean
317  regional accuracy and uncertainty scores were calculated by dividing the summed score of all
318 assessments by the total number of assessments. For each intermediate hierarchy region, the
319 number of assessments contributing to the calculation of the mean accuracy and uncertainty
320 scores depended on the number of raters and number of brains assessed, as well as how often
321  accurate or inaccurate markers could be assigned by the raters (depending on presence of grid
322  markers in that region, tissue quality, and/or anatomical expertise, etc.). In some cases, regions
323  were marked entirely as uncertain by raters; therefore, excluding these assessments from the
324  mean accuracy calculation. For the registration achieved with QuickNII only, a maximum of 10
325 assessments were averaged across all raters/brains (Brain 1: two raters’ assessments, Brain 2:
326  two raters’ assessments, Brain 3: two raters’ assessments, Brain 4: two raters’ assessments,
327  Brain 5: two raters’ assessments). For the registration achieved with QuickNIl and VisuAlign a
328 maximum of 36 assessments were averaged across all raters/brains (Brain 1: ten raters’

329 assessments, Brain 2: seven raters’ assessments, Brain 3: seven raters’ assessments, Brain 4:
330 six raters’ assessments, Brain 5: six raters’ assessments).

331

332  Regional quantification of stain load with Nutil

333  Nutil (RRID: SCR_017183) supports regional quantification of IHC-stained features by applying
334  the Quantifier feature to combine the output from the atlas-registration (QuickNIl and VisuAlign)
335 and feature extraction (ilastik) steps. Nutil (v0.7.0) was used to quantify the percentage of IHC-
336  stained area per region area (hereafter referred to as “load”) in the customized regions defined
337 by the intermediate hierarchy level per stain and brain series. Since hemibrain sections rather
338 than whole brain sections were analyzed in the study, customized masks were created and used

339 to exclude the atlas regions located in the missing hemibrain from the quantification. The
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340 hemibrain masks were created with the QNLMask software that is shared with the VisuAlign
341  software (https://www.nitrc.org/projects/visualign). Nutil analysis was performed separately for
342  each stain, with quantification of regional load of neurons (NeuN), microglia (Iba1), reactive

343  astrocytes (GFAP), all nuclei (thionine), and beta-amyloid 1-42 pathology (AB1-42) achieved
344  according to the parameters defined in the NUT file (shared in the BRAINSPACE GitHub

345  repository). The object splitting feature was switched “on” to ensure correct calculation of the
346  regional loads. The NUT files were created and read into Nutil via the command line to batch-
347  process multiple brains in succession. The regional load values obtained from the Nutil reports
348  were used in downstream analysis. Regional load was quantified after QuickNII registration

349  alone, and following QuickNII registration supplemented with VisuAlign refinement. Regional
350 stain loads can either increase or decrease following nonlinear refinement compared to load
351 calculated after QuickNIl alone depending on the changes made to regional boundaries, the
352  overall density of pathology or cells in that region, and the stain being evaluated.

353

354  Sample and Region Exclusion from Post Analyses:

355  Data from one female 6m mouse of AD-BXD strain 44 was removed from the downstream

356  analysis because the majority of the sections were severely ripped prohibiting successful atlas-
357 registration. Quantification output from all of the 77 regions in the intermediate hierarchy file are
358 included in the Nutil reports (shared as the BRAINSPACE project on EBRAINS Knowledge

359  Graph Search, https://search.kg.ebrains.eu/). In the present study, 55 of these regions were
360 included in the QCAlign assessment of the atlas-registration across 5 brains; and 43 of these
361 regions were included in the assessment of cell and pathology load across 37 brains (5XFAD
362  mice only). Specific region exclusion criteria are reported in Supplemental Table 5. As a brief
363 summary, some of the atlas regions did not have results in the reports since they were not

364 represented in the sections or corresponded to a parent structure with results provided at a finer
365 level of atlas granularity. Regions with no biological results were disregarded from all analyses.
366  Furthermore, results from several regions were not analyzed in the present study due to low
367 representation in the sections.

368

369  Statistical analysis of QUINT data:

370  For each stain, the load values of 43 intermediate hierarchy provided by the Nutil software were
371  used for comparative analysis across 5XFAD brains at 6 m (n = 17) and 14 m (n = 20). Data
372  have been expressed as means * standard error of the mean (SEM) or as otherwise indicated in

373  graphs. Statistical analysis of data was performed using R version 4.0.0 (2020-04-24) -- "Arbor
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374 Day”. Wilcoxon two-way assessment (strain and age factors) was implemented to determine if
375 there were significant differences in the stain load as registered using QuickNIl alone vs

376  registered using QuickNIl and VisuAlign. Analysis of variance (ANOVA) (age and strain factors)
377  was used to determine whether there were significant differences in regional stain load between
378  6m and 14m groups. Multilevel Pearson correlations with and without age corrections were used
379  to evaluate the relationship between hippocampal stain load and gene expression. Multiple

380 testing corrections for each test was performed using false discovery rate (FDR) correction.

381  Criterion for measures to be considered uncorrected significant was p-value < 0.05 and

382  significant after correction was FDR p-value < 0.05.

383

384 Immunohistochemistry and Bulk RNA Sequencing Integration

385  To identify genes associated with variation in hippocampal cell and pathology load we integrated
386  our IHC quantification with RNAseq data. The goal of this analysis was to determine whether
387 changes in cell composition contributed to subsequent changes in hippocampal gene expression
388  detected via RNAseq. Only 5XFAD samples with paired IHC and RNAseq data were selected (n
389  =34); therefore, all animals in this analysis had one hemisphere fixed for IHC and the

390 contralateral hippocampus dissected for bulk RNAseq. The RNAseq data used in the current
391 study was previously published and the dataset series (GSE) are accessible via the National
392  Center for Biotechnology Information Gene Expression Omnibus (GEO) (GEO: GSE101144,
393 GEO:GSE119215, GEO:GSE119408)"":131¢ Expected read counts (ERCs) were filtered to

394  include genes with >10 ERCs in more than 50% of the samples from 5XFAD mice, resulting in
395 15,703 of 47,645 genes that passed filtering. Following the exclusion of genes with low read

396  counts, datasets were batch-corrected using the R Combat-Seq package, then normalized and
397 transformed using the default pipeline of R DESeq2*°. The relationship between gene

398  expression and stain load (AB1-42, NeuN, GFAP, and Iba1) from the hippocampal formation
399  summary region was assessed using Pearson’s correlation from linear mixed models®®, which
400 allowed the effect of age on the association between gene expression and load to be accounted
401  for by including age as a random effect (correlation(partial = TRUE, multilevel = TRUE). P-

402  values per stain and gene correlation were corrected for multiple comparisons via FDR

403  correction and considered significant if the FDR p-value < 0.05. Genes that were exclusively
404  significantly correlated (uncorrected p-value < 0.05) prior to age adjustment were deemed to be
405 age-dependent correlates. Genes that were exclusively significantly correlated (uncorrected p-
406  value < 0.05) following age adjustment were deemed to be age-independent correlates. Gene

407  Set Enrichment Analysis (GSEA) queried against Reactome pathways was carried out in
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408  WebGestalt>'-** using the output correlation coefficients per gene and stain for each multi-level
409  correlation method (age-adjusted and non-age-adjusted). Advanced GSEA parameters used

410  included: Minimum number of IDs in the category: 20, Maximum number of IDs in the category:
411 2000, Significance Level: FDR < 0.05, and Number of permutations: 1000). Lastly, individual

412  ERC and hippocampal load data were incorporated into a DESeq model, and the design was run
413  on the intercept (~1). Transformed normalized counts for boxplots in figure 5 were obtained

414  using the DESeqDataSetFromMatrix() and counts() functions. Scripts used for RNAseq

415  normalization and modeling, IHC and RNAseq correlations and visualization can be accessed on
416  GitHub at:https://github.com/Neural-Systems-at-UIO/BRAINSPACE/tree/main/Scripts .

417

418 Data Availability

419  The collection of section images, accompanying meta data, atlas-registration files and output, as
420  well as Nutil output are shared as the BRAINSPACE project via the EBRAINS Knowledge Graph
421  Search (https://search.kg.ebrains.eu). R scripts used to complete statistical analyses are publicly
422  available on GitHub at: https://github.com/Neural-Systems-at-UIO/BRAINSPACE.

423

424  Sharing of QUINT tools and disclaimer

425  All the software in the QUINT workflow are open-source and shared on GitHub and nitrc.org
426  under MIT license for QuickNII and VisuAlign; GNU General Public License (GPL) v3.0 for Nutil;
427 and GPL v2/ GPL v3 for ilastik. While the software are validated based on multiple ground truth
428  datasets shared on the Nutil GitHub page, we recommend independent validation of data from
429  QUINT prior to use. To validate the QUINT workflow for the present study, Nutil v0.7.0 was used
430 to analyze two synthetic datasets with objects of known size and anatomical location based on
431  the parameters selected for the study. The validator feature in Nutil confirmed that the results
432  were identical to the ground truth. The dataset, ground truth and results of Nutil v0.7.0 are

433  shared on GitHub at https://github.com/Neural-Systems-at-

434  UIO/BRAINSPACE/tree/main/Nutil Validation. The QUINT workflow is shared on EBRAINS

435 (ebrains.eu/service/quint), with user documentation (https://quint-workflow.readthedocs.io) and
436  user support available through EBRAINS.

437

438 Results

439  New functionality added to the QUINT workflow supports high-throughput analysis of
440 diverse AD-BXD strains
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441  The original QUINT workflow was designed to support the quantification of IHC-stained features
442  in images of serial brain sections by linear registration to a reference brain atlas in combination
443  with feature extraction by supervised machine learning®. While this method works well for serial
444  sections that closely resemble 2D atlas-planes throughout the reference atlas template (typically
445  generated based on intact whole brain tissue); in practice, the technical procedures of fixing,
446  sectioning, staining, and mounting sections often lead to distortions, tears in the sections, and
447  artifacts that impact the quality of the linear atlas-registration. Since reference atlases are

448  created based on standard reference animals (young adult male B6 mice in the case of the

449  CCFv3)*, sections originating from strains and/or ages that genetically differ from such animals
450 may also have anatomical differences relative to the reference template. Recognizing the need
451  to customize the linear atlas-registration and provide a better match of the atlas overlay on

452  individual sections, a new tool that supports nonlinear refinement was created and incorporated
453  in the workflow (VisuAlign) (Figure 1a). Nonlinear refinements are manually applied based on
454  visual landmarks in the sections. Furthermore, a quality control tool based on systematic random
455  sampling was created for validating the quality of the atlas-registration to each region (QCAlign).
456  This manual assessment is based on the overlap between the delineations supplied by the atlas
457  and landmarks revealed by IHC staining. Since only a limited number of landmarks can be

458  revealed by IHC staining, a method was also implemented for adjusting the granularity of the
459  reference atlas to a level that supports the verification of the atlas registration. This functionality
460  of QCAlign provides users a platform for flexible assessment of the Allen Mouse Brain Atlas,

461  which can be manipulated to display a complete or reduced atlas hierarchy overlaid on the

462  sections. Individual reference atlas regions can be compiled into larger themed regions (e.g.

463  isocortex), allowing users to tailor the assessment to their unique experimental design and

464  research interests. Lastly, since there are other factors that can affect the quality of the results
465  that can be achieved with QUINT (for example, artifacts that obscure the staining, or tissue

466  damage too extensive to account for by nonlinear warping), a method within QCAlign was also
467  introduced to promote the systematic screening of sections, and for assessing their suitability for
468  QUINT analysis. This feature is particularly useful in the context of high-throughput studies since
469 it allows exclusion of sections according to systematic criteria. The expanded QUINT workflow
470 was applied to serial section images from the diverse AD-BXD mice (Figure 1b) to quantify all
471  nuclei (thionine), neurons (NeuN), microglia (Iba1), reactive astrocytes (GFAP) and amyloid beta
472  pathology (AB1-42) in customized regions compiled from CCFv3 regions. Examples of these

473  IHC-stained sections are shown in Figure 1c. Each step of the QUINT workflow generates a
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474  visual output that can be shared together with the final results of the workflow to support

475 independent verification of findings (Examples of the visual output are shown in Figure 1d).
476

477  Quality of the atlas-registration performed in the QUINT workflow can be confirmed using
478  QCAlign

479  The new QCAlign tool was implemented to assess the quality of the atlas-registration achieved
480  using QuickNIl and VisuAlign. First, the full CCFv3 2015 was condensed into 77 regions to

481  create an intermediate hierarchy of regions that was exported from the QCAlign software

482  (Supplemental Table 4). These regions have visually discernable boundaries as detected in the
483  thionine-stained sections (example images with superimposed atlas-delineations are shown in
484  Supplemental Figure 1a). Next, with the hierarchy level set in QCAlign, a rater can perform an
485 independent assessment and rate the accuracy of the atlas-registration as performed in the
486  workflow (Supplemental Figure 1b). This entails assigning grid markers positioned at a set

487 density over the sections as either accurate, inaccurate, or uncertain based on anatomical

488  expertise (Figure 2a). A grid point is marked as “accurate” if the assigned atlas-registration

489  correctly matches the region depicted in the section. This is determined by the investigator

490 based on landmarks; therefore, the region boundaries in question must be distinct enough to
491  make this call. If there is a discrepancy between the registered atlas region and what the rater
492 identifies the region to be in the brain section, the “inaccurate” marker is assigned. Inaccurate
493  markers can be the result of incorrect registration using QuickNIl, and/or incomplete adjustment
494  during VisuAlign refinement. If a high frequency of inaccurate markers is assigned, the initial
495  registration of brain sections should be reevaluated. Lastly, an “uncertain” marker is placed
496  when the rater lacks the anatomical knowledge to apply an accurate or inaccurate marker with
497  confidence, or when the borders between regions are ambiguous hindering the ability to

498  differentiate regions. If a high frequency of uncertain markers is assigned, the rater should

499  reconsider the hierarchy level chosen for the evaluation.

500

501 To confirm the atlas-registration following VisuAlign adjustment, ten researchers across two
502  academic institutions were recruited to perform a quality control assessment of atlas-

503 registrations using QCAlign. The assessment was performed on the thionine-stained sections
504 from 5 brains selected at random from the cohort of 39 brains. A maximum of 36 assessments
505 were averaged per intermediate hierarchy region (6-10 raters assessing up to 5 brains)

506  (Supplemental Figure 2). There was high consensus among raters that the registration to the

507 intermediate hierarchy regions was highly accurate (100%-78.7% accuracy score) (Figure 2b,
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508 green). Regions with the greatest accuracy scores were regions compiled of many subregions
509 (e.g. isocortex, 99.7%, SEM + 0.057) and/or that have very distinct anatomical borders (e.g.
510 caudoputamen, 99.4%, SEM + 0.129). Smaller regions had the potential to have zero grid

511  markers randomly placed within their area resulted in reduced number of assessments

512  contributing to the mean accuracy score (e.g. subparafascicular area, n= 9 assessments).

513  Regions with the lowest rater sampling rate were among the regions with the highest variation
514  and lowest accuracy scores. Regions with appropriate rater sampling (n>20 assessments) but
515 low accuracy scores included the posterior amygdalar nucleus (89.1%, SEM + 5.37) and the

516  ventricular systems (78.7%, SEM + 3.11). The low accuracy attributed to the posterior

517 amygdalar nucleus could be due to its relatively ambiguous border with the posterior olfactory
518 area and the subiculum. Also, regions of the ventricular system were consistently difficult to align
519 in both QuickNIl and VisuAlign since they are prone to distortion (e.g. lateral ventricle) or are
520 located in medial locations along the midline where the brain was bisected into hemibrains (e.g.
521  third ventricle), resulting in low accuracy overall. To summarize, we created a new tool for quality
522  control assessment of the atlas-registration and, by using this tool, were able to confirm the

523  ability of the QUINT workflow to achieve highly accurate registration of the regions in the

524  intermediate hierarchy.

525

526  Nonlinear adjustment increases regional registration accuracy, and impacts cell and

527 pathology load estimates

528  VisuAlign offers the unique ability to refine and improve the atlas-registration to diverse AD

529  model mouse brain sections by allowing users to make nonlinear adjustments to the atlas plates
530 setin QuickNIIl. The importance of completing nonlinear warping following linear registration was
531  highlighted by comparing the QCAlign output following each atlas-registration step in the QUINT
532  workflow (Figure 2a). Linear registration achieved using QuickNIl alone is susceptible to error as
533 indicated by the higher frequency of inaccurate markers. The hippocampus is a particularly

534  vulnerable region that requires non-linear adjustment due to the distinct shape and relatively

535 small size of the dentate gyrus (Figure 2a inset). Regional accuracy scores of five brains were
536 calculated and compared following atlas-registration performed using QuickNIl only (2 raters)
537 relative to the registration performed using QuickNIl then adjusted in VisuAlign (6-10 raters)

538  (Figure 2b). The completion of nonlinear warping in VisuAlign greatly improved the registration of
539 atlas regions to the brain sections (Figure 2b, green vs white). Regions that exhibited the

540 greatest increases in accuracy scores included those that are often not prioritized when initially

541  aligning atlas plates to the brain sections in QuickNIl, thereby requiring more extensive nonlinear
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542  adjustment (i.e. regions comprising the mid- and hindbrain). Regional quantification of cellular
543  and pathology load was also impacted by the increased accuracy of registration achieved

544  following nonlinear warping. Regions that required the most adjustment in VisuAlign, thereby
545  exhibiting the greatest increases in accuracy, also had the greatest difference in load values
546  when comparing regional load output from registration using QuickNIl alone versus registration
547  completed in QuickNIl and refined in VisuAlign (Figure 2c, Supplemental Table 6).

548

549  AD-BXD strains exhibit widespread increases of glial and amyloid pathology from 6m to
550 14m

551  Differences in cell composition and amyloid pathology load were compared between 5XFAD
552  carriers of 6m and 14m to detect regional changes that occur with age and AD (Figure 3,

553  Supplemental Table 7). Among 5XFADs, there are only minor changes in NeuN load between
554  6m and 14m animals overall (Figure 3, i). The only regions that exhibited significant age-related
555  (FDR-corrected p-value<0.05) decreases in NeuN load were the Ammon’s horn(p-value=0.0472)
556  and dentate gyrus, polymorph layer(p-value=0.00299). Slight, but significant (FDR-corrected p-
557  value<0.05) increases in NeuN load were observed with age in the posterior amygdalar nucleus
558  (p-value = 0.0327) and striatum-like amygdalar nuclei (p-value=0.0258) (Figure 3a, i). Increased
559  glial proliferation and reactivity are also hallmark symptoms of AD progression with age. Within
560 this dataset, we confirmed that regional astrocyte and microglial cell load increased from 6m to
561 14m in 5XFAD animals. Regionally, the caudoputamen exhibited the most significant increases
562 in GFAP load (p= 2.91E-10, FDR-corrected) (Figure 3a, ii). The midbrain (motor-related) regions
563  (FDR-corrected p-value= 1.26E-08) and olfactory tubercle (FDR-corrected p-value=1.55E-08)
564  exhibited the greatest microglial load increase from 6 to 14m (Figure 3a, iii). Aligned with

565  previous reports in 5XFAD animals, amyloid pathology was most prevalent within the subiculum
566  at the earlier 6m time point® (3.41% + 0.227% SEM, Figure 3a, iv). In addition to the subiculum,
567 amygdalar regions were highly susceptible to increased amyloid deposition by adulthood (6m)
568  (Figure 3a, iv). As an aggressive amyloidosis AD model, the 5XFAD animals exhibited a near
569 global increase in amyloid deposition between 6m and 14m. Amyloid deposition was strongly
570 associated with the hippocampus and hippocampal-projected regions, including the cortex,

571  thalamus, and amygdalar regions as previously noted (Figure 3a, iv)®*. All regions besides the
572  claustrum, lateral amygdalar nucleus, parasubiculum, midbrain (behavioral state related), pons
573  (behavioral state related), pons (motor related), and pons (sensory related) regions exhibited a
574  significant increase in amyloid load from 6m to 14m.

575
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576  Individual AD-BXD strains exhibit variation in region neuronal load

577  The hippocampus, known as a structure involved in cognitive processing, memory formation and
578  storage®, has been elaborately studied in the context of aging and AD. Compared to the near
579 global increase in glia and pathology among AD-BXD strains between 6m and 14m, fewer age-
580 related differences in neuron load were detected (Fig 3a, i). Of the four regions that displayed a
581 significant difference in NeuN load between 6m and 14m after FDR correction, two of those

582  regions were within the hippocampus. While regional variation in NeuN load was minimal overall
583  within the age groups, age-related strain-specific variation was revealed by investigating

584  changes in NeuN load in hippocampal subregions on a per strain basis (Figure 3b,

585  Supplemental figure 3). AD-BXD strains displayed a range from neurodegeneration to neuronal
586  maintenance between 6m and 14m, modeling the heterogeneity observed in human AD®8. No
587 strain effect was detected in stain load among the 43 intermediate atlas regions quantified

588  (uncorrected p-value> 0.05, 2-way ANOVA), but since sample sizes per strain were relatively
589 small in this analysis, a potential strain effect cannot be firmly excluded and will be evaluated
590 when the sample size is increased in future analyses.

591

592 Integration of paired IHC and bulk RNA sequencing data reveals cell load is a
593  confounding factor in age by gene expression correlations among AD-BXDs

594  Using the QUINT workflow, we reported variation in cell and pathology load between age groups
595 and among AD-BXD strains (Figure 3). As mentioned earlier, due to the inherent properties of
596  bulk RNAseq, which allow for single, tissue-averaged, gene expression measurements, the

597 influence of cell composition is often overlooked in the interpretation of analyses and may

598 conflate expression differences driven by other experimental factors such as age and

599  pathology?”:5°%°. Here, using output from our QUINT workflow analysis, we demonstrate that

600 ~15-35% of genes expressed in the hippocampus are correlated with load and vary based on
601  both cell-type and age. To do this, we integrated hippocampal formation cell (NeuN, GFAP,

602 |ba1) and pathology (AB1-42) load output with gene expression data measured via bulk RNAseq
603  obtained from the contralateral hippocampus of the same mice at two age time points

604  (previously published'-131¢),

605

606  Hippocampal load per stain type (NeuN, GFAP, Iba1, and AB1-42) was correlated with

607 normalized read counts to identify age-dependent relationships between load and gene

608  expression. The percentage of the 15,703 genes analyzed in the RNAseq dataset that were

609  significantly correlated (uncorrected p-value < 0.05) with load varied by stain type (NeuN:
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610  16.35%, GFAP: 36.76%, Iba1: 34.78%, AB1-42: 31.86%) (Figure 4a; labeled genes indicate the
611  top 5 positively and 5 negatively correlated significant genes (FDR-corrected p-value < 0.05).
612  Non-coincidentally, stains that had the most significant gene correlates had the greatest age-
613  related changes in load. Since our population is comprised of mixed ages and age is a primary
614  driver of variation in load (Figure 3), this effect of age may be masking genes that are related to
615 load in an age-independent manner. We aimed to elucidate this subset of genes by testing the
616  role of age as a mediator of the relationship between stain load and gene expression in our

617  5XFAD population by using a multilevel correlation approach adjusting for the effect of age.

618  Similar to the outcomes of the age-dependent correlation above (Figure 4a), the percentage of
619  genes significantly correlated after age adjustment (uncorrected p-value < 0.05) with load also
620  varied by stain type (NeuN: 12.56%, GFAP: 23.53%, Iba1: 18.30%, AB1-42: 12.34%, Figure 4b).
621  The number of correlated genes (uncorrected p-value < 0.05) was reduced following age-

622  adjustment across all stains, with AB1-42 exhibiting the greatest reduction of significantly

623  correlated genes (19.52%, Figure 4a, 4b). Next, we sought to differentiate genes that were

624  exclusively correlated with load either before or after age-adjustment. By further comparing both
625 analyses (age-unadjusted, Figure 4a and age-adjusted, Figure 4b), we classified genes into 1)
626  exclusively significantly associated with variation in load in an age-dependent manner (non-age-
627  adjusted output (orange in figure 4c)), 2) exclusively significantly associated with load

628  irrespective of age (age-adjusted output (blue in figure 4c)), or 3) significantly associated with
629  both load and age (non-age-adjusted and age-adjusted output (green in figure 4c))

630 (Supplemental Table 8). The majority of correlations between gene expression and load were
631  driven by age as indicated by the greater abundance of non-adjusted significant genes per stain
632  (Figure 4c). This age-driven relationship is illustrated by the correlation between Iba1 load and
633  polypeptide N-acetylgalactosaminyltransferase 6 (Galnt6) expression, which was identified to be
634  atop gene that is highly associated with variation in Iba1 load in an age-dependent manner

635  (Figure 4d, i). Galnt6 has been found to have increased mMRNA expression in the brains of AD
636  patients and be related to AB production®'2. Here, Galnt6 exhibited increased expression with
637  age that parallels the increase in Iba1 load observed from 6m to 14m (Figure 4d, i-ii). This trend
638  of increased load matched by a change in gene expression between 6m and 14m was unique to
639  the most highly correlated genes prior to age adjustment. On the contrary, 0.78%-5.86% of the
640  genes per stain were exclusively significant only after age-adjustment, indicating that these

641  genes are likely associated with load in an age-independent manner (Figure 4c). These age-
642 independent genes exhibited a pattern of increased cell (GFAP and Iba1) and pathology (AB1-

643  42) load but no difference in gene expression between 6m and 14m. This pattern is exemplified
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644 by looking at the relationship between gene expression and load with age for transmembrane
645  protein 39A (Tmem39a), a topmost correlated gene with Iba1 load after age-adjustment (Figure
646  4d, ii). Tmem39a is a known contributor to pathways implicated in AD, including inflammation,
647  dysregulated type | interferon responses, and other immune processes®®; and like other highly
648  correlated genes following age-adjustment, Tmem39a exhibited specific within-age-group

649  associations between load and gene expression (Fig4d, ii). These genes with stronger

650  significance following age adjustment may be driven by load differences seen between the

651  groups independent of the effect of age on load. Identifying and differentiating age-dependent
652  and age-independent gene correlates promotes the prioritization of gene candidates and

653  recognition of whether the expression of these genes are relative to the proportions of different
654  cell types that are altered with age and AD.

655

656  Mediation of age reveals differential overrepresentation of Reactome pathways

657  Next, using the correlation coefficients displayed in Figure 4a and b, gene set enrichment

658 analysis (GSEA) was performed to identify pathways that may be biased by individual

659  differences in cell and pathology load (Figure 5). As expected, immune pathways were highly
660 enriched for GFAP, Iba1, and AB1-42 correlations. We also observed a negative relationship
661  between the enrichment of neuronal pathways and GFAP, Iba1, and AB1-42, highlighting the
662  potentially detrimental impact these cell types may have on neuronal functioning in the context of
663  AD. Fewer significantly enriched pathways were associated with NeuN load (age-adjusted and
664  non-age-adjusted), consistent with the subtle changes in load between 5XFADs of 6m and 14m.
665  The most highly enriched pathways for each stain and method (as labeled on the right of the
666  heatmap) were involved in chromatin organization, extracellular matrix organization, immune
667  system, metabolism of RNA, and the neuronal system. In comparing enriched pathways for age-
668  adjusted and non-age adjusted correlations per stain, the greatest difference in the presence of
669  significantly enriched pathways was observed within the cell cycle category for Iba1, GFAP, and
670  AB1-42 stain types. The enrichment of these pathways is consistent with the proliferation of

671  these cell types and pathology and the potential increase in immunoreactive cell cycle proteins®.
672 A total of 42 cell cycle pathways were represented across these stain types after age

673  adjustment, while only 2 are present prior to adjustment. Moreover, many negatively enriched
674  pathways including those in the gene expression (transcription) and metabolism of RNA parent
675  pathways were observed almost exclusively within the non-age-adjusted category for GFAP,
676  Iba1, and AB1-42. This pattern of enrichment suggest a more pronounced involvement of these

677  types of pathways with AD-related deterioration with age than necessarily with increased glial
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678  and pathology composition®%¢. Ultimately, by using these methods we have begun to

679  disseminate the effects of cell and pathology composition in the hippocampal formation and their
680  implication in biologically relevant pathways.

681

682  Discussion

683  Here, we report on the output from IHC sections of 37 mice from the AD BXD-panel obtained
684  using the expanded QUINT workflow. By adding new functionality to the QUINT workflow to

685  enhance the atlas-registration and perform quality control assessments, we increased the quality
686  of the regional quantification''. We quantified age-related differences and characterized the

687 influence of genetic diversity among AD-BXD strains on NeuN, GFAP, |Iba1, and AB1-42 load
688  across a validated list of Allen Mouse Brain Atlas CCFv3 2015 subregions**. The importance of
689  recognizing this variation in cell and pathology composition was also reflected when integrating
690  gene expression and cell composition data from varying AD-BXD strains. The mouse panel used
691 in this study is considered translationally relevant since it includes strains that incorporate high
692  risk AD mutations (6XFAD) on backgrounds of genetic diversity, thus better recapitulating the
693  complex genotype-phenotype interactions in humans that contribute to symptom variability. The
694  AD-BXD panel provides a unique platform for exploring the effect of genetic background

695  variability on resilience to neurodegeneration, gliosis, and pathology with the potential to reveal
696  resilience genes or pathways that could be targeted for therapeutics.

697

698 We demonstrate the capacity of the QUINT workflow to effectively detect subtle differences in
699 regional loads in an accurate manner across the whole brain, which is paramount in the context
700  of high-throughput imaging studies that incorporate genetic diversity models of disease. The

701  quantification of these brains was made possible through the expansion of the QUINT workflow
702  through the development of VisuAlign and QCAIlign, as well as through the addition of new

703  functionality to the existing Nutil software. The VisuAlign and QCAlign software were added to
704  the QUINT workflow for a number of reasons. While linear atlas-registration is a useful first step,
705 it often does not produce the required registration precision®”-"°. VisuAlign provides the

706  capability to make nonlinear adjustments to the linear atlas-registration achieved using QuickNII,
707  thus correcting for distortions in the sections introduced during the IHC section preparation as
708  well as for structural differences among brain regions in diverse disease models and age groups.
709  The importance of applying nonlinear refinements was demonstrated by the regional differences
710 in accuracy scores and loads achieved with QUINT-based registration using QuickNII only,

711  relative to registration using QuickNII and VisuAlign. Moreover, since changes driven by genetic
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712  differences across strains are likely to be subtle and region-specific, it was crucial to have a

713  method for verifying that the atlas-registration output was accurate. This verification was

714  provided by the QCAlign tool. The limited variability in QCAlign accuracy scores between raters
715  and brains quantified in our 5-brain assessment heighten our confidence that the present cohort
716  of brains was consistently registered to a high standard. Another key functionality of QCAlign is
717  its ability to produce customized hierarchies, which aid in compensating for the difficulty of

718  accurately registering small regions that lack anatomical boundaries. To combat this issue, many
719  investigators generate lists of regions of interest (ROIs) that consist of compiled subregions”"-73.
720  Our QCAlign tool offers the functionality to create these customized hierarchies by parsing

721  through the 461 regions of the CCFv3 2015 and selecting subregions to compile into related
722  summary regions. Creating a custom hierarchy file from the standard atlas in QCAlign also

723 promotes the labeling of consistent ROIs among laboratories and the ability for anatomists to
724  subsequently verify that the regions selected in the chosen hierarchy are correctly aligned during
725  the registration process. The final feature of QCAlign was developed to detect sections or

726  regions not suited for QUINT analysis due to damage (tears, folds, etc.), artifacts, errors in

727  image acquisition, or other reasons that could potentially skew results. Percentage damage per
728  section or per region can be calculated after marking up sections in QCAlign with the damage
729  marker. This calculation supports removal of results according to transparent, systematic, and
730  reproducible criteria for streamlined high-throughput application.

731

732 Overall, the QUINT workflow has a number of advantages over alternative methods. Utilization
733  of the QUINT workflow promotes comprehensive regional analysis as defined by a standardized
734  reference atlas, which facilitates comparison, integration, and reproducibility of results across
735  studies in compliance with the FAIR guiding principles®-*’. The ability to share the intermediate
736  results of the workflow (the atlas maps and segmentations) as well as the final results (Nutil

737  Quantifier output) provides transparency and open science, which is important since the atlas-
738  registration and feature extraction steps are inherently subjective processes guided by user-
739  based expertise. Traditional IHC analysis methods that rely on manual delineation of brain

740  regions and counting via stereology are inefficient for brain-wide exploration in studies with large
741  numbers of animals’*"". As demonstrated in the present study, the QUINT workflow has the
742  capacity to characterize transgenic models of disease of varying strains, ages, and genotypes;
743  and is designed to support large-scale comparative studies’®®. The workflow is customizable,
744 enabling analysis at different levels of atlas granularity, and with optional features such as the

745  application of masks for hemisphere or other region-based comparisons. Also of note, QUINT is
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746  highly accessible irrespective of coding ability since all the steps are performed in software that
747  have user-friendly graphical user interfaces (GUIs). While the subjective nature of the

748  registrations tools is a limitation of the QUINT workflow, it is countered by the addition of the
749  QCAlign software that provides a means to evaluate and document the quality of the atlas-

750  registration performed in the workflow. Another limitation of QUINT is that nonlinear VisuAlign
751  adjustment can be labor intensive, especially for sections that deviate considerably from

752  standard atlas plates. In these instances, nonlinear adjustments have to be applied manually to
753  match deviations in individual sections. Though this step is time consuming, our results

754  demonstrate that it is important since nonlinear refinement considerably improves the quality of
755  the atlas-registration, as well as the quality of the regional results. Efforts to further automate the
756  atlas-registration step using deep neural networks are underway (DeepSlice)®. This QUINT
757  compatible software automates the linear registration step (task currently completed in QuickNIlI)
758  for whole brain coronal mouse sections, with versions for sagittal and horizontal sections in the
759  pipeline.

760

761  The QUINT workflow is a powerful approach for the high-throughput exploration that is needed
762  to unravel the complexity of AD. Using this approach, we further validated the severity of

763  neuroinflammation and pathology accumulation within the brains of aging 5XFAD animals®-89-82
764  and expanded the extent of anatomical regions investigated in a diverse AD population. AB1-42
765 levels increased in a widespread manner as 5XFAD mice aged from 6m to 14m. This trend was
766  also seen as near global increases in GFAP and Iba1 were observed across this AD-BXD

767  population®>82, The hippocampus is particularly susceptible to pathology accumulation and

768  atrophy in human patients and a similar decline is also detected in mouse models that display
769  hippocampal degeneration measured via magnetic resonance imaging/IHC®5:80.82-90_\y/e

770  demonstrate that regions that exhibited neurodegeneration, like the Ammon’s horn, were also
771  among those that exhibited the greatest increase in amyloid and neuroinflammation. Previous
772  literature in the 5XFAD model has described visible loss in Layer 5 of the cortex by 9m of age in
773  comparison to Ntg animals®®', but due to the nature of our current study and the

774  overrepresentation of female 5XFADs we were unable to make this comparison; however, we
775  did detect variation in NeuN load among strains within our AD-BXD population. We can begin to
776  highlight the effect of the 5XFAD transgene and genetic diversity on brain tissue composition in
777  the AD-BXD panel. Genetic differences amongst strains may influence how each strain copes
778  with neuropathology, and the extent of neurodegeneration that occurs with age. Strains can be

779  stratified as resilient or susceptible to AD pathology: with resilient strains potentially mitigating
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780  neuron loss in response to neuroinflammation and pathology accumulation, or alternatively

781  staving off severe pathology accumulation all together.

782

783  Moreover, we establish an example of how the output from the QUINT workflow can be

784  integrated with a range of data types, including omics data. RNAseq is a common method of
785  profiling gene expression changes between cases and controls and at different disease stages;
786  however, results from bulk tissue samples reflect an average gene expression profile across
787  heterogeneous populations of cells?*, meaning that expression differences may reflect cell-

788  composition differences across tissue samples, in addition to true transcriptional differences
789  across groups. Determining whether gene hits, established while analyzing bulk RNAseq data,
790 are driven by changes in transcriptional regulation or relative proportions of different cell types in
791 the samples is crucial to establish and properly validate gene candidates of resilience or

792  susceptibility to AD'#2526, Recent AD case/control single-nucleus RNA-sequencing datasets
793  offer the opportunity to better resolve such cellular differences’®'-%4, but have restrictive

794  technical and cost constraints that can limit the size of such datasets in terms of cells collected
795  and individuals sampled®. These limitations as well as the variable performance of

796  deconvolution methods can make it difficult to establish distinct robust cell-type specific

797  differences in gene expression among heterogenous AD populations. While traditional methods
798  for determining cell-type composition, such as IHC or flow cytometry, rely on a limited set of
799  molecular markers and lack in scalability relative to the current rate of data generation, the use
800 of the QUINT workflow can expedite this process. Here we were able to quantify IHC from 39
801  brains using the QUINT workflow, which streamlined our analysis resulting in high-quality output,
802 and enabled the integration of multiple data types.

803

804  To combat the limitations of RNAseq, we integrated IHC-quantified cell composition and

805 RNAseq using mixed modelling correlations. By controlling for age, we were able to establish
806  candidate genes associated with cell composition dependent and independent of the effect of
807 age with AD on variation in load and changes in gene expression. The resulting substantial

808  proportion of genes correlated with load highlights the importance of considering cell

809 composition when analyzing RNAseq data. We also unmasked a unique subset of genes that
810 exhibited no age-related changes in gene expression yet were correlated with variation in load
811  within the age groups examined. Many of the genes that were exclusively significantly correlated
812  with hippocampal formation load following age adjustment were enriched for cell cycle and

813 immune system pathways. By establishing which genes in our dataset are driven by cell and
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814  pathology load before and after adjusting for age, we can establish a series of guidelines for
815  prioritizing gene candidates, optimal approaches for modulating genes of interest, and criteria to
816  determine whether candidates should be targeted in a cell-type- specific manner. This study
817  serves as proof-of-concept that IHC data, quantified by the QUINT workflow, can be used as a
818  proxy for cell-type composition in the analysis of RNAseq data, and to demonstrate that changes
819 in gene expression may be relative to variation in cell composition exhibited with age and AD.
820 Due to the nature of this dataset, our analysis was a partial mediation that was only able to begin
821 to disentangle the effect of load, gene expression, and age with AD. Further unravelling this

822  relationship and the effect of the 5XFAD transgene and amyloid accumulation will require

823  additional analyses including nontransgenic animals.

824

825  Future investigations will aim to increase the sample size of various AD-BXD strains to confirm
826  and expand upon the current findings. Moreover, the AD-BXD panel has proven to be a strong
827  population to complete genetic mapping of behavioral traits13-16.96.97 "and current efforts are
828  underway to perform genetic mapping of these heritable cell and pathology load traits to identify
829 candidate genes of resilience and susceptibility to AD%. These future studies will include non-
830 transgenic littermates, improved intra-strain power by increasing the number of replicates per
831  strain, and the consideration of sex as a biological factor by having equal number of male and
832 female counterparts in each experimental group. Furthermore, this upcoming analysis will utilize
833  the latest version of the CCFv3 (2017) at the intermediate hierarchy established in this study as
834  a baseline for detecting changes in regional cell and pathology load.

835

836 In conclusion, we provide the most detailed regional characterization of the 5XFAD mice known
837 to date. The QUINT workflow, with the recent addition of VisuAlign and QCAlign, proved to be a
838  highly effective method and a necessary tool for registering and quantifying cell and pathology
839 changes in diverse disease models like the AD-BXD panel. Achieving high confidence regional
840  output of AD-relevant cell types and pathology also facilitated the exploration of genotype and
841  cell composition relationships. We aim to improve rigor and reproducibility by characterizing the
842  effects of genetic diversity with AD on cell composition and therefore we suggest that bulk-

843  RNAseq data needs to be integrated with cell load to generate robust and reproducible results.
844 By achieving cell and pathology quantification in hemibrains of these mice, we provide a

845  framework for investigators to characterize diverse disease models and integrate their data with

846  arange of behavior and/or omics data.
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881 Main Figure Legends
882

883  Figure 1. Study design and QUINT workflow overview.

884  a.) Regional pathology and cell composition were quantified using the expanded QUINT

885  workflow. 1) Raw images were processed to meet size requirements. 2.) Brain sections were
886  registered to the Allen Mouse Brain Atlas CCFv3 2015 in QuickNIl and refined using VisuAlign.
887  Hemibrain masks were created in QNLMask 3.) llastik pixel classification was used to establish
888  cell detection parameters for each stain and converted to RBG format in FIJI. 4.) Post-

889  registration quality control assessment was performed using the novel QCAlign tool. 5.)

890 Segmentation, registration, and mask creation steps were combined using Nutil to receive

891  percent stain-positive cell coverage per region area. b.) Immunohistochemistry was completed
892  for an experimental cohort of 40 mice from the AD-BXD mouse model of AD (see Supplemental
893  Table 1). Adapted from Neuner et al., 2019. ¢.) Brain sections of 6m and 14m mice were

894  sectioned and stained for thionine, NeuN, GFAP, Iba1, and AB1-42 via Neuroscience

895  Associates. d.) Representative images from each step in the QUINT workflow.

896

897  Figure 2. QCAlign verification of regional atlas-registration at the selected intermediate

898  hierarchy level

899  a.) QCAlign quality control assessment can be completed after rigid QuickNIl registration alone
900 or following the use of QuickNIl and VisuAlign to verify the registration to each region in the

901  sections. Inset) Example of completed QCAlign assessment in the hippocampal formation after
902  QuickNIl Only and QuickNIIl + VisuAlign registration. b.) Mean accuracy scores per intermediate
903 hierarchy region after QuickNIl registration alone (white) or after QuickNIl and VisuAlign

904 registration (green). Two raters scored the same 5 randomly selected brains after QuickNI|

905 registration alone, max n=10 per region (Raters: n= 2 per brain). Up to 10 raters scored the

906 same 5 randomly selected brains after QuickNIl and VisuAlign registration, max n=36 per region
907 (Raters: n= 6-10 per brain). Dots represent the mean score across raters per region for 5 brains
908 + SEM, with the numbers labels representing the number of assessments contributing to each
909 calculation (QuickNII alone labels are below white points, QuickNII + VisuAlign labels are above
910 green points). ¢.) The impact of VisuAlign refinement on regional stain load (%-stain-positive
911 coverage/per region area) was measuring by calculating the difference in load following Nutil
912  quantification after each method (regional (QuickNIl + VisuAlign output (%) — regional (QuickNII
913  output(%) = regional load difference (%)). Dots represent mean regional load difference + SEM
914  for all 5XFAD animals at 6m and 14m (6m: n=17, 14m: n=20).
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915

916  Figure 3. Regional pathology and cell load vary from adulthood (6m) to middle age (14m) in

917  5XFAD mice.

918 a.) Regional cell and pathology load of the intermediate hierarchy regions of 5XFAD mice. i.

919 Differences in NeuN load between the age groups were limited across the intermediate

920 hierarchy regions. ii-iv. GFAP, Iba1, and AB1-42 load increased with age across most

921 intermediate hierarchy regions. Bars represent regional averages + SEM for 6m and 14m

922  groups. (6XFAD mice only, 6m: n=17, 14m: n=20). FDR corrected p-values represented. P-

923  value: * <0.05, ** <0.01, *** <0.001. b.) Strain averages of NeuN load across the hippocampal
924  formation and hippocampal intermediate hierarchy subregions. Points are mean load per strain.
925 Lines connect strain matches across the two age groups: 6m and 14m. Only strains with an

926 aged match counterpart are represented (5XFAD mice only, 6m: n=17, 14m: n=18, n= 1-3 per
927  strain). The B6 founder strain is labeled for reference.

928

929  Figure 4. Stain-specific load correlations with RNAseq gene expression to identify genes

930 impacted by changes in load within the hippocampal formation.

931 a.) Gene expression by load Pearson R correlation coefficients and p-value relationships without
932  age adjustment for each stain. Significantly correlated genes (uncorrected p-value < 0.05) are
933  colored in each plot. The percentage of uncorrected significant genes is indicated within the plot.
934  The top five positive and negative FDR significant (FDR p-value < 0.05) correlated genes are
935 labeled. b.) Gene expression by load Pearson R correlation coefficients and p-value

936 relationships after age adjustment for each stain. Significantly correlated genes (uncorrected p-
937 value < 0.05) are colored according to stain. The percentage of uncorrected significant genes is
938 indicated within the plot. The top five positive and negative FDR significant (FDR p-value < 0.05)
939 correlated genes are labeled. ¢.) Comparison of Pearson R correlation coefficients without and
940  with age adjustment per stain. Gene correlations that were exclusively significant (uncorrect-p-
941  value < 0.05) without age adjustment are considered age-dependent (orange). Gene

942  correlations that were exclusively significant (uncorrect-p-value < 0.05) with age adjustment are
943  considered age-independent (blue). The specific influence of age and load cannot be

944  disseminated in gene correlations that were significant (uncorrect-p-value < 0.05) under both
945  correlation conditions (green). All nonsignificant (uncorrect-p-value < 0.05) genes are labeled in
946  gray. The percentage of significant genes per category is represented in the bottom right corner.
947  The top 3 most significant genes per correlation method category are labeled per stain plot (FDR

948  p-value< 0.05). d.) Individual relationship between gene expression and load with age for the top
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949  age-dependent and independently correlated genes with Iba1. i. Galnt6 was exclusively

950 significantly correlated with Iba1 without age adjustment. An increase in Iba1 load and Galnt6
951  expression occurs between 6m and 14m. A positive relationship between Iba1 load and Galnt6
952  expression exists across both age groups as well as within each age group. ii. Tmem39a was
953  exclusively significantly correlated with Iba1 after age adjustment. An increase in Iba1 load but
954  notin Tmem39a expression occurs between 6m and 14m. A weak relationship between Iba1
955 load and Tmem39a expression exists across both age groups, but separate age-specific

956  correlations with load and gene expression exist. 5XFAD mice only, 6m: n=17, 14m: n=20.

957

958  Figure 5. Gene Set Enrichment Analysis (GSEA) of gene correlations per method categorized
959 by Reactome parent pathway.

960 a.) Pearson R correlation coefficients from Figure 4a and Figure 4b were input into WebGestalt
961 GSEA to obtain significantly enriched pathways associated with each stain and correlation

962 method (normalized enrichment, non-age-adjusted and age-adjusted). The top three most

963  significant pathways per stain and methods are labeled (FDR p-value< 0.05) (right).

964

965 Supplemental Information: Figure and Table Legends

966

967 Supplemental Figure 1: Intermediate hierarchy and QCAlign quality control assessment of

968 atlas registration of thionine sections.

969  a.) Intermediate hierarchy depiction over every thionine section of a representative brain

970 following atlas registration using QuickNIl and VisuAlign. Allen Mouse Brain Atlas CCFv3

971  regions were compiled to make an intermediate hierarchy that promotes the assessment of

972  regional registration. b.) Representative quality control assessment of the atlas registration of a
973 thionine slice in QCAlign. Raters assigned grid markers verifying the registration of each point as
974  either accurate, inaccurate, or uncertain.

975

976  Supplemental Figure 2: QCAlign scores achieved based on quality control assessment of

977  intermediate hierarchy regions.

978 a.) Heatmap of regional accuracy scores per rater per brain. b). Heatmap of regional uncertainty
979  scores per rater per brain. Gray regions were not represented in the brain series and/or did not
980 receive QCAlign scores for the measure. ¢.) Averaged uncertainty scores per intermediate

981 hierarchy region after QuickNIl registration alone (white) or after QuickNII and VisuAlign

982  registration (green). Two raters scored the same 5 randomly selected brains after QuickNII
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983 registration alone, max n=10 per region (Raters: n= 2 per brain). Up to 10 raters scored the
984  same 5 randomly selected brains after QuickNII and VisuAlign registration, max n=36 per region
985 (Raters: n= 6-10 per brain). Dots represent the mean score across raters per region for 5 brains
986 +SEM, with the numbers labels representing the number of assessments contributing to each
987 calculation (QuickNIl alone labels are below white points, QuickNIl + VisuAlign labels are above
988  green points).
989
990 Supplemental Figure 3. Variation in stain load exists among AD-BXD strains.
991  Strain averages of a.) GFAP, b.) Iba1, and ¢.) AB1-42 load across the hippocampal formation
992  and hippocampal intermediate hierarchy subregions. Points are mean load per strain. Each line
993  connects a pair of strain averages across the age groups: 6m and 14m. Only strains with an
994  aged match counterpart are represented (5XFAD mice only, 6m: n=17, 14m: n=18, n= 1-3 per
995 strain). The B6 founder strain is labeled for reference.
996
997 Supplemental Table 1. Strain, sex, age, 5XFAD genotype, and hemisphere metadata for all
998 animals with IHC completed for this study.
999
1000 Supplemental Table 2. Antibody and dilution information used by NSA for IHC staining.
1001
1002  Supplemental Table 3. List of sections removed from individual stain and brain Nutil
1003  quantification. Listed sections include those that had greater than 30% damage as measured in
1004  QCAlign or were excluded following manual inspection indicating that the majority of the section
1005  was distorted and unfit for quantification.
1006
1007  Supplemental Table 4. Customized intermediate hierarchy output from QCAlign. List of the 77
1008 intermediate hierarchy regions and the Allen Mouse Brain Atlas IDs that each region is
1009  comprised of.
1010
1011  Supplemental Table 5. Post-analysis region exclusion parameters. List of 77 regions (compiled
1012 by QCAlign from CCFv3 regions) and 5 additional summary regions (Nutil default regions, also
1013  compiled from CCFv3 regions) organized by their inclusion or exclusion from QCAlign analysis
1014  as represented in figure 2b, Nutil analysis as represented in figure 3a, or IHC and RNAseq
1015 integration in figures 4 and 5. “Parent term” are parent IDs, which do not represent any pixels in

1016 the CCFv3 and therefore did not generate results; “unassigned pixels” are pixels that are not
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1017  assigned to a subregion but are instead labeled according to the parent region to which they
1018  belong within the Allen Mouse Brain Atlas CCFv3 2015; “low sampling” indicates that less than
1019 20 assessments out of 36 total possible assessments contributed to the mean accuracy QCAlign
1020  score for these regions. Some regions were excluded as they had been removed from the brain
1021  prior to IHC.

1022

1023  Supplemental Table 6. Wilcoxon test results assessing the difference in stain load quantified
1024  using QuickNII alone or using QuickNIl and VisuAlign for the 55 regions assessed in Figure 2.
1025 The regional load per stain per age group among 5XFAD animals was compared between the
1026  two methods.

1027

1028  Supplemental Table 7. ANOVA results as output from R comparing regional stain load for all
1029 intermediate hierarchy regions between 6m and 14m animals. The regional load per stain per
1030 age group among 5XFAD animals was compared between the two age groups. FDR-corrected
1031  p-values are indicated as FDR_adjusted_pval.

1032

1033  Supplemental Table 8. Multilevel correlation results comparing gene expression and

1034  hippocampal load correlations both before and after age adjustment for 34 5XFAD animals.

1035 FDR-corrected p-values are indicated Age/Non-adjusted p-value (FDR corrected).
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Figure 5.

NeuN GFAP |ba1 AB1-42

[ stain Normalized
- _._._._. Method  Enrichment Score
Cell-Cell communication _c ms=iSS.

1101/2 226; this versn![:?osted Ee gﬂj?éggg) 3. The copyright holder for this preprint
869 diS

bioRxiv preprint doi: https://doi.org/ .
) is the who has granted bioRxi play the preprint in perpetuity. It is made
ilable LIer aCC-BY 4.0 ?natlon Ilcense

(which was not certified by peer revi
Cell Cycle

‘2 o
S~

Cellular responses to external stimuli I_E__-—-—- RMTs methylate histone arginines
Chromatin organization Chromatln modifying enzymes

S,
Developmental BlologyrE-_E, Chromatin organization

DNA Repair Elastic fibre formation )
Integrin cell surface interactions
DNA Replication Extracellular matrix organization
Non-integrin membrane-ECM interactions
Assembly of collagen fibrils and other multimeric structures
Collagen formation

Collagen chain trimerization
xTranscnptlonaI Regulation by E2F6

Extracellular matrix organization

Gene expression
(Transcription)

Hemostasis! g

Cell surface interactions at the vascular wall
Platelet degranulation
e, —ANtigen processing-Cross presentation
Neutrophil degranulation

Innate Immune System

Immune System

Immune System

Fatty acid metabolism
Cholesterol biosynthesis

Metabolism

Metabolism

of proteins
mRNA 3'-end processing

mRNA Splicing - Major Pathway
Processing of Capped Intron-Containing Pre=-mRNA

Metabolism of RNA mRNA Splicing

Z—-mRNA Spllcmg M|nor Pathway
Muscle contractlonlE Phase 0 - FER‘I epolarisation
N | Svst ctivation of NMDA receptors and postsynaptic events
euronal System CREB phosphorylation through the activation of CaMKI|
Organelle blogeneSIS & maintenanc: Ras activation upon Ca2+ influx through NMDA receptor
rammed Cell Death= Neuronal System

Protein localization Neurexins and neuroligins
Protein—protein interactions at synapses

Signal Transduction

Transport of small moIecuIesé!
——

Vesicle-mediated transport@ B


https://doi.org/10.1101/2023.02.27.530226
http://creativecommons.org/licenses/by/4.0/

	MethodsManuscript_Final_2.27
	MainFigures
	Figure1
	Figure2_2.23
	Figure3
	Figure4_rasterized
	Figure5


