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ABSTRACT  Soil fungal community assembly is driven by deterministic and stochas-
tic processes. However, the contribution of these mechanisms to structure the com-
position of fungal communities of forest soils at the regional scale is poorly known.
Here, we investigate the relative importance of deterministic and stochastic processes
on fungal community composition by rDNA ITS metabarcoding in a Populus davidi-
ana pioneer forests along spatial-temporal gradients. We also assessed the impact
of elevation and seasonality. The soil fungal richness of P. davidiana pioneer forests
was significantly affected by elevation and less affected by season. Similarly, the vari-
ation in the fungal community composition according to the elevation was greater
than the effect of seasonality. The fungal community composition showed a signif-
icant distance-decay relationship. Variation partitioning analysis showed that plant
variables explained the soil fungal community variation. Through null model analysis,
we found that stochastic processes were dominant in the soil fungal community as-
sembly. However, the relative importance of ecological processes, including dispersal,
selection, and drift, was not consistent across the four soil fungal community assem-
blies. In addition, the undominated fraction (including weak selection, weak dispersal,
diversification and drift) had a high relative contribution to the soil fungal community
assembly process in the P. davidiana pioneer forest. In summary, our results demon-
strated that plant variables and the undominated fraction dominate the deterministic
and stochastic processes driving soil fungal community assemblies in a P. davidiana
pioneer forest at the regional scale, which provides new perspectives for the regional
scale studies of soil fungi.

IMPORTANCE Elevation and seasonality are important factors driving the composi-
tion of soil microbiota. Due to the tight interactions of soil fungi with their host trees in
forest ecosystems, the spatial variation of soil fungal community is often linked to the
variation in the composition of dominant tree species. We compared the responses of
soil fungal communities to seasonal and spatial changes at four levels in a temperate
poplar forest dominated by a single tree species under elevation changes. Elevation
had a higher impact than seasonality on the soil fungal beta diversity. Even when the
shift in dominant tree species was limited, vegetation factors still impact soil fungal
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community variations. The dominant role of homogeneous selection and drift in fun-
gal community assemblies, except for ectomycorrhizal fungi, was further discovered.

KEYWORDS: soil fungi community, mycorrhizal fungi, elevation, season,
spatiotemporal variation, assembly process.

INTRODUCTION

he forest ecosystem is one of the most important terrestrial ecosystems, provid-
Ting key environmental contributions for the biosphere, such as being a carbon
sink, protecting biodiversity, protecting the soil, and providing wood materials and
resources (1). As an indispensable part of forest ecosystems, soil microorganisms
usually play major ecological roles. In particular, soil fungal communities affect the
forest ecosystem processes by participating in organic matter decomposition, mutu-
alistic symbiosis, or plant diseases. These fungal communities respond to changes
in biotic and abiotic factors (2). Specifically, trees, as the dominant plants in forest
ecosystems, affect the soil fungi community by changing soil coverage and structure,
regulating soil temperature and humidity, and affecting understory productivity (3). In
addition, the tree root structure and secretions directly affect the soil fungal commu-
nity composition, especially mycorrhizal fungal communities, by changing soil prop-
erties and selecting host-specific symbiotic fungi (4, 5, 6). The impact of abiotic fac-
tors, which include soil, climate, and other environmental variables, on soil microor-
ganisms also modulate the richness and composition of fungal communities (7). The
effects of soil pH, carbon-nitrogen ratio, and phosphorus content on the soil fungal
community composition have been well documented (8, 9, 10, 11, 12, 13, 14).Climatic
factors could also significantly regulate the soil fungal community. Precipitation can di-
rectly affect the growth of soil fungi by changing soil moisture (15, 16, 17). At the same
time, runoff caused by precipitation causes the distribution of nutrients and changes
in root biomass (18, 19, 20), indirectly affecting soil fungal communities’ occurrence
and spread (21, 22, 23, 24, 25). Similarly, temperature changes can also affect the in-
put of organic matter by changing plant communities and productivity (26), thereby
indirectly affecting the occurrence of soil fungal communities (27, 28).

Although the dynamic changes of soil fungal communities are impacted by biotic
and abiotic factors, they can have variable effects across different ecosystems, on dif-
ferent fungal communities, and at different scales. For example, it has been reported
that climate factors, followed by soil factors and spatial patterns, are the best predic-
tors of total soil fungal richness and community composition on a global scale. The
pH, distance from the equator, and host richness were strong predictors of ectomyc-
orrhizal fungal richness (29, 30). At the continental scale, soil fungal community varia-
tions are mainly affected by environmental variables, such as pH and precipitation (31).
Attheregional scale, studying soil fungal communities and interpreting their dynamics
are more complex and diverse. Among them, there are only a few reports addressing
the spatial-temporal variation in soil fungal communities along elevation gradients
and between seasons. To our best of our knowledge, these studies did not provide
a unified explanation for the spatial and temporal variation of soil fungal communi-
ties across different elevations and seasons. For example, clear elevation patterns, in
which soil fungal richness decreased with elevation, were observed in certain studies
(32) but not in others (33). Additional work has shown that the vertical distribution pat-
terns of soil fungal communities observed in these studies were usually explained by
environmental factors that change along elevation gradients. These include changes
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93 in soil moisture and organic carbon at different elevations, resulting in soil fungal di-
04 Vversity and community composition patterns changing with elevation (34, 35). The
o5 seasonal patterns of soil fungal communities also appear to be inconsistent, accord-
96 ingtorecent reports. In some studies, the soil fungal communities showed significant
o7 seasonal variation (36, 37). Others, in contrast, have reported that the season did not
og affect the variation of the soil fungal community (38, 39, 40). Moreover, seasonal pat-
99 terns are usually explained by seasonal variations in precipitation, and temperature,
100 among others (41, 42, 43). Moreover, the impact of the host on soil fungal commu-
101 nities cannot be ignored (4, 44, 45, 46, 47). A number of studies have shown that at
102 the regional scale, along the elevation gradient, changes in host species and richness
103 will lead to soil fungal communities’ elevation pattern (48). Therefore, the soil fungal
104 communities’ elevation and seasonal variation, as affected by the host species, is still
105 a proposition worthy of further study.

106 In addition to deterministic processes controlling microbial community structure
107 proposed by traditional niche-based theoretical assumptions, stochastic processes
108 proposed by the neutral theory of evolution have been widely discussed in microbial
100 ecology recently to control microbial community structure (49, 50). It is generally be-
110 lieved that stochastic processes affect the assembly of soil microbial communities on
111 alarge scale (51). At the regional scale, deterministic processes usually play a decisive
112 role in the assembly of soil fungal communities (32). However, recent studies have
113 shown that stochastic processes are also important in soil microbial community as-
114 sembly attheregional scale (52,53, 54). Furthermore, conclusions differ on the relative
115 importance of diffusion limitation, selective diffusion, homogeneous selection, hetero-
116 geneous selection, and undominated fraction (including weak selection, weak disper-
117 sal, diversification and drift) in the soil fungal community assembly process, especially
118 with regard to different functional fungal community assemblies (55, 51). Therefore,
110 exploring which process dominates the assembly of soil fungal communities with dif-
120 ferent functions at the regional scale can help us better understand the underlying
121 governing mechanisms.

122 As the mechanisms underlying dynamic changes of different soil functional fungal
123 communities between elevations and seasons have not yet been fully elucidated, and
124 the ecological process of community assembly remains controversial, we designed
125 this study to investigate the dynamics of fungal communities, such as mycorrhizal and
126 saprotrophic species, at different elevations and seasons. In addition, due to the host
127 tree'sinfluence on soil fungal communities (56, 57), we explored the dynamics of forest
128 soil fungal communities associated to a single host tree species, P. davidiana.

120 P. davidiana is widely distributed inin temperate forests in China. It is a decidu-
130 OUS tree species and an important source of timber. It provides excellent materials,
131 has a straight trunk, and excellent physiological characteristics such as cold tolerance,
132 drought resistance, and barren tolerance . It can adapt to different climates and envi-
133 ronments, and it can grow on slopes, ridges, and valleys. Its wide adaptation potential
134 is in part due to its ability to form symbiotic mycorrhizas with soil fungi, which can
135 help them adapt under stress conditions (58, 59, 60), so they are usually colonized
136 in forests as pioneer species. As a dual-mycorrhizal tree species, the roots of P. da-
137 vidiana can form associations with both ectomycorrhizal and endomycorrhizal fungi.
138 However, However, the information available on the soil fungal community associated
130 to this tree is limited (61). It is unclear how soil fungal communities, especially ecto-
140 mycorrhizal and endomycorrhizal fungal communities, are distributed and how they
141 respond to environmental changes.

142 Therefore, in this study, we comprehensively investigated the soil fungal com-
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FIG 1 Distribution of transects at different elevations and distribution of sampling
points in Xinglong Mountain. (A) The study area location and the distribution of each
elevation. (B) Detailed sampling point distribution map from each elevation. (C) Land-
scape photos and sampling detail photos from each elevation. The 3D map was made
by Matlab, and the detailed sampling point map of each elevation transect was made
by ArcMap. The map of China was obtained from https://geo.datav.aliyun.com/areas_
v2/bound/100000_full.json and was visualized by the R package sf.


https://geo.datav.aliyun.com/areas_v2/bound/100000_full.json
https://geo.datav.aliyun.com/areas_v2/bound/100000_full.json
https://doi.org/10.1101/2023.02.27.530225
http://creativecommons.org/licenses/by-nc-nd/4.0/

ms Submission Template mSystems Submission Template mSystems Submission Template mSystems Submission Template mSystems Submission Template mSystems Submission Te

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.27.530225; this version posted March 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Dominant Role of Stochastic Processes in Soil Fungal Communities in Pioneer Forests at a Regional Scale

143 munity of P. davidiana in Xinglong Mountain. P. davidiana is colonized as a pioneer
144 tree species in the high-elevation mountain forest of the Xinglong Mountain area of
145 Lanzhou City, Gansu Province, northwest China. To explore the soil fungi and mycor-
146 rhizal fungi diversity, community composition, dynamic changes, and community as-
147 sembly process in different P. davidiana forests in this area, we used high-throughput
148 sequencing approaches. We hypothesized that: (i) the soil fungal richness and commu-
149 nity composition of poplar forests at different elevations would vary due to the envi-
150 ronmental spatial and temporal heterogeneity; (ii) the responses of total soil fungi and
151 different types of mycorrhizal fungi to spatiotemporal variations in richness and com-
152 munity composition would be variable; (iii) The assembly processes of soil fungi and
153 different types of mycorrhizal fungal communities would be different. Understanding
154 these can help us better understand the reasons for P. davidiana wide adaptation in
155 various environments and can also help us understand the mechanisms governing
156 Mmicrobial community composition.

157 RESULTS

158 Site information and variation of environmental variables between eleva-
150 tions and seasons. The site information and landscape information of low elevation
160 (XL2300), middle elevation (XL2500) and high elevation (XL2600) were collected (Fig-
161 ure 1). The variation of soil physical and chemical properties among elevation was sig-
162 nificant (available phosphorus (AP): R? = 0.582, P <0.01; cation exchange capacity (CEC):
163 R?2=0.151, P <0.01; organic carbon (OC): R? = 0.513, P < 0.01; pH: R = 0.596, P < 0.01).
164 Soil AP and CEC were significantly higher in XL2500 and XL2600 compared to XL2300.
165 Soil OCin XL2300 was significantly higher than that in XL2500 and XL2600. The highest
166  SOil pH was observed at XL2500. However, the soil in all three elevations was weakly
167 alkaline (Figure 2). Among the 4 environmental variables describing above-ground veg-
168 etation condition, diameter at breast height of the tree (tree DBH)(R? =0.857, P < 0.01)
160 and ground primary productivity (GPP)(R? = 0.887, P < 0.01) differed significantly be-
170 tween zones, with tree DBH decreasing significantly from low to high elevations; GPP
171 was highest at XL2300 and lowest at XL2500. enhanced vegetation index (EVI)R? =
172 0.764, P < 0.01) and gap-filled of ground primary productivity (GPP GF)(R? = 0.60, P <
173 0.01) were significantly affected by the different seasons and not affected by elevation
174 zones. Except for GPP GF in XL2600, EVI and GPP GF in other zones were significantly
175 higher during the summer than in autumn (Figure 2). The GPP at XL2300 also showed
176  significant seasonal differences (higher in summer than in autumn). In contrast, GPP
177 was not significantly affected by the season in the other two zones (Figure 2).

178 Spatiotemporal distribution of soil fungal community. For the Illumina No-
179 vaSeq sequencing, 5,790,342, 10,886,725, and 13,458,869 high-quality sequences with
180 1,710, 3,699, and 1,742 operational taxonomic units (OTUs) for the ITS1, ITS2, and
181 AMF regions were obtained, respectively. A total of 30,135,936 high-quality sequences
182 corresponding to 7,151 OTUs were obtained from the three fungal regions. Through
183 classification, soil fungi were mainly attributed to Agaricomycetes, Pezizomycetes, Ar-
184 chaeorhizomycetes, Leotiomycetes, Glomeromycetes and Mortierellomycetes at the
185 classlevel (Fig. S2A,B). The relative abundances of Agaricomycetes, Pezizomycetes and
186 Glomeromycetes were significantly different among elevations (Fig. S2C). The relative
187 abundance of Pezizomycetes, Archaeorhizomycetes, Leotiomycetes, Glomeromycetes
188 and Mortierellomycetes varied significantly among seasons (Fig. S2D). At the OTU
180 level, XL2300 has the most specific OTUs (Fig. S2E), and XL2600 has the least specific
190 OTUs.There were 1172 and 1121 specific OTUs in autumn and summer, respectively
101 (Fig. S2F). However, the relative abundance of specific OTUs relative to different el-
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FIG 2 Distribution of environmental variables between seasons and zones. A non-
parametric test (Scheirer-Ray-Hare test) was performed in the two-way factorial design
and indicated significant differences in EVI, GPP, and GPP GF between elevations and sea-
sons. The Kruskal-Wallis rank sum test indicated significant differences in four soil vari-
ables and tree DBH between zones. The number indicated after the elevation and sea-
son correspond to R?, representing the variation in environmental variables explained
by season and zone, ***, P < 0.001; AP, soil available phosphorus; CEC, Soil cation ex-
change capacity; OC, soil organic carbon; pH, soil acidity and alkalinity, Tree DBH, DBH
of the sampled tree; EVI, enhanced vegetation index; GPP, ground primary productivity;
GPP GF, gap-filled of ground primary productivity.
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evations and seasons were low (Fig. S2E,F). After functional prediction, there were
1,377 OTUs classified as total mycorrhizal fungi, 729 OTUs classified as ectomycor-
rhizal fungi, and 648 OTUs classified as endomycorrhizal fungi. The soil fungal alpha
diversity variation was mainly influenced by forest elevation (Figure 3). In particular,
the richness of soil fungi varied significantly between different elevation (total fungi: R2
=0.090, P < 0.001; total mycorrhizal fungi: R?=0.161,P<0.001; ectomycorrhizal fungi:
R? = 0.057, P < 0.01; endomycorrhizal funi: RZ = 0.415, P < 0.001). The richness of en-
domycorrhizal fungi increased significantly with elevation (Figure 3, Fig. S3). Similarly,
the richness of total fungi and total mycorrhizal fungi also exhibited an elevation pat-
tern with increasing elevation in autumn; however, no obvious elevation pattern was
observed in the summer (Figure 3, Fig. S3). The richness of ectomycorrhizal fungi was
higher in XL2300 and XL2500 than in XL2600, especially during the summer. The Shan-
non diversity of total soil fungi and endomycorrhizal fungi varied significantly among
elevational zones, showing an elevational pattern that increased significantly with el-
evation (Figure 3, Fig. S3). The effect of season on the soil fungi alpha diversity was
limited. Only the richness (total fungal: R? = 0.144, P < 0.001) and the Shannon diver-
sity (total fungal: R? = 0.062, P < 0.001; ectomycorrhizal fungal: R? = 0.045, P < 0.01)
of the total and ectomycorrhizal fungi were significantly different between seasons,
being significantly higher in autumn than in summer (Figure 3).
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FIG3 Spatiotemporal distribution of soil fungal richness and diversity during the differ-

ent elevations and seasons. A two-way analysis of variance was performed to detect the
significant effects of elevations and seasons on fungi richness and diversity. The num-
ber indicated after the elevation zone and season correspond to R?, representing the
variation in fungal richness and diversity explained by season and zone, *, P <0.05, **, P
<0.01, ***, P < 0.001. The different superscripts of the box plots were calculated based
on the complLetters function in the multcompViewmult package (62) of the Tukey HSD
post hoc test.
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analysis of variance (PERMANOVA) based on the Bray-Curtis distance matrix of all sam-
ples indicated that each fungal community composition was significantly separated
between elevation (total fungi: R? = 0.25; total mycorrhizal fungi: R? = 0.27; ectomyc-
orrhizal fungi: R? = 0.27; endomycorrhizal fungi: R? = 0.22. P < 0.001), while season
only explained a small variance percentage of the fungal community composition (Fig-
ure 4A). Although the soil fungal communities in each elevation showed separation in
autumn and summer (Fig. S4), these divergences were overthrown by the sampling
zones' impact. In summary, the elevation had a stronger effect on the composition of
each fungal community than the seasons.
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FIG 4 Non-metric multidimensional scaling ordinations (A) based on Bray-Curtis dis-
tance matrix and explanation (B) of fungal community composition variation at four
levels by environmental variables detected by PERMANOVA. The arrows in the scatter
plot indicate the correlation strength and the direction of the maximum increase of
the environmental variables with a significant contribution to the community compo-
sition variation. The number indicated after the elevation and season correspond to
R?, representing the variation in fungal community composition explained by season
and zone, ***, P < 0.001. In the bar chart, the bar represents the environmental vari-
ables with a significant effect on the fungal community composition variation is edged.
AP, soil available phosphorus; CEC, Soil cation exchange capacity; Ele, elevation of sam-
pling point; EVI, enhanced vegetation index; GPP, ground primary productivity; GPP GF,
gap-filled of ground primary productivity; MEM, spatial eigenvectors generated from ge-
ographic coordinates (latitude and longitude); OC, soil organic carbon; pH, soil acidity
and alkalinity; Tree DBH, DBH of the sampled tree.

Relationship between fungal community composition and geographical and
environmental distance. The alteration in fungal community similarity with geo-
graphical distance revealed a significant distance-decay relationship (DDR) in fungal
community composition. Interestingly, the DDR slope was steeper in the total fungal
community, while it was relatively gradual in the functional fungal community, espe-
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226 cially the endomycorrhizal fungal community (Figure 5). Moreover, the DDR slope
227 was steeper in summer than in autumn. The similarity of fungal communities de-
228 creased with increased environmental distance in autumn, but the variation in sum-
220 mer was lower than in autumn (Fig. S5). The relationship between the fungal commu-
230 hity composition similarity and the attenuation of environmental distance was most
231 pronounced in the total fungal community (autumn: R? = 0.24), and less pronounced
232 in the endomycorrhizal fungal community (autumn: R? = 0.05). In summary, spatial
233 heterogeneity affected the soil fungal community composition similarity to a greater
234 extent compared to environmental heterogeneity .

Season  ==@= Autumn Summer
Total fungal community Mycorrhizal fungal community Ectomycorrhizal fungal community Endomycorrhizal fungal community
0.7 N i
Summer: y = 0,544-0.0532x R ? = 0.55 *** Summer: y = 0.552-0.0619x R, = 0.49 ** Summer: y = 0.501-0.0743x R, = 0.42 *** 0.8 Summer:y = 0-511-0-03§4>< R,,f = 0.17 %
et Nt H
A H 1 . . " 1 .. >

0.6 . - : 0.6 = R
2 ‘i
3 0.6
E 0.5
n
£ 04
8 0.4

0.4
g
@03 ! :
0.2 ] ¥ - | . y 22011
Autumn: y = 0.558-0.049x R, = 0.43 *** Autumn:y = 0542-0.053x R,y = 0417 14 Autumn: y = 0.495-0.0674x R, 2= 040> " | o i i il i e o it
ad) ..
0.2 3 3 1 2 3 1 2 3 1 2 3
Geographical distance(log10) Geographical distance(log10) Geographical distance(log10) Geographical distance(log10)

FIG5 Distance-decay patterns of soil fungal community composition and geographical
distance, based on the Bray-Curtis similarity. Different dot colors and line colors and
types represent summer and autumn samples. R?, representing the fitting degree of
fungal community similarity and geographical distance, ***, P < 0.001.

235 Effects of environmental variables on soil fungal diversity and composition.
236 A stepwise multiple linear regression model of fungal richness and diversity with en-
237 vironmental factors was constructed, indicating that environmental variables could
238 only explain 23%, 20%, 11% and 38% of the spatial and temporal variation in richness
230 of the total soil fungi, total mycorrhizal fungi, ectomycorrhizal fungi, and endomycor-
240 rhizal fungi. The richness variation in the four fungal communities was synchronously
241 affected by GPP and MEM1, while EVI and pH also contributed significantly. Tree DBH
242 explained a considerable part of the variation of ectomycorrhizal fungal richness (Ta-
243 ble 1). More interestingly, tree DBH became more important within the season, while
244 AP also became a major factor influencing richness, and the percentage of variance
245 explained by the model increased (Table S1).

246 Across all zones, the main driver of fungal community composition in the soil was
247 GPP, according to PERMANOVA (total fungi: R?= 0.15; total mycorrhizal fungi: R? =0.17;
28 ectomycorrhizal fungi: R? = 0.18; endomycorrhizal fungi: R? = 0.11; P < 0.01, Figure 4B
249 and Table S2).

250 Variation partitioning showed that the fungal community composition variance
251 at different levels was explained most consistently by the plant variable (i.e., 34.5%,
252 32.1%, 31.3%, 33.3% in total, total mycorrhizal, ectomycorrhizal and endomycorrhizal
253 fungal community composition, respectively), followed by the soil variable (i.e., 21.1%,
254 23.5%, 24.1% and 21.4% in total,total mycorrhizal, ectomycorrhizal and endomycor-
255 rhizal fungal community composition, respectively) (Figure 6A). With regards to the
256 fungal richness, the presence of plants variable explains a significant percentage of
257 the variance of each fungal community, especially the total and ectomycorrhizal fun-
258 gal richness variances (i.e., 8% and 36.8%, in total and ectomycorrhizal fungal richness).
250 Space variable explained the highest variance percentage variance of total mycorrhizal
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TABLE 1 Stepwise multiple regression linear model between soil fungal richness and envi-
ronmental variables to reveal their contribution to soil fungal richness variation.

Richness Variable(s) Slope Std.Error tvalue Pr(>|t]) Independent contribution (%) Adj.R?> p
Total Fungi PV 012 002 558 <000 [SEOSNE 023 0.00
GPP 1.53 0.42 3.67 <0.00 13.58
MEM1 170.67 33.63 5.08 <0.00 21.81
pH -183.31  59.91 -3.06 <0.00 26.52
Mycorrhizal fungi GPP 0.08 0.03 241 0.02 19.64 0.20 <0.00
Ecotomycorrhizal fungi  EVI -0.01 0.00 -4.15 <0.00 20.01 0.1 0.00
GPP 0.19 0.05 3.96 <0.00 16.33
WEV o5 s e <000 |EGTSHNN
Tree DBH 1.19 0.31 3.80 <0.00 24.39
GPP GF 0.07 0.02 3.17 <0.00 12.53
Endomycorrhizal fungi  GPP 0.05 0.02 2.56 0.01 16.52 0.38 <0.00
pH -15.12 4.85 -3.12 <0.00 6.60

9The background blue fill represents an important variable in the models, and the background yellow fill represents a higher fit of the models. EVI, enhanced
vegetation index; GPP, ground primary productivity; GPP GF, gap-filled of ground primary productivity; MEM, spatial eigenvectors generated from
geographic coordinates (latitude and longitude); pH, soil acidity and alkalinity; Tree DBH, DBH of the sampled tree.

fungal richness (28.7%), while elevation explained the highest variance percentage of
endomycorrhizal fungal richness (31.1%) (Figure 6B).

In summary, the environmental variables could only explain a small percentage of
the variance in soil fungal diversity and community composition. Different types of en-
vironmental variables exhibited different percentages of the fungal richness variance
explained, while the causes for the variance of different fungal community composi-
tions were relatively consistent.

Ecological process of fungal community assembly. We explored the distribu-
tion of BNTI in four fungal communities to infer the ecological processes of soil fun-
gal communities assembly. We observed sign ificant differences between the four
fungal communities (Figure 7A). Both deterministic and stochastic processes consid-
erably influenced the assembly of the total fungal community. They showed seasonal
differences (deterministic processes: 47% in summer and 62% in autumn, stochastic
processes: 53% in summer and 38% in autumn). On the other hand, the aggregate of
the other three fungal community levels was more affected by a random process and
did not exhibit seasonal differences (mycorrhizal fungi: 89% in summer and 86% in
autumn, ectomycorrhizal fungi: 90% in summer and autumn 92% ; endomycorrhizal
fungi: 71% in summer and 73% in autumn).

With regards to the more detailed ecological processes of the fungal community
assembly, they differed significantly at each level: the strong homogeneous selection
(50%) and weak variable selection (1%) in the deterministic process and the undomi-
nated fraction (49%) in the stochastic process determined the total fungal community
assembly. The strong undominated fraction (89%) in the stochastic process and the rel-
atively weak homogeneous selection (10%) and variable selection (1%) in the determin-
istic process determined the total mycorrhizal fungal community assembly. The strong
homogenizing dispersal (91%) in the stochastic process and a weak homogeneous se-
lection (5%) and variable selection (4%) in the deterministic process determined the ec-
tomycorrhizal fungal community assembly. Finally, the strong undominated fraction

10
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FIG 6 Upset plot of the hierarchical variation partitioning results, showing the indi-
vidual and shared contributions of season, elevation, space, soil, and plant on soil fun-
gal richness (B) and community composition (A), respectively. The dot matrix and his-
togram present the values for shared and exclusive contributions, and the horizontal
histogram presents the percentage of individual effects toward the total explained vari-
ation. Residuals represent the percentage unexplained by these variables.

(77%) in stochastic process and the strong homogeneous selection (21%) and weak
variable selection (1%) in the deterministic process determined the endomycorrhizal
fungal community assembly. In general, except for the fact that the assembly of ecto-
mycorrhizal fungal communities was strongly affected by homogenizing dispersal, the
other three fungal communities assemblies were affected by homogeneous selection,
undominated fraction and variable selection, but the proportions were completely dif-
ferent (Figure 7B).

DISCUSSION

The mechanisms underlying the spatial and temporal distribution mechanism of
soil microorganisms have been a long-standing but controversial issue. This work has
explored the diversity patterns and assembly mechanisms of soil fungal communities
on two important spatial and temporal gradients (elevation and season) at a regional
scale. This work focused on P. davidiana forests. More importantly, this work investi-
gated in detail the different levels of fungal communities in soil. The results showed
that the elevation was the dominant factor affecting the spatial and temporal variation
of the soil fungal community, and it had variable effects on the soil fungal community
at different levels. However, neither the elevation nor the season led to a large-scale
variation of soil fungal communities. Further, we found that plant variables mainly
explained the spatial and temporal variation of the soil fungal community. The fungal
community composition showed a significant distance decay pattern. In addition, we
found that the stochastic processes were more dominant compared to the determin-
istic process (i.e., variable selection) in shaping soil fungal community composition in
the P. davidiana forest. The relative contribution of ecological processes varied among
the different soil fungal communities.

Spatiotemporal dynamics of the soil fungal community on Xinglong Moun-
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FIG 7 Distribution patterns of SNTI in soil fungal communities at four levels (A) and
ecological processes driving soil fungal community assembly (B).

tain. The soil fungal alpha diversity variation among elevations was greater than that
among seasons, especially the richness of endomycorrhizal fungi, exhibiting a signif-
icant increase with increasing elevation. It is generally suggested and reported that
fungal richness decreases with increasing elevation (63, 32, 61), and it has also been re-
ported that fungal richness does not increase with elevation (33). Therefore, the expla-
nation of the elevation model of endomycorrhizal fungal richness is also diverse. It is
generally believed that endomycorrhizal fungi are more likely to occur at the seedling
stage of mycorrhizal plants (64). We speculated that with the increase of elevation,
the decreasing maturity of the populus forests leads to an increase in the richness of
endomycorrhizal fungi. In contrast, the variation of ectomycorrhizal fungal richness
between elevation was significant but relatively small. This may be because the three
elevation zones are poplar forests with the same host tree species. The host tree
species usually have a strong effect on ectomycorrhizal fungi variation (4, 44, 4).

Compared with the significant variation between elevation, the soil fungal rich-
ness variation between seasons was only significant for the total fungal richness. This
was mainly attributed to the fact that the total fungal richness in autumn was signif-
icantly higher than that in summer, similar to previous reports (36, 37). In contrast,
the richness of total mycorrhizal fungi, ectomycorrhizal fungi, and endomycorrhizal
fungi did not show a significant seasonal pattern (Figure 3). Our results indicated that
the symbiotic fungi richness is not affected significantly by seasonal changes. In fact,
studies have shown that the ectomycorrhizal fungal richness increases significantly
in April and remains fairly stable until October (65). Other studies spanning a longer
period than comparing mycorrhizal fungal richness in autumn and summer have re-
ported seasonal variations (38, 39, 40), but this does not conflict with our findings. As
for the seasonal stability of mycorrhizal fungal richness identified in this study, we
suggest that it might be a result of small fluctuations of soil physical and chemical vari-
ables between seasons. The total fungal community is usually affected by physical and
chemical properties fluctuations, such as pH and AP (66, 67), but we assume that these
soil variables do not significantly change with seasons, so we cannot provide specific
conclusions.

In studying the spatial and temporal variation of soil fungal communities at large

Ectomycorrhizal Endomycorrhizal

Season

12
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344 spatial scales, the spatial variation is usually greater than the variation between sea-
3a5  sons (68, 69). Although our research was carried out on a regional scale, the results
346 still showed that the soil fungal community composition temporal and spatial varia-
347 tionin a P. davidiana forest was mainly dominated by elevation. Although the season
348 also significantly shaped the soil fungi community composition, it had a less significant
349 effect on soil fungi than the elevation.

350 Effects of geographical distance on soil fungal community composition. Mi-
351 crobiological studies at different spatial scales have shown that microbial communi-
352 ties are usually affected by the geographical distance on a larger scale and by envi-
353 ronmental aspects on a shorter, regional scale (70, 71). However, our results showed
354 that, at the regional scale, the spatial heterogeneity of soil fungal community compo-
3s5  sition could also be significantly explained by the distance decay relationship (DDR)
356 (Figure 5). The DDR indicated that the variation in the composition of the four fungal
357 communities was significantly correlated with geographical distance. The DDR slope
sss  of endomycorrhizal fungal community composition was the lowest, but this did not
350 correspond to a lower turnover rate of endomycorrhizal fungi associated with P. do-
360 Vidiana with regard to geographical distance. This might be due to the high migration
361 of fungal species weakening the DDR by homogenizing the community (72). Thus the
362 |low DDR slope observed for the endomycorrhizal fungal community might be due to
363 its high migration ability. The null model in our study indicated that the endomycor-
364 rhizal fungal community migrates through homogeneous selection and thus weakens
365 DDR (Figure 7). In addition, the four fungal communities had a weaker DDR in autumn
366 was weaker compared to the summer, indicating that the turnover of soil fungi in au-
367 tumn was lower than that in summer. The reason underlying the low slope of DDR in
368 autumn should be similar to that explaining the low slope of DRR of endomycorrhizal
360 fungi: homogeneous selection of fungal communities with high relative importance in
370 autumn led to high migration of fungi and weakened the DDR.

371 Assembly of soil fungal community. Variation partitioning helps us understand
372 the effects of environmental variables on the fungal richness and fungal community
373 composition. Environmental variables only explained a small part of soil fungal com-
374 munities’ spatial and temporal variation. Multiple sets of environmental variables ex-
375 plained this portion of the variation, and the portion explained by pure elevation or
376 Sseason was even less. Plant variables greatly contribute to the shaping of fungal com-
377 munity composition. Although our results show that plant and other environmental
s7s  variables explain a part of the variation of fungal richness and community composi-
379 tion, a large part of the variation cannot be explained. This unexplained variation is
380 generally caused by noise in the ecological process of microbial community assembly
381 (52, 53,73, 74). We evaluated the ecological processes of fungal community assembly
382 using null models. BNTI and Raup-Crick were used to determine the assembly process
383 of each fungal community. Notably, except for the ectomycorrhizal fungal community,
384 the assembly of the other three fungal communities was controlled by undominated
385 process and homogeneous selection. Homogeneous selection accounted for a large
386 proportion of the ecological process, especially in the total and endomycorrhizal fun-
387 gal communities, while the ectomycorrhizal fungal community assembly was mainly
3ss driven by homogenizing dispersal. Homogeneous selection refers to the process by
380 which the environment limits the microbial populations’ differentiation and is an eco-
300 logical factor that alters community structure in a homogenous state, resulting in simi-
301 lar community structures with deterministic variables. Such factors include biotic and
392 abiotic conditions (51). The homogeneous selection was dominant in the total and
393 endomycorrhizal fungal community assembly process, indicating that in the range of
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304 environmental heterogeneity in this study, it decreased the fungal community differ-
395 ences and also homogenized the fungal community and endomycorrhizal community,
396 resulting in a high similarity of soil fungal communities (51). There is always a process
397 of variable selection (heterogeneous selection) in the ecological process of four fun-
398 gal community assembly, but the proportion is very small, which may be the reason
399 for the diversity of fungal community in different environments, similar to the small
400 Variation of fungal community composition explained by environmental variables in
401 the results of variance partitioning (Figure 5). Dispersal limitation is considered to be
402 due to certain limitations in the migration of organisms, such as spatial distance and
403 environmental filtering. Unlike other reports on the dominant role of dispersal limita-
404 tion and variable selection in forest soil fungal communities (55, 51), the dispersal of
405 the four fungal communities in this study was not limited. In particular, the ectomyc-
s06 orrhizal fungal communities assembly was very different from the other three fungal
407 communities, mainly dominated by homogeneous dispersal, indicating the strong dis-
408 persion of ectomycorrhizal fungi in P. davidiana soil. The environmental heterogeneity
400 in this study was at the limit of ectomycorrhizal fungal adaptation range, but due to
410 its strong dispersal, it has not formed a heterogeneous community structure (51). The
211 undominated fraction (including weak selection, weak dispersal, diversification and
412 drift) is caused by the species’ random birth, death, and reproduction, which is not
413 related to niche preference. The undominated fraction is important in assembling
414 communities other than ectomycorrhizal fungal communities. In combination with
415 the dominant role of homogeneous selection in the assembly of these three fungal
416 communities, we conclude that homogeneous selection and ecological drift are more
417 important than the niche-related environmental selection at the regional scale of this
418 study (75).

419 Conclusions. We assessed the spatial and temporal distribution of soil fungi in
420 the Xinglong Mountain forests dominated by P. davidiana. The richness of the different
421 fungal communities exhibited different spatial or seasonal patterns, but the compo-
422 sition of these communities was mostly affected by the spatial patterns compared to
423 the seasons. This may be because the environmental heterogeneity caused by space
424 was greater than the niche difference between seasons. The spatial and temporal
425 distribution patterns of community composition of different soil fungi types could be
426 explained by environmental variables, especially plant variables. At the same time,
427 different environmental variables explained the spatial and temporal patterns of the
428 richness of different types of fungi. All four fungal communities showed a significant
420 DDR, indicating a high turnover rate. The assembly of total mycorrhizal and endomyc-
430 orrhizal fungal communities showed a higher proportion of undominated fraction (in-
431 cluding weak selection, weak dispersal, diversification and drift), while the assembly of
432 total fungal communities was controlled by homogeneous selection and undominated
433 fraction, and the assembly of ectomycorrhizal fungal communities was dominated by
432 homogeneous dispersal. Variable selection (heterogeneity selection) played a minor
435 role in the four fungal community assembly in this study, and dispersal limitation did
436 not exist. At the regional scale, environmental heterogeneity did not lead to a dra-
437 matic variation of fungal communities. Still, environmental heterogeneity, especially
438 plant variables, was a reasonable explanation for fungi's spatial and temporal varia-
430 tion. The study evaluated elevation differences, but no clear elevation patterns were
440 observed, which may be caused by small elevation variations or insufficient gradient.
441 This study highlighted the changing patterns and ecological processes of forest soil
442 fungal communities dominated by dual-mycorrhizal plants, especially symbiotic my-
443 corrhizal fungal communities, and improved our understanding of the integrity and
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diversity of soil fungal communities. Therefore, future studies should investigate soil
fungal communities in a comprehensive and differentiated manner to provide more
valuable results.

MATERIALS AND METHODS

Sampling, soil physicochemical properties, tree characteristics, and climate
data. The soil samples were collected from the Xinglong Mountain National Nature Re-
serve, located about 45 km southeast of Lanzhou City (103°50’-104°10’E, 35°38’-35°58’N),
with an elevation of 1800-3670 m. The region has a temperate semi-humid and semi-
arid climate type (76). In the suitable elevation range of Populus davidiana distribution
in the Xinglong Mountain area, three sampling zones were selected, corresponding to
alow elevation (XL2300) (104°3’59”E, 35°47’56"’N, 2,317 m to 2,344 m above sea level), a
middle elevation (XL2500) (104°3’15”’E, 35°45’5””N, 2,529 m to 2,532 m above sea level)
and a high elevation (XL2600) (104°2'49"'E, 35°44’28"'N, 2,613 m to 2,615 m above sea
level), respectively. The sampling was conducted in the summer (June 2020) and au-
tumn (September 2020). In XL2300 and XL2500 zones, three plots were set in each
zone, and three independent trees were selected for sampling from each plot (more
than 5 meters apart). In XL2600 zones, only one plot containing four independent sam-
ple trees was set. The distance between the sampled trees in each zone was at least
5 m. The DBH of each sample tree was measured, and photographed its growth to
obtain its characteristic information (Figure 1). Soil cores of 20 cm depth were drilled
from the topsoil in four directions (east, south, west, and north), 1.5 m to 2 m away
from the trunk of the tree. Each soil sample was passed through a 2 mm soil sieve,
and then it was stored in 50 ml and 2 ml sterile centrifuge tubes. The samples were
transported back to the laboratory using dry ice and stored at -80°C for molecular
analysis. The remaining soil of each sample was air-dried for analysis of the physical
and chemical properties.

The soil samples’ physical and chemical properties were only measured in the sum-
mer because the physical and chemical properties will not change greatly in a short
period (77). In addition, the four samples of each tree were combined into two samples
(southeast and northwest), meaning that soil samples from the east and south shared
physical and chemical property information, as did samples from the west and north.
The soil's physical and chemical properties were determined by Baisheng Biotechnol-
ogy Co., Ltd., Xilin Gol League, Inner Mongolia, according to China’s agricultural and
forestry industry standards. Specifically, soil total nitrogen (TN) was measured using
the Kjeldahl method, soil organic carbon (OC) was measured using the potassium
dichromate volumetric method, soil available phosphorus (AP) was measured using
the molybdenum antimony anti-colorimetric method, soil cation exchange capacity
(CEC) was measured using the ammonium acetate exchange Kjeldahl method, and
soil pH was measured using the acidity meter method.

Climate data were available on the freely accessible website database Worldclim
(https://www.worldclim.org/data/index.html). The GPP and EVI data of each zone were
extracted and used as a proxy for the zone's total primary productivity and above-
ground net productivity using the MOD17A2H product with a spatial resolution of 500
m 500 m and an 8-day temporal resolution and the MOD13Q1 product with a spatial
resolution of 250 m 250 m and a 16-day temporal resolution provided by the MODIS-
Tools package (78). The dbmem function in the adespatial package (79) was used to
construct a distance-based Moran'’s eigenvector map (dbMEM) from the latitude and
longitude coordinates of sampling points.

Molecular analyses. Total soil DNA extraction from 50 mg of soil samples was
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performed using the Qiagen DNeasy PowerSoil DNA Isolation Kit (Qiagen, Germany)
following the manufacturer's instructions. Each sample was extracted in triplicate,
and the total DNA quality and quantity were evaluated using a NanoDrop ONE spec-
trophotometer (Thermo Scientific, USA) and pooled for subsequent analyses. We used
three primer pairs to amplify different regions of the soil microbial DNA. The fun-
gal internal transcribed spacer region 1 (ITS1)-targeting primer pairs were ITS1F (5'-
CTTGGTCATTTAGAGGAAGTAA-3')/ITS12 (5'-GCTGCGTTCTTCATCGATGC-3') (80); the primers
ITS86 F (5'-GTGAATCATCGAATCTTTGAA-3')/ ITS4R (5/-TCCTCC GCTTATTGATATGC-3’)
(81) were used to target the internal transcribed spacer region 2 (ITS2), and primer
pairs AMV4.5NF (5'-AAGCTCGTAGTTGAATTTCG-3')/ AMDGR (5’-CCCACTATCCCTATTAATCAT-
3’) were used to amplify a fragment of the arbuscular mycorrhizal fungi (AMF) 18S
rRNA gene region (82). The 30 pl PCR reaction system contained 15 pl of Phusion high-
fidelity PCR Master Mix (New England Biolabs), 0.2 pM forward and reverse primers,
and 10 ng of template DNA. Amplification was performed as follows: 1 min initial de-
naturation at 98°C, 30 cycles of 10 s at 98°C, 30 s at 50 °C, and 30s at 72°C, with a final
5 min elongation at 72°C. Following the manufacturer’s instructions, libraries were
generated using the Illlumina TruSeq DNA PCR-Free Library Preparation Kit (Illumina,
USA), and index codes were added. The Qubit 2.0 Fluorometer from Thermo Scien-
tific and the Agilent Bioanalyzer 2100 system was used to evaluate the library's quality.
All samples were pooled into equimolar concentrations before sequencing with the
paired-end protocol on the lllumina NovaSeq platform by Novogene Biotech Co., Ltd
(Tianjin, China).

Sequencing Statistics. Raw sequences were split into groups based on their bar-
codes. The paired-end raw sequences were processed in the QIIME2 platform (83).
The Cutadapt plugin was used for primers removal from paired-end sequences, and
the DADA2 denoise-paired plugin was used for sequence quality control of paired-
end reads, and amplicon sequence variants (ASVs) clustering with 100% similarity was
obtained. Operational taxonomic units (OTUs) were obtained by clustering the ASVs
based on a 97% identity threshold of the sequences using the g2-vsearch plugin. OTUs
presentin only one sample was removed. The Qiime feature-classifier classifier-sklearn
pipeline was used to classify OTUs to identify their taxonomic ranks. Reference se-
qguences for training the sciKit-learn naive_bayes classifier were obtained from UNITE
version 4 (84) and MaarjAM databases (85). The FUNGUIld v1.1 script (86) was used
to predict the OTUs function, and different types of total mycorrhizal fungi OTU were
screened based on the results. Based on FUNGuild prediction results, all OTUs in this
study were divided into four fungal communities: the total fungal community, the to-
tal mycorrhizal fungal community, the ectomycorrhizal fungal community, and the en-
domycorrhizal fungal community. It should be noted that the total mycorrhizal fungal
community OTUs were defined as OTUs that were predicted to be from mycorrhizal
fungi and contained all mycorrhizal fungal types. The ectomycorrhizal fungal commu-
nity OTUs were defined as the OTUs that were predicted to be from ectomycorrhizal
fungi, and these were preferentially considered ectomycorrhizal fungi. The endomyc-
orrhizal fungal community OTUs were defined as the OTUs from the total mycorrhizal
fungal community other than the ectomycorrhizal fungi.

Statistical analyses. The chart.Correlation function in the PerformanceAnalytics
package (87) was used to assess the normal distribution of environmental variables
and the pairwise correlation between variables. The soil physical and chemical prop-
erties variable TN and the climate variables Avetmax and Aveorec were removed be-
cause these three variables were co-linear with other environmental variables (r > 0.7).
Since the environmental variables did not follow a normal distribution (Fig. S1), we
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543 used non-parametric methods to evaluate the relative importance of the elevation
sa4 and season to environmental variables. The kruskal_test function in the rstatix pack-
545 age (88)was used to evaluate the effects of the elevation on four physical and chemical
sa6  properties of soils and the DBH of host trees. The scheirerRayHare function in the rcom-
547 panion package (89) was used to evaluate the effects of elevation and season on EVI,
sas GPP, and GPP GF.

549 The rarefaction and alpha diversity calculation of the fungal community datasets
sso was performed using the vegan packag rrarefy, estimateR, and diversity functions (90).
s51 A two-way ANOVA was used to evaluate the effect of different seasons and altitudinal
552 regions on alpha diversity, and pairwise comparisons were performed using Tukey's
553 multiple comparison method. Based on the two-way ANOVA results, a linear regres-
ss4  sion model was fitted to elevation and fungal abundance to accurately assess the im-
s55  portance of elevation on fungal richness. A stepwise multiple linear regression was
ss6  used to explore the multivariate explanation of the pattern of fungal richness varia-
557 tion pattern, and each variable’s independent contribution was calculated using the
sss  hier.part function in the Hier.part package (91).

559 The vegdist function from the vegan package (90) was used to calculate the Bray-
se0  Curtis distance matrix for the community datasets of total soil fungi, total mycorrhizal
s61  fungi, ectomycorrhizal fungi, and endomycorrhizal fungi. In this study, fungal commu-
s62 hities’ dissimilarities were ordinated using the non-metric multidimensional scaling
s63 (NMDS) method based on the Bray-Curtis distance matrix. To determine the contri-
s64 bution of the two experimental factors (different seasons and different elevations) to
s65 the soil fungal community structure in this study, we analyzed the Bray-Curtis distance
s66 Mmatrix between pairs of samples with a permutation-based test using a PERMANOVA
s67 model of the adonis function. To determine the importance of geographic distance
ses on the fungal community similarity, linear models of the geographic and environment
s60 distance matrix of sampling points and the Bray-Curtis similarity matrix of the fungal
s70  community were fitted. The geographic distance matrix between sampling points was
571 obtained by calculating the latitude and longitude coordinates data of sampling points
s72  using the distm function in the geosphere package (92). The environmental distance
573 matrix was the Euclidean distance between zones based on measured environmental
574 variables.

575 To evaluate the effects of environmental variables on soil fungal community com-
576  position, we first used the envfit function in the vegan package (90) to fit the envi-
577 ronmental variables with the NMDS results. Then we used PERMEANOVA to quantify
s7s  the effects of various variables on soil fungal community composition. In addition, to
s79 quantify the relative importance of different environmental variables on the variation
sso  of soil fungal richness and community composition, the rdacca.hp function from the
ss1  rdacca.hp package was used to perform hierarchical, and variation partitioning on the
ss2 total variation of soil fungal richness and community composition explained by envi-
583 ronmental variables (93). The environmental variables were divided into three types:
ssa  soil (OC, AP, pH, CEC), plant (EVI, GPP, GPP GF, tree DBH), and space (MEM1, MEM2).
ss5 Together with elevation and season, they were used for variation partitioning and total
ss6 variation hierarchy.

587 The pNST function in the NST package was used to calculate the g-nearest taxon
sss index (BNTI) between paired samples and the Bray-Curtis-based Raup-Crick metric
sso  (RCbray) (94), and the community assembly process was inferred using the previously
so0 developed null model (95, 96, 97, 98) specifically if the observed BMNTD value does
so1 not deviate significantly from the null BMNTD distribution (| BNTI| < 2), it indicates
s92 that the phylogenetic composition differences in the observed community are due to
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503 uncertain processes (including diffusion limitation, homogenization diffusion). If the
s0a  BNTI value < -2, the observed community phylogenetic development is significantly
so5 |lower than the expected phylogenetic replacement (that is, the community assembly
s96 is driven by homogeneous selection). If BNTI > 2, itindicates a significantly higher than
507 the expected system replacement (that is, the community assembly is driven by vari-
s0s able selection). At the same time, based on the method first proposed by Stegen and
s90 modified by Stegen and Dini Andreote et al., we performed a more detailed assess-
600 ment of the community assembly process when |BNTI| < 2: when |BNTI| <2 and
601 RCbray > 0.95, the community assembly between samples will be considered as dis-
602 persal limitation; when |BNTI| < 2 and RCbray < —-0.95 between paired samples, the
603 community assembly between samples will be considered as homogenizing dispersal;
604 when |BNTI| <2 and RCbray < 0.95, the community assembly between samples will
605 be considered as an undominated fraction (including weak selection, weak dispersal,
606 diversification and drift).

607 Availability of data and materials. Raw sequences were deposited in the Se-
608 quence Read Archive under Bioproject PRINA852440. All supplemental figures and
600 tables that appear in the text were organized in a collection document SUPPLEMEN-
610 TAL FILE1. The read count OTU table and the representative sequence of each OTU
611 were provided in SUPPLEMENTAL FILE2. The corresponding metadata was provided
612 in SUPPLEMENTAL FILES3.
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614 Supplemental material is available online only.
615 SUPPLEMENTAL FILE1, PDF file, 1.28 MB.
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617 SUPPLEMENTAL FILE3, XLSX file, 31 KB.
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