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Abstract: Macroglia fulfill essential functions in the adult vertebrate brain, producing and 15 
maintaining neurons and regulating neuronal communication. However, we still know little about 
their emergence and diversification. We used the zebrafish D. rerio as a distant vertebrate model 
with moderate glial diversity as anchor to reanalyze datasets covering over 600 million years of 
evolution. We identify core features of adult neurogenesis and innovations in the mammalian 
lineage with a potential link to the rarity of radial glia-like cells in adult humans. Our results also 20 
suggest that functions associated with astrocytes originated in a multifunctional cell type fulfilling 
both neural stem cell and astrocytic functions before these diverged. Finally, we identify conserved 
elements of macroglial cell identity and function and their time of emergence during evolution. 

 
One-Sentence Summary: Radial glia of the adult zebrafish forebrain associate transcriptomic 25 
features of adult neural stem cells and astrocytes 
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Main Text:  
Introduction 

The appearance of nervous systems during animal evolution was a transformative event which 
revolutionized their interactions with the outside world and ultimately gave rise to higher 
cognition. To acquire their current forms, nervous systems required emergence of new cell types 5 
followed by substantial diversification(1). To date, work on cell type evolution in the brain has 
focused on neurons. Conversely, macroglia have been mostly overlooked, despite being a major 
component of the human nervous system, outnumbering neurons in the cerebral cortex(2). 
Macroglia fulfill essential roles to produce, guide and support neurons(3). In mammals, the 
macroglia is made up of radial glia-like cells (referred to as radial glia -RG- below), astrocytes, 10 
oligodendrocytes and ependymocytes. RG act as neural stem cells (NSC) and support adult 
neurogenesis, a process that promotes plasticity, growth and regenerative abilities in several 
species. The only glia in the nervous systems of early deuterostomes and early vertebrates were 
RG(4), but little is known about the actual heterogeneity of early glia and how glial diversity 
emerged. Additionally, the sequence of events of adult neurogenesis appears similar across 15 
vertebrates(5–7), yet a broad comparative analysis has never been conducted.  

With its large RG population, abundant adult neurogenesis in regions homologous to mammalian 
neurogenic niches and intermediate glial diversity, the zebrafish telencephalon is an excellent 
model to address key questions of macroglia evolution and diversification(8). Here we used 
scRNA-seq to profile all cell types of the adult zebrafish telencephalon and generate an improved 20 
characterization of its macroglia. We then re-analyzed data covering the telencephalon from 
several vertebrates(9–11) which included glia (even if glia had been discarded in the original 
analyses), or the nervous system of invertebrates(12–22), and used these to determine to which 
extent the populations of RG and the neurogenic cascade were conserved and how glial diversity 
emerged from ancestral glia. These results improve our understanding of cell diversity in the 25 
zebrafish telencephalon, highlight conserved and divergent features of the neurogenic cascade 
across vertebrates, and reveal the multifunctional nature of ancestral astroglia.   
Generation of a molecular atlas of the adult zebrafish telencephalon. 

The zebrafish adult telencephalon is a major model for neuroscience studies, yet the limited 
characterization of its cell diversity hinders the labeling of specific cell types. Our cell collection 30 
procedure (Fig.1A) allowed us to enrich for RGs (located along the everted ventricular zone, green 
in Fig.1A) while still recovering the full extent of cell diversity in the adult zebrafish 
telencephalon. We first grouped cells into broad classes using well-defined markers (Fig.1B). We 
then subclustered each of those groups to identify refined cell subtypes. Because neurons and RG 
showed substantial heterogeneity we implemented a consensus-clustering strategy to resolve 35 
robust yet fine-grained clusters (Methods and Fig.S1A,B).  

This analysis first revealed notable results on non-RG cell types (Fig.1C). Among GABAergic 
neurons, we distinguished what likely corresponds to distinct ontogenies, compatible with an 
origin from homologs of the medial ganglionic eminence (MGE) (nkx2.1+, sox6a+), including 
somatostatin interneurons like in mammals, or the lateral ganglionic eminence (LGE) (six3a+, 40 
six3b+, meis2a +) (Fig.1C). We also found that, based on their high expression of nr2f1a and nr2f2, 
a small proportion of GABAergic neurons likely derives from a homolog of the caudal ganglionic 
eminence (CGE), which has not been described in zebrafish before.  
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We also recovered unexpected diversity among brain immune cells despite a previous report 
suggesting that such heterogeneity was a human-specific trait(23). Among mpeg1.1+ cells we 
identified two clusters corresponding to functionally and ontogenetically distinct subpopulations 
of microglia previously described in the midbrain(24). We also identified another distinct and 
previously undescribed group of brain macrophages (Fig.1C). 5 

Ventricular patterning is conserved throughout life and evolution 

We next turned to quiescent RG (qRG) (Fig.1B, green cluster). Conservative consensus-clustering 
followed by iterative cluster-merging based on differential expression identified 7 robust clusters 
(q1-q7) (Fig.2A, Fig.S1C). We further confirmed that this was not dictated by technical parameters 
and that clusters could be re-identified with a classifier (Fig.S2), and identified cluster-specific 10 
gene signatures (Fig.2B). There was little overlap between the clusters we identified and those 
proposed in a previous study(25). We thus reanalyzed the previously published data and performed 
in situ hybridizations (ISH) on whole mount telencephala and on serial coronal slices to assess the 
validity of our results. Although we resolved fewer clusters in these reanalyzed data(25) than in 
our own, likely due to the significantly lower number of cells profiled in this previous study, the 15 
data structure and patterns of cluster-specific gene expression now appeared consistent between 
the two datasets (Fig.S3). ISH further corroborated our clustering as genes enriched in the same 
cells showed similar patterns (Fig.S4).  

This analysis revealed spatially segregated RG populations in the ventricular zone. The gsx2+ q6 
and the nkx2.1+ q7 clusters are restricted to a region close to the expected medial boundary 20 
between pallium and subpallium and in the ventral telencephalon respectively (Fig.2C,D). Similar 
observations were made in adult murine lateral ventricles, where the lateral wall expresses Gsx2 
and is LGE-derived, while the ventral wall expresses Nkx2.1 and is MGE-derived(10, 26, 27). 
Markers for q5, including nr2f1b, were less strictly segregated but showed an enrichment caudally 
in pallial RG (Fig.S5) reminiscent of the Nr2f1 gradient in RG of the developing mammalian 25 
neocortex(28).  

Thus, ventricular progenitor patterning is maintained not only throughout life but also throughout 
evolution. In particular, the ventricular zone of the dorsomedial pallium (Dm) in zebrafish, which 
has been the focus of most of the studies on telencephalic neurogenesis in this model, is 
homologous to the dorsal wall of the SEZ in mouse. Conversely the gsx2+ area corresponds to the 30 
subpallial Vd domain rather than Dm, contrary to what was previously reported(25), and to the 
lateral wall of the mouse SEZ. These molecular landmarks (Fig.2E) will inform comparative 
studies of morphogenesis and neurogenic output between teleosts and mammals.  
Conserved and innovative features of adult neurogenesis  

Adult neurogenesis has been mostly studied in rodents which display some of the highest 35 
evolutionary rates. Analyzing a broader range of species can improve generalizability and 
highlight fundamental features of the neurogenic cascade (5–7). By reanalyzing datasets published 
in amphibians(11), reptiles(9, 29) and mammals(10, 30–35) we compared gene expression patterns 
along successive steps of neurogenesis progression, from qRG to pre-activated RG (close to 
activation, corresponding to q1 in zebrafish) and neuroblasts, to reconstruct their state in the last 40 
common ancestors of different taxa (Fig.3). This revealed conserved expression of key regulators 
since the last common ancestor of osteichtyes. For example, the regulation of the Notch pathway 
is such that one Notch receptor gene is expressed in, and likely maintains, qRG(36, 37). 
Conversely, Notch1 is expressed in paRG and so is the Notch ligand gene DLL1(38, 39). The SoxC 
genes SOX4 and SOX11 are turned on in paRG and reach their peak in neuroblasts, consistent with 45 
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their described roles in hippocampal neurogenesis(40). Likewise, the EMT regulator ZEB2, which 
was recently found to be necessary for neurogenesis in the SEZ(41), displays conserved expression 
in neuroblasts. SOX9, which is a broad and specific marker of astroglia in adult mice(42) was not 
detected in previous datasets. We found that this is due to poor annotation of sox9a and that SOX9 
expression is conserved in qRG among osteichtyes.  5 

Conversely, we found stepwise additions to the neurogenic cascade during mammalian evolution. 
ID transcription factors modulate the dynamics of Notch signaling. Among them ID4 is more 
efficient than other IDs at inducing a return to quiescence(43), is the only one positively regulated 
by Notch signaling in qRG(44) and is a tetrapod addition (Fig.3). The switch from NOTCH3 to 
NOTCH2 in qRG likely happened early in the mammalian lineage, which, with the emergence of 10 
NOTCH2NL genes that potentiate NOTCH signaling in humans(45, 46), could explain some 
human features of adult neurogenesis (Supp. Text). We were unable to reconstruct neurogenic 
trajectories from large-brained animals(33, 34), possibly owing to sensitivity limits of untargeted 
scRNA-seq, although we confirmed evidence of ongoing adult neurogenesis when reanalyzing a 
large macaque dataset(35). While our re-analysis suggested that the initially defined RGL and 15 
IPC_2 clusters in this dataset are likely multiplets and of myeloid origin respectively (Fig.S6), 
these data did include progenitors not found in other datasets, allowing us to confirm the expression 
of some of the highly conserved genes in primates. In particular, IGFBPL1 and HES6 are highly 
and specifically expressed in IPCs and neuroblasts and thus represent promising markers to assess 
continued production of neurons in the human hippocampus (Fig.S6).  20 

Together, this integrative approach highlights putative critical neurogenesis regulators either 
conserved throughout evolution or on the contrary responsible for taxon-specific properties.  

Evidence for quiescence depth heterogeneities in zebrafish qRG, and implications on the 
diversification of mammalian astroglia from ancestral RG 

We found that our qRG clusters were further separated according to their quiescence depth 25 
(Fig.S7). Separation along a quiescence to activation trajectory was also apparent in mouse SEZ 
datasets. We focused on a recent one which profiled a large number of cells from the different 
regions of the SEZ with high sensitivity(10). To identify putative regulators of quiescence depth 
we developed a pseudo-ordering algorithm (Fig.S8A), applied it to both datasets and identified 
genes that show a strong association with deeper or shallower quiescence independently of region 30 
or species (Fig.S9). Some of these are likely part of a core quiescent stem cell gene set such as 
HES1 which has been proposed to be a general marker of stemness(47), or those encoding the 
exosomal proteins CD9 and CD81 which are enriched in several types of quiescent cells(48).  
Among the genes associated with deeper quiescence in zebrafish RG, several of them were 
expressed in both qRG and astrocytes in mice. We also noticed that some of these genes were 35 
instead highly enriched in, or even specific of astrocytes across several datasets (Fig.S10-S13) (10, 
30, 32, 49). This came as a surprise since besides mammals, most species are not thought to have 
astrocytes(50–52). To further investigate the possible relationship between some qRG in zebrafish 
and mammalian astrocytes we focused on dorsal qRG (clusters q1 to q4, Fig.2A) to mitigate signals 
related to regionalization. We converted genes from zebrafish and mouse into a uniform 40 
nomenclature for orthologs (Methods) and mapped our pallial qRG to astroglia from mouse 
telencephalon  (Fig.4A). This revealed that similarity with astrocytes in zebrafish RG increases 
with quiescence depth. Next, we scored mouse astroglial cells for genes enriched in q4 over q2 —
two qRG clusters intermingled in Dm, with q4 predicted to be in a deeper state of quiescence— 
which revealed that astrocytes are enriched for q4 markers compared to RG (Fig.4B, Fig.S10-S13). 45 
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Gene ontology analysis of the genes that were enriched both in q4 over q2 and in astrocytes over 
RG confirmed that this list of genes encodes proteins involved in astrocytic support functions such 
as neurotransmitter synthesis and recapture, metabolic support, maintenance of ionic balance and 
modulation of ECM properties (Table S1). Together with knowledge about the ontogeny and time 
of emergence of these cells, our results suggest that astrocytes evolved from ancestral RG through 5 
subfunctionalization in the mammalian lineage while astrocyte-like RG persist in zebrafish. 

Next, we asked whether in zebrafish q4 astrocyte-like RG participate in adult neurogenesis or 
behave like radial astrocyte with no physiological NSC properties. The high level of transcriptome 
similarity among RG precluded lineage-tracing based on a specific q4 promoter. Instead, we 
analyzed the fate of clones from Dm genetically tagged with the Tg(her4:ERT2CreERT2) line 10 
(Fig.S14A)(54). her4 is broadly expressed, enriched in q4 over q2 (Fig.S14B), and cells from q4 
could be sorted from Tg(her4:egfp) reporter fish using the same her4 promoter(25) (Fig.S14B). 
We reasoned that the ratio between the proportion of q4 cells in Dm and the proportion of her4-
driven clones that do not produce neurons would allow us to infer whether q4 cells behave as NSC 
(Fig.S14C). At 507 days of chase, the proportion of RG-only clones was much lower than the 15 
proportion of q4 cells estimated in situ with RNAScope or in the scRNAseq dataset (Fig.4C-D, 
Fig.S14D,E), confirming that these cells do have a constitutive neurogenic potential.  
Together these results suggest that mammalian astrocytes emerged from ancestral neurogenic RG 
that already expressed many of the genes related to astrocytic-specific functions and that persist as 
a deeply quiescent but physiologically neurogenic RG population in zebrafish. Importantly, our 20 
results also show that stem cells can perform differentiated cell functions when they are quiescent, 
contrary to the common view that quiescent stem cells are inactive.   

Evolution of astrocyte-like cells across planulozoa 
Cell types similar to astrocytes appeared multiple times throughout evolution. Among vertebrates, 
the only class other than mammals where astrocytes are the major astroglial cell population are 25 
birds. Absence of astrocytes appears to be the basal state in reptiles, and turtles —the closest living 
relative to birds and crocodilians— do not have astrocytes either, suggesting that the cells 
described as astrocytes in birds evolved independently from those in mammals. We thus asked 
whether avian and mammalian astrocytes displayed a similar signature. We found that datasets 
generated from the high vocal center of zebra finch included both astrocytes and RG(55), with a 30 
substantial overlap between the top genes separating astrocytes from RG in birds and mammals 
(Fig.S15), suggesting that avian and mammalian astrocytes likely evolved in a similar way, from 
the same ancestral RG population. 
The expression of a conserved astrocytic gene set in some zebrafish RG suggests that it emerged 
before the individualization of astrocytes as a cell type. Moreover, parenchymal glia associated 35 
with support functions are present in all major branches of bilaterians(56). To estimate the time of 
emergence of this astrocytic gene set we asked whether its genes were expressed across planulozoa 
by recovering and analyzing datasets from over 20 species(9–22, 29, 34, 35, 49, 55, 57), identifying 
existing orthologs and assessing their expression in glial clusters or among ectodermal cells 
(Fig.5). We found expression of the astrocytic gene set in all vertebrate RG, but not in Ciona 40 
ependymoglia (Fig.S16). On the other hand, we did not find any group of cells co-expressing genes 
from the astrocytic gene set in cnidarians or protostomes except in insects, where distinct glial 
subpopulations expressed part of the astrocytic gene set. Ensheathing glia, and to a lesser-extent 
astrocyte-like and perineurial glia, co-expressed several genes associated with mammalian 
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astrocytes (Fig.S17). In addition, glial cells in protostomes did not express homologs of SOX2 or 
SOX9 genes, which are part of a conserved astroglial gene regulatory network in vertebrates. 

This large-scale comparative analysis suggests that while avian astrocytes are sister cells to 
mammalian astrocytes, glial cells described in protostomes are not. Several genes involved in 
astrocytic functions started being expressed in vertebrate RG and make up an astrocytic 5 
synapomere(58). The emergence of parenchymal glia in insects, which together express many of 
the genes of the astrocytic synapomere, is likely the result of homoplasy, suggests remarkable 
functional convergence and highlights the interest of studying aspects of glial physiology in 
protostomes.  
Evolution of other macroglial cells 10 

Cells of the oligodendrocytic lineage and ependymocytes make up the macroglia alongside 
astroglia. We used our zebrafish telencephalon dataset to identify cells belonging to the 
oligodendrocytic lineage and compared expression of putative core regulators and effector genes 
across chordates (Fig.S18). Others recently proposed that cells expressing sox9b are zebrafish 
astrocytes(59). We found that they are transcriptionally closer to cells of the oligodendrocytic 15 
lineage and express several genes associated with oligodendrocyte maturation such as c7b, rnd3a, 
ugt8, cadm4, gpr17, myrf and plp1b, as well as low levels of mbpb. These cells might thus 
correspond to maturing oligodendrocytes, similarly to a population in the larval spinal cord(60). 
For inter-species comparisons, we grouped cells based on the expression of CSPG4 (and/or 
PDGFRA for tetrapods). A core set of transcription factors made up of NKX2.2, SOX10, OLIG2 20 
and OLIG1 is largely conserved across vertebrates. NKX2.2 and SOX10 are also expressed in 
lamprey glia, although orthologs for olig genes have not been identified in the lamprey genome. 
CSPG4 (or NG2) which is commonly used to label OPCs is also widely conserved across 
vertebrates and detected in lamprey glia, contrary to PDGFRA and APLNRA which are restricted 
to tetrapod and zebrafish OPC respectively. The expression of genes involved in myelin formation 25 
appears variable, with the exception of MBP and PLP1. In scRNA-seq studies, only low levels of 
plp1a were detected whereas a recent proteomic study found that PLP1B is 86 times more 
abundant(61). We found that this discrepancy results from an incomplete gene model for plp1b 
which is indeed expressed at high levels in zebrafish oligodendrocytes. Lamprey glia express not 
only PLP1 but also MPZ, like jawed fish, suggesting that co-expression is the ancestral state, lost 30 
in tetrapods. Despite being commonly associated exclusively with PNS, myelin PMP22 was 
detected in most species besides mouse. PMP22 being restricted to the PNS is thus a derived trait 
in mice. The core gene set conserved across vertebrates is not present in Ciona suggesting that the 
emergence of glia with oligodendrocytic properties happened in vertebrates after they split from 
other chordates.  35 

Ependymocytes likely appeared as a cell-type later in vertebrate evolution. In the zebrafish 
telencephalon similar cells are restricted to a rostral and ventral area(62) and were not profiled in 
our dataset. We detected a few in lizard and birds(9, 55) where they have been observed in small 
numbers along the ventricles whereas in mammals they cover the whole ventricular surface and 
represent a much larger fraction of astroependymoglial cells in the niche. Ependymocytes express 40 
several markers of qRG, but simultaneously display remarkable convergence with other 
multiciliated cells which appear to have co-opted a similar multiciliated cell apomere (Fig.S19A). 
We found that mouse ependymocytes express regulators of SEZ neurogenesis that are not detected 
in lizards or birds, suggesting that they acquired additional regulatory roles in mammals 
(Fig.S19B).  45 
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Discussion 
Our comprehensive molecular and cellular characterization of the adult zebrafish telencephalon 
expands knowledge on telencephalic evolution and will facilitate targeted studies of its diverse cell 
populations. In particular, we identify underappreciated heterogeneity among brain macrophages 
and conserved ontogenies of interneuron families across vertebrates.  5 

In addition, using a novel consensus-clustering approach we identified distinct robust 
subpopulations of qRG. This is independent of the specific genome assembly, feature choice or 
clustering parameters and is reproducible across datasets and supported by subsequent cross-
species comparisons and in situ validation. Heterogeneity among RG is explained to some extent 
by spatial origin, with homologous territories between mouse and zebrafish maintaining their 10 
positional identity from development to adulthood.  
The presence of a caudo-rostral gradient of nr2f1b shows that this gradient predates neocortex 
arealization. The organization of the zebrafish pallium is less well-defined than that of the 
neocortex and appears to have evolved independently(63), suggesting that NR2F1 might have been 
co-opted to specify sensory areas(28) after the split between actinopterygians and sarcopterygians. 15 
Of note, expression of wnt3a has been shown to be restricted to the lateral pallium in zebrafish(64). 
Therefore, both caudo-rostral and medio-lateral gradients involved in hippocampus specification 
were already present in the last common bony fish ancestor.  

Comparisons of adult neurogenesis across vertebrates revealed a highly conserved neurogenic 
cascade. Besides generating a list of putative critical regulators of adult neurogenesis in 20 
vertebrates, our approach highlights core principles of neurogenesis shared across phyla. Stepwise 
additions to this conserved core occurred during evolution and likely underlie specific properties 
of adult neurogenesis and NSC maintenance in different species, which can now be tested via 
anachronistic gene expression manipulation. Likewise, a switch from NOTCH3 to NOTCH2 in 
mammalian qRG, together with the emergence of functional NOTCH2NL genes in humans, 25 
provides a realistic and testable hypothesis for the premature depletion of RG in humans (Supp. 
Text). We also identify genes that show a conserved association with quiescence depth, including 
some showing consistent patterns in other tissues and/or cancers. Further investigation of those 
candidates is thus likely to yield fundamental insights on the maintenance of stemness and 
quiescence. 30 

Our data suggest that avian and mammalian astrocytes evolved from the same ancestral 
multifunctional RG and that similar RG persist in zebrafish. The synapomere associated with those 
sister cell types is enriched in genes involved in metabolism, neurotransmission fine-tuning and 
extracellular milieu homeostasis. Several of these genes can also be detected in lamprey glia but 
not in putative Ciona ependymoglia. Likewise, the genes that segregate in oligodendrocytes in 35 
gnathostomes and are expressed in lamprey glia can induce intricate membrane re-organization 
and prevent axonal degeneration. Together, these observations are consistent with an ancestral role 
in enabling neuron communication and survival via the establishment of structures that later served 
as templates for the development of other functions such as myelination with which we usually 
associate macroglia. Macroglia then diversified through subfunctionalization, division of labor, 40 
co-option of new modules and neofunctionalization. 
We expected to detect cells that retained expression of a similar gene set across bilaterians but 
were unable to do so in non-deuterostomes besides insects. Although we attempted to maximize 
sensitivity by surveying many datasets and including only those with high coverage, this approach 
can produce false negatives for rare cell populations or due to imperfect genomic annotations. 45 
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Alternatively, it is possible that the functions associated with the astrocytic synapomere were 
initially performed by other cells including neurons themselves and became the property of glial 
cells in vertebrates. In that case, even if a common set of ancestral glia existed before they might 
not have expressed genes enriched in current vertebrate macroglia and would have been missed 
with our approach. Additional targeted studies will be helpful to shed light on the origins and 5 
evolution of glia, their coevolution with neurons and will benefit from focusing on genes identified 
in this study.  
Finally, the presence of astrocytic-like RG in vertebrates that do not have bona fide astrocytes, 
such as the zebrafish, has several implications, including on the notions of quiescence and 
dedifferentiation (Supp. Text). Moreover, it raises interesting questions regarding the evolution 10 
and other potential functions of these cells. Are they also neurogenic in salamanders and reptiles? 
How do they behave upon injury and to what extent do they contribute to regeneration? 
Understanding the behavior of these cells, which look like intermediates between RG and 
astrocytes, could facilitate reinstatement of stem cell properties in astrocytes to promote 
regeneration.  15 
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Fig.1. The adult zebrafish telencephalon is characterized by an extensive cell type diversity. 
(A) Cell collection strategy to enrich for RG. (B) tSNE of all cells colored by their broad cell type 
annotation. Abbreviations: q: quiescent, p: proliferating. (C) Expression of marker genes in refined 
non-RG cell clusters. Each color-coded column is a cluster and each line is a gene. Each bar 15 
represents one cell and the height of the bar reflects the level of expression of the gene. 

Fig.2. qRG in the zebrafish adult telencephalon are spatially patterned. (A) UMAP of qRG 
(green cluster from Fig.1B) colored by terminal cluster identity. (B) Expression of marker genes 
across qRG clusters, highlighting cluster-specific, regional and quiescence markers. (C,D) 
Orthologs of ganglionic eminences markers (gsx2, nkx2.1) projected on zebrafish UMAP (left, 20 
color-coded arrows matching (A) and (B)) and with ISH on coronal slices of the adult zebrafish 
telencephalon (right). Dashed lines indicate the boundary between pallium and subpallium. (E) 
Homologies of ventricular territories between zebrafish and mouse telencephalon (coronal 
sections) inferred from expression of regionalized transcription factor genes such as emx2, gsx2 
and nkx2.1 (10, 65, 66). Depicted cells are RG, colored by their developmental origin (color-coded 25 
relative to clusters). 

Fig.3. Conservation and variations in the evolution of the adult neurogenic cascade in 
vertebrates. Representation of the expression of putative key regulators of neurogenesis whose 
expression pattern differs across vertebrates. Top: phylogenetic tree depicting the profiled 
vertebrate species and the ancestors for which we reconstructed the expected pattern of expression 30 
when that applies. Bottom: trinarized relative expression depicted at different stages of progression 
along the neurogenic cascade (red: high expression, grey: no or low expression, orange: 
intermediate levels of expression). NB: newly born postmitotic neurons, paRG: pre-activated RG 
close to entering the cell cycle, qRG: quiescent PG 

Fig.4. Homology between quiescent NSCs in zebrafish and mammalian astrocytes. (A) 35 
Cluster mapping between zebrafish dorsal RG (this study) and astroglia in the mouse 
telencephalon. (B) Scoring of mouse astroglial cells from (10) (left) and (49) (right) for genes 
enriched in zebrafish q4 over q2 revealing enrichment in astrocytes over RG. Top: annotated 
clustering of astroglial cells from each dataset. Bottom: Enrichment score for orthologs of genes 
enriched in zebrafish q4 over q2. (C) Representative image of double RNAScope ISH for ascl1a 40 
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(green) and timp4.3 (magenta) in zebrafish Dm (dorsal view), used to estimate the proportion of 
q4 cells (timp4.3+) in situ. ZO1 immunohistochemistry was used to delimit apical NSC surfaces 
(dotted lines). (D) Distribution estimations of the proportions of RG-only clones among those 
genetically induced in Tg(her4:ERT2CreERT2) adult fish in single RG then chased for 507 days 
(red), versus the proportions of q4 cells, measured either in situ with RNAScope (green) or in 5 
scRNAseq (blue). Estimations for the proportion of q4 cells are consistent and centered around 
43%, while only 11 clones out of 630 exclusively contain RG cells after 507 days. The remaining 
609 clones contain neurons, suggesting that most if not all Dm RG are neurogenic (p.value of two-
sided binomial test <1.5e10-132). 

Fig.5. Emergence of the astrocytic synapomere. Phylogenetic tree depicting the expression of 10 
the astrocytic synapomere in analyzed species and whether parenchymal glia with supportive 
functions have been described in those species. Leaves in magenta represent phyla in which 
parenchymal glial cells have been previously described. Species in green co-express several genes 
of the astrocytic synapomere in the same glial cell clusters. Species in orange express several genes 
from the astrocytic synapomere but spread out across several glial cell clusters. Species in black 15 
do not seem to rely on the astrocytic synapomere. 
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