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Abstract: Macroglia fulfill essential functions in the adult vertebrate brain, producing and
maintaining neurons and regulating neuronal communication. However, we still know little about
their emergence and diversification. We used the zebrafish D. rerio as a distant vertebrate model
with moderate glial diversity as anchor to reanalyze datasets covering over 600 million years of
evolution. We identify core features of adult neurogenesis and innovations in the mammalian
lineage with a potential link to the rarity of radial glia-like cells in adult humans. Our results also
suggest that functions associated with astrocytes originated in a multifunctional cell type fulfilling
both neural stem cell and astrocytic functions before these diverged. Finally, we identify conserved
elements of macroglial cell identity and function and their time of emergence during evolution.

One-Sentence Summary: Radial glia of the adult zebrafish forebrain associate transcriptomic
features of adult neural stem cells and astrocytes
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Main Text:
Introduction

The appearance of nervous systems during animal evolution was a transformative event which
revolutionized their interactions with the outside world and ultimately gave rise to higher
cognition. To acquire their current forms, nervous systems required emergence of new cell types
followed by substantial diversification(/). To date, work on cell type evolution in the brain has
focused on neurons. Conversely, macroglia have been mostly overlooked, despite being a major
component of the human nervous system, outnumbering neurons in the cerebral cortex(2).
Macroglia fulfill essential roles to produce, guide and support neurons(3). In mammals, the
macroglia is made up of radial glia-like cells (referred to as radial glia -RG- below), astrocytes,
oligodendrocytes and ependymocytes. RG act as neural stem cells (NSC) and support adult
neurogenesis, a process that promotes plasticity, growth and regenerative abilities in several
species. The only glia in the nervous systems of early deuterostomes and early vertebrates were
RG(4), but little is known about the actual heterogeneity of early glia and how glial diversity
emerged. Additionally, the sequence of events of adult neurogenesis appears similar across
vertebrates(5—7), yet a broad comparative analysis has never been conducted.

With its large RG population, abundant adult neurogenesis in regions homologous to mammalian
neurogenic niches and intermediate glial diversity, the zebrafish telencephalon is an excellent
model to address key questions of macroglia evolution and diversification(§). Here we used
scRNA-seq to profile all cell types of the adult zebrafish telencephalon and generate an improved
characterization of its macroglia. We then re-analyzed data covering the telencephalon from
several vertebrates(9—/17) which included glia (even if glia had been discarded in the original
analyses), or the nervous system of invertebrates(/2—22), and used these to determine to which
extent the populations of RG and the neurogenic cascade were conserved and how glial diversity
emerged from ancestral glia. These results improve our understanding of cell diversity in the
zebrafish telencephalon, highlight conserved and divergent features of the neurogenic cascade
across vertebrates, and reveal the multifunctional nature of ancestral astroglia.

Generation of a molecular atlas of the adult zebrafish telencephalon.

The zebrafish adult telencephalon is a major model for neuroscience studies, yet the limited
characterization of its cell diversity hinders the labeling of specific cell types. Our cell collection
procedure (Fig.1A) allowed us to enrich for RGs (located along the everted ventricular zone, green
in Fig.1A) while still recovering the full extent of cell diversity in the adult zebrafish
telencephalon. We first grouped cells into broad classes using well-defined markers (Fig.1B). We
then subclustered each of those groups to identify refined cell subtypes. Because neurons and RG
showed substantial heterogeneity we implemented a consensus-clustering strategy to resolve
robust yet fine-grained clusters (Methods and Fig.S1A,B).

This analysis first revealed notable results on non-RG cell types (Fig.1C). Among GABAergic
neurons, we distinguished what likely corresponds to distinct ontogenies, compatible with an
origin from homologs of the medial ganglionic eminence (MGE) (nkx2.1", sox6a"), including
somatostatin interneurons like in mammals, or the lateral ganglionic eminence (LGE) (six3a”,
six3b™, meis2a ™) (Fig.1C). We also found that, based on their high expression of nr2f1a and nr2f2,
a small proportion of GABAergic neurons likely derives from a homolog of the caudal ganglionic
eminence (CGE), which has not been described in zebrafish before.
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We also recovered unexpected diversity among brain immune cells despite a previous report
suggesting that such heterogeneity was a human-specific trait(23). Among mpegl. 1+ cells we
identified two clusters corresponding to functionally and ontogenetically distinct subpopulations
of microglia previously described in the midbrain(24). We also identified another distinct and
previously undescribed group of brain macrophages (Fig.1C).

Ventricular patterning is conserved throughout life and evolution

We next turned to quiescent RG (qRG) (Fig.1B, green cluster). Conservative consensus-clustering
followed by iterative cluster-merging based on differential expression identified 7 robust clusters
(ql-q7) (Fig.2A, Fig.S1C). We further confirmed that this was not dictated by technical parameters
and that clusters could be re-identified with a classifier (Fig.S2), and identified cluster-specific
gene signatures (Fig.2B). There was little overlap between the clusters we identified and those
proposed in a previous study(25). We thus reanalyzed the previously published data and performed
in situ hybridizations (ISH) on whole mount telencephala and on serial coronal slices to assess the
validity of our results. Although we resolved fewer clusters in these reanalyzed data(25) than in
our own, likely due to the significantly lower number of cells profiled in this previous study, the
data structure and patterns of cluster-specific gene expression now appeared consistent between
the two datasets (Fig.S3). ISH further corroborated our clustering as genes enriched in the same
cells showed similar patterns (Fig.S4).

This analysis revealed spatially segregated RG populations in the ventricular zone. The gsx2+ q6
and the nkx2.1+ q7 clusters are restricted to a region close to the expected medial boundary
between pallium and subpallium and in the ventral telencephalon respectively (Fig.2C,D). Similar
observations were made in adult murine lateral ventricles, where the lateral wall expresses Gsx2
and is LGE-derived, while the ventral wall expresses Nkx2.1/ and is MGE-derived(/0, 26, 27).
Markers for q5, including nr2f1b, were less strictly segregated but showed an enrichment caudally
in pallial RG (Fig.S5) reminiscent of the Nr2f1 gradient in RG of the developing mammalian
neocortex(28).

Thus, ventricular progenitor patterning is maintained not only throughout life but also throughout
evolution. In particular, the ventricular zone of the dorsomedial pallium (Dm) in zebrafish, which
has been the focus of most of the studies on telencephalic neurogenesis in this model, is
homologous to the dorsal wall of the SEZ in mouse. Conversely the gsx2+ area corresponds to the
subpallial Vd domain rather than Dm, contrary to what was previously reported(25), and to the
lateral wall of the mouse SEZ. These molecular landmarks (Fig.2E) will inform comparative
studies of morphogenesis and neurogenic output between teleosts and mammals.

Conserved and innovative features of adult neurogenesis

Adult neurogenesis has been mostly studied in rodents which display some of the highest
evolutionary rates. Analyzing a broader range of species can improve generalizability and
highlight fundamental features of the neurogenic cascade (5—7). By reanalyzing datasets published
in amphibians(/7), reptiles(9, 29) and mammals(/0, 30-35) we compared gene expression patterns
along successive steps of neurogenesis progression, from qRG to pre-activated RG (close to
activation, corresponding to ql in zebrafish) and neuroblasts, to reconstruct their state in the last
common ancestors of different taxa (Fig.3). This revealed conserved expression of key regulators
since the last common ancestor of osteichtyes. For example, the regulation of the Notch pathway
is such that one Notch receptor gene is expressed in, and likely maintains, qRG(36, 37).
Conversely, Notchl is expressed in paRG and so is the Notch ligand gene DLL1(38, 39). The SoxC
genes SOX4 and SOX1 1 are turned on in paRG and reach their peak in neuroblasts, consistent with
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their described roles in hippocampal neurogenesis(40). Likewise, the EMT regulator ZEB2, which
was recently found to be necessary for neurogenesis in the SEZ(41), displays conserved expression
in neuroblasts. SOX9, which is a broad and specific marker of astroglia in adult mice(42) was not
detected in previous datasets. We found that this is due to poor annotation of sox9a and that SOX9
expression is conserved in qRG among osteichtyes.

Conversely, we found stepwise additions to the neurogenic cascade during mammalian evolution.
ID transcription factors modulate the dynamics of Notch signaling. Among them /D4 is more
efficient than other IDs at inducing a return to quiescence(43), is the only one positively regulated
by Notch signaling in qRG(44) and is a tetrapod addition (Fig.3). The switch from NOTCH3 to
NOTCH? in qRG likely happened early in the mammalian lineage, which, with the emergence of
NOTCH2NL genes that potentiate NOTCH signaling in humans(45, 46), could explain some
human features of adult neurogenesis (Supp. Text). We were unable to reconstruct neurogenic
trajectories from large-brained animals(33, 34), possibly owing to sensitivity limits of untargeted
scRNA-seq, although we confirmed evidence of ongoing adult neurogenesis when reanalyzing a
large macaque dataset(35). While our re-analysis suggested that the initially defined RGL and
IPC 2 clusters in this dataset are likely multiplets and of myeloid origin respectively (Fig.S6),
these data did include progenitors not found in other datasets, allowing us to confirm the expression
of some of the highly conserved genes in primates. In particular, /GFBPLI and HES6 are highly
and specifically expressed in IPCs and neuroblasts and thus represent promising markers to assess
continued production of neurons in the human hippocampus (Fig.S6).

Together, this integrative approach highlights putative critical neurogenesis regulators either
conserved throughout evolution or on the contrary responsible for taxon-specific properties.

Evidence for quiescence depth heterogeneities in zebrafish qRG, and implications on the
diversification of mammalian astroglia from ancestral RG

We found that our qRG clusters were further separated according to their quiescence depth
(Fig.S7). Separation along a quiescence to activation trajectory was also apparent in mouse SEZ
datasets. We focused on a recent one which profiled a large number of cells from the different
regions of the SEZ with high sensitivity(/0). To identify putative regulators of quiescence depth
we developed a pseudo-ordering algorithm (Fig.S8A), applied it to both datasets and identified
genes that show a strong association with deeper or shallower quiescence independently of region
or species (Fig.S9). Some of these are likely part of a core quiescent stem cell gene set such as
HES] which has been proposed to be a general marker of stemness(47), or those encoding the
exosomal proteins CD9 and CD81 which are enriched in several types of quiescent cells(48).

Among the genes associated with deeper quiescence in zebrafish RG, several of them were
expressed in both qRG and astrocytes in mice. We also noticed that some of these genes were
instead highly enriched in, or even specific of astrocytes across several datasets (Fig.S10-S13) (10,
30, 32, 49). This came as a surprise since besides mammals, most species are not thought to have
astrocytes(50—52). To further investigate the possible relationship between some qRG in zebrafish
and mammalian astrocytes we focused on dorsal qRG (clusters q1 to g4, Fig.2A) to mitigate signals
related to regionalization. We converted genes from zebrafish and mouse into a uniform
nomenclature for orthologs (Methods) and mapped our pallial qRG to astroglia from mouse
telencephalon (Fig.4A). This revealed that similarity with astrocytes in zebrafish RG increases
with quiescence depth. Next, we scored mouse astroglial cells for genes enriched in q4 over q2 —
two qRG clusters intermingled in Dm, with g4 predicted to be in a deeper state of quiescence—
which revealed that astrocytes are enriched for g4 markers compared to RG (Fig.4B, Fig.S10-S13).
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Gene ontology analysis of the genes that were enriched both in g4 over q2 and in astrocytes over
RG confirmed that this list of genes encodes proteins involved in astrocytic support functions such
as neurotransmitter synthesis and recapture, metabolic support, maintenance of ionic balance and
modulation of ECM properties (Table S1). Together with knowledge about the ontogeny and time
of emergence of these cells, our results suggest that astrocytes evolved from ancestral RG through
subfunctionalization in the mammalian lineage while astrocyte-like RG persist in zebrafish.

Next, we asked whether in zebrafish g4 astrocyte-like RG participate in adult neurogenesis or
behave like radial astrocyte with no physiological NSC properties. The high level of transcriptome
similarity among RG precluded lineage-tracing based on a specific g4 promoter. Instead, we
analyzed the fate of clones from Dm genetically tagged with the Tg(her4:ERT2CreERT2) line
(Fig.S14A)(54). her4 is broadly expressed, enriched in g4 over q2 (Fig.S14B), and cells from g4
could be sorted from 7g(her4:egfp) reporter fish using the same her4 promoter(25) (Fig.S14B).
We reasoned that the ratio between the proportion of g4 cells in Dm and the proportion of her4-
driven clones that do not produce neurons would allow us to infer whether q4 cells behave as NSC
(Fig.S14C). At 507 days of chase, the proportion of RG-only clones was much lower than the
proportion of g4 cells estimated in situ with RNAScope or in the scRNAseq dataset (Fig.4C-D,
Fig.S14D,E), confirming that these cells do have a constitutive neurogenic potential.

Together these results suggest that mammalian astrocytes emerged from ancestral neurogenic RG
that already expressed many of the genes related to astrocytic-specific functions and that persist as
a deeply quiescent but physiologically neurogenic RG population in zebrafish. Importantly, our
results also show that stem cells can perform differentiated cell functions when they are quiescent,
contrary to the common view that quiescent stem cells are inactive.

Evolution of astrocyte-like cells across planulozoa

Cell types similar to astrocytes appeared multiple times throughout evolution. Among vertebrates,
the only class other than mammals where astrocytes are the major astroglial cell population are
birds. Absence of astrocytes appears to be the basal state in reptiles, and turtles —the closest living
relative to birds and crocodilians— do not have astrocytes either, suggesting that the cells
described as astrocytes in birds evolved independently from those in mammals. We thus asked
whether avian and mammalian astrocytes displayed a similar signature. We found that datasets
generated from the high vocal center of zebra finch included both astrocytes and RG(55), with a
substantial overlap between the top genes separating astrocytes from RG in birds and mammals
(Fig.S15), suggesting that avian and mammalian astrocytes likely evolved in a similar way, from
the same ancestral RG population.

The expression of a conserved astrocytic gene set in some zebrafish RG suggests that it emerged
before the individualization of astrocytes as a cell type. Moreover, parenchymal glia associated
with support functions are present in all major branches of bilaterians(56). To estimate the time of
emergence of this astrocytic gene set we asked whether its genes were expressed across planulozoa
by recovering and analyzing datasets from over 20 species(9-22, 29, 34, 35,49, 55, 57), identifying
existing orthologs and assessing their expression in glial clusters or among ectodermal cells
(Fig.5). We found expression of the astrocytic gene set in all vertebrate RG, but not in Ciona
ependymoglia (Fig.S16). On the other hand, we did not find any group of cells co-expressing genes
from the astrocytic gene set in cnidarians or protostomes except in insects, where distinct glial
subpopulations expressed part of the astrocytic gene set. Ensheathing glia, and to a lesser-extent
astrocyte-like and perineurial glia, co-expressed several genes associated with mammalian
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astrocytes (Fig.S17). In addition, glial cells in protostomes did not express homologs of SOX2 or
SOX9 genes, which are part of a conserved astroglial gene regulatory network in vertebrates.

This large-scale comparative analysis suggests that while avian astrocytes are sister cells to
mammalian astrocytes, glial cells described in protostomes are not. Several genes involved in
astrocytic functions started being expressed in vertebrate RG and make up an astrocytic
synapomere(38). The emergence of parenchymal glia in insects, which together express many of
the genes of the astrocytic synapomere, is likely the result of homoplasy, suggests remarkable
functional convergence and highlights the interest of studying aspects of glial physiology in
protostomes.

Evolution of other macroglial cells

Cells of the oligodendrocytic lineage and ependymocytes make up the macroglia alongside
astroglia. We used our zebrafish telencephalon dataset to identify cells belonging to the
oligodendrocytic lineage and compared expression of putative core regulators and effector genes
across chordates (Fig.S18). Others recently proposed that cells expressing sox9b are zebrafish
astrocytes(59). We found that they are transcriptionally closer to cells of the oligodendrocytic
lineage and express several genes associated with oligodendrocyte maturation such as c¢7b, rnd3a,
ugt8, cadm4, gpri7, myrf and plplb, as well as low levels of mbpb. These cells might thus
correspond to maturing oligodendrocytes, similarly to a population in the larval spinal cord(60).
For inter-species comparisons, we grouped cells based on the expression of CSPG4 (and/or
PDGFRA for tetrapods). A core set of transcription factors made up of NKX2.2, SOX10, OLIG2
and OLIG] is largely conserved across vertebrates. NKX2.2 and SOXI0 are also expressed in
lamprey glia, although orthologs for olig genes have not been identified in the lamprey genome.
CSPG4 (or NG2) which is commonly used to label OPCs is also widely conserved across
vertebrates and detected in lamprey glia, contrary to PDGFRA and APLNRA which are restricted
to tetrapod and zebrafish OPC respectively. The expression of genes involved in myelin formation
appears variable, with the exception of MBP and PLPI. In scRNA-seq studies, only low levels of
plpla were detected whereas a recent proteomic study found that PLPIB is 86 times more
abundant(6/). We found that this discrepancy results from an incomplete gene model for plplb
which is indeed expressed at high levels in zebrafish oligodendrocytes. Lamprey glia express not
only PLPI but also MPZ, like jawed fish, suggesting that co-expression is the ancestral state, lost
in tetrapods. Despite being commonly associated exclusively with PNS, myelin PMP22 was
detected in most species besides mouse. PMP22 being restricted to the PNS is thus a derived trait
in mice. The core gene set conserved across vertebrates is not present in Ciona suggesting that the
emergence of glia with oligodendrocytic properties happened in vertebrates after they split from
other chordates.

Ependymocytes likely appeared as a cell-type later in vertebrate evolution. In the zebrafish
telencephalon similar cells are restricted to a rostral and ventral area(62) and were not profiled in
our dataset. We detected a few in lizard and birds(9, 55) where they have been observed in small
numbers along the ventricles whereas in mammals they cover the whole ventricular surface and
represent a much larger fraction of astroependymoglial cells in the niche. Ependymocytes express
several markers of qRG, but simultaneously display remarkable convergence with other
multiciliated cells which appear to have co-opted a similar multiciliated cell apomere (Fig.S19A).
We found that mouse ependymocytes express regulators of SEZ neurogenesis that are not detected
in lizards or birds, suggesting that they acquired additional regulatory roles in mammals
(Fig.S19B).
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Discussion

Our comprehensive molecular and cellular characterization of the adult zebrafish telencephalon
expands knowledge on telencephalic evolution and will facilitate targeted studies of its diverse cell
populations. In particular, we identify underappreciated heterogeneity among brain macrophages
and conserved ontogenies of interneuron families across vertebrates.

In addition, using a novel consensus-clustering approach we identified distinct robust
subpopulations of qRG. This is independent of the specific genome assembly, feature choice or
clustering parameters and is reproducible across datasets and supported by subsequent cross-
species comparisons and in situ validation. Heterogeneity among RG is explained to some extent
by spatial origin, with homologous territories between mouse and zebrafish maintaining their
positional identity from development to adulthood.

The presence of a caudo-rostral gradient of nr2f1b shows that this gradient predates neocortex
arealization. The organization of the zebrafish pallium is less well-defined than that of the
neocortex and appears to have evolved independently(63), suggesting that NR2F'[ might have been
co-opted to specify sensory areas(28) after the split between actinopterygians and sarcopterygians.
Of note, expression of wnt3a has been shown to be restricted to the lateral pallium in zebrafish(64).
Therefore, both caudo-rostral and medio-lateral gradients involved in hippocampus specification
were already present in the last common bony fish ancestor.

Comparisons of adult neurogenesis across vertebrates revealed a highly conserved neurogenic
cascade. Besides generating a list of putative critical regulators of adult neurogenesis in
vertebrates, our approach highlights core principles of neurogenesis shared across phyla. Stepwise
additions to this conserved core occurred during evolution and likely underlie specific properties
of adult neurogenesis and NSC maintenance in different species, which can now be tested via
anachronistic gene expression manipulation. Likewise, a switch from NOTCH3 to NOTCH?2 in
mammalian qRG, together with the emergence of functional NOTCH2NL genes in humans,
provides a realistic and testable hypothesis for the premature depletion of RG in humans (Supp.
Text). We also identify genes that show a conserved association with quiescence depth, including
some showing consistent patterns in other tissues and/or cancers. Further investigation of those
candidates is thus likely to yield fundamental insights on the maintenance of stemness and
quiescence.

Our data suggest that avian and mammalian astrocytes evolved from the same ancestral
multifunctional RG and that similar RG persist in zebrafish. The synapomere associated with those
sister cell types is enriched in genes involved in metabolism, neurotransmission fine-tuning and
extracellular milieu homeostasis. Several of these genes can also be detected in lamprey glia but
not in putative Ciona ependymoglia. Likewise, the genes that segregate in oligodendrocytes in
gnathostomes and are expressed in lamprey glia can induce intricate membrane re-organization
and prevent axonal degeneration. Together, these observations are consistent with an ancestral role
in enabling neuron communication and survival via the establishment of structures that later served
as templates for the development of other functions such as myelination with which we usually
associate macroglia. Macroglia then diversified through subfunctionalization, division of labor,
co-option of new modules and neofunctionalization.

We expected to detect cells that retained expression of a similar gene set across bilaterians but
were unable to do so in non-deuterostomes besides insects. Although we attempted to maximize
sensitivity by surveying many datasets and including only those with high coverage, this approach
can produce false negatives for rare cell populations or due to imperfect genomic annotations.
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Alternatively, it is possible that the functions associated with the astrocytic synapomere were
initially performed by other cells including neurons themselves and became the property of glial
cells in vertebrates. In that case, even if a common set of ancestral glia existed before they might
not have expressed genes enriched in current vertebrate macroglia and would have been missed
with our approach. Additional targeted studies will be helpful to shed light on the origins and
evolution of glia, their coevolution with neurons and will benefit from focusing on genes identified
in this study.

Finally, the presence of astrocytic-like RG in vertebrates that do not have bona fide astrocytes,
such as the zebrafish, has several implications, including on the notions of quiescence and
dedifferentiation (Supp. Text). Moreover, it raises interesting questions regarding the evolution
and other potential functions of these cells. Are they also neurogenic in salamanders and reptiles?
How do they behave upon injury and to what extent do they contribute to regeneration?
Understanding the behavior of these cells, which look like intermediates between RG and
astrocytes, could facilitate reinstatement of stem cell properties in astrocytes to promote
regeneration.
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Fig.1. The adult zebrafish telencephalon is characterized by an extensive cell type diversity.
(A) Cell collection strategy to enrich for RG. (B) tSNE of all cells colored by their broad cell type
annotation. Abbreviations: q: quiescent, p: proliferating. (C) Expression of marker genes in refined
non-RG cell clusters. Each color-coded column is a cluster and each line is a gene. Each bar
represents one cell and the height of the bar reflects the level of expression of the gene.

Fig.2. qRG in the zebrafish adult telencephalon are spatially patterned. (A) UMAP of qRG
(green cluster from Fig.1B) colored by terminal cluster identity. (B) Expression of marker genes
across qRG clusters, highlighting cluster-specific, regional and quiescence markers. (C,D)
Orthologs of ganglionic eminences markers (gsx2, nkx2.1) projected on zebrafish UMAP (left,
color-coded arrows matching (A) and (B)) and with ISH on coronal slices of the adult zebrafish
telencephalon (right). Dashed lines indicate the boundary between pallium and subpallium. (E)
Homologies of ventricular territories between zebrafish and mouse telencephalon (coronal
sections) inferred from expression of regionalized transcription factor genes such as emx2, gsx2
and nkx2.1 (10, 65, 66). Depicted cells are RG, colored by their developmental origin (color-coded
relative to clusters).

Fig.3. Conservation and variations in the evolution of the adult neurogenic cascade in
vertebrates. Representation of the expression of putative key regulators of neurogenesis whose
expression pattern differs across vertebrates. Top: phylogenetic tree depicting the profiled
vertebrate species and the ancestors for which we reconstructed the expected pattern of expression
when that applies. Bottom: trinarized relative expression depicted at different stages of progression
along the neurogenic cascade (red: high expression, grey: no or low expression, orange:
intermediate levels of expression). NB: newly born postmitotic neurons, paRG: pre-activated RG
close to entering the cell cycle, qRG: quiescent PG

Fig.4. Homology between quiescent NSCs in zebrafish and mammalian astrocytes. (A)
Cluster mapping between zebrafish dorsal RG (this study) and astroglia in the mouse
telencephalon. (B) Scoring of mouse astroglial cells from (/0) (left) and (49) (right) for genes
enriched in zebrafish g4 over g2 revealing enrichment in astrocytes over RG. Top: annotated
clustering of astroglial cells from each dataset. Bottom: Enrichment score for orthologs of genes
enriched in zebrafish g4 over q2. (C) Representative image of double RNAScope ISH for asclla
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(green) and timp4.3 (magenta) in zebrafish Dm (dorsal view), used to estimate the proportion of
q4 cells (timp4.3") in situ. ZO1 immunohistochemistry was used to delimit apical NSC surfaces
(dotted lines). (D) Distribution estimations of the proportions of RG-only clones among those
genetically induced in Tg(her4:ERT2CreERT2) adult fish in single RG then chased for 507 days
(red), versus the proportions of g4 cells, measured either in situ with RNAScope (green) or in
scRNAseq (blue). Estimations for the proportion of g4 cells are consistent and centered around
43%, while only 11 clones out of 630 exclusively contain RG cells after 507 days. The remaining
609 clones contain neurons, suggesting that most if not all Dm RG are neurogenic (p.value of two-
sided binomial test <1.5¢10-13?).

Fig.5. Emergence of the astrocytic synapomere. Phylogenetic tree depicting the expression of
the astrocytic synapomere in analyzed species and whether parenchymal glia with supportive
functions have been described in those species. Leaves in magenta represent phyla in which
parenchymal glial cells have been previously described. Species in green co-express several genes
of the astrocytic synapomere in the same glial cell clusters. Species in orange express several genes
from the astrocytic synapomere but spread out across several glial cell clusters. Species in black
do not seem to rely on the astrocytic synapomere.
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