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Abstract 25 

Resting fMRI studies have identified intrinsic spinal cord activity, which forms organised motor 26 

(ventral) and sensory (dorsal) resting-state networks. However, to facilitate the use of spinal fMRI in, 27 

for example, clinical studies, it is crucial to first assess the reliability of the method, particularly given 28 

the unique anatomical, physiological, and methodological challenges associated with acquiring the 29 

data. Here we demonstrate a novel implementation for acquiring BOLD-sensitive resting-state spinal 30 

fMRI, which was used to characterise functional connectivity relationships in the cervical cord and 31 

assess their test-retest reliability in 23 young healthy volunteers. Resting-state networks were 32 

estimated in two ways: (1) by extracting the mean timeseries from anatomically constrained seed 33 

masks and estimating voxelwise connectivity maps and (2) by calculating seed-to-seed correlations 34 

between extracted mean timeseries. Seed regions corresponded to the four grey matter horns 35 

(ventral/dorsal and left/right) of C5-C8 segmental levels. Test-retest reliability was assessed using the 36 

intraclass correlation coefficient (ICC) in the following ways: for each voxel in the cervical spine; each 37 

voxel within an activated cluster; the mean signal as a summary estimate within an activated cluster; 38 

and correlation strength in the seed-to-seed analysis. Spatial overlap of clusters derived from 39 

voxelwise analysis between sessions was examined using Dice coefficients. Following voxelwise 40 

analysis, we observed distinct unilateral dorsal and ventral organisation of cervical spinal resting-41 

state networks that was largely confined in the rostro-caudal extent to each spinal segmental level, 42 

with more sparse connections observed between segments (Bonferroni corrected p < 0.003, 43 

threshold-free cluster enhancement with 5000 permutations). Additionally, strongest correlations 44 

were observed between within-segment ipsilateral dorso-ventral connections, followed by within-45 

segment dorso-dorsal and ventro-ventral connections. Test-retest reliability of these networks was 46 

mixed. Reliability was poor when assessed on a voxelwise level, with more promising indications of 47 

reliability when examining the average signal within clusters. Reliability of correlation strength 48 

between seeds was highly variable, with highest reliability achieved in ipsilateral dorso-ventral and 49 

dorso-dorsal/ventro-ventral connectivity. However, the spatial overlap of networks between 50 

sessions was excellent. We demonstrate that while test-retest reliability of cervical spinal resting-51 

state networks is mixed, their spatial extent is similar across sessions, suggesting that these networks 52 

are characterised by a consistent spatial representation over time.  53 
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Abbreviations 56 

BOLD = Blood Oxygen Level Dependent,  57 

C = Cervical,  58 

DH = Dorsal Horn,  59 

DSC = Dice Similarity Coefficient,  60 

CSF = Cerebrospinal Fluid,  61 

EPI = Echo Planar Imaging,  62 

FDR = False Discovery Rate,  63 

fMRI = Functional Magnetic Resonance Imaging,  64 

FOV = Field of View,  65 

FWHM = Full Width at Half Maximum,  66 

GE = General Electric,  67 

ICC = Intraclass Correlation Coefficient,  68 

L = Left,  69 

NSAIDs = Non-Steroidal Anti-Inflammatory Drugs,  70 

PNM = Physiological Noise Modelling,  71 

R = Right, 72 

ROI = Region of Interest,  73 

SCT = Spinal Cord Toolbox,  74 

SD = Standard Deviation,  75 

STAI = State Trait Anxiety Inventory,  76 

TE = Echo,  77 

TR = Repetition Time, 78 

tSNR = Temporal Signal-to-Noise Ratio,  79 

VH = Ventral Horn.  80 
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1 Introduction 81 

Spinal cord functional magnetic resonance imaging (fMRI) is a novel but rapidly developing field 82 

(Kinany, Pirondini, Micera, et al., 2022; Powers et al., 2018). Combined with brain fMRI, it holds 83 

promise for investigation of information processing across all levels of the central nervous system in 84 

both health and disease.  85 

Like the brain, the spinal cord is characterised by spontaneous fluctuations in the blood-oxygen-level-86 

dependent (BOLD) signal in the absence of overt stimulation. This intrinsic activity of the spinal cord 87 

has been shown to form organised resting-state networks, which can be broadly divided into motor 88 

and sensory (Harrison et al., 2021). Reports of strong temporal correlations between the sensory 89 

(dorsal) horns and motor (ventral) horns within the cervical spinal cord have dominated the spinal 90 

fMRI resting-state literature (Barry et al., 2014, 2016; Eippert et al., 2017; San Emeterio Nateras et 91 

al., 2016; Weber et al., 2018). Furthermore, unilateral sensory networks have also been observed in 92 

resting spinal data, which were imited in rostro-caudal extent, corresponding to the underlying 93 

segmental anatomy of the cord (Kong et al., 2014). Early evidence from simultaneous brain-spine 94 

fMRI has also shown that spinal and cerebral resting-state networks are correlated, suggesting a 95 

unified functional architecture of intrinsic networks in the central nervous system (Vahdat et al., 96 

2020).  97 

Brain resting-state fMRI is frequently used as a biomarker for identification of neurodivergent 98 

states/conditions or treatment effects (Drysdale et al., 2017; Pfannmöller & Lotze, 2019; Taylor et 99 

al., 2021). Reliable detection of resting-state networks in the spine would extend this approach to 100 

information processing occurring at the level of the cord, such as early modulation of noxious signals 101 

or motor functioning (Kinany, Pirondini, Micera, et al., 2022; Tinnermann et al., 2021). Acquiring fMRI 102 

recordings from the spinal cord, however, faces unique anatomical, physiological, and 103 

methodological challenges, including, among others, the small size of the cord, influence of 104 

physiological noise, and reliable static magnetic field shimming (Kinany, Pirondini, Micera, et al., 105 

2022; Tinnermann et al., 2021). These challenges can limit the quality of obtained data and thus pose 106 

a threat to the reliability of spinal fMRI. To date, the few studies that investigated the reliability of 107 

resting-state spinal cord fMRI showed good test-retest reliability (intraclass correlation coefficient 108 

(ICC) = 0.64-0.7) in network properties using graph theory measures at 3 T (Liu et al., 2016) and fair 109 

reliability (ICC = 0.54-0.56) in region-to-region connections at 7 T (Barry et al., 2016). A recent 110 

assessment of reliability of region-to-region connections at 3 T has further shown that reliability was 111 
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fair to good for dorso-dorsal and ventro-ventral connections but poor for within and between-112 

hemicord connections across the cervical cord and generally poor for all connections within individual 113 

segmental levels (Kaptan et al., 2022). These studies, however, assessed test-retest reliability within 114 

the same scanning session. Given that longer lag between scans is associated with poorer reliability 115 

in cerebral fMRI (Bennett & Miller, 2010, 2013) and that the scanning set up for spinal cord fMRI is 116 

considerably more complicated than for cerebral fMRI (Kinany, Pirondini, Micera, et al., 2022; Powers 117 

et al., 2018; Tinnermann et al., 2021), investigations of test-retest reliability of spinal cord fMRI that 118 

span separate scanning sessions are warranted. Such investigations will indicate the feasibility of 119 

using spinal cord fMRI to reliably detect the effects of experimental manipulation or clinical 120 

interventions across different visits, such as perturbations related to experimental pain, persistent 121 

pain (e.g., postsurgical), or treatment effects.  122 

Test-retest reliability is inherently tied to data quality. Acquiring good quality spinal cord fMRI 123 

recordings is complicated by the influences of baseline physiology and susceptibility artefacts related 124 

to differing magnetic susceptibility profiles of surrounding tissues (Kinany, Pirondini, Micera, et al., 125 

2022; Saritas et al., 2014; Tinnermann et al., 2021). Shimming procedures can minimise the effects 126 

of these factors by reducing magnetic field inhomogeneities. A combination of high order and z-127 

shimming is frequently used in spinal cord fMRI to improve signal quality (Eippert et al., 2017; 128 

Finsterbusch et al., 2012; Kinany, Pirondini, Mattera, et al., 2022; Vahdat et al., 2020). Nonetheless, 129 

while z-shimming offers large signal gains by accounting for the off-resonance variation along the 130 

cord, implementing simultaneous x, y, and z-shimming can achieve additional benefits by preventing 131 

signal loss caused by magnetic field gradients in left/right and anterior/posterior directions (Islam et 132 

al., 2019). Furthermore, given that magnetic field inhomogeneities can induce artefacts in traditional 133 

echo planar imaging (EPI) sequences incorporating fat saturation pulses, using a spectral-spatial pulse 134 

exciting only tissue water could further improve signal quality (Bernstein et al., 2004).  135 

This study assesses the test-retest reliability of cervical spinal cord resting-state fMRI over two 136 

separate scanning sessions. Additionally, we demonstrate a novel implementation for acquiring 137 

BOLD-sensitive resting-state spinal fMRI and characterise functional connectivity relationships in the 138 

cervical cord in healthy adult volunteers. The acquisition sequence used here operates on a General 139 

Electric (GE) scanner platform, using high order shimming and x, y, and z slice-specific linear 140 

shimming, together with spectral-spatial excitation pulses designed to excite tissue water only. This 141 
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approach reduces signal dropout and increases temporal signal-to-noise ratio (tSNR) within the 142 

cervical spinal cord (see Tsivaka et al., In prep for full details of the acquisition method).  143 

Our pre-registered hypotheses (Kowalczyk et al., 2021) are: 144 

1.  Discrete resting-state sensory and motor networks should be observable in regions of the dorsal 145 

and ventral cervical spinal cord, respectively, using T2*-weighted BOLD EPI. 146 

2.  Spinal responses observed during the assessments of hypothesis 1 will be reliable, with ICC inter-147 

session test-retest reliability statistics greater than 0.4. 148 

2 Material and methods 149 

2.1 Participants 150 

Data from twenty-three healthy right-handed (as assessed by the Edinburgh Handedness Inventory 151 

(Oldfield, 1971)) adult volunteers (13 females, mean + SD age: 23.91 ± 3.84 years) were collected for 152 

all study visits and survived all quality assessments. Full details of participant/data exclusion are 153 

shown in Figure 1.  154 

Full inclusion and exclusion criteria for this study are outlined in the study preregistration (Kowalczyk 155 

et al., 2021). Briefly, participants were excluded due to: (1) history of psychiatric, medical, or 156 

psychological conditions, (2) history of substance or alcohol abuse, (3) regular use of medications 157 

affecting the central nervous system, (4) irregular menstrual cycle for female participants, (5) MRI-158 

related contraindications. Additionally, participants were excluded if they were unwilling to adhere 159 

to the following lifestyle guidelines before each visit: (1) abstain from alcohol for 24 hours, (2) limit 160 

caffeine consumption to one caffeinated drink on each study day, (3) abstain from non-steroidal anti-161 

inflammatory drugs (NSAIDs) or paracetamol for 12 hours, (4) abstain from nicotine-containing 162 

products for 4 hours.  163 

Written informed consent was obtained. This study was approved by the Psychiatry, Nursing, and 164 

Midwifery Research Ethics subcommittee at King’s College London, UK (HR-16/17-4769).  165 
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 166 

Figure 1. A diagram showing the selection of participants fulfilling the study eligibility criteria and data quality 167 
assurance.  168 
MR = Magnetic Resonance, tSNR = Temporal Signal to Noise Ratio. 169 

2.2 Procedure 170 

This study comprised three visits – a screening/familiarisation visit and two identical MRI visits for 171 

test-retest purposes. The mean (± SD, range) interval between each study visit was 21 (± 22, 1-84) 172 

days. Additional measures not described here pertaining to pain modulation and guided motor action 173 

were collected during the study visits, see the preregistration (Kowalczyk et al., 2021) and Medina et 174 

al. (In prep) for details.  175 
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2.2.1 Session 0 – screening and familiarisation 176 

Compliance with study lifestyle guidelines (see Section 2.1) was assessed at the beginning of the 177 

session. Participants underwent breath alcohol and urine drugs of abuse tests to check 178 

alcohol/substance use. Caffeine, nicotine, and NSAIDs/paracetamol intake were assessed by self-179 

report. Participants were familiarised with the scanner environment by visiting a mock scanner.  180 

2.2.2 Session 1 and 2 – MRI scanning 181 

Sessions 1 and 2 were identical. The sessions began with an assessment of compliance with the study 182 

lifestyle guidelines as described above. Additionally, participants completed the state version of the 183 

State Trait Anxiety Inventory (STAI) (Spielberger et al., 1971) to assess differences in anxiety levels 184 

between sessions. No differences were observed (t(22) = 1.23, p = 0.223, d = 6.12, 95% CI [-0.67; 1.6]; 185 

session 1 mean ± SD = 27.61 ± 1.32; session 2 mean ± SD = 29.17 ± 1.49). Subsequently, following 186 

optimisation of static 0th, 1st, and 2nd order shims and linear slice-specific shims, and structural data 187 

acquisition (see Section 2.3), a 10 min 50 s resting-state scan was acquired. Participants were 188 

instructed to keep their eyes open and look at the fixation cross displayed in the centre of the screen 189 

(white cross on a black background). Respiratory and cardiac traces were recorded with respiratory 190 

bellows and a pulse oximeter respectively, along with scanner triggers (at the start of each TR), 191 

throughout the scan. 192 

2.3 MRI acquisition 193 

Data were acquired using a 3T GE MR750 System (General Electric, Chicago, Illinois) equipped with 194 

both a 12-channel head, neck, and spine coil and a 4-channel neurovascular array at the NIHR 195 

Wellcome King's Clinical Research Facility, King’s College London. A sagittal 3D CUBE T2-weighted 196 

structural image was acquired at the beginning of the scanning session over 64 slices with a coverage 197 

of the whole brain and cervical spine to vertebral level T1 (repetition time (TR) = 2.5 s, echo time (TE) 198 

= 120 ms, echo train length = 78, flip angle = 90°, field of view (FOV) = 300 mm, acquisition 199 

matrix = 320x320, slice thickness = 0.8 mm. This acquisition was based on Cohen-Adad et al. (2021) 200 

with the FOV increased to 300mm. 201 

Functional data were acquired over 38 sequential slices in descending order (slice thickness = 4 mm, 202 

slice gap = 1 mm), with the inferior-most slices prescribed at vertebral level T1 (TR = 2.5 s, TE = 30 203 

ms, flip angle = 90°, ASSET factor = 2, FOV = 180 mm, acquisition matrix = 96×96, reconstruction 204 

matrix = 128×128). Static 0th, 1st & 2nd order shims were optimised. A spectral-spatial excitation 205 
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pulse was used to excite only tissue water. Slice specific linear shims were implemented by adding 206 

0.6 ms duration x-, y-, and z-gradient lobes after the excitation pulse. High-order shimming and x, y, 207 

and z-shimming were optimised over elliptical regions of interest (ROIs) covering the brain (for slices 208 

including the brain) or cord (for slices including the spinal cord). ROIs were drawn manually by the 209 

researcher (OSK or SM). To maintain consistency and avoid potential systematic differences in ROI 210 

drawing affecting test-retest estimates, the same researcher drew ROIs for both MRI sessions within 211 

participant.  212 

Four dummy scans were acquired to enable the signal to reach steady-state, followed by 256 213 

volumes. Full details of the acquisition sequence can be found in Tsivaka et al. (In prep). For 13 214 

participants the manufacturer’s EPI internal reference option was used. The internal reference 215 

acquires four non-phase-encoded echoes before the EPI echo train, which are used to apply a phase 216 

correction to the EPI data. Upon further inspection of the data this was shown to contribute to slice 217 

misalignment (y direction) and thus the setting was disabled for the remaining participants. In order 218 

to keep the two MRI visits identical, however, the internal reference was used on both MRI visits for 219 

these 13 participants even after the issue was discovered.  220 

2.4 Data preprocessing 221 

Data were processed using Spinal Cord Toolbox (SCT) version 5.4 (De Leener et al., 2017), AFNI’s 222 

3dWarpDrive (Cox, 1996; Cox & Hyde, 1997), and FSL version 6.0.4 (Jenkinson et al., 2012; Smith et 223 

al., 2004). Visual quality assurance was performed on raw data and at each stage of processing. Five 224 

scans acquired with an early version of the functional sequence using the internal reference (see 225 

above) had several slices come out of alignment with the rest of the spinal cord due to a shift in the 226 

anterior-posterior (EPI phase-encoding) axis. A custom in-house Matlab (Mathworks Inc.) script was 227 

used to move the slices back into alignment with the rest of the cord. Briefly, for each slice, a 1D 228 

projection along the anterior/posterior direction was calculated for each time-point by summing the 229 

voxels in the left/right direction across the spinal cord. The anterior/posterior shift was determined 230 

by calculating the maximum of the cross correlation of the projection at each time-point with the 231 

first time-point. The shift was the applied to the image data in a block circular manner.  Only shifts 232 

by an integer number of voxels were applied to avoid the need for an extra interpolation step. This 233 

step was performed prior to any other preprocessing.  234 

For all functional data, brainstem structures were separated from cervical volumes at the level of the 235 

odontoid process. Subsequently, spinal cord functional data were motion-corrected for x- and y-236 
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translations using an in-house implementation of AFNI’s 3dWarpDrive following the steps in the 237 

Neptune Toolbox (https://neptunetoolbox.com/). Motion-corrected data were smoothed with an in-238 

plane 2D Gaussian kernel with full width at half maximum (FWHM) of 2 mm using a custom in-house 239 

script relying on tools from AFNI and FSL, and bandpass filtered (0.01-0.1 Hz) using fslmaths (part of 240 

FSL).  241 

Warping parameters for spatial normalisation were determined by segmenting and registering the 242 

functional data to the Polytechnique Aix-Marseille University and Montreal Neurological Institute 50 243 

(PAM50) template (De Leener et al., 2018), via an intermediary subject-specific T2-weighted 3D 244 

volume. Specifically, sct_deepseg_sc (Gros et al., 2019) was used to segment the cord from the 245 

cerebrospinal fluid (CSF) on motion-corrected functional data and on T2-weighted structural image 246 

(sct_propseg (De Leener et al., 2014) was used for one participant’s T2-weighted data where 247 

sct_deepseg_sc algorithm failed to detect the cord). Manual intervention was needed for accurate 248 

segmentation of functional data and was performed in FSLeyes (McCarthy, 2022). Warping 249 

parameters for registration of functional data to the PAM50 template were created by combining 250 

warp parameters from: (1) registering structural T2-weighted image to functional data utilising 251 

manually created disc labels on both images and (2) registering the segmented cord from T2-252 

weighted image to the PAM50 T2-weigthed template via sct_register_to_template (De Leener et al., 253 

2018). These warps were applied to functional data via sct_register_multimodal (De Leener et al., 254 

2018). Inverse warp parameters obtained from these steps were used to transform PAM50 template 255 

cerebrospinal fluid and white matter masks to participant functional space which were used in the 256 

physiological denoising step described below.  257 

The Physiological Noise Modelling (PNM) toolbox (Brooks et al., 2008) was used to generate 33 slice-258 

specific regressors accounting for physiological noise based on cardiac and respiratory traces, and 259 

CSF signal. A bandpass filter (identical to that used on the functional data, 0.01-0.1Hz) was applied to 260 

nuisance regressors (those generated by the PNM and motion regressors obtained from motion 261 

correction as described above) to avoid reintroducing noise into the timeseries (Bright et al., 2017). 262 

Regression of physiological noise (cardiac and respiratory), cerebrospinal fluid and white matter 263 

signal, and motion parameters, along with pre-whitening using FILM were performed in FEAT. The 264 

smoothed and filtered data (i.e. the residuals from the previous step) were used for subsequent 265 

analyses.  266 
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2.5 Temporal signal-to-noise ratio (tSNR) 267 

tSNR was calculated on minimally processed resting-state data to avoid artificially inflating the 268 

measure. The data had undergone motion correction only (as described above), to remove the 269 

timecourse variability associated with in-scan motion and enable creating subject-specific spinal cord 270 

masks (see detailed description of steps taken in generating cord masks above). tSNR maps were 271 

created by dividing the mean functional image by its standard deviation. Mean tSNR was extracted 272 

for the whole cervical cord (C1-C8) using subject-specific cord masks and for segmental levels C5-C8 273 

using probabilistic segmental masks from the PAM50 atlas (De Leener et al., 2018) warped to subject-274 

space (binarized and thresholded at 30% likelihood of belonging to that spinal level).  275 

tSNR was extracted for all complete datasets (complete resting-state acquisition on both MRI 276 

sessions, i.e. 28 participants/56 resting-state acquisitions) that passed all other quality assurance 277 

steps (see Figure 1 for details). Since there are no established guidelines on cut-offs for inclusion 278 

based on data quality in spinal fMRI, we opted for a minimum tSNR of 20 to ensure reliability 279 

estimates were not affected by poor data quality. Consequently, five participants (i.e. 10 resting-state 280 

acquisitions) were excluded from all further analyses due to low mean tSNR across the whole cervical 281 

cord (<20) on at least one study session.  282 

2.6 Assessment of resting-state networks 283 

2.6.1 Definition of seed regions 284 

Seed regions were derived from the PAM50 atlas (De Leener et al., 2018) and corresponded to the 285 

four grey matter horns (ventral/dorsal and left/right) of 5th, 6th, 7th, and 8th segmental levels. To 286 

obtain these masks we: 1) thresholded the mask of each horn (left/right, dorsal/ventral) at 50% 287 

likelihood of belonging to that grey matter horn and binarized it, 2) thresholded probabilistic 288 

segmental level (spinal levels C5-C8) masks at 30% to avoid overlap between segments, 3) multiplied 289 

each horn mask by each segmental level mask. This resulted in 16 individual masks for seed regions 290 

reflecting left/right and dorsal/ventral horns at segmental levels C5, C6, C7, and C8 (Figure 2).  291 
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 292 

Figure 2. An illustration of the seed regions used in assessments of spinal cord resting-state networks. A total 293 
of 16 seeds were derived from the PAM50 atlas, corresponding to the four grey matter horns of the cord at 294 
spinal segmental levels C5 (red), C6 (blue), C7 (green), and C8 (yellow).    295 

2.6.2 Voxelwise connectivity 296 

Mean timecourses extracted from these regions were used to estimate voxelwise functional 297 

connectivity maps within the cervical cord. For each subject, to assess both within- and between-298 

segment connectivity all four seeds’ mean timecourses (left dorsal horn – L DH, right dorsal horn – R 299 

DH, left ventral horn – L VH, right ventral horn – R VH) for a given segmental level (C5, C6, C7, C8) 300 

were included in a single model estimated by FEAT. Consequently, a total of four models per subject, 301 

per session were run. COPE images from this stage were registered to PAM50 space using warp 302 

parameters generated during preprocessing (see above). 303 

Spatial extent of resting-state networks at group level was assessed using randomise (Winkler et al., 304 

2014) with threshold-free cluster enhancement (5000 permutations, p < 0.003 (p = 0.05, Bonferroni 305 

corrected for 16 individual seed regions)). This analysis was performed separately for each session.  306 

2.6.3 Seed-to-seed connectivity 307 

In addition to the above preregistered voxelwise analysis, a more focused seed-to-seed correlation 308 

analysis was performed to assess the strength of connections between regions. Pearson correlations 309 

were computed between each pair of seed regions at subject-level using numpy.corrcoef function 310 

(Harris et al., 2020). The resultant correlation coefficients were Z-transformed using numpy.arctanh 311 

(Harris et al., 2020). Statistical significance at group-level was assessed using a one-sample t-test 312 

calculated using scipy.stats.ttest_1samp (Virtanen et al., 2020). A positive false discovery rate (FDR) 313 
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was used to account for multiple comparisons (thresholded at p < 0.05, implemented with 314 

statsmodels.stats.multitest.fdrcorrection (Seabold & Perktold, 2010)). The analysis presented in the 315 

main text of the manuscript used data acquired on session 1 (see Supplementary Materials for 316 

corresponding analysis of data acquired on session 2).  317 

2.7 Test-retest reliability 318 

2.7.1 Intraclass corelation coefficient (ICC) 319 

To systematically evaluate the test-retest performance, inter-session intra-subject reliability was 320 

estimated using: 321 

ICC(3,1) = (BMS-EMS)/(BMS+(k-1)EMS) 322 

where BMS is the between-target mean squares, EMS is the error mean squares, and k is the number 323 

of repeated sessions.  324 

ICC values were calculated for each voxel (i.e. voxelwise) using the locally-developed ICC toolbox 325 

(Caceres et al., 2009) running in Matlab version 9.5.0 (Mathworks Inc.). Intra-subject reliability was 326 

calculated for the whole cord and the complete activation network. The activation network was 327 

obtained using a one-sample t-test of the first session with a voxelwise t-statistic threshold of 3.5 328 

(equivalent to p = 0.001) conducted in SPM (Caceres et al., 2009). ICC(3,1) was calculated for each 329 

COPE separately. Median ICC values are reported, defined as the reliability measure obtained from 330 

the median of the ICC distributions within regions. In addition to this pre-registered approach, 331 

additional ICC values were also computed to provide a more detailed understanding of the test-retest 332 

reliability of spinal resting-state data.  333 

ICC(3,1) of the mean activation within a network was also computed. Mean signal was extracted from 334 

group-level maps obtained from randomise (as described above) using a binarized mask defined from 335 

activation map of session 1.  336 

Additionally, ICC(3,1) values were calculated on the subject-level Z-scores describing each of the 337 

connections in the seed-to-seed analysis.  338 

Finally, ICC(3,1) was calculated for tSNR values extracted from the whole cord and from segmental 339 

levels C5-C8 (see below). SPSS v28.0.1.1 with Python3 integration was used to calculate ICC values 340 

for mean activation within the network, seed-to-seed connectivities, and tSNR. 341 
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Following previous recommendations (Fleiss et al., 2013), ICC values will be categorised accordingly: 342 

<0.4 as poor, 0.4–0.59 as fair, 0.6–0.74 as good, and >0.75 as excellent. While a value of 1 indicates 343 

near-perfect agreement between the values of the test and retest sessions, a value of 0 would 344 

indicate that there was no agreement between the values of the test and retest sessions. 345 

2.7.2 Dice similarity coefficient (DSC) 346 

Spatial consistency of spinal cord resting-state networks was evaluated using Dice similarity 347 

coefficient (DSC) (Dice, 1945) calculated using AFNI’s 3ddot function.  DSC was calculated separately 348 

for group- and subject-level maps. Mean DSC values for subject-level maps are reported.  349 

DSC ranges from 0 to 1 with higher values indicating better overlap between two sets/maps. A value 350 

of 1 would thus correspond to perfect overlap, while a value of 0 would correspond to no overlap.  351 

3 Results 352 

3.1 tSNR 353 

To assess signal quality, tSNR was extracted from minimally processed data (motion correction only) 354 

for all complete datasets (i.e. prior to excluding participants with mean tSNR across the whole 355 

cord < 20). Mean tSNR for the whole cord and segmental levels C5-C6 across sessions are shown in 356 

Table 1.  357 

tSNR was stable across sessions both within the whole spinal cord (t(27) = -0.58, p = 0.568,  d = 4.36, 358 

95% CI [-0.48, 0.26]) and across segmental levels C5-C8 (F(1, 27) = 0, p = 0.989). Slightly higher tSNR 359 

was observed in lower segments (C7 and C8) than in higher segments (C5 and C6), however this 360 

difference was not statistically significant (F(1.93, 51.99) = 2.7, p = 0.078).  361 

 
Whole cord 
Mean (SD) 

Segment C5 
Mean (SD) 

Segment C6 
Mean (SD) 

Segment C7 
Mean (SD) 

Segment C8 
Mean (SD) 

MRI Session 1 25.75 (5.32) 25.95 (8.67) 25.59 (8.1) 27.33 (6.7) 27.76 (7.94) 

MRI Session 2 26.22 (5.04) 25.18 (9.2) 25.96 (6.2) 27.75 (5.61) 27.79 (6.87) 

Table 1. Temporal signal-to-noise ratio (tSNR) across whole cord and within spinal segmental levels C5-C8 for 362 
data acquired on MRI sessions 1 and 2. Data reported for N = 28, i.e. all complete datasets prior to excluding 363 
participants with tSNR < 20. 364 
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3.2 Assessment of resting-state networks 365 

3.2.1 Voxelwise connectivity 366 

To assess the spatial extent of cervical spinal resting-state networks, we estimated voxelwise 367 

connectivity maps for each subject and session. This section describes the results of the analysis of 368 

data from session 1 (the corresponding analysis of session 2 data is provided in the Supplementary 369 

Materials). For each seed and segmental level, we observed a statistically significant organisation of 370 

spinal resting-state networks (p < 0.003). Each seed gave rise to a connectivity pattern that was 371 

largely confined to the segment, with sparser between-segment connections (Figure 3). While the 372 

spatial extent of clusters was similar across the four quadrants of each segment, we qualitatively 373 

observed a dorsal bias in functional connectivity of dorsal seeds and a ventral bias in functional 374 

connectivity of ventral seeds. Qualitatively, clusters estimated from session 2 data had highly similar 375 

spatial extent (see Supplementary Materials for results of session 2 data analysis and Supplementary 376 

Figure 2 for overlap between session 1 and session 2 maps).  377 

 378 
Figure 3. Resting-state networks obtained from voxelwise connectivity analysis for each of the four quadrants 379 
(ventral/dorsal and left/right) of segmental levels C5-C8 (data acquired on MRI session 1). Axial slices are 380 
marked with the z MNI coordinate. Each resting-state map was thresholded at p<0.003 (p=0.05, Bonferroni 381 
corrected for 16 individual seed regions). 382 

3.2.2 Seed-to-seed connectivity 383 

To assess the strength of functional connections between horns of the cervical spinal cord, we 384 

conducted seed-to-seed correlations between each pair of seed regions on data acquired during 385 

session 1 (for results of the same analysis performed on session 2 data, see Supplementary 386 

Materials). A correlation matrix depicting cervical spinal cord connections is shown in Figure 4. On 387 
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average, within segment, the strongest statistically significant positive correlations were observed 388 

within hemicord (i.e. left DH-VH and right DH-VH), followed by VH-VH and DH-DH connections, and 389 

DH-VH connections between hemicords (i.e. left DH – right VH, right DH – left VH). Weaker but 390 

statistically significant positive correlations were also observed between neighbouring segments, 391 

including DH-DH, VH-VH, as well as within and between hemicords. Finally, negative correlations 392 

were observed between the right VH of segment C8 and both left and right DH of segment C6. A 393 

similar pattern of results was observed in the analysis of data acquired during session 2 (see 394 

Supplementary Materials). 395 

 396 

Figure 4. Seed-to-seed correlation matrix displaying z-transformed Person R. 397 
DH = Dorsal Horn, L = Left, VH = Ventral Horn, R = Right. 398 
*p < 0.05, **p < 0.001 399 
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3.3 Test-retest reliability 400 

3.3.1 ICC 401 

ICC(3,1) was used to examine the test-retest reliability of cervical resting-state networks. ICC values 402 

for each resting-state network derived from voxelwise connectivity analysis are shown in Table 2 and 403 

for each of the seed-to-seed connectivities in Figure 5. 404 

On average voxelwise assessments of ICC in the entire cord (mean across networks ICC = <0.1 ± <0.1) 405 

and within the activation network defined based on MRI session 1 (mean across networks 406 

ICC = 0.1 ± <0.1) showed poor reliability across resting-state networks. ICCs for mean activation 407 

within each resting-state network showed better but still poor reliability (mean across networks 408 

ICC = 0.3 ± 0.2). Nonetheless, more variability in ICC values was observed, with some networks 409 

reaching fair (left and right DH networks at level C5 and right VH networks at levels C7 and C8) and 410 

good reliability (left VH networks at levels C5 and C6).  411 

ICCs for connection strength across pairs of seed regions were variable. ICCs for a large portion of 412 

seed pairs (84%) were poor, however some reached fair (14%) and good (2%) levels. Fair and good 413 

ICCs were observed for connections both within and between spinal segmental levels and largely 414 

reflected either within (i.e. left DH-VH or right DH-VH) or between hemicord connectivity (i.e. left DH 415 

– right VH or right DH – left VH).  416 

Finally, to assess the test-retest reliability of signal quality, ICC values were calculated for tSNR. Across 417 

the whole cervical spinal cord captured by our data, tSNR reliability was good (ICC = 0.7). Within 418 

segmental levels, tSNR reliability was good for segments C6 (ICC = 0.7), C7 (ICC = 0.6), and C8 419 

(ICC = 0.7), and fair for segment C5 (ICC = 0.5). 420 
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 421 
Table 2. ICC(3,1) for each resting-state network. 422 
DH = Dorsal Horn, ICC = Intraclass Correlation Coefficient, L = Left, VH = Ventral Horn, R = Right. 423 
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 424 
Figure 5. Matrix displaying ICC(3, 1) for each pair of seed regions.  425 
DH = Dorsal Horn, ICC = Intraclass Correlation Coefficient, L = Left, VH = Ventral Horn, R = Right. 426 

3.3.2 DSC 427 

DSC assessed the spatial agreement of group- and subject-level resting-state maps between the two 428 

sessions. DSC for each network at group- and subject-level are shown in Table 3.  429 

Near-perfect agreement was observed in group-level maps (mean DSC = 0.88 ± 0.03) and good 430 

agreement was seen in subject-level maps (mean DSC = 0.67 ± 0.11).  431 
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 432 
Table 3. Group-level and mean subject-level DSC for each resting-state network. 433 
DH = Dorsal Horn, DSC = Dice Similarity Coefficient, L = Left, VH = Ventral Horn, R = Right. 434 

4 Discussion 435 

This study investigated cervical spinal cord resting-state networks and their test-retest reliability 436 

using a novel acquisition method. In mapping the spatial representation of resting-state networks, 437 

we observed distinct unilateral dorsal (sensory) and ventral (motor) organisation that was largely 438 

confined in the rostro-caudal extent to each spinal segmental level, with more sparse connections 439 

between segments. By investigating connection strength between the horns of the cervical spine, we 440 

observed that the strongest connectivity was present within the hemicord (i.e. ipsilateral dorsal-441 

ventral), followed by ventro-ventral and dorso-dorsal connections, and finally dorsal-ventral 442 

connections between the hemicords. Similar but weaker connectivity was also observed between 443 

segmental levels. The results of test-retest reliability of these networks were mixed. Reliability was 444 

poor when assessed on a voxelwise level, with more promising but inconsistent indications of 445 

reliability when examining the average signal within networks and connection strength. However, 446 

assessments of the spatial overlap of resting-state network maps between sessions showed near-447 
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perfect agreement, suggesting that these networks are characterised by a consistent spatial 448 

representation over time.  449 

The first aim of this study was to quantify the spatial extent of spinal cervical resting-state networks. 450 

Our findings of dorsal and ventral bias in the spatial representations of resting-state networks in the 451 

cervical spine are in line with our predictions and complement previous investigations characterising 452 

the intrinsic activity of the spinal cord (Barry et al., 2014, 2016; Eippert et al., 2017; Kong et al., 2014; 453 

Vahdat et al., 2020). In fact, the emergence of distinct sensory (dorsal) and motor (ventral) networks 454 

within the cervical spine has been demonstrated with several different analytical approaches, 455 

including data-driven independent component analysis (Kong et al., 2014; San Emeterio Nateras et 456 

al., 2016) and hypothesis-driven temporal correlation between regions of interest (Barry et al., 2014, 457 

2016; Eippert et al., 2017). Further, these networks have been observed both at conventional MR 458 

field strength (3 T) (Eippert et al., 2017; Kong et al., 2014; Liu et al., 2016; San Emeterio Nateras et 459 

al., 2016; Vahdat et al., 2020) and at ultra-high field (7 T) (Barry et al., 2014, 2016). Here, we further 460 

confirm the presence of the previously reported dorso-dorsal and ventro-ventral cross-talk (Barry et 461 

al., 2014, 2016; Eippert et al., 2017) with seed-to-seed correlations and further show the emergence 462 

of unilateral dorsal and ventral networks (Kong et al., 2014) with voxelwise analyses. Our findings 463 

support the notion that these networks reflect intrinsic spinal activity, which mirrors the functional 464 

neuroanatomy of the spinal cord. 465 

In addition to the distinct dorsal and ventral networks, we observed a strong within-hemicord (i.e. 466 

ipsilateral) connectivity between dorsal and ventral horns of the cervical spine. This is in contrast to 467 

previous reports of weak dorsal-ventral connectivity within the hemicord (Barry et al., 2014; Eippert 468 

et al., 2017). Nonetheless, strong within-hemicord connectivity between dorsal and ventral horns 469 

was observed in non-human primates (Chen et al., 2015) and in one study of a small groups of healthy 470 

adult volunteers (Weber et al., 2018). Furthermore, dorsal-ventral connectivity was also observed in 471 

some participants at ultra-high field, however, these results were not consistent and did not emerge 472 

at group level (Barry et al., 2014). Dorsal-ventral connectivity may represent a distinct sensory-motor 473 

spinal network, which could support motor reflexes and other more lateralised processing (Chen et 474 

al., 2015; Harrison et al., 2021). Indeed, anatomical spinal circuits that connect ipsilateral dorsal and 475 

ventral horns, including the monosynaptic stretch reflex and nociceptive withdrawal reflex, are well 476 

documented (Pierrot-Deseilligny & Burke, 2012). Nonetheless, given the close proximity of ipsilateral 477 

dorsal and ventral horns and the likely influence of fMRI acquisition parameters and data processing 478 
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steps on the detectability of within-hemicord connectivity, further study is needed to establish 479 

whether these anatomical circuits contribute to a tertiary spinal resting-state network.  480 

Similar to previous studies (Kinany et al., 2020; Kong et al., 2014; San Emeterio Nateras et al., 2016), 481 

we observed that spinal resting-state networks were largely limited in the rostro-caudal extent, 482 

mirroring the segmental organisation of the spinal cord. However, we also observed sparse between-483 

segment connections. Intersegmental connectivity has been reported previously (Eippert et al., 2017; 484 

Harita & Stroman, 2017; Ioachim et al., 2019; San Emeterio Nateras et al., 2016; Vahdat et al., 2020) 485 

and is thought to reflect ascending sensory and descending motor pathways. In line with our findings, 486 

others have reported a decrease of connectivity beyond one vertebral level (Harita & Stroman, 2017; 487 

Liu et al., 2016; San Emeterio Nateras et al., 2016; Weber et al., 2018) and, in some cases, weak anti-488 

correlation between regions of different segmental levels (Kinany et al., 2020; Kong et al., 2014). This 489 

pattern of results was also observed in this study, with an anti-correlation between right ventral horn 490 

at C8 and both ipsilateral and contralateral dorsal horn of segment C6. Such negative relationships 491 

may reflect processes related to intersegmental inhibition, perhaps contributing to reflexive actions, 492 

proprioception, and nociception (Friesen & Cang, 2001; McBain et al., 2016).  493 

Our second aim was to assess whether cervical spinal resting-state networks could be reliably 494 

detected across different scanning sessions. The mixed findings observed in our reliability analysis 495 

are in contrast to our predictions and previous reports of good and fair reliability of resting-state 496 

connections in the cervical spine, albeit when tested within the same scanning session (Barry et al., 497 

2016; Kaptan et al., 2022; Liu et al., 2016). Test-retest reliability is known to reduce with longer lag 498 

between sessions across various contexts (Calamia et al., 2013; Duff, 2012), including brain fMRI 499 

(Bennett & Miller, 2010, 2013) and specifically resting-state paradigms (Niu et al., 2020; Yang et al., 500 

2022). Changes related to development, aging, learning, and attention, along with other neuroplastic 501 

processes likely underpin the biological reasons for poorer reliability in the long-term (Bennett & 502 

Miller, 2010, 2013). Furthermore, in cerebral fMRI, the highest reliability is usually achieved in data 503 

collected within the same scanning session (Shehzad et al., 2009; Wang et al., 2013), which likely 504 

reflects additional impact of scanner characteristics (An et al., 2017). Given that spinal cord fMRI 505 

acquisition is considerably more challenging than brain fMRI, with greater impact of baseline 506 

physiology and field inhomogeneities related to surrounding tissues, lower intersession test-retest 507 

estimates are to be expected.  508 
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In recent years, the reliability and reproducibility of neuroimaging results more broadly has been 509 

brought into question (Botvinik-Nezer et al., 2020; Poldrack et al., 2017), with largely mixed evidence 510 

of reliability across both task (Elliott et al., 2020; Kragel et al., 2021) and resting-state brain fMRI 511 

(Noble, Spann, et al., 2017; Noble et al., 2019). In fact, many estimates of brain resting-state 512 

connectivity achieve ICC values within the poor range (<0.4) across different resting-state metrics, 513 

including voxelwise and region-to-region connectivity (Noble et al., 2019; Noble, Scheinost, et al., 514 

2017). Consequently, the test-retest estimates observed here for spinal cord resting-state networks 515 

are similar to those routinely observed in the brain. Furthermore, the spatial extents of these 516 

networks were similar across sessions. This suggests that while intensity changes in individual voxels 517 

and clusters may differ between sessions, the networks are characterised by a consistent spatial 518 

representation over time. 519 

Aside from psychological influences, several factors have been identified, that contribute to low fMRI 520 

reliability, including poor tSNR (Bennett & Miller, 2010; Raemaekers et al., 2007), suboptimal data 521 

processing choices (Barry et al., 2016), and confounding effects of motion and/or other non-specific 522 

signal changes (Gorgolewski et al., 2013; Noble et al., 2019). The inherent challenges of acquiring 523 

spinal cord fMRI recordings, likely result in a compound effect of these factors, which may lead to 524 

somewhat lower test-retest reliability estimates than those of brain fMRI (Barry et al., 2016). The 525 

continued efforts to improve the quality of spinal cord recordings and finetune preprocessing 526 

pipelines will likely help to increase the reliability of spinal fMRI.  527 

Nonetheless, it is important to recognise that high reliability does not always reflect data validity. For 528 

instance, it has been observed that correction for artefactual signal, such as motion and physiological 529 

noise, can lower test-retest reliability in the brain (Birn et al., 2014; Lipp et al., 2014; Noble et al., 530 

2019; Noble, Spann, et al., 2017) and spinal cord (Kaptan et al., 2022). This likely represents more 531 

systematic properties of noise within the data (e.g. regular repetition of cardiac and/or respiratory 532 

processes, CSF pulsation leading to cord motion) compared to intrinsic activity within the cord, which 533 

may be characterised by more dynamic processes (Kinany et al., 2020). This is further supported by 534 

our observation of good reliability of the average tSNR of minimally processed data contrasting with 535 

lower reliability of resting-state networks estimated from the same data. Consequently, it is vital to 536 

consider data reliability and validity together and avoid data processing choices which, while boosting 537 

reliability, might have an undue effect on validity.  538 
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Most spinal-cord fMRI studies use z-shimming alone (Eippert et al., 2017; Kong et al., 2014; Vahdat 539 

et al., 2020). While not a primary intention of our study, we did observe that the y-shimming (and to 540 

a lesser extent x-shimming) gradients did provide additional signal recovery. One previous study has 541 

also reported dynamic x-, y-, and z-shimming (Islam et al., 2019), which differed from our 542 

implementation by applying the linear shimming gradients throughout the EPI acquisition for each 543 

slice rather than as gradient lobes. Additionally, we used spectral-spatial excitation pulses for our 544 

fMRI acquisition. Since these are designed to only excite water, no additional fat saturation pulses 545 

were required, which would have increased the TR needed to acquire images from 38 slices (or 546 

reduced the number of slices that could be acquired with the same TR). To date, spinal fMRI has been 547 

predominately implemented on Siemens scanners with only few exceptions (e.g. Islam et al., 2019). 548 

Our acquisition sequence uses a GE scanner platform and thus provides an alternative to the typically 549 

used Siemens-based methods.  550 

The acquisition method described here achieved superior signal quality in comparison to reports 551 

describing other sequences used in the field to date, reaching an average tSNR of 26 across scanning 552 

sessions. This represents large gains over previously described methods, where average tSNR of 553 

spinal EPI data at 3 T typically ranges from 5 to 20 (Barry et al., 2018; Eippert et al., 2017; Kinany, 554 

Pirondini, Mattera, et al., 2022; Oliva et al., 2022; Powers et al., 2018). This boost in signal quality 555 

may be partly due to the slightly larger in-plane voxel size used in this study (1.4x1.4 mm compared 556 

to 1x1 mm typically used elsewhere (Eippert et al., 2017; Harita & Stroman, 2017; Kong et al., 2014; 557 

Liu et al., 2016; San Emeterio Nateras et al., 2016)). Aside from differences in voxel sizes, compared 558 

to brain fMRI, the low tSNR of spinal fMRI data is additionally driven by baseline physiology inducing 559 

spinal cord motion and CSF pulsation (Piché et al., 2009), and susceptibility artefacts arising from the 560 

distinct magnetic susceptibility profiles of surrounding tissues, resulting in signal dropout and image 561 

distortions (Saritas et al., 2014). While the tSNR achieved by our acquisition sequence remains lower 562 

than that of a typical brain EPI (tSNR of approximately 50 when calculated on minimally processed 563 

data) (Murphy et al., 2007; Oliva et al., 2022), it marks a step towards improving the quality of spinal 564 

fMRI recordings.  565 

Several limitations are important to note in this study. Although we used a comparable voxel size 566 

(1.4x1.4 mm in-plane) to other spinal cord fMRI studies conducted at 3 T (Eippert et al., 2017; Harita 567 

& Stroman, 2017; Kong et al., 2014; Liu et al., 2016; San Emeterio Nateras et al., 2016), it needs to be 568 

noted that the small size of the spinal cord (approximately 10 mm in diameter with grey matter 569 
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regions approximately 2-4 mm2 in-plane) (Harrison et al., 2021) calls for even finer spatial resolution 570 

in future studies. Although larger voxel size can improve signal-to-noise ratio, it can also lead to 571 

sampling signal from different structures within the same voxels. Similar issues arise from spatially 572 

smoothing the functional data. While smoothing increases tSNR and minimises variability in 573 

individual anatomy, it can lead to mixing of signal from distinct anatomical regions. This is particularly 574 

important to consider when investigating regions in close proximity (see above in relation to 575 

ipsilateral dorsal-ventral connectivity). Nonetheless, the correspondence of our findings and those of 576 

investigations conducted at higher field strength with smaller voxel size (0.31x0.31 mm in-plane) 577 

(Barry et al., 2014, 2016) and those not including spatial smoothing (Eippert et al., 2017; Kong et al., 578 

2014), suggests that these were unlikely confounds in our data. 579 

It is also important to consider that current best practices for spinal cord fMRI data modelling rely on 580 

assumptions that have been validated for cerebral fMRI but not studied in detail in the cord. For 581 

instance, early evidence suggests that frequencies higher than the conventional 0.08 Hz cut-off used 582 

for brain fMRI (Biswal et al., 1995), may be important drivers of spinal cord signalling (Barry et al., 583 

2016). Here, we used bandpass filtering of 0.01-0.1Hz to allow for those higher frequencies, while 584 

keeping within the bounds of BOLD-validated frequency distribution. Nevertheless, the 585 

neurophysiological mechanisms underpinning assumptions crucial for fMRI data modelling, such as 586 

BOLD frequency distribution and haemodynamic response, require further study and validation in 587 

the cord.  588 

Although we aimed to obtain 30 complete datasets, and indeed 37 participants completed one 589 

scanning session and 32 completed both sessions, the challenges associated with spinal cord fMRI 590 

acquisition and resultant data quality concerns meant that our final sample size was reduced to 23. 591 

Longer scanning time due to shimming optimisation, an additional anterior array coil resting on the 592 

participants neck and chest, head and neck positioning minimising neck curvature, and the use of 593 

external physiology monitoring equipment likely contributed to the discomfort associated with 594 

scanning, increased attrition rate, and led to higher in-scan motion. Further data exclusion was 595 

related to low tSNR and signal dropout, some of which may be a result of individual differences in 596 

the anatomy of surrounding tissues. High data attrition may be an inevitable attribute of spinal cord 597 

fMRI studies and needs to be accounted for during study design and recruitment. 598 

Finally, our study investigated the test-retest reliability of cervical spinal resting-state networks 599 

across two separate sessions separated by several days or weeks, while previous studies looked at 600 
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within-session reliability (Barry et al., 2016; Kaptan et al., 2022; Liu et al., 2016). However, a full 601 

characterisation of spinal cord fMRI reliability demands acquiring recordings from the same 602 

participants within the same session, as well as over days, weeks, months, and possibly years. 603 

Furthermore, combining recordings from the same subject across several sessions has been 604 

hypothesised to improve reliability alongside validity (Noble, Spann, et al., 2017). Such efforts in 605 

spinal cord fMRI may help to better understand the neurofunctional characteristics of spinal cord 606 

resting-state networks.  607 

5 Conclusions 608 

In this study, we demonstrate functional connectivity relationships in dorsal and ventral regions of 609 

the cervical cord using a novel acquisition method implemented on a GE platform. Importantly, our 610 

findings are in agreement with the known neuroanatomical and neurofunctional organisation of the 611 

spinal cord. Although the test-retest reliability of these networks was mixed, their spatial extent was 612 

highly reproducible across sessions, suggesting that these networks are characterised by a consistent 613 

spatial representation over time.   614 
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