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Abstract 33 

Symbiotic bacteria alter host biology in numerous ways, including the ability to reproduce or 34 

vector disease. Deployment of symbiont control of vector borne disease has focused on 35 

Wolbachia interactions with Aedes and is hampered in Anopheles by a lack of compatible 36 

symbioses. Previous screening found the symbiont ‘Ca. Tisiphia’ in Anopheles plumbeus, an 37 

aggressive biter and potential secondary vector of malaria parasites and West Nile virus. We 38 

screen An. plumbeus samples collected over a ten-year period across Germany and use 39 

climate databases to assess environmental influence on incidence. We find a 95% infection 40 

rate that does not fluctuate with broad environmental factors. Microscopy suggests the 41 

infection is maternally inherited based on strong localisation throughout the ovaries. Finally, 42 

we assemble a high-quality draft genome of ‘Ca. Tisiphia’ to explore its phylogeny and 43 

potential metabolism. This strain is closely related to those found in Culicoides midges and 44 

shows similar patterns of metabolic potential. An. plumbeus provides a viable avenue of 45 

symbiosis research in anopheline mosquitoes, which to date have one other proven 46 

infection of a heritable symbiont. Additionally, it provides future opportunity to study the 47 

impacts of ‘Ca. Tisiphia’ on natural and transinfected hosts, especially in relation to 48 

reproductive fitness and vector efficiency.  49 
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Introduction 50 

Bacterial symbionts in insects form vital components of their host’s biology, ecology, and 51 

evolution. They are known to influence how insects reproduce, how they respond to 52 

environmental stress, and they interact with pathogens  (Dunbar et al., 2007; Himler et al., 53 

2011; Vega, Arribére and Castro-Vazquez, 2012; Hendry, Hunter and Baltrus, 2014; Xie et al., 54 

2014; Hayashi et al., 2016). Several species of symbionts are vertically inherited from one 55 

generation to the next, usually through the maternal germline, and may become intrinsically 56 

linked with their host physiology, metabolism, and development (Buchner, 1965; Zchori-Fein, 57 

Borad and Harari, 2006; Moran, McCutcheon and Nakabachi, 2008; Kremer et al., 2009; 58 

Giorgini et al., 2010). Most importantly, symbionts have been deployed in the control of 59 

vector populations and vector competence (Hoffmann et al., 2011). 60 

Success in symbiont-mediated disease control has been restricted to species from the genus 61 

Aedes. Transinfection with Wolbachia from a drosophilid fly has been successfully used to 62 

alter vector competence and lower risk of catching dengue fever from Aedes aegypti 63 

(Linnaeus, 1762) in endemic areas (Hoffmann et al., 2011; Walker et al., 2011; Pereira et al., 64 

2018). However, important vectors like Anopheles are rarely naturally infected with 65 

Wolbachia, and species within the group are commonly unreceptive to artificial Wolbachia 66 

infections (Hughes et al., 2014). In Anopheles mosquitoes, for instance, there is a single well-67 

established case of natural Wolbachia infection (Walker et al., 2021). Therefore, it is desirable 68 

to find potential alternatives that are either more capable of surviving transinfection or alter 69 

vector competence in the native host species. 70 

We previously detected the symbiont ‘Ca. Tisiphia’ (= Torix group Rickettsia) in Anopheles 71 

plumbeus (Stephens, 1828) in the UK (Pilgrim et al., 2021). An. plumbeus is broadly distributed 72 

across Europe and is an indiscriminate biter. It is also capable of transmitting West Nile virus 73 

and malaria parasites, although these pathogens do not natively occur in the majority of  the 74 

mosquito species´ known distribution range, and vector competence has only been tested in 75 

the laboratory setting (Bueno-Marí and Jiménez-Peydró, 2011; Dekoninck et al., 2011; 76 

Schaffner et al., 2012). It has been highlighted as a species that could act as a secondary vector  77 

of “tropical” disease agents as changing climate causes their northward spread  and their 78 

associated primary hosts like Aedes albopictus (Skuse, 1894) (Schaffner et al., 2012; Heym et 79 

al., 2017).  80 
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‘Candidatus Tisiphia’ (= Torix group Rickettsia) appear to be particularly associated with hosts 81 

deriving from wet or aquatic environments and may originate from symbionts of freshwater 82 

ciliates (Driscoll et al., 2013; Schrallhammer et al., 2013; Kang et al., 2014). Infection with this 83 

symbiont occur in a broad range of invertebrates, from annelids to gastropods to arthropods 84 

(Pilgrim et al., 2021), as well as in algae (Hollants et al., 2013) and amoebae (Dyková et al., 85 

2013). Their relatives in Rickettsia are capable of nutritional symbioses, protecting against 86 

fungal infections and reproductive manipulation (Hurst et al., 1994; Giorgini et al., 2010; 87 

Hendry, Hunter and Baltrus, 2014; Bodnar et al., 2018). However, the known effects of ‘Ca. 88 

Tisiphia’ are limited to an association with increased host size in Torix leeches, and weak 89 

impacts on fecundity in Cimex lectularius bedbugs (Kikuchi and Fukatsu, 2005; Thongprem et 90 

al., 2020). There is no observed congruence of host and symbiont phylogeny, indicating that 91 

host shifts occur commonly and that long-standing associations with species are rare. External 92 

influence such as temperature or natural enemies can also influence the prevalence of 93 

symbionts in host populations (Cass et al., 2016; Corbin et al., 2017; Leclair et al., 2017). 94 

Here we use PCR assays to establish the extent of ‘Ca. Tisiphia’ infection in An. plumbeus 95 

mosquitoes across Germany collected by DW and through citizen science initiatives, and 96 

assess associations with temperature, precipitation, and forest type. We also sequence and 97 

assemble a high-quality draft genome for the symbiont ‘Ca. Tisiphia’ and provide evidence of 98 

vertical transmission of the symbiont through the maternal germline through FISH imaging. 99 

The symbiont genome is examined through bioinformatics approaches to establish potential 100 

nutritional or protective symbioses. 101 

Experimental Procedures 102 

Collection of Anopheles plumbeus (Stephens, 1828) 103 

Two hundred and fifty five An. plumbeus specimens  were collected from 2012-2021 across 104 

Germany by DW and citizen volunteers as part of the mosquito atlas (Mückenatlas) project 105 

(Werner et al., 2014). These were stored in 70% ethanol or dry (see supplementary materials 106 

for storage and exact geographic information). Post hoc analysis indicated storage method 107 

did not affect detection of symbionts by PCR assay. 108 

Specimens were also collected by HD as larvae and raised to adults in water collected from 109 

their larval pools. These specimens were either killed by flash freezing in liquid nitrogen prior 110 
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to genomic DNA extraction, or in 4% paraformaldehyde solution prior for fluorescence 111 

imaging. 112 

DNA extraction and PCR screening of Anopheles plumbeus for ‘Ca. Tisiphia’ 113 

Promega Wizard® Genomic DNA Purification kit was used for DNA preparation. DNA quality 114 

was then checked with a combination of HCO/C1J primers HCO_2198 (5’-TAA ACT TCA GGG 115 

TGA CCA AAA AAT CA-3’)/CIJ_1718 (5’-GGA GGA TTT GGA AAT TGA TTA GT-3’) (Folmer et al., 116 

1994; Hajibabaei et al., 2005; Siozios et al., 2020). Ca. Tisiphia presence was assessed with a 117 

PCR assay amplifying the 320‐bp region of the 17 kDa OMP gene Ri17kD_F (5’-118 

TCTGGCATGAATAAACAAGG-3’)/Ri17kD_R (5’-ACTCACGACAATATTGCCC-3’) (Pilgrim et al., 119 

2017). PCR conditions used were as follows: 95 °C for 5 min, followed by 35 cycles of 120 

denaturation (94 °C, 30 s), annealing (54 °C, 30 s) and extension (72 °C, 120 s). 121 

A selection of ‘Ca. Tisiphia’ amplicons from positive samples across time and space were 122 

Sanger-sequenced through Eurofins barcode service and identity confirmed by comparing the 123 

sequences to the NCBI database via BLAST homology searches. These sequences are 124 

deposited in accessions OQ512853-OQ512860. 125 

Association of symbiont prevalence with geographic and climatic information 126 

Annual average monthly temperature and precipitation data were retrieved for each sample’s 127 

coordinate and year from TerraClim (Abatzoglou et al., 2018) which has a spatial resolution 128 

of ~4-km (1/24th degree). Forest cover data was retrieved from Copernicus land datasets for 129 

2018 (European Union, 2018) and raster data for forest type extracted in QGIS 3.16 (QGIS.org, 130 

2020) within a 3km radius of each sample location. Anopheles plumbeus has historically been 131 

recorded to have a maximum flight range of up to 13km (Becker et al., 2010). However, this 132 

is based on one single study from 1925 and is not verified by other sources. As such we chose 133 

an estimated range of 3km based on the average flight ranges other anopheline mosquito 134 

species (Becker et al., 2010; Verdonschot & Besse-Lototskaya, 2014). Scikitlearn’s standard 135 

scaler (Pedregosa et al., 2011) was applied to data before performing a generalised linear 136 

model with a binomial logit link function on data with the following formula:  137 

𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 ~ 𝑡𝑎𝑠𝑚𝑖𝑛 +  𝑡𝑎𝑠𝑚𝑎𝑥 +  𝑝𝑟𝑒𝑐𝑖𝑝 +  𝑓𝑜𝑟𝑒𝑠𝑡_𝑟𝑎𝑡𝑖𝑜 138 

All statistics and geographic inferences were carried out in Python with the packages 139 

Statsmodel and Scikit-learn (Rossum and Drake, 2009; Seabold and Perktold, 2010; Pedregosa 140 
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et al., 2011). QGIS 3.16 was used to produce maps and extract raster data for forest types 141 

before passing it to Python for analysis (QGIS.org, 2020). All other figures were produced with 142 

Matplotlib and Seaborn (Hunter, 2007; Waskom and Seaborn development team, 2020).  143 

Fluorescence in situ microscopy (FISH) 144 

Reproductive organs of a single female and a single male were dissected and incubated in 145 

cold 4% paraformaldehyde for 3 hours, agitated gently every 30 minutes, then washed with 146 

cold PBS for 5 minutes two times. Tissue was stained with Hoescht 33342 (that binds double-147 

stranded DNA) for 30 minutes at room temperature, then hybridised overnight at room 148 

temperature with hybridisation buffer (5X SSC, 0.01% SDS, 30% formamide) and 5′‐149 

CCATCATCCCCTACTACA‐(ATTO 633)‐3′ oligonucleotide probe specific to ‘Ca. Tisiphia’ 16S 150 

rRNA (Pilgrim et al., 2017). Hybridised tissue was washed in wash buffer (5X SSC, 0.01% SDS) 151 

at 48°C for 60 minutes with gentle shaking every 20 minutes. Samples were then mounted in 152 

Vectashield. Images were taken with a ZEIS LSM 880 confocal microscope through ZEIS Zen 153 

black, and final images were annotated in Inkscape Ver 1.2 (Inkscape Project, 2020). 154 

De novo sequencing, assembly, and annotation. 155 

A combination of short and long read sequencing was used to construct scaffolds for the ‘Ca. 156 

Tisiphia’ genome. For short reads, Iridian Genomes extracted and processed DNA of one male 157 

for Illumina sequencing deposited under bioproject accession PRJNA694375. The short reads 158 

of An. plumbeus  were cleaned with Trimmomatic 0.36 (Bolger, Lohse and Usadel, 2014) and 159 

quality checked with FASTQ (Babraham Bioinformatics, 2019). For long reads, genomic DNA 160 

from one male was extracted with Qiagen Genomic-tip for ultra-low PacBio sequencing 161 

carried out by the Centre for Genomic Research, University of Liverpool. Long read sequences 162 

are deposited under bioproject accession number PRJNA901697. 163 

A combination of long and short reads were used to assemble as complete a genome for ‘Ca. 164 

Tisiphia’ as possible. First, the ‘Ca. Tisiphia’ genome was identified in the Illumina short reads 165 

and assembled through Minmap2, MEGAHIT and MetaBAT2 as per the pipeline used in 166 

Davison et al. (2022). Second, PacBio HiFi long read sequences were assembled using Flye 2.9. 167 

1-b1780 with the ‘-meta’ flag to improve sensitivity for low coverage reads. Third, the long 168 

read assembly was queried against a local blast database of Rickettsia and ‘Ca. Tisiphia’ 169 

genomes (including the Illumina assembly from the first step) to identify sequences belonging 170 

to this strain of ‘Ca. Tisiphia’. Lastly, the long read assembly was polished with the Illumina 171 
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reads using Polypolish v0.5.0 (Wick and Holt, 2022) with default settings to give 23 final 172 

scaffolds.  173 

Phylogeny and metabolic predictions 174 

Annotation of the final assembly was carried out with InterProScan v5 (Jones et al., 2014). 175 

Metabolic pathway prediction for presence and completion was carried out through Anvi’o 7 176 

using KEGG kofams and COG20 (Aramaki et al., 2020; Eren et al., 2021; Galperin et al., 2021). 177 

NRPS pathways were investigated with AntiSMASH 6.0 (Blin et al., 2021). 178 

The ‘Ca. Tisiphia’ strain for An. plumbeus was compared to the other existing ‘Ca. Tisiphia’ 179 

genomes through Anvi’o 7. A core genome consisting of 205 gene clusters that contain a total 180 

of 3690 genes was found through Anvio-7. Phylogenies were estimated from single copy gene 181 

clusters with IQTREE 2.2.0.3 using Model Finder Plus and with 1000 ultrafast bootstraps 182 

(Kalyaanamoorthy et al., 2017; Hoang et al., 2018; Minh et al., 2020). The model selected by 183 

Model Finder Plus is Q.plant+F+R4. A supporting phylogeny to confirm the identity of 17 kDa 184 

OMP genes was produced with the model TIM2+F. 185 

Results and Discussion 186 

Distribution and predicted environment 187 

‘Ca. Tisiphia’ was observed to infect An. plumbeus across all sites examined in Germany, with 188 

95% specimens positive on PCR assay. The few negative specimens were found to mostly 189 

occur in the southeast of the country (Figure 1 and Supplementary Figure 1). The infection 190 

seems to be stable, and there is no evidence of frequency change over time, with samples 191 

from all years spanning 2012 to 2022 displaying similar rates of infection (Supplementary 192 

Figure 1, Supplementary Table S1, Supplementary Figure 2).  193 

There is no clear evidence of an influence on ‘Ca. Tisiphia’ infection rates in An. plumbeus 194 

caused by average minimum or maximum temperature, precipitation or forest types (Figure 195 

2 and Supplementary Figure 2 and 3). While there appears to be a significant effect of 196 

precipitation on the number of uninfected individuals, this could be an artifact of increased 197 

water availability leading to more mosquitoes and thus a higher chance of detecting rarer 198 

uninfected individuals (Supplementary Figure 2). No variation is unsurprising as it appears to 199 

be a very high prevalence infection. We also acknowledge that using climate databases to 200 

retroactively find data is not as accurate as field measurements. However, results agree with 201 
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previous field observations of Rickettsia infection in Acyrthosiphon pisum in Japan (Tsuchida 202 

et al., 2002). We chose to use the high resolution TerraClim database, but this may still mask 203 

small differences in microenvironments are limited to mostly abiotic data. We encourage 204 

future symbiosis research to consider environmental measurements to describe the ecology 205 

of these organisms more comprehensively. 206 

Figure 1. Map of ‘Ca. Tisiphia’ infection rates across Germany where the size of the circle represents the 207 
number of individuals sampled and the colour indicates the proportion of ‘Ca. Tisiphia’ infected individuals. 208 
Red = 90-100% infection to light yellow = 50-60% infection. Source data can be found in Supplementary Table 209 
S1.  210 
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  211 

Figure 2. Standardised and scaled environmental data comparing Uninfected (N=13) and Infected (N=237) by 212 
environmental variable. Source data can be found in Supplementary Table S1. 213 

Phylogeny and metabolism 214 

The bacteria sequenced from An. plumbeus is most closely related to a ‘Ca. Tisiphia’ found in 215 

the biting midge Culicoides newsteadi (Figure 3). All infections tested are the same strain of 216 

‘Ca. Tisiphia’ (Supplementary Figure 4). General features of both genomes are consistent with 217 

other ‘Ca. Tisiphia’ (Table 1 and Supplementary Data S2-S4); TsAplum has a single full set of 218 

rRNAs (16S, 5S and 23S), and GC content is ~33%. It also has several repeat domains (Table 1) 219 

which are associated with protein-protein interactions and are prevalent in Wolbachia 220 

symbionts (Siozios et al., 2013; Rice, Sheehan and Newton, 2017). 221 

  222 
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Table 1. Summary of the genome assembly for TsAplum. 223 

 224 

 225 

Figure 3. Genome wide phylogeny of ‘Ca. Tisiphia’ and ‘Ca. Megaira’. Maximum likelihood (ML) phylogeny 226 
constructed from 205 single copy gene clusters that contain a total of 3690 genes. New genomes are 227 
indicated by ◄ and bootstrap values based on 1000 replicates are indicated with coloured circles (red = 91-228 
100, yellow = 81-90, black <= 80). Accession numbers for each genome are available in Supplementary Table 229 
S2.  230 

Strain Name TsAplum 

Symbiont genome accession  SAMN31737641 

Host Anopheles plumbeus 

Raw reads accession Pacbio SRR22298143, Illumina SRR13516402  

Total nucleotides 1,622,210 

Contigs 31 

GC content 32.82% 

N50 62798 

Number of CDS 1701 

Avg. CDS length (bp) 788 

Coding density 82.57% 

rRNAs 1 x 5S, 1 x 16S, 1 x 23S 

tRNAs 31 

ORFs with Ankyrin repeat domains 3 

ORFs with Leucine rich repeats 1 

ORFs with Tetratricopeptide repeats 6 
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Overall ‘Ca. Tisiphia’ found in An. plumbeus mirrors the metabolic potential found in other 231 

members of its genus (Figure 4 and Figure 5). It does not have any obvious metabolic pathway 232 

that would contribute to nutritional symbiosis such as B vitamin production nor any NRPS/PKS 233 

system for small molecule synthesis (Supplementary Tables S3 and S4). It does have several 234 

toxin/anti-toxin systems as well as secretion pathways Tat, Sec, VirB (Type IV), all of which are 235 

essential in various symbiont-host interactions (Masui, Sasaki and Ishikawa, 2000; Meloni et 236 

al., 2003; Wu et al., 2004; Dale and Moran, 2006; Tseng, Tyler and Setubal, 2009). 237 

Additionally, it has a number of ORFs containing ankyrin- and leucine-rich repeats which are 238 

thought to be important in interactions with cognate eukaryotic proteins (Siozios et al., 2013; 239 

Rice, Sheehan and Newton, 2017). Thus, the genome itself, whilst firmly placing the symbiont 240 

in the context of the genus and identifying relatedness to other strains, does not raise obvious 241 

hypotheses about the impact of infection on the host. Phenotype studies are required to 242 

properly assess the influence of this bacteria on its host. Key studies would address the factors 243 

driving the spread of the symbiont into the population (testing for beneficial aspects of 244 

infection, cytoplasmic incompatibility, and paternal inheritance) and impacts on viral 245 

infection and transmission outcomes. 246 
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Figure 4. KEGG module distribution in ‘Ca. Tisiphia’. The number of pathways found per genome annotated 247 
by KEGG module category for ‘Ca. Tisiphia’. Full metadata can be found in Supplementary Data 1. ▲ indicates 248 
the genome assembled in this study. Full metadata can be found in Supplementary Tables S3 and S4. 249 
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Figure 5. Predicted completeness of KEGG kofam metabolic pathways across ‘Ca. Tisiphia’. The genome 250 
assembled in this chapter is coloured grey and indicated with▲  Full metadata can be found in 251 
Supplementary Tables S3 and S4. 252 

 
  
 
 
 
  
  
 
 
 
 

 

  

  

  

  

   

 
 
 
 
  
  
  
 

 
  
 
 
  
  
  
 
  
 
 

 
  
  
 
  
  
 

 
  

 
 
  
 
 
  
  
  
 
 

 
  
 
  
  
 
 

 
 
 
  
  
  
 
 
 
 
 

 
 
 
 
 
 
  
  
 

 
 
 
  
 
 
 
  
 
 
  
 
 
 
 
 
  
 
  
  
 

 
 
 
  
 
  
  
 

 
 
 
 
 
 
 
  

 
 
  
 
 
  
 
  
 
 
 
  
 

 
 
 
 
 
 
  
  
 

 
 
 
  
 
 
 
   

 
  
 
 
 
 
 
  
 
  
  
 

 
  
 
 
  
  
 

 
 
  
 
 
  
 
 
  
 
 
 
  
 
 
 

 
 
 
 
 
  
 
  
  
 

 
 
 
 
 
 
  
 
  
  
 
 
 
 
 

  
 
  
  
 

 
 
  
 
 
 
  
 
 
  
 
 

 
 
 
 
  
  
 
 

 
 
  
 
 
 
  
 
 
  
 
  
 
 
  
 
 
 

 
 
 
 
 
 
  
  
 

 
  
  
 
 
 
  
 
 
 
 
 
 

 
 
   
 
  
  
 

 
 
 
  
 
  
  
  
  
 
 
  

 
  
  

 
  
  
 

 
 
  
 
 
  
 
 
  
 
 
 
 
 
  
  
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.27.529723doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.27.529723
http://creativecommons.org/licenses/by-nc-nd/4.0/


FISH imaging 253 

‘Ca. Tisiphia’ is observed in oocytes and oviduct branches but was not detected in testes 254 

(Figure 6 versus Supplementary Figure 5). Localisation and clear polarity of the infection in 255 

ovaries strongly suggest that this is a maternally inherited infection (Figure 6). The bacteria 256 

cluster around the oocyte of the primary follicles as well as in the lateral ducts and secondary 257 

follicles. In Drosophila melanogaster, Wolbachia is similarly polarised to one end of the 258 

primary follicles to the oocyte (Ferree et al., 2005), and in Proechinophthirus fluctus, their 259 

endosymbionts Sodalis appears to use the lateral oviducts to access the ovaries (Boyd et al., 260 

2016). 261 

Figure 6. Fluorescence in situ microscopy images of Anopheles plumbeus ovaries infected with ‘Ca. Tisiphia’. 262 
Red shows ‘Ca. Tisiphia’ stained with ATTO-633, blue are host nuclei stained with Hoechst. Panels show a) the 263 
whole female reproductive organ outlined in white and a breakdown of each light channel and b) a close up of 264 
the ovaries showing localised infection within the primary and secondary follicles. White bars indicate a) 150 265 
micrometres and b) 50 micrometres. 266 

Final conclusions 267 

Anopheles plumbeus and its ‘Ca. Tisiphia’ make a good potential model for symbioses in 268 

Anopheles mosquitoes as well as for ‘Ca. Tisiphia’ infection more generally. Outside of An. 269 

plumbeus, there is only a single well substantiated case of Wolbachia and no other symbiont 270 

in anopheline mosquitoes (Walker et al., 2021). The infection in An. plumbeus is clearly 271 

evidenced, likely heritable, and occurs in a species that has seen previous success as a 272 

laboratory colony (Kotter, 2005). Beyond this, An. plumbeus is a species of interest with the 273 

capability to carry West Nile virus and  Plasmodium parasites (Dekoninck et al., 2011; 274 
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Schaffner et al., 2012). ‘Ca. Tisiphia’ in An. plumbeus provides a viable avenue for symbiont-275 

mediated vector modification and control to be tested in anopheline species. It is also an 276 

example of a temporally and spatially stable infection of non-pathogenic Rickettsiaceae and 277 

a good foil to fluctuating systems like Belli Rickettsia in Bemisia tabaci (Bockoven et al., 2020). 278 

Future work should also establish the effects of this symbiont in transinfection in alternative 279 

hosts alongside the native An. plumbeus host. Other symbionts like Wolbachia are known to 280 

produce functionally interesting phenotypes related to vector competence when transferred 281 

from the original host into other, naïve species (Moreira et al., 2009). Alongside this, impacts 282 

on host function and physiology, and potential means of spread into natural populations 283 

would need to be assessed. A first step to establishing transinfection would be to isolate the 284 

‘Ca. Tisiphia’ infection into cell culture, which would also represent an important community 285 

resource for onward study. 286 

In summary, ‘Ca. Tisiphia’ is found in 95% of An. plumbeus individuals from Germany and 287 

forms a well-established, stable, and heritable infection that persists across space and time. 288 

Metabolic potential is typical of similar symbiotic bacteria species, and we find no evidence 289 

of large-scale environmental factors influencing rates of infection. However, ‘Ca. Tisiphia’ and 290 

An. plumbeus provide a unique opportunity to study the effects of a native symbiont infection 291 

in anopheline mosquitoes, as well as explore its potential use for disease mitigation in other 292 

species that cannot be infected with currently used symbionts.  293 
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 489 

Table and Figure legends 490 

Figure 1. Map of ‘Ca. Tisiphia’ infection rates across Germany where the size of the circle 491 

represents the number of individuals sampled and the colour indicates the proportion of 492 

‘Ca. Tisiphia’ infected individuals. Red = 90-100% infection to light yellow = 50-60% 493 

infection. Source data can be found in Supplementary Table S1. 494 

Figure 2. Standardised and scaled environmental data comparing Uninfected (N=13) and 495 

Infected (N=237) by environmental variable. Source data can be found in Supplementary 496 

Table S1. 497 

Figure 3. Genome wide phylogeny of ‘Ca. Tisiphia’ and ‘Ca. Megaira’. Maximum likelihood 498 

(ML) phylogeny constructed from 205 single copy gene clusters that contain a total of 3690 499 

genes. New genomes are indicated by ◄ and bootstrap values based on 1000 replicates are 500 

indicated with coloured circles (red = 91-100, yellow = 81-90, black <= 80). Accession 501 

numbers for each genome are available in Supplementary Table S2. 502 

Figure 4. KEGG module distribution in ‘Ca. Tisiphia’. The number of pathways found per 503 

genome annotated by KEGG module category for ‘Ca. Tisiphia’. Full metadata can be found 504 

in Supplementary data. ▲ indicates the genome assembled in this study. Full metadata can 505 

be found in Supplementary Tables S3 and S4. 506 

Figure 5. Predicted completeness of KEGG kofam metabolic pathways across ‘Ca. Tisiphia’. 507 

The genome assembled in this chapter is coloured grey and indicated with▲. Full metadata 508 

can be found in Supplementary Tables S3 and S4. 509 

Figure 6. Fluorescence in situ microscopy images of Anopheles plumbeus ovaries infected 510 

with ‘Ca. Tisiphia’. Red shows ‘Ca. Tisiphia’ stained with ATTO-633, blue are host nuclei 511 

stained with Hoechst. Panels show a) the whole female reproductive organ outlined in white 512 

and a breakdown of each light channel and b) a close up of the ovaries showing localised 513 

infection within the primary and secondary follicles. White bars indicate a) 150 micrometres 514 

and b) 50 micrometres. 515 

Figure 7. Fluorescence in situ microscopy images of Anopheles plumbeus testes. Blue are 516 

host nuclei stained with Hoechst 33342, Red is ATTO-633 auto-fluorescence in the testes not 517 

‘Ca. Tisiphia’ staining. White bars indicate a) 150 micrometres and b) 50 micrometres. 518 

Table 1. Summary of the genome assembly for TsAplum.  519 
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Supplementary Figures 520 

Supplementary Figure 1. ‘Ca. Tisiphia’ infection rates by site’.  Infected samples are shown in orange, 521 
uninfected are shown in light blue. Source data can be found in Supplementary Table S1. 522 

523 
Supplementary Figure 2. Environmental data for Anopheles plumbeus collection sites across Germany 524 
extracted from the TerraClim database. (Top) average annual minimum and maximum temperature across all 525 
An. plumbeus collection sites in Germany. (Middle) average annual precipitation across all sites. (Bottom) 526 
counts of infected and uninfected individuals across all sites where dark blue = infected and orange = 527 
uninfected. 528 
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 529 

Supplementary Figure 3. The ratio of broadleaf to coniferous forest in a 3km radius of each collection site.  530 
Darker green indicates more broadleaf, lighter green indicates closer to equal proportions. Source data can be 531 
found in Supplementary Table S1. 532 

  533 
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 534 

Supplementary Figure 4. Maximum likelihood tree for 17 kDa surface antigen (omp) for ‘Candidatus 535 
Tisiphia’ extracted from An. plumbeus. New genomes are indicated by ◄ and bootstrap values based on 536 
1000 replicates are indicated with coloured circles (red = 91-100, yellow = 81-90, black <= 80). 537 
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Supplementary Figure 5. Fluorescence in situ microscopy images of Anopheles plumbeus testes. Blue are 539 
host nuclei stained with Hoechst 33342, Red is ATTO-633 auto-fluorescence in the testes not ‘Ca. Tisiphia’ 540 
staining. White bars indicate a) 150 micrometres and b) 50 micrometres. 541 
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