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3
Abstract
Complex diseases such as Multiple Sclerosis (MS) cover a wide range of biological scales, from
genes and proteins to cells and tissues, up to the full organism. We conducted a multilayer
network analysis and deep phenotyping with multi-omics data (genomics, phosphoproteomics
and cytomics), brain and retinal imaging, and clinical data, obtained from a multicenter
prospective cohort of 328 patients and 90 healthy controls. Multilayer networks were constructed
using mutual information, and Boolean simulations identified paths within and among all layers.
The path more commonly found from the boolean simulations connects MP2K, with Th17 cells,
the retinal nerve fiber layer (RNFL) thickness and the age related MS severity score (ARMSS).
Combinations of several proteins (HSPB1, MP2K1, SR6, KS6B1, SRC, MK03, LCK and
STAT6)) and immune cells (Th17, Thl non-classic, CD8, CD8 Treg, CD56 neg, and B memory)
were part of the paths explaining the clinical phenotype. Specific paths identified were

subsequently analyzed by flow cytometry at the single-cell level.

Keywords: complex diseases, systems biology, multiple sclerosis, multilayer networks, paths
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57  Author Summary

58 Complex diseases such as Multiple Sclerosis (MS) involve the contribution of a wide

59  range of biological processes. We conducted a systems biology study of MS based on network
60 analysis and deep phenotyping in a prospective cohort of patients with clinical, imaging,

61  genetics, and omics assessments. The gene, proteins and cell paths explained variation in central
62  nervous system damage, and in metrics of disease severity. Such multilayer paths explain the
63  different phenotypes of the disease and can be developed as biomarkers of MS.
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Introduction

Complex diseases involve the interaction of multiple biological scales, including tissues,
cells, and molecules (genes, proteins, and metabolites), all of which regulate biological function
and modulate the susceptibility to a given clinical phenotype. Although significant efforts have
been devoted to understanding each of these levels, few attempts have succeeded in integrating
multiple scales and the flow of information across them. Such integration would definitely
improve our understanding of disease pathogenesis (1, 2) and wellness (3). Multilayer networks
provide a framework to integrate complex biological data across different scales, which should
allow us to understand the flow of biological information in health and disease (4-6). This is
especially important in diseases with a complex genetic and molecular basis, such as Multiple

Sclerosis (MS).

MS is an autoimmune disease characterized by inflammatory attacks to the central
nervous system (CNS), which damages the neural tissue and leads to significant disability (7).
The inflammation occurs in acute attacks as well as by chronic inflammation, defining the
different clinical subtypes of the disease, namely relapsing-remitting (RRMS) and progressive
(PMS). MS is an example of a complex disease, with different biological scales participating in
its pathogenesis, including genetic factors (8), cellular signaling (9, 10), adaptive and innate
immunity (11, 12), and CNS damage (13). Additionally, the interplay between these various
components is modulated by environmental factors (14, 15), with viral infections and especially
the Epstein-Barr virus being the main triggers (16). As a result, the MS phenotype of
neurological disability is very heterogeneous and difficult to predict (7, 17), creating significant

limitations for patient care. As an example of the difficulty of finding biological determinants of
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90 MS, although more than 200 genetic polymorphisms have been associated with MS
91  susceptibility, their contribution to the clinical phenotype is small and remains to be clarified
92  (18). Similarly, many studies have attempted to identify biomarkers of the clinical course and
93  prognosis of the disease, including oligoclonal bands, neurofilament light chain protein, brain or
94  spinal cord volume or retinal thickness, but few have been validated, and even their individual
95  predictive ability is small, making their use in clinical practice limited (19).
96
97 Several studies have attempted to integrate biological networks in MS, mainly at the
98  genetic level (20-23). Those studies addressed the biomolecular aspects of the disease (genes and
99  proteins), but they did not describe the relation of those features with tissue damage or clinical
100  disability. In contrast, our approach focuses on bridging the gap between the microscopic and
101  macroscopic scales of MS to better explain the endotype-phenotype relationship. To that end, we
102  use multilayer network analysis to assess how information flows across biological scales, and to
103  identify multiscale paths that contribute to explain the phenotype of MS.
104
105 Within the umbrella of the Sys4MS project (24), we recruited a multicenter prospective
106  cohort of 328 patients with MS and 90 healthy subjects with a two-year follow-up and performed
107  deep phenotyping by collecting multi-omics data, imaging, and clinical outcomes. This
108  collection provided data on five biological layers: (1) genes, (2) phosphoproteins (mostly
109  kinases), (3) immune cells, (4) tissue (imaging), and finally (5) the clinical phenotype (Figure
110  1a). Network generation was first applied to each of these layers individually, using mutual
111 information to capture linear and non-linear dependencies between the elements of each layer

112 (Figure 1b-f) before the layers were interconnected (Figure 1g). Our approach is hypothesis-
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7
113  based, rather than data-based: First, we make use of a set of single nucleotide polymorphisms
114 (SNPs), proteins and immune cell subtypes already known to be associated with MS (8, 9, 24,
115 25). Second, we consider the transfer of information from genes to proteins and cell layers,
116  which will define the tissue (imaging) and clinical outcomes as the phenotype (Figure 1g). In
117  order to obtain functional information from the network models, dynamical simulations using
118  Boolean network modeling were used to identify several paths spanning these five layers.
119
120  Figure 1. Building multilayer networks using multi-omics, imaging, and clinical data. (a)
121 Illustration of network construction. The data from each layer is taken from the cohorts and used
122 to create networks, where the nodes are the elements in the dataset (genomics, phosphoproteomics,
123  cytomics, tissue imaging, and clinical data), and the edges correspond to the mutual information
124  between element pairs across all subjects. Once individual networks are created, they are linked
125  together, again using mutual information, following a hierarchy that connects each layer
126  successively, starting with genomics and working up to the phenotypic (clinical) layer. (b-f)
127  Topology of individual layer networks from the experimental data. In each of the networks, the
128  degree of each node is color-coded, with higher degrees in darker colors. The edge weights are
129  coded in grey scale in a similar manner, with a darker edge representing a higher weight, and thus
130  a higher correlation between nodes. The genomics network was enriched with the previous
131  knowledge on regulatory networks (f) and included the MS genetic burden scores (g). In the
132  combined five-layer network, the layers are connected using the hierarchy described above, with
133  genomics at the bottom and clinical phenotype at the top. High resolution network representations

134  for single-layer networks are available at Github link


https://doi.org/10.1101/2023.02.26.530153
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.26.530153; this version posted February 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

8

135  https://keithtopher.github.io/single networks/#/  and  for  multilayer = networks  at

136  https://keithtopher.github.io/combo_networks/#/.
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138  Results

139 The focus of the results is on the paths between the genes, proteins, cells and the

140  phenotype (imaging and clinical scales). Each step below shows how the paths were identified,
141 and which sources tend to be more strongly connected with the phenotype. First, descriptive

142  information about the data is given, then the networks of the layers are constructed, then Boolean
143  simulations are run, and finally the top paths are selected.

144

145  Deep phenotyping: multi-omics, imaging, and clinical data from MS patients

146 We recruited 328 MS patients (age 41+10 years, 70% female) at four centers throughout
147  Europe, corresponding to the Sys4MS cohort (Table 1). Of these, 271 patients (82%) had RRMS,
148  and 57 (17%) had PMS. We also recruited 90 healthy controls (HCs) matched by sex and age with
149  the RRMS group. The patients had a mean disease duration of 10 (SD 8) years, and median
150 Expanded Disability Status Scale (EDSS) of 2.0 (range: 0-8). Regarding the use of disease
151  modifying drugs (DMD) at baseline, 70% of patients were treated, 44% with low-efficacy
152  therapies, and 26% with high-efficacy therapies (see Methods for drug definition). By the second
153  year of follow-up (mean follow-up 1.98 + 0.94 years, n=274), two RRMS cases progressed to
154  PMS, 22 patients started new therapies (cladribine: 1; fingolimod: 2; glatiramer acetate: 4;
155  ocrelizumab: 9; rituximab: 2; teriflunomide: 4) and 17 changed from low to high-efficacy
156  therapies. Imaging data consisted of both brain magnetic resonance imaging (MRI) and retina
157  optical coherence tomography (OCT) (Table 1).

158  Table 1. Sys4MS cohort: Clinical and imaging variables of MS patients and healthy

159  controls. Disability scales are shown as the mean + SD, except for the EDSS which is displayed

160  as the median (range).
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MS MS HC
baseline 2-year FU n=90
n=328 n=278
Age 41+10 45+9.81 |36.98 +11.47
Female, n (%) 229 (70%) | 194 (70%) 63 (70%)
Age at disease onset (years) 31+ 9 3149 --
Disease duration (years) 10+ 8 12.9+8.16 -
Subtype RRMS 271 228
SPMS 28 25 --
PPMS 29 25
EDSS 2.0 (0-8.0) | 2.0(0-8.0) --
MSSS 3.6+2.2 | 3.2542.35 --
ARMS 39+2.1 3.56+2.26 --
T25WT (sec) 6.93+6.6 | 5.67+4.97 --
9HPT (sec) 21.2+6.5 | 21.9+45.92 --
SDMT (# symbols) 53.8+13.5| 53.5+13.3 --
SL25 (# letters) 29.1+ 134 | 26.7+13.5 --
HCVA (LogMAR) 0.03+0.36 | -0.11+0.44 --
DMD Untreated 91 72 --
Interferon beta 43 19 --

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.26.530153; this version posted February 27, 2023. The copyright holder for this preprint
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Glatiramer acetate 39 24 --
Teriflunomide 28 21 --
Fingolimod 38 33 --
Dimethyl-Fumarate 35 37 --
Natalizumab 29 24 --
Other high-efficacy DMD* 19 43 --
Brain MRI baseline
# Gadolinium lesions 0.1+0.5 NA** NA
T2 lesion volume (cm?) 8.17+10.5| 9.32+11 NA
NBYV (cm?) 1,509 + 91 | 1,454+70.2 | 1,473+109
NGMV (cm?) 792 + 65 779 +49.5 751+63.7
NWMV (cm?) 716 + 68 | 676 +43.5 7214111
OCT (mean of both eyes baseline
without previous ON)
pRNFL (um) 100+ 12.7 | 101+12.1 100+9.6
mRNFL (um) 39.6 +49 | 39.6+4.31 41.9+6.5
GCIPL (um) 65.6 +83 | 65.7£7.08 68.5+6
INL (um) 31.5+2.8 | 31.5+2.77 41.1+8.8

11
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ORL (pm) 146.1 +£9.5 | 147+8.39 149+19.9

161  FU: follow-up; RRMS: relapsing-remitting MS; SPMS: secondary-progressive MS; PPMS:

162  primary-progressive MS; EDSS: expanded disability status scale; MSSS: MS severity scale;

163  ARMS: age-related MS severity scale; T25WT: timed 25-feet walking test; 9HPT: 9-hole peg
164  test; SDMT: symbol digit modality test; SL25: 2.5% Sloan letter acuity; HCVA: high-contrast
165  visual acuity; DMD: disease modifying drug; NBV: normalized brain volume; NGMV:

166  normalized grey matter volume; NWMV: normalized white matter volume; RNFL: retinal nerve
167  fiber layer (p: peripapilar; m: macular); GCIPL: ganglion cell plus inner plexiform layer; INL:
168  Inner nuclear layer; ORL: outer nuclear layer. *Other DMD baseline: alemtuzumab: 9,

169  rituximab: 7, ocrelizumab: 1, daclizumab: 2; year 2: alemtuzumab: 13, rituximab: 11,

170  ocrelizumab: 16, cladribine: 3. **MRI studies for the follow-up did not include gadolinium

171 administration.

172 We conducted a genomic analysis in both MS cases and controls. From the 700,000 SNPs
173  assessed in the DNA array, we imputed 152 SNPs associated with MS (8), along with 17 additional
174  SNPs corresponding to HLA-class II alleles. We calculated the polygenic risk score, namely the
175  MS genetic burden score (26) (MSGB) for all 169 SNPs, together with partial MSGB scores for
176  only the 17 HLA SNPs (MSGB!*), and for the 152 MS associated SNPs excluding the HLA
177 alleles (MSGB™™HLA) - Ag expected, the total MSGB score was significantly higher (p=3.4x107%)
178  in patients (4.23) than in HCs (3.2). Similar results were observed in the partial scores, with
179  MSGB"™ of 1.57 in patients and 0.95 in HCs (p=1.6x10"*) and MSGB"™HLA of 2.6 in patients
180  and 2.2 in HCs (p=6.8x107).

181 Flow cytometry analysis was carried out at baseline in peripheral blood mononuclear cells

182  (PBMC:s) from the first 227 patients and 82 HC. Results from the cytometry analysis in this cohort
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183  are described in detail elsewhere (24). Briefly, untreated RRMS patients showed significantly
184  higher frequencies of Th17 cells and lower frequencies of B-memory/B-regulatory cells, as well
185  as higher percentages of mature B cells in patients with PMS compared with HCs. Fingolimod
186  treatment induced a decrease in total CD4+ T cells and mature and memory B cells and increases
187  in CD4+, CD8+ T-regulatory and B-regulatory cells (24). Finally, the phosphoproteomic analysis
188  was carried out by conducting ex-vivo assays in PBMCs and quantified using XM AP assays on the
189  first 148 patients at baseline as described before (25, 27), showing higher levels of phosphorylated
190 IKBA, JUN, KSGBI1, MKO03, RS6, STAT3 and STAT6 in MS patients compared to controls
191  (Methods, File S1).
192
193  Multilayer networks in MS
194 We built networks for each of the five layers (genetics, phosphoproteomics, cytomics,
195  tissue/imaging and clinical variables) using mutual information to define connections between
196  pairs of elements within each layer (Figure 1, see Methods). For example, in the proteomics
197  layer two proteins are connected to each other with a weight equal to the normalized mutual
198  information between their phosphorylation levels. A threshold was used to determine whether
199  the correlation for a given pair was high enough to define an edge. The threshold works by
200  comparing the real mutual information value of a pair of nodes to a surrogate distribution of
201  mutual information values calculated from random permutations of the data.
202 The genetic network was considered in two ways: first, at the level of the individual SNPs
203  separately and utilizing previous information from the Gene Regulatory Network Database (28)
204  and mapped to the MS associated SNPs (see Methods); and second, grouped together in the three

205 MSGB scores defined above. The proteomic network includes 25 kinases, and the cytomics
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network 22 immune subpopulations (see Methods for the lists of proteins and cell subtypes). The
imaging network included the main metrics of lesion load and brain volumes quantified by MRI,
and the thickness of the retina layers analyzed by OCT. Finally, the clinical network contains
demographic and clinical variables (number of relapses, disability scales and use of DMD) at
baseline and after two-year follow-up, which give longitudinal changes in clinical outcomes (see
Methods for a list of variables).

After the networks for each layer were built, we analyzed the connectivity (density)
between layers, this time between features of different layers. A statistical comparison between
the connections within and between layers (Figure 2) shows a non-negligible degree of network
modularity, confirming the underlying multi-layer structure. The features within a layer are, on
average, more strongly connected than those between layers. With the exception of genomics,
the densities within a single layer were higher than those between layers, supporting the

modularity of the multilayer network.

Figure 2: Network densities within and between layers. (/eff) The density for each layer was
calculated as the ratio of the sum of the weights of all connections and the number of possible
connections. The analysis was made using the 67 subjects with complete data in all 5 layers.
(right) The network from which the density was calculated. Nodes from all layers were
connected together, opposed to the network model with the hierarchy shown before. See high

resolution network at https://keithtopher.github.io/combo_networks/#/.
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228

229  Dynamic network analysis identifies gene-protein-cell paths associated with phenotype

230 We next sought to integrate all the layers in paths that reflect the network dynamic

231  interactions, in order to obtain a functional view of the information flow across layers. To that
232  end, we created a single network including all five layers with the same hierarchy described
233  above using linear (Pearson) correlations, which allows us to distinguish between stimulatory or
234  inhibitory edges depending on whether the correlation r value is positive or negative,

235 respectively (Figure 3a). We then conducted logic (Boolean) simulations to identify the causal
236  logic backbone of the network (29, 30). Boolean simulations use knowledge of activating and
237  inhibiting relationships between nodes; the exact chemical reactions between genes, proteins,
238  cells and tissue are ignored, giving a qualitative description of the system (30). The nodes of the
239  network are considered to be in one of two states: active (e.g., high phosphorylation levels) or
240  inactive (e.g., low phosphorylation levels). The states of all nodes are updated synchronously at
241 each iteration of the simulation, either remaining in the same activation state as before, or

242  Aflipping to the opposite state, depending on the activation states of its direct neighbors, and
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243  taking into consideration the weights of the corresponding connections (Figure 3b, see
244  Methods).
245
246  Figure 3: Dynamic network analysis: identification of gene-protein-cell paths. (a) Networks
247  are constructed using all five layers. The nodes are the same as in the networks above (figure 1),
248  but now the edges are defined by the Pearson correlation, where the weights represent the
249  Pearson coefficient, which can be either positive or negative. (b) Boolean dynamics are applied
250  to the networks, where the activation state of the nodes changes based on the total sum of the
251  edge weights of its direct neighbors (considering the signs of the connections). (c) Boolean
252  simulations are run where the various nodes, in the example MSGB non-HLA, are used as the
253  input signal, and the simulation was run with 5% noise (see Methods for noise analysis). (d) The
254  cross-correlation coefficient (Cn) is calculated between the signals for each pair of connected
255  nodes. A path score is calculated for all possible paths, defined as the sum of the inverses of the
256  cross-correlation coefficients between all pairs of consecutive nodes constituting a given path.
257  (e) Finally, a path is identified by using a shortest path algorithm which is based on its path score

258  (see Methods).
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260 We next wanted to study how perturbations in a given input such as the MSGB score
261  (SNPs could not be used for Boolean simulations because the impossibility of changing between
262  alleles), protein or cell type travel through the network and ultimately affect a given phenotype
263  (output). To that end, we performed Boolean simulations in which the input node was
264  periodically driven from an active to an inactive state and back, and the response of all nodes in
265  the network (Figure 3c) was quantified by computing the temporal cross-correlation function
266  between their time-varying state and the dynamic input signal (30). We then identified those
267  paths across the network that are formed by pairs of nodes with the highest temporal cross-
268  correlation between their signals. These paths represent how information flows from a given
269 input to the output (e.g., from MSGB non-HLA to EDSS in the example in Figure 3e). They do
270  not necessarily represent physical interactions among nodes (e.g., protein-protein interactions),
271  but rather groups of nodes that co-vary statistically with each other more strongly than the rest of
272 the network.
273 For each of the 3,350 combinations of inputs and outputs (3 MSGB scores, 25 proteins,
274  and 22 cell types as inputs, and 22 cell types, 25 imaging variables, 20 clinical variables as
275  outputs), we selected the top ten paths with highest joint cross-correlation values between their
276  constituent nodes (see Methods and File S2). Figure 4 shows these paths for the three inputs
277  (MSGB, phosphoproteomics and cytomics) and outputs (imaging and clinical) pairs for MS
278  patients.
279 To assess the specificity of the Boolean simulations, the network was permuted to
280 identify negative control paths. The edges were randomly swapped while preserving the original
281  degree distribution of the network. The simulations were run with these permuted networks (100

282  total), and paths were identified. These paths were compared to those identified in the original
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283  networks. We counted how many times a given path appeared in the permuted networks. Focus
284  was placed on those pathways that were present in less than 1% of the permuted pathways. Out
285  0f 32,302 total paths identified from MS patients, there were 8,488 that appeared 0 times out of
286 100 in the permuted paths. The method for network permutation and path identification is
287  illustrated in Methods, Figure 10, and results are shown as Files S3a and S3b.
288 Additionally, confidence intervals were calculated for each of the paths. The paths were
289  identified from each of the 100 Boolean simulations individually (instead of using the mean of
290  the cross-correlation values as before). These 100 simulations provide a distribution of path
291  scores, giving the variance of the original path score. The path scores along with their confidence
292  intervals are given in File S4.
293
294  Path analysis
295 For the path analysis we use the following notation: NODE 1 > NODE 2 > NODE 3, (In
296  the case there are multiple nodes on the same layer along similar paths they appear as NODE 1 >
297 NODE 2 - NODE 3 > NODE 4, where NODES 2 and 3 could be two proteins for example.) and
298  the information flows from left to right, starting with the perturbation in the gene, protein, or cell
299  respectively. MS cases show that the paths more commonly found from the Boolean simulations
300  (darker color represents more connections) were: (1) MP2K1 > Th17 > mRNFL > ARMSS
301  (when the input is applied to the started in phosphoproteomics layer, Figure 4a); (2) SNP25
302  (SNP10:94479107) > MSGB non-HLA > STAT6 > Th17 > mRNFL> ARMSS (when the input
303 s applied to the genomics layer, Figure 4b); (3) CD56 Neg > INL - mRNFL > EDSS - ARMSS
304  (when the input is applied to the cytomics layer, Figure 4c).

305
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306  Figure 4: Path analysis in MS patients. Representations of the multi-layer paths identified
307  from the Boolean simulations when the input started at the phosphoproteomics (A), genomics
308 (B) or cytomics (C) layer. The top paths (those that passed the test for negative controls) are
309  shown for each input (gene, protein, or cell)-output (clinical phenotype) pair. The nodes for each
310 layer are color-coded to represent the degree of a given node, i.e., the number of times the node
311  appears in a path, as a percentage of the total number of paths. High resolution paths are

312  available at https://keithtopher.github.io/fivelayer pathways/.
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315 Perturbations in the protein layer (representing changes in the signaling cascades among
316  cells) were linked with the severity of MS, this time with both the EDSS and ARMSS along with

317 the HCVA, T25WT and the disease duration (Figure 4a):

318 ° MKO03 > Total T Cells > mRNFL > T25WT

319 ° MP2K1 - STAT6 > Th17 > mRNFL > T25WT - ARMSS

320 ° MP2K1 - STAT6 > Th17 > INL > EDSS Change

321 ° MP2K1 > CD8 Treg > GCIPL > EDSS Change

322 ° LCK - JUN > Th1 non-Classic > NGMV - mRNFL - T2LV

323 ° NGMYV > Years since Relapse - 9HPT Change - HCVA Change

324 mRNFL > T25WT - Years with Disease - SDMT Change

325 T2LV > EDSS - ARMSS - T25WT

326 e SNPI10:75653800 - SNP4:103911781 - SNP1:85729820 > SRC - STAT6 - AKTS1 -
327 NRF2

328 Perturbations of the gene network (the MSGB, reflecting genetic variability contributing

329  to the risk of developing MS) were linked with changes in the clinical outcomes (ARMSS,

330 T25WT, 9HPT, HCVA, LCVA, and the EDSS) (Figure 4b). Concerning the imaging layer, we
331  found paths to the mRNFL (macular retinal nerve fiber layer) and NGMV (normalized gray
332  matter volume). Perturbing the MSGB non-HLA was the source for the most paths at this level:
333 1) MSGB non-HLA > SNP10:94479107 > SNP11:118743286 > KS6B1 - MP2K1; and 2)

334  MSGB non-HLA > SNP10:94479107 > SNP10:31395761 > HSPB1 - STAT6. Then, these two
335  paths were connected to the phenotype as follows:

336 ° HSPBI1 > B Memory > NBV > MSSS - T25WT

337 ° HSPB1- MP2K1 > CD8 Treg - B Memory > GCIPL > ARMSS - EDSS Change
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° STAT6 > Th17 > mRNFL - INL > ARMSS
° STAT6 > Th17 > NGMV Change > Years with Disease
° MP2K1 > Th17 - CD8 Treg > mRNFL - INL > ARMSS - EDSS Change - 9HPT
Change
° KS6B1 - LCK > Total T Cells - Th1 Non Classic > NGMV - T2LV > LCVA Change -

MSSS - Years since Relapse
Perturbations at the cellular level (representing changes of immune cell subtypes
frequency and activation) were connected again with changes in the EDSS as well as with the
HCVA, SDMT, 9HPT, and T25WT (figure 4c). The paths with cells as the sources were:
° CD56 Neg > INL - mRNFL > EDSS - T25WT
° Atypical B Memory - B Memory - Thl Classic > mRNFL - T2LV > EDSS - T25WT

° Total CD8 > NGMV - T2LV > EDSS - 9HPT - SDMT

Paths predicting MS phenotype from single-cell data

In order to assess some of the paths identified in the study at the single-cell level, we
conducted a cytometry analysis to assess levels of total and phosphorylated proteins in immune
cell subtypes at the single-cell level and relate them to the clinical phenotype through linear
regression models and path analysis. We analyzed the levels of the three phosphoproteins for
which phospho-cytometry assays were available and that showed an adequate signal to noise
ratio, namely GSK3AB, HSBP1 and RS6 (assays were not validated for the other proteins). We
also analyzed the immune cell subpopulations most commonly present in such paths (CD4+,
Treg, CD8+, B mature, B memory, Breg and Plasma cells). This approach allowed to assess

experimentally the paths between an individual phosphoprotein in the selected immune cell
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361  subtype. The phosphorylation levels in immune subpopulations were assessed in a representative
362  subgroup of 40 MS patients and 20 HCs from the Sys4MS cohort from which frozen PBMCs
363  were available from the baseline visit (Figure 7).
364 First, we found significant linear regression models for each of the three kinases
365  predicting the phenotype (Figure 5) (see Files S5a, S5b, and S5c¢ for R? and p-values). In the
366 case of GSK3AB, we found significant regression models explaining disease duration, walking
367  speed, retina, and grey matter atrophy. For HSPB1, significant regression models were found for
368  global disability scales such as the EDSS as well as domain specific disability scales (motor,
369  vision, cognition), disease duration and change in grey and white matter volume. Finally, for
370  RS6 the significant regression models also explained changes in global and motor disability
371 (GMSSS and 9HPT) as well as retina and brain atrophy.
372 Figure 5. Linear regression models between phosphoproteins, cell subtypes and
373 clinical phenotype. Linear regression analysis relating the percentage of immune cell subtypes
374  expressing phosphorylated GSK3AB, HSBP1 or RS6 with the phenotype. The heatmap shows
375  the adjusted R? of the significant models. EDSS: Expanded Disability Status Scale; GMSSS:
376  Global Multiple Sclerosis Severity Score; T25WT: timed 25 feet walking test; 9HPT: nine- hole
377  pegtest; LCVA: low contrast (2.5%) visual acuity; HCVA: high contrast visual acuity; RNFL:
378  retinal nerve fibber layer (m: macular; tp: temporal peripapillary); INL: inner nuclear layer;
379  T2LV: T2 lesion volume; ORL: outer retinal layer; NBV: normalized brain volume; NWMV:

380 normalized white matter volume; NGMV: normalized grey matter volume.
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381
382 We then applied the single-cell data to our multilayer network and paths shown in Figure

383 4. The network was made using the significant values from the linear regressions to relate

384  phosphoprotein-cell layer to the phenotype. With each protein (GSK3AB, HSPB1, RS6),

385  wherever there was a significant value between a cell and phenotype, an edge was placed

386  between the protein and cell, and another edge between the cell and the phenotype. For example,
387 there is a significant model between the percentage of B Memory cells expressing GSK3AB and
388  the INL change, so the two edges GSK3AB > B Memory and B Memory > INL Change are

389  added. Edges between the imaging and clinical layers are formed indirectly, where two nodes are

390 connected if they had at least one significant regression model with the same cell type. For
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391  example, since there are significant models between Total Treg and NBV, as well as between
392  Total Treg and EDSS, the edge NBV > EDSS is added. Next, edges between the cellular and
393 clinical layers are removed. Finally, only the edges that are also found in the top paths from the
394  five-layer network shown in Figure 4 are kept. The top paths beginning with GSK3AB, HSPBI1,

395 and RS6 are listed below, and a visualization of the paths is shown in Figure 6.

396 e GSK3AB > Total B Cells - Total T Cells - Total Treg > INL Change > Years with

397 Disease - EDSS Change

398 e GSK3AB > Total B Cells - Total T Cells - Total Treg > NGMYV Change > Years with
399 Disease

400 e GSK3AB > Total T Cells - Total Treg > NWMYV Change > Years with Disease - EDSS -
401 GMSSS - T25WT

402 e GSK3AB > Total B Cells - Total T Cells > tRNFL > Years with Disease - EDSS Change
403 e HSPBI > Total B Cells - Total Treg > INL Change > Years with Disease - EDSS Change
404 e HSPBI > Total B Cells - Total Treg > NGMV Change > Years with Disease

405 e RS6 > Total B Cells - Total T Cells - Total Treg > INL Change > Years with Disease -
406 EDSS Change

407 e RS6 > Total B Cells - Total T Cells - Total Treg > NGMV Change > Years with Disease
408 e RS6 > Total T Cells - Total Treg > NWMYV Change > Years with Disease - EDSS -

409 GMSSS - T25WT

410 e RS6 > Total B Cells - Total T Cells > tRNFL > Years with Disease - EDSS Change

411
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413  Figure 6: Multilayer paths from single cell cytometry assays. Each of the edges was defined
414  using the linear regression analysis of the flow cytometry data. An edge is considered if it was
415  part of a significant regression model and also appeared as part of a path in the original five-layer
416  network constructed from MS patient data (from Figure 4). The edges are weightless, and only
417  show if that particular edge in any of the original paths was present.

418  https://keithtopher.github.io/fivelayer pathways/.

419

420  Discussion

421 Network approaches have been very fruitful in the past at shedding light on the molecular
422  complexity of diseases, beyond the traditional single gene and single pathway perspectives. In
423  the traditional network paradigm, molecular components are connected according to their

424  biological interactions, and the structure and dynamics of such interaction networks can reveal
425  disease modules and nonlinear pathways (32). Recently, these approaches have been extended to
426  include multiple biological layers, such as diverse tissues with distinct protein-protein interaction

427  networks (33), and different biological processes (membrane potential dynamics and signaling)
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428  within insulin-secreting cells (34). Attempts have been made to construct multilayer networks for
429  complex diseases, an approach successfully exploited in cancer research (35-40). In this study
430  we have applied a multilayer network analysis to integrate omics, imaging, and clinical
431  information from patients with a complex autoimmune disease such as MS.
432 Our multilayer network analysis allowed us to assess the relationship between different
433  biological scales in the disease and to identify paths linking the five layers (genomics,
434  proteomics, cytomics, imaging and clinical) based on statistical associations. The most relevant

435  multiscale paths from our study are:

436 1) MP2K1 > Th17 > mRNFL > ARMSS;

437 2) SNP25 > MSGB non-HLA > STAT6 > Th17 > mRNFL> ARMSS;

438 3) CD56 neg > INL - mRNFL > EDSS - T25WT.

439 The interaction of several phosphoproteins-cell paths and the phenotype were validated

440 by flow cytometry studies, which were based on single cell analysis. A multi-layer network

441  analysis is thus able to identify a differential activation of the immune system’s multiple scales
442  in MS patients that drives the phenotype.

443 It is of course possible that there were changes on the protein and genetics level, but they
444  were not acting as mediators between the changes in the cell counts and the phenotype seen in
445  this case. These could be considered sub-level systems that may cause the changes in the higher
446  levels when concerning the phenotype.

447 The results from the multilevel network analysis with the omics data and phenotype data
448  highlight the importance of considering MS as a multiscale disease, where the layers connect
449  with varying strengths and information is filtered or strengthened across the layers (34, 39).

450  Previous studies attempted to directly link the genomic layer with the phenotypes in many
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451  complex diseases, including MS. However, genotypes or the polygenic risk scores alone have a
452  limited ability to predict either the cell variability or the phenotype (31, 41). Other genetic
453 information such as DNA sequencing, epigenetics and RNA expression, or more global
454  approaches is likely needed for a more thorough analysis in multiscale complex diseases.
455 The kinases studied are part of pathways previously described as associated with MS
456  (reviewed in (9)). MP2K1 was the kinase showing the strongest association with the presence of
457  MS in our previous study (25) and is a master regulator of the immune response. We and others
458  have previously described increased GSK3AB expression or phosphorylation levels in patients
459  with MS (25, 42, 43). GSK3 plays key roles in Thl cell activation as well as in microglia
460 modulation, in addition to its effects on neuronal survival and functioning (42). HSBP1 (also
461  known as HSP27) is a stress protein that in addition to its chaperone activity, is critical for
462  apoptosis signaling pathways within the mitochondria, inhibiting the Apaf complex (44). Indeed,
463  HSBPI1 has been found to be increased during MS relapses (45). RS6 is a MAPKinase that is
464  modulated by extracellular signal-regulated kinase (ERK) and activates serum glucocorticoid
465  kinase 3 (SGK3), nuclear factor kappa-light-chain-enhancer of activated B cells (NfKB),
466  mammalian target of rapamycin (mTOR) and other pathways modulating cell growth and
467  differentiation. Inhibition of ERK and RS6 in models of MS reduces proliferative response,
468  phagocytic properties, and synthesis of proinflammatory mediators induced by the addition of
469  inflammatory stimuli to microglia (46). Regarding the immune cell subtypes highlighted in our
470  analysis, our previous analyses of the Sys4MS dataset support the results of the current network
471  analysis that confirms the prominent role of B cells in MS (24). Such results agree with our
472  previous analysis of phosphoproteins and immune cell subtypes in another dataset of MS patients

473  showing the preferential involvement of B cells (25). Many pieces of evidence have confirmed a
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474  remarkable role for B cells in MS (47), probably driven by the latent infection of the Epstein-
475  Barr virus that produces immune response dysregulation or molecular mimicry with CNS
476  proteins like Glial CAM (16, 48). In addition, CDS cells are the most abundant cell type in the
477  brain infiltrates (11). Finally, a recent study in twins discordant for MS is also providing new
478  endorsement of the role of helper CD4 cells (12).
479 The data provided by the Sys4MS cohort was rich in the wide range of scales it covered.
480 However, several limitations were encountered with both the data and analysis. Although the
481  sample size of the cohort was enough to identify significant correlations, the sample sizes were
482  smaller for some specific omics (proteomics and cytomics), although bigger than n-of-1 studies
483  commonly used for deep phenotyping (39). The limited sample size may have affected both the
484  networks constructed as well as the statistical tests conducted with the paths or for the analysis
485  stratifying by each of the therapies. Furthermore, the omics dataset collected were cross-
486  sectional, whereas the imaging and clinical data were longitudinal. Longitudinal data from all
487  five layers and deep phenotyping would greatly benefit future studies. Another concern is the
488  validation of the paths because deep phenotyped MS cohorts are not available. A wealth of MS
489  patient data from other studies is available with genomics, imaging, and clinical phenotype
490  (through the IMSGC and MultipleMS consortia). However, proteomics, cytomics or other types
491  of omics data is usually lacking, which limits conducting validation in independent datasets.
492  Further limitations relate to the omics experiments themselves. Both the protein and cell analyses
493  were conducted using PBMCs, rather than in immune cells from the central nervous system.
494  Also, the protein analysis was not performed at the single cell level but in bulk PBMCs in the
495  overall cohort. Therefore, single-cell dynamics were not captured in the first experiment.

496  However, flow cytometry analysis performed for the validation study provided single-cell
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information which supports the validity of the findings. Additionally, limitations were also
partially balanced by using a hypothesis-driven design that included kinases and cells previously
described as differentially activated in MS.

In summary, this study examined the functional connections among various scales of
biological data of a complex disease with a complex genetic basis, namely MS. Our multilayer
networks support that information flow across scales. This highlights the importance of the
molecular and cellular scales when considering explaining the phenotypes of complex diseases.
Indeed, these paths could be the target of a future treatment of personalized medicine in MS.
This could also be transferable to other autoimmune disorders, commonly sharing disease

underlying mechanisms.

Methods
Ethical Statement

The Sys4MS project was approved by the Institutional Review Boards at each participating
institution: Hospital Clinic of the University of Barcelona, IRCCS Ospedale Policlinico San
Martino IRCCS, Oslo University Hospital, and Charité - Universitdtsmedizin Berlin University.
The Barcelona MS cohort study was approved by The Ethic Committee of Clinical Research,
Hospital Clinic Barcelona. Patients were invited to participate by their neurologists, and they
provided signed informed consent prior to their enrollment in the study. De-identified data were

collected in a REDCap database at the Barcelona center.

Patients

Sys4MS cohort
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We recruited a cohort of 328 consecutive MS patients according to 2010 McDonald criteria

(49) and 90 healthy controls (HC) at the four academic centers: Hospital Clinic, University of
Barcelona, Spain (n=93); Ospedale Policlinico San Martino, Genova, Italy (n=110); Charité -
Universititsmedizin Berlin, Germany (n=94); and the Department of Neurology, Oslo University
Hospital, Norway (n=121) as described before (24). We collected clinical information
(demographics, relapses, disability scales, and use of disease-modifying drugs), and imaging data
(brain MRI and OCT), and obtained blood samples at the same visit. Patients were required to be
stable in their DMD use over the preceding six months. Patients were followed for two years, and
the same clinical, disability scales, and imaging data (brain MRI and OCT) were collected at the

2-year follow-up visit.

Clinical Variables

Each patient was assessed on the following disability scales at baseline and follow-up:
the Expanded Disability Status Scale (EDSS); timed 25 feet walking test (T25WT), nine-hole
peg test (9HPT), the Symbol Digit Modality Test (SDMT), 2.5% low contrast visual acuity
(SL25), and high contrast vision (HCVA, using EDTRS charts and a logMar transformation). We
calculated the MS Severity Score (MSSS) and the age-related MS Severity Score (ARMSS).

The ARMSS was used for dividing the cohort based on disease severity using the tertile
distribution (first tertile were mild MS, the second tertile was excluded and the third tertile were
defined as severe MS). Change in the disability scales and 2-year follow-up visit was calculated
as the difference (delta) between the two visits. EDSS changes were confirmed in a clinical visit
6 months before the study follow-up visit. At each visit, we collected the information regarding

the patients” DMD use, including low-efficacy therapy: interferon-beta, glatiramer acetate, and
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543 teriflunomide; or mid to high-efficacy therapy: fingolimod, dimethyl-fumarate, natalizumab, or
544  other monoclonal antibodies (alemtuzumab, rituximab, daclizumab, and ocrelizumab).
545
546  Imaging
547 MRI studies were performed on a 3-Tesla scanner at each center using a standard operating
548  procedure (SOP) to optimize the volumetric analysis. We used the 3-dimensional (3D) isotropic
549  Tl1-weighted magnetization-prepared rapid gradient echo (TI-MPRAGE) (resolution: 1 x 1 x 1
550 mm?®), and 3D T2-fluid-attenuated inversion recovery (T2-FLAIR) images with the same
551  resolution to quantify changes in brain volume. Presence of contrast-enhancing lesions, T2 lesion
552  volume, new or enlarging T2 lesions, and volumetric analysis were done at the Berlin center as
553  previously described (50, 51).
554 Retinal OCT scans were performed using the Spectralis device in three centers and the
555  Nidek device at Oslo center. A single grader at the reading center in Berlin performed intra-retinal
556  layer segmentation using Orion software (Voxeleron Inc, Berkeley, US) to quantify the macular
557  ganglion cell plus inner plexiform layer (GCIPL) and the macular inner nuclear layer thicknesses
558  (um) in the 6 mm ring area as previously described (52).
559
560  Brain Magnetic Resonance Imaging
561 All images were acquired from 4 centers with distinct 3-tesla systems after standardizing
562  the acquisition protocols and validating dummy scans by the MRI reading center in Berlin. From
563 Center 1 (Barcelona), a three-dimensional (3D) magnetization prepared rapid gradient echo
564 (MPRAGE) sequence, including the upper cervical cord (0.86 x 0.86 x 0.86 mm resolution,

565  repetition time (TR)=1970 ms, echo time (TE)=2.41 ms), an axial T1-weighted post-gadolinium
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566  contrast agent sequence (0.31 x 0.31 x 3 mm resolution, TR=390 ms, TE=2.65 ms), and a 3D fluid-
567  attenuated inversion recovery (FLAIR) sequence, including the upper cervical cord (1 x 1 x 1 mm
568  resolution, TR=5000 ms, TE=393 ms) were acquired longitudinally (2 visits) from 60 MS patients
569  using a Tim Trio MRI (Siemens Medical Systems, Erlangen, Germany). From Center 2 (Oslo), a
570 3D sagittal brain volume (BRAVO) sequence for pre- and post-gadolinium contrast agent
571  administration, including the upper cervical cord (1 x 1 x 1 mm resolution, TR=8.16 ms, TE=3.18
572 ms), and a 3D FLAIR sequence, including the upper cervical cord (1 x 1 x 1.2 mm resolution,
573  TR=8000 ms, TE=127.254 ms) were acquired longitudinally (2 visits) from 97 MS patients using
574  aDiscovery MR750 MRI (GE Medical Systems,). From Center 3 (Berlin), a 3D sagittal MPRAGE
575  sequence, including the upper cervical cord (1 x 1 x 1 mm resolution, TR=1900 ms, TE=3.03 ms),
576 and a 3D FLAIR sequence, including the upper cervical cord (1 x 1 x 1 mm resolution, TR=6000
577 ms, TE=388 ms) were acquired longitudinally (2 visits) from 87 MS patients using a Tim Trio
578 MRI (Siemens Medical Systems, Erlangen, Germany). From Center 4 (Genova), a sagittal fast-
579  spoiled gradient-echo (FSPGR) sequence, including the upper cervical cord (1 x 1 x 1 mm
580  resolution, TR=7.312 ms, TE=2.996 ms), a 3D turbo field echo (TFE) sequence for post-
581 gadolinium contrast agent administration (1 x 1 x 1 mm resolution, TR=8.67 ms, TE=3.997 ms),
582  and a 3D FLAIR sequence, including the upper cervical cord (1 x 1 x 1 mm resolution, TR=6000
583 ms, TE=122.162 ms) were acquired longitudinally (2 visits) from 88 MS patients using a Signa
584  HDxt MRI (GE Medical Systems) and Ingenia MRI (Philips Medical Systems).
585
586  MRI Post-processing
587  Analysis for all scans were conducted at the MRI reading center in Berlin. Preprocessing included

588  registration to MNI-152 standard space (fslreorient2std), white and grey matter brain masking
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589  (Computational Anatomy Toolbox 12 Toolbox for MATLAB SPMI2, http://www.neuro.uni-

590  jena.de/cat/), N4-bias field correction (Advanced Normalization Tools,

591  http://stnava.github.io/ANTSs/) and linear, rigid body registration of T2-weighted (FLAIR) images

592 to Tl-weighted (MPRAGE, BRAVO, and FSPGR) images (FSL FLIRT,

593  https:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/UserGuide). Each second session for each patient T1-

594  weighted image and FLAIR image was co-registered to the individual first session using the
595 transformation matrices saved from the first session transformation from native space images to
596  MNI-152 standard space using FSL FLIRT. Post-contrast agent T1-weighted images were also co-
597  registered to MNI-152 standard space and longitudinally when available.

598

599  Brain Lesion Segmentation

600 T2-hyperintense lesion segmentation was performed manually on co-registered T1-
601  weighted images and T2-weighted FLAIR images by two experienced MRI technicians from the
602 Berlin center. Lesions were segmented and saved as binary masks using ITK-SNAP
603  (www.itksnap.org). First session lesion masks were subsequently overlayed onto second session
604  co-registered T1-weighted and FLAIR images for editing, to include any T2-hyperintense lesion
605 changes (i.e., new lesions, enlarging lesions, or decreasing lesions) in the follow-up scans. Any
606  discrepancies in co-registrations that were visible between sessions were corrected manually using
607  the ITK-SNAP automated registration tool prior to follow-up lesion mask edits. Binary gadolinium
608  enhancing lesion masks were created manually using the same tools on the post-gadolinium T1-
609  weighted MR images by the same two technicians. Lesion counts and volumes were extracted

610  from lesion masks using FSL maths (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Cluster).

611
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612  MRI Analysis
613 T2-hyperintense lesion masks were used to fill longitudinally co-registered T1-weighted
614  (not post-gadolinium scans) images using FSL lesion filling

615  (https:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/lesion_filling) with white matter masks created from the

616  Computational Anatomy Toolbox for SPM12 (CATI12, http://www.neuro.uni-jena.de/cat/). Lesion

617  filled T1-weighted images were then used for whole brain white and grey matter volume
618  extraction, including the follow-up session percent brain volume change (PBVC) using FSL
619  SIENAX/SIENA (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SIENA). The same T1-weighted lesion-
620 filled images were used for whole thalamus volume (sum of left and right thalamic volumes)
621  calculation using FSL FIRST (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST). All volumes are
622  reported in milliliters.

623

624  Optical Coherence Tomography

625 Retinal OCT scans were performed using the Spectralis device in three centers and the
626  Nidek device at Oslo center. OCTs were collected in eye-tracking mode by trained technicians
627 under standard ambient light conditions (lighting level of 80-100 foot-candles) and without
628  pupillary dilatation. Correction for spherical refractive errors was adjusted prior to each
629 measurement, and the technicians performing OCT scans were aware of the patient’s clinical
630  history. The peripapillary Retinal Nerve Fiber Layer thickness (pRNFL, pm) was measured with
631 a 12-degree diameter ring scan automatically centered on the optic nerve head (100 ART, 1,536
632  A-scans per B scan). The macular scan protocol involved a 20 x 20-degree horizontal raster scan
633  centered on the fovea, including 25 B scans (ART >9, 512 A-scans per B scan). A single grader at

634  the reading center in Berlin performed intra-retinal layer segmentation using Orion software
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635 (Voxeleron Inc, Berkeley, US) to quantify the macular ganglion cell plus inner plexiform layer
636  (GCIPL) and the macular inner nuclear layer thicknesses (um) in the 6 mm ring area as previously
637  described (52). All OCT scans fulfilled OSCAR-IB criteria and scans with an insufficient signal
638  to noise ratio, or when the retinal thickness algorithm failed were repeated, or the data was
639  ultimately excluded.
640
641  Flow cytometry
642  The original cytometry data was obtained on fresh peripheral blood mononuclear cells (PBMCs)
643  using 17 antibodies that covered 22 cell subpopulations of T, B and NK cells as described in detail
644  elsewhere (24). The following cell populations were studied: T cells: CD3+, CD3+CD4+,
645 CD3+CD8+; B cells: CD19+; and NK cells: CD3-CD14-CD56+, as well as the specific
646  subpopulations: Effector cells: Thl classic: CD3+CD4+CxCR3+CCR6-CD161-; Thl7:
647  CD3+CD4+CxCR3+CCR6-CD161+CCR4+; Th1/17: CD3+CD4+CCR6-
648 CD161+CxCR3highCCR4low; Regulatory T cells: CD3+CD4+: Treg CD25+CD127-, T naive
649 CD45RA+CD25low; CD3+CD8+: T reg CD28- and T naive CD28-CD45RA+; B cells: B
650 memory: CD19+CD14-CD24+CD38-; B mature: CD19+CD14-CD24+CD38low; B regulatory:
651 CD19+CD24highCD38high and NK cells: Effector: CD3-CD14-CD56dim: Regulatory: CD3-
652 CDCDS56bright (reg). For validation assays, PBMC in triplicate tubes were stained with BV510-
653  conjugated anti-CD3 (Clone OKT3, Catalog # 317332, BioLegend) ), APC Cy7-conjugated anti-
654 CD4 (Clone SK3, catalog #344616, BioLegend), BV421-conjugated anti-CD25 (Clone BC96,
655 catalog # 302630, BioLegend), AF700-conjugated anti-CD127 (Clone A019DS5, catalog # 351344,
656 BioLegend), PE Cy7-conjugated anti-CD19 (Clone HIB19, catalog # 302215, BioLegend), PE-

657  conjugated anti-CD24 (Clone ML5, catalog # 311105, BioLegend) and PE/Dazzle594-conjugated
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658 anti-CD38 (Clone HB-7, catalog # 356630, BioLegend) antibodies in solution for 30 min at 4° C
659  and washed twice with PBS. The cells were then fixed and permeabilized with Cytofix/Citoperm
660 (BD Bioscience), according to the manufacturer’s instructions. For intra-cellular staining, the cells
661  were blocked with 5% normal goat serum for 20 min on ice to prevent non-specific binding of the
662  antibodies, and stained for total and relevant phosphoproteins with the following antibodies in one
663  of the three tubes: Tube 1: mouse monoclonal anti-human RPS6 (Clone 522731, catalog #
664 MAB5436, R&D Systems) and rabbit polyclonal anti-human Phospho-RPS6 (Catalog # AF3918,
665 R&D Systems); Tube 2: rat monoclonal anti-human GSK-3B(Clone 272536, catalog # MAB2506,
666 R&D Systems) and rabbit polyclonal anti-human Phospho-GSK-3BCatalog # AF1590, R&D
667  Systems); and Tube 3: mouse monoclonal anti-human HSP27 (Clone G31, catalog # 2402; Cell
668  Signaling Technology) and rabbit polyclonal anti-human Phospho-HSP27 (Catalog #AF2314,
669 R&D Systems) antibodies. All primary antibodies were used at a concentration of 5 [Jg per 1 x
670 106 cells. The cells were then washed twice and incubated on ice for 15-20 min with the
671  appropriate fluorescent-conjugated secondary antibodies, Alexa Fluor 488-conjugated goat anti-
672  rabbit IgG (Catalog # A-11070, Invitrogen; 1:100 dilution), APC-conjugated goat anti-mouse IgG
673  (Catalog # 405308, BioLegend; 1:100 dilution), or APC-conjugated goat anti-rat IgG (Catalog #
674 405407, BioLegend; 1:100 dilution), in 5% normal goat serum. The cells were then washed twice,
675 resuspended in assay buffer, and analyzed on a Beckman Coulter Navios flow cytometer. Analysis
676  was performed using Kaluza software. Phosphorylation levels were defined in terms of mean
677  fluorescence intensity (MFI) of phosphorylated protein over MFI of total protein. A representative
678  cytometry plot for each of the three phosphoproteins is shown in Figure 7. Gating strategy and
679  representative cytometry plots for showing the cell sorting and signal intensity for phospho-

680  GSK3Ab, phospho-HSBP1 and phospho-SR6 assays.
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681

682  Figure 7. Cytometry plots for the expression of phosphoGSK3AB, phosphoHSBP1 and
683  phosphor RS6 in immune cell subpopulations. The gating strategy for phospho-flow

684  cytometry analysis. Examples of phospho-GSK3AB, phospho-HSBP1, and phospho-RS6

685  staining in the immune cell subpopulations for MS patients are presented.

686
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688
689  Genotyping
690 Genotyping of the samples was performed by FIMM Genomics (University of Helsinki,

691  Finland) on the Illumina HumanOmniExpress-24 v1.2 array (713,599 genotypes from 396

692  samples). SNPs imputation was conducted against the 1000-genomes reference (quality of

693  imputation 12 > 0.5; 6,817,000 genotypes for 396 samples), which allowed to extract MS-

694  associated SNPs (152 out of 200 known MS-associated SNPs available and 17 out of 31 known
695  MS-associated HLA alleles available (HLA*IMP program)) as described elsewhere (53). The
696  MS Genetic Burden Score (MSGB) for the HLA and non-HLA alleles and their combination was
697  calculated as described previously (26). Briefly, the MSGB is computed based on a weighted
698  scoring algorithm using one SNP per MS associated genomic region as found by trend-test

699  association (meta-) analysis. This statistic is an extension of the log additive model, termed

700  “Clinical Genetic Score”, with weights given to each SNP based on its effect size as reported in
701 the literature. The MSGB is obtained by summing the number of independently associated MS
702 risk alleles weighted by their beta coefficients, obtained from a large GWAS meta- analysis, at
703 177 (of 200) non-MHC (major histocompatibility complex) loci and 18 (of 32) MHC variants,
704  which includes the HLA-DRB1*15:01-tagging single-nucleotide polymorphism (SNP)

705  rs3135388.

706

707  Expanded genetic network including regulatory network information

708 The SNPs were mapped with their nearest gene by the IMSVISUAL consortium (59), and
709  anetwork was constructed using data from the Gene Regulatory Network Database (GRNdb)

710 (60, 61). The database provides networks of transcription factors (TFs) from various cell types in


https://doi.org/10.1101/2023.02.26.530153
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.26.530153; this version posted February 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

42
711 the human body. The gene regulatory network (GRN) within PBMCs was used containing
712 12,878 genes, of which we only considered the subset of genes that were mapped to the SNPs
713  from our study. Taking a subset in this way causes some of the regulatory information to be lost,
714  such as two genes that are regulated by the same TF. There is still a relationship between two
715 such genes, although indirect. To include this information in the network of MS genes, an edge
716 was added between two genes that share a transcription factor.
717 Once the GRN of MS genes was obtained, each gene was then replaced with its
718  corresponding SNP. This is not a one-to-one mapping, as there are some SNPs that are mapped
719 13 to the same gene. In this case, edges are placed among all SNPs that share a gene. This allows
720  the GRN to be compared with the other layers in the combined network. Finally, only edges that
721 appear in the original network of SNPs connected with Pearson correlation are kept, and their
722 weights are used in the GRN. Details of these networks can be found in

723  https://keithtopher.github.io/networks/#/.

724

725  XMAP Phosphoproteomics

726 Phosphoprotein levels were quantified using xMAP assays performed blindly at
727  ProtAtOnce (Athens, Greece) as described previously (25, 27). We analyzed a set of kinases
728  associated with MS (9) which provides an adequate signal to noise ratio and test-retest
729  reproducibility: AKT1, AKTS1, CREB1, GSK3AB, HSPB1, IKBA, JUN, KS6B1, LCK, MK12,
730 MKO03/01, MK09, MP2K1, NRF2, P53, PGFRB, PTN11, RS6, SRC, STATI1, STAT3, STATS,
731 STAT6, TF65, WNKI. Phosphoprotein data was normalized after the measurements were taken
732  as described elsewhere (27).

733


https://doi.org/10.1101/2023.02.26.530153
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.26.530153; this version posted February 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

43
734 Data Processing
735 The omics and clinical datasets were ultimately used to build the multilayer network, where
736  each dataset represents a layer in the network. The data were examined to handle missing values,
737  identify which patients have data from which layers, as well as divided into groups based on
738  gender, disease severity, medication, etc. No imputation was used in this study. Patients were
739  divided into mild and severe groups according to the tertiles of their age-related multiple sclerosis
740  severity (ARMSS) score. Patients in the lower 40th percentile were classified as mild, and those
741 in the upper 40th percentile classified as severe. The 2-year follow-up data from the clinical and
742 imaging layers were used to calculate the change from baseline, and these changes were added as
743  new variables.
744
745  Multilayer network construction
746 Individual networks were constructed from the five layers by computing mutual
747  information between nodes within each layer, due to the inherent nonlinear nature of biological
748  processes. First, the networks within an individual layer were constructed, and then the networks
749  across layers (see Figure 2 for details on degree distribution for each layer). This step was done
750  separately for two reasons: first to highlight the inherent differences (including biological scale)
751  among the various layers, and second to utilize the maximum number of subjects available for
752  each dataset. This is because not all subjects have data for both cytomics and proteomics.
753 Once individual layer networks were constructed, the features between layers were
754  connected together, again with mutual information. Not all layers are interconnected, however,
755  due to a predetermined hierarchy applied to the system (see Figure 1g). Ultimately, this

756  produced a network of five connected layers, where each layer contains features from each of the
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757  five original datasets. A pipeline for the construction of the networks is shown in Figure 1. A
758  second type of network was constructed using all five datasets, this time using linear correlation
759  to define the edges, and such network was later used in the path analysis.
760
761 Calculation of correlation for edges
762 The method to calculate the edge weights in our networks was adopted from the
763  ARACNE method (62) and simplified. The networks were constructed using mutual information,
764  using the traditional binning method to calculate the mutual information pairwise between all the
765  elements within individual layers and later between layers (63-65). The data for a given element
766  are split into 10 equally spaced bins, and the probability of falling within a certain bin is
767  calculated for each element individually as well as the joint probability for a two-point
768  coordinate falling within a certain two-dimensional 1/10 by 1/10 size bin. The formula for the

769  mutual information between two variables X and Y is

770 I(X,Y) = zijp(i,j)log%, (1)

771 where px(i) and py(j) are the marginal probabilities for variables X and Y, respectively, and p(i,j)
772  1is the joint probability between X and Y. The python package scikit-learn (66) was used for the
773  mutual information calculation.

774 Once the mutual information value is calculated, a threshold is needed to determine if
775  there is indeed a correlation between the two elements. Random permutations over subjects are
776  performed separately for both variables, and the mutual information is calculated over the

777  permuted data. This process is repeated 1000 times, and a distribution is obtained of random

778  mutual information values (surrogates). The mutual information value obtained from the original

779  data is compared to the distribution of random values to determine if it is significantly higher
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780 than the distribution. The distribution is treated as Gaussian, and the original mutual information
781  value is considered significant if it passes a z-test with p-value lower than p=0.05. Edges are
782  placed between all significant pairs. Weights are assigned using the normalized value of mutual
783  information, which falls between 0 (no correlation) and 1 (perfect correlation).
784 The combined network (later used for the path analysis) was constructed using Pearson
785  correlation. The Pearson correlation coefficient was calculated pairwise between each of the
786  elements included in the two datasets, using the python package scipy (67). An edge was defined
787  if the p-value associated with the correlation was lower than p=0.05. Next, the value of the
788  Pearson correlation itself was used as the weight of the edge, giving a weight that falls between -
789 1 (perfect negative correlation) and 1 (perfect positive correlation).
790
791 Path identification via Boolean modeling
792 The method of path identification was inspired by Domedel et al (30). The combined
793  five-layer network was constructed using Pearson correlation, and information flow across it was
794  analyzed using Boolean simulations. This is done to examine how perturbing the network affects
795  nodes within the various layers, especially those representing the phenotype. The genomics
796  network in this case was modified further, utilizing information about regulatory interactions
797  from the Gene Regulatory Network Database (28), between the genes that are mapped to the
798  SNPs (described further above). The exact chemical reactions between proteins and cells are
799  ignored, giving a qualitative description of the system (29). The goal of this step is to identify
800 differences in paths responsible for triggering immune responses in healthy subjects compared to

801  MS patients.
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802 For simplicity, each element in the network (from one of the five layers) is considered to
803  be in one of two states: active/inactive. For example, this represents high/low levels of
804  phosphorylation for proteins. The Boolean simulation begins in a random state where each
805  element has a 50% probability of starting as active or inactive. At each step, the elements’
806 activation states are updated based on the sum of the states of their neighbors. The nature of the
807  connections between elements is key, as they have either activating (positive) or inhibitory
808 (negative) relationships. For a given node, each neighbor contributes a score based on the weight
809  and the sign of the connection of the corresponding Pearson correlation. The total sum of the
810  weights of the neighbors determines whether the node will be active or inactive on the next
811 iteration.
812 As an example, consider the protein GSK3AB (inactive) with neighbors HSPBI1 (active)
813 and IKBA (active), as seen in Figure 8. Let’s say there is a positive connection between
814  GSK3AB and HSPBI with a weight of 0.8, and a negative connection between GSK3AB and
815 IKBA with a weight of 0.5. Since HSPB1 is active and has a positive relationship with
816  GSK3AB, it contributes a score of +0.8 to change GSK3AB to the active state. Since IKBA is
817  active and has a negative relationship with GSK3AB, it contributes a score of -0.5 to GSK3AB
818 inactive. Overall, we have a score of +0.3, so GSK3AB becomes active.
819
820  Figure 8. Depiction of summing weights to determine next activation state in Boolean
821  simulations. A green border represents an active node, and a grey border represents an inactive

822 one.
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Each step of the simulation was run in this manner and continued for 100 steps. One of
the MSGB scores, proteins or cells was chosen as the input, where it was manually flipped
between active and inactive states with a defined period (in this case 10 iterations active, then 10
iterations inactive). This was done to examine how perturbations in the input node travel through
the network and ultimately affect a given phenotype (output). The perturbations themselves
represent changes between low to high values in the distribution for a given MSGB scores,
protein, or cell. For the MSGB non-HLA score, the perturbations flip the value between high and
low genetic risk. For a protein such as GSK3AB, the values flip between low and high
phosphorylation. Finally for a cell such as B Memory, the values alternate between high and low
cell counts.

Noise was also added to the system, where each element has a set probability of changing
its state at each iteration. The effect of noise can is illustrated in Figure 9. This addition of noise
reflects the inherent stochasticity in biological systems as well as prevents the simulations from
simply settling directly into a fixed state. The noise was chosen to be 5% because this allows
greater differences for the cross-correlation of the signals between nodes as shown in Figure 9.

With no noise at all, many of the nodes remain either active or inactive for the majority of the
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simulation. This causes the cross-correlations to be too high between nodes, and the subtle

differences in the strength of the connections is not seen.

Figure 9: Effect of noise in Boolean simulations on the cross-correlation coefficient of the

signals between nodes in the combined network. With 0% noise, a majority of the cross-

correlation values are nearly 1, which does not allow the node pairs to be easily ranked based on

the strength of their connections. With 5% noise, there is more deviation in the cross-correlation
g

values, which allows the paths between a chosen source and target to be more easily identified.
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Rank of Cross-Correlation

Once the simulations were run, the temporal cross-correlation function was calculated
between all pairs of nodes. The cross-correlation is a measure of similarity classically used in
signal processing and is the same used in (30). The maximum cross-correlation (which could
occur at a non-zero lag time) was determined, and its inverse is placed as a weight on the edges
of the existing network, in such a way that a high correlation would correspond in this case to a
low weight. In case there was no edge in the original network, no edge is defined in the new
network either. A cell type or phenotype is selected as a target (output), and the most efficient
paths are identified between it and the fixed source (input). An "efficient" path is defined as one
in which the total sum of the weights (inverse maximum cross-correlations) of the edges

connecting the source and target (called a path score) is lower than the rest. This definition
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861  favors both low number of steps and high cross-correlations between nodes within a path. A
862  shortest path algorithm developed by (65) was used, which gives precedence to the lowest path
863  scores.
864 Simulations were conducted between every possible pair of inputs (MSGB, proteins, or
865 cells) and outputs (cells or phenotypes). Overall, the simulations aim to reveal how information
866  flows through the entire networks, providing insight on underlying pathology in MS. This
867  provides useful biological information, as differences in paths can be accessed between various
868  subsets of patients (mild, severe, progressive MS, relapse-remitting MS, untreated, low-efficacy,
869  and high-efficacy treatments). The algorithm for performing the Boolean simulations and the
870  path identification is represented schematically in Figure 2.
871 In order to test the consistency of the results, we ran 100 simulations for each source,
872  then these 100 simulations were used to calculate the cross-correlation between proteins/cells to
873 identify the paths. We applied a jackknife resampling 10 times, first taking 90 random samples,
874  then 80 random samples. In both cases, 9 out of 10 paths on average were identical over all
875  protein sources and cell targets. Also, as stated in the main text, negative controls were
876  considered by permuting the network before running the Boolean simulations. An illustration of
877  the process for permuting the networks and identifying their corresponding paths is shown in

878
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881  Figure 10: Network permutation for negative controls of paths. The five-layer network built
882  using Pearson correlation is used as the base network. For each of the 100 repetitions, the

883  network was permuted by swapping the edges between pairs of nodes. In permutation 1, the edge
884  between B and C was swapped with the edge between D and E. In the permutation 2, the edge
885  Dbetween A and E was swapped with the edge between B and C. In permutation 3, first the edge
886  swap from the top network was applied, followed by the edge swap from the middle network. In
887  each case, the edge swap can only be done if it does not result in two edges between the same
888  pair of nodes. Making the permutation in this way keeps the original degree distribution of the
889  network. The weights for each of the edges are permuted as well. This edge swapping technique

890 s applied 10 times for each edge in the original network. After they are permuted, the top paths
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for each network are identified in the same manner as before. There are three possibilities for
considering whether the paths from the original network appear in the paths from the permuted
networks. In permutation 1, the path exists in the permuted network and furthermore was
identified as a top path. In permutation 2, the original path does exist in the permuted network
but was not identified as a top path. In permutation 3, the original path doesn’t exist in the

permuted network at all.

Combinatorial analysis

All possible combinations of source sources (MSGB scores, proteins, cells) and targets
(cells, imaging and clinical phenotype) were used to identify top paths. The simulations were run
with each protein as a source, where it remained active for 10 steps, then inactive for 10 steps.
After the simulations were run for each source, and the cross-correlation values were calculated,
each cell type was selected to be the endpoint for the path finding algorithm. This was performed
as a screening process to create an ensemble of paths for each source/target pair. Their

significance in the phenotype was assessed next.

Statistical analysis

The study was designed with a 1:4 ratio controls vs MS patients are based in the
following reasoning: 1) the goal was the prediction of the phenotype and for such analysis only
MS cases will be used; 2) controls were only used for the logistic regression comparing the
diagnosis; 3) MS is heterogenous and for this reason it was expected to perform comparisons

between subgroups based on disease subtype and therapy, requiring a bigger sample size for the
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MS group. For this reason, we designed a 4:1 ratio. Controls were collected in equal proportion
from all participant centers in order to avoid center bias.
Descriptive statistics, normal distribution assessment, and class comparison analysis was
performed for the five layers. The Mann-Whitney test was used due to non-normal distributions
being present in both datasets. Mutual information was used in constructing the topological

networks for all five layers.

Network statistics

Network metrics were calculated from the networks constructed using mutual
information. including average degree and density. The clinical and imaging datasets lack
information from healthy controls, so networks were not constructed in these cases. The average
degree is given for each individual layer for healthy controls and MS patients, including those
who are not treated with fingolimod (Table 2). Considering the omics datasets, all three of
cytomics, proteomics, and genomics saw a significant increase in degree from the healthy
network to all patient network at the 5% significance level. When comparing groups of patients
treated with any medication versus groups excluding the patients treated with Fingolimod (a
high-efficacy treatment with notable effects on cell counts in the immune system?, the cytomics
networks saw decreases in degree in every case, and the genomics saw decreases for all patient

and mild patient networks.

Table 2. Average degree of individual networks constructed using mutual information to
define edges. These degrees do not consider the connections among layers. The superscripts

(a,b) represent cases where there was a significant change when comparing degree distributions.
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936  The Mann-Whitney test was used for all pairings, due to the non-normality of the degree
937  distributions.
938  “ Significant increase (p-val < 0.05) in degree between healthy controls and all patients.
939  ’ Significant decrease (p-val < 0.05) in degree between all patients in a given subset (all, mild,
940  or severe) and those not treated with Fingolimod.
941
942
943
944
Average Degree
Healthy All Patients Mild Mild Severe Severe
Patients w/o Fingo | Patients w/o Fingo | Patients w/o Fingo

Clinical - 11.2 11.4 8.0 8.1 7.8 7.2
Imaging - 6.3 6.3 4.6 4.6 3.5 34
Cytomics | 2.5° 8.8 6.0 5.8 3.8 5.7 3.6°
Proteomics | 5.0° 8.0 7.5 3.9 2.9 5.5 5.8
Genomics | 12.2? 13.3 12.6° 12.2 13.0° 12.4 12.3
945
946  Data availability
947  Anonymized raw data of the Sys4MS cohort is available at MultipleMS database
948 (www.multiplems.eu) upon reasonable request and a web interface of the networks
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949  (https://keithtopher.github.io/single networks/#/ and

950  https://keithtopher.github.io/combo_networks/#/) and paths

951  (https://keithtopher.github.io/fiverlayer pathways/)

952  are available at Github.
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