

Multiscale networks in multiple sclerosis

Keith E. Kennedy¹, Nicole Kerlero de Rosbo^{2,3}, Antonio Uccelli², Maria Cellerino², Federico Ivaldi², Paola Contini², Raffaele De Palma², Hanne F. Harbo^{4,5}, Tone Berge^{5,6}, Steffan D. Bos^{4,5}, Einar A. Høgestøl^{4,5}, Synne Brune-Ingebretse^{4,5}, Sigrid A. de Rodez Benavent⁴, Friedemann Paul⁷, Alexander U. Brandt^{7,8}, Priscilla Bäcker-Koduah⁷, Janina Behrens⁷, Joseph Kuchling⁷, Susana E Asseyer⁷, Michael Scheel⁷, Claudia Chien⁷, Hanna Zimmermann⁷, Seyedamirhosein Motamedi⁷, Josef Kauer-Bonin⁷, Julio Saez-Rodriguez⁹, Melanie Rinas⁹, Leonidas G Alexopoulos^{10,11}, Magi Andorra¹², Sara Llufriu¹², Albert Saiz¹², Yolanda Blanco¹², Eloy Martinez-Heras¹², Elisabeth Solana¹², Irene Pulido-Valdeolivas¹², Elena Martinez-Lapiscina¹², Jordi Garcia-Ojalvo^{1*}, Pablo Villoslada^{1,12*}

13 ¹Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain;
14 ²Department of Neurology, Ospedale Policlinico San Martino-IRCCS and Department of
15 Neurosciences, University of Genova, Italy; ³TomaLab, Institute of Nanotechnology, Consiglio
16 Nazionale delle Ricerche (CNR), Rome, Italy; ⁴Department of Neurology, University of Oslo,
17 Norway; ⁵Department of Neurology, Oslo University Hospital, Oslo, Norway; ⁶Oslo
18 Metropolitan University, Oslo, Norway; ⁷Department of Neurology, Charité -
19 Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-
20 Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany;
21 ⁸Department of Neurology, University of California, Irvine, CA, USA; ⁹Institute for
22 Computational Biomedicine, University of Heidelberg, Germany; ¹⁰ProtATonce Ltd, Athens,
23 Greece; ¹¹School of Mechanical Engineering, National Technical University of Athens,

24 Zografou, Greece; ¹²Center of Neuroimmunology, Hospital Clinic Barcelona, Institut

25 d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

26 *Both authors have contributed as senior authors

27 **Short title:** Multi-layer networks in MS

28 **Corresponding authors:**

29 Jordi Garcia-Ojalvo. jordi.g.ojalvo@upf.edu

30 Pablo Viloslada. pablo.viloslada@upf.edu

31 **Word count:** title: 41 characters; abstract: 156; text: 6,910 words; references: 53; figures: 6

32 **Authors contributions and conflict of interest** details are provided after acknowledgements

33

34

35

36 **Abstract**

37 Complex diseases such as Multiple Sclerosis (MS) cover a wide range of biological scales, from
38 genes and proteins to cells and tissues, up to the full organism. We conducted a multilayer
39 network analysis and deep phenotyping with multi-omics data (genomics, phosphoproteomics
40 and cytomics), brain and retinal imaging, and clinical data, obtained from a multicenter
41 prospective cohort of 328 patients and 90 healthy controls. Multilayer networks were constructed
42 using mutual information, and Boolean simulations identified paths within and among all layers.
43 The path more commonly found from the boolean simulations connects MP2K, with Th17 cells,
44 the retinal nerve fiber layer (RNFL) thickness and the age related MS severity score (ARMSS).
45 Combinations of several proteins (HSPB1, MP2K1, SR6, KS6B1, SRC, MK03, LCK and
46 STAT6) and immune cells (Th17, Th1 non-classic, CD8, CD8 Treg, CD56 neg, and B memory)
47 were part of the paths explaining the clinical phenotype. Specific paths identified were
48 subsequently analyzed by flow cytometry at the single-cell level.

49

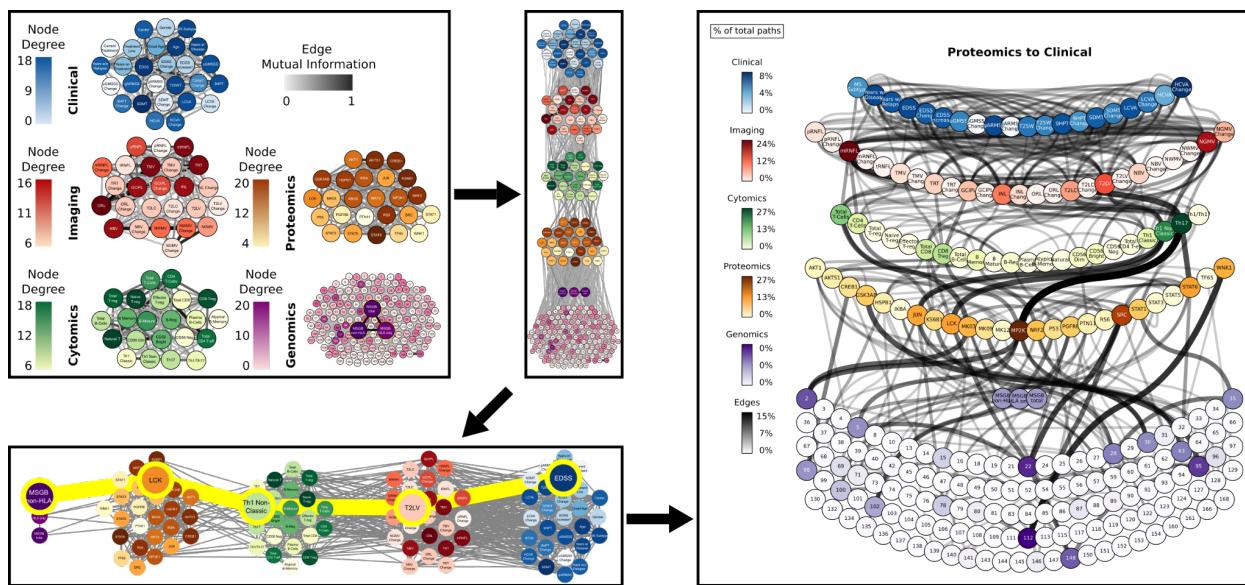
50 **Keywords:** complex diseases, systems biology, multiple sclerosis, multilayer networks, paths

51

52

53

54 **Graphical abstract**



55

56

57 **Author Summary**

58 Complex diseases such as Multiple Sclerosis (MS) involve the contribution of a wide
59 range of biological processes. We conducted a systems biology study of MS based on network
60 analysis and deep phenotyping in a prospective cohort of patients with clinical, imaging,
61 genetics, and omics assessments. The gene, proteins and cell paths explained variation in central
62 nervous system damage, and in metrics of disease severity. Such multilayer paths explain the
63 different phenotypes of the disease and can be developed as biomarkers of MS.

64

65

66

67 **Introduction**

68 Complex diseases involve the interaction of multiple biological scales, including tissues,
69 cells, and molecules (genes, proteins, and metabolites), all of which regulate biological function
70 and modulate the susceptibility to a given clinical phenotype. Although significant efforts have
71 been devoted to understanding each of these levels, few attempts have succeeded in integrating
72 multiple scales and the flow of information across them. Such integration would definitely
73 improve our understanding of disease pathogenesis (1, 2) and wellness (3). Multilayer networks
74 provide a framework to integrate complex biological data across different scales, which should
75 allow us to understand the flow of biological information in health and disease (4-6). This is
76 especially important in diseases with a complex genetic and molecular basis, such as Multiple
77 Sclerosis (MS).

78

79 MS is an autoimmune disease characterized by inflammatory attacks to the central
80 nervous system (CNS), which damages the neural tissue and leads to significant disability (7).
81 The inflammation occurs in acute attacks as well as by chronic inflammation, defining the
82 different clinical subtypes of the disease, namely relapsing-remitting (RRMS) and progressive
83 (PMS). MS is an example of a complex disease, with different biological scales participating in
84 its pathogenesis, including genetic factors (8), cellular signaling (9, 10), adaptive and innate
85 immunity (11, 12), and CNS damage (13). Additionally, the interplay between these various
86 components is modulated by environmental factors (14, 15), with viral infections and especially
87 the Epstein-Barr virus being the main triggers (16). As a result, the MS phenotype of
88 neurological disability is very heterogeneous and difficult to predict (7, 17), creating significant
89 limitations for patient care. As an example of the difficulty of finding biological determinants of

90 MS, although more than 200 genetic polymorphisms have been associated with MS
91 susceptibility, their contribution to the clinical phenotype is small and remains to be clarified
92 (18). Similarly, many studies have attempted to identify biomarkers of the clinical course and
93 prognosis of the disease, including oligoclonal bands, neurofilament light chain protein, brain or
94 spinal cord volume or retinal thickness, but few have been validated, and even their individual
95 predictive ability is small, making their use in clinical practice limited (19).

96

97 Several studies have attempted to integrate biological networks in MS, mainly at the
98 genetic level (20-23). Those studies addressed the biomolecular aspects of the disease (genes and
99 proteins), but they did not describe the relation of those features with tissue damage or clinical
100 disability. In contrast, our approach focuses on bridging the gap between the microscopic and
101 macroscopic scales of MS to better explain the endotype-phenotype relationship. To that end, we
102 use multilayer network analysis to assess how information flows across biological scales, and to
103 identify multiscale paths that contribute to explain the phenotype of MS.

104

105 Within the umbrella of the Sys4MS project (24), we recruited a multicenter prospective
106 cohort of 328 patients with MS and 90 healthy subjects with a two-year follow-up and performed
107 deep phenotyping by collecting multi-omics data, imaging, and clinical outcomes. This
108 collection provided data on five biological layers: (1) genes, (2) phosphoproteins (mostly
109 kinases), (3) immune cells, (4) tissue (imaging), and finally (5) the clinical phenotype (**Figure**
110 **1a**). Network generation was first applied to each of these layers individually, using mutual
111 information to capture linear and non-linear dependencies between the elements of each layer
112 (**Figure 1b-f**) before the layers were interconnected (**Figure 1g**). Our approach is hypothesis-

113 based, rather than data-based: First, we make use of a set of single nucleotide polymorphisms
114 (SNPs), proteins and immune cell subtypes already known to be associated with MS (8, 9, 24,
115 25). Second, we consider the transfer of information from genes to proteins and cell layers,
116 which will define the tissue (imaging) and clinical outcomes as the phenotype (**Figure 1g**). In
117 order to obtain functional information from the network models, dynamical simulations using
118 Boolean network modeling were used to identify several paths spanning these five layers.

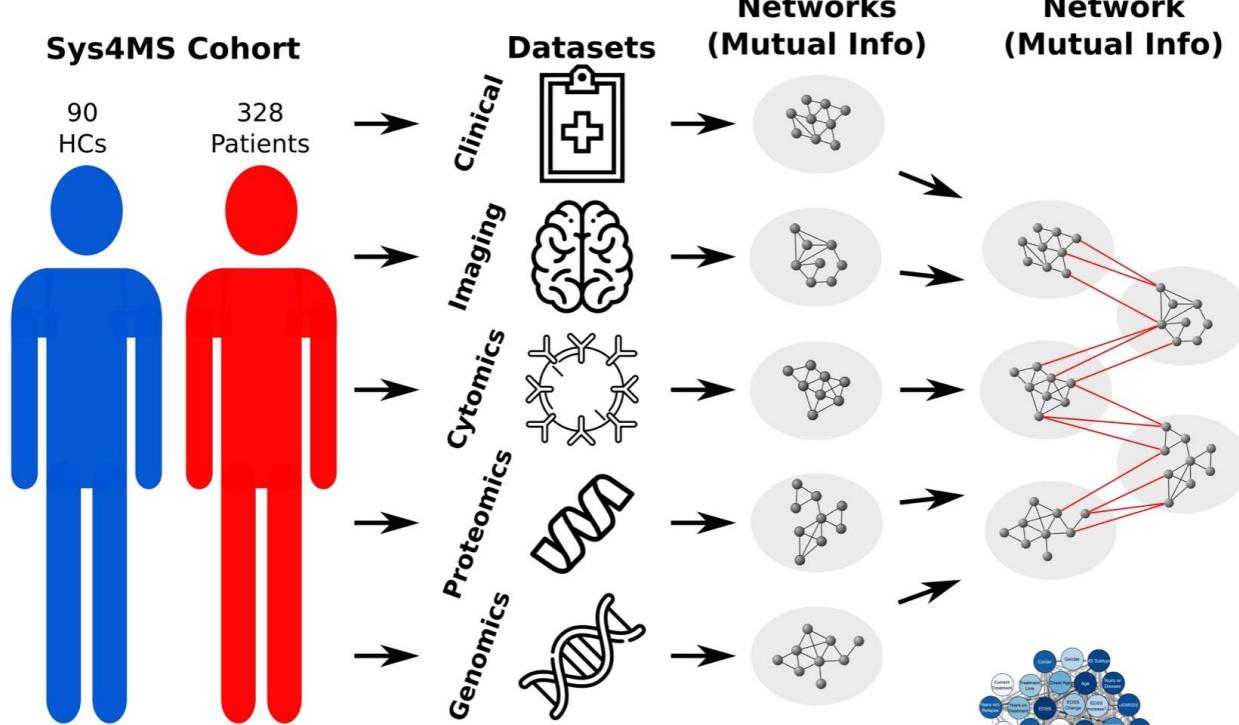
119

120 **Figure 1. Building multilayer networks using multi-omics, imaging, and clinical data.** (a)
121 Illustration of network construction. The data from each layer is taken from the cohorts and used
122 to create networks, where the nodes are the elements in the dataset (genomics, phosphoproteomics,
123 cyomics, tissue imaging, and clinical data), and the edges correspond to the mutual information
124 between element pairs across all subjects. Once individual networks are created, they are linked
125 together, again using mutual information, following a hierarchy that connects each layer
126 successively, starting with genomics and working up to the phenotypic (clinical) layer. (b-f)
127 Topology of individual layer networks from the experimental data. In each of the networks, the
128 degree of each node is color-coded, with higher degrees in darker colors. The edge weights are
129 coded in grey scale in a similar manner, with a darker edge representing a higher weight, and thus
130 a higher correlation between nodes. The genomics network was enriched with the previous
131 knowledge on regulatory networks (f) and included the MS genetic burden scores (g). In the
132 combined five-layer network, the layers are connected using the hierarchy described above, with
133 genomics at the bottom and clinical phenotype at the top. High resolution network representations
134 for single-layer networks are available at Github link

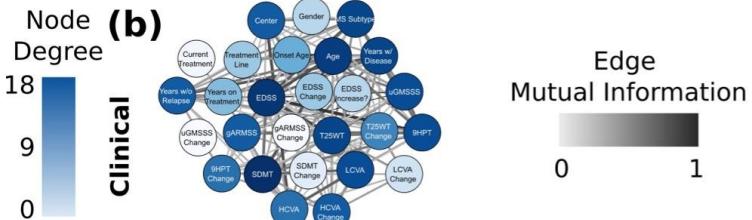
135 https://keithtopher.github.io/single_networks/#/ and for multilayer networks at

136 https://keithtopher.github.io/combo_networks/#/.

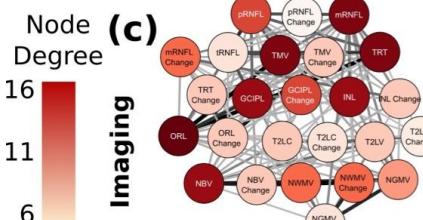
(a)



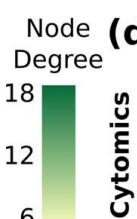
(b)



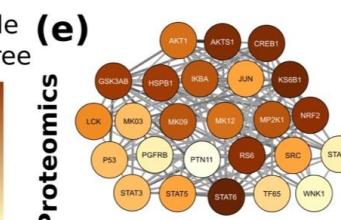
(c)



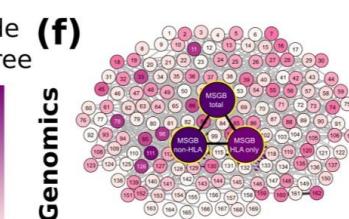
(d)



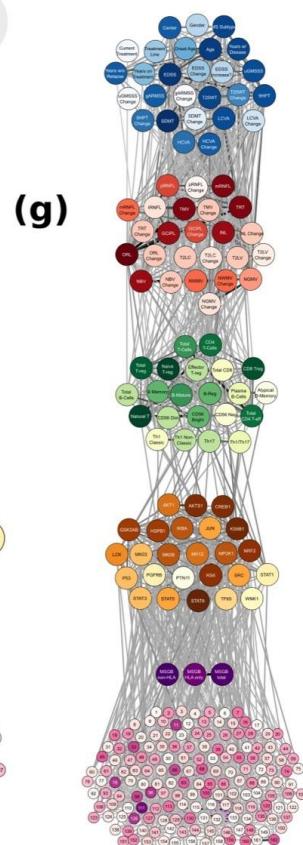
(e)



(f)



(g)



137

138 **Results**

139 The focus of the results is on the paths between the genes, proteins, cells and the
140 phenotype (imaging and clinical scales). Each step below shows how the paths were identified,
141 and which sources tend to be more strongly connected with the phenotype. First, descriptive
142 information about the data is given, then the networks of the layers are constructed, then Boolean
143 simulations are run, and finally the top paths are selected.

144

145 ***Deep phenotyping: multi-omics, imaging, and clinical data from MS patients***

146 We recruited 328 MS patients (age 41 ± 10 years, 70% female) at four centers throughout
147 Europe, corresponding to the Sys4MS cohort (**Table 1**). Of these, 271 patients (82%) had RRMS,
148 and 57 (17%) had PMS. We also recruited 90 healthy controls (HCs) matched by sex and age with
149 the RRMS group. The patients had a mean disease duration of 10 (SD 8) years, and median
150 Expanded Disability Status Scale (EDSS) of 2.0 (range: 0-8). Regarding the use of disease
151 modifying drugs (DMD) at baseline, 70% of patients were treated, 44% with low-efficacy
152 therapies, and 26% with high-efficacy therapies (see **Methods** for drug definition). By the second
153 year of follow-up (mean follow-up 1.98 ± 0.94 years, n=274), two RRMS cases progressed to
154 PMS, 22 patients started new therapies (cladribine: 1; fingolimod: 2; glatiramer acetate: 4;
155 ocrelizumab: 9; rituximab: 2; teriflunomide: 4) and 17 changed from low to high-efficacy
156 therapies. Imaging data consisted of both brain magnetic resonance imaging (MRI) and retina
157 optical coherence tomography (OCT) (**Table 1**).

158 **Table 1. Sys4MS cohort: Clinical and imaging variables of MS patients and healthy**
159 **controls.** Disability scales are shown as the mean \pm SD, except for the EDSS which is displayed
160 as the median (range).

	MS baseline n=328	MS 2-year FU n=278	HC n=90
Age	41 \pm 10	45 \pm 9.81	36.98 \pm 11.47
Female, n (%)	229 (70%)	194 (70%)	63 (70%)
Age at disease onset (years)	31 \pm 9	31 \pm 9	--
Disease duration (years)	10 \pm 8	12.9 \pm 8.16	--
Subtype	RRMS SPMS PPMS	271 28 29	228 25 25
EDSS		2.0 (0-8.0)	2.0 (0-8.0)
MSSS		3.6 \pm 2.2	3.25 \pm 2.35
ARMS		3.9 \pm 2.1	3.56 \pm 2.26
T25WT (sec)		6.93 \pm 6.6	5.67 \pm 4.97
9HPT (sec)		21.2 \pm 6.5	21.9 \pm 5.92
SDMT (# symbols)		53.8 \pm 13.5	53.5 \pm 13.3
SL25 (# letters)		29.1 \pm 13.4	26.7 \pm 13.5
HCVA (LogMAR)		0.03 \pm 0.36	-0.11 \pm 0.44
DMD	Untreated	91	72
	Interferon beta	43	19

Glatiramer acetate	39	24	--
Teriflunomide	28	21	--
Fingolimod	38	33	--
Dimethyl-Fumarate	35	37	--
Natalizumab	29	24	--
Other high-efficacy DMD*	19	43	--
Brain MRI			baseline
# Gadolinium lesions	0.1 ± 0.5	NA**	NA
T2 lesion volume (cm ³)	8.17 ± 10.5	9.32 ± 11	NA
NBV (cm ³)	$1,509 \pm 91$	$1,454 \pm 70.2$	$1,473 \pm 109$
NGMV (cm ³)	792 ± 65	779 ± 49.5	751 ± 63.7
NWMV (cm ³)	716 ± 68	676 ± 43.5	721 ± 111
OCT (mean of both eyes without previous ON)			baseline
pRNFL (μm)	100 ± 12.7	101 ± 12.1	100 ± 9.6
mRNFL (μm)	39.6 ± 4.9	39.6 ± 4.31	41.9 ± 6.5
GCIPL (μm)	65.6 ± 8.3	65.7 ± 7.08	68.5 ± 6
INL (μm)	31.5 ± 2.8	31.5 ± 2.77	41.1 ± 8.8

ORL (μm)	146.1 ± 9.5	147±8.39	149±19.9
----------	-------------	----------	----------

161 FU: follow-up; RRMS: relapsing-remitting MS; SPMS: secondary-progressive MS; PPMS:
162 primary-progressive MS; EDSS: expanded disability status scale; MSSS: MS severity scale;
163 ARMS: age-related MS severity scale; T25WT: timed 25-feet walking test; 9HPT: 9-hole peg
164 test; SDMT: symbol digit modality test; SL25: 2.5% Sloan letter acuity; HCVA: high-contrast
165 visual acuity; DMD: disease modifying drug; NBV: normalized brain volume; NGMV:
166 normalized grey matter volume; NWMV: normalized white matter volume; RNFL: retinal nerve
167 fiber layer (p: peripapilar; m: macular); GCIPL: ganglion cell plus inner plexiform layer; INL:
168 Inner nuclear layer; ORL: outer nuclear layer. *Other DMD baseline: alemtuzumab: 9,
169 rituximab: 7, ocrelizumab: 1, daclizumab: 2; year 2: alemtuzumab: 13, rituximab: 11,
170 ocrelizumab: 16, cladribine: 3. **MRI studies for the follow-up did not include gadolinium
171 administration.

172 We conducted a genomic analysis in both MS cases and controls. From the 700,000 SNPs
173 assessed in the DNA array, we imputed 152 SNPs associated with MS (8), along with 17 additional
174 SNPs corresponding to HLA-class II alleles. We calculated the polygenic risk score, namely the
175 MS genetic burden score (26) (MSGB) for all 169 SNPs, together with partial MSGB scores for
176 only the 17 HLA SNPs (MSGB^{HLA}), and for the 152 MS associated SNPs excluding the HLA
177 alleles (MSGB^{non-HLA}). As expected, the total MSGB score was significantly higher ($p=3.4\times10^{-8}$)
178 in patients (4.23) than in HCs (3.2). Similar results were observed in the partial scores, with
179 MSGB^{HLA} of 1.57 in patients and 0.95 in HCs ($p=1.6\times10^{-4}$) and MSGB^{non-HLA} of 2.6 in patients
180 and 2.2 in HCs ($p=6.8\times10^{-5}$).

181 Flow cytometry analysis was carried out at baseline in peripheral blood mononuclear cells
182 (PBMCs) from the first 227 patients and 82 HC. Results from the cytometry analysis in this cohort

183 are described in detail elsewhere (24). Briefly, untreated RRMS patients showed significantly
184 higher frequencies of Th17 cells and lower frequencies of B-memory/B-regulatory cells, as well
185 as higher percentages of mature B cells in patients with PMS compared with HCs. Fingolimod
186 treatment induced a decrease in total CD4+ T cells and mature and memory B cells and increases
187 in CD4+, CD8+ T-regulatory and B-regulatory cells (24). Finally, the phosphoproteomic analysis
188 was carried out by conducting ex-vivo assays in PBMCs and quantified using xMAP assays on the
189 first 148 patients at baseline as described before (25, 27), showing higher levels of phosphorylated
190 IKBA, JUN, KSGB1, MK03, RS6, STAT3 and STAT6 in MS patients compared to controls
191 (**Methods, File S1**).

192

193 ***Multilayer networks in MS***

194 We built networks for each of the five layers (genetics, phosphoproteomics, cytomics,
195 tissue/imaging and clinical variables) using mutual information to define connections between
196 pairs of elements within each layer (**Figure 1**, see **Methods**). For example, in the proteomics
197 layer two proteins are connected to each other with a weight equal to the normalized mutual
198 information between their phosphorylation levels. A threshold was used to determine whether
199 the correlation for a given pair was high enough to define an edge. The threshold works by
200 comparing the real mutual information value of a pair of nodes to a surrogate distribution of
201 mutual information values calculated from random permutations of the data.

202 The genetic network was considered in two ways: first, at the level of the individual SNPs
203 separately and utilizing previous information from the Gene Regulatory Network Database (28)
204 and mapped to the MS associated SNPs (see **Methods**); and second, grouped together in the three
205 MSGB scores defined above. The proteomic network includes 25 kinases, and the cytomics

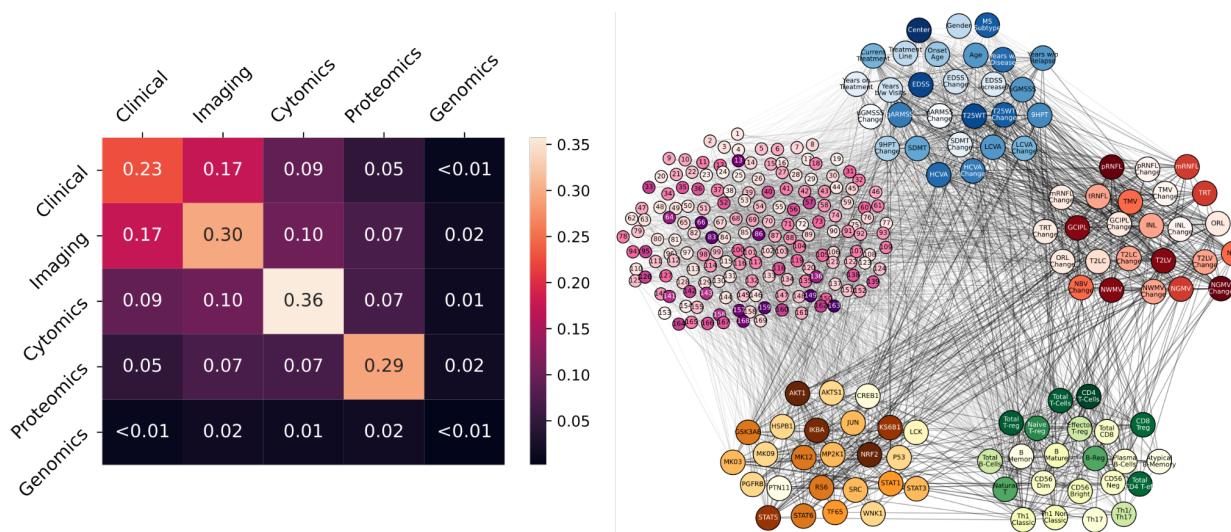
206 network 22 immune subpopulations (see **Methods** for the lists of proteins and cell subtypes). The
207 imaging network included the main metrics of lesion load and brain volumes quantified by MRI,
208 and the thickness of the retina layers analyzed by OCT. Finally, the clinical network contains
209 demographic and clinical variables (number of relapses, disability scales and use of DMD) at
210 baseline and after two-year follow-up, which give longitudinal changes in clinical outcomes (see
211 **Methods** for a list of variables).

212 After the networks for each layer were built, we analyzed the connectivity (density)
213 between layers, this time between features of different layers. A statistical comparison between
214 the connections within and between layers (**Figure 2**) shows a non-negligible degree of network
215 modularity, confirming the underlying multi-layer structure. The features within a layer are, on
216 average, more strongly connected than those between layers. With the exception of genomics,
217 the densities within a single layer were higher than those between layers, supporting the
218 modularity of the multilayer network.

219
220 **Figure 2: Network densities within and between layers.** (*left*) The density for each layer was
221 calculated as the ratio of the sum of the weights of all connections and the number of possible
222 connections. The analysis was made using the 67 subjects with complete data in all 5 layers.

223 (*right*) The network from which the density was calculated. Nodes from all layers were
224 connected together, opposed to the network model with the hierarchy shown before. See high
225 resolution network at https://keithtopher.github.io/combo_networks/#/.

226



227

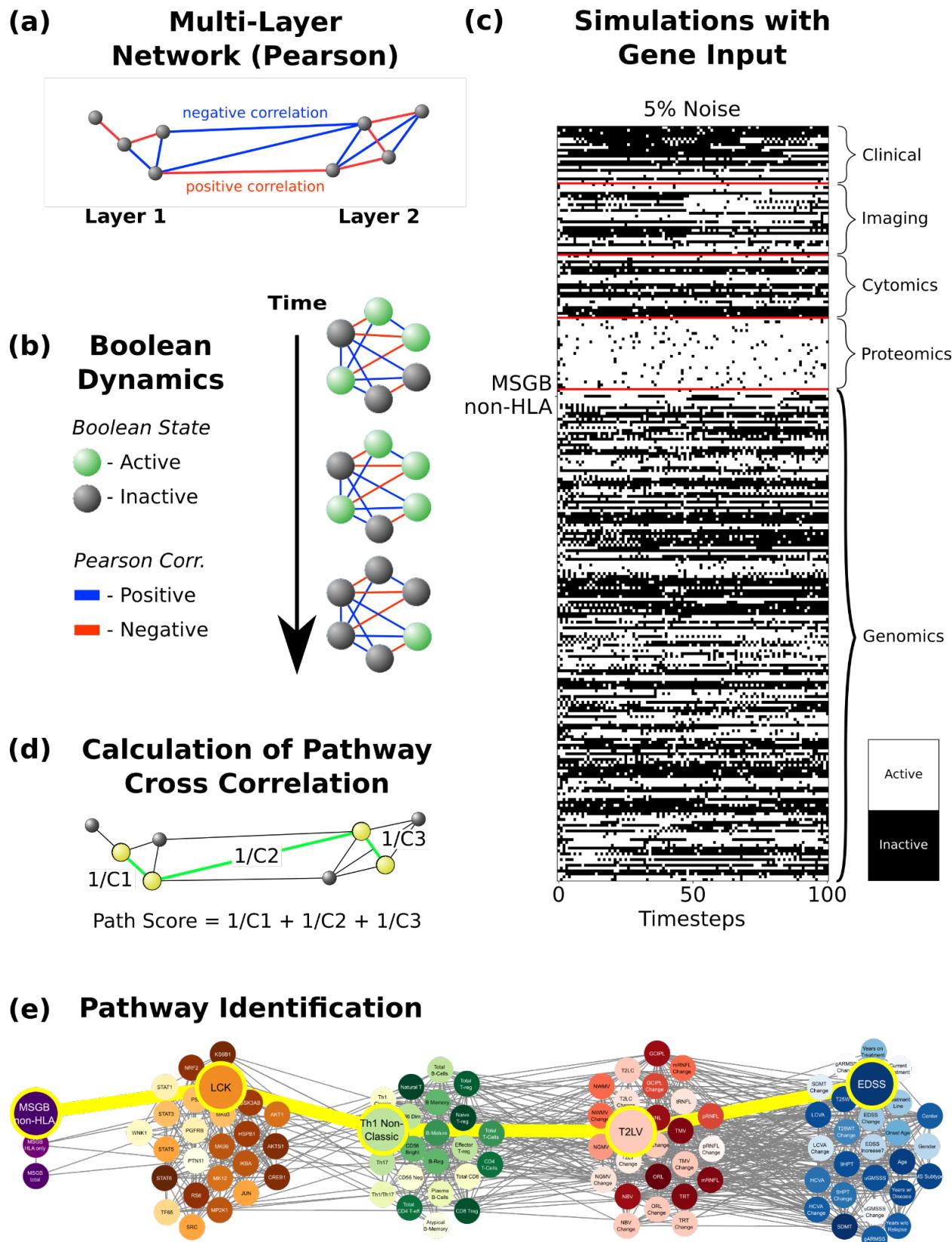
228

229 **Dynamic network analysis identifies gene-protein-cell paths associated with phenotype**

230 We next sought to integrate all the layers in paths that reflect the network dynamic
231 interactions, in order to obtain a functional view of the information flow across layers. To that
232 end, we created a single network including all five layers with the same hierarchy described
233 above using linear (Pearson) correlations, which allows us to distinguish between stimulatory or
234 inhibitory edges depending on whether the correlation r value is positive or negative,
235 respectively (Figure 3a). We then conducted logic (Boolean) simulations to identify the causal
236 logic backbone of the network (29, 30). Boolean simulations use knowledge of activating and
237 inhibiting relationships between nodes; the exact chemical reactions between genes, proteins,
238 cells and tissue are ignored, giving a qualitative description of the system (30). The nodes of the
239 network are considered to be in one of two states: active (e.g., high phosphorylation levels) or
240 inactive (e.g., low phosphorylation levels). The states of all nodes are updated synchronously at
241 each iteration of the simulation, either remaining in the same activation state as before, or
242 flipping to the opposite state, depending on the activation states of its direct neighbors, and

243 taking into consideration the weights of the corresponding connections (**Figure 3b**, see
244 **Methods**).

245
246 **Figure 3: Dynamic network analysis: identification of gene-protein-cell paths.** (a) Networks
247 are constructed using all five layers. The nodes are the same as in the networks above (figure 1),
248 but now the edges are defined by the Pearson correlation, where the weights represent the
249 Pearson coefficient, which can be either positive or negative. (b) Boolean dynamics are applied
250 to the networks, where the activation state of the nodes changes based on the total sum of the
251 edge weights of its direct neighbors (considering the signs of the connections). (c) Boolean
252 simulations are run where the various nodes, in the example MSGB non-HLA, are used as the
253 input signal, and the simulation was run with 5% noise (see **Methods** for noise analysis). (d) The
254 cross-correlation coefficient (C_n) is calculated between the signals for each pair of connected
255 nodes. A path score is calculated for all possible paths, defined as the sum of the inverses of the
256 cross-correlation coefficients between all pairs of consecutive nodes constituting a given path.
257 (e) Finally, a path is identified by using a shortest path algorithm which is based on its path score
258 (see **Methods**).



260 We next wanted to study how perturbations in a given input such as the MSGB score
261 (SNPs could not be used for Boolean simulations because the impossibility of changing between
262 alleles), protein or cell type travel through the network and ultimately affect a given phenotype
263 (output). To that end, we performed Boolean simulations in which the input node was
264 periodically driven from an active to an inactive state and back, and the response of all nodes in
265 the network (**Figure 3c**) was quantified by computing the temporal cross-correlation function
266 between their time-varying state and the dynamic input signal (30). We then identified those
267 paths across the network that are formed by pairs of nodes with the highest temporal cross-
268 correlation between their signals. These paths represent how information flows from a given
269 input to the output (e.g., from MSGB non-HLA to EDSS in the example in **Figure 3e**). They do
270 not necessarily represent physical interactions among nodes (e.g., protein-protein interactions),
271 but rather groups of nodes that co-vary statistically with each other more strongly than the rest of
272 the network.

273 For each of the 3,350 combinations of inputs and outputs (3 MSGB scores, 25 proteins,
274 and 22 cell types as inputs, and 22 cell types, 25 imaging variables, 20 clinical variables as
275 outputs), we selected the top ten paths with highest joint cross-correlation values between their
276 constituent nodes (see **Methods** and **File S2**). **Figure 4** shows these paths for the three inputs
277 (MSGB, phosphoproteomics and cytomics) and outputs (imaging and clinical) pairs for MS
278 patients.

279 To assess the specificity of the Boolean simulations, the network was permuted to
280 identify negative control paths. The edges were randomly swapped while preserving the original
281 degree distribution of the network. The simulations were run with these permuted networks (100
282 total), and paths were identified. These paths were compared to those identified in the original

283 networks. We counted how many times a given path appeared in the permuted networks. Focus
284 was placed on those pathways that were present in less than 1% of the permuted pathways. Out
285 of 32,302 total paths identified from MS patients, there were 8,488 that appeared 0 times out of
286 100 in the permuted paths. The method for network permutation and path identification is
287 illustrated in **Methods, Figure 10**, and results are shown as **Files S3a and S3b**.

288 Additionally, confidence intervals were calculated for each of the paths. The paths were
289 identified from each of the 100 Boolean simulations individually (instead of using the mean of
290 the cross-correlation values as before). These 100 simulations provide a distribution of path
291 scores, giving the variance of the original path score. The path scores along with their confidence
292 intervals are given in **File S4**.

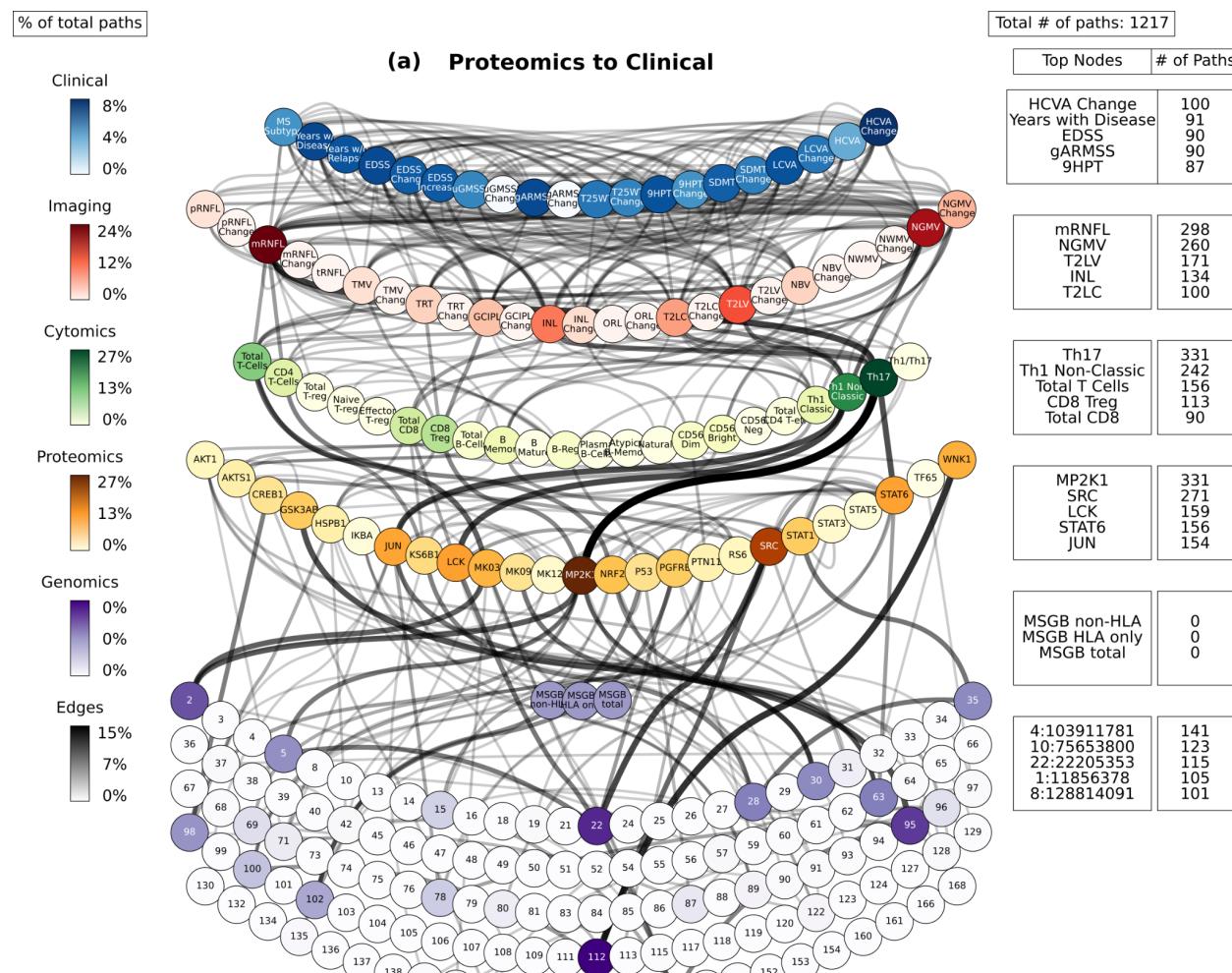
293

294 ***Path analysis***

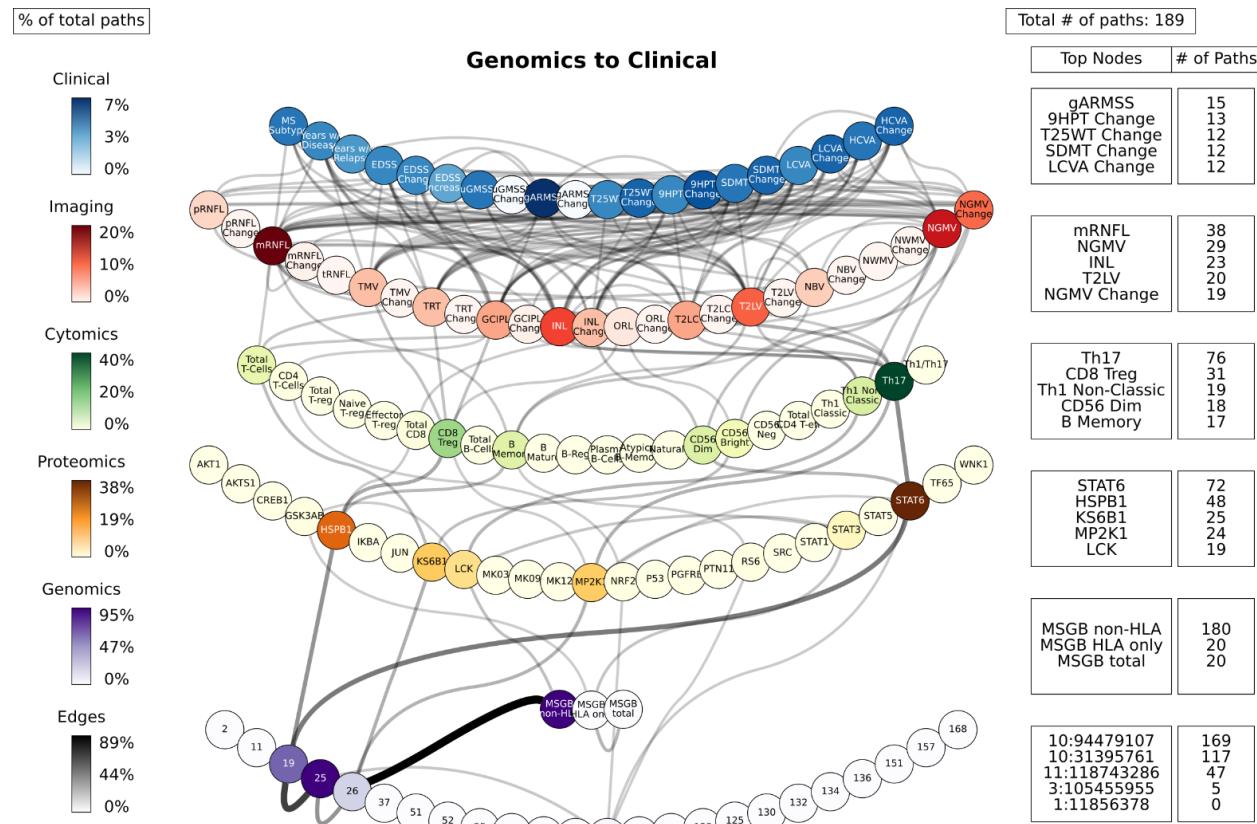
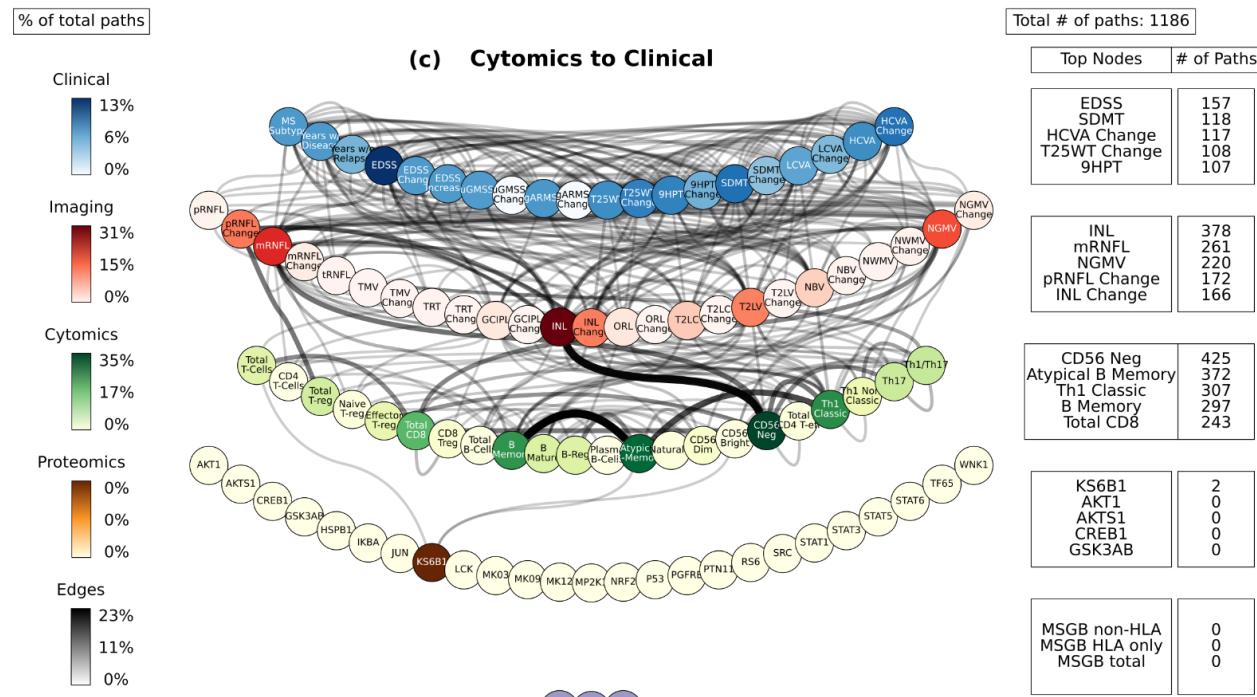
295 For the path analysis we use the following notation: NODE 1 > NODE 2 > NODE 3, (In
296 the case there are multiple nodes on the same layer along similar paths they appear as NODE 1 >
297 NODE 2 - NODE 3 > NODE 4, where NODES 2 and 3 could be two proteins for example.) and
298 the information flows from left to right, starting with the perturbation in the gene, protein, or cell
299 respectively. MS cases show that the paths more commonly found from the Boolean simulations
300 (darker color represents more connections) were: (1) MP2K1 > Th17 > mRNFL > ARMSS
301 (when the input is applied to the started in phosphoproteomics layer, **Figure 4a**); (2) SNP25
302 (SNP10:94479107) > MSGB non-HLA > STAT6 > Th17 > mRNFL > ARMSS (when the input
303 is applied to the genomics layer, **Figure 4b**); (3) CD56 Neg > INL - mRNFL > EDSS - ARMSS
304 (when the input is applied to the cytomics layer, **Figure 4c**).

305

306 **Figure 4: Path analysis in MS patients.** Representations of the multi-layer paths identified
307 from the Boolean simulations when the input started at the phosphoproteomics (A), genomics
308 (B) or cyomics (C) layer. The top paths (those that passed the test for negative controls) are
309 shown for each input (gene, protein, or cell)-output (clinical phenotype) pair. The nodes for each
310 layer are color-coded to represent the degree of a given node, i.e., the number of times the node
311 appears in a path, as a percentage of the total number of paths. High resolution paths are
312 available at https://keithtopher.github.io/fivelayer_pathways/.



313



315 Perturbations in the protein layer (representing changes in the signaling cascades among
316 cells) were linked with the severity of MS, this time with both the EDSS and ARMSS along with
317 the HCVA, T25WT and the disease duration (**Figure 4a**):

318 • MK03 > Total T Cells > mRNFL > T25WT

319 • MP2K1 - STAT6 > Th17 > mRNFL > T25WT - ARMSS

320 • MP2K1 - STAT6 > Th17 > INL > EDSS Change

321 • MP2K1 > CD8 Treg > GCIPL > EDSS Change

322 • LCK - JUN > Th1 non-Classic > NGMV - mRNFL - T2LV

323 • NGMV > Years since Relapse - 9HPT Change - HCVA Change

324 mRNFL > T25WT - Years with Disease - SDMT Change

325 T2LV > EDSS - ARMSS - T25WT

326 • SNP10:75653800 - SNP4:103911781 - SNP1:85729820 > SRC -

327 NRF2

328 Perturbations of the gene network (the MSGB, reflecting genetic variability contributing
329 to the risk of developing MS) were linked with changes in the clinical outcomes (ARMSS,
330 T25WT, 9HPT, HCVA, LCVA, and the EDSS) (**Figure 4b**). Concerning the imaging layer, we
331 found paths to the mRNFL (macular retinal nerve fiber layer) and NGMV (normalized gray
332 matter volume). Perturbing the MSGB non-HLA was the source for the most paths at this level:
333 1) MSGB non-HLA > SNP10:94479107 > SNP11:118743286 > KS6B1 - MP2K1; and 2)
334 MSGB non-HLA > SNP10:94479107 > SNP10:31395761 > HSPB1 - STAT6. Then, these two
335 paths were connected to the phenotype as follows:

336 • HSPB1 > B Memory > NBV > MSSS - T25WT

337 • HSPB1- MP2K1 > CD8 Treg - B Memory > GCIPL > ARMSS - EDSS Change

338 ● STAT6 > Th17 > mRNFL - INL > ARMSS

339 ● STAT6 > Th17 > NGMV Change > Years with Disease

340 ● MP2K1 > Th17 - CD8 Treg > mRNFL - INL > ARMSS - EDSS Change - 9HPT

341 Change

342 ● KS6B1 - LCK > Total T Cells - Th1 Non Classic > NGMV - T2LV > LCVA Change -

343 MSSS - Years since Relapse

344 Perturbations at the cellular level (representing changes of immune cell subtypes

345 frequency and activation) were connected again with changes in the EDSS as well as with the

346 HCVA, SDMT, 9HPT, and T25WT (**figure 4c**). The paths with cells as the sources were:

347 ● CD56 Neg > INL - mRNFL > EDSS - T25WT

348 ● Atypical B Memory - B Memory - Th1 Classic > mRNFL - T2LV > EDSS - T25WT

349 ● Total CD8 > NGMV - T2LV > EDSS - 9HPT - SDMT

350

351 ***Paths predicting MS phenotype from single-cell data***

352 In order to assess some of the paths identified in the study at the single-cell level, we

353 conducted a cytometry analysis to assess levels of total and phosphorylated proteins in immune

354 cell subtypes at the single-cell level and relate them to the clinical phenotype through linear

355 regression models and path analysis. We analyzed the levels of the three phosphoproteins for

356 which phospho-cytometry assays were available and that showed an adequate signal to noise

357 ratio, namely GSK3AB, HSBP1 and RS6 (assays were not validated for the other proteins). We

358 also analyzed the immune cell subpopulations most commonly present in such paths (CD4+,

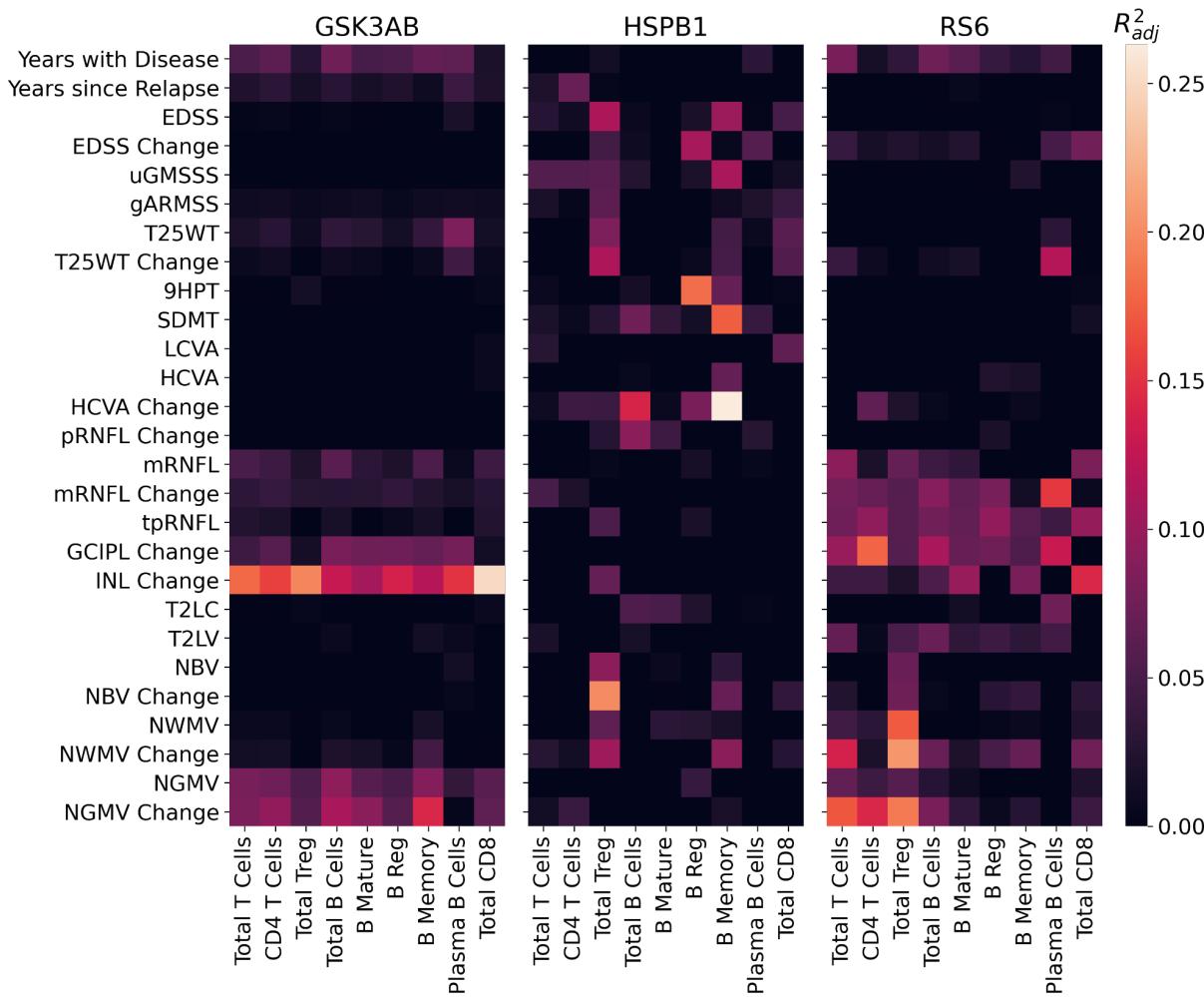
359 Treg, CD8+, B mature, B memory, Breg and Plasma cells). This approach allowed to assess

360 experimentally the paths between an individual phosphoprotein in the selected immune cell

361 subtype. The phosphorylation levels in immune subpopulations were assessed in a representative
362 subgroup of 40 MS patients and 20 HCs from the Sys4MS cohort from which frozen PBMCs
363 were available from the baseline visit (**Figure 7**).

364 First, we found significant linear regression models for each of the three kinases
365 predicting the phenotype (**Figure 5**) (see **Files S5a, S5b, and S5c** for R^2 and p-values). In the
366 case of GSK3AB, we found significant regression models explaining disease duration, walking
367 speed, retina, and grey matter atrophy. For HSPB1, significant regression models were found for
368 global disability scales such as the EDSS as well as domain specific disability scales (motor,
369 vision, cognition), disease duration and change in grey and white matter volume. Finally, for
370 RS6 the significant regression models also explained changes in global and motor disability
371 (GMSSS and 9HPT) as well as retina and brain atrophy.

372 **Figure 5. Linear regression models between phosphoproteins, cell subtypes and**
373 **clinical phenotype.** Linear regression analysis relating the percentage of immune cell subtypes
374 expressing phosphorylated GSK3AB, HSPB1 or RS6 with the phenotype. The heatmap shows
375 the adjusted R^2 of the significant models. EDSS: Expanded Disability Status Scale; GMSSS:
376 Global Multiple Sclerosis Severity Score; T25WT: timed 25 feet walking test; 9HPT: nine- hole
377 peg test; LCVA: low contrast (2.5%) visual acuity; HCVA: high contrast visual acuity; RNFL:
378 retinal nerve fiber layer (m: macular; tp: temporal peripapillary); INL: inner nuclear layer;
379 T2LV: T2 lesion volume; ORL: outer retinal layer; NBV: normalized brain volume; NWMV:
380 normalized white matter volume; NGMV: normalized grey matter volume.



381
382 We then applied the single-cell data to our multilayer network and paths shown in **Figure**
383 **4**. The network was made using the significant values from the linear regressions to relate
384 phosphoprotein-cell layer to the phenotype. With each protein (GSK3AB, HSPB1, RS6),
385 wherever there was a significant value between a cell and phenotype, an edge was placed
386 between the protein and cell, and another edge between the cell and the phenotype. For example,
387 there is a significant model between the percentage of B Memory cells expressing GSK3AB and
388 the INL change, so the two edges GSK3AB > B Memory and B Memory > INL Change are
389 added. Edges between the imaging and clinical layers are formed indirectly, where two nodes are
390 connected if they had at least one significant regression model with the same cell type. For

391 example, since there are significant models between Total Treg and NBV, as well as between
392 Total Treg and EDSS, the edge NBV > EDSS is added. Next, edges between the cellular and
393 clinical layers are removed. Finally, only the edges that are also found in the top paths from the
394 five-layer network shown in **Figure 4** are kept. The top paths beginning with GSK3AB, HSPB1,
395 and RS6 are listed below, and a visualization of the paths is shown in **Figure 6**.

396 • GSK3AB > Total B Cells - Total T Cells - Total Treg > INL Change > Years with
397 Disease - EDSS Change

398 • GSK3AB > Total B Cells - Total T Cells - Total Treg > NGMV Change > Years with
399 Disease

400 • GSK3AB > Total T Cells - Total Treg > NWMV Change > Years with Disease - EDSS -
401 GMSSS - T25WT

402 • GSK3AB > Total B Cells - Total T Cells > tRNFL > Years with Disease - EDSS Change

403 • HSPB1 > Total B Cells - Total Treg > INL Change > Years with Disease - EDSS Change

404 • HSPB1 > Total B Cells - Total Treg > NGMV Change > Years with Disease

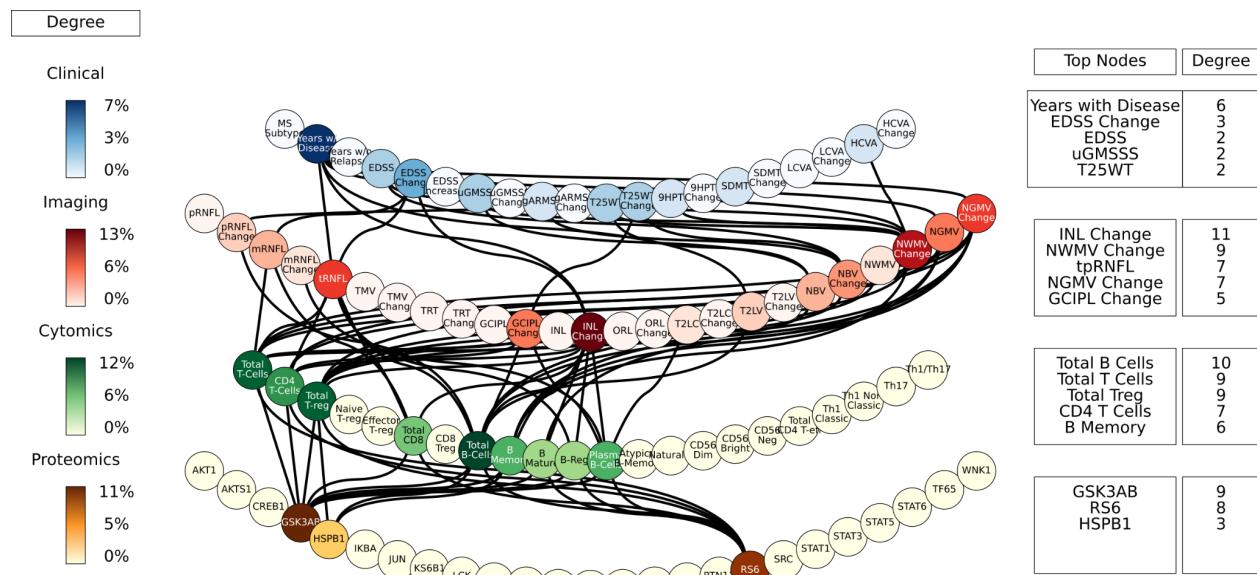
405 • RS6 > Total B Cells - Total T Cells - Total Treg > INL Change > Years with Disease -
406 EDSS Change

407 • RS6 > Total B Cells - Total T Cells - Total Treg > NGMV Change > Years with Disease

408 • RS6 > Total T Cells - Total Treg > NWMV Change > Years with Disease - EDSS -
409 GMSSS - T25WT

410 • RS6 > Total B Cells - Total T Cells > tRNFL > Years with Disease - EDSS Change

411



412

413 **Figure 6: Multilayer paths from single cell cytometry assays.** Each of the edges was defined
414 using the linear regression analysis of the flow cytometry data. An edge is considered if it was
415 part of a significant regression model and also appeared as part of a path in the original five-layer
416 network constructed from MS patient data (from **Figure 4**). The edges are weightless, and only
417 show if that particular edge in any of the original paths was present.

418 https://keithtopher.github.io/fivelayer_pathways/.

419

420 Discussion

421 Network approaches have been very fruitful in the past at shedding light on the molecular
422 complexity of diseases, beyond the traditional single gene and single pathway perspectives. In
423 the traditional network paradigm, molecular components are connected according to their
424 biological interactions, and the structure and dynamics of such interaction networks can reveal
425 disease modules and nonlinear pathways (32). Recently, these approaches have been extended to
426 include multiple biological layers, such as diverse tissues with distinct protein-protein interaction
427 networks (33), and different biological processes (membrane potential dynamics and signaling)

428 within insulin-secreting cells (34). Attempts have been made to construct multilayer networks for
429 complex diseases, an approach successfully exploited in cancer research (35-40). In this study
430 we have applied a multilayer network analysis to integrate omics, imaging, and clinical
431 information from patients with a complex autoimmune disease such as MS.

432 Our multilayer network analysis allowed us to assess the relationship between different
433 biological scales in the disease and to identify paths linking the five layers (genomics,
434 proteomics, cytomics, imaging and clinical) based on statistical associations. The most relevant
435 multiscale paths from our study are:

436 1) MP2K1 > Th17 > mRNFL > ARMSS;
437 2) SNP25 > MSGB non-HLA > STAT6 > Th17 > mRNFL > ARMSS;
438 3) CD56 neg > INL - mRNFL > EDSS - T25WT.

439 The interaction of several phosphoproteins-cell paths and the phenotype were validated
440 by flow cytometry studies, which were based on single cell analysis. A multi-layer network
441 analysis is thus able to identify a differential activation of the immune system's multiple scales
442 in MS patients that drives the phenotype.

443 It is of course possible that there were changes on the protein and genetics level, but they
444 were not acting as mediators between the changes in the cell counts and the phenotype seen in
445 this case. These could be considered sub-level systems that may cause the changes in the higher
446 levels when concerning the phenotype.

447 The results from the multilevel network analysis with the omics data and phenotype data
448 highlight the importance of considering MS as a multiscale disease, where the layers connect
449 with varying strengths and information is filtered or strengthened across the layers (34, 39).
450 Previous studies attempted to directly link the genomic layer with the phenotypes in many

451 complex diseases, including MS. However, genotypes or the polygenic risk scores alone have a
452 limited ability to predict either the cell variability or the phenotype (31, 41). Other genetic
453 information such as DNA sequencing, epigenetics and RNA expression, or more global
454 approaches is likely needed for a more thorough analysis in multiscale complex diseases.

455 The kinases studied are part of pathways previously described as associated with MS
456 (reviewed in (9)). MP2K1 was the kinase showing the strongest association with the presence of
457 MS in our previous study (25) and is a master regulator of the immune response. We and others
458 have previously described increased GSK3AB expression or phosphorylation levels in patients
459 with MS (25, 42, 43). GSK3 plays key roles in Th1 cell activation as well as in microglia
460 modulation, in addition to its effects on neuronal survival and functioning (42). HSBP1 (also
461 known as HSP27) is a stress protein that in addition to its chaperone activity, is critical for
462 apoptosis signaling pathways within the mitochondria, inhibiting the Apaf complex (44). Indeed,
463 HSBP1 has been found to be increased during MS relapses (45). RS6 is a MAPKinase that is
464 modulated by extracellular signal-regulated kinase (ERK) and activates serum glucocorticoid
465 kinase 3 (SGK3), nuclear factor kappa-light-chain-enhancer of activated B cells (NfKB),
466 mammalian target of rapamycin (mTOR) and other pathways modulating cell growth and
467 differentiation. Inhibition of ERK and RS6 in models of MS reduces proliferative response,
468 phagocytic properties, and synthesis of proinflammatory mediators induced by the addition of
469 inflammatory stimuli to microglia (46). Regarding the immune cell subtypes highlighted in our
470 analysis, our previous analyses of the Sys4MS dataset support the results of the current network
471 analysis that confirms the prominent role of B cells in MS (24). Such results agree with our
472 previous analysis of phosphoproteins and immune cell subtypes in another dataset of MS patients
473 showing the preferential involvement of B cells (25). Many pieces of evidence have confirmed a

474 remarkable role for B cells in MS (47), probably driven by the latent infection of the Epstein-
475 Barr virus that produces immune response dysregulation or molecular mimicry with CNS
476 proteins like GlialCAM (16, 48). In addition, CD8 cells are the most abundant cell type in the
477 brain infiltrates (11). Finally, a recent study in twins discordant for MS is also providing new
478 endorsement of the role of helper CD4 cells (12).

479 The data provided by the Sys4MS cohort was rich in the wide range of scales it covered.
480 However, several limitations were encountered with both the data and analysis. Although the
481 sample size of the cohort was enough to identify significant correlations, the sample sizes were
482 smaller for some specific omics (proteomics and cyomics), although bigger than n-of-1 studies
483 commonly used for deep phenotyping (39). The limited sample size may have affected both the
484 networks constructed as well as the statistical tests conducted with the paths or for the analysis
485 stratifying by each of the therapies. Furthermore, the omics dataset collected were cross-
486 sectional, whereas the imaging and clinical data were longitudinal. Longitudinal data from all
487 five layers and deep phenotyping would greatly benefit future studies. Another concern is the
488 validation of the paths because deep phenotyped MS cohorts are not available. A wealth of MS
489 patient data from other studies is available with genomics, imaging, and clinical phenotype
490 (through the IMMSGC and MultipleMS consortia). However, proteomics, cyomics or other types
491 of omics data is usually lacking, which limits conducting validation in independent datasets.
492 Further limitations relate to the omics experiments themselves. Both the protein and cell analyses
493 were conducted using PBMCs, rather than in immune cells from the central nervous system.
494 Also, the protein analysis was not performed at the single cell level but in bulk PBMCs in the
495 overall cohort. Therefore, single-cell dynamics were not captured in the first experiment.
496 However, flow cytometry analysis performed for the validation study provided single-cell

497 information which supports the validity of the findings. Additionally, limitations were also
498 partially balanced by using a hypothesis-driven design that included kinases and cells previously
499 described as differentially activated in MS.

500 In summary, this study examined the functional connections among various scales of
501 biological data of a complex disease with a complex genetic basis, namely MS. Our multilayer
502 networks support that information flow across scales. This highlights the importance of the
503 molecular and cellular scales when considering explaining the phenotypes of complex diseases.
504 Indeed, these paths could be the target of a future treatment of personalized medicine in MS.
505 This could also be transferable to other autoimmune disorders, commonly sharing disease
506 underlying mechanisms.

507

508 **Methods**

509 ***Ethical Statement***

510 The Sys4MS project was approved by the Institutional Review Boards at each participating
511 institution: Hospital Clinic of the University of Barcelona, IRCCS Ospedale Policlinico San
512 Martino IRCCS, Oslo University Hospital, and Charité - Universitätsmedizin Berlin University.
513 The Barcelona MS cohort study was approved by The Ethic Committee of Clinical Research,
514 Hospital Clinic Barcelona. Patients were invited to participate by their neurologists, and they
515 provided signed informed consent prior to their enrollment in the study. De-identified data were
516 collected in a REDCap database at the Barcelona center.

517

518 ***Patients***

519 ***Sys4MS cohort***

520 We recruited a cohort of 328 consecutive MS patients according to 2010 McDonald criteria
521 (49) and 90 healthy controls (HC) at the four academic centers: Hospital Clinic, University of
522 Barcelona, Spain (n=93); Ospedale Policlinico San Martino, Genova, Italy (n=110); Charité -
523 Universitätsmedizin Berlin, Germany (n=94); and the Department of Neurology, Oslo University
524 Hospital, Norway (n=121) as described before (24). We collected clinical information
525 (demographics, relapses, disability scales, and use of disease-modifying drugs), and imaging data
526 (brain MRI and OCT), and obtained blood samples at the same visit. Patients were required to be
527 stable in their DMD use over the preceding six months. Patients were followed for two years, and
528 the same clinical, disability scales, and imaging data (brain MRI and OCT) were collected at the
529 2-year follow-up visit.

530

531 ***Clinical Variables***

532 Each patient was assessed on the following disability scales at baseline and follow-up:
533 the Expanded Disability Status Scale (EDSS); timed 25 feet walking test (T25WT), nine-hole
534 peg test (9HPT), the Symbol Digit Modality Test (SDMT), 2.5% low contrast visual acuity
535 (SL25), and high contrast vision (HCVA, using EDTRS charts and a logMar transformation). We
536 calculated the MS Severity Score (MSSS) and the age-related MS Severity Score (ARMSS).

537 The ARMSS was used for dividing the cohort based on disease severity using the tertile
538 distribution (first tertile were mild MS, the second tertile was excluded and the third tertile were
539 defined as severe MS). Change in the disability scales and 2-year follow-up visit was calculated
540 as the difference (delta) between the two visits. EDSS changes were confirmed in a clinical visit
541 6 months before the study follow-up visit. At each visit, we collected the information regarding
542 the patients' DMD use, including low-efficacy therapy: interferon-beta, glatiramer acetate, and

543 teriflunomide; or mid to high-efficacy therapy: fingolimod, dimethyl-fumarate, natalizumab, or
544 other monoclonal antibodies (alemtuzumab, rituximab, daclizumab, and ocrelizumab).

545

546 ***Imaging***

547 MRI studies were performed on a 3-Tesla scanner at each center using a standard operating
548 procedure (SOP) to optimize the volumetric analysis. We used the 3-dimensional (3D) isotropic
549 T1-weighted magnetization-prepared rapid gradient echo (T1-MPRAGE) (resolution: 1 x 1 x 1
550 mm³), and 3D T2-fluid-attenuated inversion recovery (T2-FLAIR) images with the same
551 resolution to quantify changes in brain volume. Presence of contrast-enhancing lesions, T2 lesion
552 volume, new or enlarging T2 lesions, and volumetric analysis were done at the Berlin center as
553 previously described (50, 51).

554 Retinal OCT scans were performed using the Spectralis device in three centers and the
555 Nidek device at Oslo center. A single grader at the reading center in Berlin performed intra-retinal
556 layer segmentation using Orion software (Voxeleron Inc, Berkeley, US) to quantify the macular
557 ganglion cell plus inner plexiform layer (GCIPL) and the macular inner nuclear layer thicknesses
558 (μ m) in the 6 mm ring area as previously described (52).

559

560 ***Brain Magnetic Resonance Imaging***

561 All images were acquired from 4 centers with distinct 3-tesla systems after standardizing
562 the acquisition protocols and validating dummy scans by the MRI reading center in Berlin. From
563 Center 1 (Barcelona), a three-dimensional (3D) magnetization prepared rapid gradient echo
564 (MPRAGE) sequence, including the upper cervical cord (0.86 x 0.86 x 0.86 mm resolution,
565 repetition time (TR)=1970 ms, echo time (TE)=2.41 ms), an axial T1-weighted post-gadolinium

566 contrast agent sequence (0.31 x 0.31 x 3 mm resolution, TR=390 ms, TE=2.65 ms), and a 3D fluid-
567 attenuated inversion recovery (FLAIR) sequence, including the upper cervical cord (1 x 1 x 1 mm
568 resolution, TR=5000 ms, TE=393 ms) were acquired longitudinally (2 visits) from 60 MS patients
569 using a Tim Trio MRI (Siemens Medical Systems, Erlangen, Germany). From Center 2 (Oslo), a
570 3D sagittal brain volume (BRAVO) sequence for pre- and post-gadolinium contrast agent
571 administration, including the upper cervical cord (1 x 1 x 1 mm resolution, TR=8.16 ms, TE=3.18
572 ms), and a 3D FLAIR sequence, including the upper cervical cord (1 x 1 x 1.2 mm resolution,
573 TR=8000 ms, TE=127.254 ms) were acquired longitudinally (2 visits) from 97 MS patients using
574 a Discovery MR750 MRI (GE Medical Systems,). From Center 3 (Berlin), a 3D sagittal MPRAGE
575 sequence, including the upper cervical cord (1 x 1 x 1 mm resolution, TR=1900 ms, TE=3.03 ms),
576 and a 3D FLAIR sequence, including the upper cervical cord (1 x 1 x 1 mm resolution, TR=6000
577 ms, TE=388 ms) were acquired longitudinally (2 visits) from 87 MS patients using a Tim Trio
578 MRI (Siemens Medical Systems, Erlangen, Germany). From Center 4 (Genova), a sagittal fast-
579 spoiled gradient-echo (FSPGR) sequence, including the upper cervical cord (1 x 1 x 1 mm
580 resolution, TR=7.312 ms, TE=2.996 ms), a 3D turbo field echo (TFE) sequence for post-
581 gadolinium contrast agent administration (1 x 1 x 1 mm resolution, TR=8.67 ms, TE=3.997 ms),
582 and a 3D FLAIR sequence, including the upper cervical cord (1 x 1 x 1 mm resolution, TR=6000
583 ms, TE=122.162 ms) were acquired longitudinally (2 visits) from 88 MS patients using a Signa
584 HDxt MRI (GE Medical Systems) and Ingenia MRI (Philips Medical Systems).

585

586 ***MRI Post-processing***

587 Analysis for all scans were conducted at the MRI reading center in Berlin. Preprocessing included
588 registration to MNI-152 standard space (fslreorient2std), white and grey matter brain masking

589 (Computational Anatomy Toolbox 12 Toolbox for MATLAB SPM12, <http://www.neuro.uni-jena.de/cat/>), N4-bias field correction (Advanced Normalization Tools,
590 <http://stnava.github.io/ANTs/>) and linear, rigid body registration of T2-weighted (FLAIR) images
591 to T1-weighted (MPRAGE, BRAVO, and FSPGR) images (FSL FLIRT,
592 <https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/UserGuide>). Each second session for each patient T1-
593 weighted image and FLAIR image was co-registered to the individual first session using the
594 transformation matrices saved from the first session transformation from native space images to
595 MNI-152 standard space using FSL FLIRT. Post-contrast agent T1-weighted images were also co-
596 registered to MNI-152 standard space and longitudinally when available.
597

598

599 ***Brain Lesion Segmentation***

600 T2-hyperintense lesion segmentation was performed manually on co-registered T1-
601 weighted images and T2-weighted FLAIR images by two experienced MRI technicians from the
602 Berlin center. Lesions were segmented and saved as binary masks using ITK-SNAP
603 (www.itksnap.org). First session lesion masks were subsequently overlayed onto second session
604 co-registered T1-weighted and FLAIR images for editing, to include any T2-hyperintense lesion
605 changes (i.e., new lesions, enlarging lesions, or decreasing lesions) in the follow-up scans. Any
606 discrepancies in co-registrations that were visible between sessions were corrected manually using
607 the ITK-SNAP automated registration tool prior to follow-up lesion mask edits. Binary gadolinium
608 enhancing lesion masks were created manually using the same tools on the post-gadolinium T1-
609 weighted MR images by the same two technicians. Lesion counts and volumes were extracted
610 from lesion masks using FSL maths (<https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Cluster>).
611

612 ***MRI Analysis***

613 T2-hyperintense lesion masks were used to fill longitudinally co-registered T1-weighted
614 (not post-gadolinium scans) images using FSL lesion filling
615 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/lesion_filling) with white matter masks created from the
616 Computational Anatomy Toolbox for SPM12 (CAT12, <http://www.neuro.uni-jena.de/cat/>). Lesion
617 filled T1-weighted images were then used for whole brain white and grey matter volume
618 extraction, including the follow-up session percent brain volume change (PBVC) using FSL
619 SIENAX/SIENA (<https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SIENA>). The same T1-weighted lesion-
620 filled images were used for whole thalamus volume (sum of left and right thalamic volumes)
621 calculation using FSL FIRST (<https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST>). All volumes are
622 reported in milliliters.

623

624 ***Optical Coherence Tomography***

625 Retinal OCT scans were performed using the Spectralis device in three centers and the
626 Nidek device at Oslo center. OCTs were collected in eye-tracking mode by trained technicians
627 under standard ambient light conditions (lighting level of 80–100 foot-candles) and without
628 pupillary dilatation. Correction for spherical refractive errors was adjusted prior to each
629 measurement, and the technicians performing OCT scans were aware of the patient's clinical
630 history. The peripapillary Retinal Nerve Fiber Layer thickness (pRNFL, μm) was measured with
631 a 12-degree diameter ring scan automatically centered on the optic nerve head (100 ART, 1,536
632 A-scans per B scan). The macular scan protocol involved a 20 x 20-degree horizontal raster scan
633 centered on the fovea, including 25 B scans (ART ≥ 9 , 512 A-scans per B scan). A single grader at
634 the reading center in Berlin performed intra-retinal layer segmentation using Orion software

635 (Voxeleron Inc, Berkeley, US) to quantify the macular ganglion cell plus inner plexiform layer
636 (GCIPL) and the macular inner nuclear layer thicknesses (μm) in the 6 mm ring area as previously
637 described (52). All OCT scans fulfilled OSCAR-IB criteria and scans with an insufficient signal
638 to noise ratio, or when the retinal thickness algorithm failed were repeated, or the data was
639 ultimately excluded.

640

641 ***Flow cytometry***

642 The original cytometry data was obtained on fresh peripheral blood mononuclear cells (PBMCs)
643 using 17 antibodies that covered 22 cell subpopulations of T, B and NK cells as described in detail
644 elsewhere (24). The following cell populations were studied: T cells: CD3+, CD3+CD4+,
645 CD3+CD8+; B cells: CD19+; and NK cells: CD3-CD14-CD56+, as well as the specific
646 subpopulations: Effector cells: Th1 classic: CD3+CD4+CXCR3+CCR6-CD161-; Th17:
647 CD3+CD4+CXCR3+CCR6-CD161+CCR4+; Th1/17: CD3+CD4+CCR6-
648 CD161+CXCR3highCCR4low; Regulatory T cells: CD3+CD4+: Treg CD25+CD127-, T naive
649 CD45RA+CD25low; CD3+CD8+: T reg CD28- and T naive CD28-CD45RA+; B cells: B
650 memory: CD19+CD14-CD24+CD38-; B mature: CD19+CD14-CD24+CD38low; B regulatory:
651 CD19+CD24highCD38high and NK cells: Effector: CD3-CD14-CD56dim: Regulatory: CD3-
652 CD56bright (reg). For validation assays, PBMC in triplicate tubes were stained with BV510-
653 conjugated anti-CD3 (Clone OKT3, Catalog # 317332, BioLegend), APC Cy7-conjugated anti-
654 CD4 (Clone SK3, catalog #344616, BioLegend), BV421-conjugated anti-CD25 (Clone BC96,
655 catalog # 302630, BioLegend), AF700-conjugated anti-CD127 (Clone A019D5, catalog # 351344,
656 BioLegend), PE Cy7-conjugated anti-CD19 (Clone HIB19, catalog # 302215, BioLegend), PE-
657 conjugated anti-CD24 (Clone ML5, catalog # 311105, BioLegend) and PE/Dazzle594-conjugated

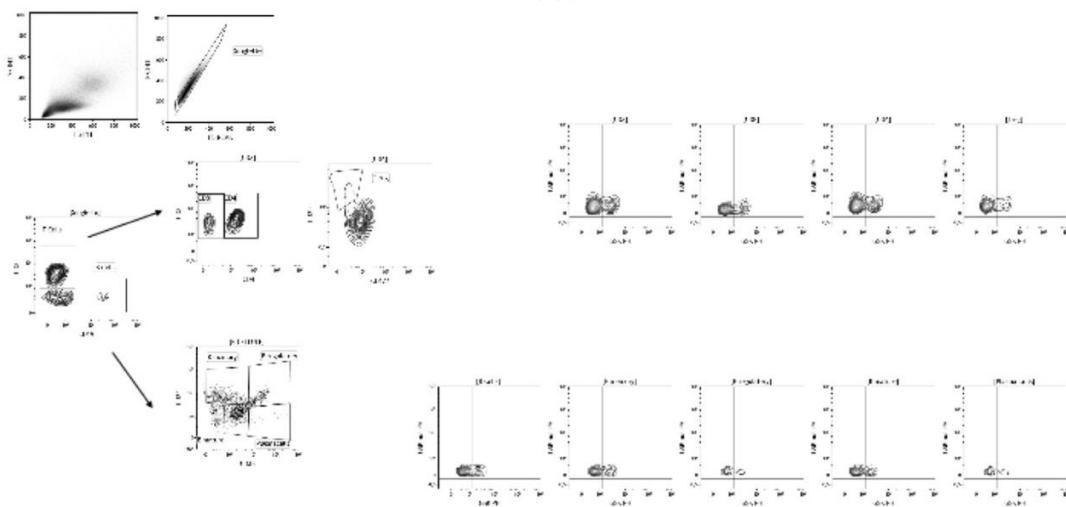
658 anti-CD38 (Clone HB-7, catalog # 356630, BioLegend) antibodies in solution for 30 min at 4° C
659 and washed twice with PBS. The cells were then fixed and permeabilized with Cytofix/Citoperm
660 (BD Bioscience), according to the manufacturer's instructions. For intra-cellular staining, the cells
661 were blocked with 5% normal goat serum for 20 min on ice to prevent non-specific binding of the
662 antibodies, and stained for total and relevant phosphoproteins with the following antibodies in one
663 of the three tubes: Tube 1: mouse monoclonal anti-human RPS6 (Clone 522731, catalog #
664 MAB5436, R&D Systems) and rabbit polyclonal anti-human Phospho-RPS6 (Catalog # AF3918,
665 R&D Systems); Tube 2: rat monoclonal anti-human GSK-3B(Clone 272536, catalog # MAB2506,
666 R&D Systems) and rabbit polyclonal anti-human Phospho-GSK-3BCatalog # AF1590, R&D
667 Systems); and Tube 3: mouse monoclonal anti-human HSP27 (Clone G31, catalog # 2402; Cell
668 Signaling Technology) and rabbit polyclonal anti-human Phospho-HSP27 (Catalog #AF2314,
669 R&D Systems) antibodies. All primary antibodies were used at a concentration of 5 μ g per 1 x
670 10⁶ cells. The cells were then washed twice and incubated on ice for 15-20 min with the
671 appropriate fluorescent-conjugated secondary antibodies, Alexa Fluor 488-conjugated goat anti-
672 rabbit IgG (Catalog # A-11070, Invitrogen; 1:100 dilution), APC-conjugated goat anti-mouse IgG
673 (Catalog # 405308, BioLegend; 1:100 dilution), or APC-conjugated goat anti-rat IgG (Catalog #
674 405407, BioLegend; 1:100 dilution), in 5% normal goat serum. The cells were then washed twice,
675 resuspended in assay buffer, and analyzed on a Beckman Coulter Navios flow cytometer. Analysis
676 was performed using Kaluza software. Phosphorylation levels were defined in terms of mean
677 fluorescence intensity (MFI) of phosphorylated protein over MFI of total protein. A representative
678 cytometry plot for each of the three phosphoproteins is shown in Figure 7. Gating strategy and
679 representative cytometry plots for showing the cell sorting and signal intensity for phospho-
680 GSK3Ab, phospho-HSPB1 and phospho-SR6 assays.

681

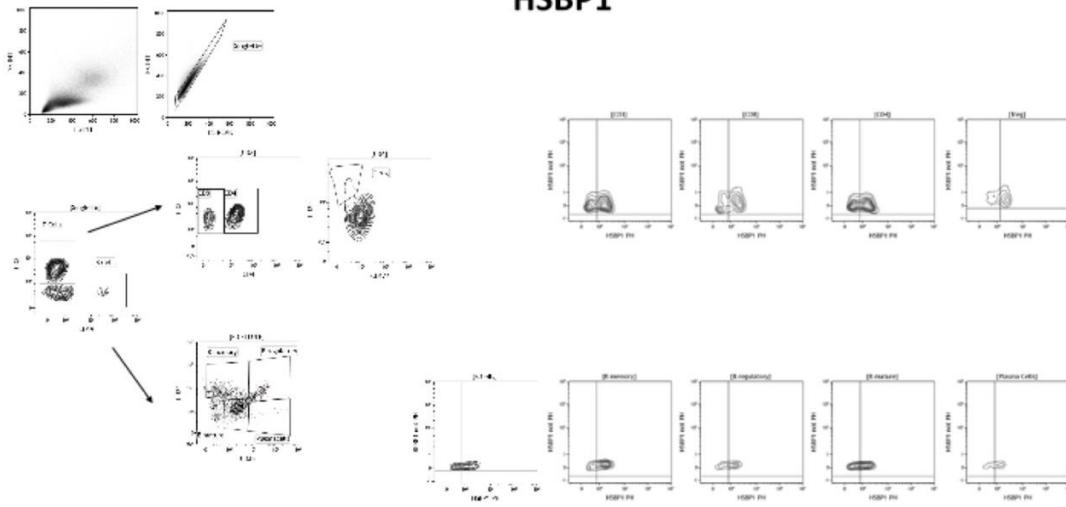
682 **Figure 7. Cytometry plots for the expression of phosphoGSK3AB, phosphoHSBP1 and**
683 **phosphor RS6 in immune cell subpopulations.** The gating strategy for phospho-flow
684 cytometry analysis. Examples of phospho-GSK3AB, phospho-HSBP1, and phospho-RS6
685 staining in the immune cell subpopulations for MS patients are presented.

686

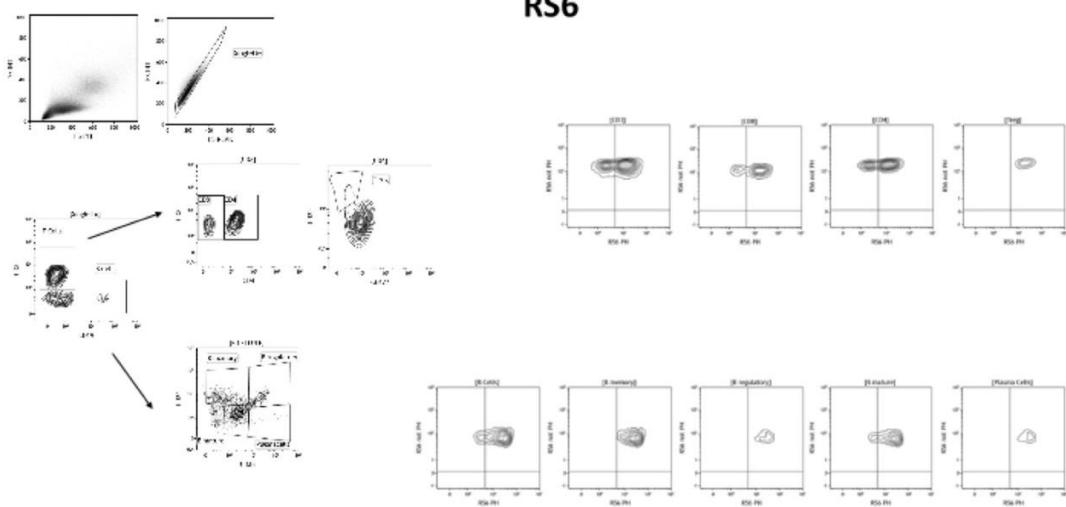
GSK



HSBP1



RS6



688

689 ***Genotyping***

690 Genotyping of the samples was performed by FIMM Genomics (University of Helsinki,
691 Finland) on the Illumina HumanOmniExpress-24 v1.2 array (713,599 genotypes from 396
692 samples). SNPs imputation was conducted against the 1000-genomes reference (quality of
693 imputation $r^2 > 0.5$; 6,817,000 genotypes for 396 samples), which allowed to extract MS-
694 associated SNPs (152 out of 200 known MS-associated SNPs available and 17 out of 31 known
695 MS-associated HLA alleles available (HLA*IMP program)) as described elsewhere (53). The
696 MS Genetic Burden Score (MSGB) for the HLA and non-HLA alleles and their combination was
697 calculated as described previously (26). Briefly, the MSGB is computed based on a weighted
698 scoring algorithm using one SNP per MS associated genomic region as found by trend-test
699 association (meta-) analysis. This statistic is an extension of the log additive model, termed
700 “Clinical Genetic Score”, with weights given to each SNP based on its effect size as reported in
701 the literature. The MSGB is obtained by summing the number of independently associated MS
702 risk alleles weighted by their beta coefficients, obtained from a large GWAS meta- analysis, at
703 177 (of 200) non-MHC (major histocompatibility complex) loci and 18 (of 32) MHC variants,
704 which includes the HLA-DRB1*15:01-tagging single-nucleotide polymorphism (SNP)
705 rs3135388.

706

707 ***Expanded genetic network including regulatory network information***

708 The SNPs were mapped with their nearest gene by the IMSVISUAL consortium (59), and
709 a network was constructed using data from the Gene Regulatory Network Database (GRNdb)
710 (60, 61). The database provides networks of transcription factors (TFs) from various cell types in

711 the human body. The gene regulatory network (GRN) within PBMCs was used containing
712 12,878 genes, of which we only considered the subset of genes that were mapped to the SNPs
713 from our study. Taking a subset in this way causes some of the regulatory information to be lost,
714 such as two genes that are regulated by the same TF. There is still a relationship between two
715 such genes, although indirect. To include this information in the network of MS genes, an edge
716 was added between two genes that share a transcription factor.

717 Once the GRN of MS genes was obtained, each gene was then replaced with its
718 corresponding SNP. This is not a one-to-one mapping, as there are some SNPs that are mapped
719 to the same gene. In this case, edges are placed among all SNPs that share a gene. This allows
720 the GRN to be compared with the other layers in the combined network. Finally, only edges that
721 appear in the original network of SNPs connected with Pearson correlation are kept, and their
722 weights are used in the GRN. Details of these networks can be found in
723 <https://keithtopher.github.io/networks/#/>.

724

725 ***XMAP Phosphoproteomics***

726 Phosphoprotein levels were quantified using xMAP assays performed blindly at
727 ProtAtOnce (Athens, Greece) as described previously (25, 27). We analyzed a set of kinases
728 associated with MS (9) which provides an adequate signal to noise ratio and test-retest
729 reproducibility: AKT1, AKTS1, CREB1, GSK3AB, HSPB1, IKBA, JUN, KS6B1, LCK, MK12,
730 MK03/01, MK09, MP2K1, NRF2, P53, PGFRB, PTN11, RS6, SRC, STAT1, STAT3, STAT5,
731 STAT6, TF65, WNK1. Phosphoprotein data was normalized after the measurements were taken
732 as described elsewhere (27).

733

734 ***Data Processing***

735 The omics and clinical datasets were ultimately used to build the multilayer network, where
736 each dataset represents a layer in the network. The data were examined to handle missing values,
737 identify which patients have data from which layers, as well as divided into groups based on
738 gender, disease severity, medication, etc. No imputation was used in this study. Patients were
739 divided into mild and severe groups according to the tertiles of their age-related multiple sclerosis
740 severity (ARMSS) score. Patients in the lower 40th percentile were classified as mild, and those
741 in the upper 40th percentile classified as severe. The 2-year follow-up data from the clinical and
742 imaging layers were used to calculate the change from baseline, and these changes were added as
743 new variables.

744

745 ***Multilayer network construction***

746 Individual networks were constructed from the five layers by computing mutual
747 information between nodes within each layer, due to the inherent nonlinear nature of biological
748 processes. First, the networks within an individual layer were constructed, and then the networks
749 across layers (see **Figure 2** for details on degree distribution for each layer). This step was done
750 separately for two reasons: first to highlight the inherent differences (including biological scale)
751 among the various layers, and second to utilize the maximum number of subjects available for
752 each dataset. This is because not all subjects have data for both cytomics and proteomics.

753 Once individual layer networks were constructed, the features between layers were
754 connected together, again with mutual information. Not all layers are interconnected, however,
755 due to a predetermined hierarchy applied to the system (see **Figure 1g**). Ultimately, this
756 produced a network of five connected layers, where each layer contains features from each of the

757 five original datasets. A pipeline for the construction of the networks is shown in **Figure 1**. A
758 second type of network was constructed using all five datasets, this time using linear correlation
759 to define the edges, and such network was later used in the path analysis.

760

761 ***Calculation of correlation for edges***

762 The method to calculate the edge weights in our networks was adopted from the
763 ARACNE method (62) and simplified. The networks were constructed using mutual information,
764 using the traditional binning method to calculate the mutual information pairwise between all the
765 elements within individual layers and later between layers (63-65). The data for a given element
766 are split into 10 equally spaced bins, and the probability of falling within a certain bin is
767 calculated for each element individually as well as the joint probability for a two-point
768 coordinate falling within a certain two-dimensional 1/10 by 1/10 size bin. The formula for the
769 mutual information between two variables X and Y is

$$770 \quad I(X, Y) = \sum_{i,j} p(i, j) \log \frac{p(i, j)}{p_x(i)p_y(j)}, \quad (1)$$

771 where $p_x(i)$ and $p_y(j)$ are the marginal probabilities for variables X and Y, respectively, and $p(i, j)$
772 is the joint probability between X and Y. The python package *scikit-learn* (66) was used for the
773 mutual information calculation.

774 Once the mutual information value is calculated, a threshold is needed to determine if
775 there is indeed a correlation between the two elements. Random permutations over subjects are
776 performed separately for both variables, and the mutual information is calculated over the
777 permuted data. This process is repeated 1000 times, and a distribution is obtained of random
778 mutual information values (surrogates). The mutual information value obtained from the original
779 data is compared to the distribution of random values to determine if it is significantly higher

780 than the distribution. The distribution is treated as Gaussian, and the original mutual information
781 value is considered significant if it passes a z-test with p-value lower than p=0.05. Edges are
782 placed between all significant pairs. Weights are assigned using the normalized value of mutual
783 information, which falls between 0 (no correlation) and 1 (perfect correlation).

784 The combined network (later used for the path analysis) was constructed using Pearson
785 correlation. The Pearson correlation coefficient was calculated pairwise between each of the
786 elements included in the two datasets, using the python package *scipy* (67). An edge was defined
787 if the p-value associated with the correlation was lower than p=0.05. Next, the value of the
788 Pearson correlation itself was used as the weight of the edge, giving a weight that falls between -
789 1 (perfect negative correlation) and 1 (perfect positive correlation).

790

791 ***Path identification via Boolean modeling***

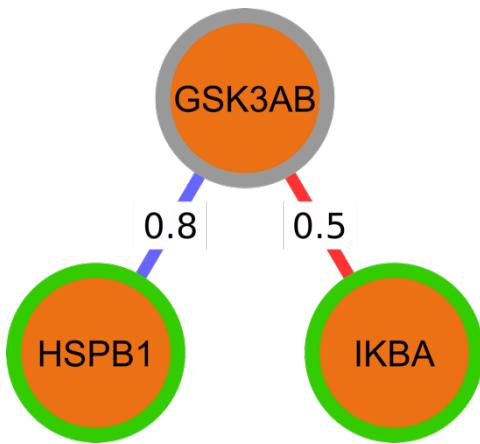
792 The method of path identification was inspired by Domedel et al (30). The combined
793 five-layer network was constructed using Pearson correlation, and information flow across it was
794 analyzed using Boolean simulations. This is done to examine how perturbing the network affects
795 nodes within the various layers, especially those representing the phenotype. The genomics
796 network in this case was modified further, utilizing information about regulatory interactions
797 from the Gene Regulatory Network Database (28), between the genes that are mapped to the
798 SNPs (described further above). The exact chemical reactions between proteins and cells are
799 ignored, giving a qualitative description of the system (29). The goal of this step is to identify
800 differences in paths responsible for triggering immune responses in healthy subjects compared to
801 MS patients.

802 For simplicity, each element in the network (from one of the five layers) is considered to
803 be in one of two states: active/inactive. For example, this represents high/low levels of
804 phosphorylation for proteins. The Boolean simulation begins in a random state where each
805 element has a 50% probability of starting as active or inactive. At each step, the elements'
806 activation states are updated based on the sum of the states of their neighbors. The nature of the
807 connections between elements is key, as they have either activating (positive) or inhibitory
808 (negative) relationships. For a given node, each neighbor contributes a score based on the weight
809 and the sign of the connection of the corresponding Pearson correlation. The total sum of the
810 weights of the neighbors determines whether the node will be active or inactive on the next
811 iteration.

812 As an example, consider the protein GSK3AB (inactive) with neighbors HSPB1 (active)
813 and IKBA (active), as seen in **Figure 8**. Let's say there is a positive connection between
814 GSK3AB and HSPB1 with a weight of 0.8, and a negative connection between GSK3AB and
815 IKBA with a weight of 0.5. Since HSPB1 is active and has a positive relationship with
816 GSK3AB, it contributes a score of +0.8 to change GSK3AB to the active state. Since IKBA is
817 active and has a negative relationship with GSK3AB, it contributes a score of -0.5 to GSK3AB
818 inactive. Overall, we have a score of +0.3, so GSK3AB becomes active.

819

820 **Figure 8.** Depiction of summing weights to determine next activation state in Boolean
821 simulations. A green border represents an active node, and a grey border represents an inactive
822 one.



823

824

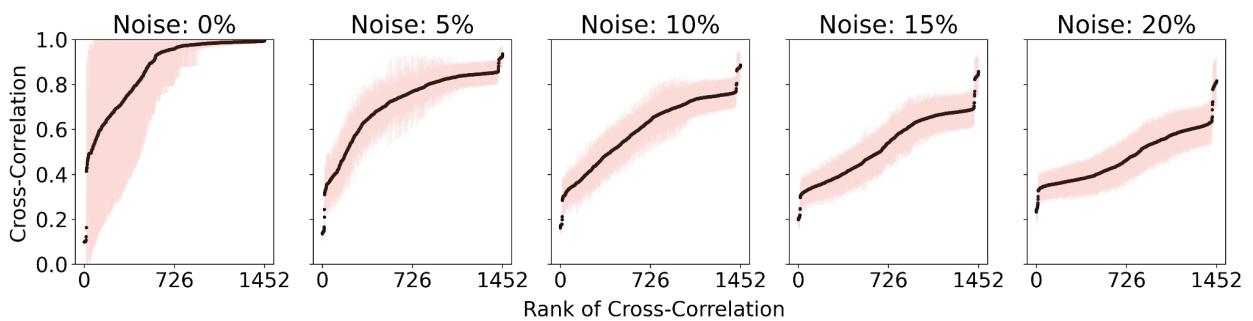
825 Each step of the simulation was run in this manner and continued for 100 steps. One of
826 the MSGB scores, proteins or cells was chosen as the input, where it was manually flipped
827 between active and inactive states with a defined period (in this case 10 iterations active, then 10
828 iterations inactive). This was done to examine how perturbations in the input node travel through
829 the network and ultimately affect a given phenotype (output). The perturbations themselves
830 represent changes between low to high values in the distribution for a given MSGB scores,
831 protein, or cell. For the MSGB non-HLA score, the perturbations flip the value between high and
832 low genetic risk. For a protein such as GSK3AB, the values flip between low and high
833 phosphorylation. Finally for a cell such as B Memory, the values alternate between high and low
834 cell counts.

835 Noise was also added to the system, where each element has a set probability of changing
836 its state at each iteration. The effect of noise can be illustrated in **Figure 9**. This addition of noise
837 reflects the inherent stochasticity in biological systems as well as prevents the simulations from
838 simply settling directly into a fixed state. The noise was chosen to be 5% because this allows
839 greater differences for the cross-correlation of the signals between nodes as shown in **Figure 9**.
840 With no noise at all, many of the nodes remain either active or inactive for the majority of the

841 simulation. This causes the cross-correlations to be too high between nodes, and the subtle
842 differences in the strength of the connections is not seen.

843

844 **Figure 9:** Effect of noise in Boolean simulations on the cross-correlation coefficient of the
845 signals between nodes in the combined network. With 0% noise, a majority of the cross-
846 correlation values are nearly 1, which does not allow the node pairs to be easily ranked based on
847 the strength of their connections. With 5% noise, there is more deviation in the cross-correlation
848 values, which allows the paths between a chosen source and target to be more easily identified.



849

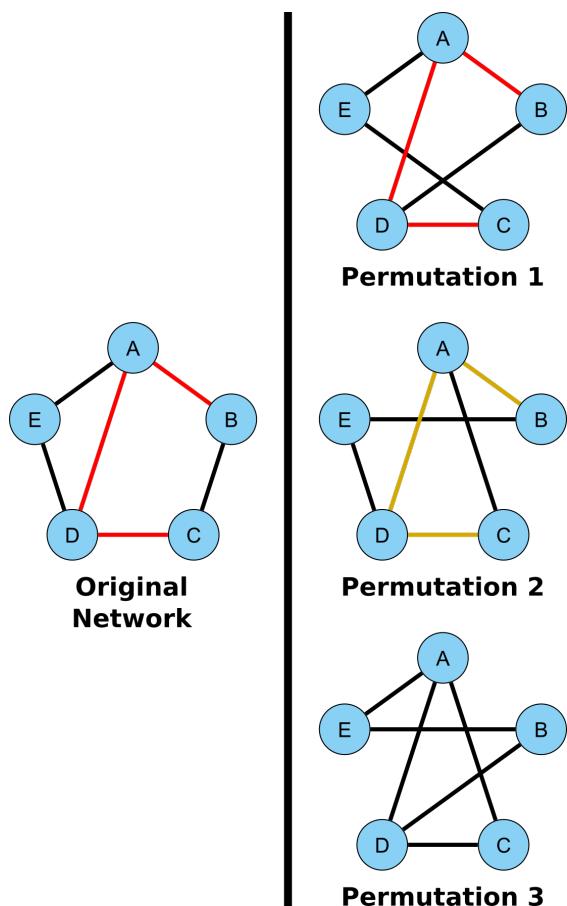
850

851 Once the simulations were run, the temporal cross-correlation function was calculated
852 between all pairs of nodes. The cross-correlation is a measure of similarity classically used in
853 signal processing and is the same used in (30). The maximum cross-correlation (which could
854 occur at a non-zero lag time) was determined, and its inverse is placed as a weight on the edges
855 of the existing network, in such a way that a high correlation would correspond in this case to a
856 low weight. In case there was no edge in the original network, no edge is defined in the new
857 network either. A cell type or phenotype is selected as a target (output), and the most efficient
858 paths are identified between it and the fixed source (input). An "efficient" path is defined as one
859 in which the total sum of the weights (inverse maximum cross-correlations) of the edges
860 connecting the source and target (called a path score) is lower than the rest. This definition

861 favors both low number of steps and high cross-correlations between nodes within a path. A
862 shortest path algorithm developed by (65) was used, which gives precedence to the lowest path
863 scores.

864 Simulations were conducted between every possible pair of inputs (MSGB, proteins, or
865 cells) and outputs (cells or phenotypes). Overall, the simulations aim to reveal how information
866 flows through the entire networks, providing insight on underlying pathology in MS. This
867 provides useful biological information, as differences in paths can be accessed between various
868 subsets of patients (mild, severe, progressive MS, relapse-remitting MS, untreated, low-efficacy,
869 and high-efficacy treatments). The algorithm for performing the Boolean simulations and the
870 path identification is represented schematically in Figure 2.

871 In order to test the consistency of the results, we ran 100 simulations for each source,
872 then these 100 simulations were used to calculate the cross-correlation between proteins/cells to
873 identify the paths. We applied a jackknife resampling 10 times, first taking 90 random samples,
874 then 80 random samples. In both cases, 9 out of 10 paths on average were identical over all
875 protein sources and cell targets. Also, as stated in the main text, negative controls were
876 considered by permuting the network before running the Boolean simulations. An illustration of
877 the process for permuting the networks and identifying their corresponding paths is shown in
878



879

880

881 **Figure 10: Network permutation for negative controls of paths.** The five-layer network built
882 using Pearson correlation is used as the base network. For each of the 100 repetitions, the
883 network was permuted by swapping the edges between pairs of nodes. In permutation 1, the edge
884 between B and C was swapped with the edge between D and E. In the permutation 2, the edge
885 between A and E was swapped with the edge between B and C. In permutation 3, first the edge
886 swap from the top network was applied, followed by the edge swap from the middle network. In
887 each case, the edge swap can only be done if it does not result in two edges between the same
888 pair of nodes. Making the permutation in this way keeps the original degree distribution of the
889 network. The weights for each of the edges are permuted as well. This edge swapping technique
890 is applied 10 times for each edge in the original network. After they are permuted, the top paths

891 for each network are identified in the same manner as before. There are three possibilities for
892 considering whether the paths from the original network appear in the paths from the permuted
893 networks. In permutation 1, the path exists in the permuted network and furthermore was
894 identified as a top path. In permutation 2, the original path does exist in the permuted network
895 but was not identified as a top path. In permutation 3, the original path doesn't exist in the
896 permuted network at all.

897

898 ***Combinatorial analysis***

899 All possible combinations of source sources (MSGB scores, proteins, cells) and targets
900 (cells, imaging and clinical phenotype) were used to identify top paths. The simulations were run
901 with each protein as a source, where it remained active for 10 steps, then inactive for 10 steps.
902 After the simulations were run for each source, and the cross-correlation values were calculated,
903 each cell type was selected to be the endpoint for the path finding algorithm. This was performed
904 as a screening process to create an ensemble of paths for each source/target pair. Their
905 significance in the phenotype was assessed next.

906

907 ***Statistical analysis***

908 The study was designed with a 1:4 ratio controls vs MS patients are based in the
909 following reasoning: 1) the goal was the prediction of the phenotype and for such analysis only
910 MS cases will be used; 2) controls were only used for the logistic regression comparing the
911 diagnosis; 3) MS is heterogenous and for this reason it was expected to perform comparisons
912 between subgroups based on disease subtype and therapy, requiring a bigger sample size for the

913 MS group. For this reason, we designed a 4:1 ratio. Controls were collected in equal proportion
914 from all participant centers in order to avoid center bias.

915 Descriptive statistics, normal distribution assessment, and class comparison analysis was
916 performed for the five layers. The Mann-Whitney test was used due to non-normal distributions
917 being present in both datasets. Mutual information was used in constructing the topological
918 networks for all five layers.

919

920 ***Network statistics***

921 Network metrics were calculated from the networks constructed using mutual
922 information. including average degree and density. The clinical and imaging datasets lack
923 information from healthy controls, so networks were not constructed in these cases. The average
924 degree is given for each individual layer for healthy controls and MS patients, including those
925 who are not treated with fingolimod (**Table 2**). Considering the omics datasets, all three of
926 cyomics, proteomics, and genomics saw a significant increase in degree from the healthy
927 network to all patient network at the 5% significance level. When comparing groups of patients
928 treated with any medication versus groups excluding the patients treated with Fingolimod (a
929 high-efficacy treatment with notable effects on cell counts in the immune system³, the cyomics
930 networks saw decreases in degree in every case, and the genomics saw decreases for all patient
931 and mild patient networks.

932

933 ***Table 2. Average degree of individual networks constructed using mutual information to***
934 ***define edges. These degrees do not consider the connections among layers. The superscripts***
935 ***(a,b) represent cases where there was a significant change when comparing degree distributions.***

936 *The Mann-Whitney test was used for all pairings, due to the non-normality of the degree*
937 *distributions.*

938 ^a *Significant increase (p-val < 0.05) in degree between healthy controls and all patients.*

939 ^b *Significant decrease (p-val < 0.05) in degree between all patients in a given subset (all, mild,
940 or severe) and those not treated with Fingolimod.*

941

942

943

944

Average Degree

	Healthy	All Patients	Patients w/o Fingo	Mild Patients	Mild w/o Fingo	Severe Patients	Severe w/o Fingo
Clinical	-	11.2	11.4	8.0	8.1	7.8	7.2
Imaging	-	6.3	6.3	4.6	4.6	3.5	3.4
Cytomics	2.5 ^a	8.8	6.0 ^b	5.8	3.8 ^b	5.7	3.6 ^b
Proteomics	5.0 ^a	8.0	7.5	3.9	2.9	5.5	5.8
Genomics	12.2 ^a	13.3	12.6 ^b	12.2	13.0 ^b	12.4	12.3

945

946 Data availability

947 Anonymized raw data of the Sys4MS cohort is available at MultipleMS database

948 (www.multiplems.eu) upon reasonable request and a web interface of the networks

949 (https://keithtopher.github.io/single_networks/#/ and
950 https://keithtopher.github.io/combo_networks/#/) and paths
951 (https://keithtopher.github.io/fivelayer_pathways/)
952 are available at Github.

953

954 **Acknowledgements**

955 We would like to thank the MS society of Norway and Italy and the GAEM foundation from
956 Barcelona, Spain for the feedback provided to this project. We would also like to thank Dr David
957 Gomez from the Department of Pediatric Neurology, Hospital Vall d'Hebron, Barcelona, Spain,
958 for the review of the linear regression models. We also thank Dr. Ina Brorson for imputation of
959 the genetic data and the research optometrists in prof. Liv Drolsums lab at Oslo University
960 Hospital for help with the follow-up visual examinations and OCT scans and Fernanda Kropf
961 and Ingrid Mo for technical assistance in preparation of biological samples.

962 **Study Funding:** This work was supported by the European Commission (ERACOSYSMED
963 ERA-Net program, Sys4MS project, id:43), Instituto de Salud Carlos III, Spain (AC1500052);
964 the Italian Ministry of Health (WFR-PER-2013-02361136), the German Ministry of Science
965 (Deutsches Teilprojekt B “Förderkennzeichen: 031L0083B) and the Norwegian Research
966 Council (project 257955). K.E.K and J.G-O. were supported by the Spanish Ministry of Science
967 and Innovation and FEDER, under project PID2021-127311NB-I00, by the Maria de Maeztu
968 Programme for Units of Excellence in R&D (grant CEX2018-000792-M), and by the Generalitat
969 de Catalunya (ICREA Academia programme).

970

971 **Author Contributions**

Name	Center	Role	Contribution
Keith Kennedy	UPF	author	Design and conceptualized study; analyzed the data; drafted the manuscript for intellectual content
Nicole Kerlero de Rosbo	Ospedale Policlinico San Martino- and University of Genova	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data; drafted the manuscript for intellectual content
Antonio Uccelli	Ospedale Policlinico San Martino- and University of Genova	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data; drafted the manuscript for intellectual content
Maria Cellerino	Ospedale Policlinico San	author	Major role in the acquisition of data; analyzed the data; reviewed the manuscript for intellectual content

	Martino- and University of Genova		
Federico Ivaldi	Ospedale Policlinico San Martino- and University of Genova	author	Major role in the acquisition of data; analyzed the data; reviewed the manuscript for intellectual content
Paola Contini	Ospedale Policlinico San Martino- and University of Genova	author	Major role in the acquisition of data; analyzed the data; reviewed the manuscript for intellectual content
Raffaele De Palma	Ospedale Policlinico San	author	Major role in the acquisition of data; analyzed the data; reviewed the manuscript for intellectual content

	Martino-and University of Genova		
Hanne Harbo	Oslo University Hospital and University of Oslo	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data; drafted the manuscript for intellectual content
Tone Berge	Oslo University Hospital	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data; drafted the manuscript for intellectual content
Steffan Bos	University Oslo	author	Major role in the acquisition of data; analyzed the data
Einar A. Høgestøl	Oslo University Hospital	author	Major role in the acquisition of data; analyzed the data

Synne Brune-Ingebretsen	Oslo University Hospital	author	Major role in the acquisition of data; analyzed the data
Sigrid A. de Rodez Benavent	Oslo University Hospital	author	Major role in the acquisition of data; analyzed the data
Friedemann Paul	Charité - Universitäts medizin Berlin	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data; drafted the manuscript for intellectual content
Alexander Brandt	Charité - Universitäts medizin Berlin	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data; drafted the manuscript for intellectual content
Priscilla Bäcker-Koduah	Charité - Universitäts medizin Berlin	author	Major role in the acquisition of data; analyzed the data
Janina Behrens	Charité - Universitäts	author	Major role in the acquisition of data; analyzed the data

	medizin Berlin		
Joseph Kuchling	Charité - Universitäts medizin Berlin	author	Major role in the acquisition of data; analyzed the data
Eva S Asseyer	Charité - Universitäts medizin Berlin	author	Major role in the acquisition of data; analyzed the data
Michael Scheel	Charité - Universitäts medizin Berlin	author	Major role in the acquisition of data; analyzed the data
Claudia Chien	Charité - Universitäts medizin Berlin	author	Major role in the acquisition of data; analyzed the data
Hanna Zimmermann	Charité - Universitäts	author	Major role in the acquisition of data; analyzed the data

	medizin Berlin		
Seyedamirhos ein Motamedi	Charité - Universitäts medizin Berlin	author	Major role in the acquisition of data; analyzed the data
Josef Kauer- Bonin	Charité - Universitäts medizin Berlin	author	Major role in the acquisition of data; analyzed the data
Julio Saez- Rodriguez	University of Heidelberg	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data; drafted the manuscript for intellectual content
Melanie Rinas	University of Heidelberg	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data
Leonidas Alexopoulos	ProtATonce Ltd	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data
Magi Andorra	IDIBAPS	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data

Elena H. Martinez- Lapiscina	IDIBAPS	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data
Sara Llufriu	IDIBAPS	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data
Albert Saiz	IDIBAPS	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data
Eloy Martinez- Heras	IDIBAPS	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data
Elisabeth Solana	IDIBAPS	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data
Irene Pulido- Valdeolivas	IDIBAPS	author	Major role in the acquisition of data, Design and conceptualized study; analyzed the data
Jordi Garcia- Ojalvo	UPF	author	Design and conceptualized study; analyzed the data; drafted the manuscript for intellectual content

Pablo Villoslada	UPF - IDIBAPS	author	Design and conceptualized study; analyzed the data; drafted the manuscript for intellectual content
---------------------	------------------	--------	---

972

973 **Conflict of Interest**

974 Keith Kennedy reports no disclosures.

975 Nicole Kerlero de Rosbo reports no disclosures.

976 Antonio Uccelli received grants and contracts from FISM, Novartis, Biogen, Merck, Fondazione

977 Cariplo, Italian Ministry of Health, received honoraria, or consultation fees from Biogen, Roche,

978 Teva, Merck, Genzyme, Novartis.

979 Federico Ivaldi reports no disclosures

980 Maria Cellerino reports no disclosures.

981 Hanne F. Harbo has received honoraria for lecturing or advice from Biogen, Merck, Roche,

982 Novartis and Sanofi.

983 Tone Berge has received unrestricted research grants from Biogen and Sanofi-Genzyme.

984 Steffan Daniel Bos reports no disclosures.

985 Einar Høgestøl received honoraria for lecturing and advisory board activity from Biogen, Merck

986 and Sanofi-Genzyme and unrestricted research grant from Merck.

987 Synne Brune Ingebrightsen reports no disclosures.

988 Sigrid A. de Rodez Benavent reports no disclosures.

989 Friedemann Paul received honoraria and research support from Alexion, Bayer, Biogen, Chugai,

990 Merck Serono, Novartis, Genzyme, MedImmune, Shire, Teva, and serves on scientific advisory

991 boards for Alexion, MedImmune, and Novartis. He has received funding from Deutsche

992 Forschungsgemeinschaft (DFG Exc 257), Bundesministerium für Bildung und Forschung
993 (Competence Network Multiple Sclerosis), Guthy Jackson Charitable Foundation, EU
994 Framework Program 7, National Multiple Sclerosis Society of the USA.
995 Alexander Ulrich Brandt is named as inventor on multiple patents and patents pending owned by
996 Charité - Universitätsmedizin Berlin and/or University of California Irvine for visual computing-
997 based motor function analysis, multiple sclerosis serum biomarkers, and retinal image analysis.
998 He is cofounder and holds shares of Motognosis GmbH and Nocturne GmbH. He serves on the
999 executive board and is Treasurer/Secretary of IMSVISUAL. He received research support from
1000 BMWi, BMBF, NIH ICTS, the Kathleen C. Moore Foundation and the Guthy- Jackson
1001 Charitable Foundation.
1002 Priscilla Bäcker-Koduah is funded by the DFG Excellence grant to FP (DFG exc 257) and is a
1003 Junior scholar of the Einstein Foundation.
1004 Claudia Chien received honoraria for speaking from Bayer and research funding from Novartis,
1005 unrelated to this study.
1006 Susanna Asseyer received a conference grant from Celgene and honoraria for speaking from
1007 Alexion, Bayer and Roche.
1008 Janina Behrens reports no disclosures.
1009 Julio Saez-Rodriguez declares funding from GSK & Sanofi and fees from Travere Therapeutics &
1010 Singularity Bio
1011 Melanie Rinas reports no disclosures.
1012 Leonidas G Alexopoulos is founder and hold stocks at ProtATonce
1013 Magi Andorra is an employee of Hoffman-La Roche AG, yet this article is related to his activity
1014 at the Hospital Clinic of Barcelona.

1015 Elena H Martinez-Lapiscina is an employee of the European Medicines Agency (Human
1016 Medicines) since 16 April 2019, yet this article is related to her activity at the Hospital Clinic of
1017 Barcelona and consequently, it does not in any way represent the views of the Agency or its
1018 Committees

1019 Sara Llufriu received compensation for consulting services and speaker honoraria from Biogen
1020 Idec, Novartis, TEVA, Genzyme, Sanofi and Merck

1021 Albert Saiz received compensation for consulting services and speaker honoraria from Bayer-
1022 Schering, Merck-Serono, Biogen-Idec, Sanofi-Aventis, TEVA, Novartis and Roche

1023 Eloy Martinez-Heras reports no disclosures.

1024 Elisabeth Solana received travel reimbursement from Sanofi and ECTRIMS and reports personal
1025 fees from Roche Spain.

1026 Irene Pulido-Valdeolivas is currently an employee of UCB pharma, yet this article is related to
1027 her activity at the Hospital Clinic of Barcelona. She has received travel reimbursement from
1028 Roche Spain and Genzyme-Sanofi, European Academy of Neurology, and European Committee
1029 for Treatment and Research in Multiple Sclerosis for international and national meetings over the
1030 last 3 years; she holds a patent for an affordable eye-tracking system to measure eye movement
1031 in neurologic diseases, and she holds stock in Aura Innovative Robotics.

1032 Jordi Garcia-Ojalvo reports no disclosures.

1033 Pablo Viloslada has received consultancy fees and held stocks from Accure Therapeutics SL,
1034 Attune Neurosciences Inc, Spiral Therapeutics Inc, QMenta Inc, CLight Inc, NeuroPrex Inc,
1035 StimuSIL and Adhera Health Inc.

1036

1037 **References**

1038 1. S. Ogino *et al.*, Integration of pharmacology, molecular pathology, and population data science to
1039 support precision gastrointestinal oncology. *NPJ Precis Oncol* **1**, 40 (2017).

1040 2. W. Zhou *et al.*, Longitudinal multi-omics of host-microbe dynamics in prediabetes. *Nature* **569**,
1041 663-671 (2019).

1042 3. N. D. Price *et al.*, A wellness study of 108 individuals using personal, dense, dynamic data
1043 clouds. *Nat Biotechnol* **35**, 747-756 (2017).

1044 4. S. Boccaletti *et al.*, The structure and dynamics of multilayer networks. *Phys Rep* **544**, 1-122
1045 (2014).

1046 5. A. Aleta, Y. Moreno, Multilayer Networks in a Nutshell. *Annual Review of Condensed Matter
1047 Physics* **10**, 45-62 (2019).

1048 6. Y. Hasin, M. Seldin, A. Lusis, Multi-omics approaches to disease. *Genome Biol* **18**, 83 (2017).

1049 7. A. J. Thompson, S. E. Baranzini, J. Geurts, B. Hemmer, O. Ciccarelli, Multiple sclerosis. *Lancet
1050* **391**, 1622-1636 (2018).

1051 8. C. International Multiple Sclerosis Genetics, Multiple sclerosis genomic map implicates
1052 peripheral immune cells and microglia in susceptibility. *Science* **365**, eaav7188 (2019).

1053 9. E. Kotelnikova *et al.*, Signaling networks in MS: A systems-based approach to developing new
1054 pharmacological therapies. *Mult Scler* **21**, 138-146 (2015).

1055 10. A. U. Brandt *et al.*, Association of a Marker of N-Acetylglucosamine With Progressive Multiple
1056 Sclerosis and Neurodegeneration. *JAMA neurology* **78**, 842-852 (2021).

1057 11. S. R. Murua, M. F. Farez, F. J. Quintana, The Immune Response in Multiple Sclerosis. *Annu Rev
1058 Pathol* **17**, 121-139 (2021).

1059 12. F. Ingelfinger *et al.*, Twin study reveals non-heritable immune perturbations in multiple sclerosis.
1060 *Nature* 10.1038/s41586-022-04419-4 (2022).

1061 13. R. M. Ransohoff, D. A. Hafler, C. F. Lucchinetti, Multiple sclerosis-a quiet revolution. *Nat Rev
1062 Neurol* **11**, 134-142 (2015).

1063 14. A. Ascherio, K. L. Munger, Epidemiology of Multiple Sclerosis: From Risk Factors to
1064 Prevention-An Update. *Semin Neurol* **36**, 103-114 (2016).

1065 15. E. Waubant *et al.*, Environmental and genetic risk factors for MS: an integrated review. *Ann Clin*
1066 *Transl Neurol* **6**, 1905-1922 (2019).

1067 16. K. Bjornevik *et al.*, Longitudinal analysis reveals high prevalence of Epstein-Barr virus
1068 associated with multiple sclerosis. *Science* **375**, 296-301 (2022).

1069 17. E. Kotelnikova *et al.*, Dynamics and heterogeneity of brain damage in multiple sclerosis. *PLoS*
1070 *Comput Biol* **13**, e1005757 (2017).

1071 18. E. Canto, J. R. Oksenberg, Multiple sclerosis genetics. *Mult Scler* **24**, 75-79 (2018).

1072 19. I. Pulido-Valdeolivas, I. Zubizarreta, E. Martinez-Lapiscina, P. Villoslada, Precision medicine for
1073 multiple sclerosis: an update of the available biomarkers and their use in therapeutic decision
1074 making. *Expert Rev Precis Med Drug Dev* **2**, 1-17 (2017).

1075 20. J. Goni *et al.*, A computational analysis of protein-protein interaction networks in
1076 neurodegenerative diseases. *BMC Sys Biol* **2**, 52 (2008).

1077 21. C. International Multiple Sclerosis Genetics, Network-based multiple sclerosis pathway analysis
1078 with GWAS data from 15,000 cases and 30,000 controls. *Am J Hum Genet* **92**, 854-865 (2013).

1079 22. N. Safari-Alighiarloo, M. Rezaei-Tavirani, M. Taghizadeh, S. M. Tabatabaei, S. Namaki,
1080 Network-based analysis of differentially expressed genes in cerebrospinal fluid (CSF) and blood
1081 reveals new candidate genes for multiple sclerosis. *PeerJ* **4**, e2775 (2016).

1082 23. J. Yang *et al.*, Network-Based Target Prioritization and Drug Candidate Identification for
1083 Multiple Sclerosis: From Analyzing "Omics Data" to Druggability Simulations. *ACS Chem*
1084 *Neurosci* **12**, 917-929 (2021).

1085 24. M. Cellerino *et al.*, Impact of treatment on cellular immunophenotype in MS: A cross-sectional
1086 study. *Neurology(R) neuroimmunology & neuroinflammation* **7**, e693 (2020).

1087 25. E. Kotelnikova *et al.*, MAPK pathway and B cells overactivation in multiple sclerosis revealed by
1088 phosphoproteomics and genomic analysis. *Proc Natl Acad Sci U S A* **116**, 9671-9676 (2019).

1089 26. H. F. Harbo *et al.*, Oligoclonal bands and age at onset correlate with genetic risk score in multiple
1090 sclerosis. *Mult Scler* **20**, 660-668 (2014).

1091 27. M. Bernardo-Faura *et al.*, Prediction of combination therapies based on topological modeling of
1092 the immune signaling network in multiple sclerosis. *Genome Med* **13**, 117 (2021).

1093 28. L. Fang *et al.*, GRNdb: decoding the gene regulatory networks in diverse human and mouse
1094 conditions. *Nucleic Acids Res* **49**, D97-D103 (2021).

1095 29. P. Maheshwari, R. Albert, A framework to find the logic backbone of a biological network. *BMC*
1096 *Syst Biol* **11**, 122 (2017).

1097 30. N. Domedel-Puig, P. Rue, A. J. Pons, J. Garcia-Ojalvo, Information routing driven by
1098 background chatter in a signaling network. *PLoS Comput Biol* **7**, e1002297 (2011).

1099 31. C. International Multiple Sclerosis Genetics, A systems biology approach uncovers cell-specific
1100 gene regulatory effects of genetic associations in multiple sclerosis. *Nat Commun* **10**, 2236
1101 (2019).

1102 32. M. Gustafsson *et al.*, Modules, networks and systems medicine for understanding disease and
1103 aiding diagnosis. *Genome Med* **6**, 82 (2014).

1104 33. M. Zitnik, J. Leskovec, Predicting multicellular function through multi-layer tissue networks.
1105 *Bioinformatics* **33**, i190-i198 (2017).

1106 34. M. Gosak *et al.*, Network science of biological systems at different scales: A review. *Phys Life*
1107 *Rev* **24**, 118-135 (2018).

1108 35. R. R. Vangimalla, J. Sreevalsan-Nair, HCNM: Heterogeneous Correlation Network Model for
1109 Multi-level Integrative Study of Multi-omics Data for Cancer Subtype Prediction. *Annu Int Conf*
1110 *IEEE Eng Med Biol Soc* **2021**, 1880-1886 (2021).

1111 36. D. He, L. Xie, A Cross-Level Information Transmission Network for Hierarchical Omics Data
1112 Integration and Phenotype Prediction from a New Genotype. *Bioinformatics* **38**, 204-210 (2021).

1113 37. M. J. Ha, F. C. Stingo, V. Baladandayuthapani, Bayesian Structure Learning in Multi-layered
1114 Genomic Networks. *J Am Stat Assoc* **116**, 605-618 (2021).

1115 38. C. Wang, N. Zhao, K. Sun, Y. Zhang, A Cancer Gene Module Mining Method Based on Bio-
1116 Network of Multi-Omics Gene Groups. *Front Oncol* **10**, 1159 (2020).

1117 39. J. T. Yurkovich, Q. Tian, N. D. Price, L. Hood, A systems approach to clinical oncology uses
1118 deep phenotyping to deliver personalized care. *Nat Rev Clin Oncol* **17**, 183-194 (2020).

1119 40. Z. Hammoud, F. Kramer, Multilayer networks: aspects, implementations, and application in
1120 biomedicine. *Big Data Anal* **5**, 1-18 (2020).

1121 41. N. Isobe *et al.*, Association of HLA Genetic Risk Burden With Disease Phenotypes in Multiple
1122 Sclerosis. *JAMA neurology* **73**, 795-802 (2016).

1123 42. T. Noori *et al.*, The role of glycogen synthase kinase 3 beta in multiple sclerosis. *Biomed
1124 Pharmacother* **132**, 110874 (2020).

1125 43. E. Beurel *et al.*, Regulation of Th1 cells and experimental autoimmune encephalomyelitis by
1126 glycogen synthase kinase-3. *J Immunol* **190**, 5000-5011 (2013).

1127 44. S. Kostenko, U. Moens, Heat shock protein 27 phosphorylation: kinases, phosphatases, functions
1128 and pathology. *Cell Mol Life Sci* **66**, 3289-3307 (2009).

1129 45. H. F. Li, H. L. Zhang, Elevated HSP27 levels during attacks in patients with multiple sclerosis.
1130 *Acta Neurol Scand* **126**, e8-9 (2012).

1131 46. R. Martin, M. Hernandez, C. Cordova, M. L. Nieto, Natural triterpenes modulate immune-
1132 inflammatory markers of experimental autoimmune encephalomyelitis: therapeutic implications
1133 for multiple sclerosis. *Br J Pharmacol* **166**, 1708-1723 (2012).

1134 47. R. W. Jain, V. W. Yong, B cells in central nervous system disease: diversity, locations and
1135 pathophysiology. *Nat Rev Immunol* **13**, 1-12 (2021).

1136 48. T. V. Lanz, Brewer, R.C., Ho, P.P. *et al.*, Clonally Expanded B Cells in Multiple Sclerosis Bind
1137 EBV EBNA1 and GlialCAM. *Nature* **603**, 321-327 (2022).

1138 49. C. H. Polman *et al.*, Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald
1139 criteria. *Ann Neurol* **69**, 292-302 (2011).

1140 50. E. Solana *et al.*, Regional grey matter microstructural changes and volume loss according to
1141 disease duration in multiple sclerosis patients. *Sci Rep* **11**, 16805 (2021).

1142 51. L. Rasche *et al.*, MRI Markers and Functional Performance in Patients With CIS and MS: A
1143 Cross-Sectional Study. *Front Neurol* **9**, 718 (2018).

1144 52. F. C. Oertel *et al.*, Retinal ganglion cell loss in neuromyelitis optica: a longitudinal study. *J
1145 Neurol Neurosurg Psychiatry* **89**, 1259-1265 (2018).

1146 53. C. International Multiple Sclerosis Genetics *et al.*, Analysis of immune-related loci identifies 48
1147 new susceptibility variants for multiple sclerosis. *Nat Genet* **45**, 1353-1360 (2013).

1148 54. Oertel, F.C. et al. Retinal ganglion cell loss in neuromyelitis optica: a longitudinal study. *Neurol
1149 Neurosurg Psychiatry* **89**, 1259-1265 (2018).

1150 55. Tewarie, P. et al. The OSCAR-IB consensus criteria for retinal OCT quality assessment. *PLoS
1151 ONE* **7**, e34823 (2012).

1152 56. Cellerino, M. et al. Impact of treatment on cellular immunophenotype in MS: A cross-sectional
1153 study. *Neurology(R) neuroimmunology & neuroinflammation* **7**, e693 (2020).

1154 57. International Multiple Sclerosis Genetics, C. et al. Analysis of immune-related loci identifies 48
1155 new susceptibility variants for multiple sclerosis. *Nat Genet* **45**, 1353-1360 (2013).

1156 58. Harbo, H.F. et al. Oligoclonal bands and age at onset correlate with genetic risk score in multiple
1157 sclerosis. *Mult Scler* **20**, 660-668 (2014).

1158 59. International Multiple Sclerosis Genetics, C. Multiple sclerosis genomic map implicates
1159 peripheral immune cells and microglia in susceptibility. *Science* **365**, eaav7188 (2019).

1160 60. Fang, L. et al. GRNdb: decoding the gene regulatory networks in diverse human and mouse
1161 conditions. *Nucleic Acids Res* **49**, D97-D103 (2021).

1162 61. Li, Y. et al. Single-cell transcriptomic analysis reveals dynamic alternative splicing and gene
1163 regulatory networks among pancreatic islets. *Sci China Life Sci* **64**, 174-176 (2021).

1164 62. Margolin, A.A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks
1165 in a mammalian cellular context. *BMC Bioinformatics* **7** Suppl 1, S7 (2006).

1166 63. Kraskov, A., Stogbauer, H. & Grassberger, P. Estimating mutual information. *Phys Rev E Stat*
1167 *Nonlin Soft Matter Phys* 69, 066138 (2004).

1168 64. Maheshwari, P. & Albert, R. A framework to find the logic backbone of a biological network.
1169 *BMC Syst Biol* 11, 122 (2017).

1170 65. Yen, J.Y. Finding the K Shortest Loopless Paths in a Network. *Management Science* 11, 712–716
1171 (1971).

1172 66. Pedregosa, F. et al. Scikitlearn: Machine Learning in Python Fabian. *Journal of Machine*
1173 *Learning Research* 12, 2825–2830 (2011).

1174 67. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nat*
1175 *Methods* 17, 261-272 (2020).

1176 68. Lasher, C. D. (2012) edgeswap.py [Source code]. <https://gist.github.com/gotgenes/2770023>