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Abstract 36 

Complex diseases such as Multiple Sclerosis (MS) cover a wide range of biological scales, from 37 

genes and proteins to cells and tissues, up to the full organism. We conducted a multilayer 38 

network analysis and deep phenotyping with multi-omics data (genomics, phosphoproteomics 39 

and cytomics), brain and retinal imaging, and clinical data, obtained from a multicenter 40 

prospective cohort of 328 patients and 90 healthy controls. Multilayer networks were constructed 41 

using mutual information, and Boolean simulations identified paths within and among all layers. 42 

The path more commonly found from the boolean simulations connects MP2K, with Th17 cells, 43 

the retinal nerve fiber layer (RNFL) thickness and the age related MS severity score (ARMSS). 44 

Combinations of several proteins (HSPB1, MP2K1, SR6, KS6B1, SRC, MK03, LCK and 45 

STAT6)) and immune cells (Th17, Th1 non-classic, CD8, CD8 Treg, CD56 neg, and B memory) 46 

were part of the paths explaining the clinical phenotype. Specific paths identified were 47 

subsequently analyzed by flow cytometry at the single-cell level. 48 

 49 
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Graphical abstract 54 

 55 

 56 

Author Summary 57 

           Complex diseases such as Multiple Sclerosis (MS) involve the contribution of a wide 58 

range of biological processes. We conducted a systems biology study of MS based on network 59 

analysis and deep phenotyping in a prospective cohort of patients with clinical, imaging, 60 

genetics, and omics assessments. The gene, proteins and cell paths explained variation in central 61 

nervous system damage, and in metrics of disease severity. Such multilayer paths explain the 62 

different phenotypes of the disease and can be developed as biomarkers of MS. 63 

 64 

 65 
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Introduction 67 

Complex diseases involve the interaction of multiple biological scales, including tissues, 68 

cells, and molecules (genes, proteins, and metabolites), all of which regulate biological function 69 

and modulate the susceptibility to a given clinical phenotype. Although significant efforts have 70 

been devoted to understanding each of these levels, few attempts have succeeded in integrating 71 

multiple scales and the flow of information across them. Such integration would definitely 72 

improve our understanding of disease pathogenesis (1, 2) and wellness (3). Multilayer networks 73 

provide a framework to integrate complex biological data across different scales, which should 74 

allow us to understand the flow of biological information in health and disease (4-6). This is 75 

especially important in diseases with a complex genetic and molecular basis, such as Multiple 76 

Sclerosis (MS). 77 

 78 

MS is an autoimmune disease characterized by inflammatory attacks to the central 79 

nervous system (CNS), which damages the neural tissue and leads to significant disability (7). 80 

The inflammation occurs in acute attacks as well as by chronic inflammation, defining the 81 

different clinical subtypes of the disease, namely relapsing-remitting (RRMS) and progressive 82 

(PMS). MS is an example of a complex disease, with different biological scales participating in 83 

its pathogenesis, including genetic factors (8), cellular signaling (9, 10), adaptive and innate 84 

immunity (11, 12), and CNS damage (13). Additionally, the interplay between these various 85 

components is modulated by environmental factors (14, 15), with viral infections and especially 86 

the Epstein-Barr virus being the main triggers (16). As a result, the MS phenotype of 87 

neurological disability is very heterogeneous and difficult to predict (7, 17), creating significant 88 

limitations for patient care. As an example of the difficulty of finding biological determinants of 89 
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MS, although more than 200 genetic polymorphisms have been associated with MS 90 

susceptibility, their contribution to the clinical phenotype is small and remains to be clarified 91 

(18). Similarly, many studies have attempted to identify biomarkers of the clinical course and 92 

prognosis of the disease, including oligoclonal bands, neurofilament light chain protein, brain or 93 

spinal cord volume or retinal thickness, but few have been validated, and even their individual 94 

predictive ability is small, making their use in clinical practice limited (19). 95 

 96 

Several studies have attempted to integrate biological networks in MS, mainly at the 97 

genetic level (20-23). Those studies addressed the biomolecular aspects of the disease (genes and 98 

proteins), but they did not describe the relation of those features with tissue damage or clinical 99 

disability. In contrast, our approach focuses on bridging the gap between the microscopic and 100 

macroscopic scales of MS to better explain the endotype-phenotype relationship. To that end, we 101 

use multilayer network analysis to assess how information flows across biological scales, and to 102 

identify multiscale paths that contribute to explain the phenotype of MS. 103 

 104 

Within the umbrella of the Sys4MS project (24), we recruited a multicenter prospective 105 

cohort of 328 patients with MS and 90 healthy subjects with a two-year follow-up and performed 106 

deep phenotyping by collecting multi-omics data, imaging, and clinical outcomes. This 107 

collection provided data on five biological layers: (1) genes, (2) phosphoproteins (mostly 108 

kinases), (3) immune cells, (4) tissue (imaging), and finally (5) the clinical phenotype (Figure 109 

1a). Network generation was first applied to each of these layers individually, using mutual 110 

information to capture linear and non-linear dependencies between the elements of each layer 111 

(Figure 1b-f) before the layers were interconnected (Figure 1g). Our approach is hypothesis-112 
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based, rather than data-based: First, we make use of a set of single nucleotide polymorphisms 113 

(SNPs), proteins and immune cell subtypes already known to be associated with MS (8, 9, 24, 114 

25). Second, we consider the transfer of information from genes to proteins and cell layers, 115 

which will define the tissue (imaging) and clinical outcomes as the phenotype (Figure 1g). In 116 

order to obtain functional information from the network models, dynamical simulations using 117 

Boolean network modeling were used to identify several paths spanning these five layers.  118 

 119 

Figure 1. Building multilayer networks using multi-omics, imaging, and clinical data. (a) 120 

Illustration of network construction. The data from each layer is taken from the cohorts and used 121 

to create networks, where the nodes are the elements in the dataset (genomics, phosphoproteomics, 122 

cytomics, tissue imaging, and clinical data), and the edges correspond to the mutual information 123 

between element pairs across all subjects. Once individual networks are created, they are linked 124 

together, again using mutual information, following a hierarchy that connects each layer 125 

successively, starting with genomics and working up to the phenotypic (clinical) layer. (b-f) 126 

Topology of individual layer networks from the experimental data. In each of the networks, the 127 

degree of each node is color-coded, with higher degrees in darker colors. The edge weights are 128 

coded in grey scale in a similar manner, with a darker edge representing a higher weight, and thus 129 

a higher correlation between nodes. The genomics network was enriched with the previous 130 

knowledge on regulatory networks (f) and included the MS genetic burden scores (g). In the 131 

combined five-layer network, the layers are connected using the hierarchy described above, with 132 

genomics at the bottom and clinical phenotype at the top. High resolution network representations 133 

for single-layer networks are available at Github link 134 
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https://keithtopher.github.io/single_networks/#/ and for multilayer networks at 135 

https://keithtopher.github.io/combo_networks/#/. 136 

 137 
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Results 138 

 The focus of the results is on the paths between the genes, proteins, cells and the 139 

phenotype (imaging and clinical scales). Each step below shows how the paths were identified, 140 

and which sources tend to be more strongly connected with the phenotype. First, descriptive 141 

information about the data is given, then the networks of the layers are constructed, then Boolean 142 

simulations are run, and finally the top paths are selected. 143 

 144 

Deep phenotyping: multi-omics, imaging, and clinical data from MS patients 145 

We recruited 328 MS patients (age 41±10 years, 70% female) at four centers throughout 146 

Europe, corresponding to the Sys4MS cohort (Table 1). Of these, 271 patients (82%) had RRMS, 147 

and 57 (17%) had PMS. We also recruited 90 healthy controls (HCs) matched by sex and age with 148 

the RRMS group. The patients had a mean disease duration of 10 (SD 8) years, and median 149 

Expanded Disability Status Scale (EDSS) of 2.0 (range: 0-8). Regarding the use of disease 150 

modifying drugs (DMD) at baseline, 70% of patients were treated, 44% with low-efficacy 151 

therapies, and 26% with high-efficacy therapies (see Methods for drug definition). By the second 152 

year of follow-up (mean follow-up 1.98 + 0.94 years, n=274), two RRMS cases progressed to 153 

PMS, 22 patients started new therapies (cladribine: 1; fingolimod: 2; glatiramer acetate: 4; 154 

ocrelizumab: 9; rituximab: 2; teriflunomide: 4) and 17 changed from low to high-efficacy 155 

therapies. Imaging data consisted of both brain magnetic resonance imaging (MRI) and retina 156 

optical coherence tomography (OCT) (Table 1). 157 

Table 1. Sys4MS cohort:  Clinical and imaging variables of MS patients and healthy 158 

controls. Disability scales are shown as the mean + SD, except for the EDSS which is displayed 159 

as the median (range). 160 
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  MS 
baseline 
n=328 

MS 
2-year FU 

n=278 

HC 
n=90 

Age 41+10 45+9.81 36.98 + 11.47 

Female, n (%) 229 (70%) 194 (70%) 63 (70%) 

Age at disease onset (years) 31 + 9  31+9 -- 

Disease duration (years) 10 + 8 12.9+8.16 -- 

Subtype                RRMS 
SPMS 

                        PPMS 

271 
28 
29 

228 
25 
25 

  
-- 
  

EDSS  2.0 (0-8.0) 2.0 (0-8.0) -- 

MSSS 3.6 + 2.2 3.25+2.35 -- 

ARMS 3.9 + 2.1 3.56+2.26 -- 

T25WT (sec) 6.93 + 6.6 5.67+4.97 -- 

9HPT (sec) 21.2 + 6.5 21.9+5.92 -- 

SDMT (# symbols) 53.8 + 13.5 53.5+13.3 -- 

SL25 (# letters) 29.1 + 13.4 26.7+13.5 -- 

HCVA (LogMAR) 0.03 + 0.36 -0.11+0.44 -- 

DMD                    Untreated 91 72 -- 

Interferon beta 43 19 -- 
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Glatiramer acetate 39 24 -- 

Teriflunomide 28 21 -- 

Fingolimod 38 33 -- 

Dimethyl-Fumarate 35 37 -- 

Natalizumab 29 24 -- 

Other high-efficacy DMD* 19 43 -- 

Brain MRI      baseline 

# Gadolinium lesions 0.1 + 0.5 NA** NA 

T2 lesion volume (cm3) 8.17 + 10.5 9.32+11 NA 

NBV (cm3) 1,509 + 91 1,454+70.2 1,473+109 

NGMV (cm3) 792 + 65 779 +49.5 751+63.7 

NWMV (cm3) 716 + 68 676 +43.5 721+111 

OCT (mean of both eyes 
without previous ON) 

  baseline  

pRNFL (µm) 100 + 12.7 101+12.1 100+9.6 

mRNFL (µm) 39.6 + 4.9 39.6+4.31 41.9+6.5 

GCIPL (µm) 65.6 + 8.3 65.7+7.08 68.5+6 

INL (µm) 31.5 + 2.8 31.5+2.77 41.1+8.8 
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ORL (µm) 146.1 + 9.5 147+8.39 149+19.9 

FU: follow-up; RRMS: relapsing-remitting MS; SPMS: secondary-progressive MS; PPMS: 161 

primary-progressive MS; EDSS: expanded disability status scale; MSSS: MS severity scale; 162 

ARMS: age-related MS severity scale; T25WT: timed 25-feet walking test; 9HPT: 9-hole peg 163 

test; SDMT: symbol digit modality test; SL25: 2.5% Sloan letter acuity; HCVA: high-contrast 164 

visual acuity; DMD: disease modifying drug; NBV: normalized brain volume; NGMV: 165 

normalized grey matter volume; NWMV: normalized white matter volume; RNFL: retinal nerve 166 

fiber layer (p: peripapilar; m: macular); GCIPL: ganglion cell plus inner plexiform layer; INL: 167 

Inner nuclear layer; ORL: outer nuclear layer. *Other DMD baseline: alemtuzumab: 9, 168 

rituximab: 7, ocrelizumab: 1, daclizumab: 2; year 2: alemtuzumab: 13, rituximab: 11, 169 

ocrelizumab: 16, cladribine: 3. **MRI studies for the follow-up did not include gadolinium 170 

administration. 171 

We conducted a genomic analysis in both MS cases and controls. From the 700,000 SNPs 172 

assessed in the DNA array, we imputed 152 SNPs associated with MS (8), along with 17 additional 173 

SNPs corresponding to HLA-class II alleles. We calculated the polygenic risk score, namely the 174 

MS genetic burden score (26) (MSGB) for all 169 SNPs, together with partial MSGB scores for 175 

only the 17 HLA SNPs (MSGBHLA), and for the 152 MS associated SNPs excluding the HLA 176 

alleles (MSGBnon-HLA). As expected, the total MSGB score was significantly higher (p=3.4x10-8) 177 

in patients (4.23) than in HCs (3.2). Similar results were observed in the partial scores, with 178 

MSGBHLA of 1.57 in patients and 0.95 in HCs (p=1.6x10-4) and MSGBnon-HLA of 2.6 in patients 179 

and 2.2 in HCs (p=6.8x10-5).  180 

Flow cytometry analysis was carried out at baseline in peripheral blood mononuclear cells 181 

(PBMCs) from the first 227 patients and 82 HC. Results from the cytometry analysis in this cohort 182 
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are described in detail elsewhere (24). Briefly, untreated RRMS patients showed significantly 183 

higher frequencies of Th17 cells and lower frequencies of B-memory/B-regulatory cells, as well 184 

as higher percentages of mature B cells in patients with PMS compared with HCs. Fingolimod 185 

treatment induced a decrease in total CD4+ T cells and mature and memory B cells and increases 186 

in CD4+, CD8+ T-regulatory and B-regulatory cells (24). Finally, the phosphoproteomic analysis 187 

was carried out by conducting ex-vivo assays in PBMCs and quantified using xMAP assays on the 188 

first 148 patients at baseline as described before (25, 27), showing higher levels of phosphorylated 189 

IKBA, JUN, KSGB1, MK03, RS6, STAT3 and STAT6 in MS patients compared to controls 190 

(Methods, File S1). 191 

 192 

Multilayer networks in MS  193 

 We built networks for each of the five layers (genetics, phosphoproteomics, cytomics, 194 

tissue/imaging and clinical variables) using mutual information to define connections between 195 

pairs of elements within each layer (Figure 1, see Methods). For example, in the proteomics 196 

layer two proteins are connected to each other with a weight equal to the normalized mutual 197 

information between their phosphorylation levels. A threshold was used to determine whether 198 

the correlation for a given pair was high enough to define an edge. The threshold works by 199 

comparing the real mutual information value of a pair of nodes to a surrogate distribution of 200 

mutual information values calculated from random permutations of the data. 201 

The genetic network was considered in two ways: first, at the level of the individual SNPs 202 

separately and utilizing previous information from the Gene Regulatory Network Database (28) 203 

and mapped to the MS associated SNPs (see Methods); and second, grouped together in the three 204 

MSGB scores defined above. The proteomic network includes 25 kinases, and the cytomics 205 
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network 22 immune subpopulations (see Methods for the lists of proteins and cell subtypes). The 206 

imaging network included the main metrics of lesion load and brain volumes quantified by MRI, 207 

and the thickness of the retina layers analyzed by OCT. Finally, the clinical network contains 208 

demographic and clinical variables (number of relapses, disability scales and use of DMD) at 209 

baseline and after two-year follow-up, which give longitudinal changes in clinical outcomes (see 210 

Methods for a list of variables).  211 

After the networks for each layer were built, we analyzed the connectivity (density) 212 

between layers, this time between features of different layers. A statistical comparison between 213 

the connections within and between layers (Figure 2) shows a non-negligible degree of network 214 

modularity, confirming the underlying multi-layer structure. The features within a layer are, on 215 

average, more strongly connected than those between layers. With the exception of genomics, 216 

the densities within a single layer were higher than those between layers, supporting the 217 

modularity of the multilayer network. 218 

 219 

Figure 2: Network densities within and between layers. (left) The density for each layer was 220 

calculated as the ratio of the sum of the weights of all connections and the number of possible 221 

connections. The analysis was made using the 67 subjects with complete data in all 5 layers. 222 

(right) The network from which the density was calculated. Nodes from all layers were 223 

connected together, opposed to the network model with the hierarchy shown before. See high 224 

resolution network at https://keithtopher.github.io/combo_networks/#/. 225 

 226 
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 227 

 228 

Dynamic network analysis identifies gene-protein-cell paths associated with phenotype 229 

We next sought to integrate all the layers in paths that reflect the network dynamic 230 

interactions, in order to obtain a functional view of the information flow across layers. To that 231 

end, we created a single network including all five layers with the same hierarchy described 232 

above using linear (Pearson) correlations, which allows us to distinguish between stimulatory or 233 

inhibitory edges depending on whether the correlation r value is positive or negative, 234 

respectively (Figure 3a). We then conducted logic (Boolean) simulations to identify the causal 235 

logic backbone of the network (29, 30). Boolean simulations use knowledge of activating and 236 

inhibiting relationships between nodes; the exact chemical reactions between genes, proteins, 237 

cells and tissue are ignored, giving a qualitative description of the system (30). The nodes of the 238 

network are considered to be in one of two states: active (e.g., high phosphorylation levels) or 239 

inactive (e.g., low phosphorylation levels). The states of all nodes are updated synchronously at 240 

each iteration of the simulation, either remaining in the same activation state as before, or 241 

flipping to the opposite state, depending on the activation states of its direct neighbors, and 242 
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taking into consideration the weights of the corresponding connections (Figure 3b, see 243 

Methods).  244 

 245 

Figure 3: Dynamic network analysis: identification of gene-protein-cell paths. (a) Networks 246 

are constructed using all five layers. The nodes are the same as in the networks above (figure 1), 247 

but now the edges are defined by the Pearson correlation, where the weights represent the 248 

Pearson coefficient, which can be either positive or negative. (b) Boolean dynamics are applied 249 

to the networks, where the activation state of the nodes changes based on the total sum of the 250 

edge weights of its direct neighbors (considering the signs of the connections). (c) Boolean 251 

simulations are run where the various nodes, in the example MSGB non-HLA, are used as the 252 

input signal, and the simulation was run with 5% noise (see Methods for noise analysis). (d) The 253 

cross-correlation coefficient (Cn) is calculated between the signals for each pair of connected 254 

nodes. A path score is calculated for all possible paths, defined as the sum of the inverses of the 255 

cross-correlation coefficients between all pairs of consecutive nodes constituting a given path. 256 

(e) Finally, a path is identified by using a shortest path algorithm which is based on its path score 257 

(see Methods).  258 
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We next wanted to study how perturbations in a given input such as the MSGB score 260 

(SNPs could not be used for Boolean simulations because the impossibility of changing between 261 

alleles), protein or cell type travel through the network and ultimately affect a given phenotype 262 

(output). To that end, we performed Boolean simulations in which the input node was 263 

periodically driven from an active to an inactive state and back, and the response of all nodes in 264 

the network (Figure 3c) was quantified by computing the temporal cross-correlation function 265 

between their time-varying state and the dynamic input signal (30). We then identified those 266 

paths across the network that are formed by pairs of nodes with the highest temporal cross-267 

correlation between their signals. These paths represent how information flows from a given 268 

input to the output (e.g., from MSGB non-HLA to EDSS in the example in Figure 3e). They do 269 

not necessarily represent physical interactions among nodes (e.g., protein-protein interactions), 270 

but rather groups of nodes that co-vary statistically with each other more strongly than the rest of 271 

the network.  272 

For each of the 3,350 combinations of inputs and outputs (3 MSGB scores, 25 proteins, 273 

and 22 cell types as inputs, and 22 cell types, 25 imaging variables, 20 clinical variables as 274 

outputs), we selected the top ten paths with highest joint cross-correlation values between their 275 

constituent nodes (see Methods and File S2). Figure 4 shows these paths for the three inputs 276 

(MSGB, phosphoproteomics and cytomics) and outputs (imaging and clinical) pairs for MS 277 

patients. 278 

To assess the specificity of the Boolean simulations, the network was permuted to 279 

identify negative control paths. The edges were randomly swapped while preserving the original 280 

degree distribution of the network. The simulations were run with these permuted networks (100 281 

total), and paths were identified. These paths were compared to those identified in the original 282 
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networks. We counted how many times a given path appeared in the permuted networks. Focus 283 

was placed on those pathways that were present in less than 1% of the permuted pathways. Out 284 

of 32,302 total paths identified from MS patients, there were 8,488 that appeared 0 times out of 285 

100 in the permuted paths. The method for network permutation and path identification is 286 

illustrated in Methods, Figure 10, and results are shown as Files S3a and S3b. 287 

Additionally, confidence intervals were calculated for each of the paths. The paths were 288 

identified from each of the 100 Boolean simulations individually (instead of using the mean of 289 

the cross-correlation values as before). These 100 simulations provide a distribution of path 290 

scores, giving the variance of the original path score. The path scores along with their confidence 291 

intervals are given in File S4. 292 

 293 

Path analysis 294 

For the path analysis we use the following notation: NODE 1 > NODE 2 > NODE 3, (In 295 

the case there are multiple nodes on the same layer along similar paths they appear as NODE 1 > 296 

NODE 2 - NODE 3 > NODE 4, where NODES 2 and 3 could be two proteins for example.) and 297 

the information flows from left to right, starting with the perturbation in the gene, protein, or cell 298 

respectively. MS cases show that the paths more commonly found from the Boolean simulations 299 

(darker color represents more connections) were: (1) MP2K1 > Th17 > mRNFL > ARMSS 300 

(when the input is applied to the started in phosphoproteomics layer, Figure 4a); (2) SNP25 301 

(SNP10:94479107) > MSGB non-HLA > STAT6 > Th17 > mRNFL> ARMSS (when the input 302 

is applied to the genomics layer, Figure 4b); (3) CD56 Neg > INL - mRNFL > EDSS - ARMSS 303 

(when the input is applied to the cytomics layer, Figure 4c). 304 

 305 
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Figure 4: Path analysis in MS patients. Representations of the multi-layer paths identified 306 

from the Boolean simulations when the input started at the phosphoproteomics (A), genomics 307 

(B) or cytomics (C) layer. The top paths (those that passed the test for negative controls) are 308 

shown for each input (gene, protein, or cell)-output (clinical phenotype) pair. The nodes for each 309 

layer are color-coded to represent the degree of a given node, i.e., the number of times the node 310 

appears in a path, as a percentage of the total number of paths. High resolution paths are 311 

available at https://keithtopher.github.io/fivelayer_pathways/. 312 

 313 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.26.530153doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.26.530153
http://creativecommons.org/licenses/by/4.0/


21 

 314 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.26.530153doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.26.530153
http://creativecommons.org/licenses/by/4.0/


22 

Perturbations in the protein layer (representing changes in the signaling cascades among 315 

cells) were linked with the severity of MS, this time with both the EDSS and ARMSS along with 316 

the HCVA, T25WT and the disease duration (Figure 4a): 317 

●     MK03 > Total T Cells > mRNFL > T25WT 318 

●     MP2K1 - STAT6 > Th17 > mRNFL > T25WT - ARMSS 319 

●     MP2K1 - STAT6 > Th17 > INL > EDSS Change 320 

●     MP2K1 > CD8 Treg > GCIPL > EDSS Change 321 

●     LCK - JUN > Th1 non-Classic > NGMV - mRNFL - T2LV  322 

●     NGMV > Years since Relapse - 9HPT Change - HCVA Change 323 

    mRNFL > T25WT - Years with Disease - SDMT Change 324 

    T2LV > EDSS - ARMSS - T25WT 325 

●   SNP10:75653800 - SNP4:103911781 - SNP1:85729820 > SRC - STAT6 - AKTS1 - 326 

NRF2  327 

Perturbations of the gene network (the MSGB, reflecting genetic variability contributing 328 

to the risk of developing MS) were linked with changes in the clinical outcomes (ARMSS, 329 

T25WT, 9HPT, HCVA, LCVA, and the EDSS) (Figure 4b). Concerning the imaging layer, we 330 

found paths to the mRNFL (macular retinal nerve fiber layer) and NGMV (normalized gray 331 

matter volume). Perturbing the MSGB non-HLA was the source for the most paths at this level: 332 

1) MSGB non-HLA > SNP10:94479107 > SNP11:118743286 > KS6B1 - MP2K1; and 2) 333 

MSGB non-HLA > SNP10:94479107 > SNP10:31395761 > HSPB1 - STAT6. Then, these two 334 

paths were connected to the phenotype as follows: 335 

●     HSPB1 > B Memory > NBV > MSSS - T25WT  336 

●     HSPB1- MP2K1 > CD8 Treg - B Memory > GCIPL > ARMSS - EDSS Change 337 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.26.530153doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.26.530153
http://creativecommons.org/licenses/by/4.0/


23 

●     STAT6 > Th17 > mRNFL - INL > ARMSS 338 

●     STAT6 > Th17 > NGMV Change > Years with Disease 339 

●     MP2K1 > Th17 - CD8 Treg > mRNFL - INL > ARMSS - EDSS Change - 9HPT 340 

Change 341 

●     KS6B1 - LCK > Total T Cells - Th1 Non Classic > NGMV - T2LV > LCVA Change - 342 

MSSS - Years since Relapse  343 

Perturbations at the cellular level (representing changes of immune cell subtypes 344 

frequency and activation) were connected again with changes in the EDSS as well as with the 345 

HCVA, SDMT, 9HPT, and T25WT (figure 4c). The paths with cells as the sources were: 346 

●     CD56 Neg > INL - mRNFL > EDSS - T25WT 347 

●     Atypical B Memory - B Memory - Th1 Classic > mRNFL - T2LV > EDSS - T25WT 348 

●     Total CD8 > NGMV - T2LV > EDSS - 9HPT - SDMT 349 

 350 

Paths predicting MS phenotype from single-cell data 351 

In order to assess some of the paths identified in the study at the single-cell level, we 352 

conducted a cytometry analysis to assess levels of total and phosphorylated proteins in immune 353 

cell subtypes at the single-cell level and relate them to the clinical phenotype through linear 354 

regression models and path analysis. We analyzed the levels of the three phosphoproteins for 355 

which phospho-cytometry assays were available and that showed an adequate signal to noise 356 

ratio, namely GSK3AB, HSBP1 and RS6 (assays were not validated for the other proteins). We 357 

also analyzed the immune cell subpopulations most commonly present in such paths (CD4+, 358 

Treg, CD8+, B mature, B memory, Breg and Plasma cells). This approach allowed to assess 359 

experimentally the paths between an individual phosphoprotein in the selected immune cell 360 
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subtype. The phosphorylation levels in immune subpopulations were assessed in a representative 361 

subgroup of 40 MS patients and 20 HCs from the Sys4MS cohort from which frozen PBMCs 362 

were available from the baseline visit (Figure 7). 363 

First, we found significant linear regression models for each of the three kinases 364 

predicting the phenotype (Figure 5) (see Files S5a, S5b, and S5c for R2 and p-values). In the 365 

case of GSK3AB, we found significant regression models explaining disease duration, walking 366 

speed, retina, and grey matter atrophy. For HSPB1, significant regression models were found for 367 

global disability scales such as the EDSS as well as domain specific disability scales (motor, 368 

vision, cognition), disease duration and change in grey and white matter volume. Finally, for 369 

RS6 the significant regression models also explained changes in global and motor disability 370 

(GMSSS and 9HPT) as well as retina and brain atrophy. 371 

Figure 5. Linear regression models between phosphoproteins, cell subtypes and 372 

clinical phenotype. Linear regression analysis relating the percentage of immune cell subtypes 373 

expressing phosphorylated GSK3AB, HSBP1 or RS6 with the phenotype. The heatmap shows 374 

the adjusted R2 of the significant models. EDSS: Expanded Disability Status Scale; GMSSS: 375 

Global Multiple Sclerosis Severity Score; T25WT: timed 25 feet walking test; 9HPT: nine- hole 376 

peg test; LCVA: low contrast (2.5%) visual acuity; HCVA: high contrast visual acuity; RNFL: 377 

retinal nerve fibber layer (m: macular; tp: temporal peripapillary); INL: inner nuclear layer; 378 

T2LV: T2 lesion volume; ORL: outer retinal layer; NBV: normalized brain volume; NWMV: 379 

normalized white matter volume; NGMV: normalized grey matter volume.  380 
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 381 

We then applied the single-cell data to our multilayer network and paths shown in Figure 382 

4. The network was made using the significant values from the linear regressions to relate 383 

phosphoprotein-cell layer to the phenotype. With each protein (GSK3AB, HSPB1, RS6), 384 

wherever there was a significant value between a cell and phenotype, an edge was placed 385 

between the protein and cell, and another edge between the cell and the phenotype. For example, 386 

there is a significant model between the percentage of B Memory cells expressing GSK3AB and 387 

the INL change, so the two edges GSK3AB > B Memory and B Memory > INL Change are 388 

added. Edges between the imaging and clinical layers are formed indirectly, where two nodes are 389 

connected if they had at least one significant regression model with the same cell type. For 390 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.26.530153doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.26.530153
http://creativecommons.org/licenses/by/4.0/


26 

example, since there are significant models between Total Treg and NBV, as well as between 391 

Total Treg and EDSS, the edge NBV > EDSS is added. Next, edges between the cellular and 392 

clinical layers are removed. Finally, only the edges that are also found in the top paths from the 393 

five-layer network shown in Figure 4 are kept. The top paths beginning with GSK3AB, HSPB1, 394 

and RS6 are listed below, and a visualization of the paths is shown in Figure 6. 395 

● GSK3AB > Total B Cells - Total T Cells - Total Treg > INL Change > Years with 396 

Disease - EDSS Change 397 

● GSK3AB > Total B Cells - Total T Cells - Total Treg > NGMV Change > Years with 398 

Disease 399 

● GSK3AB > Total T Cells - Total Treg > NWMV Change > Years with Disease - EDSS - 400 

GMSSS - T25WT 401 

● GSK3AB > Total B Cells - Total T Cells > tRNFL > Years with Disease - EDSS Change 402 

● HSPB1 > Total B Cells - Total Treg > INL Change > Years with Disease - EDSS Change 403 

● HSPB1 > Total B Cells - Total Treg > NGMV Change > Years with Disease 404 

● RS6 > Total B Cells - Total T Cells - Total Treg > INL Change > Years with Disease - 405 

EDSS Change 406 

● RS6 > Total B Cells - Total T Cells - Total Treg > NGMV Change > Years with Disease 407 

● RS6 > Total T Cells - Total Treg > NWMV Change > Years with Disease - EDSS - 408 

GMSSS - T25WT 409 

● RS6 > Total B Cells - Total T Cells > tRNFL > Years with Disease - EDSS Change 410 

 411 
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 412 

Figure 6: Multilayer paths from single cell cytometry assays. Each of the edges was defined 413 

using the linear regression analysis of the flow cytometry data. An edge is considered if it was 414 

part of a significant regression model and also appeared as part of a path in the original five-layer 415 

network constructed from MS patient data (from Figure 4). The edges are weightless, and only 416 

show if that particular edge in any of the original paths was present. 417 

https://keithtopher.github.io/fivelayer_pathways/. 418 

 419 

Discussion 420 

Network approaches have been very fruitful in the past at shedding light on the molecular 421 

complexity of diseases, beyond the traditional single gene and single pathway perspectives. In 422 

the traditional network paradigm, molecular components are connected according to their 423 

biological interactions, and the structure and dynamics of such interaction networks can reveal 424 

disease modules and nonlinear pathways (32). Recently, these approaches have been extended to 425 

include multiple biological layers, such as diverse tissues with distinct protein-protein interaction 426 

networks (33), and different biological processes (membrane potential dynamics and signaling) 427 
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within insulin-secreting cells (34). Attempts have been made to construct multilayer networks for 428 

complex diseases, an approach successfully exploited in cancer research (35-40). In this study 429 

we have applied a multilayer network analysis to integrate omics, imaging, and clinical 430 

information from patients with a complex autoimmune disease such as MS. 431 

Our multilayer network analysis allowed us to assess the relationship between different 432 

biological scales in the disease and to identify paths linking the five layers (genomics, 433 

proteomics, cytomics, imaging and clinical) based on statistical associations. The most relevant 434 

multiscale paths from our study are:  435 

1) MP2K1 > Th17 > mRNFL > ARMSS; 436 

2) SNP25 > MSGB non-HLA > STAT6 > Th17 > mRNFL> ARMSS; 437 

3) CD56 neg > INL - mRNFL > EDSS - T25WT. 438 

The interaction of several phosphoproteins-cell paths and the phenotype were validated 439 

by flow cytometry studies, which were based on single cell analysis. A multi-layer network 440 

analysis is thus able to identify a differential activation of the immune system’s multiple scales 441 

in MS patients that drives the phenotype. 442 

It is of course possible that there were changes on the protein and genetics level, but they 443 

were not acting as mediators between the changes in the cell counts and the phenotype seen in 444 

this case. These could be considered sub-level systems that may cause the changes in the higher 445 

levels when concerning the phenotype. 446 

The results from the multilevel network analysis with the omics data and phenotype data 447 

highlight the importance of considering MS as a multiscale disease, where the layers connect 448 

with varying strengths and information is filtered or strengthened across the layers (34, 39). 449 

Previous studies attempted to directly link the genomic layer with the phenotypes in many 450 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.26.530153doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.26.530153
http://creativecommons.org/licenses/by/4.0/


29 

complex diseases, including MS. However, genotypes or the polygenic risk scores alone have a 451 

limited ability to predict either the cell variability or the phenotype (31, 41). Other genetic 452 

information such as DNA sequencing, epigenetics and RNA expression, or more global 453 

approaches is likely needed for a more thorough analysis in multiscale complex diseases.  454 

The kinases studied are part of pathways previously described as associated with MS 455 

(reviewed in (9)). MP2K1 was the kinase showing the strongest association with the presence of 456 

MS in our previous study (25) and is a master regulator of the immune response. We and others 457 

have previously described increased GSK3AB expression or phosphorylation levels in patients 458 

with MS (25, 42, 43). GSK3 plays key roles in Th1 cell activation as well as in microglia 459 

modulation, in addition to its effects on neuronal survival and functioning (42). HSBP1 (also 460 

known as HSP27) is a stress protein that in addition to its chaperone activity, is critical for 461 

apoptosis signaling pathways within the mitochondria, inhibiting the Apaf complex (44). Indeed, 462 

HSBP1 has been found to be increased during MS relapses (45). RS6 is a MAPKinase that is 463 

modulated by extracellular signal-regulated kinase (ERK) and activates serum glucocorticoid 464 

kinase 3 (SGK3), nuclear factor kappa-light-chain-enhancer of activated B cells (NfKB), 465 

mammalian target of rapamycin (mTOR) and other pathways modulating cell growth and 466 

differentiation. Inhibition of ERK and RS6 in models of MS reduces proliferative response, 467 

phagocytic properties, and synthesis of proinflammatory mediators induced by the addition of 468 

inflammatory stimuli to microglia (46). Regarding the immune cell subtypes highlighted in our 469 

analysis, our previous analyses of the Sys4MS dataset support the results of the current network 470 

analysis that confirms the prominent role of B cells in MS (24). Such results agree with our 471 

previous analysis of phosphoproteins and immune cell subtypes in another dataset of MS patients 472 

showing the preferential involvement of B cells (25). Many pieces of evidence have confirmed a 473 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.26.530153doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.26.530153
http://creativecommons.org/licenses/by/4.0/


30 

remarkable role for B cells in MS (47), probably driven by the latent infection of the Epstein-474 

Barr virus that produces immune response dysregulation or molecular mimicry with CNS 475 

proteins like GlialCAM (16, 48). In addition, CD8 cells are the most abundant cell type in the 476 

brain infiltrates (11). Finally, a recent study in twins discordant for MS is also providing new 477 

endorsement of the role of helper CD4 cells (12). 478 

The data provided by the Sys4MS cohort was rich in the wide range of scales it covered. 479 

However, several limitations were encountered with both the data and analysis. Although the 480 

sample size of the cohort was enough to identify significant correlations, the sample sizes were 481 

smaller for some specific omics (proteomics and cytomics), although bigger than n-of-1 studies 482 

commonly used for deep phenotyping (39). The limited sample size may have affected both the 483 

networks constructed as well as the statistical tests conducted with the paths or for the analysis 484 

stratifying by each of the therapies. Furthermore, the omics dataset collected were cross-485 

sectional, whereas the imaging and clinical data were longitudinal. Longitudinal data from all 486 

five layers and deep phenotyping would greatly benefit future studies. Another concern is the 487 

validation of the paths because deep phenotyped MS cohorts are not available. A wealth of MS 488 

patient data from other studies is available with genomics, imaging, and clinical phenotype 489 

(through the IMSGC and MultipleMS consortia). However, proteomics, cytomics or other types 490 

of omics data is usually lacking, which limits conducting validation in independent datasets. 491 

Further limitations relate to the omics experiments themselves. Both the protein and cell analyses 492 

were conducted using PBMCs, rather than in immune cells from the central nervous system. 493 

Also, the protein analysis was not performed at the single cell level but in bulk PBMCs in the 494 

overall cohort. Therefore, single-cell dynamics were not captured in the first experiment. 495 

However, flow cytometry analysis performed for the validation study provided single-cell 496 
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information which supports the validity of the findings. Additionally, limitations were also 497 

partially balanced by using a hypothesis-driven design that included kinases and cells previously 498 

described as differentially activated in MS. 499 

In summary, this study examined the functional connections among various scales of 500 

biological data of a complex disease with a complex genetic basis, namely MS. Our multilayer 501 

networks support that information flow across scales. This highlights the importance of the 502 

molecular and cellular scales when considering explaining the phenotypes of complex diseases. 503 

Indeed, these paths could be the target of a future treatment of personalized medicine in MS. 504 

This could also be transferable to other autoimmune disorders, commonly sharing disease 505 

underlying mechanisms. 506 

 507 

Methods 508 

Ethical Statement 509 

The Sys4MS project was approved by the Institutional Review Boards at each participating 510 

institution: Hospital Clinic of the University of Barcelona, IRCCS Ospedale Policlinico San 511 

Martino IRCCS, Oslo University Hospital, and Charité - Universitätsmedizin Berlin University. 512 

The Barcelona MS cohort study was approved by The Ethic Committee of Clinical Research, 513 

Hospital Clinic Barcelona. Patients were invited to participate by their neurologists, and they 514 

provided signed informed consent prior to their enrollment in the study. De-identified data were 515 

collected in a REDCap database at the Barcelona center.  516 

 517 

Patients 518 

Sys4MS cohort 519 
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We recruited a cohort of 328 consecutive MS patients according to 2010 McDonald criteria 520 

(49) and 90 healthy controls (HC) at the four academic centers: Hospital Clinic, University of 521 

Barcelona, Spain (n=93); Ospedale Policlinico San Martino, Genova, Italy (n=110); Charité - 522 

Universitätsmedizin Berlin, Germany (n=94); and the Department of Neurology, Oslo University 523 

Hospital, Norway (n=121) as described before (24). We collected clinical information 524 

(demographics, relapses, disability scales, and use of disease-modifying drugs), and imaging data 525 

(brain MRI and OCT), and obtained blood samples at the same visit. Patients were required to be 526 

stable in their DMD use over the preceding six months. Patients were followed for two years, and 527 

the same clinical, disability scales, and imaging data (brain MRI and OCT) were collected at the 528 

2-year follow-up visit. 529 

 530 

Clinical Variables 531 

Each patient was assessed on the following disability scales at baseline and follow-up: 532 

the Expanded Disability Status Scale (EDSS); timed 25 feet walking test (T25WT), nine-hole 533 

peg test (9HPT), the Symbol Digit Modality Test (SDMT), 2.5% low contrast visual acuity 534 

(SL25), and high contrast vision (HCVA, using EDTRS charts and a logMar transformation). We 535 

calculated the MS Severity Score (MSSS) and the age-related MS Severity Score (ARMSS). 536 

The ARMSS was used for dividing the cohort based on disease severity using the tertile 537 

distribution (first tertile were mild MS, the second tertile was excluded and the third tertile were 538 

defined as severe MS). Change in the disability scales and 2-year follow-up visit was calculated 539 

as the difference (delta) between the two visits. EDSS changes were confirmed in a clinical visit 540 

6 months before the study follow-up visit. At each visit, we collected the information regarding 541 

the patients’ DMD use, including low-efficacy therapy: interferon-beta, glatiramer acetate, and 542 
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teriflunomide; or mid to high-efficacy therapy: fingolimod, dimethyl-fumarate, natalizumab, or 543 

other monoclonal antibodies (alemtuzumab, rituximab, daclizumab, and ocrelizumab).  544 

 545 

Imaging 546 

MRI studies were performed on a 3-Tesla scanner at each center using a standard operating 547 

procedure (SOP) to optimize the volumetric analysis. We used the 3-dimensional (3D) isotropic 548 

T1-weighted magnetization-prepared rapid gradient echo (T1-MPRAGE) (resolution: 1 x 1 x 1 549 

mm3), and 3D T2-fluid-attenuated inversion recovery (T2-FLAIR) images with the same 550 

resolution to quantify changes in brain volume. Presence of contrast-enhancing lesions, T2 lesion 551 

volume, new or enlarging T2 lesions, and volumetric analysis were done at the Berlin center as 552 

previously described (50, 51). 553 

Retinal OCT scans were performed using the Spectralis device in three centers and the 554 

Nidek device at Oslo center. A single grader at the reading center in Berlin performed intra-retinal 555 

layer segmentation using Orion software (Voxeleron Inc, Berkeley, US) to quantify the macular 556 

ganglion cell plus inner plexiform layer (GCIPL) and the macular inner nuclear layer thicknesses 557 

(μm) in the 6 mm ring area as previously described (52).  558 

 559 

Brain Magnetic Resonance Imaging 560 

All images were acquired from 4 centers with distinct 3-tesla systems after standardizing 561 

the acquisition protocols and validating dummy scans by the MRI reading center in Berlin. From 562 

Center 1 (Barcelona), a three-dimensional (3D) magnetization prepared rapid gradient echo 563 

(MPRAGE) sequence, including the upper cervical cord (0.86 x 0.86 x 0.86 mm resolution, 564 

repetition time (TR)=1970 ms, echo time (TE)=2.41 ms), an axial T1-weighted post-gadolinium 565 
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contrast agent sequence (0.31 x 0.31 x 3 mm resolution, TR=390 ms, TE=2.65 ms), and a 3D fluid-566 

attenuated inversion recovery (FLAIR) sequence, including the upper cervical cord (1 x 1 x 1 mm 567 

resolution, TR=5000 ms, TE=393 ms) were acquired longitudinally (2 visits) from 60 MS patients 568 

using a Tim Trio MRI (Siemens Medical Systems, Erlangen, Germany). From Center 2 (Oslo), a 569 

3D sagittal brain volume (BRAVO) sequence for pre- and post-gadolinium contrast agent 570 

administration, including the upper cervical cord (1 x 1 x 1 mm resolution, TR=8.16 ms, TE=3.18 571 

ms), and a 3D FLAIR sequence, including the upper cervical cord (1 x 1 x 1.2 mm resolution, 572 

TR=8000 ms, TE=127.254 ms) were acquired longitudinally (2 visits) from 97 MS patients using 573 

a Discovery MR750 MRI (GE Medical Systems,). From Center 3 (Berlin), a 3D sagittal MPRAGE 574 

sequence, including the upper cervical cord (1 x 1 x 1 mm resolution, TR=1900 ms, TE=3.03 ms), 575 

and a 3D FLAIR sequence, including the upper cervical cord (1 x 1 x 1 mm resolution, TR=6000 576 

ms, TE=388 ms) were acquired longitudinally (2 visits) from 87 MS patients using a Tim Trio 577 

MRI (Siemens Medical Systems, Erlangen, Germany). From Center 4 (Genova), a sagittal fast-578 

spoiled gradient-echo (FSPGR) sequence, including the upper cervical cord (1 x 1 x 1 mm 579 

resolution, TR=7.312 ms, TE=2.996 ms), a 3D turbo field echo (TFE) sequence for post-580 

gadolinium contrast agent administration (1 x 1 x 1 mm resolution, TR=8.67 ms, TE=3.997 ms), 581 

and a 3D FLAIR sequence, including the upper cervical cord (1 x 1 x 1 mm resolution, TR=6000 582 

ms, TE=122.162 ms) were acquired longitudinally (2 visits) from 88 MS patients using a Signa 583 

HDxt MRI (GE Medical Systems) and Ingenia MRI (Philips Medical Systems). 584 

 585 

MRI Post-processing 586 

Analysis for all scans were conducted at the MRI reading center in Berlin. Preprocessing included 587 

registration to MNI-152 standard space (fslreorient2std), white and grey matter brain masking 588 
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(Computational Anatomy Toolbox 12 Toolbox for MATLAB SPM12, http://www.neuro.uni-589 

jena.de/cat/), N4-bias field correction (Advanced Normalization Tools, 590 

http://stnava.github.io/ANTs/) and linear, rigid body registration of T2-weighted (FLAIR) images 591 

to T1-weighted (MPRAGE, BRAVO, and FSPGR) images (FSL FLIRT, 592 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/UserGuide). Each second session for each patient T1-593 

weighted image and FLAIR image was co-registered to the individual first session using the 594 

transformation matrices saved from the first session transformation from native space images to 595 

MNI-152 standard space using FSL FLIRT. Post-contrast agent T1-weighted images were also co-596 

registered to MNI-152 standard space and longitudinally when available. 597 

 598 

Brain Lesion Segmentation 599 

T2-hyperintense lesion segmentation was performed manually on co-registered T1-600 

weighted images and T2-weighted FLAIR images by two experienced MRI technicians from the 601 

Berlin center. Lesions were segmented and saved as binary masks using ITK-SNAP 602 

(www.itksnap.org). First session lesion masks were subsequently overlayed onto second session 603 

co-registered T1-weighted and FLAIR images for editing, to include any T2-hyperintense lesion 604 

changes (i.e., new lesions, enlarging lesions, or decreasing lesions) in the follow-up scans. Any 605 

discrepancies in co-registrations that were visible between sessions were corrected manually using 606 

the ITK-SNAP automated registration tool prior to follow-up lesion mask edits. Binary gadolinium 607 

enhancing lesion masks were created manually using the same tools on the post-gadolinium T1-608 

weighted MR images by the same two technicians. Lesion counts and volumes were extracted 609 

from lesion masks using FSL maths (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Cluster). 610 

 611 
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MRI Analysis 612 

T2-hyperintense lesion masks were used to fill longitudinally co-registered T1-weighted 613 

(not post-gadolinium scans) images using FSL lesion filling 614 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/lesion_filling) with white matter masks created from the 615 

Computational Anatomy Toolbox for SPM12 (CAT12, http://www.neuro.uni-jena.de/cat/). Lesion 616 

filled T1-weighted images were then used for whole brain white and grey matter volume 617 

extraction, including the follow-up session percent brain volume change (PBVC) using FSL 618 

SIENAX/SIENA (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SIENA). The same T1-weighted lesion-619 

filled images were used for whole thalamus volume (sum of left and right thalamic volumes) 620 

calculation using FSL FIRST (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST). All volumes are 621 

reported in milliliters. 622 

 623 

Optical Coherence Tomography 624 

Retinal OCT scans were performed using the Spectralis device in three centers and the 625 

Nidek device at Oslo center. OCTs were collected in eye-tracking mode by trained technicians 626 

under standard ambient light conditions (lighting level of 80–100 foot-candles) and without 627 

pupillary dilatation. Correction for spherical refractive errors was adjusted prior to each 628 

measurement, and the technicians performing OCT scans were aware of the patient’s clinical 629 

history. The peripapillary Retinal Nerve Fiber Layer thickness (pRNFL, μm) was measured with 630 

a 12-degree diameter ring scan automatically centered on the optic nerve head (100 ART, 1,536 631 

A-scans per B scan). The macular scan protocol involved a 20 x 20-degree horizontal raster scan 632 

centered on the fovea, including 25 B scans (ART ≥9, 512 A-scans per B scan). A single grader at 633 

the reading center in Berlin performed intra-retinal layer segmentation using Orion software 634 
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(Voxeleron Inc, Berkeley, US) to quantify the macular ganglion cell plus inner plexiform layer 635 

(GCIPL) and the macular inner nuclear layer thicknesses (μm) in the 6 mm ring area as previously 636 

described (52). All OCT scans fulfilled OSCAR-IB criteria and scans with an insufficient signal 637 

to noise ratio, or when the retinal thickness algorithm failed were repeated, or the data was 638 

ultimately excluded. 639 

 640 

Flow cytometry 641 

The original cytometry data was obtained on fresh peripheral blood mononuclear cells (PBMCs) 642 

using 17 antibodies that covered 22 cell subpopulations of T, B and NK cells as described in detail 643 

elsewhere (24). The following cell populations were studied: T cells: CD3+, CD3+CD4+, 644 

CD3+CD8+; B cells: CD19+; and NK cells: CD3-CD14-CD56+, as well as the specific 645 

subpopulations: Effector cells: Th1 classic: CD3+CD4+CxCR3+CCR6-CD161-; Th17: 646 

CD3+CD4+CxCR3+CCR6-CD161+CCR4+; Th1/17: CD3+CD4+CCR6-647 

CD161+CxCR3highCCR4low; Regulatory T cells: CD3+CD4+: Treg CD25+CD127-, T naive 648 

CD45RA+CD25low; CD3+CD8+: T reg CD28- and T naive CD28-CD45RA+; B cells: B 649 

memory: CD19+CD14-CD24+CD38-; B mature: CD19+CD14-CD24+CD38low; B regulatory: 650 

CD19+CD24highCD38high and NK cells: Effector: CD3-CD14-CD56dim: Regulatory: CD3-651 

CDCD56bright (reg). For validation assays, PBMC in triplicate tubes were stained with BV510-652 

conjugated anti-CD3 (Clone OKT3, Catalog # 317332, BioLegend) ), APC Cy7-conjugated anti-653 

CD4 (Clone SK3, catalog #344616, BioLegend), BV421-conjugated anti-CD25 (Clone BC96, 654 

catalog # 302630, BioLegend), AF700-conjugated anti-CD127 (Clone A019D5, catalog # 351344, 655 

BioLegend), PE Cy7-conjugated anti-CD19 (Clone HIB19, catalog # 302215, BioLegend), PE-656 

conjugated anti-CD24 (Clone ML5, catalog # 311105, BioLegend) and PE/Dazzle594-conjugated 657 
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anti-CD38 (Clone HB-7, catalog # 356630, BioLegend) antibodies in solution for 30 min at 4° C 658 

and washed twice with PBS. The cells were then fixed and permeabilized with Cytofix/Citoperm 659 

(BD Bioscience), according to the manufacturer’s instructions. For intra-cellular staining, the cells 660 

were blocked with 5% normal goat serum for 20 min on ice to prevent non-specific binding of the 661 

antibodies, and stained for total and relevant phosphoproteins with the following antibodies in one 662 

of the three tubes: Tube 1: mouse monoclonal anti-human RPS6 (Clone 522731, catalog # 663 

MAB5436, R&D Systems) and rabbit polyclonal anti-human Phospho-RPS6 (Catalog # AF3918, 664 

R&D Systems); Tube 2: rat monoclonal anti-human GSK-3B(Clone 272536, catalog # MAB2506, 665 

R&D Systems) and rabbit polyclonal anti-human Phospho-GSK-3BCatalog # AF1590, R&D 666 

Systems); and Tube 3: mouse monoclonal anti-human HSP27 (Clone G31, catalog # 2402; Cell 667 

Signaling Technology) and rabbit polyclonal anti-human Phospho-HSP27 (Catalog #AF2314, 668 

R&D Systems) antibodies. All primary antibodies were used at a concentration of 5 �g per 1 x 669 

106 cells. The cells were then washed twice and incubated on ice for 15-20 min with the 670 

appropriate fluorescent-conjugated secondary antibodies, Alexa Fluor 488-conjugated goat anti-671 

rabbit IgG (Catalog # A-11070, Invitrogen; 1:100 dilution), APC-conjugated goat anti-mouse IgG 672 

(Catalog # 405308, BioLegend; 1:100 dilution), or APC-conjugated goat anti-rat IgG (Catalog # 673 

405407, BioLegend; 1:100 dilution), in 5% normal goat serum. The cells were then washed twice, 674 

resuspended in assay buffer, and analyzed on a Beckman Coulter Navios flow cytometer. Analysis 675 

was performed using Kaluza software. Phosphorylation levels were defined in terms of mean 676 

fluorescence intensity (MFI) of phosphorylated protein over MFI of total protein. A representative 677 

cytometry plot for each of the three phosphoproteins is shown in Figure 7. Gating strategy and 678 

representative cytometry plots for showing the cell sorting and signal intensity for phospho-679 

GSK3Ab, phospho-HSBP1 and phospho-SR6 assays. 680 
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 681 

Figure 7. Cytometry plots for the expression of phosphoGSK3AB, phosphoHSBP1 and 682 

phosphor RS6 in immune cell subpopulations. The gating strategy for phospho-flow 683 

cytometry analysis. Examples of phospho-GSK3AB, phospho-HSBP1, and phospho-RS6 684 

staining in the immune cell subpopulations for MS patients are presented.   685 

 686 
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 688 

Genotyping 689 

Genotyping of the samples was performed by FIMM Genomics (University of Helsinki, 690 

Finland) on the Illumina HumanOmniExpress-24 v1.2 array (713,599 genotypes from 396 691 

samples). SNPs imputation was conducted against the 1000-genomes reference (quality of 692 

imputation r2 > 0.5; 6,817,000 genotypes for 396 samples), which allowed to extract MS-693 

associated SNPs (152 out of 200 known MS-associated SNPs available and 17 out of 31 known 694 

MS-associated HLA alleles available (HLA*IMP program)) as described elsewhere (53). The 695 

MS Genetic Burden Score (MSGB) for the HLA and non-HLA alleles and their combination was 696 

calculated as described previously (26). Briefly, the MSGB is computed based on a weighted 697 

scoring algorithm using one SNP per MS associated genomic region as found by trend-test 698 

association (meta-) analysis. This statistic is an extension of the log additive model, termed 699 

“Clinical Genetic Score”, with weights given to each SNP based on its effect size as reported in 700 

the literature. The MSGB is obtained by summing the number of independently associated MS 701 

risk alleles weighted by their beta coefficients, obtained from a large GWAS meta- analysis, at 702 

177 (of 200) non-MHC (major histocompatibility complex) loci and 18 (of 32) MHC variants, 703 

which includes the HLA-DRB1*15:01-tagging single-nucleotide polymorphism (SNP) 704 

rs3135388. 705 

 706 

Expanded genetic network including regulatory network information 707 

The SNPs were mapped with their nearest gene by the IMSVISUAL consortium (59), and 708 

a network was constructed using data from the Gene Regulatory Network Database (GRNdb) 709 

(60, 61). The database provides networks of transcription factors (TFs) from various cell types in 710 
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the human body. The gene regulatory network (GRN) within PBMCs was used containing 711 

12,878 genes, of which we only considered the subset of genes that were mapped to the SNPs 712 

from our study. Taking a subset in this way causes some of the regulatory information to be lost, 713 

such as two genes that are regulated by the same TF. There is still a relationship between two 714 

such genes, although indirect. To include this information in the network of MS genes, an edge 715 

was added between two genes that share a transcription factor. 716 

Once the GRN of MS genes was obtained, each gene was then replaced with its 717 

corresponding SNP. This is not a one-to-one mapping, as there are some SNPs that are mapped 718 

13 to the same gene. In this case, edges are placed among all SNPs that share a gene. This allows 719 

the GRN to be compared with the other layers in the combined network. Finally, only edges that 720 

appear in the original network of SNPs connected with Pearson correlation are kept, and their 721 

weights are used in the GRN. Details of these networks can be found in 722 

https://keithtopher.github.io/networks/#/. 723 

 724 

XMAP Phosphoproteomics 725 

Phosphoprotein levels were quantified using xMAP assays performed blindly at 726 

ProtAtOnce (Athens, Greece) as described previously (25, 27). We analyzed a set of kinases 727 

associated with MS (9) which provides an adequate signal to noise ratio and test-retest 728 

reproducibility: AKT1, AKTS1, CREB1, GSK3AB, HSPB1, IKBA, JUN, KS6B1, LCK, MK12, 729 

MK03/01, MK09, MP2K1, NRF2, P53, PGFRB, PTN11, RS6, SRC, STAT1, STAT3, STAT5, 730 

STAT6, TF65, WNK1. Phosphoprotein data was normalized after the measurements were taken 731 

as described elsewhere (27). 732 

 733 
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Data Processing 734 

The omics and clinical datasets were ultimately used to build the multilayer network, where 735 

each dataset represents a layer in the network. The data were examined to handle missing values, 736 

identify which patients have data from which layers, as well as divided into groups based on 737 

gender, disease severity, medication, etc. No imputation was used in this study. Patients were 738 

divided into mild and severe groups according to the tertiles of their age-related multiple sclerosis 739 

severity (ARMSS) score. Patients in the lower 40th percentile were classified as mild, and those 740 

in the upper 40th percentile classified as severe. The 2-year follow-up data from the clinical and 741 

imaging layers were used to calculate the change from baseline, and these changes were added as 742 

new variables. 743 

 744 

Multilayer network construction 745 

Individual networks were constructed from the five layers by computing mutual 746 

information between nodes within each layer, due to the inherent nonlinear nature of biological 747 

processes. First, the networks within an individual layer were constructed, and then the networks 748 

across layers (see Figure 2 for details on degree distribution for each layer). This step was done 749 

separately for two reasons: first to highlight the inherent differences (including biological scale) 750 

among the various layers, and second to utilize the maximum number of subjects available for 751 

each dataset. This is because not all subjects have data for both cytomics and proteomics.  752 

Once individual layer networks were constructed, the features between layers were 753 

connected together, again with mutual information. Not all layers are interconnected, however, 754 

due to a predetermined hierarchy applied to the system (see Figure 1g). Ultimately, this 755 

produced a network of five connected layers, where each layer contains features from each of the 756 
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five original datasets. A pipeline for the construction of the networks is shown in Figure 1. A 757 

second type of network was constructed using all five datasets, this time using linear correlation 758 

to define the edges, and such network was later used in the path analysis. 759 

 760 

Calculation of correlation for edges 761 

The method to calculate the edge weights in our networks was adopted from the 762 

ARACNE method (62) and simplified. The networks were constructed using mutual information, 763 

using the traditional binning method to calculate the mutual information pairwise between all the 764 

elements within individual layers and later between layers (63-65). The data for a given element 765 

are split into 10 equally spaced bins, and the probability of falling within a certain bin is 766 

calculated for each element individually as well as the joint probability for a two-point 767 

coordinate falling within a certain two-dimensional 1/10 by 1/10 size bin. The formula for the 768 

mutual information between two variables X and Y is 769 

𝐼(𝑋, 𝑌) 	= 	𝛴!"𝑝(𝑖, 𝑗)𝑙𝑜𝑔
#(!,")

#!(!)#"(")
,        (1) 770 

where px(i) and py(j) are the marginal probabilities for variables X and Y, respectively, and p(i,j) 771 

is the joint probability between X and Y. The python package scikit-learn (66) was used for the 772 

mutual information calculation. 773 

Once the mutual information value is calculated, a threshold is needed to determine if 774 

there is indeed a correlation between the two elements. Random permutations over subjects are 775 

performed separately for both variables, and the mutual information is calculated over the 776 

permuted data. This process is repeated 1000 times, and a distribution is obtained of random 777 

mutual information values (surrogates). The mutual information value obtained from the original 778 

data is compared to the distribution of random values to determine if it is significantly higher 779 
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than the distribution. The distribution is treated as Gaussian, and the original mutual information 780 

value is considered significant if it passes a z-test with p-value lower than p=0.05. Edges are 781 

placed between all significant pairs. Weights are assigned using the normalized value of mutual 782 

information, which falls between 0 (no correlation) and 1 (perfect correlation). 783 

The combined network (later used for the path analysis) was constructed using Pearson 784 

correlation. The Pearson correlation coefficient was calculated pairwise between each of the 785 

elements included in the two datasets, using the python package scipy (67). An edge was defined 786 

if the p-value associated with the correlation was lower than p=0.05. Next, the value of the 787 

Pearson correlation itself was used as the weight of the edge, giving a weight that falls between -788 

1 (perfect negative correlation) and 1 (perfect positive correlation). 789 

 790 

Path identification via Boolean modeling 791 

The method of path identification was inspired by Domedel et al (30). The combined 792 

five-layer network was constructed using Pearson correlation, and information flow across it was 793 

analyzed using Boolean simulations. This is done to examine how perturbing the network affects 794 

nodes within the various layers, especially those representing the phenotype. The genomics 795 

network in this case was modified further, utilizing information about regulatory interactions 796 

from the Gene Regulatory Network Database (28), between the genes that are mapped to the 797 

SNPs (described further above). The exact chemical reactions between proteins and cells are 798 

ignored, giving a qualitative description of the system (29). The goal of this step is to identify 799 

differences in paths responsible for triggering immune responses in healthy subjects compared to 800 

MS patients. 801 
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For simplicity, each element in the network (from one of the five layers) is considered to 802 

be in one of two states: active/inactive. For example, this represents high/low levels of 803 

phosphorylation for proteins. The Boolean simulation begins in a random state where each 804 

element has a 50% probability of starting as active or inactive. At each step, the elements’ 805 

activation states are updated based on the sum of the states of their neighbors. The nature of the 806 

connections between elements is key, as they have either activating (positive) or inhibitory 807 

(negative) relationships. For a given node, each neighbor contributes a score based on the weight 808 

and the sign of the connection of the corresponding Pearson correlation. The total sum of the 809 

weights of the neighbors determines whether the node will be active or inactive on the next 810 

iteration. 811 

As an example, consider the protein GSK3AB (inactive) with neighbors HSPB1 (active) 812 

and IKBA (active), as seen in Figure 8. Let’s say there is a positive connection between 813 

GSK3AB and HSPB1 with a weight of 0.8, and a negative connection between GSK3AB and 814 

IKBA with a weight of 0.5. Since HSPB1 is active and has a positive relationship with 815 

GSK3AB, it contributes a score of +0.8 to change GSK3AB to the active state. Since IKBA is 816 

active and has a negative relationship with GSK3AB, it contributes a score of -0.5 to GSK3AB 817 

inactive. Overall, we have a score of +0.3, so GSK3AB becomes active. 818 

 819 

Figure 8. Depiction of summing weights to determine next activation state in Boolean 820 

simulations. A green border represents an active node, and a grey border represents an inactive 821 

one. 822 
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 823 

 824 

Each step of the simulation was run in this manner and continued for 100 steps. One of 825 

the MSGB scores, proteins or cells was chosen as the input, where it was manually flipped 826 

between active and inactive states with a defined period (in this case 10 iterations active, then 10 827 

iterations inactive). This was done to examine how perturbations in the input node travel through 828 

the network and ultimately affect a given phenotype (output). The perturbations themselves 829 

represent changes between low to high values in the distribution for a given MSGB scores, 830 

protein, or cell. For the MSGB non-HLA score, the perturbations flip the value between high and 831 

low genetic risk. For a protein such as GSK3AB, the values flip between low and high 832 

phosphorylation. Finally for a cell such as B Memory, the values alternate between high and low 833 

cell counts. 834 

Noise was also added to the system, where each element has a set probability of changing 835 

its state at each iteration. The effect of noise can is illustrated in Figure 9. This addition of noise 836 

reflects the inherent stochasticity in biological systems as well as prevents the simulations from 837 

simply settling directly into a fixed state. The noise was chosen to be 5% because this allows 838 

greater differences for the cross-correlation of the signals between nodes as shown in Figure 9. 839 

With no noise at all, many of the nodes remain either active or inactive for the majority of the 840 
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simulation. This causes the cross-correlations to be too high between nodes, and the subtle 841 

differences in the strength of the connections is not seen.  842 

 843 

Figure 9: Effect of noise in Boolean simulations on the cross-correlation coefficient of the 844 

signals between nodes in the combined network. With 0% noise, a majority of the cross-845 

correlation values are nearly 1, which does not allow the node pairs to be easily ranked based on 846 

the strength of their connections. With 5% noise, there is more deviation in the cross-correlation 847 

values, which allows the paths between a chosen source and target to be more easily identified. 848 

 849 

 850 

Once the simulations were run, the temporal cross-correlation function was calculated 851 

between all pairs of nodes. The cross-correlation is a measure of similarity classically used in 852 

signal processing and is the same used in (30). The maximum cross-correlation (which could 853 

occur at a non-zero lag time) was determined, and its inverse is placed as a weight on the edges 854 

of the existing network, in such a way that a high correlation would correspond in this case to a 855 

low weight. In case there was no edge in the original network, no edge is defined in the new 856 

network either. A cell type or phenotype is selected as a target (output), and the most efficient 857 

paths are identified between it and the fixed source (input). An "efficient" path is defined as one 858 

in which the total sum of the weights (inverse maximum cross-correlations) of the edges 859 

connecting the source and target (called a path score) is lower than the rest. This definition 860 
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favors both low number of steps and high cross-correlations between nodes within a path. A 861 

shortest path algorithm developed by (65) was used, which gives precedence to the lowest path 862 

scores. 863 

Simulations were conducted between every possible pair of inputs (MSGB, proteins, or 864 

cells) and outputs (cells or phenotypes). Overall, the simulations aim to reveal how information 865 

flows through the entire networks, providing insight on underlying pathology in MS. This 866 

provides useful biological information, as differences in paths can be accessed between various 867 

subsets of patients (mild, severe, progressive MS, relapse-remitting MS, untreated, low-efficacy, 868 

and high-efficacy treatments). The algorithm for performing the Boolean simulations and the 869 

path identification is represented schematically in Figure 2. 870 

In order to test the consistency of the results, we ran 100 simulations for each source, 871 

then these 100 simulations were used to calculate the cross-correlation between proteins/cells to 872 

identify the paths. We applied a jackknife resampling 10 times, first taking 90 random samples, 873 

then 80 random samples. In both cases, 9 out of 10 paths on average were identical over all 874 

protein sources and cell targets. Also, as stated in the main text, negative controls were 875 

considered by permuting the network before running the Boolean simulations. An illustration of 876 

the process for permuting the networks and identifying their corresponding paths is shown in  877 

 878 
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 879 

 880 

Figure 10: Network permutation for negative controls of paths. The five-layer network built 881 

using Pearson correlation is used as the base network. For each of the 100 repetitions, the 882 

network was permuted by swapping the edges between pairs of nodes. In permutation 1, the edge 883 

between B and C was swapped with the edge between D and E. In the permutation 2, the edge 884 

between A and E was swapped with the edge between B and C. In permutation 3, first the edge 885 

swap from the top network was applied, followed by the edge swap from the middle network. In 886 

each case, the edge swap can only be done if it does not result in two edges between the same 887 

pair of nodes. Making the permutation in this way keeps the original degree distribution of the 888 

network. The weights for each of the edges are permuted as well. This edge swapping technique 889 

is applied 10 times for each edge in the original network. After they are permuted, the top paths 890 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.26.530153doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.26.530153
http://creativecommons.org/licenses/by/4.0/


51 

for each network are identified in the same manner as before. There are three possibilities for 891 

considering whether the paths from the original network appear in the paths from the permuted 892 

networks. In permutation 1, the path exists in the permuted network and furthermore was 893 

identified as a top path. In permutation 2, the original path does exist in the permuted network 894 

but was not identified as a top path. In permutation 3, the original path doesn’t exist in the 895 

permuted network at all. 896 

 897 

Combinatorial analysis 898 

All possible combinations of source sources (MSGB scores, proteins, cells) and targets 899 

(cells, imaging and clinical phenotype) were used to identify top paths. The simulations were run 900 

with each protein as a source, where it remained active for 10 steps, then inactive for 10 steps. 901 

After the simulations were run for each source, and the cross-correlation values were calculated, 902 

each cell type was selected to be the endpoint for the path finding algorithm. This was performed 903 

as a screening process to create an ensemble of paths for each source/target pair. Their 904 

significance in the phenotype was assessed next. 905 

 906 

Statistical analysis 907 

The study was designed with a 1:4 ratio controls vs MS patients are based in the 908 

following reasoning: 1) the goal was the prediction of the phenotype and for such analysis only 909 

MS cases will be used; 2) controls were only used for the logistic regression comparing the 910 

diagnosis; 3) MS is heterogenous and for this reason it was expected to perform comparisons 911 

between subgroups based on disease subtype and therapy, requiring a bigger sample size for the 912 
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MS group. For this reason, we designed a 4:1 ratio. Controls were collected in equal proportion 913 

from all participant centers in order to avoid center bias.  914 

Descriptive statistics, normal distribution assessment, and class comparison analysis was 915 

performed for the five layers. The Mann-Whitney test was used due to non-normal distributions 916 

being present in both datasets. Mutual information was used in constructing the topological 917 

networks for all five layers.  918 

 919 

Network statistics 920 

Network metrics were calculated from the networks constructed using mutual 921 

information. including average degree and density. The clinical and imaging datasets lack 922 

information from healthy controls, so networks were not constructed in these cases. The average 923 

degree is given for each individual layer for healthy controls and MS patients, including those 924 

who are not treated with fingolimod (Table 2). Considering the omics datasets, all three of 925 

cytomics, proteomics, and genomics saw a significant increase in degree from the healthy 926 

network to all patient network at the 5% significance level. When comparing groups of patients 927 

treated with any medication versus groups excluding the patients treated with Fingolimod (a 928 

high-efficacy treatment with notable effects on cell counts in the immune system3, the cytomics 929 

networks saw decreases in degree in every case, and the genomics saw decreases for all patient 930 

and mild patient networks.  931 

 932 

Table 2. Average degree of individual networks constructed using mutual information to 933 

define edges. These degrees do not consider the connections among layers. The superscripts 934 

(a,b) represent cases where there was a significant change when comparing degree distributions. 935 
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The Mann-Whitney test was used for all pairings, due to the non-normality of the degree 936 

distributions. 937 

a Significant increase (p-val < 0.05) in degree between healthy controls and all patients. 938 

b Significant decrease (p-val < 0.05) in degree between all patients in a given subset (all, mild, 939 

or severe) and those not treated with Fingolimod. 940 

 941 

 942 

 943 

 944 

Average Degree 

 Healthy All  

Patients 

Patients 

w/o Fingo 

Mild 

Patients 

Mild 

w/o Fingo 

Severe 

Patients 

Severe 

w/o Fingo 

Clinical - 11.2 11.4 8.0 8.1 7.8 7.2 

Imaging - 6.3 6.3 4.6 4.6 3.5 3.4 

Cytomics 2.5a 8.8 6.0b 5.8 3.8b 5.7 3.6b 

Proteomics 5.0a 8.0 7.5 3.9 2.9 5.5 5.8 

Genomics 12.2a 13.3 12.6b 12.2 13.0b 12.4 12.3 

 945 

Data availability 946 

Anonymized raw data of the Sys4MS cohort is available at MultipleMS database 947 

(www.multiplems.eu) upon reasonable request and a web interface of the networks 948 
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(https://keithtopher.github.io/single_networks/#/ and 949 

https://keithtopher.github.io/combo_networks/#/) and paths 950 

(https://keithtopher.github.io/fiverlayer_pathways/) 951 

are available at Github.  952 
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