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ABSTRACT

The CRISPR/Cas9 nuclease from Streptococcus pyogenes (SpCas9) can be used with single
guide RNAs (sgRNAs) as a sequence-specific antimicrobial agent and as a genome-engineering
tool. However, current bacterial sgRNA activity models poorly predict SpCas9/sgRNA activity
and are not generalizable, possibly because the underlying datasets used to train the models
do not accurately measure SpCas9/sgRNA cleavage activity and cannot distinguish cleavage
activity from toxicity. We solved this problem by using a two-plasmid positive selection system to
generate high-quality biologically-relevant data that more accurately reports on SpCas9/sgRNA
cleavage activity and that separates activity from toxicity. We developed a new machine transfer
learning architecture (crisprHAL) that can be trained on existing datasets and that shows marked
improvements in sgRNA activity prediction accuracy when transfer learning is used with small
amounts of high-quality data. The crisprHAL model recapitulates known SpCas9/sgRNA-target
DNA interactions and provides a pathway to a generalizable sgRNA bacterial activity prediction
tool.

INTRODUCTION

The Cas9 nucleases from the type II-A clustered regularly interspaced short palindromic
repeat (CRISPR) system have gene-editing applications in both bacteria and eukary-
otes’-2. Cas9 cleavage of DNA templates requires an associated CRISPR RNA (crRNA)
that is complementary to the target site, and a trans-activating CRISPR RNA (tracrRNA)
that is required for crRNA assembly with Cas9?; in most applications these two RNAs
are genetically fused into a single guide RNA (sgRNA)*. In bacteria, Cas9 nucleases can
be used as sequence-specific antimicrobial agents to target distinct bacterial species for
elimination®'! because many bacteria lack appropriate DNA repair pathways to repair
double-strand breaks (DSB). Cleavage by Cas9 causes replication fork collapse and cell
death'?. Alternatively, Cas9 cleavage can eliminate plasmids through the cellular RecBCD
exonuclease pathway that degrades linearized DNA. Cas9 can also be used for bacte-
rial genome engineering'®15, or for transcriptional modulation with catalytically inactive
dCas9 variants'6-18,

A major unsolved problem when using Cas9 is the inability to accurately select sgRNA/
Cas9 combinations that lead to high on-target activity in both eukaryotic and prokaryotic
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systems. Selection of sgRNAs typically involves computational prediction of activity where
the underlying models are usually trained on data of in vitro or in vivo Cas9/sgRNA activity,
and may also include biochemical parameters of Cas9 activity, biophysical calculations of
sgRNA:DNA stability, and chromatin accessibility information'924. However, as recently
reported®>26, most computational models poorly predict sgRNA activity outside of the
dataset on which they are trained. This lack of generalizability could be because the
underlying data are sparse and not independently validated, because the datasets may
not accurately represent Cas9/sgRNA cleavage activity and instead report a secondary
DNA repair outcome of DSB generation, because the deep learning algorithms are not
optimal, or a combination of all three?°.

In spite of the conceptual simplicity in targeting sgRNAs to small bacterial genomes,
eukaryotic-based computational models fail to accurately predict activity in bacteria®”’.
One issue for sgRNA activity predictions in bacteria is that there are few bacteria-specific
large-scale datasets of Cas9/sgRNA activity?®2%. In each case, deep sequencing was
used to readout sgRNA abundance of a pooled sgRNA library targeting the Escherichia
coli genome, with the assumption that sgRNA depletion was correlated with active Cas9/
sgRNA combinations. A complicating factor in assessing Cas9/sgRNA activity in bacte-
ria is that expression of Cas9 (and dCas9) alone can result in cellular toxicity and slow
growth39-33, Thus, experimental strategies that only use bacterial killing as a measure of
Cas9/sgRNA activity cannot separate toxicity from activity because both will result in deple-
tion of sgRNAs from a pooled high-throughput experiment. Two sgRNA prediction mod-
els have been developed based on this data, sgRNA-cleavage-activity-prediction® and
DeepSgRNAbacteria®*, but we found poor correlation between predicted Cas9/sgRNA ac-
tivity and killing of Salmonella typhimurium®. Other factors that possibly impact sgRNA ac-
tivity in bacteria include sub-optimal secondary structures in the crRNA and tracrRNA3®,
and similarity between the crRNA seed region and so-called "non-targets" in bacterial
genomes. In contrast, DNA modifications do not impact activity of type Il CRISPR systems
(from which Cas9 is derived)3:37. Similarly, there is no bias in activity for Cas9/sgRNAs
targeting the template or non-template strand of transcribed genes, or in targeting the
leading or lagging strands relative to DNA replication origins®.

Taken together, the evidence indicates that there is a pressing need for additional high-
quality bacterial sgRNA activity data sets to validate and generalize previous findings, and
to provide training data for predictive machine learning models. Here, we develop a paired
experimental design in E. coli that compares behaviours of sgRNA/Cas9 combinations in
repressed and induced conditions to provide a readout of activity where active sgRNAs
are enriched in a pooled library. This approach differs from previous depletion studies
by accounting for initial sgRNA abundance in the pooled library, and does not rely on
end-of-experiment sgRNA abundance as the sole indicator of sgRNA activity. Additionally,
this setup distinguishes highly active Cas9/sgRNA combinations from toxic ones with poor
growth, even in repressed conditions. We used this approach with the SpCas9 nuclease*
and the TevSpCas9 dual-nuclease® to generate robust sgRNA activity datasets to train a
sgRNA prediction model, crisprHAL (crispr macHine trAnsfer Learning) that recapitulates
the known biology of the Cas9/sgRNA-target DNA interaction surface. Significantly, we
found that transfer learning from existing datasets with a small amount of sgRNA activity
data (279 sgRNAs) from our new assays improved bacterial sgRNA predictions relative
to previous models. Collectively, our study highlights the importance of accurate sgRNA
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activity data and transfer learning as being crucial for computational modelling.
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Figure 1. Spearman ranked correlation of predicted versus measured activity for sgRNA
prediction models. Barcharts are Spearman Rank correlations between the A) TevSpCas9
dataset (n=279) and B) the SpCas9 dataset (n=303) generated in this study and predictions from
bacterial sgRNA activity models including crisprHAL. The crisprHAL values are reported as the
average rank correlation from 5-fold cross validation. For both panels, asterisks (*) indicate
datasets from Guo et al.?® and hash marks (#) indicate datasets generated in this study.

RESULTS

Current bacterial sgRNA prediction models are poorly generalizable

We were interested in understanding why existing sgRNA prediction models poorly cor-
relate with in vivo activity®. Thus, we tested whether current bacterial sgRNA prediction
models were generalizable to different SpCas9 activity datasets (Figure 1). For this, we
used a two-plasmid positive selection system (Figure 2) to generate two high-quality ac-
tivity datasets for the SpCas9 and the TevSpCas9 dual nuclease (as described in detalil
in the following sections). When the TevSpCas9 dataset was used as an input for the
sgRNA-cleavage-activity-prediction model (hereafter referred to as the Guo model) and
the DeepSgRNAbacteria model (hereafter referred to as the DeepSgRNA model), we
found only modest predictive performance of either model by Spearman correlation of
rank order between experimentally determined and predicted activity (Figure 1). Modest
predictive power was observed regardless of which of the two published sgRNA deple-
tion datasets the Guo or DeepSgRNA models were trained on; one dataset used SpCas9
and the other used an enhanced high-fidelity SpCas9 variant (eSpCas9). These results
emphasize a major issue with Cas9/sgRNA activity predictions, namely the lack of gener-
alizability and accuracy when models are used with data outside of the initial training data,
and highlight the need for high-quality datasets that accurately report on Cas9/sgRNA
cleavage activity.
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Figure 2. Two-plasmid survival assay. A) Experimental workflow of the two-plasmid system.
Transformation, the pCas9 plasmid expressing SpCas9 or TevSpCas9 from an
arabinose-inducible promoter and a sgRNA from a constitutive tetracycline resistance gene
promoter is transformed into E. coli harbouring pTox. Induction and Outgrowth, transformed cells
are split into repressed (0.2% D-glucose) or induced (0.2% L-arabinose and 0.1 mM IPTG)
conditions and grown for 18 hrs. Active sgRNAs, blue promote robust cleavage of the toxic
plasmid and cell growth while inactive sgRNAs, red do not cleave pTox preventing cell growth.
Detection, SpCas9/sgRNA activity can be read out by i) deep-sequencing the pCas9 sgRNA
cassette, ii) growth curves that measure optical density of induced and repressed cultures, or iii)
plating on solid media to determine a percent survival based on the ratio of colonies on induced
media (chloramphenicol and IPTG) and repressed media (chloramphenicol and D-glucose). B)
Different TevSpCas9/sgRNA combinations promote a range of survival. Plot of survival
percentage for three different sgRNAs targeted to pTox (2435_NC,1887_C,2541_NC) identified as
active (blue), intermediate (orange), inactive (red) as well as a no-sgRNA(NG) control (black).
Individual data points represent independent experiments. D) Growth curve of E. coli harbouring
the SpCas9/sgRNA combinations used in panel B plotted as time versus absorbance at 600 nM.
Data points represent the mean of three biological replicates and the whiskers representing the
standard deviation from the mean.

Profiling sgRNA activity using a two-plasmid system

To increase the accuracy of SpCas9 and TevSpCas9 targeting predictions, we started with
an improved assay in which we used an integrated approach to assess SpCas9/sgRNA
activity in E. coli (Figure 2A). We adapted a two-plasmid system used for in vivo se-
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lection experiments3®~#! that is known to correlate with enzymatic activity in vitro*? and
expressed the SpCas9 or dual-nuclease TevSpCas9 protein (arabinose inducible) and a
sgRNA (constitutive expression) from one plasmid (pCas9) in combination with a second
plasmid (pTox) harbouring the ccdB DNA gyrase toxin controlled by an IPTG inducible
promoter (Figure 2A). Cleavage of the pTox plasmid by an active SpCas9/sgRNA com-
bination or TevSpCas9/sgRNA combination (Figure 2B) leads to degradation of the pTox
plasmid and subsequent cell growth and enrichment of cells lacking the pTox plasmid in
the population. Inactive SpCas9/sgRNA or TevSpCas9/sgRNA combinations do not elimi-
nate the pTox plasmid and are unable to grow under toxin-inducing conditions. Importantly,
the activity of the (Tev)SpCas9/sgRNA combination is related to the rate of pTox plasmid
clearance, and so partially active combinations will have intermediate outgrowth and lethal-
ity characteristics. With this system, (Tev)SpCas9/sgRNA activity can be analyzed by deep
sequencing of the sgRNA expression cassette following competetive growth in liquid me-
dia, or by growth rate in liquid media, or by counting colonies grown on solid media (Figure
2A). The dual-active-side nuclease TevSpCas9 has an extended targeting requirement
that includes the 5-CNNNG-3’ |-Tevl cleavage motif (Supplementary Figure S1)38. Thus,
all TevSpCas9 sites are also Cas9 sites, and cleavage by an active TevSpCas9/sgRNA
combination will create an additional DSB with the potential to enhance killing efficiency.

We validated this system by targeting three TevSpCas9/sgRNA combinations to a
unique region of pTox; sgRNAs435 N, SQRNA4gg7 ¢, and sgRNAosss1 ne (in this nam-
ing scheme sgRNAs are identified by the position of the first PAM-distal nucleotide of
the sgRNA target in pTox and whether they target the coding or non-coding strand, as
all genes are in the same orientation). We plated the transformed E. coli cells on solid
media and calculated percent survival by comparing the proportion of colony forming
units (CFUs) on toxin-inducing or toxin-repressing agar plates. When expressed in com-
bination with the TevSpCas9 protein, the three sgRNAs tested showed survival rang-
ing from 88.2+4.1% (standard error of the mean) for sgRNA2435 N t0 0.94+0.29% for
sgRNAss41 N (Figure 2B). When no sgRNA was present (NG, no guide), we observed
0% survival (Figure 2B). We conducted a similar experiment in liquid media by measuring
absorbance at 600 nm over 18 hours to detect growth under inducing and non-inducing
SpCas9 conditions in combination with the same three sgRNAs (Figure 2C). The resulting
growth curves are consistent with the survival values on solid media, with sgRNA2435 Nc
promoting robust growth, sgRNA1gg7 ¢ promoting intermediate growth and sgRNAss41 ne
and the NG control showing no growth (Figure 2C). Collectively, these results show that
bacterial growth is dependent on cleavage of the pTox plasmid by TevSpCas9/sgRNA,
agreeing with previous results using SpCas9*!, and that differential TevSpCas9/sgRNA
activity results in distinct growth differences over a large and consistent range.

Sensitivity of the two-plasmid system

We next tested the ability of the two-plasmid system to detect changes in SpCas9/sgRNA
or TevSpCas9/sgRNA activity when read out via a multiplexed high-throughput sequencing
experiment. This experiment was designed to validate the sensitivity of the two-plasmid
system when reporting on a range of TevSpCas9/sgRNA activities, and to assess the ef-
fect of mismatches between the sgRNAs relative to their cognate target site. For this, we
designed an oliognucleotide pool where single and double nucleotide transversions were
tiled along the length of 28 different sgRNAs that were targeted to a unique 3.2 kb region of
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Figure 3. Activity of sgRNAs with single and double mismatches. A) Schematic of the
mutant pool (mPool) design and experimental approach. Single and dinucleotide transversions
are indicated by lower case red letters, with sgRNAs numbered from PAM proximal (postion 1) to
PAM distal (position 20). B) Ridge plots of normalized sgRNA activity scores for non-targeted
sgRNAs (NT, green) perfectly matching sgRNAs (black), sgRNAS with single nucleotide
mismatches sgRNAs (yellow), and sgRNAs with dinucleotde mismatches (cyan). C)
Bland-Altmann plot comparing the normalized abundance and normalalized activity scores for
sgRNAs in the mPOOL with the colours representing the same sgRNAs categories as panel B. D
and E Ridge plots of normalized sgRNA activity scores by position of mismatch for sgRNAs with
(D) single or (E) 2 mismatches.
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the pTox plasmid (Figure 3A, Supplementary Table S1). The mutated oligonucleotide pool
(mPool) also contained 20 sgRNAs not targeted to pTox and 28 exactly matching sgRNAs
as internal controls, for a total of 1140 sgRNAs. The mPool was cloned into pTevSpCas9
and we performed 10 independent transformations into E. coli harbouring the pTox plas-
mid. Each transformation culture was split and then grown under conditions that repressed
or induced TevSpCas9 and CcdB. We anticipated that active TevSpCas9/sgRNA combi-
nations would become enriched under the inducing conditions relative to the pool grown
under non-induced conditions. Our output score (reported as normalized activity) was the
log2 difference in relative sgRNA abundance between the induced and uninduced condi-
tions (Materials and Methods). Given the solid and liquid culture results, we anticipated
that the assay would report a distribution of activities that depended on the underlying
activity of the sgRNA/pTevSpCas9 combination. After lllumina sequencing of the sgRNA
cassette from both conditions and data analyses, active combinations were identified by a
higher normalized activity score (Supplementary Table S2).

As expected, when co-expressed with TevSpCas9, sgRNAs that exactly matched their
target sequences (black) (Figure 3B and 3C) tended to exhibit high normalized activity
scores, sgRNAs with single mismatches to their target site (orange) showed a broad range
of activities, and sgRNAs with double mismatches to their target site (blue) generally had
low activity scores that were similar to non-targeted sgRNAs (green). Also as expected,
the ability of the sgRNA to confer activity was most impacted by mismatches in the seed
region corresponding to positions 1-10 relative to the PAM proximal end (Figure 3D)*344,
The impact of double transversions was more pronounced than that of single transversions.
In the former, mismatches in all positions except 20 and 19 severely reduced activity (Fig-
ure 3E), while in the latter there was a broader range of activity conferred (Figure 3D).
These results agree with previous studies on mismatch tolerance of Cas9/sgRNA from in
vitro data and eukaryotic systems*>=4/. The data also show that our experimental system
can report a gradient of sgRNA activities across an ~1000-fold normalized activity range
and a ~2000-fold range in relative abundance; although the relative abundance range was
more clustered except for a few outlier sgRNA sequences.

High-throughput profiling of a pooled sgRNA library

We next synthesized an oligonucleotide pool (oPool) to interrogate the activities of 304
exact match sgRNAs targeted to the pTox plasmid, with all sgRNA sites having a 5’-NGG-
3’ PAM sequence (Figure 4A, Supplementary Table S3). The oPool also contained 15
sgRNAs with nucleotide mismatches that had varying degrees of target complementarity
to the pTox plasmid, and 48 sgRNAs that did not have any complementarity to the pTox
plasmid. In addition, 73 of the 304 sgRNAs that exactly matched their target sequence
also contained an exact match with a consensus I-Tevl cleavage site at the correct spacing
from the SpCas9 binding site. In total, the oPool contained 367 sgRNAs (Supplemental
Table S3). The oPool was cloned into pTevSpCas9 and pSpCas9, and 10 transformation
replicates for each was generated. Following induction and outgrowth, the result was read
out by lllumina sequencing and data analysis to assign normalized activity and relative
abundance scores for each sgRNA in combination with both SpCas9 and TevSpCas9
(Supplementary Table S4). The major findings from these experiments are:

1. Of the 304 sgRNAs with perfect complementarity to the pTox plasmid, 174 had sig-
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Figure 4. High-throughput pooled screen detects distribution of SpCas9/sgRNA and
TevSpCas9/sgRNAs activity. A) Schematic of target sites for the sgRNAs pPool with black
boxes representing sgRNA target site (304), cyan boxes representing target sites with
mismatches (15), red boxes representing non-targeting sgRNAs (48) and yellow boxes
representing TevCas9 sites (75). B) and D) Distribution of normalized activity scores for
mismatched (cyan), non targeting (red), and on target (black) sgRNAs for Cas9 (B) and TevCas9
(D) experiments. C and E) Bland-Altmann plots comparing the normalized abundance and
activity scores for individual sgRNAs in the Cas9 (C) and TevCas9 (E) pooled experiments.
sgRNAs with a false-discovery rate (FDR) < 0.01 are highlighted black and sgRNAs with a FDR >
0.01 are coloured grey. Cyan and red points represent mismatched sgRNAs and non-targeting
sgRNAs respectively. sgRNAs that were tested individually in Figure 2B and 2C are shown as
triangles where 2435_NC is blue, 1887_C is orange and 2541_NC is red.
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nificant positive normalized activity scores in the SpCas9 data set and 178 in the
TevSpCas9 data set using an FDR < 0.01 (Figure 4C and 4E).

2. The non-targeted (red) and mismatched (cyan) sgRNAs generally had negative nor-
malized activity scores indicating that they did not cleave the pTox plasmid efficiently
(Figure 4B-E).

3. We found no nucleotide preference in the first position of the 5-NGG-3’° PAM for
either SpCas9 or TevSpCas9 (Supplementary Figure X).

4. sgRNA relative abundance alone was misleading as a measure of activity as the
vast majority of sgRNA sequences were highly abundant, and both mismatched and
non-targeted sgRNA sequences tended to be more abundant than average (Figure
4C and 4E).
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the difference between condition values for sgRNAs present in both TevSpCas9 and SpCas9
pooled experiments where dark green dots represent sgRNAs with upstream |-Tevl recognition
sites and light green dots representing sgRNAs with Cas9 sites only. Non-targeting and
mismatched sgRNAs are highlighted as red and cyan respectively. Three sgRNAs that target
TevSpCas9 sites are indicated.

One interesting finding from the oPool experiment was the activity of sgRNAs in the
SpCas9 versus the TevSpCas9 experiment. Overall, the readouts from the same sgRNAs
in both assays behaved similarly (Figure 5, Pearson correlation 0.90, p-value < 2.2 x 10716),
but we found 22 sgRNAs that promoted higher activity with TevSpCas9 than with SpCas9.
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In the SpCas9 experiment, these sgRNAs had low normalized activity scores ranging from
-1.21 to 1.45 versus -1.01 to 2.77 in the TevSpCas9 experiment. The single non-targeted
sgRNA (NT42) with a high activity of 3.4 in the TevSpCas9 experiment also showed high
replicate-to-replicate variability suggesting that this was an outlier (Supplemental Table
4). One explanation for the increased activity of sgRNAs in the TevSpCas9 experiment
was the presence of the I-Tevl 5-CNNNG-3’ cleavage motif at an appropriate distance
upstream of the sgRNA binding site (Figure 2B and Figure 5). This observation suggests
that SpCas9 binding is necessary but not sufficient for cleavage, and that low SpCas9
cleavage can be rescued by the I-Tevl nuclease domain to promote elimination of the pTox
plasmid.

We also noted a large dynamic range for the normalized activity scores (~1000-fold)
and relative abundances of the sgRNA sequences (~2000-fold) (Figure 4C and 4E).
The dynamic range allowed us to identify sgRNAs with low abundances but large activity
scores (upper left quadrant of Figure 4C and 4E). Conversely, we identified sgRNAs with
high abundance but negative activity scores (lower right quadrants of Figure 4C and 4E);
58.7% and 73.5% of these sgRNAs are non-targeting (red) or mismatched (cyan) guides
with respect to the pTox plasmid. Taken together, the data highlight the importance of con-
ducting an experiment where the paired design allows the readout of relative enrichment
with multiple replicates to accurately measure the ability of sgRNA to confer activity on
the complex. Moreover, the approach demonstrates that using sgRNA relative abundance
alone as an indicator of activity can lead to false identification of the abilty of sgRNAs to
confer activity.

Growth curves of individual sgRNAs identifies toxic guides
The pooled sgRNA experiments in Figures 3 and 4 revealed a wide range of sgRNA
activity. To cross validate these activity measurements we blindly picked 77 colonies from
the transformed pTevSpCas9/sgRNA-oPool library to test using individual growth experi-
ments as shown in Figure 2D; the identity of each sgRNA was confirmed by sequencing
of isolated plasmids. We rationalized that growth curves performed with individual sgR-
NAs would better resolve measure the properties of sgRNA species independent of their
behaviour in a sgRNA pool where we could only measure relative changes. These experi-
ments were performed when the TevSpCas9 protein and the CcdB proteins were induced
or repressed, and we found three different classes of sgRNA sequences (Figure 6A-C,
Supplementary Figure X). Those sgRNAs that conferred a high level of activity when com-
plexed with TevSpCas9 (20 of 77) grew in both induced and repressed conditions (Figure
6A) whereas inactive sgRNAs (12 of 77) only grew in the repressed condition (Figure 6B).
Surprisingly, we found a number of sgRNAs that we classified as toxic (12 of 77) because
they grew poorly in both the induced and repressed condition (Figure 6C) as compared
to a non-targeting sgRNA (Figure 6D). The growth curves for the remaining 33 sgRNAs
did not clearly fit in any category but showed intermediate activity. For active sgRNAs, we
consistently found that maximal optical density values were lower in the induced than the
repressed condition. We attribute this difference to the presence of glucose in the me-
dia used for the repressed condition, which is a preferred carbon source to the arabinose
present in the media for the induced condition.

For each sgRNA, we calculated the area under the curve (AUC) for the induced and
repressed conditions and normalized them relative to the average AUC for all sgRNAs for
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each condition (Figure 6E, Supplementary Table S5). This plot emphasizes that many
guides conferring activity grew well in both induced and repressed conditions (20 of 77,
black dots Figure 6E). Conversely, a subset of sgRNAs showed poor or no growth in in-
duced conditions, but robust growth in repressed conditions, and thus were considered
inactive (12 of 77, red dots in Figure 6E), although there was no clear separation between
these two groups. This analysis also revealed that toxic sgRNAs grew poorly in both re-
pressed conditions and induced conditions (12 of 77, cyan dots Figure 6E). We considered
that toxicity could be due to off-target sgRNA sites in the E. coli genome, however none of
these sgRNAs have off-target sites with 3 or fewer mismatches. This suggests that toxicity
is either an intrinsic property of the sgRNA or that these sgRNAs confer some unwanted
property on the TevSpCas9 protein when complexed with the toxic sgRNA

To address parallels between individual and pooled experiments, we mapped the dif-
ferent classes of sgRNAs from the growth experiments back to the analyses of the deep
sequencing experiments (Figure 6F and 6G). This revealed that sgRNAs that were classed
as inactive in the growth experiments had poor activity in the pooled experiments, with a
mean normalized activity score of -0.309 and relative abundance value that were sugges-
tive of minimal or modest enrichment (Figure 6F). In contrast, sgRNAs conferring activity in
the growth experiments largely had positive activity scores and relative abundance values
(Figure 6F). Interestingly, guides determine to be toxic by the growth curves had activity
scores ranging from -1.33 to 1.81 in the pooled experiment (6F, mean value of -0.0431)
and many of these sgRNAs had positive relative abundance values (Figure 6F). One ex-
planation for this apparent discrepancy between toxicity and activity is that toxic sgRNAs
vary in how they promote bacterial growth in the repressed and induced conditions. For
instance, a toxic sgRNA may still be active on the intended pTox plasmid target site under
inducing conditions (thus promoting growth), but show toxicity under repressive conditions
(thus preventing growth) in turn altering the relative difference calculation that is used to
infer activity.

Collectively, these data emphasize the importance of independent validation of sgRNA
activity using different methods of activity assessment. Our analyses revealed that many
sgRNAs that would be considered active solely by their relative abundance in deep se-
quencing experiments demonstrated high levels of toxicity when analyzed individually.
Thus, toxicity and high activity are not mutually exclusive, but cannot be distinguished
if sSgRNAs are classified based on a single line of experimental evidence. Further studies
are needed to directly identify toxic sgRNAs and determine the mechanism of toxicity.

Transfer learning is required for suitable TevSpCas9 predictive ability
With this data in hand, we next concentrated on building a model, crisprHAL (Figure 7A,
Supplementary Table S6), that could more accurately predict sgRNA target site sequence-
associated TevSpCas9 and SpCas9 activity in E. coli. For this, we constructed a dual
branch deep learning architecture utilizing transfer learning. To select our model archi-
tecture and evaluate transfer learning performance, we used 5-fold cross validation, mea-
sured by Spearman ranked correlation coefficient, hereafter referred to as rank correlation.
Our initial model tests used only the TevSpCas9 dataset which, unsurprisingly given
the dataset size, resulted in poor performance, with a rank correlation of 0.308 (Figure 7B).
Thus, we chose to pursue transfer learning to improve performance and constructed new
base models on SpCas9 (n=40308) and eSpCas9 (n=45010) datasets derived from an
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Figure 6. Assaying sgRNAs individually identifies distinct phenotypes. Representative
growth curves of active (A), inactive (B), toxic (C) and non-targeted (D) sgRNAs under induced
(red dots and line) and repressed (black dots and line) conditions. Points are the mean of three
biological replicates and whiskers represent the mean plus or minus the standard deviation.
Growth curves for all tested sgRNAs are in Supplemental Figure 4 and Supplementary Table 5. E)
Plot of AUC for induced and repressed conditions for all sgRNAs. sgRNAs were classified as
active (black dots, AUC > 1.64) or toxic (cyan dots, AUC < 0.121) based on quantiles of the AUC
for the induced condition. Gray points are sgRNAs with an intermediate phenotype. F) Marginal
density plot of normalized activity and abundance for each sgRNA using data shown in Figure 4E.
Gray points are sgRNAs with an intermediate phenotype.

sgRNA depletion experiment in E. coli?®. Hereafter, this data is referred to as the Guo Sp-
Cas9 or Guo eSpCas9 dataset to distinguish it from our SpCas9 dataset generated in this
study. A major difference of our model compared to prior models is the use of a log ratio-
based relative difference metric for scoring sgRNA-associated nuclease activity*®. This
scoring method resulted in mean scores near 0 across all datasets, however, we noted
differences in their dynamic ranges. The Guo SpCas9 and eSpCas9 datasets contained
the widest range of scores, with standard deviations of 2.280 and 2.492, respectively. The
TevSpCas9 dataset contained the smallest range, with a standard deviation of 1.305. To
compensate for the variations in activity score ranges, we standardized the scores for each
dataset by dividing by the standard deviation (Supplementary Table S6). This improved
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Figure 7. crisprHAL model architecture and branch architecture tests. A) Model
architecture of crisprHAL showing the one-hot encoding of an input sgRNA sequence (green), the
dual branch 4-layer CNN and hybrid CNN-BGRU RNN architecture with frozen layers (blue) and
unfrozen layers (light orange), and the output predicted activity score (dark orange). The first
CNN layer is connected to both branches of the model. The number of neurons per layer are
indicated in the top right corner of each layer. Testing model performance on B) TevSpCas9
(n=279) and C) our SpCas9 (n=302) datasets without transfer learning versus transfer learning
from a base model constructed on the Guo SpCas9 or eSpCas9 dataset. Model architectures
tested are: 3, 4, 5, and 6 layer CNNs; long-short term memory RNN (LSTM) or bidirectional gated
recurrent unit RNN with 0, 1, or 2 preceding CNN layers; and crisprHAL — composed of the two
best branches — a 4 layer CNN and a hybrid CNN-BGRU which share the first CNN layer. All
architectures contain two fully connected dense layers following their respective CNN and/or RNN
layers. Performance is measured by average rank correlation from 5-fold cross validation.

transfer learning performance since each dataset was on the same scale. Base model
performance was unaltered as expected since this is a simple linear scaling.
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Figure 8. Predictive performance of crisprHAL. A) Correlation between the TevSpCas9
dataset (n=279) and the TevSpCas9 model 5-fold cross validation predictions (mean rank
correlation of 0.630 across 5-folds). B) Correlation between the unique Guo SpCas9 dataset
(n=7821) and predictions from the TevSpCas9 model (rank correlation of 0.682). C) Correlation
between the SpCas9 dataset (n=302) and the SpCas9 model 5-fold cross validation predictions
(mean rank correlation of 0.627 across 5-folds). D) Correlation between the unique Guo SpCas9
dataset and predictions from the SpCas9 model (rank correlation of 0.657). Model predictions are
compared to original Z-score sgRNA activity scores for the unique Guo SpCas9 dataset. In
panels A and C the linear line of best fit and standard error of the fit are shown.

Following base model construction, we tested variations in freezing parameter weights
for specific layers within the model to optimize for transfer learning performance. We found
that freezing the multi-layer CNN branch and leaving all layers of the CNN-BGRU branch —
except for the initial CNN layer shared by both branches of the model and the final output
layer — resulted in the best performance, as shown in Figure 7B. Additionally, the perfor-
mance of the model was higher when the final layers of the model, which concatenate the
outputs of both branches of the model, were frozen.

We found that base models constructed on the Guo eSpCas9 dataset had better trans-
fer learning performance than base models constructed with the Guo SpCas9 dataset.
TevSpCas9 average 5-fold cross validation performance improved by 0.053 rank correla-
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tion when transfer learning with the eSpCas9 base model versus the Guo SpCas9 base
model (Figure 7B). We found that crisprHAL with a dual branch architecture performed
well on our TevSpCas9 dataset (n=279) after transfer learning from a base model built on
eSpCas9 data (n=45010), with a rank correlation of 0.630 (Figure 7B). This exceeds the
best prior bacterial model, built for SpCas9 by Guo et al., which had a rank correlation in
this dataset of 0.52 (Figure 1A). Within the 4 prior bacterial models tested, we found that
the gradient boosting regression tree (GBR) models for SpCas9 and eSpCas9 by Guo et
al. generalize to TevSpCas9 data better than the deep learning based models for SpCas9
and eSpCas9 from DeepSgRNA, respectively?® 34, This contrasts with the improved per-
formance from the deep learning models versus the GBR models on their own SpCas9
and eSpCas9 data; both Guo and DeepSgRNA construct their models on the same data.

To validate model performance, we tested crisprHAL on a set of unique sequences
from the Guo et al. SpCas9 dataset (n=8728)28. This set of sequences was curated to
remove any overlap with the Guo eSpCas9 dataset used to construct the base model, a
process which removed 36342 sgRNAs. As shown in Figure 8B, crisprHAL performs well
on this dataset with a rank correlation of 0.682.

Applying transfer learning model to the SpCas9 dataset

We also tested the model with the SpCas9 dataset (n=303) in place of TevSpCas9 for
transfer learning from the eSpCas9 base model while leaving all other aspects of the
model unaltered. The model performs well with the SpCas9 data, resulting in a 5-fold cross
validation average rank correlation of 0.627 (Figure 8C). This performance exceeds that
of all existing models, with the best prior model, built for SpCas9 by Guo et al., attaining
a rank correlation of 0.456 (Figure 1B)28:34. We noted transfer learning to be an essential
component of the SpCas9 performance. Without transfer learning the model reaches a
rank correlation of only 0.417.

In line with our TevSpCas9 model performance, our SpCas9 model performs best when
using the dual branch model, with performance only marginally exceeding that of the hy-
brid CNN-RNN alone (Figure 7C). Although performance is optimal when using the eS-
pCas9 dataset base model, we found models used our SpCas9 dataset to perform well
when transfer learning from the Guo SpCas9 dataset base model, with a 5-fold cross val-
idation average rank correlation of 0.609, notably higher than the TevSpCas9 results (Fig
7B-C). When testing SpCas9 model generalization, we found it to perform well on the
unique Guo SpCas9 dataset, with a rank correlation of 0.657 (Figure 8D)?8. Testing could
not be performed with the TevSpCas9 dataset due to the presence of all sgRNAs being
cross-listed.

Downstream target site nucleotides impact predictive performance

Prior models have proposed various input sequence lengths for optimal predictive per-
formance®®34. For example, the DeepSgRNABacteria model suggests that 43nt input
sequences may be optimal for eSpCas9 and SpCas9 performance based on calculated im-
portance scores, with nucleotides downstream of the sgRNA binding site containing more
information than upstream nucleotides®*. Biologically, it is implausible that sequences out-
side of those contacted by either the sgRNA or the SpCas9 nuclease*®~53 should have a
large effect on a machine learning model, and these models may thus be overparameter-
ized.
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Figure 9. Impact of sgRNA target site sequence length on model performance. A) Length
of sgRNA target site sequences tested as model inputs. All tested sequences include the 20nt
sgRNA target site. Upstream (-) tests extend the model input sequence by 1nt 10 times.
Downstream (+) tests begin with the addition of the NGG PAM to the model input, then extend by
1nt 10 times. B) TevSpCas9 model (left) and SpCas9 model (right) performance on their
respective dataset versus the sgRNA sequence length input. Performance is measured by
average rank correlation produced by 5-fold cross validation. Both models utilize transfer learning
from our base model trained on the eSpCas9 dataset. The boxed regions in B) represent the 20
nt sgRNA sequence.

To identify the optimal input sequence length to use for our model, we constructed
versions of our model with input sequences extending upstream and downstream of the
20nt sgRNA target site (Figure 9A). The 20-nt base input was extended upstream 10
positions in 1-nt increments upstream and downstream 11 positions in 1-nt increments.
A single increment of 3 nt covered the PAM sequence. Predictive performance of these
incremental models was measured by 5-fold CV across the TevSpCas9 dataset using rank
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correlation (Figure 9B).

We noted that nucleotide additions upstream of the sgRNA target site immediately de-
creased the predictive ability of the model (Figure 9B). In contrast, nucleotide additions
downstream of the sgRNA target site improved predictive performance, up to the limit of
8nt downstream. Based upon these results we chose an input sequence of 28nt, compris-
ing the 20 nt sgRNA target site, the 3nt PAM, and 5 additional downstream nucleotides.
No upstream nucleotides were included in our input sequence for the crisprHAL model.

DISCUSSION

Although targeting SpCas9/sgRNA to desired sequences in small-sized bacterial genomes
appears straightforward because it relies on apparent nucleotide complementarity, there
are significant limitations in our ability to reliably identify highly active SpCas9/sgRNA
combinations. Ideally, a predictive model of SpCas9/sgRNA activity should be agnos-
tic to different datasets, generalize to different organismal systems, and recapitulate the
known biology of SpCas9/sgRNA target interactions. Current prediction models do not
meet all of these criteria. Here, we identify three areas that improve computational mod-
els of SpCas9/sgRNA activity; collection of biological data that accurately assesses Sp-
Cas9/sgRNA cleavage, appropriate treatment of high-througput lllumina data for model
training, and machine transfer learning to capitalize on existing and additional datasets.

Accurate computational predictions of sgRNA activity rely on biological data that re-
ports on SpCas9/sgRNA cleavage activity and not secondary outcomes of DNA cleavage.
This is particularly relevant in mammalian systems where many Cas9/sgRNA datasets
report on non-homologous end joining (NHEJ) DNA repair outcomes of cleavage rather
than directly assessing Cas9 cleavage. While bacteria generally lack NHEJ pathways,
Cas9/sgRNA cleavage can be enhanced in recA deficient strains, or strains expressing
dominant negative recA variants, to suppress DNA repair through the SOS response?®.
Our strategy to assess SpCas9/sgRNA cleavage was to use a two-plasmid enrichment as-
say with pooled libraries read out by lllumina sequencing that agrees well with the kinetics
of in vitro DNA cleavage*®°*. Crucially, this system also helps distinguish SpCas9/sgRNA
on-target activity from toxicity that can be a confounding issue in bacterial systems where
overexpression of Cas9 (or dCas9) can cause cellular toxicity, or at the very least to re-
duce the growth rate significantly. With the enrichment assay, we found that about one in
seven SpCas9/sgRNA combinations showed evidence of toxicity. Some toxicity is likely
to due to SpCas9/sgRNA cleavage of the bacterial chromosome at off-target sites, which
can be avoided by selection of appropriate sgRNASsE. It is also possible that toxicity could
result from partial matches between the sgRNA and functionally critical genes on the chro-
mosome that preclude DNA cleavage but facilitate transcriptional repression®®:%6. In large-
scale pooled sgRNA depletion experiments, these sgRNAs would mistakenly be classified
as having high on-target activity and add noise when training machine learning models. In
more directed applications like the one implemented in this study, these sgRNAs are easily
identifiable and no longer reported as false positives.

Significantly, we found that the small amounts of high quality data generated in this
study that while insufficient to train a model on their own, improved sgRNA activity pre-
dictions with the new crisprHAL model that utilized machine transfer learning as well as a
unigue dual-brand CNN and RNN architecture. Our work corroborates prior findings that
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hybrid CNN-RNN architectures are well suited for transfer learning®’—>°. We found that the
multi-layer CNN was the primary contributor to base model performance on the eSpCas9
data, reaffirming its use by models such as DeepSgRNA34. Inclusion of this multi-layer
CNN branch, in addition to the hybrid CNN-BGRU, improved base model performance on
eSpCas9 while retaining transfer learning capacity. Our dual branch structure provided a
significant boost to model generalization performance on the unique Guo SpCas9 dataset
as compared to the hybrid CNN-BGRU only architecture. Additionally, since all parame-
ters in the multi-layer CNN and branch concatenation layers were frozen, nullification of the
multi-layer CNN branch’s contribution to the output prediction was unlikely. We attained
the best model performance when using the same scoring method across the datasets,
while compensating for variations in dynamic range through scaling by the standard de-
viation of scores from each dataset. With this treatment, crisprHAL predictions showed
a linear correlation with measured sgRNA activity, Moreover, we did not utilize negative
control sgRNAs in our process for sgRNA activity score calculations. Given that our eS-
pCas9 base model performs at least as well as the prior Guo and DeepSgRNA models
constructed on that dataset, we suggest that negative control sgRNAs are unnecessary
for the scoring of SpCas9/sgRNA activity.

One parameter for model inclusion that we explored in detail was the length of up- and
down-stream sequence flanking the 20-nt sgRNA target site. Inclusion of flanking DNA
sequence in prior models was justified by factors such as chromatin accessibility, consid-
eration of DNA unwinding, and Cas9 activity data that indicated nucleotide preference in
flanking regions (although it is possible this reflects DNA repair and not Cas9 cleavage
preference). However, outside of the 20-nt sgRNA-target strand interaction, Cas9-target
DNA contacts occur exclusively downstream of the PAM sequence, including a transient
interaction 14-nt downstream that impacts binding and dissociation*®°3. Thus, the bio-
logical data argue against inclusion of upstream DNA sequences. Indeed, our data show
the best model performance with a 28-nt input sequence that includes the sgRNA binding
site, the PAM and 5 downstream nucleotides, and that inclusion of upstream sequence is
uninformative.

In summary, we have generated novel datasets for the activity of several hundred Sp-
Cas9/sgRNA and TevSpCas9/sgRNA combinations in a bacterial environment. The exper-
imental setup detects activity over a large dynamic range and is able to distinguish toxicity
from on-target cleavage activity. The datasets were then used in conjunction with machine
transfer learning and novel model architecture to produce crisprHAL, the most accurate
TevSpCas9 and SpCas9 activity prediction model for bacteria to date. Our results show
that small amounts of high-quality data can improve predictions of sgRNA activity and
represent a step towards a generalizable model for bacteria. In principle, the approach
outlined here to improve sgRNA activity predictions could be applied to any biological
system where it is possible to collect high-quality Cas9/sgRNA cleavage data.

Materials and Methods

Bacterial strains

E. coli EPI300 (FA~mcrAA(mrr-hsdRMS-mcrBC)¢80d/lacZAM15A(lac)X74 recA1 endA1
araD139A(ara,leu)7697 galU galK rpsL (Strk) nupG trfA dhfr) (Epicenter) was used for
cloning the sgRNA pools. Screening sgRNA activity was done in NEB 5-alpha F’IY E.
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coli (F* proA* Bt lackA(lacZ)M15 zzf::Tn10 (TetR) /fhuA2A(argF-lacZ)U169 phoA ginV44
0 80A(lacZ)M15 gyrA96 recAt relA1 endA1 thi-1 hsdR17) strain harbouring pTox.

Construction of sgRNA pools

The pTox plasmid was screened for 5-NGG-3’ PAM sequences in a unique 3.2kb region
that included the kanamycin acetlytransferase (kan’?) coding region, the pBR322 origin
of replication, and the ccdB DNA gyrase toxin coding region. The DNA sequence cor-
responding to 20 nts upstream of each PAM sequence was computationally extracted
to create a pool of 304 sgRNA with exact matches to pTox. Sequences that contain
Bsal-HF-V2 restriction sites that generate proper overhangs for Golden Gate Cloning
were added to the ends of the sgRNA sequences for subsequent cloning. The se-
quence 5’-CCTGGTTCTTGGTCTCTCACG-3’ was added upstream of the sgRNA and
5-GTTTTAGAGACCGCTGCCAGTTCATTTCTTAGGG-3’ was added downstream to allow
for efficient and directional cloning. The pool of 304 sgRNAs (oPool), including 15 sgRNAs
with internal mismatches and 48 non-targeting sgRNAs, was ordered as single-stranded
fragments at 1 pmol/oligo from Integrated DNA technologies (IDT) (Supplementary Tables
S1 and S3). To create the library of sgRNAs with nucleotide transversions (mPool), 28
sgRNAs were picked and single and double nucleotide transversions were tiled along the
length of each oligo. Bsal sites were added computationally, and ordered from IDT as
above. For each library, second strand synthesis was performed using 1 ug of single
stranded pool DNA and equimolar amounts of primer DE-5224 in NEB buffer 2 (50 nM
NaCl, 10 mM Tris-HCI, 10 mM MgCl,, 1 mM DTT, pH 7.9) by denaturing at 94°C for 5
minutes. Primers were annealed by decreasing temperature 0.1°C/second to 56°C and
holding for 5 minutes, and followed by decreasing temperature 0.1°C/second to 37°C. To
the annealed oligonucleotides, 1 uL of Klenow polymerase (New England Biolabs) and
1 uL of 10 mM dNTPs were added and incubated for 1 hour at 37°C, followed by a 20
minute incubation at 75°C before being held at 4°C. The resulting dsDNA fragments were
purified using a Zymogen DNA Clean & Concentrator-5 kit following manufacturer speci-
fications. Golden Gate cloning was used to clone the oPool and mPool into SpCas9 and
TevSpCas9 by combining 6 pmol of oPool or mPool, 100 ng of backbone plasmid, 0.002
mg BSA, 2 uL T4 DNA ligase buffer (50 mM Tris-HCI, 10 mM MgCl,, 1 mM ATP, 10 mM
DTT, pH 7.5), 160 units T4 DNA ligase (New England Biolabs) and 20 units of Bsal-HF-V2
(New England Biolabs) with the following thermocycler conditions: 37°C for 5 min then
22°C for 5 min for 10 cycles, 37°C for 30 min, 80°C for 20 min, 12°C inf. The resulting
pool was then transformed by heatshock into E. coli EPI300 and plated on LB plates (10
g/L tryptone, 5 g/L yeast extract, 10 g/L sodium chloride, 1% agar) supplemented with 25
mg/mL chloramphenicol and 0.2% w/v D-glucose.

Pooled sgRNA two-plasmid enrichment experiment

A two-plasmid enrichment experiment was used to assay sgRNA activity as previously
described3®49. For liquid selections, 50 ng of the sgRNA plasmid pool was transformed
into 50 uL E. coli NEB 5-alpha F’lY competent cells harbouring pTox by heat shock. Cells
were allowed to recover in 1 mL of non-selective 2xYT media (16 g/L, 10 g/L yeast extract,
and 5 g/L NaCl) for 30 minutes at 37°C with shaking at 225 rpom. The recovery was then
split and 500 uL was added to 500 uL of inducing 2xYT (0.04% (w/v) L-arabinose and 50
mg/mL chloramphenicol) or to 500 uL of repressive 2xYT (0.4% (w/v) D-glucose and 50
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mg/mL chloramphenicol) and incubated for 90 min at 37°C with shaking at 225 rpom. The
two cultures were washed with 1 mL of inducing media (1x M9, 0.8% (w/v) tryptone, 1%
v/v glycerol, 1 mM MgSQO,, 1mM CaCl,, 0.2% (w/v) thiamine, 10 mg/mL tetracycline, 25
mg/mL chloramphenicol, 0.4 mM IPTG) or repressed media (1x M9, 0.8% (w/v) tryptone,
1% v/v glycerol, 1 mM MgSQ,, 1mM CacCl,, 0.2% (w/v) thiamine, 10 mg/mL tetracycline,
25 mg/mL chloramphenicol, 0.2% (w/v) D-glucose) respectively before addition to 50 mL
of the same media that was used in the wash in a 250 mL baffled flask. These cells
were grown overnight at 37°C with shaking at 225 rpm. Plasmids were then isolated us-
ing the Monarch Plasmid Miniprep Kit (NEB) according to manufactuerers specifications.
The sgRNA locus was then PCR amplified using primers (Supplementary Table S7) con-
taining llumina adapter sequence, 4 random nucleotides, 12-mer barcodes to specify the
replicate, and plasmid-specific nucleotides at the 3’ end. The resulting amplicons were
sent for 150 bp paired-end lllumina MiSeq sequencing at the London Regional Genomics
Center (London, ON).

Growth-curve experiments with individual sgRNAs

The pool of cells containing pTevSpCas9+sgRNA was grown overnight in selective LB
(25 mg/mL chloramphenicol and 0.2% (w/v) D-glucose), diluted and plated on agar plates
(10 g/L tryptone, 5 g/L yeast extract, 10 g/L sodium chloride, 1.5% agar (w/v) supple-
mented with 25 /mL chloramphenicol and 0.2% w/v D-glucose). Individual colonies were
selected and grown overnight in selective LB (25 mg/mL chloramphenicol and 0.2% (w/v)
D-glucose) before plasmids were isolated using the Monarch Plasmid Miniprep Kit (NEB)
according to manufactuer specificatons. The sgRNA locus of each plasmid was Sanger
sequenced at London Regional Genomics Center (London, ON) to determine the sgRNA
identity. In three independent transformations, 20 ng of each plasmid, isolated oPool DNA,
and pTevSpCas9 with no sgRNA were transformed into 20 uL E. coli competent NEB
5-alpha F’l? cells harbouring the pTox. Cells were allowed to recover in 1 mL of non-
selective 2xYT media (16 g/L, 10 g/L yeast extract, and 5 g/L NaCl) for 30 minutes at 37°C
with shaking at 225 rpm. The recovery was then split and 500 uL was added to 500 uL
of inducing 2xYT (0.04% (w/v) L-arabinose and 50 mg/mL chloramphenicol) or to 500 uL
of repressive 2xYT (0.4% (w/v) D-glucose and 50 mg/mL chloramphenicol) and incubated
for 40 min at 37°C with shaking at 225 rpm. These cultures were then plated on inducing
or repressing M9 plates and grown overnight at 37°C. At the same time, 20 uL was added
to 180 uL of inducing and repressing M9 liquid media in a 96-well plate for growth curves.
Plates were grown at 37°C in the BioTek Epoch 2 Microplate Spectrophotometer measur-
ing the absorbance at 600 nm every 10 minutes for 18 hours with double orbital shaking.
Raw data was collected, processed, and analyzed using the Growthcurver R package®.

Datasets and input sequence encoding

Two distinct groups of data are utilized in model development: in-house data generated
with the nuclease TevSpCas9, and those created from 70,000 sgRNA activity maps in
E. coli developed by Guo et al. with the nucleases eSpCas9 and SpCas922. Due to their
method of generation, these datasets contain overlapping sgRNA sequences. To generate
a unique sgRNA testing set for model testing, sgRNAs in the Guo SpCas9 dataset that
are cross-listed with the eSpCas9 dataset were removed. This is the set referred to as the
unigue sgRNA Guo SpCas9 dataset.
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All sgRNAs were mapped to the E. coli genome and pTox plasmid. Target sites with
15nt PAM proximal matches with a separate site were excluded from our datasets. Based
upon mapping results, 43nt target site sequences were obtained for each sgRNA, con-
taining the 20nt sgRNA target site, the 3nt PAM, and 10nt upstream and downstream.
These extended inputs provided the ability to test sequence length versus predictive per-
formance.

The nucleotides comprising the sgRNA target site sequences are commonly repre-
sented with strings of single characters (A, C, G, T) each representing a nucleotide. How-
ever, alphabetic encoding of nucleotides is not a friendly format for deep learning models.
We converted our input sequences with one-hot encoding, where the input sequence is
represented as a 4-by-N matrix — 4 nucleotide options across an N-length input sequence.
The nucleotides, A, C, G, and T, are encoded as[1 00 1],[0100],[0010],and [0 00 1]
respectively.

Data processing and activity score calculation

Reads from the Illumina sequencign were parsed using a custom script that deconvolute
the barcoded sequences into a table that contained replicates of induced or repressed
conditions. The bacterial sgRNA read counts from these datasets representing on-target
activity scores are compositional in nature*®, and therefore require some form of normal-
ization or transformation to become interpretable®’. All sgRNAs in the Guo et al. datasets
having a read count less than 20 in either replicate of the catalytically dead Cas9 (eS-
pdCas9 and SpdCas9) samples were removed. Relative abundance (‘rab.all’) and differ-
ence values (‘diff.btw*) for each guide were calculated using the ‘aldex.effect’ function of
ALDEx2*8. These scores were then normalized to Z-scores by dividing each score by
the standard deviation its respective dataset (Supplementary Figure S4). To obtain an
untouched dataset for model generalization testing, we used the original, Z-score based
normalization, sgRNA activity scoring by Guo et al. for the unique Guo SpCas9 dataset??.
Data were plotted using R.

Model establishment and transfer learning

During model development we tested various architectures, including those with multiple
branches, to test the performance of CNN and RNN neural networks. A CNN is an artificial
neural network which excels at capturing spatial information from an input. This capability
results in the frequent application of CNNs to image recognition problems. Similar to
pixels in an image, one-hot encoded nucleotide sequences can be used as inputs to a
CNN, whereby local nucleotide preferences can be extracted3458.59,

Contrasting the CNNs local information capture capabilities, RNNs excel at learning
sequential information. RNNs contain an internal memory state which are updated to
learn important interactions within a sequence. Prior work has shown the benefit of uti-
lizing a combination of CNN and RNN layers within a model to improve performance®®°°.
Spatial information captured by CNN layers can be fed to the RNN, whereby sequential
information is then deduced, increasing performance®’.

We developed models on prior datasets to optimize for transfer learning — referred
to as base models. Transfer learning is a method whereby a model utilizes information
transferred from a similar domain to improve performance®?. In practice, the base model
is commonly constructed on datasets larger than those to which the transfer learning will
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be applied. For our context, we test models constructed on either the Guo SpCas9 or
eSpCas9 dataset, and apply those base models as the starting point for training on our
smaller datasets. To maximize the benefit of the pre-learned information from the base
model, we tested variations in model layer freezing, where parameters in specific layers
of the model are fixed before transfer learning model training occurs.

Model training and tuning

We constructed crisprHAL with Tensorflow Keras®. This network was trained using the
optimizer Adam, with mean squared error used as the loss function. All variations of
the base models used a batch size of 200, with transfer learning being performed with a
batch size of 20. The base model and transfer learning model were tuned using 5-fold
cross validation with a 80% training set and a 20% test set for each fold for each stages
respective dataset — base data and transfer learning data. Hyperparameter tuning was
performed for a number of factors affecting the model, including: number of CNN layers,
number of dense layers, channel sizes, CNN window sizes, RNN size, dense layer sizes,
dropout rates, and activation functions between layers.

Installation and testing of other models

We installed and ran the Guo and DeepSgRNA models (downloaded from Github sites http
s://github.com/zhangchonglab/sgRNA-cleavage-activity-prediction and https://github.com
/biomedBit/DeepSgrnaBacteria)?®:34. To test the Guo SpCas9 and eSpCas9 models, we
converted our sgRNA-associated target site sequence inputs to the required 30nt length,
containing the 20nt sgRNA target, 4nt upstream, and 6nt downstream including the NGG
PAM. To test the DeepSgRNA SpCas9 and eSpCas9 models, we converted our sgRNA-
associated target site sequence inputs to the required 43nt length, containing the 20nt
sgRNA target, 10nt upstream, and 13nt downstream including the NGG PAM.

Performance and evaluation of models

To evaluate our models we used Spearman rank correlation coefficient, referred to as
rank correlation. We chose this metric rather than Pearson correlation coefficient as it
does not depend on a linear association between variables. Additionally, given its past
use, it provides a clear metric from which to compare our models’ performance to prior
models?®34.58.59  \We calculated rank correlation with the "spearmanr" function from the
Scipy stats Python package®*.

Code availability

Our model to predict TevSpCas9 and SpCas9 target site activity is available for download
at https://github.com/tbrowne5/crisprHAL without restriction.
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