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Abstract

Voxel-based morphometry (VBM) and surface-based morphometry (SBM)
are two widely used neuroimaging techniques for investigating brain anatomy.
These techniques rely on statistical inferences at individual points (voxels or
vertices), clusters of points, or a priori regions-of-interest. They are pow-
erful tools for describing brain anatomy, but offer little insights into the
generative processes that shape a particular set of findings. Moreover, they
are restricted to a single spatial resolution scale, precluding the opportu-
nity to distinguish anatomical variations that are expressed across multiple
scales. Drawing on concepts from classical physics, here we develop an ap-
proach, called mode-based morphometry (MBM), that can describe any em-
pirical map of anatomical variations in terms of the fundamental, resonant
modes—eigenmodes—of brain anatomy, each tied to a specific spatial scale.
Hence, MBM naturally yields a multiscale characterization of the empiri-
cal map, affording new opportunities for investigating the spatial frequency
content of neuroanatomical variability. Using simulated and empirical data,
we show that the validity and reliability of MBM are either comparable or
superior to classical vertex-based SBM for capturing differences in cortical
thickness maps between two experimental groups. Our approach thus offers a
robust, accurate, and informative method for characterizing empirical maps
of neuroanatomical variability that can be directly linked to a generative
physical process.
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1. Introduction

Voxel-based morphometry (VBM) [1] and surface-based morphometry
(SBM) [2] are the most commonly used techniques for studying neuroanatom-
ical variations with magnetic resonance imaging (MRI). They are used to
find associations between morphometric quantities (e.g., cortical thickness,
surface area, grey matter volume) and diverse sociodemographic [3, 4, 5], be-
havioral [6, 7, 8], and clinical [9] variables. Throughout this article, we will
focus principally on applications that examine neuroanatomical differences
between two experimental groups (e.g., males and females, patients and con-
trols), but our arguments and techniques easily generalize to cross-sectional
analyses of inter-individual variability (e.g., brain-wide association analyses
10]).

The typical procedure in VBM- and SBM-based analyses of group differ-
ences involves fitting a statistical model at each individual voxel or vertex,
respectively, and then applying some statistical threshold for inferring the
spatial location(s) of significant mean differences [11, 12, 13]. In some cases,
voxels/vertices are aggregated into anatomical regions-of-interest (ROIs) de-
fined using an a priori atlas [14]. These approaches have been successful
in describing where the differences are located in the brain, but offer no
insights into the fundamental constraints that may have shaped those differ-
ences. Moreover, these approaches rest on the assumption that anatomical
differences (1) are highly localized; (2) arise independently of each other; and
(3) are confined to the spatial scale defined by the measurement resolution
(i.e., local collections of voxels/vertices or atlas-based ROIs). These assump-
tions interact with the statistical thresholding procedure in a way that can
obscure spatially extended patterns underlying the data (for an example,
see Fig. S15 in ref. [15]). Moreover, the application of different statistical
thresholds, derived using different methods, contributes to inconsistencies in
findings reported in the literature [13, 16, 17, 18, 19]. Hence, a robust frame-
work is needed that does not necessarily rely on a predefined threshold and
can examine anatomical differences at multiple scales.

In diverse areas of physics and engineering, analysis at multiple scales can
be obtained as the structure of a system can be comprehensively described
by its structural eigenmodes, which are also referred to as modes, eigen-
functions, eigenvectors, or harmonics [20, 21, 22|; we will use these terms
interchangeably in the text. Eigenmodes correspond to the natural, reso-
nant modes of the system and represent an orthogonal basis set that can
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describe any spatial pattern expressed by the system, much like the basis set
of sines and cosines used to understand the frequency content of signals in
Fourier analysis [20, 22]. Recent work has shown that eigenmodes derived
either from a model of brain geometry, termed geometric eigenmodes, or from
a graph-based model of the structural connectome based on diffusion MRI,
termed connectome eigenmodes, can be used as a basis set for reconstructing
diverse aspects of brain activity [23, 24, 25, 26, 27, 28, 15, 29, 30, 31, 32],
for quantifying structure-function coupling in the brain [33, 34, 35], and for
understanding atrophy patterns in neurodegeneration [36, 37, 38] and other
conditions [39, 40]. In each of these cases, empirical spatial brain maps can
be viewed as resulting from the preferential involvement, or excitation, of
specific resonant modes of brain structure, thus offering insights into the
generative physical mechanisms that shape the observed spatial pattern.

A further advantage of a mode-based approach is that, as in Fourier anal-
yses, the modes are ordered by their topological (connectome eigenmodes) or
spatial (geometric eigenmodes) frequency, offering a spectral decomposition
of the data that provides insights into its multiscale organization. Indeed, re-
cent work using geometric eigenmodes suggests that virtually all task-evoked
activation maps obtained with functional MRI result from excitations of low-
frequency modes spanning wavelengths >60 mm [15]. Other work indicates
that individual differences in brain anatomy are most salient at relatively
coarse scales, spanning wavelengths >37 mm [41]. Such findings challenge
classical approaches to brain mapping that focus on identifying focal effects
in isolated brain regions and underscore the benefits of a spatially-informed,
multiscale approach.

Here, we leverage the advantages offered by a mode-based view of the
brain to develop a new approach, called mode-based morphometry (MBM),
for mapping anatomical differences between groups. This approach involves
modeling such differences as a linear combination of eigenmodes and per-
forming statistical inference on the modes, rather than on individual voxels
or vertices. In this work, we use the geometric eigenmodes of the cortex, given
their superior performance in explaining functional data [15], but note that
our method can be adapted for use with other eigenmodes (e.g., connectome
eigenmodes) as required. We focus on a surface-based analysis of cortical
thickness (CT) differences, but other morphometric measures (e.g., surface
area, volume, etc.) can easily be analyzed with the same method. We de-
velop a framework for simulating CT maps with known ground truth and use
them to compare the accuracy and reliability (under resampling) of MBM
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with classical vertex-based SBM. We then evaluate the consistency of the
findings obtained by the two techniques as applied to empirical data through
the analyses of (i) CT differences between sexes and (ii) multi-site measures
of CT differences between healthy controls and patients with Alzheimer’s
disease. In both simulated and empirical scenarios, our results indicate that
MBM offers comparable, or superior, validity and consistency compared to
SBM, while offering a direct insight into the generative mechanisms and mul-
tiscale characteristics of the data.

2. Methods

We begin by describing the details of the SBM and MBM approaches.
We then describe our methods for evaluating the accuracy and consistency
of the two approaches using simulated and empirical data.

2.1. Surface-based morphometry (SBM)

Traditional SBM compares neuroanatomical variations between two groups
of interest using a general linear model (GLM) (Fig. 1a) given by

Y; = GOéi + e, (1)

where Y; is the data vector (L x 1) of L measurements at vertex i of the
cortical surface, G is the design matrix (L x P) of effect variables, «; is
the parameter vector (P x 1), and e is an error vector (L x 1). Elements
of «; control the contribution of the corresponding effect columns of G to
each vertex, Y;. Here, the GLM parameterizes the group differences as t
statistics by defining a design matrix G and a contrast vector c as follows.
Each element in a column of G has value 1 or 0 to indicate a measurement,
i.e., a subject, belonging to a group or not. Each column of G controls
the contribution of each group. The estimated values of «; representing the
mean of each group are multiplied by the contrast vector ¢ defined by [1, —1]
for calculating the ¢-statistic for each vertex (see [42, Appendix A] for more
details).

In this work, we performed non-parametric inference on the t statistics
via permutation testing with 5000 iterations. At each iteration, we shuffled
the group labels of all participants to create a t-map observed under random
group assignment, resulting in an empirical null distribution at each vertex.
We then used tail estimation on each null distribution [43] to calculate p
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Figure 1: SBM and MBM analysis pipelines. (a) In SBM, a t-statistic is calculated inde-
pendently at each vertex, quantifying point-wise group differences in CT. A thresholded
t-map is derived by comparing the observed t-map and the distribution of null t--maps after
permutation testing. (b) In MBM, eigenmodes are derived from a cortical surface mesh
(solving Eq. (2)). The modes are ordered in increasing spatial frequency or decreasing spa-
tial wavelength. Values in each mode are arbitrarily defined, with negative-zero—positive
values in colored as blue—white-red. (c) An empirical t-map can be decomposed as a
weighted sum of eigenmodes and errors using a GLM (Eq. 6), with weights given by j;.
The set of j3; is called the § spectrum. (d) An example S spectrum with large f45 indi-
cating a dominant contribution from mode 45. (e) An example of statistically significant
Bs derived by comparing the observed g spectrum and the distribution of null 8 spectra
after permutation testing.

values with arbitrarily high precision. In our analyses, we evaluated results
with respect to (i) unthresholded differences; (ii) differences thresholded at
p < 0.05 but uncorrected (punc); and (iii) differences thresholded at p < 0.05
but corrected for false-discovery rate (FDR) (prpr)-

2.2. Mode-based morphometry (MBM)

MBM takes as input the unthresholded spatial map of ¢ statistics quanti-
fying group mean differences in CT and reconstructs that map using a basis
set of structural eigenmodes of the brain. These eigenmodes can be defined
using relevant anatomical properties of interest (e.g., geometry or connec-
tome). The assumptions in MBM are that (1) the anatomical group differ-
ences reflect the superposition of different resonant modes of neuroanatomy
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that are preferentially expressed in one group over the other; and (2) these
modes are orthogonal and intrinsic to the brain structure (see third paragraph
of the Introduction for justification). Here, we focus on eigenmodes derived
from the geometry of the cortex (geometric eigenmodes) because recent data
[15] indicate that they offer a more accurate and parsimonious basis set for
brain function and their derivation relies on a simpler processing pipeline.
We provide further justification for this choice in the Discussion section.

The geometric eigenmodes are obtained by solving the eigendecomposi-
tion of the Laplace-Beltrami Operator (LBO), also known as the Helmholtz
equation, on the cortical surface,

where A is the LBO and the solution ¢ = {t1,15,...} is the family of geo-
metric eigenmodes with corresponding family of eigenvalues A = {\q, Ao, ... }.

The LBO captures the intrinsic geometry of the cortical manifold, which in-
cludes the curvature of the cortical surface in this case, and is generally
defined as [44, 45, 15]

1 0 o0
A= — YW—1], 3
where x;,x; are the local coordinates, W := +v/det G, G := (¢;5), gij =
<a%, %> is an inner product, g¥ = (g;;)"" is the inverse of g;;, and det

denotes the determinant. v represents the set of spatially extended resonant
modes, or eigenmodes, of the geometry. A is related to the intrinsic spatial
wavelengths of the modes, such that

2
\_ﬂ' (4)

Eq. (4) is derived from the relationship between eigenvalues A and resonant
or natural frequency k [45], with k = VA = 27/wavelength. Furthermore,
based on their wavelengths, the modes can be grouped into spatial scales
by considering the special case of a sphere, which is known to be topologi-
cally similar to the cortical surface [46]. By solving Eq. (2) on the sphere,
degenerate solutions exist, such that certain eigenmodes will have the same
number of nodal lines and wavelengths, and they can be aggregated into an

wavelength =
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eigengroup [, similar to the angular momentum number in quantum physics.
Each eigengroup comprises 2/ + 1 eigenmodes, and its wavelength is [46, 41]

21 R,
Vil+1)

where R is the radius of the sphere (see Table S1 for an explicit list of
wavelengths and eigenmode membership for each eigengroup on a sphere of
R, = 67 mm [41, 15]). Therefore, the eigenmodes of the cortical surface
belonging to a given eigengroup have approximately the same spatial scale
or wavelength given by Eq. (5).

The solutions of Eq. (2)—i.e., the geometric eigenmodes—correspond to
the spatial part of the solutions of a wave equation describing the dynamics on
a surface [47]. When applied to neuroanatomy, the eigenmodes represent an
orthogonal basis set describing spatial patterns of the variations of cortical
geometry at different spatial scales or wavelengths. The increasing order
of the eigenvalues 0 < A\; < Ay < ... corresponds to a decreasing order
of the wavelengths. The first eigenvalue A\; is approximately equal to zero
with a wavelength that is very large compared to the size of the brain. Its
corresponding eigenmode ), is a constant function with no nodal lines and
can be used to represent a mean across the brain.

We solved the eigenmodes of the cortical surface represented by a triangu-
lar mesh using the LaPy Python library [47, 48]. Here, we used a population-
averaged template of the cortical midthickness surface in fsLR-32k CIFTI
surface [49], comprising 32,492 vertices in each hemisphere (Fig. 1b). We
used a population-averaged surface to obtain a common set of eigenmodes for
all participants, enabling easier comparisons. Note that individual-specific
eigenmodes can also be derived from individual surfaces. However, small
differences in the geometry of the cortical surface can alter the spatial pat-
terns of the eigenmodes, which makes comparison between individual-specific
modes challenging, particularly for short wavelengths or more fine-grained
modes [41]. Moreover, prior work indicates that relying on a single, canon-
ical basis set of modes derived from a group template leads to a negligi-
ble difference in reconstructions of empirical data when compared to using
individual-specific modes [15], suggesting that the group-derived modes pro-
vide a reasonable approximation for present purposes. Here, we performed
analyses on the left hemisphere and thus used the modes derived from the
left hemisphere.

()

wavelength =
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We then used the eigenmodes to decompose the t-map of each hemisphere
via a GLM given by (Fig. 1c)

N
b= B+, (6)

j=1
where t = [t1,t2,...,t;,...] is the t-map, i represents a vertex, 1Z~)j is the

normalized jth eigenmode, 3; is the coefficient quantifying the contribution
of &j to the t-map, N is the number of modes used, and € is a constant
vector (error vector). Note that §; is distinct from the eigenvalue A;, with
the former corresponding to the contribution of eigenmode j to the t-map
and the latter corresponding to the wavelength of eigenmode j. In this work,
we considered N = 150 modes spanning wavelengths >34 mm, given recent
work showing that the most salient aspects of brain function reside at spatial
wavelengths longer than 34 mm [15, 41]. However, our results do not change
with other choices of N (see Fig. S1). We normalized the eigenfunction v,
by dividing it with its Euclidean norm to ensure orthonormality of the basis
set.

We call the set of 3; coefficients the 8 spectrum, which encodes the contri-
bution of each eigenmode at a specific spatial scale, i.e., each frequency com-
ponent, to the neuroanatomical property being investigated. In the present
application, the investigated property is a t-statistic map quantifying group
differences in CT. Thus, for example, if (3,5 is large, the spatial pattern de-
fined by mode 45 dominates group differences in CT (Figs. 1c and d).

We performed statistical inference on the § estimates using permutation
testing. To this end, we reconstructed null t-maps obtained after shuffling
the group labels, as described in Section 2.1 for the SBM analysis, yielding
an empirical distribution of null S spectra. We then used tail approximation
to estimate p-values for each observed (5 value in the spectrum [43]. This pro-
cedure thus allows us to determine which specific modes make a significant
contribution to the observed CT differences between groups. In this way,
MBM performs inference at the level of the modes of brain structure rather
than individual voxels. The analysis thus determines the specific modes that
make a statistically significant contribution to the empirical spatial map. As
in the SBM analysis, we considered unthresholded spectra and those thresh-
olded at pyue < 0.05 and pppr < 0.05 (Fig. le).
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Figure 2: Framework for ground-truth simulations. (a) We generate a CT map using the
model in Eq. (7). Here, we show an example with o = 0.4 and og = 0.8. (b) Using
the simulated CT maps for groups A and B, we estimate a t-map and its corresponding
B spectrum (d). (c) The ground-truth (GT) difference map is given by the subtraction of
M2 and MZ, from which the ground-truth 3 spectrum (e) is obtained.

2.3. Validations using simulated data

One challenge in evaluating the validity of any new brain mapping tech-
nique is the lack of a ground truth for most applications. Here, we developed
a framework for simulating group differences in CT with a known ground
truth to compare the performance of SBM and MBM.

2.83.1. Simulation Framework

We simulated two experimental groups based on empirical CT maps us-
ing the simple model defined in Eq. (7). We simulated the CT map, y, of
a subject in each group by combining three elements: (1) a group-specific
common phenotype map (M¢), which represents a structured CT pattern,
i.e., a ground truth, that is common to all members of a group, thus justify-
ing their assignment to the same group; (2) an individual-specific structured
noise map (Mg), which represents structured CT variations that are specific
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to each individual; and (3) Gaussian noise (M), which represents measure-
ment error. Mg reflects between-subject variance, which can be considered
structured noise when compared with the group means. It is structured in
the sense that it is autcorrelated. For simplicity, we assumed that the com-
bination of these three elements was linear, such that the model for y was

y = 0cMe + 0sMg + (1 — 05)Mg, (7)

where o¢ (0 < o¢ < 1) is a free parameter that controls the contribution
of the group-specific CT phenotype, M¢, and og (0 < og < 1) is a free
parameter that controls the relative contributions of structured noise, Mg,
and Gaussian noise, M¢ (Fig. 2a). When o¢ = 0, the generated maps only
contain noise, and when o¢ = 1, the generated maps have equal weightings
between the group-specific map, representing the ground-truth phenotype,
and noise, including structured and Gaussian noise. When og = 0, the
generated maps are only affected by Gaussian noise, and when og = 1,
the generated maps are only affected by individual-specific structured noise.
Note that the range of oo and og were chosen for simplicity to capture the
relation between M, Mg, and M.

To specify two groups A and B, we include the superscripts A and B to
Mg and Mg; for instance M2 denotes the common group CT phenotype
map of a subject in group A. Under this model, classical inference on group
differences is the same as asking whether there is a difference in M@ and M5
that can be reliably detected over and above the variability associated with
MS and Mc;.

We used 25 subjects for each group, unless otherwise stated, to mimic
sample sizes historically used in the literature, although our general conclu-
sions are not affected by this choice (see Fig. S2). To ensure that the gen-
erated maps have the same spatial structure as empirical data, we sampled
maps Mg and Mg without replacement from 339 CT maps in the Human
Connectome Project (HCP) data described in Sec. 2.4.1 [50]. Note that M¢
corresponds to the same spatial map for all participants within a group,
whereas a different Mg was selected for each individual within a group. We
embedded actual empirical data within the simulations in this way to pre-
serve the real structure and properties of CT maps as much as possible.

For each y map, we subtracted the minimum negative value across all y
(both groups) to remove negative values caused by the addition of Gaussian
noise to the CT maps. Given Eq. (1), this offset did not affect the ¢t-map
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comparing group mean CT differences, as the same constant value was sub-
tracted to the two groups.

For each pair of parameters oc and og, we ran 100 experiments with
fixed ground-truths Mg and M5. We chose 100 experiments to balance the
computational cost and the reliability of the resulting performance metrics.
Figure S3 confirms that our findings are not sensitive to the selection of
different ground truths. From the generated CT maps of the two groups, the
t-map and [ spectrum of each experiment were computed as described in
Sections 2.1 and 2.2, respectively (Figs. 2b and d).

The parameters oo and og allow us to evaluate the sensitivity of both
SBM and MBM to variations in the level of real phenotype and structured
and Gaussian noise. To determine the most plausible parameter regime that
yields the most realistic estimates of empirical data, we compared the spatial
variograms of the empirical and simulated CT maps under different parame-
ter combinations (Fig. 3). A variogram provides a measure of spatial depen-
dence, or spatial autocorrelation, of a random field, defined as the variance
of the difference between field values at two locations across realizations of
the field. We used the Python package BrainSMASH [51] to calculate the
variograms. For the empirical data, we calculated the mean and variance of
the variograms of the 339 CT maps from the HCP data (see Section 2.4.1).
For each pair of parameters oo and og in the simulations, we generated 500
CT maps and calculated the mean and variance of the corresponding vari-
ograms. The slope of the variogram encodes the spatial structure of the data
[51]. For example, a positive slope means that there is high autocorrelation
in the data; i.e., variations at small distances are smaller than variations at
large distances. A flat variogram means that variations are independent of
distances. Similar slopes refer to the similarity of the spatial autocorrela-
tions. Thus, to compare the slope of the mean of variograms of empirical
maps and that of simulated maps, we removed the offset between their min-
imum values, so that the two variograms start at the same point (Fig. 3a).
In particular, the offset was calculated from the mean variogram that has
a higher minimum value. Note that removing the offset does not affect the
structure of the variograms. We then calculated the norm distance between
the emirical and simulated mean variograms after subtracting the minimum
offset.

Figure 3b shows the norm distances for combinations of o~ and og. Fig-
ure 3a shows two examples of the empirical and simualted mean variograms
(after subtracting the minimum offset) at parameter pairs (o¢ = 1,05 = 0)
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Figure 3: Comparing spatial variograms of empirical and simulated CT maps for different
combinations of o¢ and og. (a) Two examples of mean variograms (after subtracting the
minimum offset) of empirical and simulated maps for parameter pairs (0 = 1,05 = 0) and
(c¢ = 1,05 = 0.8). The error bars (vertical bars) show the variance of the variograms. (b)
Norm distances between the empirical and simulated mean variograms (after subtracting
the minimum offset) for combinations of o¢ and og. The green boxes highlight the realistic
regimes where the generated maps have a similar spatial structure as the empirical data
(norm distance ~ 0).

and (oc = 1,05 = 0.8) (see Fig. S4 for the mean variograms of all o¢ and
os in the norm distance table). The green boxes in Fig. 3b highlight the
realistic parameter regimes where the generated maps have a similar spatial
structure to the empirical data; i.e., the norm distances are close to zero. We
will highlight these realistic regimes in the Results section and examine the
effects of parameter choices in these realistic regimes.

2.3.2. Performance evaluation

We compared the performance of SBM and MBM in terms of accuracy
and consistency. We defined accuracy as the ability of each method to accu-
rately capture the ground-truth group difference in the simulations. These
ground-truth difference maps were obtained by subtracting the M4 and M3
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maps (Fig. 2c). The accuracy of SBM was quantified as the product-moment
correlation between this ground truth and the t-map obtained through classi-
cal analysis (see Section 2.1). Similarly, the accuracy of MBM was quantified
as the product-moment correlation between the 3 spectrum (see Section 2.2)
of the ground-truth difference map (Fig. 2e) and the 8 spectrum obtained
for each experiment (Fig. 2d).

We defined consistency as the ability of each method to obtain consis-
tent findings in the face of sampling variability across repeated experiments.
Therefore, we compared the distributions of pairwise correlations between
t-maps of 100 experiments for SBM and pairwise correlations between /3
spectra of 100 experiments for MBM. When considering thresholded results,
we used binary correlations [52, 53]. We present unthresholded and uncor-
rected thresholded results at py,. < 0.05 in the main text, and FDR-corrected
results in Supplementary Fig. S5. The general conclusions are consistent for
both uncorrected and corrected results. We also evaluated the performance
of SBM and MBM on CT maps spatially smoothed with surface-based ker-
nel sizes of 10 mm, 20 mm, or 30 mm full-width at half-maximum (FWHM)
to match with the common smoothing practice of SBM. The Connectome
Workbench software [54] was used to smooth the CT maps.

2.4. Validations using empirical data

The simulated data offer an opportunity to compare the accuracy of the
proposed MBM method vs SBM with respect to a known ground truth.
Ideally, we could also perform a similar analysis on empirical data; however,
ground truth is difficult to ascertain for such applications. Hence, we can
only assess the consistency of MBM and SBM in analyzing empirical data,
provided that we have multiple runs of comparable experiments. Here, we
evaluated consistency with respect to two different group comparisons and
empirical datasets, as described below.

2.4.1. Sex differences

The first empirical validation focused on sex differences in CT maps from
HCP [50]. In particular, we analyzed FreeSurfer-derived CT maps [55] from
339 unrelated healthy young adults (ages 22 to 35; 182 females; no siblings).
This subsample corresponds to unrelated subjects from the HCP S900 release.
The CT maps were spatially normalized to the fsLR-32k CIFTI surface using
FreeSurfer [56, 57] and Connectome Workbench [54].
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For each experiment, we subsampled 25 subjects from each group of fe-
males and males. We then computed the t-map and  spectrum for each ex-
periment. We repeated this process 100 times, representing 100 experiments.
We then compared the distributions of the correlations between t-maps and
[ spectra obtained for each pair of experiments, as in the consistency analysis
using simulated data.

2.4.2. Patient-control differences

The second empirical validation focused on patient vs control differences
in CT maps from the Open Access Series of Imaging Studies (OASIS-3)
[58]. We analyzed FreeSurfer-derived CT maps from 693 healthy individuals
and individuals with Alzheimer’s disease (ages 42 to 95; 407 females). For
subjects with multiple sessions, we only analyzed data from their last scan.
The OASIS-3 data were acquired from one imaging center with three different
3T scanners and one 1.5T scanner. Hence, we treated data from each 3T
scanner as a separate site and analyzed each site independently (we do not
use data from the 1.5T scanner). The numbers of cognitively normal healthy
controls (HC) and individuals with Alzheimer’s disease (AD) in each site
are: site 1: 164 HC, 27 AD; site 2: 218 HC, 24 AD; and site 3: 142 HC, 118
AD. We excluded subjects with known history of active medicine-induced
cognitive dysfunction, neurological diseases, seizure disorder, hydrocephalus,
head injury, alcoholism, or Parkinson’s disease to minimize confounds.

Each of the three sites thus represents an independent experimental repli-
cation. We therefore evaluated the consistency of the findings obtained at
each site using correlations between t-maps and [ spectra between each pair
of sites, as per the other analyses.

2.5. Analyzing the frequency content of group different maps

We used MBM to examine the frequency content of group differences in
CT, e.g., the dominant scale of the group differences, in two ways. First,
we assigned eigenmodes to distinct eigengroups, as outlined in Section 2.2,
and quantified the fraction of significant modes in each group. Second, we
evaluated the accuracy of mode-based reconstructions of the empirical CT
difference map following incremental, sequential removal of modes according
to spatial wavelength. Specifically, we removed modes starting from long-
wavelength to short-wavelength modes (from the first mode to mode i) or
starting from short-wavelength to long-wavelength modes (from the last mode
to mode 7), and evaluated the correlation between the empirical CT difference
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Figure 4: Accuracy of SBM and MBM with respect to ground-truth simulations for differ-
ent combinations of o¢ and og. (a) Mean correlation between the t-map of an experiment
and the ground-truth difference map. (b) Mean correlation between the 8 spectra of the
t-map of an experiment and the ground-truth difference map. The green boxes highlight
the realistic parameter regimes where the generated maps have a similar spatial structure
as the empirical data, as shown in Fig. 3.

map and the map reconstructed using the remaining set of modes obtained
after each removal.

3. Results
3.1. Simulated data

Figure 4a shows the mean correlations between t-maps and the ground-
truth CT difference map obtained with SBM, hereafter referred to as SBM
correlations. As expected, the SBM correlation increases as oc increases,
which reflects a stronger contribution from the ground-truth CT pattern to
the simulated CT map. Figure 4b shows a similar behavior for the mean
correlations between the § spectra of t-maps and the ground-truth difference
map obtained with MBM, hereafter referred to as MBM correlations. Crit-
ically, MBM has better performance for nearly all parameter combinations,
including in the realistic parameter regimes denoted by the green boxes. Dif-
ferences between SBM and MBM were particularly salient in regimes charac-
terized by a weak phenotype contribution and high levels of Gaussian noise
(i.e., low o¢ and low og). This effect likely reflects the low-pass spatial
filtering effect of the MBM reconstruction, which renders it more robust
to high-frequency noise than SBM. Thus, across a wide range of signal-to-
noise ratios, MBM more accurately captures the ground-truth difference than
SBM.
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Figure 5: Distributions (in log scale) of correlations between pairs of 100 experiments
for different combinations of o¢ and og. The panels show correlations between pairs of
experimental t-maps (SBM), correlations between pairs of experimental § spectra (MBM),
binary correlations between thresholded t-maps (SBM, thres), and binary correlations
between statistically significant 8 spectra (MBM, thres). The green boxes highlight the
realistic parameter regimes where the generated maps have a similar spatial structure as
the empirical data, as shown in Fig. 3.

Figure 5 shows the results of our consistency analysis quantified in terms
of the distributions of the SBM and MBM correlations, for both unthresh-
olded and thresholded results, between each pair of 100 different experiments
relying on the same ground truth. When o¢ increases, the distributions
shift to the right and become narrower. Thus, when the contribution of the
ground-truth difference is more strongly expressed in individual CT maps,
both SBM and MBM become more consistent. Across most parameter com-
binations, including those in the realistic regimes, the distribution of MBM
correlations shifts to the right of the SBM correlations for both unthresholded
and thresholded results, indicating that MBM generally yields more consis-
tent findings. The exception to this rule is in cases of a weak phenotype
contribution and high levels of structured noise (i.e., low o¢ and high og),
where the peaks of the SBM and MBM distributions converge but the latter
show a wider variation. This result arises because MBM is particularly sen-

16


https://doi.org/10.1101/2023.02.26.529328
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.26.529328; this version posted February 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

oc=1,05=0 oc=08,05 =04 oc =0.6, 05 =0.6 oc =04, 05 =0.8 oc=0205=1

o 10° 102 10? 10? 102
S ‘
5 1)
=3
FWHM = Omm £ ] g
7 10° A 10° /\ 10° [\ i w0 A! ‘, 10° s’ N
a ! 1
o 05 1 o 05 1 o 05 1 o 05 1 0 05 1
102 10? 102 102 10?

FWHM = 10mm

Distribution

)
0 0 0 0 ] o 1
10 10 10 10 ] 1| 0, \
[\
X .
05 05 1 05 1

0 1 0 0.5 1 0 0 0 0.5 1
o 10° 102 g 10% 102 102
2
3 )
r
FWHM = 20mm £
£ 10° 10° 10° 10° JB 00T
& 1 '
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
o 107 102 102 102 102
2
E /
FWHM = 30mm ‘&
+ 10° 10° 10° .' 10° D4 10° ==\
a | 1
. .
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
Correlation Correlation Correlation Correlation Correlation
SBM m== =« MBM SBM, thres MBM, thres

Figure 6: Distribution (in log scale) of pairwise correlations between experiments in the
realistic parameter regimes and for different smoothing kernels. The panels show corre-
lations for experimental t-maps (SBM), correlations for experimental 8 spectra (MBM),
binary correlations for thresholded ¢-maps (SBM, thres), and binary correlations for sta-
tistically significant 8 spectra (MBM, thres).

sitive to structured spatial patterns extending over long wavelengths. MBM
will thus have difficulty in reliably detecting a ground-truth difference in the
presence of a high degree of structured noise such as, for instance, when
individual variability swamps consistent patterns observed across different
individuals belonging to the same group.

To further investigate this spatial filtering effect of MBM, we repeated
the analyses after smoothing the CT data using surface-based smoothing
kernels with FWHM of 10, 20, and 30 mm. Figure 6 shows the distributions
of SBM and MBM correlations obtained for 5 pairs of ¢ and og in realistic
regimes, i.e., (o0¢,09) = {(1,0), (0.8,0.4), (0.6,0.6), (0.4,0.8), (0.2,1)}. When
the smoothing kernel size increases, the SBM correlation distributions shift
to the right and become broader, suggesting that smoothing improves SBM
consistency on average, but large deviations from this average are also more
common. On the other hand, the MBM correlation distributions are rela-
tively unaffected by spatial smoothing. In general, smoothing only improves
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Figure 7: SBM and MBM analyses of CT differences between sexes. (a) Unthresholded ¢-
map. (b) Thresholded ¢t-map at pync < 0.05. Red and blue denote significantly thicker CT
in females and males, respectively. (¢) S spectrum of the unthresholded ¢t-map. The f’s of
the significant modes, obtained via permutation testing at pyn. < 0.05, are colored green.
(d) Significant pattern obtained by combining the significant modes weighted by their §’s.
(e) Six most influential modes, i.e., significant modes with largest absolute 8 values. The
signs of modes with negative 3’s were flipped to better visualize the similarity between

the modes and the significant patterns. The number denotes the order of influence, not
the mode index. (f) Smoothed ¢-map at FWHM = 30 mm.

the consistency of SBM to a level commensurate with MBM applied to un-
smoothed data. This result implies that MBM offers similar advantages to
smoothing without having to choose an arbitrary kernel size and shape.

3.2. Empirical results

Having demonstrated that MBM yields more accurate and consistent re-
sults than SBM in simulated data, we now evaluate the performance of the
two methods in actual empirical data. To reiterate, since there is no clear
ground truth in such cases, we primarily focus on evaluating the consistency,
under sampling variability, of results obtained with both methods.
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Figure 8: Distribution of pairwise correlations between experiments for different smoothing
kernels in the empirical analysis of sex differences under resampling. The panels show cor-
relations for experimental t-maps (SBM), correlations for experimental 8 spectra (MBM),
binary correlations for thresholded ¢-maps (SBM, thres), and binary correlations for sta-
tistically significant 3 spectra (MBM, thres).

3.2.1. Sex differences

Figure 7 shows the SBM and MBM analyses of CT differences between
sexes. Figures 7a and b show the t-map and thresholded t-map in a typical
SBM. Figure 7c shows the 8 spectrum obtained from MBM. The ( spec-
trum describes the influence of multiscale patterns, i.e., modes, on the CT
differences. As shown in Fig. 7c, CT differences between sexes are influenced
more by long-wavelength, i.e., low-frequency, modes than short-wavelength,
i.e., high-frequency, modes. For example, #s of modes 1 to 50 have higher
absolute amplitudes compared to those of modes 100 to 150. The significant
modes with their 8s (shown in green in Fig. 7c) are combined to show the sig-
nificant pattern of the CT difference between sexes in Fig. 7d. The six most
influential modes, i.e., significant modes with largest absolute [ values, are
shown in Fig. 7Te. Figure 7f shows the smoothed t-map at FWHM=30 mm,
which is different from Fig. 7d, demonstrating that the complex pattern of
CT difference extracted by MBM cannot be trivially obtained by simply
smoothing the t-map.

Figure 8a shows that MBM yields more consistent results than SBM when
considering sex differences in the HCP data under resampling. Figures 8b-d
indicate that applying progressively larger smoothing kernels leads to a con-
vergence in the consistency of both SBM and MBM, but SBM never displays
clearly superior performance. These results align with our simulation find-
ings. In fact, the wide distribution tails observed with MBM, particularly
at higher smoothing kernels, suggest that the empirical sex difference maps
studied here are characterized by a relatively weak true phenotype contribu-
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Figure 9: MBM analyses of CT differences between patients with Alzheimer’s disease and
healthy controls across three sites. (a) Unthresholded t-maps of the three sites. Neg-
ative—zero—positive values are colored as blue—white-red, with positive values indicating
reduced thickness in patients. (b) Thresholded t-map at pync < 0.05. Red and blue de-
note significantly thinner CT in patients and controls, respectively. (¢) 8 spectrum of the
unthresholded t-map. The (’s of the significant modes, obtained via permutation test-
ing at pune < 0.05, are colored green. (d) Significant pattern obtained by combining the
significant modes weighted by their Ss. (e) Six most influential modes, i.e., significant
modes with largest absolute 8 values. The signs of modes with negative §3’s were flipped
to better visualize the similarity between the modes and the significant patterns. The
number denotes the order of influence, not the mode index.

tion (i.e., a reliable, characteristic sex difference) and a strong contribution
of structured noise; in other words, the data appear to correspond to a low
oc, high og regime.

3.2.2. Alzheimer’s disease

Figures 9a and b show the t-maps and thresholded t-maps of CT differ-
ences between patients with Alzheimer’s disease and healthy controls across
three sites. Figures 9¢, d, and e show the results obtained from MBM, includ-
ing the S spectra, reconstructions using the significant patterns of the CT
difference, and the six most influential modes. The reconstructions using sig-
nificant modes show a consistent pattern of differences across the sites that is
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Figure 10: Comparing the performance of SBM and MBM analyses of CT differ-
ences between patients with Alzheimer’s disease and healthy controls across three sites.
(a) Unthresholded ¢-maps of the three sites in the Alzheimer’s study with FWHM
= 0,10, 20,30 mm. Negative—zero—positive values are colored as blue-white-red, with pos-
itive values indicating reduced thickness in patients. (b) Thresholded t-maps (punc < 0.05)
of the three sites with FWHM = 0, 10, 20, 30 mm. Red and blue denote significantly thin-
ner CT in patients and controls, respectively. (c) Absolute values of 8 spectra of the
three sites without smoothing in log scale. Green and gray bars show significant and not
significant Bs, respectively. (d) The proportion of significant modes in each approximate
eigengroup. (e) Correlation between the empirical t-map and its mode-derived reconstruc-
tion obtained using the full 8 spectrum, after removing modes in order of decreasing or
increasing spatial wavelength. (f) Correlation between the empirical t-map and its mode-
derived reconstruction obtained using only significant modes from the full 5 spectrum,
after removing modes in order of decreasing or increasing spatial wavelength.
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not directly apparent when inspecting the thresholded ¢-maps obtained with
SBM. Accordingly, the six most influential modes show consistency across
the datasets and all sites include the first mode, implying consistent global
differences in CT between cases and controls.

Figures 10a and b show the effect of spatial smoothing on the unthresh-
olded and thresholded ¢-maps obtained for each of the three sites with FWHM
=0, 10,20, 30 mm, respectively (see Section 2.4.2). Figure 10c shows the ab-
solute values of 8 spectra of the unsmoothed data for each of the three sites
obtained with MBM. Here, we consider N = 500 modes to observe the re-
sults across a broad range of spatial scales ranging from 18 mm and larger
and to more comprehensively evaluate the spatial frequency content of the
data, as outlined below. The statistically significant (3’s are shown by the
green bars. For SBM, smoothing generally increases the consistency of the
spatial maps observed across sites, such that nearly the entire brain shows
a CT reduction in patients compared to controls at py,. < 0.05 (Fig. 10b).
The MBM g spectra also offer qualitative evidence for consistency across
sites, with similar modes being identified as significant, particularly at lower
spatial frequencies. Figure 10d shows the proportion of significant modes in
each eigengroup. These proportions are high in coarse-scale, long-wavelength
eigengroups, particularly groups 0 to 7, corresponding to modes 1 to 64 and
wavelengths >51 mm. Moreover, the first, global mode is also always sig-
nificant, which is not observed in the analysis of sex differences (Fig. 7).
Thus, while Alzheimer’s disease is associated with global reductions in CT,
sex differences tend to be more focal.

To evaluate the spatial frequency content of the difference maps in more
detail, Figs. 10e and f show how correlations between the empirical and recon-
structed t-maps are affected by the removal of a proportion of eigenmodes
from the reconstruction (see Section 2.5). The reconstruction uses modes
from the full § spectrum in Fig. 10e and from the § spectrum of significant
modes in Fig. 10f. The correlation declines more rapidly when removing long-
wavelength modes first, indicating that they make a dominant contribution
to CT differences. These findings indicate that CT differences in Alzheimer’s
disease are preferentially expressed over coarse scales spanning nearly the en-
tire brain. Such broad patterns will be missed by classical analyses that focus
only on point-wise inferences.

Cross-site consistency is more directly quantified in Fig. 11. Here, we
considered N = 150 modes to be consistent with the other analyses in the
paper and also because the group differences are primarily expressed over
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Figure 11: Consistency of SBM and MBM results in explaining multi-site CT differences
between patients with Alzheimer’s disease and healthy controls at different smoothing
kernels. (a) Pairwise correlations between sites for unthresholded results. The light and
dark blue horizontal lines represent the mean correlation of the unthresholded ¢-maps (for
SBM) and of S spectra (for MBM), respectively. (b) Pairwise binary correlations between
sites for thresholded results. The light and dark blue horizontal lines represent the mean
binary correlation of the thresholded ¢t-maps (for SBM) and of 8 spectra (for MBM),
respectively.

coarse scales, as observed in Fig. 10d. Figure 11a shows the pairwise site
correlations for unthresholded ¢-maps and g spectra, while Fig. 11b shows
the binary pairwise site correlations for the thresholded t-maps and [ spectra.
Analysis of the unthresholded maps reveals that MBM provides highly con-
sistent results, which are unaffected by spatial smoothing. Spatial smoothing
improves the performance of SBM, but it never reaches the level of MBM.
Considering the thresholded results, smoothing improves the performance
of SBM and appears to be optimal at FWHM = 20 mm, where the average
pairwise site correlations of SBM are clearly superior to MBM. However,
this average SBM correlation at FWHM = 20 mm does not surpass the
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average MBM correlation on unsmoothed data (i.e., Fig. 11b, FWHM =
0), indicating that MBM generally yields more consistent conclusions about
group CT differences in Alzheimer’s disease than classical SBM. Together,
these findings support the reliability, parsimony, and simplicity of MBM given
that (i) it yields more consistent inferences; (ii) it can adequately summarize
the effects of interest with ~150 values (i.e., the § spectrum) rather than the
>30, 000 vertices per hemisphere typically used in SBM; and (iii) it can be
applied directly to unsmoothed data, obviating the need to select a particular
smoothing kernel size and shape.

4. Discussion

In this paper, we developed a method for mapping neuroanatomical group
differences at multiple spatial scales using a basis set of eigenmodes derived
from cortical geometry, called MBM. Our analysis shows that, when com-
pared with classical SBM, MBM shows comparable or superior performance
in terms of both accuracy—i.e., capturing ground-truth differences in sim-
ulated data—and consistency—i.e., yielding consistent findings under sam-
pling variability in both simulated and empirical scenarios. MBM also en-
ables a spectral decomposition of the group differences, offering insights into
the spatial scales at which those differences are most salient. In contrast,
SBM is restricted to a single scale that is defined by the vertex mesh reso-
lution and smoothing kernel applied. MBM does not require a choice of a
specific smoothing kernel. Furthermore, MBM offers the added advantage of
directly linking group differences to an underlying generative process, where
the differences are modeled as resulting from the differential involvement of
distinct resonant modes of brain structure.

4.1. MBM yields more accurate and consistent inferences about ground-truth
simulations

We compared the accuracy and consistency of MBM and SBM with re-
spect to simulated and empirical data. Our simulations offered insight into
the relative performance of the two approaches under varying ratios of phe-
notype and (structured and unstructured) noise. This framework allowed us
to evaluate the accuracy with which SBM and MBM can uncover ground-
truth differences. Our analysis showed that MBM was more accurate than
SBM for most simulation parameter values. The performance of MBM was
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particularly strong in parameter regimes associated with high levels of un-
structured (i.e., Gaussian) noise, indicating that it is likely to perform better
in noisy data due to the low-pass spatial filtering effect of the eigenmode
reconstructions.

When structured noise dominated the ground-truth difference, MBM and
SBM showed comparable mean accuracy, but MBM correlations were more
variable across experiments, indicating less consistency. To the extent that
structured noise in our model emulates subject-specific neuroanatomical fea-
tures, this finding indicates that MBM will perform inconsistently in cases
where the contribution of such features (i.e., inter-individual variability)
match or swamp the ground-truth phenotype that is common to all sub-
jects in the same group. This is because MBM is particularly sensitive to
detecting structured (i.e., autocorrelated) patterns in the spatial maps. How-
ever, group mean comparisons of CT (or other neuroanatomical properties)
are not likely to be very meaningful in such scenarios, as the small contribu-
tion of the ground-truth difference indicates that there is little in common
between different people assigned to the same group.

Spatially smoothing the data improved the performance of SBM to the
point where it matched MBM for smoothing kernels with FWHM > 20 mm.
However, there are no consistent heuristics for choosing a proper smoothing
kernel. In addition, smoothing kernels should be chosen carefully since they
can impose geometric effects on the data as the kernel replaces the value at
each point with a weighted average of its spatial neighbors [32]. A particular
advantage of MBM is that it does not require the selection of a specific
smoothing kernel size.

4.2. MBM yields more consistent results in empirical data

It was not possible to evaluate the accuracy of MBM and SBM in em-
pirical data due to the lack of ground truth, but we could evaluate the con-
sistency of the findings across multiple repetitions of the same experiment.
For both the analyses of differences between sexes and between healthy con-
trols and patients with Alzheimer’s disease, MBM was more consistent than
SBM at low levels of smoothing, with the two converging at higher levels of
smoothing.

In the case of sex differences, the distributions of MBM correlations were
generally wider than those of SBM correlations. When interpreted with re-
spect to our simulations, this result suggests that while there may be some
consistent sex differences in CT that can be observed under resampling, they
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are likely subtle relative to the effects of individual variability. This inter-
pretation aligns with ongoing debates over the consistency of sex differences
in neuroanatomy [3, 18, 19].

Alzheimer’s disease is likely to be associated with a more salient and
robust CT phenotype, given the well-described stages of atrophy that are
known to occur in the condition [59, 60, 61]. Accordingly, both unthresh-
olded and thresholded analyses were more consistent for MBM compared to
SBM. Increasing smoothing kernel size improved the performance of SBM,
but the average consistency never surpassed that observed for MBM in the
unsmoothed data. These findings support the utility of applying MBM to
minimally smoothed data.

4.3. MBM offers insights into scale-dependent group differences

Structural eigenmodes are ordered by spatial wavelength, opening the
opportunity to analyze the spatial frequency content of C'T differences, much
like a Fourier decomposition is routinely used to examine spectral properties
of EEG signals. We presented an analysis of the frequency content of CT
differences in Alzheimer’s disease, showing that the proportion of significant
modes was higher in eigengroups with long wavelengths, with most of the
differences found for modes with wavelengths >51 mm. The first, global
mode was consistently significant across the three sites, indicating a robust
global difference in C'T between cases and controls. Reconstruction accuracy
also declined more rapidly when removing long-wavelength modes, indicating
that they make a dominant contribution to CT differences between groups.
Together, these findings suggest that CT differences in Alzheimer’s disease
are most salient at coarse spatial scales that are not adequately captured by
classical point-wise analysis, such as SBM, where a specific resolution scale
is imposed by the mesh resolution and smoothing kernel size. In contrast,
MBM provides a natural way of characterizing group differences across a
wide range of spatial scales.

A further consideration is that statistical inference in SBM often assumes
that each point-wise location (e.g., surface vertex) is independent. This as-
sumption is incorrect, since CT and many other neuroanatomical properties
are spatially autocorrelated; i.e., the value at one point depends on oth-
ers. The violation of this assumption is worsened when spatial smoothing
is applied to the data. Dependencies are sometimes later considered if some
form of cluster-based thresholding is applied [62], but this is an ad hoc char-
acterization. In MBM, distinct spatial locations are not considered to be
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independent but instead form part of brain-wide modes with varying spa-
tial wavelengths. Critically, since the eigenmodes themselves are orthogonal,
mode-specific inference is entirely justified.

4.4. MBM ties neuroanatomical differences to a generative process

Classical approaches to mapping neuroanatomical differences are purely
phenomenological, relying on statistical analyses to identify differences be-
tween groups without offering a direct explanation for the mechanisms through
which those differences have emerged. An important advantage of MBM is
that the results can be linked to a direct physical interpretation, in which
group differences in neuroanatomy are explained as the involvement of dif-
ferent resonant modes of brain anatomy. An intuitive analogy can be drawn
from plucking a violin string [31]. The eigenmodes correspond to the string’s
harmonics, each of which is associated with its own preferred vibration fre-
quency. The musical note generated by plucking the string results from a
superposition of these modes. This basic idea has been used to understand
how the structure of a system constrains its dynamics in diverse areas of
physics and engineering, including the electromagnetic response of different
media [20], the vibrational patterns of different structures [21], and aeroelas-
ticity [22].

In the cortex, these resonant modes define the principal axes of struc-
tural variation and thus represent a fundamental basis set for understanding
anatomical constraints on any spatially patterned process. For instance, the
second, third, and fourth eigenmodes considered here correspond to spa-
tial variations along the anterior-posterior, dorso-ventral, and medial-lateral
axes, which are known to define many fundamental properties of cortical or-
ganization, such as regional variations in cell density [63], CT [64], genetic
influences on neuroanatomy [65], and gene expression gradients that shape
brain development [66, 67].

An important choice in such analyses concerns the neuroanatomical prop-
erties that should be used to define the eigenmodes. Two distinct approaches
have emerged in the literature. One approach involves deriving eigenmodes
from a discrete, graph-based model of the connectome, under the assumption
that inter-regional connectivity represents the primary anatomical constraint
on dynamical processes in the brain [23]. The other approach involves deriv-
ing eigenmodes from a model of the geometry of the cortex, as used here. This
approach follows from a specific form of neural field theory, a well-validated
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biophysical model of brain dynamics that characterizes how dynamical pro-
cesses spatially propagate as waves through a continuous cortical medium
[46]. Recent work indicates that geometric modes offer a more parsimonious
account of diverse aspects of brain function than connectome eigenmodes
[15].  Geometric eigenmodes also offer a practical advantage, as they can
be extracted from T1-weighted MRI data alone using standard procedures,
whereas connectome eigenmodes rely on the application of complex prepro-
cessing pipelines to diffusion MRI data, which require many choices that can
affect the final results [68, 69, 70]. For these reasons, we have focused on geo-
metric modes in our analysis, but the approach developed here is sufficiently
general that it can be used with any anatomical basis set.

5. Limitations and Conclusions

We derived the geometric eigenmodes using a population-average tem-
plate surface, which does not completely account for individual differences
in brain shape. While low-frequency modes tend to be consistent between
people [41], the spatial patterns of high-frequency modes tend to diverge due
to individual differences in neuroanatomy. This divergence makes it difficult
to compare results across individuals. Past work suggests that modes derived
from a population-average template can reconstruct brain function to a de-
gree that is comparable to individual-specific modes [15], but further work is
required to develop techniques that can better capture individual differences
in eigenmode architecture. Future work could also incorporate volumetric
analyses in subcortical regions to enable whole-brain inferences, given the
strong coupling between geometry and function found in these areas [15].

In summary, we have introduced here a new multiscale approach, which
we call mode-based morphometry (MBM), for mapping neuroanatomical dif-
ferences between groups where the differences are modeled as arising from
the involvement of distinct, resonant modes of brain anatomy. Using both
simulated and empirical data, we show that MBM offers more accurate and
consistent inferences than classical approaches (i.e., surface-based morphom-
etry), while also providing insights into the spatial frequency content of the
differences and allowing a direct link to putative generative physical pro-
cesses.
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Data and code availability

Raw and preprocessed HCP data can be accessed at
https://db.humanconnectome.org/. Raw and preprocessed OASIS-3 data
can be accessed at https://www.oasis-brains.org/. An open-source toolbox
implementing MBM will be available at https://github.com/BMHLab/MBM
upon publication of the article. Code and sample data to reproduce the
analysis results and figures of this study will be openly available at
https://github.com/BMHLab/MBM _paper upon publication of the article.
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