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Abstract 
The development of single-cell RNA sequencing (scRNA-seq) offers opportunities to characterize cellular 

heterogeneity at unprecedented resolution. Although scRNA-seq has been widely used to identify and 

characterize gene expression variation across cell types and cell states based on their average gene 

expression profiles, most studies ignore variation across individual donors. Modelling this inter-

individual variation could improve statistical power to detect cell type-specific biology and inform the 

genes and cell types that underlying complex traits. We therefore develop a new model to detect and 

quantify cell type-specific variation across individuals called CTMM (Cell Type-specific linear Mixed 

Model). CTMM operates on cell type-specific pseudobulk expression and is fit with efficient methods 

that scale to hundreds of samples. We use extensive simulations to show that CTMM is powerful and 

unbiased in realistic settings. We also derive calibrated tests for cell type-specific interindividual 

variation, which is challenging given the modest sample sizes in scRNA-seq data. We apply CTMM to 

scRNA-seq data from human induced pluripotent stem cells to characterize the transcriptomic variation 

across donors as cells differentiate into endoderm. We find that almost 100% of transcriptome-wide 

variability between donors is differentiation stage-specific. CTMM also identifies individual genes with 

statistically significant stage-specific variability across samples, including 61 genes that do not have 

significant stage-specific mean expression. Finally, we extend CTMM to partition interindividual 

covariance between stages, which recapitulates the overall differentiation trajectory. Overall, CTMM is a 

powerful tool to characterize a novel dimension of cell type-specific biology in scRNA-seq.  

 

Introduction 
The technology of single-cell RNA sequencing (scRNA-seq) profiles gene expression at the resolution of 

single cells. This resolution may be essential for understanding molecular mechanisms underlying many 

complex traits because disease gene expression is highly cell type-specific1–3. For example, APOE is a risk 

gene for Alzheimer’s disease that is downregulated in astrocytes but is upregulated in microglia2. One 

common application of scRNA-seq is to investigate differentially expressed genes (DEG) that exhibit 

differences in mean expression between cell types, such as diseased vs healthy4 or pre- vs post-

treatment5–7. Furthermore, methods to infer cell type labels in scRNA-seq data primarily rely on 

differential mean expression between cell types8,9. 

However, few scRNA-seq studies have evaluated gene expression variation across individuals. 

Understanding this variation could help identify and characterize genes and cell types that cause 

interindividual variation in complex traits ranging from height to autoimmune disorders. Studies using 
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bulk RNA-seq have shown that gene expression variability informs disease biology and drug 

development10–12. However, bulk transcriptomics has poor resolution on individual cell types, which can 

cause both false positives and false negatives. In particular, prior signals in bulk RNA-seq could be 

explained by variation in cell type proportions rather than variation in gene expression within cell 

types13. Because scRNA-seq data has cell-level resolution, it provides an opportunity to powerfully 

partition expression variation within and between cell types. This has recently become possible with the 

proliferation of population-scale scRNA-seq studies that contain hundreds of individuals14–18.  

In this paper, we develop CTMM (Cell Type-specific linear Mixed Model) to detect and quantify cell type-

specific variation across individuals in scRNA-seq data. CTMM considers three nested models of cell 

type-shared and -specific variation. In the simplest model, all variation is shared homogeneously 

between cell types (“Hom”), with cell types differing only in mean expression. The next model allows 

independent variation in each cell type (“Free”), i.e., cell type-specific variation. The richest model 

allows for arbitrary forms of covariance between cell types (“Full”). We focus on fitting CTMM to cell 

type-specific pseudobulk, which averages gene expression over cells within each cell type for each 

individual. We also develop a version of CTMM for overall pseudobulk data, which averages over all cells 

from all cell types for each individual. Overall pseudobulk is less powerful and is akin to bulk sequencing 

data. We explored several statistical methods to fit and test CTMM’s parameters, which is nontrivial due 

to the modest sample sizes of scRNA-seq data. We performed a series of simulations to evaluate 

performance in a broad range of realistic settings. We then applied CTMM to characterize 

transcriptomic variation across individual donors along the developmental trajectory from human 

induced pluripotent stem cells (iPSCs) to endoderm. Transcriptome-wide, CTMM found that almost all 

interindividual variation was specific to each developmental time point, and the Full model found 

greater correlation between nearby time points. We also identified specific genes with statistically 

significant time point-specific variation across individuals, including genes with known importance for 

cell pluripotency and differentiation. 

 

Material and Methods 

Models 

Overview of cell type-specific linear mixed models for gene expression 

We model the expression level of a given gene for individual 𝑖, cell type 𝑐, and cell 𝑠 by: 

𝑦𝑖𝑐𝑠 = 𝛽𝑐 + 𝛼𝑖 + Γ𝑖𝑐 + 𝜖𝑖𝑐𝑠      (Eq 1) 

In this model, 𝑦𝑖𝑐𝑠 is the gene expression level for the 𝑠-th cell from cell type c in individual 𝑖; note that 

the number of measured cells varies across individuals and cell types. 𝛽𝑐 is the mean expression level in 

cell type c, which we model as a fixed effect. 𝛼𝑖 captures differences between individuals that are 

shared across cell types, which we model as a random effect: 𝛼𝑖~
𝑖𝑖𝑑
𝑁(0, 𝜎𝛼

2). Γ𝑖𝑐 captures the difference 

between individuals that is specific to cell type 𝑐, which we also model as a random effect by 

Γ𝑖,~
𝑖𝑖𝑑
𝑁(0, 𝑉). Here Γ𝑖, is a vector of cell type-specific expression for individual 𝑖 and 𝑉 is a 𝐶 × 𝐶 matrix 

describing cell type-specific variances and covariances across cell types.  

Finally, 𝜖𝑖𝑐𝑠 is the residual effect, which we assume to be i.i.d. for each individual-cell type pair with 

𝐸(𝜖𝑖𝑐𝑠) = 0  and 𝑉(𝜖𝑖𝑐𝑠) = 𝜎𝑖𝑐
2 . We directly estimate 𝜎𝑖𝑐

2  from the single cell-level data by 𝜎𝑖𝑐
2̂ ≔
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∑ (𝑦𝑖𝑐𝑠 − 𝑦𝑖𝑐)
2𝑛𝑖𝑐

𝑠=1 /(𝑛𝑖𝑐 − 1), where 𝑛𝑖𝑐 is the number of cells in individual 𝑖 and cell type 𝑐 and 𝑦𝑖𝑐 is 

the average expression across all 𝑛𝑖𝑐 cells (i.e., cell type-specific pseudobulk, defined below). 𝜎̂𝑖𝑐
2  is 

unbiased even if 𝜖𝑖𝑐𝑠 is non-Gaussian, which is important because expression in single cells is non-

Gaussian. Note that this is impossible in bulk expression data, even if sorted into cell types, because bulk 

only measures average expression. That is, scRNA-seq data makes it possible to distinguish true 

interindividual variation from measurement noise. 

Our focus is the covariance matrix 𝑉, which captures the difference and similarity between cell types 

(for a given gene). The diagonal terms capture cell type-specific variance. If there is no cell type-specific 

variation between individuals, then 𝑉𝑐𝑐 = 0 for all 𝑐. The off-diagonal terms capture covariance between 

specific pairs of cell types; if all cell types are equally similar to each other, then 𝑉𝑐𝑐′ = 0 for all 𝑐 ≠ 𝑐′.  

We consider three nested models of interindividual variation defined by the structure of 𝑉. First, the 

homogeneous (Hom) model assumes that 𝑉 = 0 , i.e., that all expression variance is shared 

homogeneously across cell types without any cell type-specificity. Second, the Free model allows 

arbitrary levels of cell type-specific variance by allowing 𝑉 to be an arbitrary diagonal matrix. Third, the 

Full model captures arbitrary levels of covariance between specific cell type pairs by allowing 𝑉 to be 

any positive semidefinite matrix. Intuitively, the Hom model captures variation across individuals, but 

assumes this variation is identically shared across cell types. The Free model allows cell type-specific 

variation, e.g., a gene that is largely similar between individuals except in a single cell type. The Full 

models allows complex relationships among cell types, e.g., hierarchical relationships among immune 

cell types. 

A technical consideration in the Full model is that 𝑉 and 𝜎𝛼
2 are not jointly identified. Specifically, passing 

a constant between 𝜎𝛼
2 and 𝑉 does not change the likelihood (i.e., 𝐿(𝜎𝛼

2, 𝑉) ≡ 𝐿(𝜎𝛼
2 − 𝜆, 𝑉 + 𝜆 𝐽𝐶), 

where 𝐽𝐶  is 𝐶 × 𝐶 matrix containing all 1s). Therefore, without loss of generality, we set 𝜎𝛼
2 = 0 in the 

Full model. The Full model is statistically challenging because its number of parameters scales 

quadratically with the number of cell types, 𝐶. In practice, the Full model only has precise estimates with 

hundreds to thousands of samples or, as below, when aggregating together many genes.  

Deriving models for overall and cell type-specific pseudobulk 

Directly modelling single cell expression as in Eq1 is challenging computationally and statistically. 

Computationally, modelling individual cells increases the number of observations by orders of 

magnitude because there can be dozens or hundreds of cells per individual-cell type pair. Statistically, 

the individual cell’s expression is highly non-Gaussian, requiring additional assumptions and 

computationally expensive generalized linear mixed models. Instead, we study scRNA-seq data at the 

level of pseudobulk expression, which averages expression over many cells. We consider both overall 

pseudobulk (OP), which averages over all measured cells per individual, and cell type-specific 

pseudobulk (CTP), which averages over cells in each cell type per individual.  

Specifically, the pseudobulk measures that we input to CTMM are: 

𝑦𝑖 ≔
1

𝑛𝑖
∑ ∑ 𝑦𝑖𝑐𝑠

𝑛𝑖𝑐
𝑠=1

𝐶
𝑐=1     and    𝑦𝑖𝑐 ≔

1

𝑛𝑖𝑐
∑ 𝑦𝑖𝑐𝑠
𝑛𝑖𝑐
𝑠=1  

where 𝑦𝑖  is the OP expression for individual 𝑖, and 𝑦𝑖𝑐 is the CTP expression for individual 𝑖 and cell type 

𝑐.  
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Our cell-level model in Eq 1 implies the following mixed model for the OP expression:  

𝑦𝑖 = ∑ 𝑃𝑖𝑐𝛽𝑐𝑐⏟    
𝐜𝐞𝐥𝐥 𝐭𝐲𝐩𝐞−𝐬𝐩𝐞𝐜𝐢𝐟𝐢𝐜

𝐦𝐞𝐚𝐧

+ 𝛼𝑖⏟
𝐜𝐞𝐥𝐥 𝐭𝐲𝐩𝐞−𝐬𝐡𝐚𝐫𝐞𝐝

𝐯𝐚𝐫𝐢𝐚𝐭𝐢𝐨𝐧

+ ∑ 𝑃𝑖𝑐Γ𝑖𝑐𝑐⏟    
𝐜𝐞𝐥𝐥 𝐭𝐲𝐩𝐞−𝐬𝐩𝐞𝐜𝐢𝐟𝐢𝐜 

𝐯𝐚𝐫𝐢𝐚𝐭𝐢𝐨𝐧

+ 𝛿𝑖⏟
𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭

𝐧𝐨𝐢𝐬𝐞

   (Eq 2) 

with 𝛿𝑖 ≔
1

𝑛𝑖
∑ ∑ 𝜖𝑖𝑐𝑠

𝑛𝑖𝑐
𝑠=1

𝐶
𝑐=1 ~

𝑖𝑛𝑑
 𝑁(0, 𝑣𝑖); 𝑣𝑖 ≔ ∑

𝑛𝑖𝑐

𝑛𝑖
2 𝜎𝑖𝑐

2𝐶
𝑐=1  

𝛿𝑖  is the measurement noise for individual 𝑖, with variance 𝜈𝑖 that we estimate by plugging in our 

estimate of 𝜎𝑖𝑐
2 . 𝑃 is the matrix of cell type proportions, defined by 𝑃𝑖𝑐 ≔

𝑛𝑖𝑐

𝑛𝑖
.  

Our cell-level model in Eq 1 also implies a mixed model on the CTP expression data:  

𝑦𝑖𝑐 ≔ 𝛽𝑐 + 𝛼𝑖 + Γ𝑖𝑐 + 𝛿𝑖𝑐 （Eq 3） 

with 𝛿𝑖𝑐 ≔
1

𝑛𝑖𝑐
∑ 𝜖𝑖𝑐𝑠
𝑛𝑖𝑐
𝑠=1 ~

𝑖𝑛𝑑
 𝑁(0, 𝜈𝑖𝑐); 𝜈𝑖𝑐 =

𝜎𝑖𝑐
2

𝑛𝑖𝑐
 

Here, 𝛿𝑖𝑐  is the noise for individual 𝑖 and cell type 𝑐, with variance 𝜈𝑖𝑐. By the central limit theorem, both 

𝛿𝑖  and 𝛿𝑖𝑐  are approximately Gaussian when 𝑛𝑖𝑐 is not too small, even though 𝜖𝑖𝑐𝑠 is very non-Gaussian.  

Fitting and testing parameters of CTMM 
We evaluated three approaches to estimate the parameters in CTMM: maximum likelihood (ML), 

restricted maximum likelihood (REML), and method-of-moments (HE, as it is called Haseman-Elston 

regression in genetics). We implemented ML by maximizing the likelihood function using BFGS algorithm 

implemented in the R function `optim’ (Supplementary Note). REML was fit similarly using the restricted 

likelihood, which residualizes covariates from the full likelihood (Supplementary Note). For both REML 

and ML, we reran 10 random restarts if the initial optimization attempt failed (Supplementary Note), 

which is important to mitigate bias from local maxima with small sample sizes. We allowed negative 

variance components to reduce bias, though the total expression variance was always positive. Due to 

the complexity of these likelihood functions, we evaluated refining the BFGS solution with Nelder-Mead 

iterations; we found that this is not necessary for the analyses considered in the Main text, but it can be 

important for the more challenging analyses, such as fitting the Free model with ML on OP data 

(Supplementary Figure S1). We fit HE analytically (Supplementary Note).  

Because the CTP expression data is a vector of length 𝑁𝐶, where 𝑁 is the number of individuals, naively 

fitting CTMM in ML and REML has a computational complexity of 𝑂(𝑁3𝐶3). We use several linear 

algebra identities to simplify the complexity to 𝑂(𝑁𝐶3). The relative gains will increase as 𝑁 and 𝐶 grow, 

which are both expected in future scRNA-seq datasets. 

Our primary test compared the Hom and Free models, which asks whether interindividual variation is 

cell type-specific or shared uniformly across cell types. In other words, this is a test for differential 

expression variance across cell types. By comparison, standard tests for differential expression ask 

whether the mean expression levels, 𝛽𝑐, differ across cell types. We also developed a test comparing the 

Full and Free models to ask whether cell types covary across individuals, but we found this has very low 

power at current sample sizes (data not shown).  

We implemented likelihood ratio tests (LRT) and Wald tests to compare the Free and Hom models. For 

the LRT, we used 𝐶 degrees of freedom because the Free model adds variance components for each cell 
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type (but see Crainiceanu and Ruppert19 and Greven et al.20 for more detailed discussion of these tests). 

For the Wald test, we used an 𝐹-test with 𝐶 numerator degrees of freedom and 𝑁 − 𝑅 denominator 

degrees of freedom, where 𝑅 is the number of model parameters in the Free model, that is 2𝐶 + 1. We 

evaluated two options to estimate the precision matrix for CTMM’s variance component estimates, 

which is needed for the Wald test. First, we used the inverse of the Fisher information matrix for REML 

and ML, which is consistent for large sample sizes. Second, we used jackknife (JK) to nonparametrically 

estimate the precision matrix by fitting the model after excluding each sample in turn. For large sample 

sizes, both LRT and Wald tests are valid; however, we are interested in modest sample sizes and hence 

we profile a wide range of approaches.      

We tested for mean expression differentiation by evaluating the null hypothesis that 𝛽𝑐 = 𝛽𝑐′  for all cell 

types 𝑐 and 𝑐′. 𝛽 is the cell type fixed effect (i.e., cell type-specific mean expression) and is estimated 

using generalized least squares with variance components fit under the Free model. We used a Wald 

test for 𝛽 with numerator degrees of freedom  𝐶 − 1 and denominator degrees of freedom 𝑁 − 𝑅, 

where 𝑅 is the number of parameters in the Free model, that is 2𝐶 + 1. We estimated the precision 

matrix for CTMM’s estimates of 𝛽 using jackknife. The jackknife includes re-fitting variance components, 

which is important because these variance component estimates are noisy. 

We have also extended CTMM to accommodate additional random effects (Supplementary Note). This 

can be essential in practice, but it can be computationally infeasible as it requires inverting large 

matrices. Fortunately, the primary use case involves blocked random effects, such as experimental batch 

in our iPSC analysis. We derived a different optimization approach designed specifically for this common 

scenario, which simplified the computational complexity by orders of magnitude. In our iPSC analysis, 

these manipulations reduced REML computation time per gene from ~40 seconds to ~10 second.  

Simulation 
We tested the performance of CTMM with a series of simulations under Hom and Free models. We 

simulated gene expression for each individual from Eq 2 (for overall pseudobulk) and Eq 3 (for cell type-

specific pseudobulk). We varied the number of individuals, cell type proportions, and levels of cell type-

specific variance. For each simulated dataset, we evaluated all three methods to fit CTMM (ML, REML, 

and HE) and each applicable test for cell type-specific interindividual variance (LRT and Wald). For each 

simulation parameter setting, we ran 1,000 replicate simulations to calculate the average CTMM 

estimates, their sampling distributions, and the test positive rate. We also simulated under the more 

complex Full model. Further simulation details are provided in the Supplementary Note, with a list of 

simulation parameters in Supplementary Table S1. 

We also performed simulations to assess CTMM’s sensitivity to estimation errors in 𝜈𝑖𝑐, the level of 

noise due to cell-level variation. This is important because 𝜈𝑖𝑐 is not known in practice. Specifically, for 

each 𝜈𝑖𝑐 , we draw 𝑥𝑖𝑐  i.i.d. from a 𝐵𝑒𝑡𝑎(2, 𝑏) distribution and then add +𝑥𝑖𝑐𝜈𝑖𝑐  or −𝑥𝑖𝑐𝜈𝑖𝑐  before 

inputting 𝜈𝑖𝑐 to CTMM (Supplementary Note). To span the range of estimation errors in the real iPSCs 

data, we simulated 𝑏 = 20, 10, 5, 3, 2. To evaluate power under a range of Free models, we varied cell 

type-specific variance for cell type 1 (𝑉11) from 0.05 to 0.5 and fixed other cell type-specific variances to 

0.1. For simplicity, the Free model simulations always used 𝑏 = 5 (the most realistic value). As this 

simulation focuses on CTMM’s utility in our real data analysis, we simulated using the parameters we 

estimated in the iPSCs data below (Supplementary Note), and we only examined CTP as it is far more 

powerful. We ran 1,000 replicates for each setting of simulation parameters. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.24.529987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.24.529987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Differentiating iPSCs analysis 

Data and model 

Human induced pluripotent stem cells (iPSCs) are derived from somatic cells that have been 

reprogrammed into an embryonic-like pluripotent state. iPSCs can differentiate to diverse cell types, 

with a concomitant transcriptomic trajectory across time as the cells differentiate. We studied the 

transcriptome as iPSCs differentiate into endoderm using scRNA-seq data from 125 individual donors15. 

Cells were collected on four consecutive days as the iPSCs differentiate, starting from iPSCs, which we 

used to define four cell types. We used the log transformed gene expression data provided by Cuomo et 

al., which has been through a thorough process of quality control and normalization 

(https://zenodo.org/record/3625024#.Xil-0y2cZ0s). The dataset includes 11,231 genes and 36,044 cells.  

For the 33 individuals who had technical replicates in the data, we only included the replicate with the 

largest number of cells. We excluded individuals with fewer than 100 cells to better satisfy the Gaussian 

approximation of 𝛿𝑖𝑐 , leaving 94 individuals.  

For each gene, we fit OP and CTP expression into Hom, Free, and Full models with ML, REML, and HE. In 

all models, we adjusted for sex, neonatal diabetes, and the first 6 principal components calculated on 

OP expression as fixed effects. We used our extension of CTMM to model experimental batch as a 

random effect, which is important because batch has large effects that cannot be ignored yet has too 

many degrees of freedom to fit as fixed effects (24 batches vs 94 individuals). We used Bonferroni 

correction to account for multiple testing across genes.  

Impute pseudobulk data 

For individual-cell type pairs with no more than 10 cells, 𝑦𝑖𝑐 and 𝜈𝑖𝑐 were set to missing. We then 

imputed missing entries in 𝑦𝑖𝑐 and 𝜈𝑖𝑐. We compared three approaches to imputation (each applied 

separately to 𝑦 and 𝜈). First, we imputed each gene separately using either softImpute21 or MVN-impute 

(implemented in Dahl et al.22). In brief, the former makes a low-rank approximation, while the latter 

approximates individuals as independent and leverages correlations among cell types. We also 

evaluated imputing all genes jointly across the transcriptome using softImpute (in an 𝑁 × 𝐶𝐺 matrix, 

where 𝐺 is the number of genes); this is computationally impossible with MVN-impute. 

To evaluate imputation accuracy, we masked observed entries in 𝑦𝑖𝑐 and 𝜈𝑖𝑐 and compared the imputed 

values to the masked true values. Of note, if one cell type of an individual has less than or equal to 10 

cells, all genes’ expression would be missing for the pair of individual and cell type. To be realistic, we 

maintained this structure of missingness by employing a “copy-mask” approach as in our prior study22. 

We randomly sampled an individual with missing cell types and masked the same cell types in another 

randomly chosen individual. We repeated this process until 10% of all pairs of individual and cell type 

were masked. We calculated correlation and mean squared error (MSE) between imputed values and 

masked true values across individuals for each gene-cell type pair. We conducted 10 replications of the 

process of masking and imputation and calculated the medians of correlation and MSE across those 

repeats as final measures of imputation accuracy. For 𝜈𝑖𝑐, imputation might get negative values by 

chance. We treated these negative variances in different ways in OP and CTP expression data. In OP, we 

set negative variances to 0, so they had little impact on the estimation of 𝜈𝑖  while maintaining 

information from other cell types; in CTP, for each gene and cell type, we set them to maximum raw 𝜈𝑖𝑐 

in that specific gene and cell type, so they contributed less to model likelihood. Note that standard 
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approaches to impute expression in single cells23,24 does not impute the pseudobulk data, which has 

missing entries due to missing cells, not missing expression within observed cells. 

 

Results 

Simulation 
We simulated a series of scenarios to assess the performance of CTMM. We simulated Hom and Free 

models by varying sample size, level of cell type-specific variance, and cell type proportions. We first 

evaluated the accuracy to quantify cell type-specific variance. Supplementary Figure S2 showed the 

estimation of cell type-specific variance in the simulation of Free model with varying sample sizes from 

20 to 300. As expected, when fitting simulated data into the Free model, both OP and CTP performed 

well, as illustrated by the roughly unbiased estimates of cell type-specific variance 𝑉. The performance 

improved along with the increase of sample size. CTP provided more precise estimates than OP, since 

CTP uses more information than OP by modeling pseudobulk expression for each cell type. Comparing 

methods for parameter estimation, likelihood-based methods including ML and REML had similar level 

of precision, and both had better precision than HE, since likelihood-based methods utilize more 

information than HE by assuming normal distribution of random effects. Supplementary Figure S3 

showed estimates with varying levels of cell type-specific variance. Our models provided unbiased 

estimates of cell type-specific variance, even in the simulation of Hom model where there is no cell type-

specific effect. Figure S4 showed estimates with varying cell type proportions. When decreasing the 

proportion of main cell type (with the largest cell type-specific variance), all models performed well 

except for HE with CTP input, which broke down when the main cell type proportion went below 10%. 

We also simulated under the Full model, which had precise and unbiased estimates of covariance 

between cell types when sample size was above 50 with CTP (Supplementary Figure S5).  

We then evaluated the power of our models to detect cell type-specific variance. Figure 1 showed 

positive rates of REML and HE using OP or CTP data as input for different sample sizes. Under the 

simulation of Hom model where there is no cell type-specific variance, different tests for cell type-

specific variance with both OP and CTP input were appropriately null with around 5% of false positive 

rate, except for REML (Wald), that is Wald test in REML using precision matrix inferred from the Fisher 

information matrix. REML (JK), that is jackknife-based Wald test in REML, and HE were slightly inflated in 

CTP when sample size was 100 or lower. Under the simulation of Free model, CTP gained much larger 

power than OP, for example, when sample size was 50, CTP had 10-fold positive rate over OP (100% 

versus 10% using REML with LRT). REML (LRT) in CTP had the best power. Its true positive rate reached 

above 80% even when sample size was only 20 and reached 100% when sample size was 50. The other 

three tests in CTP, including REML (Wald), REML (JK), and HE, also had over 80% of true positive rate 

when sample size reached 100. ML and REML had similar performance when fitting CTP (Supplementary 

Figure S6). We also assessed the impact of cell type proportions and level of cell type-specific variance. 

As expected, the power decreased when the main cell type became rare and cell type-specific variance 

was low (Supplementary Figure S6).  
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Figure 1. Power of CTMM’s test of cell type-specific variance in simulations with varying sample sizes. 

(A) In the simulation of Hom model, there is no cell type-specific variance; (B) in the simulation of Free 

model, each cell type has its own cell type-specific variance. 

To examine the impact of uncertain estimates of 𝜈𝑖𝑐 , we repeated the CTP simulation while 

incorporating noisy 𝜈𝑖𝑐. To be more realistic, this simulation was conducted with parameters estimated 

from real data of iPSCs differentiation. We first evaluated the uncertainty of 𝜈𝑖𝑐 by bootstrap resampling 

cells for all combinations of individual, cell type, and gene. Most of them had a coefficient of variation 

around 0.2 (Figure S7). To incorporate this uncertainty into simulation, we added noise into 𝜈𝑖𝑐 when 

fitting models (Methods). We tried five distributions of noise to cover the distribution of coefficient of 

variation in real data (Figure S7). In the simulation of Hom model, when there was no noise of 𝜈𝑖𝑐, that is 

fitting model with real 𝜈𝑖𝑐 used in simulations, REML (LRT) and REML (JK) were well calibrated, HE was 

slightly inflated (Figure 2A). Along with the increase of noise, REML (LRT)’s false positive rate increased 

quickly and reached ~80% when using a high level of noise (coefficient of variation = 0.45); REML (JK) 

was rather resistant to noise that it only completely broke when unrealistically strong noise was added; 

while HE was not impacted by noise, it remained slightly inflated for all levels of noise. Of note, 

estimates of cell type-specific variance were weakly biased in REML under strong noise (Supplementary 

Figure S8). In the simulation of Free model, we found that REML (JK) had 80% of positive rate even when 

the cell type-specific variance is weak with 0.05 variance for the first cell type; HE also had good power 

with about 50% of positive rate when the first cell type had 0.05 variance (Figure 2B). Taken together, 

REML (JK) is the most powerful and robust method and is our primary approach in our iPSCs analysis.   
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Figure 2. Power of CTMM in simulations with uncertain estimates of noise variance (𝝂𝒊𝒄). (A) false 

positive rate under different levels of noise of 𝜈𝑖𝑐 . Dashed lines indicating the 10%, 50%, and 90% 

percentiles of the transcriptome-wide distribution of coefficient of variation for 𝜈𝑖𝑐 in the real iPSCs data; 

(B) true positive rate under noise of 𝜈𝑖𝑐 with a coefficient of variation of 0.33, with varying cell type-

specific variance for the first cell type from 0.05 to 0.5; cell type-specific variance for other three cell 

types were fixed to 0.1; in Hom, all cell types had 0 cell type-specific variance.  

Application to human induced pluripotent stem cells 
We applied our methods to differentiating iPSCs15. Before fitting CTMM, we compared different 

approaches to imputing the cell type-specific pseudobulk (𝑦𝑖𝑐, that is CTP). We evaluated single-gene 

imputation with softImpute and MVN and transcriptome-wide imputation with softImpute. We found 

that transcriptome-wide softImpute performed best (Figure S9 A, C), though MVN performed similarly. 

We also compared approaches to impute the noise variance (𝜈𝑖𝑐), which is required for CTMM. We 

observed similar results as for the pseudobulk in terms of mean squared error (Figure S9 B, D). Based on 

these results, we used transcriptome-wide softImpute in practice.  

We fit the Free model with both OP and CTP data using ML, REML, and HE (Figures S10 and S11). We 

focus on REML with CTP, which was most powerful and robust in simulations. Transcriptome-wide, we 

found that the variation across individuals was almost entirely cell type-specific, as the homogeneous 

variance has median close to 0 (𝑚𝑒𝑑𝑖𝑎𝑛 = 0.4%, Figure 3A). By contrast, cell type-specific variance has 

median 32.8% across cell types. Accounting for cell type proportions, cell type-specific variation 

explained 14% of interindividual expression variation transcriptome-wide (Supplementary Note Eq 3). 

Additionally, cell type-specific mean differences explained 12.3%, and measurement noise explained 

9.5%. This illustrates the importance of modeling cell type-specific expression.  

To evaluate the correlation of gene expression between cell types, we next fit the Full model. As 

expected, the correlations between adjacent development stages (CT1 and CT2, CT2 and CT3, and CT3 

and CT4) were larger than the correlations between more distant stages (Figure 3B). Furthermore, the 

correlation between CT2 and CT3 (median: 0.050) was smaller than the other adjacent stages (CT1-CT2 

median: 0.317; CT3-CT4 median: 0.323). This is consistent with rapid changes in molecular profiles at 

day2 (CT3)15. These patterns were also observed when fitting with ML or HE (Supplementary Figure S10). 
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When fitting OP, as expected, the estimates were far less precise, especially for HE (Supplementary 

Figure S11).  

 

Figure 3. Distribution of variance and correlation of cell type-specific effect across transcriptome from 

REML with CTP data. (A) homogeneous variance (𝜎𝛼
2) shared across cell types and cell type-specific 

variance from Free model; (B) correlation of cell type-specific effect between cell types from Full model, 

with dark blue indicating pairs of adjacent cell types and light blue indicating others. In (A), values above 

2 were truncated; in (B), values above 1.5 or below -1.5 were truncated. 109 genes were excluded from 

(B) because of negative cell type-specific variance. 

Figure 4 shows gene expression differentiation in mean and variance in fitting CTP with REML (JK). We 

found many genes that were differentiated in variance between cell types, that is at least one cell type 

with non-zero cell type-specific variance. Among them, the top gene POU5F1 (Wald 𝑝 = 1.77 × 10−27), 

also known as OCT4, is one of the three core transcription factors in the pluripotency gene regulatory 

network25. This signal was alco confirmed in HE with CTP, where POU5F1 was the most significant signal 

in variance differentiation (𝑝 = 1.67 × 10−28, Supplementary Figure S12). Although this gene was also 

significantly differentiated in mean, it is not outstanding in either REML or HE and less likely to be 

discovered for further functional analyses. To control for false positive, we identified candidate genes 

for cell type-specific variance as ordered by 𝑝 value in REML (JK) meanwhile requiring significant signals 

after Bonferroni correction in both REML (JK) and HE, with top 10 genes shown in Table 1. Among them, 

61 genes were not differentiated in mean (𝑝 > 0.01 in REML), with some of those genes involved in 

processes like cell differentiation and growth (see top 10 of those genes in Table 2). Take NDUFB4 for 

example, there was no differentiation in mean between cell types (𝑝 = 0.014 in REML and 𝑝 = 0.015 in 

HE), while significant differentiation in variance in both REML (𝑝 = 1.7 × 10−19 ) and HE (𝑝 =

8.59 × 10−15) (Figure 5). Of note, there were three marker genes used in Cuomo et al.15 to indicate each 

stem cell differentiation stage, spanning iPSC (NANOG), mesendoderm (T), and definitive endoderm 

(GATA6). We successfully detected significant mean differentiation in all three marker genes in both 

REML and HE; on the other hand, we detected significant variance differentiation in all three genes in HE, 

while only in NANOG gene in REML, indicating loss of power in REML. We also note that mean 

differentiation had much stronger signals than variance differentiation in both REML and HE 

(Supplementary Figure S13). We compared 𝑝 values for variance differentiation from different tests 

when fitting CTP (Supplementary Figure S14). Generally, 𝑝 values from different tests were largely 

consistent, except for REML with LRT. Specifically, for REML (JK) and HE, there were 4,773 genes that 

were significant in both; 341 genes were significant only in HE, likely to be false positive; 2,003 genes 
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were significant only in REML (JK), partially due to false positive and partially due to higher power in 

REML (JK) than HE. We also conducted tests with OP data. Consistent with low power observed in 

simulations, we identified 23 genes that were significantly differentiated in variance in REML (LRT), and 

0 genes were identified in HE (Supplementary Figure S15).  

Figure 4. Distribution of p values for differentiation in expression mean and variance across 

transcriptome using REML with jackknife with CTP data. Each dot represents a gene. Dots are colored 

by the density of genes in the area, with yellow indicating denser distribution. Dashed lines indicate 

significance threshold after Bonferroni correction. The three purple dots indicate the three maker genes 

used in Cuomo et al. to indicate each stem cell differentiation stage, spanning iPSC (NANOG), 

mesendoderm (T), and definitive endoderm (GATA6). The red dot indicates the top signal POU5F1, 

which is one of the three core regulators in cell pluripotency. 
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Table1. Top 10 genes significantly differentiated in variance between cell types in REML, while 

remaining significant in HE, with CTP data. 

Gene 
REML HE 

Function 
𝑝(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)a 𝑝(𝑚𝑒𝑎𝑛)b 𝑝(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) 𝑝(𝑚𝑒𝑎𝑛) 

POU5F1 1.77 × 10−27 6.37 × 10−27 1.67 × 10−28 1.75 × 10−27 Cell pluripotency25 

HSPA8 3.92 × 10−20 6.07 × 10−40 1.37 × 10−19 7.25 × 10−40 Cell pluripotency26 

SUB1 1.09 × 10−19 1.03 × 10−10 5.76 × 10−16 1.45 × 10−10 Cell differentiation27 

NOP16 1.39 × 10−19 7.41 × 10−49 8.67 × 10−15 4.54 × 10−49 Cell growth28 

NDUFB4 1.7 × 10−19 0.014 8.59 × 10−15 0.015 Cell differentiation29 

RPL35 2.21 × 10−19 7.08 × 10−11 2.36 × 10−20 7.18 × 10−11 Cell proliferation and 
survival30 

CCND1 3 × 10−19 8.27 × 10−48 3.55 × 10−15 7.07 × 10−48 Cell differentiation31 

GYPC 1.33 × 10−18 5.92 × 10−37 1.08 × 10−16 1.45 × 10−36 Cell differentiation32 

PTMA 1.88 × 10−18 1.14 × 10−43 1.52 × 10−16 2.17 × 10−43 Apoptosis33 

SHFM1 2.64 × 10−18 1.37 × 10−7 1.15 × 10−16 1.11 × 10−7 Cell pluripotency34 
a𝑝(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) indicates 𝑝 values for variance differentiation between cell types; b𝑝(𝑚𝑒𝑎𝑛) indicates 𝑝 

values for mean differentiation between cell types. 

Table 2. Top 10 genes significantly differentiated between cell types in expression variance while not 

in mean (𝒑 > 𝟎. 𝟎𝟏) in REML, meanwhile significantly differentiated in variance in HE, with CTP data. 

Gene 
REML HE 

Function 
𝑝(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)a 𝑝(𝑚𝑒𝑎𝑛)b 𝑝(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) 𝑝(𝑚𝑒𝑎𝑛) 

NDUFB4 1.7 × 10−19 0.014 8.59 × 10−15 0.015 Cell differentiation29 

NUTF2 1.12 × 10−17 0.109 1.29 × 10−16 0.105 Cell cycle35, apoptosis36 

SLX1A 6.06 × 10−15 0.162 7.11 × 10−18 0.152 Genome stability37 

EIF4A1 2.4 × 10−13 0.011 2.17 × 10−10 0.044 Stem cell self-renewal38 

ATP5J2 4.96 × 10−13 0.092 1.13 × 10−13 0.084 ATP synthesis39 

TFPI2 5.81 × 10−13 0.025 9.53 × 10−9 0.016 Cell proliferation40 

SMAP1 1.07 × 10−12 0.025 5.9 × 10−10 0.026 Cell growth41 

NDN 1.83 × 10−12 0.011 7.75 × 10−10 0.012 Cell growth41 

KRT10 2.38 × 10−12 0.217 1.18 × 10−10 0.214  

NDUFA1 3.82 × 10−12 0.406 2.71 × 10−11 0.395 Cell differentiation29 
a𝑝(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) indicates 𝑝 values for variance differentiation between cell types; b𝑝(𝑚𝑒𝑎𝑛) indicates 𝑝 

values for mean differentiation between cell types. 
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Figure 5. Estimates of cell type fixed effect and cell type-specific variance for specific genes in REML 

with CTP data. Four genes were chosen as examples. POU5F1 exhibited the strongest signal of variance 

differentiation among all genes; NDUFB4 exhibited the strongest signal of variance differentiation 

among genes without signals of mean differentiation (𝑝 > 0.01); MIXL1 exhibited the strongest signal of 

mean differentiation among all genes; and EOMES exhibited the strongest signal of mean differentiation 

among genes without signals of variance differentiation (𝑝 > 0.01). The violin plot represents the 

distribution of cell type-specific pseudobulk after standardizing overall pseudobulk to mean 0 and 

variance 1; circles indicate estimated cell type fixed effects; the length of dash line indicates estimated 

cell type-specific variance; the length of arrow indicates the sum of homogeneous variance shared 

across cell types and cell type-specific variance.  

Discussion 
Mean differences in gene expression across cell types are well documented and are the primary focus of 

most scRNA-seq analyses. Here, we have introduced a new model called CTMM to quantify variance 

differences across cell types in scRNA-seq data. Bulk expression analyses have established that 

interindividual variance in expression can be important for characterizing disease biology42 and 

identifying context-dependent genetic effects43. The key innovation in CTMM is adapting Gaussian linear 

mixed models (LMMs) to scRNA-seq data, which is challenging because scRNA-seq data are highly noisy 

and non-Gaussian. The key idea is to summarize the scRNA-seq data into cell type-specific pseudobulk17, 

which enables approximately unbiased inference with CTMM on as few as 20 individuals. We carefully 

profile several standard methods to fit LMMs and propose a jackknife-based test using REML as the 

most powerful and robust method, which we support with extensive simulations and analyses of 

differentiating iPSCs. We implement and freely release these methods as a user-friendly Python package. 

We expect that CTMM will be an important step toward robust and rich variance decompositions of 

scRNA-seq data, which will be increasingly powerful and informative as scRNA-seq sample sizes grow.  
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In the limiting case with infinite cells, when the measurement error is reduced to 0, CTMM simplifies to 

a typical LMM on bulk expression. In this case, CTMM with Overall Pseudobulk (OP) data is comparable 

to decomposing variance in bulk expression data using computationally-deconvolved cell type 

proportions. The significant benefit is that scRNA data provides much better estimates of cell type 

proportions, which can both reduce false positives and improve power. Likewise, CTMM with Cell Type-

specific Pseudobulk (CTP) data becomes comparable to bulk analyses of sorted cells without the need 

for sorting pre-defined cell types. In practice, when the number of cells is limited, another significant 

benefit of CTMM over bulk analyses is the ability to distinguish biological variance across individuals 

from measurement error, which is especially important when measurement error varies across 

individuals, cell types, or experimental conditions. However, the disadvantage of CTMM compared to 

bulk is that it requires larger sample sizes, which is currently expensive. 

CTMM has several important limitations. First, as scRNA data in individual cells is highly non-Gaussian, 

CTMM’s Gaussian assumption relies on combining many cells and the central limit theorem. In practice, 

we require >10 cells per individual-cell type pair, which limits CTMM to common cell types. A related 

concern is that lowly-expressed genes can be severely non-Gaussian, increasing the number of cells 

needed for the Gaussian approximation. Second, CTMM assumes cell types are already known. Our real 

data analysis solves this by defining cell types based on experimental days. However, most studies infer 

cell types directly from the scRNA-seq data, inducing some circularity; this is typically ignored2,7,44 yet 

will deflate estimates of cell type specific variance by construction. Third, CTMM assumes discrete cell 

types, whereas continuous cell types are more appropriate in some cases, e.g., when defined by pseudo-

time15,16,45 or degree of IFN stimulation17. While incorporating continuous cell types is straightforward 

with overall pseudobulk data, it can only be expressed in cell type-specific pseudobulk data by 

discretizing the continuous cell types. Fourth, it is well-known that count data evince a complex mean-

variance relationship, and studies have observed that the variance of gene expression across cells is 

dependent on mean expression46. Nonetheless, we find biologically plausible genes with significant 

differential variance but without significant differential mean, showing that modelling variance has 

utility beyond merely tagging mean signals. Finally, despite our use of careful nonparametric tests, our 

Free test for cell type-specificity remains slightly inflated, emphasizing the importance of biologically 

validating and replicating results.  

CTMM opens the door to translating well-established LMM methodologies to scRNA-seq data. A key 

extension of CTMM is to quantify cell type-specific heritability of gene expression, which is typically 

more powerful than single-SNP tests of context-specific genetic regulation17,47. Because CTMM models 

cell-level noise, it can eliminate downward biases in heritability that are unavoidable in bulk expression 

data. Another extension is to jointly model covariance across both cell types and genes. For example, 

this enables identifying cell type-shared and -specific networks. This, too, is necessarily biased in bulk 

expression data, where covarying measurement errors will confound biologically meaningful networks. 

The Full model can also be extended to learn structured networks between cell types by leveraging 

penalized covariance estimates48 or by specifically tailoring it to a given application; for example, we 

could restrict 𝑉 to be banded to capture temporal structure in the differentiating iPSCs. The long-term 

goal is to combine together these features into a comprehensive model of transcriptomic covariation 

across cells, cell types, individuals, and environments in order to understand genetic and nongenetic 

drivers of complex disease. Overall, we consider CTMM an important step on a long path to fully 
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understanding the causes and consequences of variation within and between individuals in scRNA-seq 

data. 

 

Data availability 
Processed single cell count data from iPSCs were downloaded from Zenodo: 

https://zenodo.org/record/3625024#.Xil-0y2cZ0s. 

 

Code availability 
CTMM Python package and code used for all analyses in this paper is available at: 

https://github.com/Minhui-Chen/CTMM.   
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