

1 **A leptin-responsive hypothalamic circuit inputs to the circadian feeding network**

2 Qijun Tang^{1†}, Elizabeth Godschall^{1†}, Charles D. Brennan¹, Qi Zhang¹, Ruei-Jen Abraham-Fan¹,
3 Sydney P. Williams¹, Taha Buğra Güngül¹, Roberta Onoharigo¹, Aleyna Buyukaksakal¹, Ricardo
4 Salinas¹, Joey J. Olivieri¹, Christopher D. Deppmann¹⁻⁵, John N. Campbell^{1,5*}, Brandon
5 Podyma^{1,6†*}, Ali D. Güler^{1,2,5*}

6

7 1. Department of Biology, University of Virginia, Charlottesville, VA 22904, USA

8 2. Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA

9 3. Department of Cell Biology, University of Virginia, Charlottesville, VA, 22904, USA

10 4. Department Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904, USA

11 5. Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA
12 22903, USA

13 6. Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville,
14 VA 22903, USA

15

16 [†]Equal contribution

17

18 **Correspondence**

19 *To whom correspondence should be sent:

20 Ali D. Güler

21 Departments of Biology and Neuroscience

22 University of Virginia

23 Charlottesville, VA 22904

24 Email: aguler@virginia.edu

25

26 Brandon Podyma

27 Medical Scientist Training Program, School of Medicine

28 University of Virginia

29 Charlottesville, VA 22903

30 Email: podyma@virginia.edu

31

32 John N. Campbell

33 Departments of Biology and Neuroscience

34 University of Virginia

35 Charlottesville, VA 22904

36 Email: jnc4e@virginia.edu

37

38

39

40

41

42

43 **Abstract**

44 Salient cues, such as the rising sun or the availability of food, play a crucial role in entraining
45 biological clocks, allowing for effective behavioral adaptation and ultimately, survival. While the
46 light-dependent entrainment of the central circadian pacemaker (suprachiasmatic nucleus, SCN)
47 is relatively well defined, the molecular and neural mechanisms underlying entrainment
48 associated with food availability remains elusive. Using single nucleus RNA sequencing during
49 scheduled feeding (SF), we identified a leptin receptor (LepR) expressing neuron population in
50 the dorsomedial hypothalamus (DMH) that upregulates circadian entrainment genes and exhibits
51 rhythmic calcium activity prior to an anticipated meal. We found that disrupting DMH^{LepR} neuron
52 activity had a profound impact on both molecular and behavioral food entrainment. Specifically,
53 silencing DMH^{LepR} neurons, mis-timed exogenous leptin administration, or mis-timed
54 chemogenetic stimulation of these neurons all interfered with the development of food
55 entrainment. In a state of energy abundance, repetitive activation of DMH^{LepR} neurons led to the
56 partitioning of a secondary bout of circadian locomotor activity that was in phase with the
57 stimulation and dependent on an intact SCN. Lastly, we discovered that a subpopulation of
58 DMH^{LepR} neurons project to the SCN with the capacity to influence the phase of the circadian
59 clock. This leptin regulated circuit serves as a point of integration between the metabolic and
60 circadian systems, facilitating the anticipation of meal times.

61

62 **Keywords**

63 Scheduled feeding, Food entrainment, Circadian, Dorsomedial hypothalamus, RNA sequencing,
64 Leptin, Chemogenetics, Calcium imaging

65

66 **Introduction**

67 When we eat is as important for our health as what and how much we eat. Studies in both mice
68 and humans have shown that eating during the rest phase (daytime for mice or nighttime for
69 humans) is associated with increased risk of weight gain, glucose intolerance, hepatic steatosis,
70 and cardiovascular disease ¹⁻⁴. Efforts to mitigate these deleterious effects in mice by restricting
71 when they eat have provided significant promise to improve metabolic health and even extend
72 lifespan. The potential benefits of time-restricted eating to human cardiometabolic health is the
73 focus of many ongoing clinical studies ⁵⁻⁹. However, we have a limited mechanistic understanding
74 of how meal timing influences our physiology and biological rhythms ¹⁰. Therefore, we sought to
75 better understand the anatomical and molecular underpinnings of the interaction between feeding

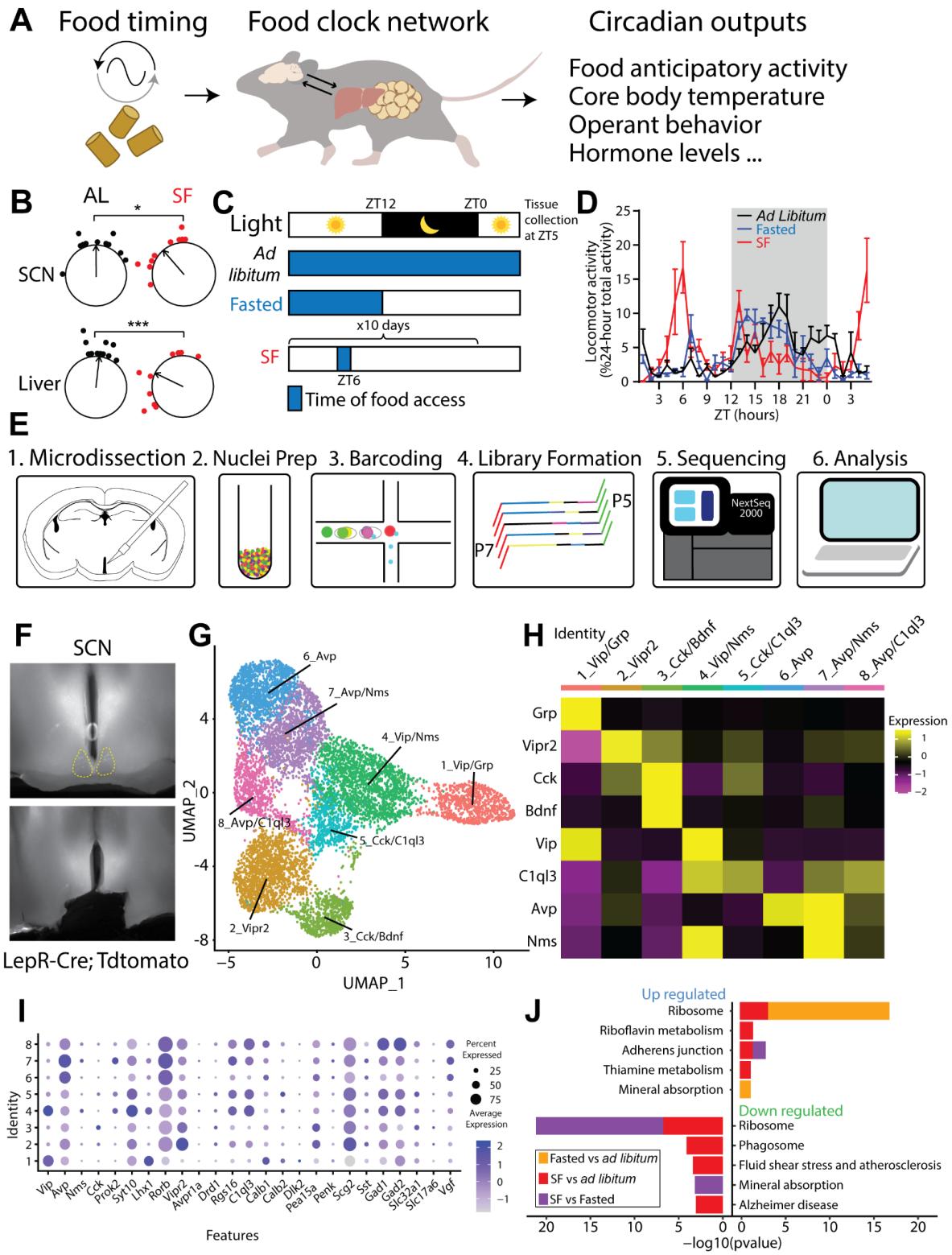
76 time and the circadian clock using a model of scheduled feeding (SF) that rapidly induces
77 biological entrainment in rodents¹¹⁻¹³.

78
79 The suprachiasmatic nucleus (SCN) in the hypothalamus is the primary pacemaker that receives
80 ambient light information from the retina, synchronizes circadian machinery throughout the body,
81 and coordinates behavioral outputs^{14,15}. Interestingly and less well understood, in the absence of
82 a functional SCN^{12,13}, the circadian system retains the ability to entrain to the timing of non-photic
83 environmental cues, such as food¹¹. Numerous efforts have failed to identify any necessary
84 genetic, molecular, or anatomic substrates of food entrainment^{16,17}. Emerging evidence suggests
85 that the food entrainment system encompasses multiple food entrainable oscillators distributed
86 across the central nervous system and peripheral organs, in which partial malfunction is
87 compensated for by other parts of the network (Fig 1A)^{10,17-21}.

88
89 Here we used a time and calorie restricted feeding paradigm to rapidly induce food entrainment
90 in mice²², with a focus on the SCN and the dorsomedial hypothalamus (DMH) which are involved
91 in the regulation of feeding, locomotor activity, sleep-wake cycles, and hormone rhythms²³⁻²⁶. By
92 using single nucleus RNA sequencing, we sought to identify neuronal populations in the SCN and
93 DMH that show changes in circadian transcriptional programs. We did not observe appreciable
94 transcriptional changes of genes associated with circadian rhythmicity or circadian entrainment
95 pathways in the SCN during scheduled feeding (SF). However, we identified several neuronal
96 populations in the DMH that altered their expression of circadian entrainment genes in response
97 to timed feeding, including the leptin-receptor (LepR) expressing neurons. Next, we demonstrated
98 that chronic silencing or mis-timed over-activation of the DMH^{LepR} neurons, as well as mis-timed
99 leptin administration, impair development of food entrainment. Finally, we uncovered a direct
100 neuronal projection from DMH^{LepR} neurons to the SCN and showed that DMH^{LepR} neuron
101 stimulation is sufficient to phase shift the SCN circadian clock while altering the structure of
102 circadian locomotor activity. These results define a mechanism that integrates mealtime
103 information with the circadian clock via leptin signaling in the DMH.

104
105 **Results**

106 **Scheduled feeding alters “circadian entrainment” gene expression in the DMH but not the**
107 **SCN**


108 In mammals, the SCN in the hypothalamus is the seat of the primary circadian clock which
109 receives ambient light signals and synchronizes the biological clocks distributed throughout the

110 body¹⁴. Although it is not required for the expression of food anticipatory behavior (FAA)^{13,27,28},
111 the SCN has recently been shown to modify the robustness of food entrainment (measured by
112 one of the behavioral outputs of food entrainment, FAA)²⁹ (Fig 1A). We tested the entrainment of
113 central and peripheral circadian systems using a scheduled feeding (SF) paradigm where we
114 restricted both time and calories of food delivered. In contrast to only time-restricted feeding
115 regimens, which shift peripheral but not central circadian clocks³⁰, this SF paradigm induces a
116 phase advance in the bioluminescent reported circadian rhythmicity of both the SCN and the liver
117 from the PER2::Luciferase (PER2LUC) transgenic mice (Fig 1B)³¹. Our observation is in line with
118 previously demonstrated SCN rhythm phase shifts in time- and calorie-restricted animals^{32,33}. To
119 further elucidate the transcriptional programs of hypothalamic regions in food entrainment, we
120 harvested fresh brain tissues at 5 hours after lights on (*Zeitgeber* time or ZT 5) from mice that
121 were subjected to three feeding conditions: *ad libitum*, overnight fasted, or fed at ZT 6 for ten days
122 (SF; Fig 1C-D). We isolated SCN, as well as DMH, a hypothalamic region previously implicated
123 in circadian and feeding regulation (Fig 1E)^{23,34}. After brain region- and feeding condition-specific
124 tissue collection and nuclei isolation, we performed single-nucleus RNA sequencing (snRNAseq),
125 yielding raw datasets of 59,708 and 65,837 cells from SCN- and DMH-containing tissues,
126 respectively.

127
128 Using previously defined SCN markers (e.g., *Avp*, *Vip*, *Vipr2*, *Prok2*, *Per2*)^{35,36}, we identified
129 8,957 cells as SCN neurons and clustered them by transcriptomic similarity into 8 candidate
130 subtypes (Fig 1F-I, Supplemental Fig 1A-D). In the final SCN dataset, the mean number of genes
131 and unique transcripts (unique molecular identifiers, UMIs) detected per cell in all SCN samples
132 was 1,783 and 3,294, respectively (Supplemental Fig 1C). We then compared SCN neuron gene
133 expression across feeding conditions: SF versus *ad libitum*, SF versus fasting, and fasting versus
134 *ad libitum* conditions. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Mouse 2019
135 database, we identified the top five up- and down-regulated pathways in the SCN (Fig 1J). Neither
136 circadian entrainment nor circadian rhythm pathways were significantly altered in the SCN under
137 SF relative to the other feeding conditions. Despite the primacy of the SCN in photic based
138 pacemaking and the shift observed in Per2 rhythmicity (Fig 1B), these snRNAseq data show that
139 transcriptional alteration of the circadian system is limited in the SCN in response to food based
140 pacemaking, in line with previous work showing its expendability for food entrainment^{12,13,27}.

141
142
143

144 Using previously defined SCN markers (e.g. *Avp*, *Vip*, *Vipr2*, *Prok2*, *Per2*)^{35,36}, 8,957 cells were
145 identified as SCN neurons and grouped into 8 clusters (Fig 1F-I, Supplemental Fig 1A-D). In the
146 final SCN dataset, the mean number of genes and unique molecular identifiers (UMIs) detected
147 per cell in SCN samples was 1,783 and 3,294, respectively (Supplemental Fig 1C). We then
148 compared SCN neurons of SF versus *ad libitum*, SF versus fasting, and fasting versus *ad libitum*
149 conditions via differential expression analysis. Using the Kyoto Encyclopedia of Genes and
150 Genomes (KEGG) Mouse 2019 database, we identified the top five up- and down-regulated
151 pathways in the SCN (Fig 1J). We did not identify mediators of circadian entrainment or circadian
152 rhythms as significantly altered in the SCN under SF. Despite the primacy of the SCN in photic
153 based pacemaking and the shift observed in Per2 rhythmicity (Fig 1B), these snRNAseq data
154 show that transcriptional alteration of the circadian system is limited in the SCN in response to
155 food based pacemaking, in line with previous work showing its expendability for food entrainment
156^{12,13,27}.

160 **A.** Diagram illustrating that food timing as a potent zeitgeber entraining an oscillatory network
161 system in the brain and peripheral organs, relaying rhythmic behavior outputs.

162 **B.** The ZT phase of the first bioluminescence peak of SCN and liver from PER2::Luciferase mice
163 that are either provided with scheduled food access for 4 days at ZT6 or *ad libitum* fed controls
164 (untreated or given ZT6 saline injections). Two-way ANOVA with Bonferroni post hoc comparison;
165 n = 10-11 / group; F_{treatment} (1, 38) = 19.05, p<0.001.

166 **C.** Schematic of experimental design. Mice were housed on a 12-12 light-dark cycle and either
167 fed *ad libitum*, overnight fasted, or provided a scheduled meal for 10 days at ZT6. Blue shading
168 denotes food access. All mice were sacrificed for tissue collection at ZT5.

169 **D.** Normalized locomotor activity starting 29 hours before tissue collection. n=4 mice / condition.
170 Data are represented as mean ± SEM.

171 **E.** Schematic of single nuclei RNA sequencing (snRNASeq) workflow using 10X Genomics.

172 **F.** Representative images illustrating the area of dissection in the SCN for snRNASeq.

173 **G.** Uniform Manifold Approximation and Projection (UMAP) plot of 8 molecularly distinct SCN
174 neuron subtypes (n=8,957 neurons).

175 **H.** Heatmap of cluster-average marker gene expression, scaled by gene.

176 **I.** Dot plot of average expression level (dot color) and percent expression (dot size) for each SCN
177 neuron cluster. Genes shown were previously defined as SCN markers^{35,36} and validated based
178 on Allen Brain Atlas Mouse Brain *in situ* hybridization data³⁷.

179 **J.** Kyoto Encyclopedia of Genes and Genomes (KEGG) from the Mouse 2019 database
180 comparing top 5 pathways up- and down-regulated among feeding conditions in all SCN neurons.
181 Inclusion criteria required p-value <0.05 and log2 fold change >0.25.

182 See also supplemental figure 1.

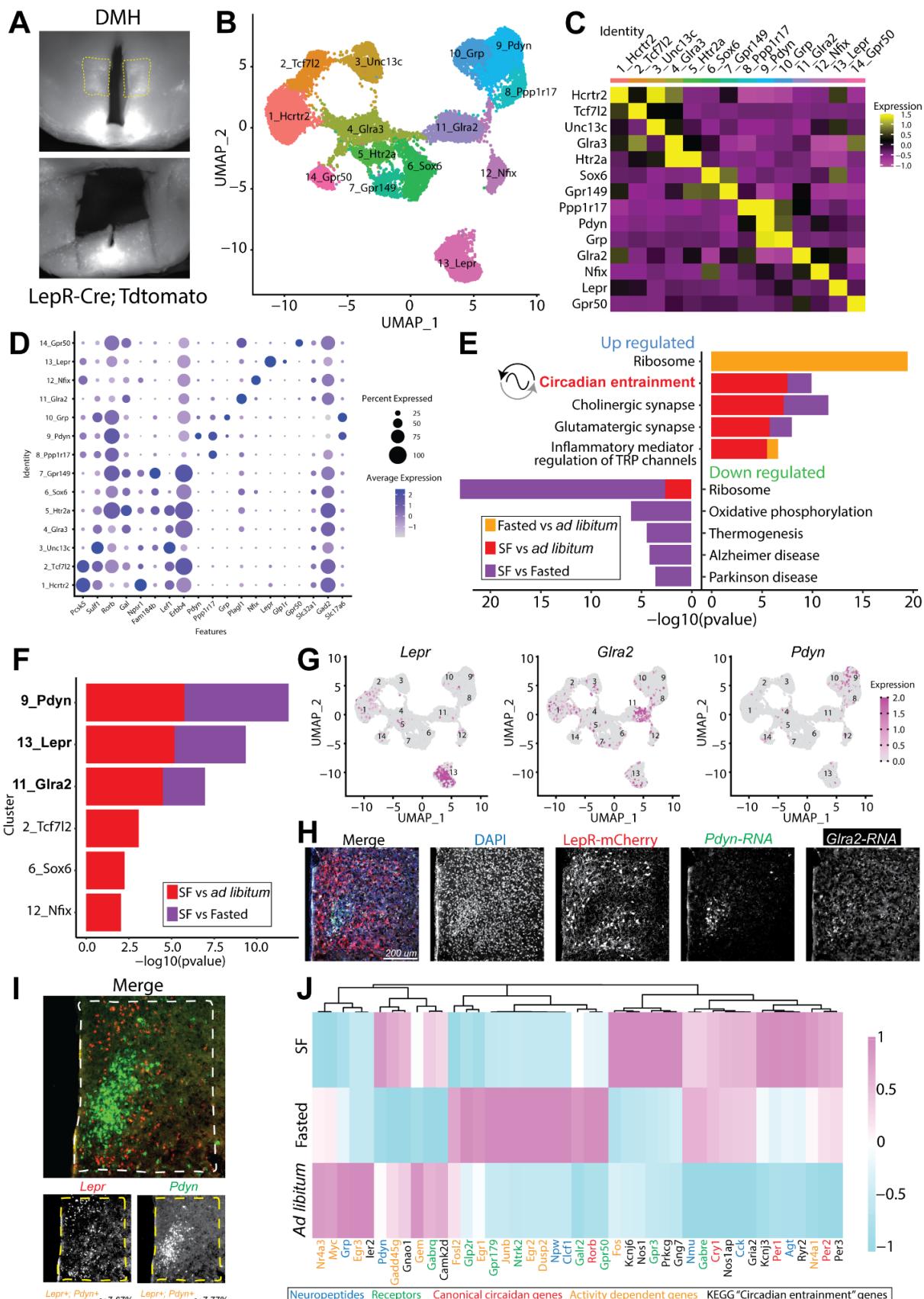
183

184

185 We next turned our attention to the DMH, a neighboring hypothalamic region which has been
186 strongly implicated in circadian behaviors and physiological processes^{23–26}. However, the extent
187 of DMH involvement in food entrainment is controversial with substantial reproducibility concerns
188^{17,18,26,38–50}, potentially due to the heterogeneity of DMH neurons. Therefore, we used snRNASeq
189 to compare the gene expression profiles of 16,281 DMH neurons from mice under *ad libitum*,
190 fasted, or scheduled feeding conditions. We first identified DMH neurons from our snRNA-seq
191 dataset based on their enriched expression of known DMH markers including *Gpr50*, *Grp*, *Rorb*,
192 *Sulf1*, *Pcsk5*, *Lepr*, *Pdyn*, and *Ppp1r17*^{45,51,52}. We then clustered these putative DMH neurons
193 into 14 candidate subtypes according to transcriptomic similarity and annotated them based on

194 top marker genes (Fig 2A-D, Supplemental Fig 1E-H). The mean number of genes and UMIs per
195 cell detected in all DMH samples was 2,425 and 5,235, respectively (Supplemental Fig 1G). Our
196 dataset contained clusters corresponding to previously identified DMH neuron populations, those
197 expressing *Lepr*, *Pdyn*, or *Ppp1r17*^{43-45,52}, along with novel cluster-specific expression of 2_Tcf7l2
198⁵³ or 12_Nfix that were together named *Lhx6*⁺ neurons previously⁵⁴. In sharp contrast to the SCN,
199 DMH KEGG pathway analysis revealed upregulation of the “circadian entrainment” genes (e.g.
200 *Kcnj6*, *Gria2*, *Nos1*, etc.), which are involved in transmitting salient extracellular signaling cues to
201 the core molecular clock (<https://www.kegg.jp/entry/map04713>; Supplemental Fig 1I). This
202 upregulation was seen not only in SF vs *ad libitum*, but also SF vs fasted conditions,
203 demonstrating that the effect on expression of circadian entrainment genes was not simply due
204 to energy deficit, but adaptation to food timing (Fig 2E). These results imply that the genes capable
205 of influencing the DMH circadian clock are altered by scheduled feeding.

206


207 **SF alters circadian entrainment gene expression in DMH^{LepR} neurons**

208 The DMH is a heterogeneous and ill-defined anatomic area containing numerous genetically
209 distinct cell populations, two of which (expressing either *Pdyn* or *Ppp1r17*) have been previously
210 investigated in food entrainment behavior⁴³⁻⁴⁵. Thus, we sought to understand which DMH
211 neuronal subpopulations exhibit the most significant change in “circadian entrainment” gene
212 expression during SF. Of the 14 neuron clusters we identified in the DMH, six showed differential
213 gene expression in circadian entrainment pathway during energy deficit, and three of these had
214 differential gene expression in both SF vs. *ad libitum* and SF vs. fasted conditions: cluster 9, *Pdyn*
215 [prodynorphin] neurons; cluster 13, *Lepr* [leptin receptor] neurons; and cluster 11, *Glia2* [glycine
216 receptor subunit alpha-2] neurons (Fig 2F-H, Supplemental Fig 2A).

217

218 Of these candidate DMH neuron subtypes, those expressing *Pdyn* and *Lepr* have putative
219 connections with both circadian and feeding regulation^{24,43}, and exhibit strikingly different
220 anatomic distributions within the DMH, while *Glia2* does not (Fig 2H, Supplemental Fig 2E-G).
221 For these reasons we chose to further investigate the *Pdyn*⁺ and *Lepr*⁺ neuron subtypes in our
222 dataset. *Lepr*⁺ and *Pdyn*⁺ neurons partially overlap in the DMH⁵². However, using RNA
223 fluorescence *in situ* hybridization (RNA FISH), we found that this overlap is minimal: only ~7.67%
224 of *Lepr*⁺ neurons are *Pdyn*⁺, while ~7.77% of *Pdyn*⁺ neurons are *Lepr*⁺ (Fig 2I). Additionally, we
225 observed that the *Lepr* expression is predominant in the dorsal and ventral DMH, whereas *Pdyn*
226 expression is confined to the compact central DMH (Fig 2I). The isolated “core/shell” expression
227 pattern of the two populations of neurons suggests that they play distinct functional roles in food

228 entrainment in the DMH. The DMH^{Pdyn} neurons have been shown to entrain to scheduled feeding⁴³
229 and dampen the robustness of FAA when silenced⁴⁴. As one of the major sources of inhibitory
230 input to the agouti-related peptide (AgRP) neurons of the arcuate nucleus, DMH^{LepR} neurons are
231 important for feeding and energy homeostasis^{24,52,55,56}. However, their contribution to food
232 entrainment is unknown. Detailed analysis of the DMH cluster 13 Lepr neurons in our dataset
233 revealed that SF alters transcription of circadian entrainment pathway genes (Supplemental Fig
234 1I, 2D), as well as activity dependent genes, neuropeptides, receptors, and canonical circadian
235 genes. Together these transcriptional responses to scheduled feeding point to a significant role
236 for DMH^{LepR} neurons in food entrainment^{43,44} (Fig 2J, Supplemental Fig 2A-D).

238 **Figure 2. SF alters circadian entrainment genes in specific DMH neuron subtypes**

239 **A.** Representative images illustrating the DMH area dissected for snRNAseq.

240 **B.** UMAP of 14 defined DMH neuron subtypes (n=16,281 neurons).

241 **C.** Average gene expression heatmap labeled by cluster-specific markers in the DMH.

242 **D.** Dot plot of average expression level (dot color) and percent expression (dot size) of genes of
243 interest within DMH clusters. These genes were either previously identified in DMH ^{45,51,52,57}
244 or validated as DMH markers by the Allen Brain Atlas Mouse Brain *in situ* hybridization data
245 ³⁷.

246 **E.** KEGG from the Mouse 2019 database comparing top 5 pathways up- and down-regulated
247 across feeding conditions in all DMH neurons. Inclusion criteria required p-value <0.05 and
248 log2 fold change >0.25.

249 **F.** DMH clusters with differentially regulated circadian entrainment pathways in at least one
250 scheduled feeding comparison.

251 **G.** Feature plots indicating spatial expression of *Lepr* (left), *Gira2* (middle), *Pdyn* (right), in DMH
252 clusters.

253 **H.** Representative coronal section image localizing expression of LepR, *Pdyn*, and *Gira2* in the
254 DMH. LepR cells were marked by LepR-Cre;TdTomato protein, whereas *Pdyn* and *Gira2*
255 transcripts were visualized by RNA FISH. See also supplemental Fig 3G for zoomed-out view
256 of the same brain section.

257 **I.** Representative RNA FISH coronal section image showing *Lepr* and *Pdyn* transcripts in the
258 DMH. Quantification of *Lepr* and *Pdyn* co-expressing cells is depicted at the bottom. n=3 mice.

259 **J.** Heatmap of select genes that were differentially expressed across feeding conditions in
260 DMH^{LepR} neurons.

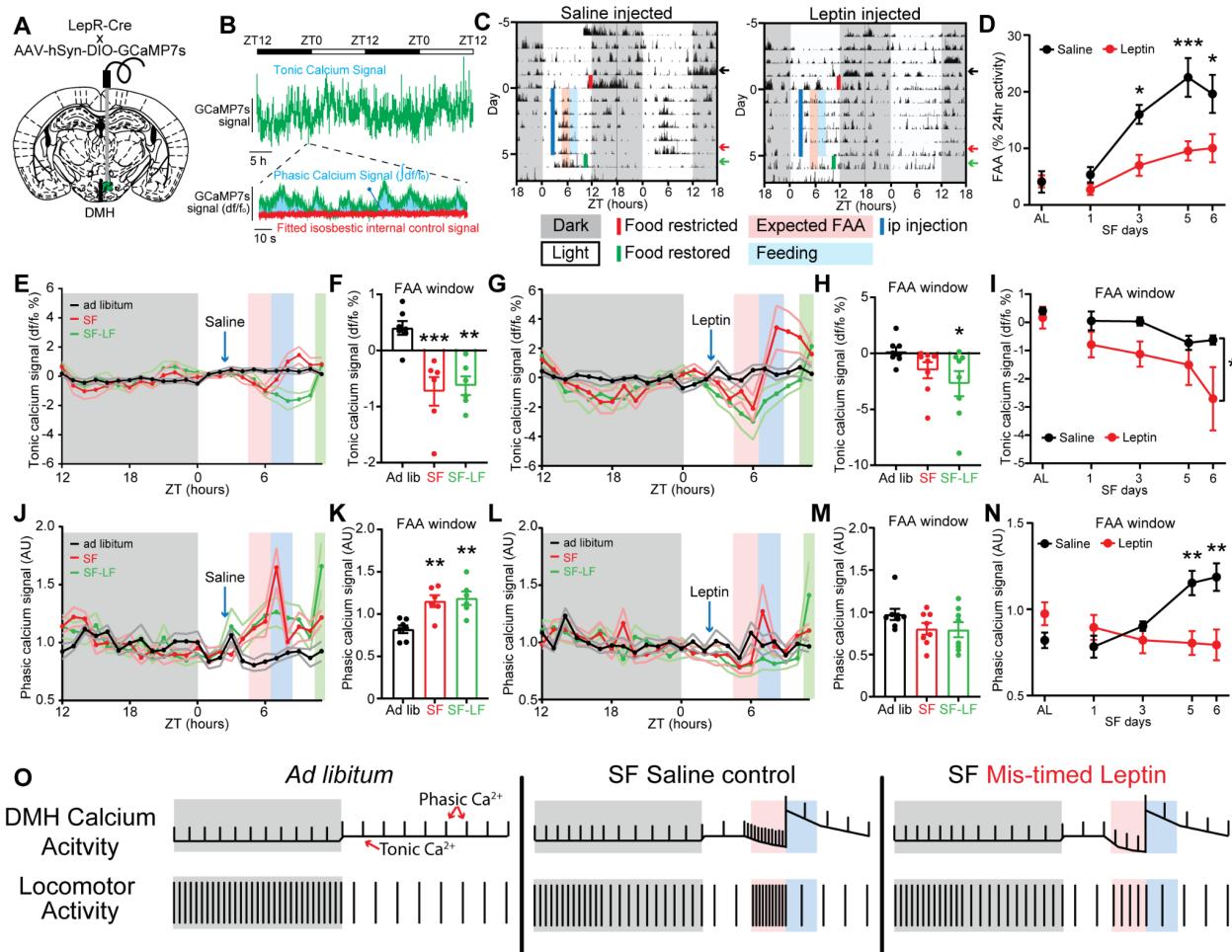
261 See also supplemental figure 1 and 2.

262

263 **Leptin suppresses food anticipatory behavior- and the calcium-activity of DMH^{LepR} neurons**

264 Since leptin is the ligand for LepR, we next sought to examine the effect of leptin on food
265 entrainment. Predominantly made by adipose tissue, leptin is released in response to a meal ⁵⁸
266 and scaled to the time of day ⁵⁹⁻⁶¹. Therefore, we designed a paradigm to test whether dissociating
267 the timing of leptin from food consumption is able to disrupt FAA, by administering leptin 3.5-hour
268 in advance of scheduled feeding. To simultaneously record intracellular calcium levels (as a proxy
269 of neural activity) in the DMH^{LepR} neurons, we used an adeno-associated virus (AAV) to Cre-
270 dependently express the calcium indicator GCaMP7s in DMH of LepR-Cre mice (Fig 3A-B,
271 Supplemental Fig 3A-B) ⁶². When these animals were put on SF, we observed robust FAA

272 development by day 3 in the saline control group, which was significantly suppressed by leptin
273 administration (Fig 3C-D). Concurrently, DMH^{LepR} neurons rapidly increased their calcium signal
274 at the time of food delivery, reproducing previous findings and confirming functionality of our
275 system (Supplemental Fig 3C-D)⁵². To evaluate the data on a circadian timescale, we extracted
276 two readouts from the multi-day fiber photometry calcium recordings (Fig 3B): 1. The “tonic
277 calcium signal” which is the overall intensity of the fluorescence normalized to 24-hour moving
278 average and, 2. The “phasic calcium signal” which is the acute calcium signal increases above
279 the baseline during each recording session as a proxy of dynamic neuron bursts, (Fig 3B,
280 Supplemental Fig 3A)⁶²⁻⁶⁴. During SF, both types of calcium readouts from the DMH^{LepR} neurons
281 developed responses that predicted the meal time (Fig 3E-O). Specifically, the overall
282 fluorescence (tonic calcium signal) developed an anticipatory decrease prior to food access (Fig
283 3E-F, I), which is in line with the documented anorexigenic role of DMH^{LepR} neurons^{52,55,56}.
284 Surprisingly, this dampened tonic calcium signal was not impaired by leptin injection but was
285 further potentiated (Fig 3G-I). In contrast, the phasic calcium signal increased during the FAA
286 window in saline injected control animals which was absent in leptin treated mice, in line with the
287 suppressed development of FAA (Fig 3C-D and J-O, Supplemental Fig 3D-F).


288

289 To ensure that the alteration of anticipatory DMH^{LepR} neuron calcium signal by leptin is due to
290 defective food entrainment, rather than acute inhibition of neural activity, we withheld saline/leptin
291 injections on day 6 and delayed food delivery for 3.5 hours (scheduled feeding-late food, SF-LF).
292 We observed that previously saline-treated mice still showed the anticipatory dampening of tonic
293 and elevation of phasic calcium activity during the FAA window which remained until food delivery.
294 Importantly, in the previously leptin-treated group, DMH^{LepR} neurons did not exhibit elevated
295 phasic calcium signal even in the absence of exogenous leptin administration (Fig 3C-O,
296 Supplemental Fig 3D-F).

297

298 In summary (Fig 3O), the baseline (tonic) neuronal activity of DMH^{LepR} neurons decreased in
299 anticipation of scheduled food access, and this was further dampened by pre-meal leptin
300 treatment. However, the anticipatory phasic calcium activity, which likely represents the acute
301 increase in neuronal activity^{24,52,55,56}, was largely abolished by mistimed leptin. We therefore posit
302 that the adaptation of DMH^{LepR} neuronal dynamics to scheduled feeding time contributes to the
303 development of behavioral expression of food entrainment.

304

305

306

307 **Figure 3- Leptin sensitive DMH^{LepR} neurons exhibit food entrainable calcium activity**
 308 **patterns which correlate with FAA**

309 **A.** Schematic diagram illustrating unilateral injection of AAV-hSyn-DIO-GCaMP7s and fiber optic
 310 cannula implantation to the DMH of LepR Cre mice.

311 **B.** Example data trace illustrating two readouts of long-term fiber photometry calcium imaging.
 312 “Tonic calcium signal” represents the total fluorophore brightness. “Phasic calcium signal”
 313 represents the intracellular calcium activity over baseline activity in a given recording session.

314 **C.** Representative locomotor actogram of single animals treated with saline (left) or leptin (right)
 315 during DMH^{LepR} neuron GCaMP7s fiber photometry recording. Mice are housed in 12:12 LD,
 316 fasted at lights off on day 5 (solid red line), injected with saline or leptin at 2.5 hours after lights
 317 on (ZT2.5, solid blue line), and fed at ZT6 (2 g on days 1 & 2, 2.5 g on remaining days). Red
 318 shaded area is the FAA time window 2 hours pre-meal time (ZT4-6), and blue shaded area is the
 319 first 2 hours after food delivery (ZT6-8). Food is restored at ZT10 on day 6 of SF. Color coded
 320 arrows indicate three days that are selected for quantification in panels E-H.

321 **D.** Quantification of FAA during long-term DMH^{LepR} neuron GCaMP7s recording. FAA is defined
322 as the locomotor activity in the two-hour window prior to food delivery as a percentage of 24-hour
323 activity. AL indicates *ad libitum* condition two days prior to initiation of drug administration. Mixed-
324 effects (REML) analysis with Bonferroni post hoc comparison; n = 5-8 / group; F_{treatment} (1, 52) =
325 25.44, p<0.001.

326 **E.** Average tonic calcium signal of DMH^{LepR} neurons from saline control group 2 days before SF
327 (black, *ad libitum*), 5th day during treatment (red, SF), and 6th day where saline injection was
328 withheld and food delivery was delayed for 3.5 hours (green, SF-LF: late feeding).

329 **F.** Quantification of the tonic calcium signal from saline treated mice in the FAA window (average
330 of ZT5-6) from (E). Mixed-effects (REML) analysis with Bonferroni post hoc comparison; n = 6-7
331 / group; F (2, 16) = 12.27, p=0.0006.

332 **G.** Average tonic calcium signal of DMH^{LepR} neurons from leptin group 2 days before SF (black,
333 *ad libitum*), 5th day during treatment (red, SF), and 6th day where leptin injection was withheld
334 and food delivery was delayed for 3.5 hours (green, SF-LF: late feeding).

335 **H.** Quantification of the tonic calcium signal from leptin treated mice in the FAA window (average
336 of ZT5-6) from (G). Repeated measures one-way ANOVA with Bonferroni post hoc comparison;
337 n = 8 / group; F (2, 14) = 3.596, p=0.0549.

338 **I.** Quantification of the development of the tonic calcium signal during FAA. AL indicates *ad libitum*
339 condition two days prior to initiation of drug administration. Mixed-effects (REML) analysis with
340 Bonferroni post hoc comparison; n = 6-8 / group; F_{treatment} (1, 13) = 4.744, p=0.0484.

341 **J.** Average phasic calcium signal of DMH^{LepR} neurons from saline control group 2 days before
342 SF (black, *ad libitum*), 5th day during treatment (red, SF), and 6th day where saline injection was
343 withheld and food delivery was delayed for 3.5 hours (green, SF-LF: late feeding).

344 **K.** Quantification of the phasic calcium signal from saline treated mice in the FAA window
345 (average of ZT5-6) from (J). Mixed-effects (REML) analysis with Bonferroni post hoc comparison;
346 n = 6-7 / group; F (2, 10) = 15.01, p=0.0010.

347 **L.** Average phasic calcium signal of DMH^{LepR} neurons from leptin group 2 days before SF (black,
348 *ad libitum*), 5th day during treatment (red, SF), and 6th day where leptin injection was withheld
349 and food delivery was delayed for 3.5 hours (green, SF-LF: late feeding).

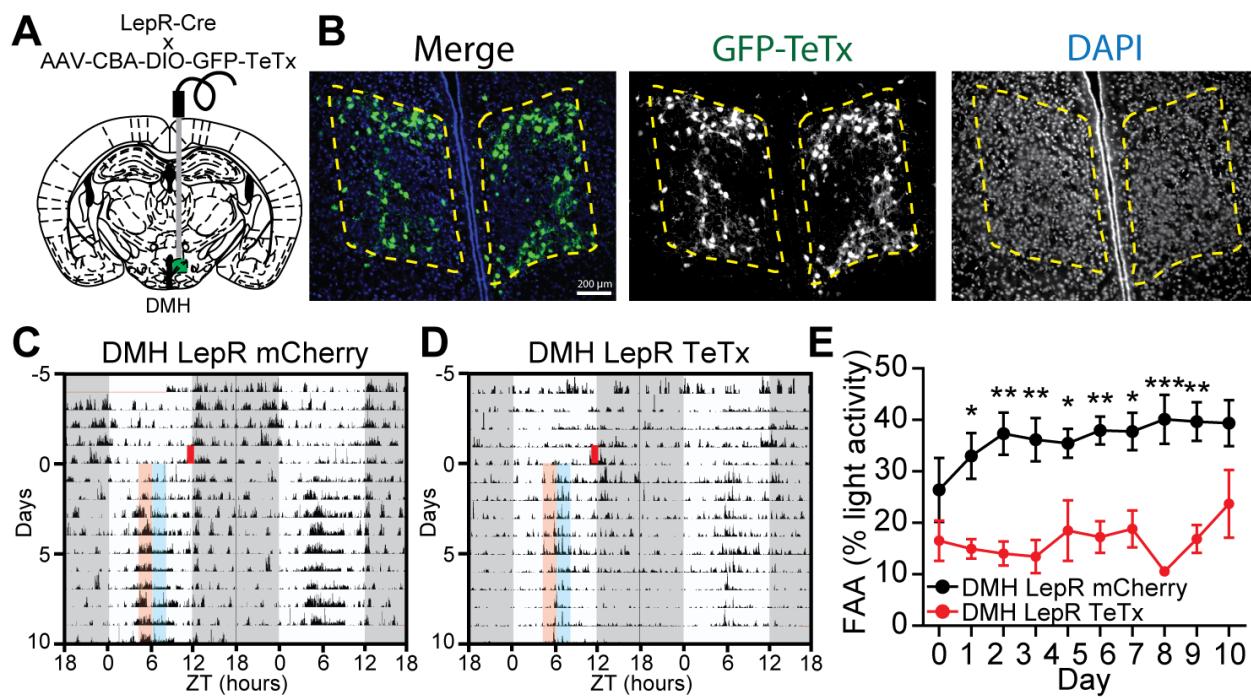
350 **M.** Quantification of the phasic calcium signal from leptin treated mice in the FAA window (average
351 of ZT5-6) from (L). Repeated measures one-way ANOVA with Bonferroni post hoc comparison;
352 n = 8 / group; F (2, 14) = 2.508, p=0.1172.

353 **N.** Quantification of the development of the phasic calcium signal during FAA. AL indicates *ad*
354 *libitum* condition two days prior to initiation of drug administration. Mixed-effects (REML)

355 analysis with Bonferroni post hoc comparison; $n = 6-8$ / group; $F_{\text{treatment} * \text{time}} (4, 50) = 8.834$,
356 $p < 0.0001$.

357 **O.** Summary diagram illustrating the observation of calcium activity pattern in DMH^{LepR} neurons
358 during SF, in animals treated with saline control or mis-timed leptin.

359 Data are represented as mean \pm SEM. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$; ns, not significant. See
360 also supplemental figure 3.


361

362

363 **Silencing DMH^{LepR} neurons impairs FAA**

364 To determine whether DMH^{LepR} neurons are necessary for food entrainment, we chose to inhibit
365 neuronal transmission by selectively expressing tetanus toxin (TeTx) in these neurons (Fig 4A-
366 B). As observed in DMH lesion studies or previous DMH^{LepR} neuron silencing efforts, the
367 behavioral circadian rhythmicity of animals was largely abolished even during *ad libitum* feeding
368 under 12:12 LD light cycle (Fig 4C-D, supplemental Fig 3G-H) ^{23,24,40}, implying a significant role
369 for DMH^{LepR} neurons in expressing circadian behaviors. Following SF, we observed impaired FAA
370 in the TeTx expressing animals compared to their mCherry controls even after 10 days of SF (Fig
371 4C-E, supplemental Fig 3G-K). This indicates that DMH^{LepR} neuronal output is essential for proper
372 behavioral entrainment to SF.

373

374
375 **Figure 4- Silencing of DMH^{LepR} neurons impairs FAA**

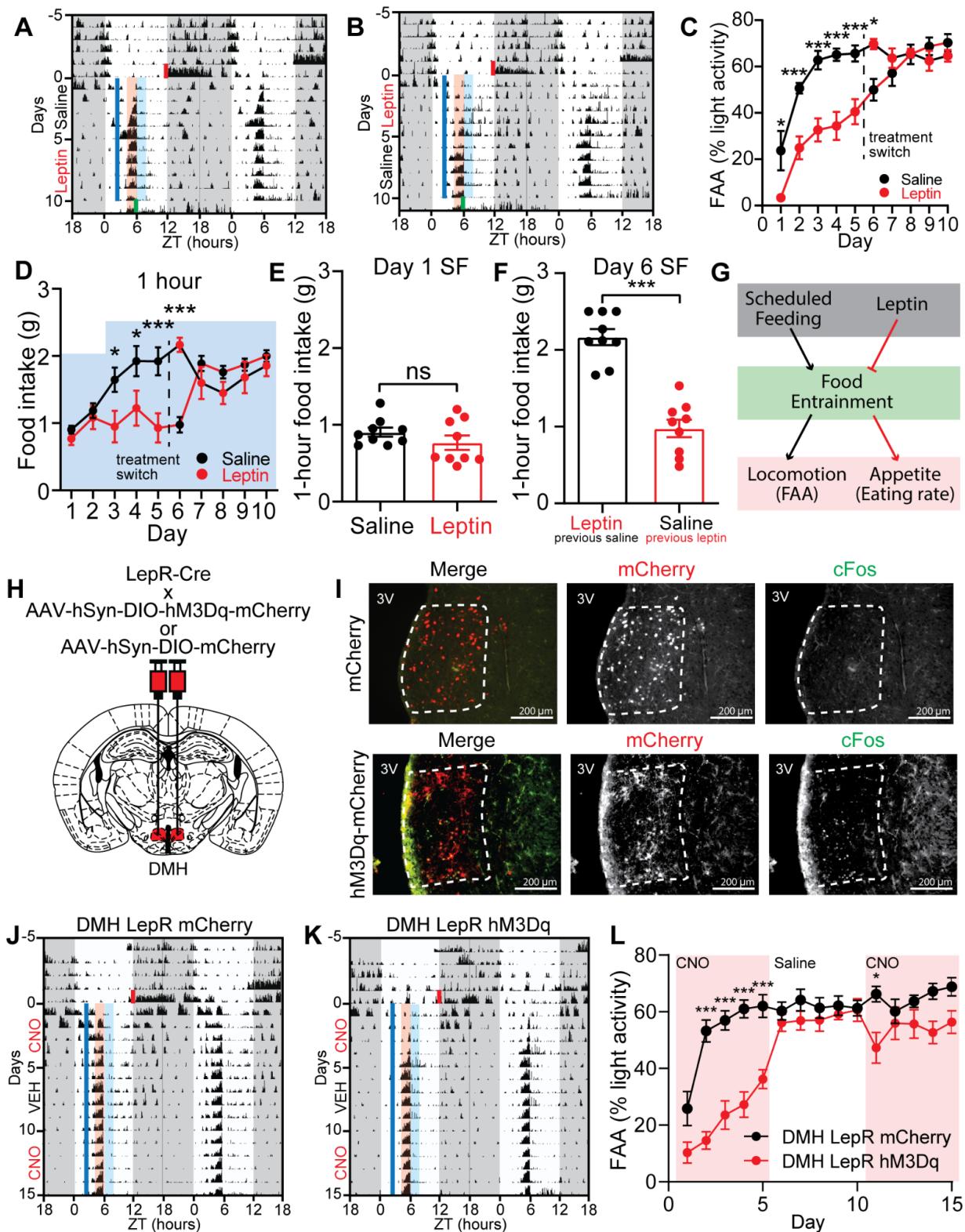
376 **A.** Schematic diagram illustrating DMH^{LepR} neuron silencing by bilateral injection of AAV-CBA-
377 DIO-GFP-TeTx to the DMH of LepR Cre mice.
378 **B.** Representative images showing the expression of GFP-TeTx in DMH^{LepR} neurons.
379 **C-D.** Representative actograms of (C) DMH^{LepR} mCherry and (D) DMH^{LepR} TeTx mice on SF.
380 Shading color scheme is described in Fig 3C. See supplemental Fig 3 for actograms of all animals.
381 **E.** Quantification of FAA. FAA is defined as the locomotor activity in the two-hour window prior to
382 food delivery as a percentage of light-phase activity. Repeated measures two-way ANOVA with
383 Bonferroni post hoc comparison; n = 5-6 / group; $F_{\text{virus}} (1, 9) = 33.00$, $p=0.0003$.
384 Data are represented as mean \pm SEM. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$; ns, not significant. See
385 also supplemental figure 3.
386
387

388 **Leptin alters underlying food entrainment pathways, not just appetite**

389 Given the role of leptin as a satiety hormone ⁶⁵, one possibility why leptin blocks the expression
390 of FAA is that its pre-meal treatment suppresses the motivation for the animals to search for food
391 without influencing a timekeeper. Therefore, we designed a cross-over study of wild type mice
392 where we gave saline or leptin for the first 5 days of SF and switched the treatment group on the
393 sixth day for 5 additional days of SF. As in previous experiments, we observed robust FAA by day
394 3 in the saline control group, while the development of FAA was significantly suppressed by leptin
395 injections (Fig 5A-C, Supplemental Fig 4A-E). On day 6, when the treatment was switched, the
396 animals injected with leptin which previously received saline still exhibited robust FAA compared
397 to those animals injected with saline but previously received leptin (Fig 5A-C). Importantly, this
398 demonstrates that the mistimed leptin is not merely masking entrainment but is instead impairing
399 the establishment of the food timing machinery. Moreover, the FAA of the treatment groups were
400 indistinguishable on Day 7 (Fig 5C) supporting the idea that the food entrainment system is a
401 multi-node network where disrupting one node slows its development but does not eliminate its
402 establishment as the other parts of the system compensate.
403

404 Another key observation we made during the cross-over experiment was that the delayed
405 development of FAA correlated with a slower rate of food consumption, implying that food
406 entrainment prepares the animals for effective foraging during SF (Fig 5D-F). To determine
407 whether the rate of food intake is a distinct output of entrainment and not a prerequisite for the
408 development of FAA, we limited the rate of food consumption during the SF window in a separate
409 cohort of wildtype mice. This paradigm allowed for robust FAA development demonstrating that

410 the rate of food consumption is an additional behavioral output reflecting the strength of food
411 entrainment (Supplemental Fig 4F-I). Results presented here demonstrate that the observed
412 attenuation in food entrainment behaviors in mice injected with leptin during early scheduled
413 feeding (days 1-5) is due to impaired circadian food timing mechanisms rather than acute effects
414 of leptin (Fig 5G).


415

416 **DMH^{LepR} neuron stimulation suppresses the development of FAA**

417 Although FAA is largely impaired when the DMH^{LepR} neurons are silenced by the selective
418 expression of TeTx (Fig 4C-E, supplemental Fig 3G-K), these animals are also behaviorally
419 arrhythmic during *ad libitum* conditions in the LD cycle (Fig 4C-D, supplemental Fig 3G-H). To
420 avoid this confound, we took an acute neuronal activity manipulation strategy by using the
421 DREADD hM3Dq to stimulate DMH^{LepR} neurons 3.5 hours before scheduled food time (Fig 5H-I).
422 Similar to leptin treatment, we observed that premature activation of DMH^{LepR} neurons with
423 clozapine N-oxide (CNO) injection impairs the development of FAA over the first 5 days of
424 scheduled feeding. However, it does not significantly impair the maintenance of FAA when CNO
425 is administered after establishment of FAA (Fig 5J-L, Supplemental Fig 5).

426

427 These observations demonstrate that acute DMH^{LepR} neuron activation is not masking the
428 behavioral outputs of food entrainment, but instead is attenuating its development. This is in
429 contrast to previous work where chemogenetic inhibition or activation of DMH^{Ppp1r17} neurons
430 during SF showed no effect on FAA⁴⁵ and in agreement with our snRNASeq findings that
431 DMH^{Ppp1r17} neurons are not responsive to circadian entrainment (Fig 2). Of note, DMH^{Pdyn} neurons
432 have been shown to entrain to SF⁴³ and to reduce the robustness of FAA when silenced⁴⁴.
433 However, chemogenetic activation of DMH^{Pdyn} neurons only slightly suppressed FAA, which was
434 mainly exhibited after the establishment of food entrainment (Supplemental Fig 6). This
435 underscores that DMH^{LepR} neurons are unique in their role during anticipation of a meal and their
436 precisely timed activity is required for the development of FAA.

437

438 **Figure 5- Mis-timed leptin or activation of DMH^{LepR} neurons suppresses the development**
439 **but not maintenance of food entrainment**

440 **A-B.** Representative actograms of two mice on a 12:12 L:D cycle under *ad libitum* conditions that
441 are then subjected to scheduled feeding (SF) beginning at lights off on SF day 0 and receiving
442 either (A) saline (SF days 1-5) then 5mg/kg leptin (SF days 6-10) or (B) 5mg/kg leptin (SF days
443 1-5) then saline (SF days 6-10). Shading color scheme is described in Fig 3C. See supplemental
444 Fig 4A-B for actograms of all animals.

445 **C.** Quantification of FAA. FAA is defined as the locomotor activity in the two-hour window prior to
446 food delivery as a percentage of light-phase activity excluding the activity one hour post-injection.
447 Note that red (leptin) or black (saline) data markers indicate the treatment for the day while the
448 data connecting lines identify the initial leptin (red) or saline (black) treatment groups. Repeated
449 measures two-way ANOVA with Bonferroni post hoc comparison; $n = 8-9$ / group; $F_{\text{treatment}} (1, 15)$
450 = 22.96, $p < 0.001$.

451 **D.** Food intake of mice during SF 1 hour after food delivery. Blue shading indicates the total
452 amount of food that was available for mice to consume on each day. Repeated measures two-
453 way ANOVA with Bonferroni post hoc comparison; $n = 9$ / group; $F_{\text{time*treatment}} (9, 144) = 10.15$,
454 $p < 0.0001$.

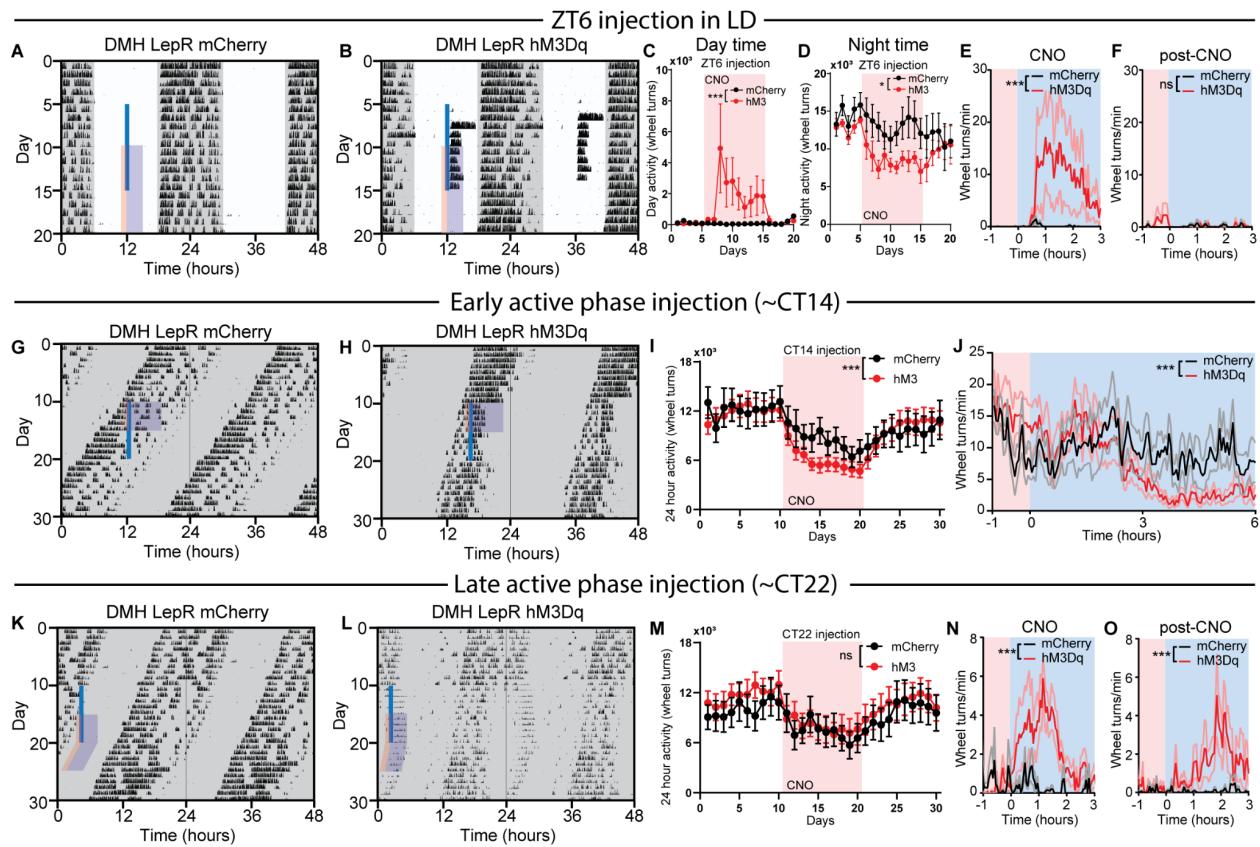
455 **E-F.** First hour food intake on day 1 (E) and day 6 (F) from D. $n = 9$ / group, Unpaired Student's
456 t test. Notably, the same treatment groups are illustrated by the same color on the same side of
457 the graphs.

458 **G.** Proposed model illustrating the suppressive effect of leptin on food entrainment, which in turn
459 leads to both decreased locomotion and appetite.

460 **H.** Schematic diagram illustrating bilateral injection of AAV-hSyn-DIO-hM3Dq-mCherry or AAV-
461 hSyn-DIO-mCherry to the DMH of LepR Cre mice.

462 **I.** Representative images showing the expression of mCherry (top) or hM3Dq-mCherry (bottom)
463 in DMH^{LepR} neurons and c-Fos response 2 hours after CNO injection.

464 **J-K.** Representative actograms of (J) DMH^{LepR} mCherry and (K) DMH^{LepR} hM3Dq mice on SF that
465 received 0.3mg/kg CNO (SF days 1-5), saline (SF days 6-10), and 0.3 mg/kg CNO (SF days 11-
466 15) injection at ZT2.5. Shading color scheme is described in Fig 3C. See supplemental Fig 5 for
467 actograms of all animals.


468 **L.** Quantification of FAA. Pink shading indicates days with CNO injection. No shading indicates
469 saline injection. Repeated measures two-way ANOVA with Bonferroni post hoc comparison; $n =$
470 8-10 / group; $F_{\text{virus}} (1, 16) = 15.98$, $p = 0.0010$.

471 Data are represented as mean \pm SEM. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$; ns, not significant. See
472 also supplemental figure 4, 5 and 6.

473

474 **DMH^{LepR} neuron stimulation alters landscape of circadian locomotor activity of *ad libitum*
475 *fed* mice**

476 We next sought to characterize the impact of DMH^{LepR} neuron acute activation on general
477 circadian behavior in energy replete conditions. To this end, we stimulated the DMH^{LepR} neurons
478 of *ad libitum fed* mice in the middle of the light phase of 12:12 LD cycle, which acutely induced
479 bouts of locomotor activity (Fig 6A-E, Supplemental Fig 7A-C), in line with the previous literature
480 ⁶⁶. Interestingly, we observed a previously undescribed decrease in nighttime locomotor activity
481 compared to controls (Fig 6A-B, D, Supplemental Fig 7A-C). Once injections were stopped after
482 10 days, daytime activity returned to normal immediately, though it took several days for nighttime
483 activity to fully normalize (Fig 6C-F). To further parse the effects of DMH^{LepR} neuron stimulation
484 on circadian locomotor activity, we repeated this experiment under *ad libitum*, constant dark
485 conditions to remove the entraining effect of light. Strikingly, in constant darkness DMH^{LepR}
486 stimulation partitioned circadian locomotor activity without changing the free-running period (Fig
487 6G-O, Supplemental Fig 7D-G). Activation early in the active phase (~circadian time [CT]14)
488 advanced the offset of locomotor activity to approximately 3 hours after CNO injection, with a
489 concomitant reduction in 24-hour activity (Fig 6G-J, Supplemental Fig 7D-E). Activation late in the
490 active phase (~CT22) delayed the offset of locomotor activity to approximately 2 hours following
491 CNO injection, with no change in total locomotor activity compared to controls (Fig 6K-O,
492 Supplemental Fig 7F-G). To our surprise, this delayed running wheel activity in DMH^{LepR} hM3Dq
493 mice persisted after cessation of CNO injections, in phase with the previous day's injection time
494 (Fig 6K-O). These data demonstrate that activation of DMH^{LepR} neurons can partition and entrain
495 circadian locomotor activity in a time-dependent manner, and suggests DMH^{LepR} neurons are an
496 integrating hub that connects the food entrainable clock with the light entrainable clock.

497

498 **Figure 6- Repetitive activation of DMH^{LepR} neurons alters circadian locomotor activity**

499 **A-B.** Representative actograms of LepR Cre animals bilaterally injected with (A) AAV-hSyn-DIO-
500 mCherry or (B) AAV-hSyn-DIO-hM3Dq-mCherry and injected with 0.3mg/kg CNO at ZT6 (solid
501 blue line) in 12-12 LD with access to a running wheel. Pink shading represents one hour prior to
502 injection, and blue shading 3 hours after injection. See supplemental Fig 7A-B for actograms of
503 all animals.

504 **C.** Light phase (Day) wheel revolutions of DMH^{LepR} mCherry and DMH^{LepR} hM3Dq animals before,
505 during, and after CNO injections at ZT6 in 12-12 LD. Pink shading represents days with CNO
506 injection. Repeated measures two-way ANOVA; n = 5-6 / group; $F_{\text{virust} * \text{time}}(19, 171) = 3.302$,
507 p<0.001.

508 **D.** Dark phase (Night) wheel revolutions of DMH^{LepR} mCherry and DMH^{LepR} hM3Dq animals before,
509 during, and after CNO injections at ZT6 in 12-12 LD. Pink shading represents days with CNO
510 injection. Repeated measures two-way ANOVA; n = 5-6 / group; $F_{\text{virust} * \text{time}}(19, 171) = 1.707$,
511 p=0.0390.

512 **E.** Average wheel running activity induced by chemogenetic activation of DMH^{LepR} neurons at ZT6
513 in 12-12 LD. Color coded time window is indicated in (A-B). Repeated measures two-way ANOVA;
514 n = 5-6 / group; $F_{\text{virust} * \text{time}}(79, 711) = 2.519$, p<0.001.

515 **F.** Quantification of activity for 5 days after cessation of CNO injections. Color coded time window
516 is indicated in (A-B). Repeated measures two-way ANOVA; n = 5-6 / group; $F_{\text{virus}} (1, 9) =$
517 0.9519, $p=0.3547$; $F_{\text{virus} \times \text{time}} (79, 711) = 1.202$, $p=0.1215$.

518 **G-H.** Representative actograms of LepR Cre animals bilaterally injected with (G) AAV-hSyn-DIO-
519 mCherry or (H) AAV-hSyn-DIO-hM3Dq-mCherry and injected with 0.3mg/kg CNO at ~CT14 (solid
520 blue line), in *ad libitum*, constant dark conditions with access to a running wheel. Pink shading
521 represents one hour prior to injection, and blue shading 6 hours after injection. See supplemental
522 Fig 7D-E for actograms of all animals.

523 **I.** 24-hour total wheel revolutions of DMH^{LepR} mCherry and DMH^{LepR} hM3Dq animals before,
524 during, and after CNO injections at ~CT14. Animals were housed under *ad libitum*, constant dark
525 conditions. Pink shading represents days with CNO injection. Repeated measures two-way
526 ANOVA; n = 9-12 / group; $F_{\text{virus} \times \text{time}} (29, 551) = 2.468$, $p<0.001$.

527 **J.** Average wheel running activity induced by chemogenetic activation of DMH^{LepR} neurons at
528 ~CT14. Color coded time window is indicated in (E-F). Repeated measures two-way ANOVA; n
529 = 9-12 / group; $F_{\text{virus} \times \text{time}} (140, 2660) = 2.114$, $p<0.001$.

530 **K-L.** Representative actograms of LepR Cre animals bilaterally injected with (K) AAV-hSyn-DIO-
531 mCherry or (L) AAV-hSyn-DIO-hM3Dq-mCherry and injected with 0.3mg/kg CNO at ~CT22 (solid
532 blue line), in *ad libitum*, constant dark conditions with access to a running wheel. Pink shading
533 represents one hour prior to injection, and blue shading 3 hours after injection. See supplemental
534 Fig 7F-G for actograms of all animals.

535 **M.** 24-hour total wheel revolutions of DMH^{LepR} mCherry and DMH^{LepR} hM3Dq animals before,
536 during, and after CNO injections at ~CT22. Animals were housed under *ad libitum*, constant dark
537 conditions. Pink shading represents days with CNO injection. Repeated measures two-way
538 ANOVA; n = 9-12 / group; $F_{\text{virus}} (1, 19) = 0.2061$, $p=0.6550$; $F_{\text{virus} \times \text{time}} (29, 551) = 0.7120$, $p=0.8676$.

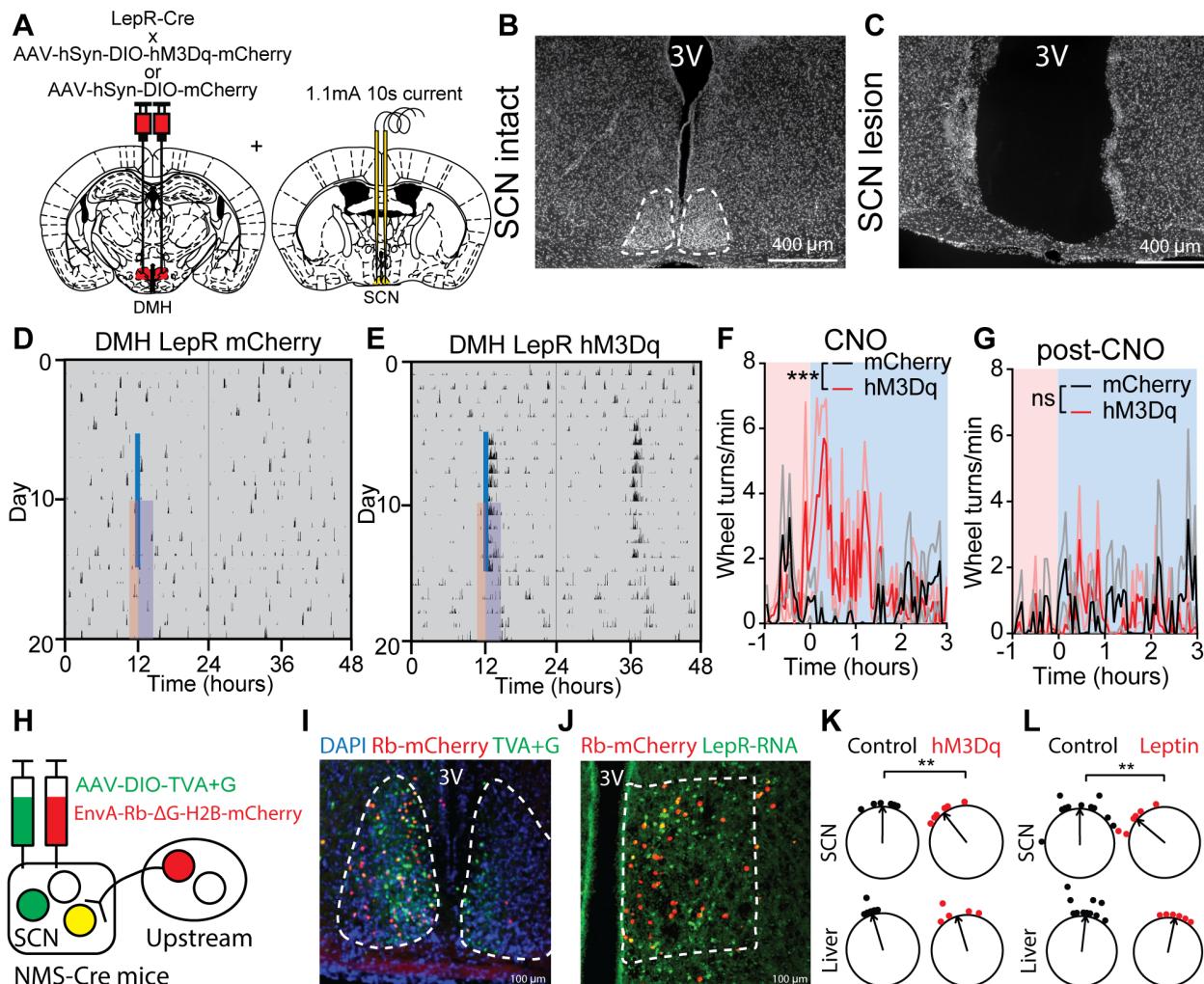
539 **N.** Average wheel running activity induced by chemogenetic activation of DMH^{LepR} neurons at
540 ~CT22. Color coded time window is indicated in (K-L). Repeated measures two-way ANOVA; n
541 = 9-12 / group; $F_{\text{virus}} (1, 18) = 8.580$, $p=0.0090$; $F_{\text{virus} \times \text{time}} (80, 1440) = 2.029$, $p<0.001$.

542 **O.** Quantification of sustained activity for 5 days after cessation of CNO injections. Color coded
543 time window is indicated in (K-L). Repeated measures two-way ANOVA; n = 8-12 / group;
544 $F_{\text{virus} \times \text{time}} (80, 1440) = 1.745$, $p<0.001$.

545 Data are represented as mean \pm SEM. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$; ns, not significant.

546

547


548 **DMH^{LepR} neurons link metabolic and circadian systems via direct projection to the SCN**

549 Finally, we sought to determine if the DMH^{LepR} neurons are directly communicating metabolic
550 signals to the primary circadian pacemaker in the SCN. We first asked whether the SCN was
551 necessary to mediate the effects of DMH^{LepR} neuron activation on circadian locomotor activity.
552 We electrolytically lesioned both sides of the SCN (SCNxx) in mice expressing hM3Dq or mCherry
553 in the DMH^{LepR} neurons (Fig 7A-C), and performed the 10-day chemogenetic activation protocol
554 in constant darkness with *ad libitum* food. We observe an acute bout of wheel running activity in
555 SCNxx DMH hM3Dq, but not SCNxx mCherry control mice after CNO injection (Fig 7D-F,
556 Supplemental Fig 7H-I). In contrast to the SCN-intact experiments, we did not observe
557 persistence of this activity in SCNxx animals following cessation of CNO injection on subsequent
558 days (Fig 7G, Supplemental Fig 7H-I). This finding suggests that DMH induced locomotor activity
559 is independent of the SCN, however, the SCN is necessary for maintaining DMH^{LepR} induced
560 circadian behavior.

561

562 While the DMH makes reciprocal connections with SCN neurons via direct and indirect projections,
563 it is unknown whether DMH^{LepR} neurons are directly connected⁶⁷. To identify potential direct
564 DMH^{LepR} projections, we carried out Cre-dependent monosynaptic retrograde viral rabies tracing,
565 and saw that DMH^{LepR} neurons innervate SCN neuromedin S (NMS) neurons (Fig 7H-J). To
566 functionally test this connectivity, we selectively activated DMH^{LepR} neurons at ZT6 for 4 days
567 using hM3Dq in PER2LUC mice, and observed a phase advance in the SCN PER2 rhythm similar
568 to animals on SF at ZT6. However, this stimulation did not induce a phase shift in the liver (Fig
569 7K). Similarly, we observed that 4 days of leptin injection at ZT6 significantly phase advanced the
570 SCN but not the liver (Fig 7L). These data point to the existence of a leptin→DMH^{LepR}→SCN axis
571 which communicates the metabolic status to the central circadian system.

572

573

574

575 **Figure 7- DMH^{LepR} neurons alter circadian behavior via the SCN**

576 **A.** Schematic diagram illustrating bilateral injection of AAV-hSyn-DIO-hM3Dq-mCherry or AAV-
577 hSyn-DIO-mCherry to the DMH of LepR Cre mice coupled with electrolytic lesioning of the SCN
578 in the same mice.

579 **B-C.** Representative DAPI staining images of (B) intact and (C) electrolytic lesioned SCN.

580 **D-E.** Representative actograms of an SCN lesioned DMH^{LepR} (D) mCherry, and (E) DMH^{LepR}
581 hM3Dq animal injected with CNO every 24 hours for 10 days in constant darkness. Solid blue line
582 indicates CNO injection. See supplemental Fig 7H-I for actograms of all animals.

583 **F.** Average wheel running activity induced by chemogenetic activation of DMH^{LepR} neurons from
584 (D-E). Color coded time window is indicated in (D-E). Repeated measures two-way ANOVA; $n =$
585 5-6 / group; $F_{\text{virus}} (1, 9) = 8.245, p=0.0184$; $F_{\text{virus*time}} (79, 711) = 2.432, p<0.0001$.

586 **G.** Quantification of activity for 5 days after cessation of CNO injections. Color coded time window
587 is indicated in (D-E). Repeated measures two-way ANOVA; n = 5-6 / group; $F_{\text{virus}} (1, 9) =$
588 0.3450, p=0.5714; $F_{\text{virus} \times \text{time}} (79, 711) = 1.047$, p=0.3746.
589 **H.** Schematic illustration of NMS Cre dependent rabies virus monosynaptic retrograde tracing.
590 **I-J.** Representative images of (I) SCN and (J) DMH from retrograde tracing strategy in H.
591 **K.** The ZT phase of the first bioluminescence peak of SCN and Liver from PER2::luciferase mice
592 injected with CNO at ZT6 (Control), or PER2::luciferase; LepR-Cre mice with hM3Dq expressed
593 in DMH^{LepR} neurons and injected with CNO at ZT6 (hM3Dq). Two-way ANOVA with Bonferroni
594 post hoc comparison; n = 5-6 / group; $F_{\text{treatment}} (1, 19) = 5.361$, p=0.0319.
595 **L.** The ZT phase of the first bioluminescence peak of SCN and Liver from control (mixture of ZT6
596 saline or untreated) or ZT6 leptin injected PER2::luciferase mice. Two-way ANOVA with
597 Bonferroni post hoc comparison; n = 6-11 / group; $F_{\text{treatment}} (1, 30) = 4.772$, p=0.0369. Control
598 group is the same dataset as in fig 1B, re-plotted and analyzed with ZT6 leptin treated animals.
599 Data are represented as mean \pm SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
600
601

602 **Discussion**

603 The circadian system synchronizes to salient non-photic cues, such as timed availability of food,
604 receptive mates, or exercise ^{11,68,69}. In this work, we demonstrated that leptin, in combination with
605 one of its central nervous system targets, the DMH^{LepR} neurons, form an essential node that links
606 food intake with the development of circadian food entrainment. In the process, we also identified
607 an intriguing property of the circadian system whereby locomotor activity is partitioned into at least
608 two components in response to overactivation of the DMH^{LepR} neurons. By functional direct
609 innervation to the SCN, DMH^{LepR} neurons, have the potential to serve as an information
610 conversion point for non-photic entrainment. The methodological paradigms presented here offer
611 a new platform to test the involvement of other molecular signals and anatomic regions in the
612 development and maintenance of food entrainment, and the relative function of inputs to the
613 circadian system.
614

615 **Impact of SF on canonical clock genes in the DMH**

616 In our snRNAseq analysis of the DMH, we did not observe a significant difference in the KEGG
617 annotated “circadian rhythm” pathway (canonical circadian genes, e.g. *Bmal1*, *Clock*;
618 <https://www.kegg.jp/entry/map04710>) except for *Per3* expression (Supplemental Fig 2). However
619 we cannot rule out an alteration in the expression of other core circadian genes, since they

620 possess different phases, which might require analysis at multiple time points across the day to
621 reveal a change. In contrast, we did identify genes in the “circadian entrainment” pathway to be
622 altered in the DMH (Fig 2, Supplemental Fig 1I, 2D). Although this pathway was originally
623 annotated based on the studies of light entrainment of SCN, DMH neurons likely share similar
624 machinery to alter their own molecular rhythms.

625

626 **Parameters of food entrainment**

627 In addition to FAA, food entrainment is exhibited by other behaviors and physiological processes,
628 sometimes with differential outcomes (Fig 1A). For instance, peripheral organs, especially the
629 liver, are more susceptible to food entrainment with the ketone body β -hydroxybutyrate as a key
630 regulator^{21,30,70}. While FAA is a widely used central nervous system driven behavioral output of
631 food entrainment, we characterized the rate of food consumption as an additional readout that
632 has not received as much attention. Furthermore, we quantified food entrainment at two stages:
633 development and maintenance. While the speed of entrainment to light is a widely accepted way
634 to study the strength of light entrained clock⁷¹⁻⁷³, except for a few publications^{49,72,74}, food
635 entrainment is exclusively gauged by existence of FAA, or robustness of FAA at the maintenance
636 stage. Our work highlights the importance of development stage of food entrainment and places
637 leptin and DMH^{LepR} neurons as a part of the food clock network.

638

639 **Leptin, DMH^{LepR} neurons, and their connections coordinate food entrainment**

640 Previous findings regarding the role of leptin circadian regulation have been mixed. While leptin
641 has been shown to advance the SCN when administered directly to brain slices of rats⁷⁵ or *in*
642 *vivo* in mice (Fig 7L), it does not appear to appreciably alter circadian behavior in mice⁷⁶. However,
643 leptin suppresses FAA when administered continuously to leptin-deficient mice^{77,78}, or rats in an
644 activity-based anorexia model⁷⁹. The data presented here lend further credence to the
645 importance of the timing of leptin and position it as a putative circadian entraining agent. This
646 highlights the need for future work investigating the role of mistimed leptin release as a result of
647 snacking outside of mealtimes contributing to the adverse metabolic outcomes of modern eating
648 habits⁸⁰.

649

650 Leptin appears to exert at least some of its effects via the DMH, a hypothalamic region that serves
651 as an anatomic integration hub to control food intake, thermogenesis, locomotor activity, and
652 circadian behaviors^{24,52,66,81,82}. Interestingly, in addition to the DMH^{LepR}-SCN circuit described in
653 this work, at least one other target of the DMH^{LepR} neurons, the AgRP neurons in the ARC, have

654 been implicated in the development of FAA^{83,84}. Therefore, we speculate that the DMH, via at
655 least its projections to SCN and AgRP neurons, serves as a critical node for food entrainment by
656 coordinating circadian and appetitive behaviors. This connectivity accommodates the previously
657 demonstrated redundancy in the food entrainable network, as it has been convincingly shown that
658 none of these individual regions are necessary for eventual development of food entrainment
659^{12,13,83,85–87}. However, ablation of one or more components does change the quality of food
660 entrainment behaviors.

661

662 ***Role of DMH^{LepR} neurons within the central pacemaker***

663 We demonstrated that the DMH^{LepR} neurons cannot solely be an output for FAA as its
664 manipulation does not inhibit food entrainment once established (Fig 7). Additionally, scheduled
665 activation of DMH^{LepR} neurons in constant conditions induces a partitioned secondary bout of
666 activity that remains phase-locked to the primary onset of activity even after cessation of the
667 stimulation (Fig 6). These observations led us to postulate the existence of at least two coupled
668 but independent clocks in the DMH and SCN akin to the “morning” and “evening” oscillators
669 proposed in *Drosophila*⁸⁸. However, it remains to be determined if the DMH and SCN are the two
670 coupled clocks that can function independently in certain conditions, or if DMH partially uncouples
671 the SCN which harbors these two clocks.

672

673 It has been increasingly acknowledged that when we eat, in addition to what and how much, plays
674 a critical role in maintaining metabolic homeostasis and health^{4–6,8,89–91}. This bidirectional
675 relationship between food and the circadian clock leads to dysfunction of both the circadian
676 system and metabolic homeostasis. Further understanding of the circuits that govern these food-
677 circadian interactions will provide new avenues to improve metabolic health^{9,92–94}.

678

679 **AUTHOR CONTRIBUTIONS**

680 Q.T., E.G., C.D.D, B.P., J.N.C., and A.D.G. conceived and designed the experiments, and wrote
681 the manuscript with input from all co-authors. Q.T., E.G., and B.P. performed the generation of
682 experimental cohorts, data collection, analysis and interpretation. Specifically, Q.T. performed
683 calcium imaging. E.G. performed RNA FISH staining. B.P. made the initial observations of leptin
684 and DMH^{LepR} activation’s behavioral effects. E.G. and R-J.A-F. conducted the snRNAseq
685 experiments, whereas E.G. analyzed snRNAseq data. C.D.B. and Q.Z. contributed to intracranial
686 surgery. R.O. and T.B.G. contributed to body weight and food intake measurements during SF.
687 Q.Z. and S.P.W. contributed to DMH^{LepR} neuron chemogenetic activation in constant darkness.

688 C.D.B., Q.Z., S.P.W, T.B.G., R.O., R.S., and J.O. contributed to daily animal husbandry during
689 long-term circadian behavior experiments.

690

691 **DECLARATION OF INTERESTS**

692 The authors declare no competing interests.

693

694 **ACKNOWLEDGEMENTS**

695

696 We thank the members of the Güler, Deppmann, Campbell, and Provencio labs (University of
697 Virginia), Yamazaki lab (University of Texas Southwestern Medical Center) and Steele lab
698 (California State Polytechnic University, Pomona) for comments and suggestions on the
699 preparation of the manuscript. We are thankful for technical advice from Austin Byler Keeler,
700 Jianhua Cang and Chad Daniel Meliza (electrolytic lesion, University of Virginia), and Pantong
701 Yao (*in vivo* calcium imaging data interpretation, University of California San Diego). Additionally,
702 we are grateful for the access to the confocal microscope generously provided by Cang and Liu
703 labs (University of Virginia). We are grateful for the generous gift of the cre dependent TeTx virus
704 from Zweifel lab (Washington University). We thank the University of Virginia School of Medicine
705 Genome Analysis and Technology Core, RRID:SCR_018883 for sequencing our samples and
706 quality control. This work was supported by NIH T32-GM7267-39 and NIH T32-GM7055-45 (B.P.),
707 NIH R01GM121937 and R35GM140854 (A.D.G.), NIH R01HL153916-01A1 and American
708 Diabetes Association Pathway to Stop Diabetes award 1-18-INI-14 (J.N.C.), and a UVA
709 Wagner Fellowship (B.P.).

710

711 **RESOURCE AVAILABILITY**

712 Raw snRNAseq files can be found at gene expression omnibus (GEO) with accession code
713 GSE211757.

714

715 **METHODS**

716 **Single Nucleus RNA Sequencing (Figs 1-3, Extended data Figs 1-2)**

717 *Mouse Lines*

718 All experiments were carried out in compliance with the Association for Assessment of Laboratory
719 Animal Care policies and approved by the University of Virginia Animal Care and Use Committee.
720 Animals were housed on a 12-h light/dark cycle with food (PicoLab Rodent Diet 5053) and water
721 *ad libitum* unless otherwise indicated. For generation of the 10X single nucleus RNA-seq data

722 (Figs 1-3, Extended data Figs 1-2), we used both male and female LepR-cre mice (B6.129-
723 Lepr^{tm3(cre)Mgmj}/J, The Jackson Laboratory #032457, RRID:IMSR_JAX:032457) ⁹⁵ crossed to Ai14
724 tdTomato reporter line (B6.Cg-Gt(ROSA)26Sor^{tm14(CAG-tdTomato)Hze}/J, Strain #007914,
725 RRID:IMSR_JAX:007914) ⁹⁶.

726

727 *Scheduled Feeding in Comprehensive Lab Animal Monitoring System (CLAMS)*

728 Indirect calorimetry in the CLAMS system (Columbus Instruments) was used to evaluate
729 metabolic parameters and ambulatory locomotor activity during *ad libitum*, overnight fasted, or
730 time and calorie restricted scheduled feeding (SF). All mice were on a 12:12 light-dark cycle with
731 *ad libitum* access to food and water unless otherwise indicated. Lepr-cre; tdTomato mice were
732 singly housed and acclimated to the CLAMS for 3 days prior to experiment start. The night before
733 SF began, the SF cohort was fasted and cages were changed and thereafter were given 2-3
734 grams of food (PicoLab Rodent Diet 5053) at zeitgeber time (ZT) 6 for 10 days. The overnight
735 fasted cohort had *ad libitum* food access until the night before sacrifice, when food was removed
736 and cages were changed. We repeated this experiment a total of 3 times with 2 mice per condition
737 each time (n = 6 mice / condition total).

738

739 *Brain Extraction and Microdissection*

740 All mice were sacrificed at ZT 5. Brains were immediately extracted and dropped into ice cold
741 Hanks' Balanced Salt Solution (HBSS). After 2 minutes, brains were embedded in low melting
742 point agarose (Precisionary Instruments, Natick, MA) and sectioned at 400 μ m on a
743 Compresstome VF-200 Vibrating Microtome (Precisionary Instruments, Natick, MA, USA) into
744 DNase/RNase free 1x PBS. Hypothalamic sections of interest were immediately collected into
745 RNAProtect (Qiagen, Hilden, Germany) and kept in RNAProtect at 4°C overnight. The next day
746 Lepr-Cre; TdTomato positive cells were visualized using a fluorescent stereoscope (Leica,
747 Wetzlar, Germany). tdTomato fluorescence was used to approximate DMH and SCN boundaries
748 during microdissection of these regions. DMH and SCN microdissected tissue samples were
749 placed into Eppendorf tubes separated by brain region and feeding condition, and stored in -80°C
750 until nuclei isolation.

751

752 *Isolation of Single Nucleus for RNA sequencing*

753 DMH and SCN microdissected tissue samples were transferred from a -80°C freezer and into
754 individual 2mL glass dounce homogenizer tubes (Kimble, Vineland, NJ, USA) to be homogenized
755 according to a protocol modified from the method described previously ⁹⁷. Tissue was

756 homogenized in 1mL of buffer (16mM sucrose, 5mM CaCl, 3mM Mg(Ac)₂, 10mM Tris pH 7.8,
757 0.1mM EDTA, 1% NP40, 1mM beta-mercaptoethanol in H₂O) on ice, with 25 passes of pestle A
758 and 25 passes of pestle B. An additional 4mL of buffer was added to the nuclei suspension and
759 placed on ice for 5 minutes. Then 5 mL of 50% OptiPrep Density Gradient Medium [Sigma Aldrich,
760 MO, USA] (30mM CaCl, 18mM Mg(Ac)₂, 60mM Tris pH 7.8, 0.1 mM PMSF, 6mM beta-
761 mercaptoethanol in H₂O; in 60% (w/v) solution of iodixanol in sterile water) was added to nuclei
762 on ice and inverted 10 times to mix. The nuclei suspension was layered onto 10 mL of 29%
763 OptiPrep solution (Buffer + 50% OptiPrep) in a 38.5 mL Ultra-Clear tube (Beckman-Coulter, CA,
764 USA) before being centrifuged at 7,333g for 30 minutes at 4°C. Supernatant was discarded and
765 the nuclei pellet was resuspended in 1x PBS + 1% BSA (Sigma-Aldrich, MO, USA) + 2 mM Mg²⁺
766 + 0.1% RNase inhibitor (Sigma-Aldrich, MO, USA) for 15 minutes on ice. The nuclei suspension
767 was pipetted through a 20 µm mesh filter along with 2 drops of propidium iodide (PI) Ready Flow
768 reagent (Thermo Fisher, MA, USA) and immediately taken on ice to be FACS sorted using an
769 SH800 (Sony, Tokyo, Japan) cell sorter. Sorting was gated to select for PI+ single nucleus. Nuclei
770 were sorted through a 70 µm nozzle into a 2mL LoBind collection tube (VWR, PA, USA) containing
771 18.8uL of RT Reagent B from the Chromium Next GEM Single Cell 3' Reagent Kit v3.1. The
772 remaining components of the 10X Step 1 mastermix were then gently mixed with the contents of
773 the FACS collection tube and loaded into the 10X Genomics Chromium Controller Chip G.
774

775 *Single-Nucleus RNA-Seq Workflow*

776 The single-nucleus samples were processed into sequencing libraries using the Chromium Next
777 GEM Single Cell 3' Reagent Kit v3.1 according to the manufacturer's protocol (version 3.1,
778 revision D). After generation of the GEMs (Gel Bead-In EMulsions) and reverse transcription of
779 poly-adenylated mRNA, cDNA was amplified (10-14 cycles), enzymatically fragmented, and
780 ligated to Illumina adapters. Sequencing libraries were indexed, size selected for 400-600 bp
781 using SPRIselect (Beckman Coulter, Indianapolis, IN, USA), and quantified by Qubit (v4.0, 1X
782 high-sensitivity dsDNA kit, Thermo Scientific) and Bioanalyzer (Agilent, Santa Clara, CA, USA).
783 Size-corrected library concentrations were used to pool libraries for equimolar representation. The
784 pooled concentration was measured by KAPA Library Quant qPCR according to the
785 manufacturer's instructions (KAPA Biosciences, Wilmington, MA) and by Qubit. Library pools
786 were sequenced using a P100 cycle kit on the NextSeq 2000 (Illumina, CA, USA) in the University
787 of Virginia School of Medicine Genome Analysis and Technology Core, RRID:SCR_018883. The
788 sequencing structure was as follows: Read 1 was 28 bp (16 bp barcode, 12 bp UMI), Read 2 was
789 98 bp (cDNA) and Index 1 was 8 bp (single index). Overall, we had 7 DMH and 5 SCN sequencing

790 library pools. 10X Batch 1 & 2 contained mixed pools of all feeding conditions, but 10X Batch 3
791 contained a unique feeding condition per library pool (Extended data Fig. 1A, E).

792

793 *Single-Nucleus RNA-Seq Data Processing*

794 Raw digital expression matrix files for each sequencing run were transferred to a high-
795 performance cluster (HPC) server where they were demultiplexed based on sample index. We
796 generated fastq files with bcl2fastq2 version 2.20.0, then used Cell Ranger version 5.0.0 to align
797 transcripts to the Cell Ranger supplied mouse genome, mm10 2020-A (GENCODE
798 vM23/Ensembl 98), quantify expression levels, and partition them according to their cell-specific
799 barcode. We ran the Cell Ranger count program with the "--include-introns" argument to include
800 intronic reads in the gene expression quantitation.

801

802 *Single-Nucleus RNA-Seq Analysis*

803 Cell Ranger h5 files were read into Seurat v4⁹⁸ in R (version 4.1.0) and RStudio (version 1.4.1717)
804 and merged by brain region (DMH, SCN) for clustering analysis. We filtered the initial datasets to
805 remove low quality samples (i.e., cells with less than 100 genes detected or greater than 0.5%
806 mitochondrial reads). We then log-normalized the data; selected 2,000 most variable genes
807 ("feature selection"), and scaled gene expression. We performed Principal Component Analysis
808 (PCA) to linearly reduce the dimensionality of the highly variable gene set. We defined distance
809 metrics based on K-nearest neighbor analysis, grouped cells with Louvian algorithm modality
810 optimization, and visualized cell embeddings in low-dimensional space with Uniform Manifold
811 Approximation and Projection (UMAP) nonlinear dimensionality reduction. To focus our analysis
812 on neurons, we subsetted neuronal clusters based on their enriched expression of neuronal
813 marker genes (*Syt1*, *Syn1*, *Tubb3*). To correct for batch effects, we integrated across sample
814 batches using Seurat's function for reciprocal principal component analysis (RPCA). Next, we
815 subsetted region-specific clusters based on expression of positive and negative marker genes for
816 each target brain region (SCN, DMH), as described in the next section. We reclustered the
817 identified DMH and SCN neurons using the following parameters: DMH, 2,000 most variable
818 genes, first 15 PCs, resolution setting of 0.8; SCN, 2,000 most variable genes, first 13 PCs,
819 resolution setting of 0.5. Finally, we assessed cluster markers with the Wilcoxon Rank Sum test
820 using Seurat default settings. Cluster markers were selected based on top p-values (adjusted to
821 correct for multiple comparisons), high percent expression within the cluster and low percent
822 expression outside of the cluster, and validated based on Allen Brain Atlas mouse *in situ*
823 hybridization data and previous literature.

824

825 *Identification of DMH and SCN neurons*

826 DMH neuron types were selected based on previously reported markers ⁵¹, as well as known
827 highly expressed genes in the DMH including *Lepr*, *Pdyn*, *Ppp1r17*, *Cck* and *Grp* ^{45,57,95}. Markers
828 were validated via the Allen Brain Atlas mouse *in situ* hybridization data. Additionally, clusters
829 enriched with genes expressed in surrounding hypothalamic regions but not DMH were excluded
830 from further analysis, including the following: PVH (*Sim1*) ⁹⁹, VMH (*Slit3*, *Qrfpr*, *Arpp21*, *Nr5a1*,
831 *Fezf1*) ¹⁰⁰, Arc (*Prlr*, *Nr5a2*) ¹⁰¹, LH (*Pvalb*, *Klk6*, *Nts*) ^{102,103}, or the tuberomammillary nucleus
832 (*Hdc*) ^{104, 105}. Cluster markers were prioritized based on multiple-comparison adjusted p-values,
833 high percent expression within the cluster and low percent expression outside of the cluster. We
834 defined SCN neuron populations based on previous literature by plotting expression of cluster
835 specific markers and circadian genes from published datasets by our clusters ^{35,36,67}.

836

837 *Functional Analysis of Differentially Expression Genes*

838 To find differential gene expression between feeding condition groups (*ad libitum*, fasted, SF), we
839 used Seurat's 'FindMarkers' function to run Wilcoxon Rank Sum statistical tests. False Discovery
840 Rate (FDR) was calculated using the 'p.adjust' function. We set cutoffs of $\log_{2}\text{FC} > 0.25$ and $\text{FDR} < 0.05$ to quantify the total number of differentially expressed genes per feeding condition
841 comparison. To visualize STRING functional protein interaction networks, we used Cytoscape
842 open-source software (version 3.9.1). We input lists of differentially expressed genes in the cluster
843 13_Lepr between both SF and fasted and SF and *ad libitum* using the same criteria as previously
844 described above. We ran KEGG Gene Ontology functional enrichment on the mouse genome to
845 label genes involved in upregulated pathways during SF. We measured differentially expressed
846 pathways among the three feeding conditions using the 'enrichR' package. To visualize genes
847 and pathways differing significantly between feeding conditions, we used the 'DEenrichR' function
848 which applies the Wilcoxon Rank Sum test to identify differentially expressed (DE) genes
849 ($\log_{2}(\text{fold change}) > 0.25$, multiple-comparison adjusted $p < 0.05$). Significantly DE genes are
850 then scored based on odds ratios to fall into pathways categories defined by the Kyoto
851 Encyclopedia of Genes and Genomes (KEGG) 2019 Mouse database. With the 'ggplot2' package,
852 we then graphed upregulated and downregulated pathways in each comparison on a
853 superimposed bar graph, colored by condition specific comparison, and ranked by maximum -
854 $\log_{10}(p\text{value})$.

855

856

857 *RNA Fluorescence In Situ Hybridization*

858 RNA fluorescence *in situ* hybridization (RNA FISH) was performed on fixed brain slices with a
859 probe to detect LepR and Pdyn RNA (RNAscope Multiplex Fluorescent Reagent Kit v2 Assay,
860 ACD). All procedures were carried out according to the manufacturer's instructions. Briefly,
861 sections were pretreated with RNAscope hydrogen peroxide to block the activity of endogenous
862 peroxidases. After a wash in distilled water, sections were permeabilized with RNAscope protease
863 IV for 30 min at 40°C. Sections were hybridized with the Lepr and Pdyn probe at 40°C for 2 h,
864 followed by amplification incubation steps: Amp 1, 30 min at 40°C; Amp 2, 30 min at 40°C; Amp
865 3, 15 min at 40°C. HRP signals were developed with RNAscope Multiplex FL v2 HRP and TSA
866 Plus fluorophores (HRP-C1 and 1:750 TSA Plus Cy3 for Lepr, Cy2 or Cy5 for Pdyn, Cy5 for Glra2).
867 Sections were washed with the provided washing buffer 2 × 2 min in between each step. Sections
868 were then coverslipped with DAPI Fluoromount-G (Southern Biotech). Confocal microscope
869 imaging was performed on a Zeiss LSM 800 microscope (Carl Zeiss).

870

871 *Automated quantification for RNA FISH images*

872 RNA FISH labeled cells were counted using CellProfiler image analysis software, with an analysis
873 pipeline modified from previously published work ¹⁰⁶. In brief, DAPI staining of nuclei was used to
874 identify cells, and then cells with more than three stained speckles, or >60% of cell area covered
875 by staining, were considered as positive for the marker.

876

877 **Behavioral assays (Figs 3-7, Extended data Figs 3-7)**

878 *Mice*

879 All experiments were carried out in compliance with the Association for Assessment of Laboratory
880 Animal Care policies and approved by the University of Virginia Animal Care and Use Committee.
881 Animals were housed on a 12-h light/dark cycle with food (PicoLab Rodent Diet 5053) and water
882 *ad libitum* unless otherwise indicated. All experiments were performed on male mice 12 weeks or
883 older unless otherwise indicated. Wild-type C57BL6/J mice, LepR-Cre (B6.129-Lepr^{tm3(cre)Mgm}/J,
884 The Jackson Laboratory #032457, RRID:IMSR_JAX:032457) ⁹⁵, Ai14 tdTomato reporter line
885 (B6.Cg-Gt(ROSA)26Sor^{tm14(CAG-tdTomato)Hze}/J, Strain #007914, RRID:IMSR_JAX:007914) ⁹⁶, and
886 Pdyn-Cre (B6.129S-Pdyn^{tm1.1(cre)Mjkr}/LowIJ, The Jackson Laboratory #027958,
887 RRID:IMSR_JAX:027958) ¹⁰⁷ mice were used.

888

889 *Scheduled feeding (SF)*

890 For scheduled feeding, mice were first acclimated to single housing for 7 days, followed by
891 acclimation to IR beam interruption chambers (Columbus Instruments, or custom built ¹⁰⁸) for a

892 minimum of 72 hours before starting the recording of locomotor activity. After at least 3 days of
893 recording of baseline locomotor activity while the mice had *ad libitum* access to food, mice were
894 fasted at lights off (ZT12) on day 0 of SF, along with a full cage change. Mice were weighed, and
895 injected with either vehicle (saline), 5mg/kg leptin, or 0.3mg/kg CNO at ZT2.5. Mice were then
896 refed 3.5 hours later at ZT6 (ZT6.5 for fiber photometry experiment in Fig 6). During the first two
897 days, mice were fed 2g, after which they were fed 2.5g. For the experiment in which we extended
898 the food delivery window (Extended data Fig 4B-G), the same amount of food (2g on first two
899 days, and 2.5g on days 3-10) was given to both control and extended groups. In the extended
900 group, food was evenly split to 4 pallets and delivered at ZT6, ZT7, ZT8, ZT9. Control group
901 received the whole pallet of food at ZT6 as other SF experiments in this work. In the leptin
902 treatment experiments (Fig 4,5, Extended data Figs 3,4), after 5 days, treatment groups were
903 switched, so that mice previously given saline received leptin and vice versa for the remaining 5
904 days. In DREADD experiments (Fig 7, Extended data Fig 6), CNO was administered for 5 days
905 followed by 5 days of saline before switching back to 5 days of CNO administration. FAA was
906 quantified as the amount of locomotor activity expressed in the two-hour window prior to food
907 delivery (ZT4-6), and normalized to 24-hour activity (Figure 1, 3), or total light phase locomotor
908 activity (in all other figures). In case of injection at ZT2.5, the 1 hour of activity post-injection was
909 excluded to eliminate handling induced locomotion. WT groups injected with saline or leptin were
910 age and weight-matched. Surgery operated groups were age matched.

911

912 *Stereotactic surgery*

913 Animals were anesthetized with isoflurane (induction 5%, maintenance 2%–2.5%; Isothesia) and
914 placed in a stereotaxic apparatus (KOPF). A heating pad was used for the duration of the surgery
915 to maintain body temperature and ocular lubricant was applied to the eyes to prevent desiccation.
916 500 nl of AAV (AAV8-hSyn-DIO-mCherry, plasmid from Addgene #44361, virus packed at UNC
917 Vector Core ¹⁰⁹; AAV8-hSyn-DIO-hM3Dq-mCherry plasmid from Addgene #50459, virus packed
918 at UNC Vector Core; AAV1-hSyn-DIO-GCaMP7s virus from Addgene #104491-AAV1 ¹¹⁰; AAV1-
919 CBA-DIO-GFP-TeTx ¹¹¹ was generously gifted by Dr. Larry Zweifel [University of Washington,
920 Seattle, WA] was delivered using a 10 μ L syringe (Hamilton) and 26-gauge needle (Hamilton) at
921 a flow rate of 100 nl/min driven by a microsyringe pump controller (World Precision Instruments,
922 model Micro 4). The syringe needle was left in place for 10 min and was completely withdrawn 17
923 min after viral delivery. For *in vivo* calcium imaging, an optic fiber guide cannula was implanted
924 unilaterally following viral delivery, at 0.2mm dorsal to the viral injection coordinates, and
925 stabilized on the skull with dental cement (C&B METABOND, Parkell). For electrolytic lesions, a

926 parylene insulated, tip-exposed 2 MΩ tungsten electrode was placed bilaterally into the SCN, and
927 a current of 1.1 mA was applied for 11 seconds. Two weeks minimum were allowed for recovery
928 and transgene expression after surgery. Stereotaxic coordinates relative to Bregma (George
929 Paxinos and Keith B. J. Franklin): SCN: ML: ± 0.3 mm, AP: – 0.35 mm, DV: – 5.75 mm; DMH:
930 ML: ± 0.3 mm, AP: – 1.8 mm, DV: – 5.45 mm. After the surgery, the animals were housed
931 individually. All surgical procedures were performed in sterile conditions and in accordance with
932 University of Virginia IACUC guidelines.

933

934 *Histological analysis and imaging*

935 For fixed tissue collection, animals were deeply anesthetized (ketamine:xylazine, 280:80 mg/kg,
936 i.p.) and perfused intracardially with ice cold 0.01 M phosphate buffer solution (PBS) followed by
937 fixative solution (4% paraformaldehyde (PFA) in PBS at a pH of 7.4). For testing the functionality
938 of hM3Dq (Fig 7B), 0.3mg/kg CNO was intraperitoneal injected at 2 hours prior to perfusion and
939 brain harvesting. After perfusion, brains were harvested and post-fixed overnight at 4°C in PFA.
940 Fixed brains were then transferred into 30% sucrose in PBS for 24 h, and then frozen on dry ice.
941 Frozen brains were sectioned immediately or stored in -80°C for future processing. Coronal
942 sections (30 µm) were collected with a cryostat (Microm HM 505 E). Sections were permeabilized
943 with 0.3% Triton X-100 in PBS (PBS-T) and blocked with 3% normal donkey serum (Jackson
944 ImmunoResearch) in PBS-T (PBS-T DS) for 30 min at room temperature. Sections were then
945 incubated overnight at 4°C (or otherwise indicated) in primary antibodies diluted in PBS-T DS.
946 For visualization, sections were washed with PBS-T and incubated with appropriate secondary
947 antibodies diluted in the blocking solution for 2 h at room temperature. Sections were washed
948 three times with PBS and mounted using DAPI Fluoromount-G (Southern Biotech). Images were
949 captured on a Zeiss Axioplan 2 Imaging microscope equipped with an AxioCam MRm camera
950 using AxioVision 4.6 software (Zeiss). The following primary antibodies was used for fluorescent
951 labeling: anti-c-Fos (rabbit, 1:1k, synaptic systems #226003). The secondary antibodies (Jackson
952 ImmunoResearch) used was Cy2-conjugated donkey anti-rabbit (1:250)(cat# 711-225-152).

953

954 *Retrograde tracing*

955 Rabies virus tracing: 200nl AAV1-synP-FLEX-splitTVA-EGFP-B19G (Addgene #52473-AAV1)
956 was injected to SCN of NMS-Cre mice using the stereotactic surgery method described above.
957 Three weeks after AAV injection, 120nl EnvA-dG-Rabies-H2B-mCherry (Salk Viral Vector Core)
958 was delivered to the same coordinates. After one more week, fresh brains were harvested and
959 processed for antibody labeling or RNA FISH probing as described above.

960

961 *Bioluminescence*

962 To determine the treatment effect on the phase of molecular circadian rhythm of the liver or SCN,
963 PER2LUC or PER2LUC;LepR-Cre mice were individually housed under 12:12 LD light cycle for
964 4 consecutive days and received one of the following treatments: (1) 5mg/kg leptin at ZT6; (2)
965 0.3mg/kg CNO at ZT6; (3) SF feeding at ZT6; (4) saline at ZT6 or no treatment, pooled as control
966 (used for both Fig 1B and Fig 7L). On the 5th day, mice were sacrificed between ZT5-ZT10. Brains
967 were immediately extracted and dropped into ice cold Hanks' Balanced Salt Solution (HBSS).
968 After 2 minutes, brains were embedded in low melting point agarose (Precisionary Instruments,
969 Natick, MA) and sectioned at 300 μ m on a Compresstome VF-200 Vibrating Microtome
970 (Precisionary Instruments, Natick, MA, USA). Brain region containing the SCN and liver tissue
971 were dissected for bioluminescence recording using a method adapted from previous work ¹¹².
972 SCN slices and liver tissues were cultured in 35 mm culture dishes with 1.2 ml of DMEM (D5030,
973 Sigma) supplemented with 3.5 g/L D-glucose, 2 mM Glutamax (Gibco), 10 mM HEPES, 25 U/ml
974 penicillin/streptomycin, 2% B-27 Plus (Gibco), and 0.1 mM D-Luciferin sodium salt (Tocris). The
975 culture dishes were covered with 40 mm diameter glass cover slides and sealed by high-vacuum
976 grease (Dow Corning), and maintained in a non-humidified incubator at 36.8 °C. Bioluminescence
977 from firefly luciferase in each of SCN slices or liver sections was recorded in 10 min intervals by
978 a 32-channel/4-photomultiplier tube luminometer LumiCycle (Actimetrics) in the incubator. The
979 bioluminescence data were collected and analyzed by LumiCycle Analysis software (Actimetrics).
980 The time of the first peak in bioluminescence was manually determined from each tissue sample.
981 Each data point represents the average of two tissue samples from the same animal which were
982 then used for further statistical analysis.

983

984 *In vivo fiber photometry recording*

985 The viral vector and fiber optic implant were delivered to the target brain area within one surgical
986 procedure as described above. Experiments were initiated at least 2 weeks post surgery to allow
987 for recovery and transgene expression. For long-term recordings, mice were individually housed
988 in their home cages and transferred to the recording room 3 days before experiment to acclimate
989 to the environment. Implanted fiber-optic cannula (Thorlabs, 0.39 NA, Ø200 μ m Core) was
990 connected to fiber-optic cable (Doric Lenses, 0.37 NA, Ø200 μ m Core) with the use of a zirconia
991 mating sleeve (Doric Lenses). The fiber-optic cables were wrapped with metal sheath (Doric
992 Lenses) to prevent breakage and connected to rotary joints (Doric Lenses) to allow free-
993 movement. The fiber photometry system used in this work records the fluorescent signal from

994 both calcium-dependent (465nm) and calcium-independent isosbestic (405nm) excitation light
995 wavelengths, in which the isosbestic wavelength excitation signal is used to control for the
996 artifacts from animal movement, fluorescent reporter expression and photobleaching. The signal
997 was collected at 120Hz sampling rate. To limit the photobleaching of the fluorescent reporter
998 during the long-term recording, the signal was only collected for 2 minutes every 12 minutes (For
999 three out of seven saline treated and one out of eight leptin treated mice in the SF experiment,
1000 the data were collected for 10 minutes per hour. These datasets were included in analysis when
1001 possible. See below for details). Animals that did not exhibit Ca^{2+} signal increase in response to
1002 food presentation were considered mis-targeted and were excluded from the analysis (Extended
1003 data Fig 5C-F).

1004

1005 *Fiber photometry data analysis*

1006 Data was processed in Matlab using a method modified from work described previously^{62,63}. To
1007 eliminate the artifact from motion or protein expression, the calcium-independent isosbestic
1008 (405nm excitation) signal was fitted to the calcium-dependent (465nm excitation) signal with a
1009 linear least-squares fit. The fluorescence change over baseline fluorescence ($\Delta F/F_0$) was
1010 calculated as (465nm induced signal - fitted 405nm induced signal) / (median of 465nm induced
1011 signal). Notably, in the long-term experiments where multiple short-term sessions were recorded,
1012 F_0 was the median for the entire experiment for consistency. The fitted 405nm induced signal was
1013 defined as the estimated baseline, so that the values on $\Delta F/F_0$ curves below 0 were cutoff. For
1014 each recording session, phasic calcium signal is the integral of $\Delta F/F_0$ adjusted curve (Fig 6B) and
1015 represents the intracellular calcium activity during that session. The calculated phasic calcium
1016 signal was further averaged by hour and normalized to the average of the 12-hour dark phase
1017 signal in each given day. For food response during the scheduled feeding experiment, the food
1018 was delivered 1 minute after the initiation of the 2-minute recording session. The variability caused
1019 by signal strength was normalized by calculating z-score ((signal-average of baseline signal) /
1020 standard deviation of baseline signal) for food response experiments where the first 15 seconds
1021 of the 2-minute sessions were used as baseline.

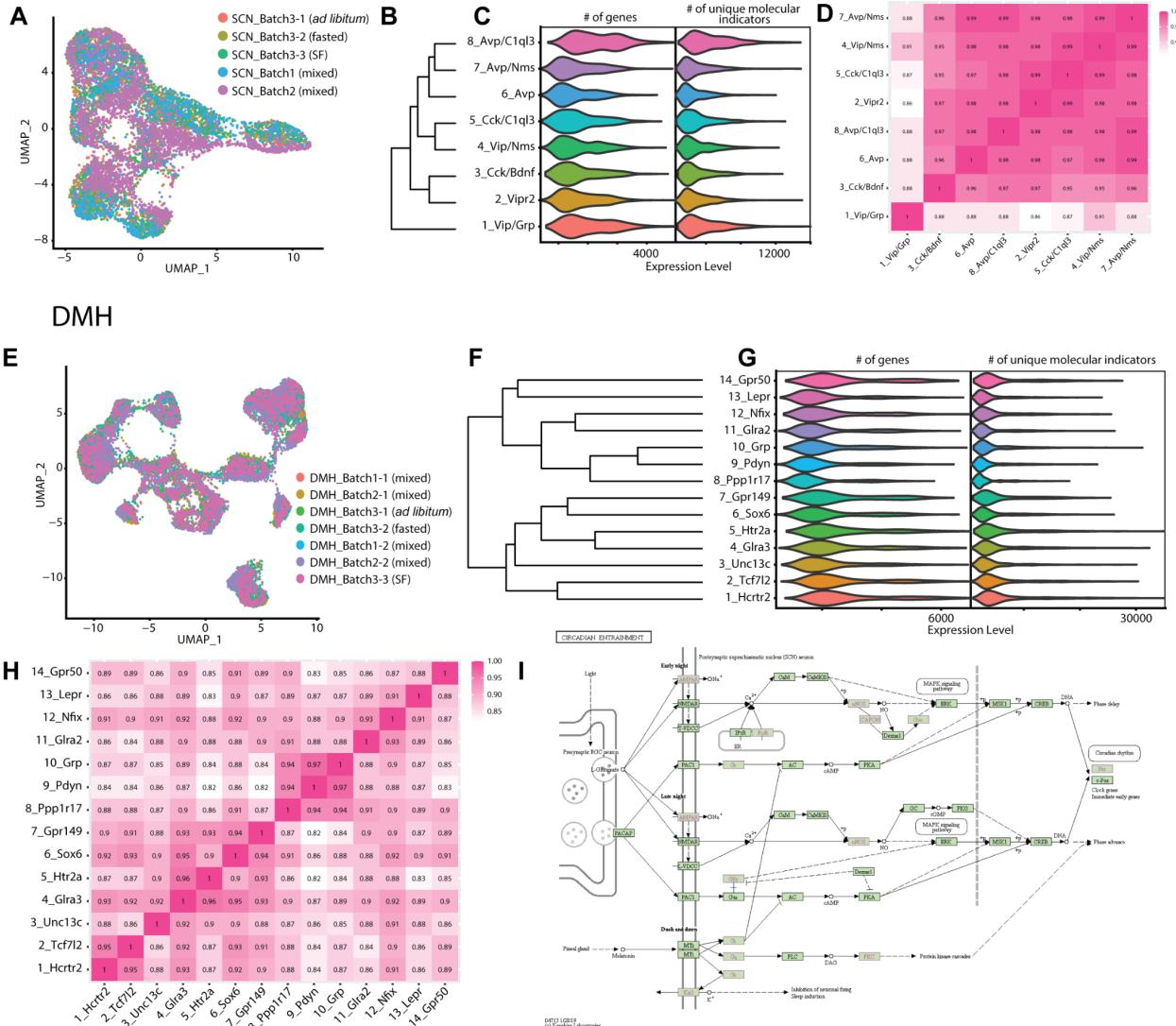
1022

1023 *Circadian Behavioral Analysis*

1024 Locomotor activity data were collected by wheel-equipped cages (Nalgene), or IR beam
1025 interruption chambers (Columbus Instruments, or custom built¹⁰⁸) in light-tight compartments
1026 under a 12h:12h LD cycle. Fluorescent lights (~400 lux) were used for behavioral experiments.
1027 Food and water were provided *ad libitum* unless otherwise indicated. Wheel running activity was

1028 monitored and analyzed with the ClockLab collection and analysis system (Actimetrics, Wilmette,
1029 IL). IR beam interruption activity data were analyzed in Excel for quantification or converted to a
1030 ClockLab supported file format for circadian analysis.

1031


1032 *Statistical Analysis*

1033 To compare the effects of treatment over time, two-way ANOVA test was used. In experiments
1034 with a single variable and more than two groups, one-way ANOVA was performed. In case data
1035 points were missing because of technical failure (i.e. power outage during long-term recording),
1036 where repeated-measures ANOVA was not possible to perform, mixed-effects (REML) analysis
1037 was used instead. Following a significant effect in the ANOVA test, Bonferroni's post hoc
1038 comparison was used to determine differences between individual data points. Analyses were
1039 conducted using GraphPad Prism 8 statistical software for Windows. All data were presented as
1040 means \pm standard error of the mean (SEM) with $p < 0.05$ considered statistically significant.

1041

1042 Supplemental figures

SCN

1043

1044

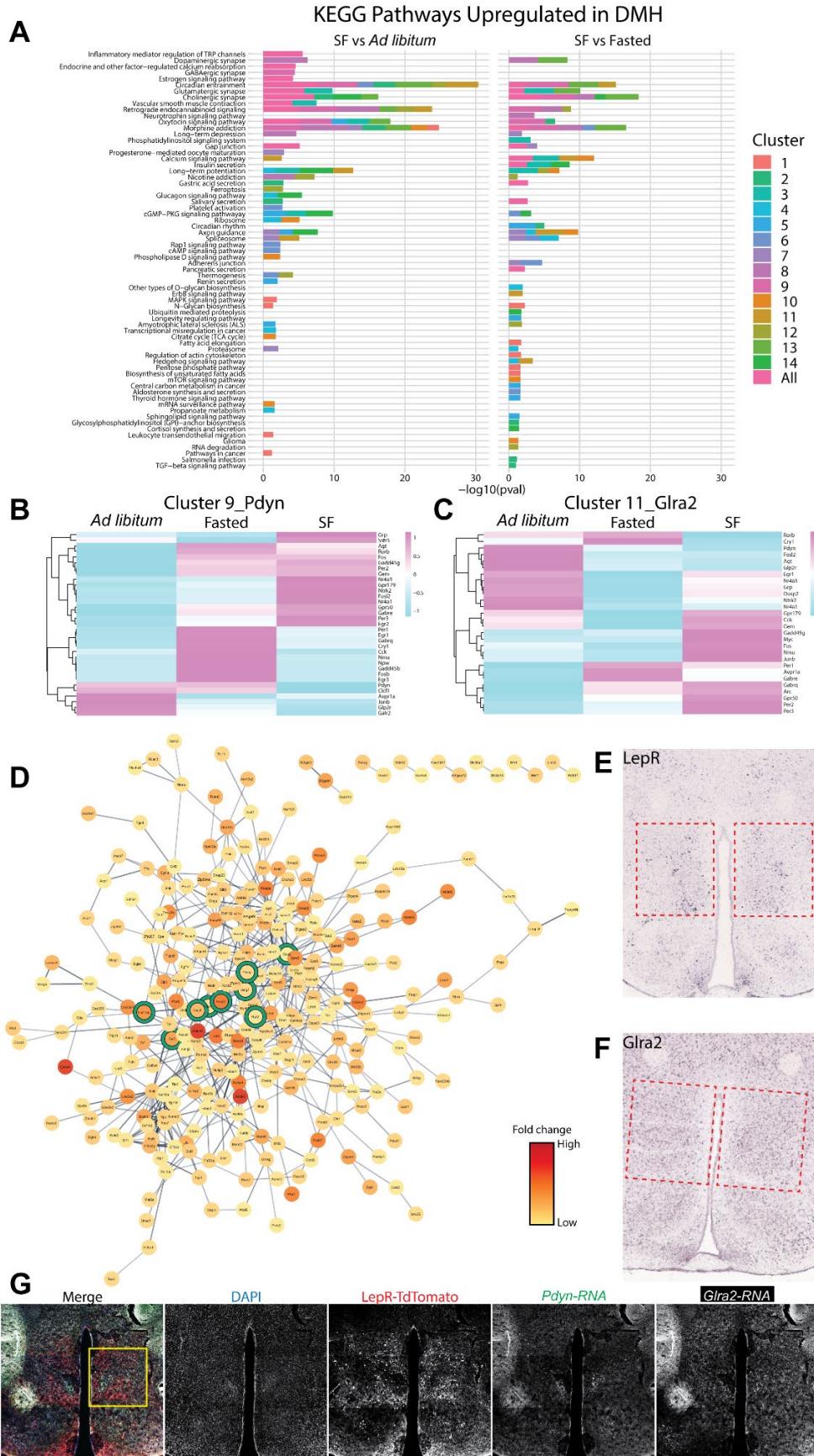
1045 **Supplemental figure 1- SCN and DMH single nuclei RNA-seq quality metrics and marker**
1046 **expression. Related to figure 1.**

1047 A. UMAP of SCN neurons, colored by sequencing library identity, after batch correction.
1048 B. Phylogenetic tree indicating the relatedness of 8 SCN neuronal clusters.
1049 C. Expression level distribution of the number of genes per cluster (left) and number of UMLs
1050 (unique molecular identifiers, which represent unique gene transcripts; right) among SCN
1051 clusters.
1052 D. Correlation matrix of average expression of all genes between SCN neuronal clusters.
1053 Values within the boxes are Pearson correlation coefficients.

1054 **E.** UMAP of DMH neurons, colored by sequencing library identity, after batch correction.

1055 **F.** Phylogenetic tree indicating the relatedness of 14 DMH neuronal clusters.

1056 **G.** Expression level distribution of the number of genes per cluster (left) and number of UMIs


1057 (right) among DMH clusters.

1058 **H.** Correlation matrix of average expression of all genes within DMH neuronal clusters.

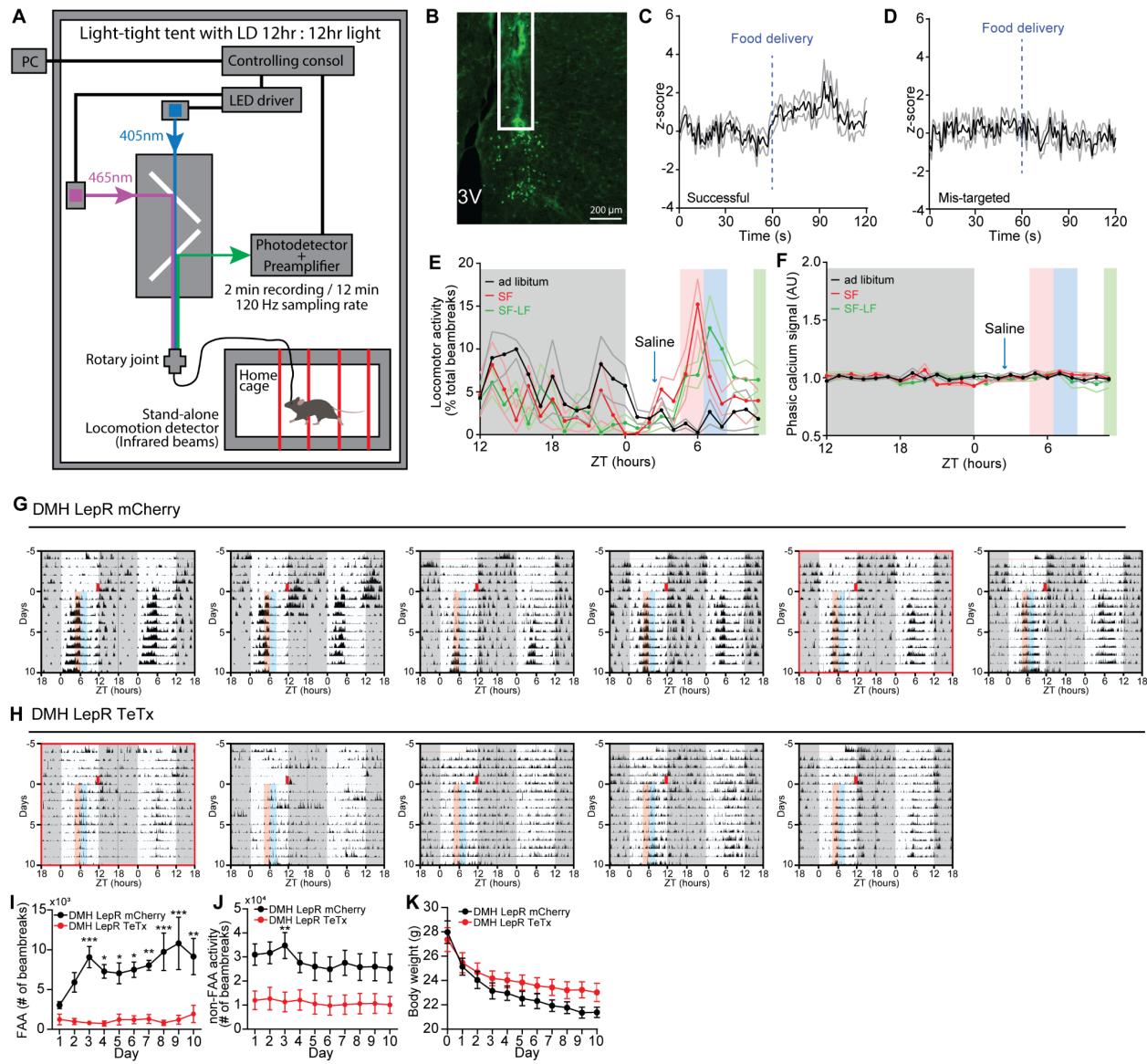
1059 Values within the boxes are Pearson correlation coefficients.

1060 **I.** KEGG “circadian entrainment” pathway map. The genes upregulated (Supplemental Fig

1061 2D) in DMH^{Lep^R} neurons during SF are labeled as pink on the map.

1063 **Supplemental figure 2- Network analysis of differentially expressed genes in the DMH**
1064 **between fasted and *ad libitum* conditions compared to scheduled feeding. Related to**
1065 **figure 2.**

1066 **A.** Kyoto Encyclopedia of Genes and Genomes (KEGG) from the Mouse 2019 database
1067 comparing pathways upregulated among SF vs *ad libitum* and SF vs fasted feeding conditions in
1068 each DMH neuronal cluster and upregulated pathways in all DMH neurons. Bars are colored by
1069 clusters. Inclusion criteria required p-value <0.05 and log2 fold change >0.25.


1070 **B.** Heatmap indicating expression level of genes up and downregulated among feeding conditions
1071 in the 9_Pdyn cluster.

1072 **C.** Heatmap indicating expression level of genes up and downregulated among feeding conditions
1073 in the 11_Glra2 cluster.

1074 **D.** STRING known and predicted protein interactions using Cytoscape platform to visualize
1075 molecular networks. Input genes were derived from cluster 13_Lepr differential testing using the
1076 Wilcoxon Rank Sum Test to compare SF to *ad libitum* and SF to fasting. Inclusion criteria required
1077 False Discovery Rate <0.05 and log2 fold change >0.25. The color of circles indicates the level
1078 of average log2 fold change between SF and fasting or *ad libitum* conditions. Functional
1079 enrichment of genes involved in circadian entrainment defined by KEGG 2019 database are
1080 circled in green.

1081 **E-F.** *In situ* hybridization (ISH) of the RNA for (E) LepR, and (F) Glra2 on the brain sections that
1082 contain DMH (outlined by red boxes). The images are from Allen Mouse Brain Atlas
1083 (<https://mouse.brain-map.org/search/index>).

1084 **G.** Representative coronal section image showing the localization of LepR, Pdyn and Glra2 cells
1085 in the DMH. LepR cells were marked by LepR-Cre; TdTomato protein, Pdyn and Glra2 cells were
1086 marked by RNA FISH. The area indicated by the yellow box was re-imaged and presented as a
1087 zoomed-in representative image in Fig 2H.

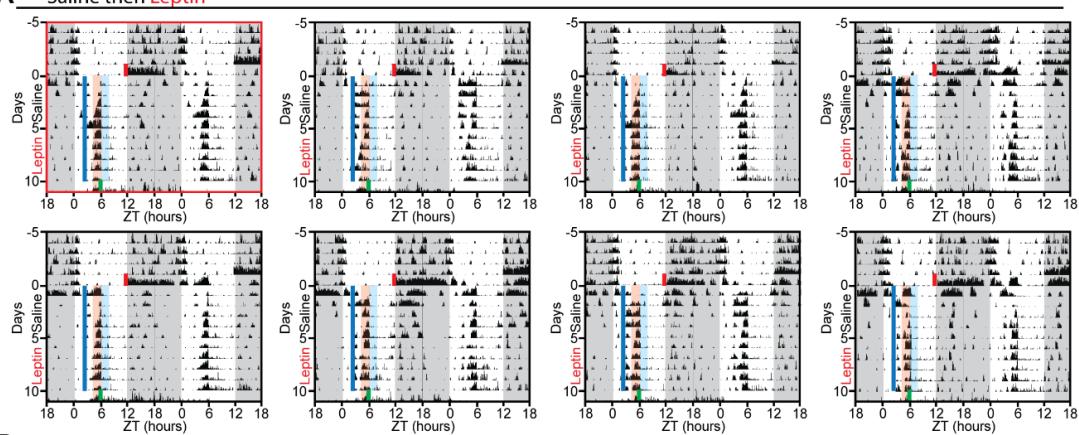
1088

1089

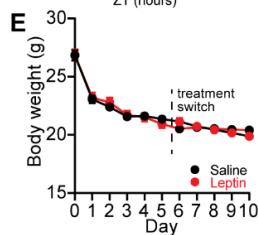
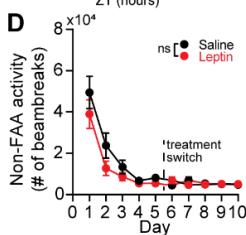
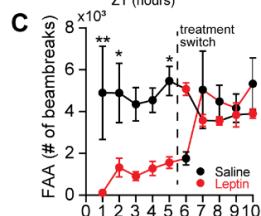
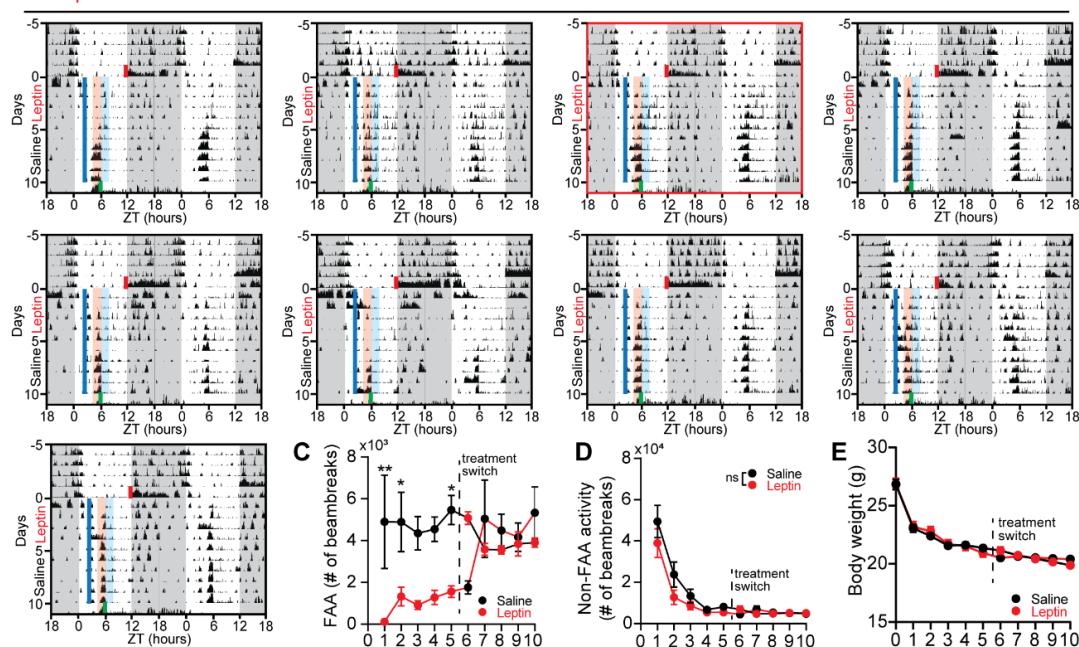
1090 **Supplemental figure 3 - DMH^{LepR} neuron calcium recording, and TeTx silencing**
1091 experiments during SF. Related to figure 3 and 4.

1092 **A.** Schematic diagram illustrating long-term fiber photometry recording coupled with locomotor
1093 activity monitoring.

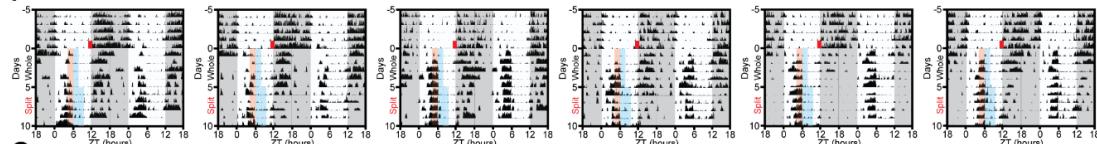
1094 **B.** Representative image showing the expression of GCaMP7s in DMH^{LepR} neurons and fiber optics
1095 cannula implant (white box).

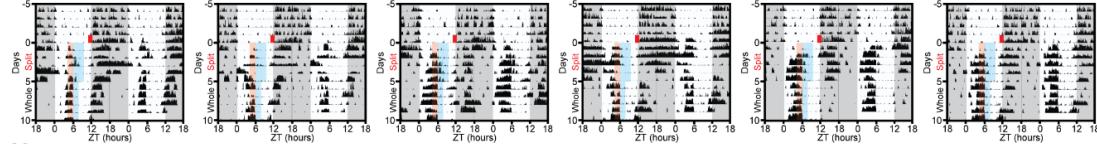

1096 **C-D.** Acute calcium signal response to food delivery on the 5th day of SF, in successful (C) and
1097 mis-targeted (D) mice. The mis-targeted animals in (D) were excluded for the analysis in Fig 3.

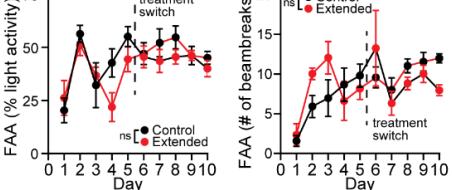
1098 n=6 mice/group.





1099 E. Locomotor activity of mis-targeted mice during SF. These mice developed strong FAA. n=5.

1100 **F.** Average phasic GCaMP7s signal of DMH^{LepR} neurons in the mis-targeted mice at 2 days before
1101 SF (black, *ad libitum*), 5th day of saline treated SF (red, SF), or 6th day of SF where saline
1102 injection was withheld and food delivery was delayed for 3.5 hours (green, SF-LF). n=6. The
1103 unaltered phasic calcium signal of these mis-targeted mice during SF suggests that the pre-meal
1104 elevation of phasic calcium signal is not due to artifact of increased locomotor activity.
1105 **G-H.** Actograms of all DMH^{LepR} mCherry (G) and DMH^{LepR} TeTx (H) mice on SF. The actograms
1106 of animals that have minimum sum of the square of the residuals to the average FAA value were
1107 used as representative figures in Fig 4, and depicted with red boxes.
1108 **I.** Absolute locomotor activity during the FAA window on SF. Repeated measures two-way
1109 ANOVA with Bonferroni post hoc comparison; n = 5-6 / group; $F_{\text{virus}} (1, 9) = 41.06$, p=0.0001.
1110 **J.** Absolute locomotor activity for the 22 hours per day other than FAA. Repeated measures two-
1111 way ANOVA; n = 5-6 / group; $F_{\text{virus}} (1, 9) = 7.220$, p=0.0249.
1112 **K.** Body weight of animals during SF. Repeated measures two-way ANOVA; n = 5-6 / group; F_{virus}
1113 (1, 9) = 1.330, p=0.2785; $F_{\text{virus} \times \text{time}} (10, 90) = 5.752$, p<0.0001.
1114 Data are represented as mean \pm SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
1115


A Saline then Leptin


B Leptin then Saline


F

G

H

1117 **Supplemental figure 4- Mis-timed leptin suppresses the development but not maintenance**
1118 **of FAA. Related to figure 5.**

1119 **A-B.** Actograms of all animals that received (A) saline then leptin or (B) leptin then saline, during
1120 scheduled feeding (SF). The actograms of animals that have minimum sum of the square of the
1121 residuals to the average FAA value were used as representative figures in Fig 5, and depicted
1122 with red boxes.

1123 **C.** Absolute locomotor activity during the FAA window, 2 hours prior to food delivery time.
1124 Repeated measures two-way ANOVA with Bonferroni post hoc comparison; n = 8-9 / group;
1125 $F_{\text{treatment}} (1, 15) = 22.3$, $p < 0.001$.

1126 **D.** Absolute locomotor activity for the 22 hours per day outside of the FAA window. Repeated
1127 measures two-way ANOVA; n = 8-9 / group; $F_{\text{treatment}} (1, 15) = 1.639$, $p = 0.2198$.

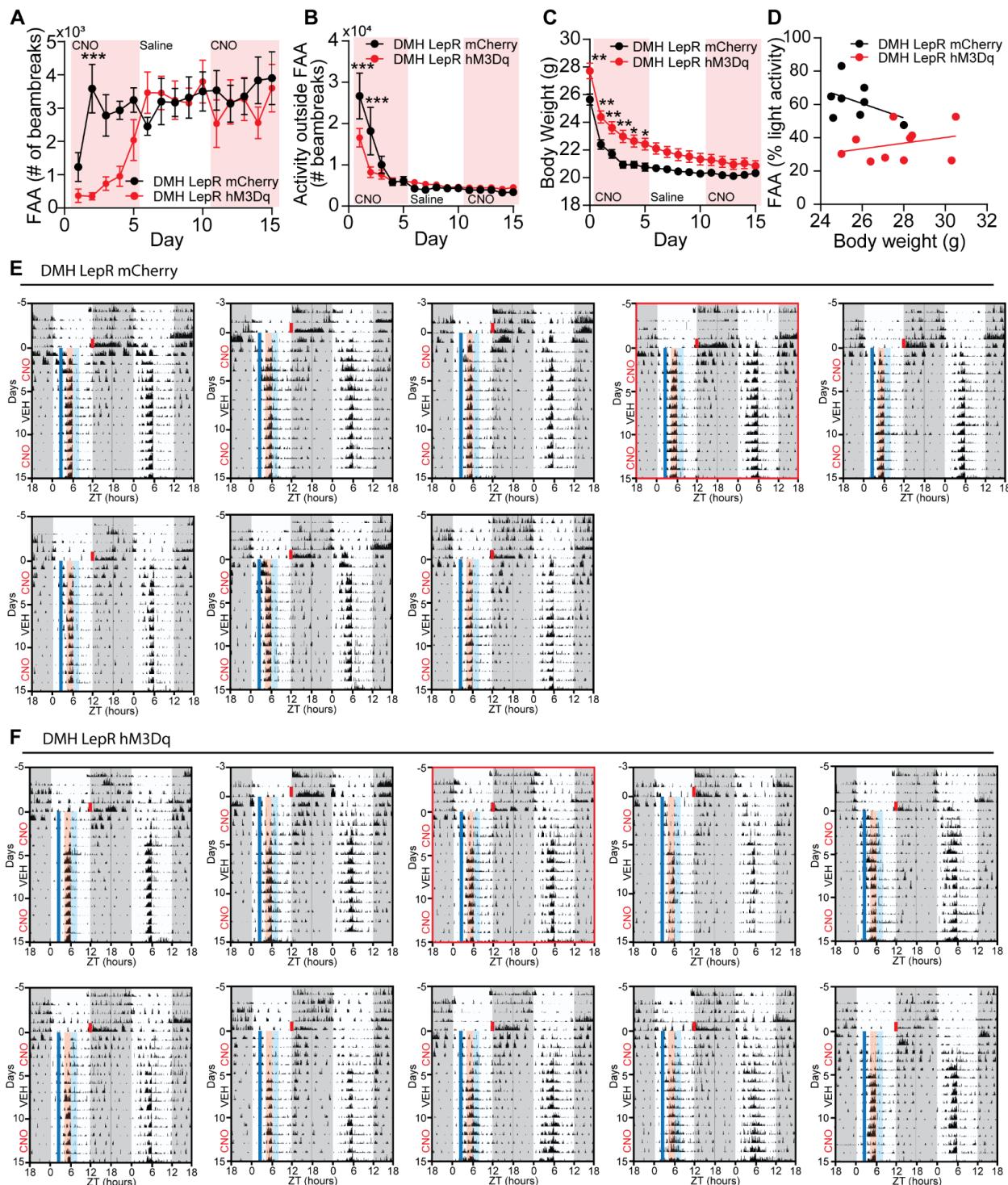
1128 **E.** Body weight of animals during SF. Repeated measures two-way ANOVA; n = 8-9 / group;
1129 $F_{\text{treatment}} (1, 15) = 0.007550$, $p = 0.9319$; $F_{\text{treatment*time}} (10, 150) = 2.633$, $p = 0.0056$.

1130 **F-G.** Actograms of all animals that received (F) control (whole pellet) then extended (same size
1131 pellet split up into 4 pellets) or (G) extended then control SF paradigm. Briefly, mice in the
1132 extended SF paradigm received one quarter of a pellet of food every hour for 4 hours, while mice
1133 in the control SF paradigm received one whole pellet at the first hour (see Methods for details).

1134 **H.** Quantification of FAA in extended SF experiment. Illustrated as a percentage of light-phase
1135 activity, without excluding any light-phase activity. Repeated measures two-way ANOVA with
1136 Bonferroni post hoc comparison; n = 6 / group; $F_{\text{treatment}} (1, 10) = 0.004799$, $p = 0.9461$.

1137 **I.** Absolute locomotor activity during the FAA window in extended SF experiment. FAA window is
1138 defined as 2 hours prior to food delivery time. Repeated measures two-way ANOVA with
1139 Bonferroni post hoc comparison; n = 6 / group; $F_{\text{treatment}} (1, 10) = 1.362$, $p = 0.2703$.

1140 Data are represented as mean \pm SEM. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$; ns, not significant.


1141

1142

1143

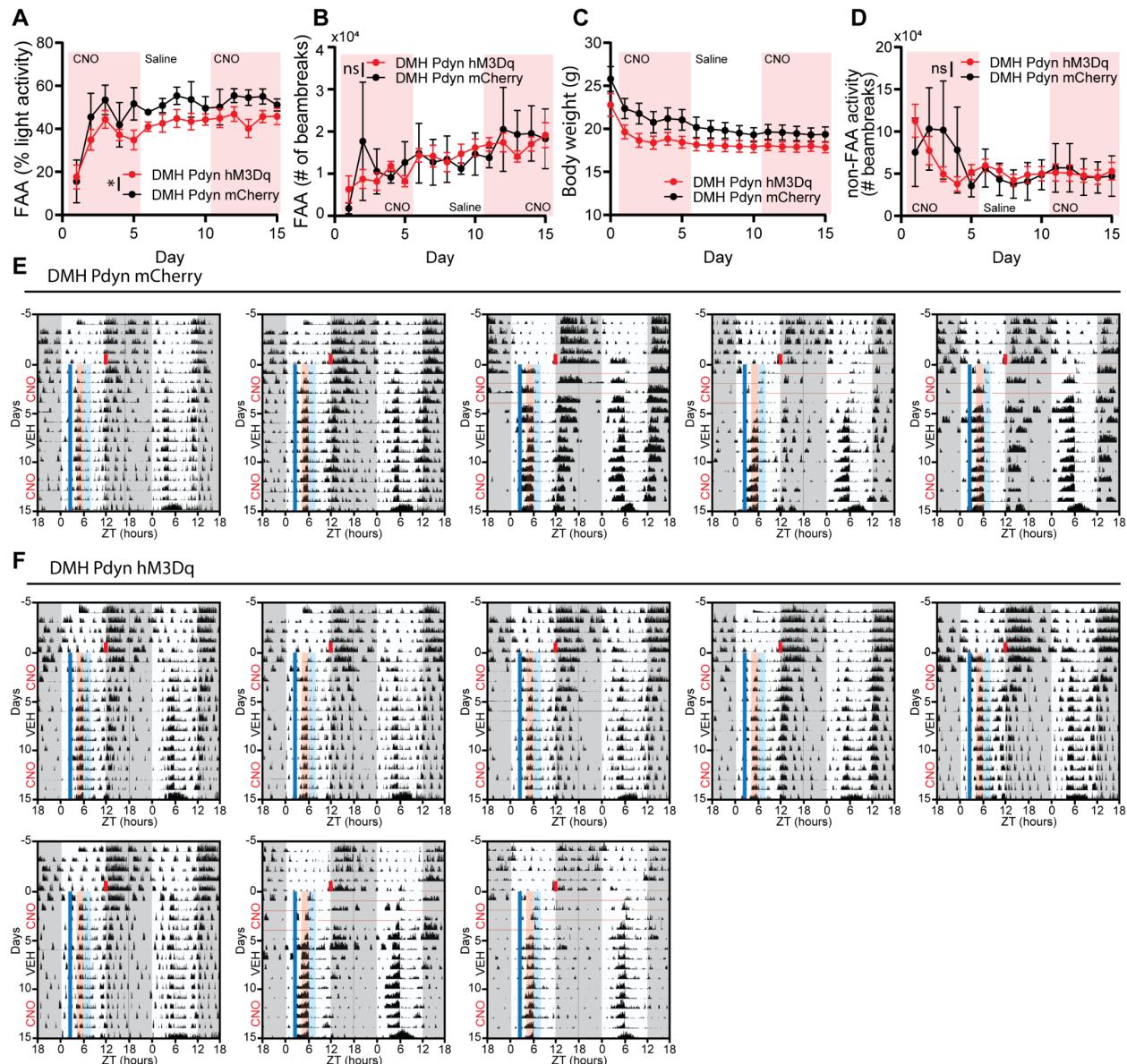
1144

1145

1146

1147 **Supplemental figure 5- Mistimed activation of DMH^{LepR} neurons suppresses development**
1148 **of FAA. Related to figure 5.**

1149 **A.** Absolute locomotor activity during the FAA window on SF. Repeated measures two-way
1150 ANOVA with Bonferroni post hoc comparison; n = 8-10 / group; $F_{\text{time} \times \text{virus}}$ (14, 224) = 4.647,
1151 p<0.001.


1152 **B.** Absolute locomotor activity for the 22 hours per day outside of the FAA window. Repeated
1153 measures two-way ANOVA with Bonferroni post hoc comparison; n = 8-10 / group; $F_{\text{time} \times \text{virus}}$ (14,
1154 224) = 4.082, p<0.001.

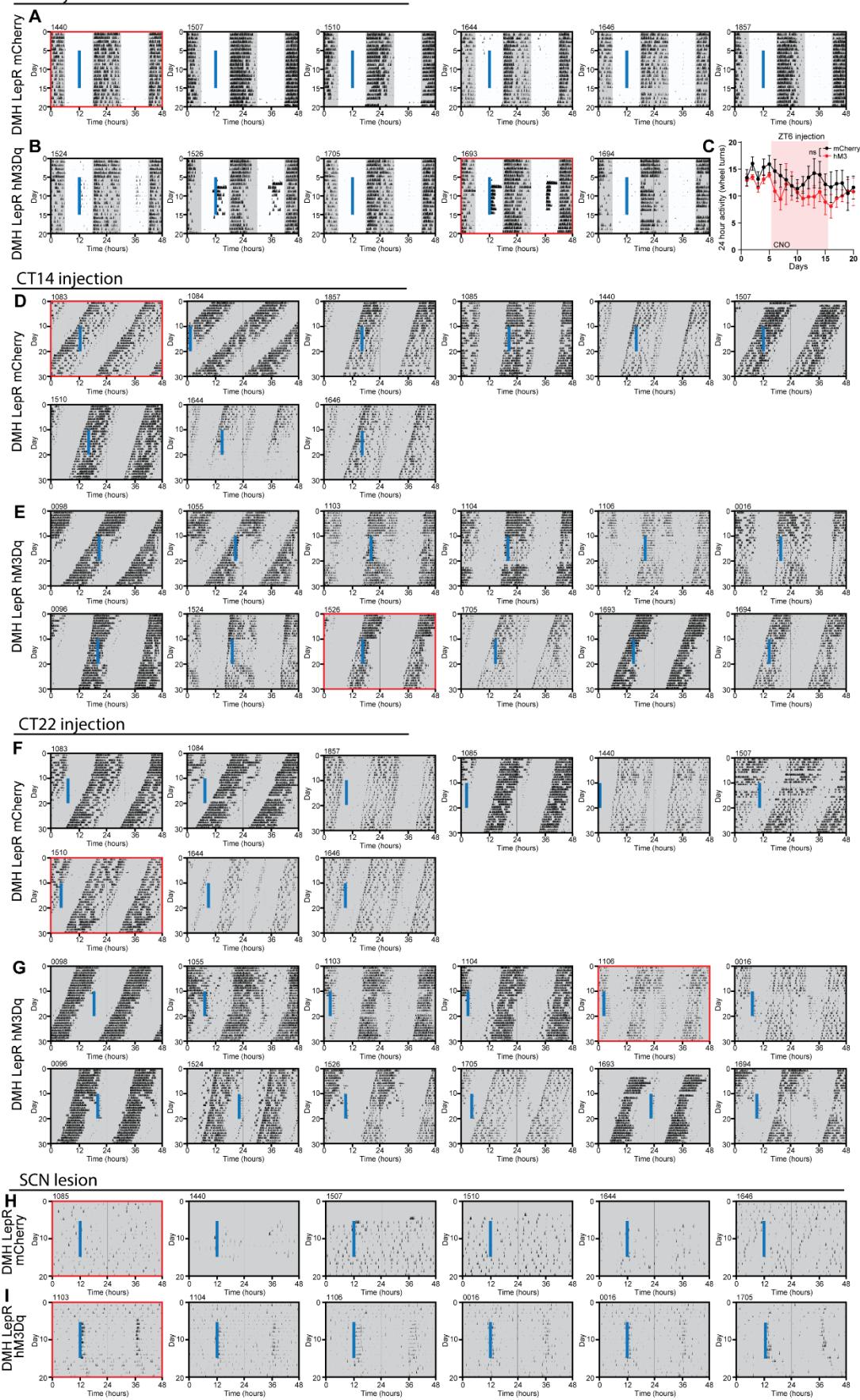
1155 **C.** Body weight during SF. Repeated measures two-way ANOVA with Bonferroni post hoc
1156 comparison; n = 8-10 / group; F_{virus} (1, 16) = 7.342, p=0.0155.

1157 **D.** Correlation between initial body weight (day before SF) with FAA level on 5th day of SF. Higher
1158 starting body weight of hM3Dq expressing animals was not the cause of dampened development
1159 of FAA.

1160 **E-F.** Actograms of all DMH^{LepR} mCherry (E) and DMH^{LepR} hM3Dq (F) mice on SF. The actograms
1161 of animals that have minimum sum of the square of the residuals to the average FAA value were
1162 used as representative figures in Fig 5, and depicted with red boxes.

1163 Data are represented as mean \pm SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.

1164


1165 **Supplemental figure 6- Chemogenetic activation of DMH^{Pdyn} neurons slightly inhibits the**
 1166 **robustness of FAA. Related to figure 5.**

1167 **A.** Quantification of FAA from DMH^{Pdyn} mCherry and DMH^{Pdyn} hM3Dq mice on SF that received
 1168 0.3mg/kg CNO (SF days 1-5), saline (SF days 6-10), and 0.3 mg/kg CNO (SF days 11-15)
 1169 injection at ZT2.5 during SF. Pink shading indicates days with CNO injection. No shading
 1170 indicates saline injection. Mixed-effects (REML) analysis with Bonferroni post hoc comparison; n
 1171 = 5-8 / group; $F_{\text{virus}}(1, 11) = 5.601$, $p=0.0374$.

1172 **B.** Absolute locomotor activity during the FAA window on SF. Mixed-effects (REML) analysis;
 1173 n=5-8 / group; $F_{\text{virus}}(1, 11) = 0.001101$, $p=0.9741$; $F_{\text{virus} \times \text{time}}(14, 144) = 1.106$, $p=0.3576$.

1174 **C.** Body weight during SF. Repeated measures two-way ANOVA with Bonferroni post hoc
1175 comparison; n = 5-8 / group; $F_{\text{virus}} (1, 11) = 2.827$, p=0.1208; $F_{\text{time} \times \text{virus}} (15, 165) = 2.834$, p=0.0006.
1176 **D.** Absolute locomotor activity for the 22 hours per day outside of the FAA window. Mixed-effects
1177 (REML) analysis; n=5-8 / group; $F_{\text{virus}} (1, 11) = 0.03343$, p=0.8582; $F_{\text{virus} \times \text{time}} (14, 145) = 1.601$,
1178 p=0.0853.
1179 **E-F.** Actograms of all DMH^{Pdyn} mCherry (E) and DMH^{Pdyn} hM3Dq (F) mice on SF. Horizontal red
1180 lines indicate the missing data due to technical failure.
1181 Data are represented as mean \pm SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.

ZT6 injection in LD

1183 **Supplemental figure 7- Repetitive activation of DMH^{LepR} neurons alters SCN dependent**
1184 **circadian locomotor activity under *ad libitum* feeding conditions. Related to figure 6 and 7.**

1185 **A-B.** Actograms of all LepR Cre animals bilaterally injected with (A) AAV-hSyn-DIO-mCherry or
1186 (B) AAV-hSyn-DIO-hM3Dq-mCherry and injected with CNO at ZT6 (solid blue line) in 12-12 LD.
1187 The actograms used as representative figures in Fig 6 are depicted with red boxes.

1188 **C.** 24-hour total wheel revolutions of DMH^{LepR} mCherry and DMH^{LepR} hM3Dq animals before,
1189 during, and after CNO injections at ZT6 in 12-12 LD. Pink shading represents days with CNO
1190 injection. Repeated measures two-way ANOVA; n = 5-6 / group; $F_{\text{virus}} (1, 9) = 0.7855$, $p=0.3985$;
1191 $F_{\text{virus} \times \text{time}} (19, 171) = 0.9782$, $p=0.4890$.

1192 **D-E.** Actograms of all LepR Cre animals bilaterally injected with (D) AAV-hSyn-DIO-mCherry or
1193 (E) AAV-hSyn-DIO-hM3Dq-mCherry and injected with CNO at ~CT14 (solid blue line). The
1194 actograms used as representative figures in Fig 6 are depicted with red boxes.

1195 **F-G.** Actograms of all LepR Cre animals bilaterally injected with (F) AAV-hSyn-DIO-mCherry or
1196 (G) AAV-hSyn-DIO-hM3Dq-mCherry and injected with CNO at ~CT22 (solid blue line). The
1197 actograms used as representative figures in Fig 6 are depicted with red boxes. Notably, animal
1198 #1084 in F was excluded from quantification in Fig 6N-O, because the injection time on the 10th
1199 day was near the locomotor activity onset (<3 hours) of the following day, due to the short free-
1200 running period.

1201 **H-I.** Actograms of all LepR Cre animals with electrolytic lesions of the SCN and bilaterally injected
1202 with (H) AAV-hSyn-DIO-mCherry or (I) AAV-hSyn-DIO-hM3Dq-mCherry and injected with CNO
1203 every 24 hours for 10 days (solid blue line). The actograms used as representative figures in Fig
1204 7 are depicted with red boxes.

1205

1206 **Bibliography**

1207 1. Pan, A., Schernhammer, E.S., Sun, Q., and Hu, F.B. (2011). Rotating night shift work and
1208 risk of type 2 diabetes: two prospective cohort studies in women. *PLoS Med.* 8,
1209 e1001141. 10.1371/journal.pmed.1001141.

1210 2. Zimberg, I.Z., Fernandes Junior, S.A., Crispim, C.A., Tufik, S., and de Mello, M.T. (2012).
1211 Metabolic impact of shift work. *Work 41 Suppl 1*, 4376–4383. 10.3233/WOR-2012-0733-
1212 4376.

1213 3. Johnston, J.D., Ordovás, J.M., Scheer, F.A., and Turek, F.W. (2016). Circadian rhythms,
1214 metabolism, and chrononutrition in rodents and humans. *Adv. Nutr.* 7, 399–406.
1215 10.3945/an.115.010777.

1216 4. Arble, D.M., Bass, J., Laposky, A.D., Vitaterna, M.H., and Turek, F.W. (2009). Circadian
1217 timing of food intake contributes to weight gain. *Obesity (Silver Spring)* 17, 2100–2102.
1218 10.1038/oby.2009.264.

1219 5. Hatori, M., Vollmers, C., Zarrinpar, A., DiTacchio, L., Bushong, E.A., Gill, S., Leblanc, M.,
1220 Chaix, A., Joens, M., Fitzpatrick, J.A.J., et al. (2012). Time-restricted feeding without
1221 reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. *Cell Metab.* 15, 848–860. 10.1016/j.cmet.2012.04.019.

1223 6. Sutton, E.F., Beyl, R., Early, K.S., Cefalu, W.T., Ravussin, E., and Peterson, C.M. (2018).
1224 Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and
1225 Oxidative Stress Even without Weight Loss in Men with Prediabetes. *Cell Metab.* 27,
1226 1212-1221.e3. 10.1016/j.cmet.2018.04.010.

1227 7. Cienfuegos, S., Gabel, K., Kalam, F., Ezpeleta, M., Wiseman, E., Pavlou, V., Lin, S.,
1228 Oliveira, M.L., and Varady, K.A. (2020). Effects of 4- and 6-h Time-Restricted Feeding on
1229 Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with
1230 Obesity. *Cell Metab.* 32, 366-378.e3. 10.1016/j.cmet.2020.06.018.

1231 8. Acosta-Rodríguez, V., Rijo-Ferreira, F., Izumo, M., Xu, P., Wight-Carter, M., Green, C.B.,
1232 and Takahashi, J.S. (2022). Circadian alignment of early onset caloric restriction
1233 promotes longevity in male C57BL/6J mice. *Science* 376, 1192–1202.
1234 10.1126/science.abk0297.

1235 9. Zarrinpar, A., Chaix, A., and Panda, S. (2016). Daily eating patterns and their impact on
1236 health and disease. *Trends Endocrinol. Metab.* 27, 69–83. 10.1016/j.tem.2015.11.007.

1237 10. Tang, Q., Assali, D.R., Güler, A.D., and Steele, A.D. (2022). Dopamine systems and
1238 biological rhythms: Let's get a move on. *Front. Integr. Neurosci.* 16, 957193.
1239 10.3389/fnint.2022.957193.

1240 11. Richter, C.P. (1922). A behavioristic study of the activity of the rat. *Comp. Psychol. Monog*
1241 1, 1–54.

1242 12. Stephan, F.K., Swann, J.M., and Sisk, C.L. (1979). Anticipation of 24-hr feeding
1243 schedules in rats with lesions of the suprachiasmatic nucleus. *Behav. Neural Biol.* 25,
1244 346–363. 10.1016/S0163-1047(79)90415-1.

1245 13. Stephan, F.K., Swann, J.M., and Sisk, C.L. (1979). Entrainment of circadian rhythms by
1246 feeding schedules in rats with suprachiasmatic lesions. *Behav. Neural Biol.* 25, 545–554.
1247 10.1016/S0163-1047(79)90332-7.

1248 14. Patton, A.P., and Hastings, M.H. (2018). The suprachiasmatic nucleus. *Curr. Biol.* 28,
1249 R816–R822. 10.1016/j.cub.2018.06.052.

1250 15. Takahashi, J.S. (2017). Transcriptional architecture of the mammalian circadian clock.
1251 *Nat. Rev. Genet.* 18, 164–179. 10.1038/nrg.2016.150.

1252 16. Pendergast, J.S., and Yamazaki, S. (2018). The Mysterious Food-Entrainable Oscillator:
1253 Insights from Mutant and Engineered Mouse Models. *J. Biol. Rhythms* 33, 458–474.
1254 10.1177/0748730418789043.

1255 17. Mistlberger, R.E. (2020). Food as circadian time cue for appetitive behavior. [version 1;
1256 peer review: 5 approved]. *F1000Res.* 9. 10.12688/f1000research.20829.1.

1257 18. Davidson, A.J. (2009). Lesion studies targeting food-anticipatory activity. *Eur. J. Neurosci.*
1258 30, 1658–1664. 10.1111/j.1460-9568.2009.06961.x.

1259 19. Mistlberger, R.E. (2011). Neurobiology of food anticipatory circadian rhythms. *Physiol.*
1260 *Behav.* 104, 535–545. 10.1016/j.physbeh.2011.04.015.

1261 20. Petersen, C.C., Cao, F., Stinchcombe, A.R., and Mistlberger, R.E. (2022). Multiple
1262 entrained oscillator model of food anticipatory circadian rhythms. *Sci. Rep.* 12, 9306.
1263 10.1038/s41598-022-13242-w.

1264 21. Chavan, R., Feillet, C., Costa, S.S.F., Delorme, J.E., Okabe, T., Ripperger, J.A., and
1265 Albrecht, U. (2016). Liver-derived ketone bodies are necessary for food anticipation. *Nat.*
1266 *Commun.* 7, 10580. 10.1038/ncomms10580.

1267 22. Trzeciak, J.R., and Steele, A.D. (2022). Studying food entrainment: Models, methods, and
1268 musings. *Front. Nutr.* 9, 998331. 10.3389/fnut.2022.998331.

1269 23. Chou, T.C., Scammell, T.E., Gooley, J.J., Gaus, S.E., Saper, C.B., and Lu, J. (2003).
1270 Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian
1271 rhythms. *J. Neurosci.* 23, 10691–10702.

1272 24. Faber, C.L., Deem, J.D., Phan, B.A., Doan, T.P., Ogimoto, K., Mirzadeh, Z., Schwartz,
1273 M.W., and Morton, G.J. (2021). Leptin receptor neurons in the dorsomedial hypothalamus
1274 regulate diurnal patterns of feeding, locomotion, and metabolism. *eLife* 10.
1275 10.7554/eLife.63671.

1276 25. Verwey, M., Khoja, Z., Stewart, J., and Amir, S. (2007). Differential regulation of the
1277 expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by
1278 daily limited access to highly palatable food in food-deprived and free-fed rats.
1279 *Neuroscience* 147, 277–285. 10.1016/j.neuroscience.2007.04.044.

1280 26. Acosta-Galvan, G., Yi, C.-X., van der Vliet, J., Jhamandas, J.H., Panula, P., Angeles-
1281 Castellanos, M., Del Carmen Basualdo, M., Escobar, C., and Buijs, R.M. (2011).
1282 Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus
1283 determines intensity of food anticipatory behavior. *Proc Natl Acad Sci USA* 108, 5813–

1284 5818. 10.1073/pnas.1015551108.

1285 27. Krieger, D.T., Hauser, H., and Krey, L.C. (1977). Suprachiasmatic nuclear lesions do not
1286 abolish food-shifted circadian adrenal and temperature rhythmicity. *Science* 197, 398–
1287 399. 10.1126/science.877566.

1288 28. Takasu, N.N., Kurosawa, G., Tokuda, I.T., Mochizuki, A., Todo, T., and Nakamura, W.
1289 (2012). Circadian regulation of food-anticipatory activity in molecular clock-deficient mice.
1290 *PLoS ONE* 7, e48892. 10.1371/journal.pone.0048892.

1291 29. Fernandez, D.C., Komal, R., Langel, J., Ma, J., Duy, P.Q., Penzo, M.A., Zhao, H., and
1292 Hattar, S. (2020). Retinal innervation tunes circuits that drive nonphotic entrainment to
1293 food. *Nature* 581, 194–198. 10.1038/s41586-020-2204-1.

1294 30. Stokkan, K.A., Yamazaki, S., Tei, H., Sakaki, Y., and Menaker, M. (2001). Entrainment of
1295 the circadian clock in the liver by feeding. *Science* 291, 490–493.
1296 10.1126/science.291.5503.490.

1297 31. Yoo, S.-H., Yamazaki, S., Lowrey, P.L., Shimomura, K., Ko, C.H., Buhr, E.D., Siepka,
1298 S.M., Hong, H.-K., Oh, W.J., Yoo, O.J., et al. (2004). PERIOD2::LUCIFERASE real-time
1299 reporting of circadian dynamics reveals persistent circadian oscillations in mouse
1300 peripheral tissues. *Proc Natl Acad Sci USA* 101, 5339–5346. 10.1073/pnas.0308709101.

1301 32. Mendoza, J., Gourmelen, S., Dumont, S., Sage-Ciocca, D., Pévet, P., and Challet, E.
1302 (2012). Setting the main circadian clock of a diurnal mammal by hypocaloric feeding. *J
1303 Physiol (Lond)* 590, 3155–3168. 10.1113/jphysiol.2012.230300.

1304 33. Mendoza, J., Graff, C., Dardente, H., Pévet, P., and Challet, E. (2005). Feeding cues alter
1305 clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice
1306 exposed to a light/dark cycle. *J. Neurosci.* 25, 1514–1522. 10.1523/JNEUROSCI.4397-
1307 04.2005.

1308 34. Mendoza, J. (2019). Food intake and addictive-like eating behaviors: Time to think about
1309 the circadian clock(s). *Neurosci. Biobehav. Rev.* 106, 122–132.
1310 10.1016/j.neubiorev.2018.07.003.

1311 35. Xu, P., Berto, S., Kulkarni, A., Jeong, B., Joseph, C., Cox, K.H., Greenberg, M.E., Kim, T.-
1312 K., Konopka, G., and Takahashi, J.S. (2021). NPAS4 regulates the transcriptional
1313 response of the suprachiasmatic nucleus to light and circadian behavior. *Neuron* 109,
1314 3268-3282.e6. 10.1016/j.neuron.2021.07.026.

1315 36. Wen, S., Ma, D., Zhao, M., Xie, L., Wu, Q., Gou, L., Zhu, C., Fan, Y., Wang, H., and Yan,
1316 J. (2020). Spatiotemporal single-cell analysis of gene expression in the mouse
1317 suprachiasmatic nucleus. *Nature Neuroscience*.

1318 37. Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F.,
1319 Boguski, M.S., Brockway, K.S., Byrnes, E.J., et al. (2007). Genome-wide atlas of gene
1320 expression in the adult mouse brain. *Nature* 445, 168–176. 10.1038/nature05453.

1321 38. Fuller, P.M., Lu, J., and Saper, C.B. (2008). Differential rescue of light- and food-
1322 entrainable circadian rhythms. *Science* 320, 1074–1077. 10.1126/science.1153277.

1323 39. Mieda, M., Williams, S.C., Richardson, J.A., Tanaka, K., and Yanagisawa, M. (2006). The
1324 dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker.
1325 *Proc Natl Acad Sci USA* **103**, 12150–12155. 10.1073/pnas.0604189103.

1326 40. Landry, G.J., Kent, B.A., Patton, D.F., Jaholkowski, M., Marchant, E.G., and Mistlberger,
1327 R.E. (2011). Evidence for time-of-day dependent effect of neurotoxic dorsomedial
1328 hypothalamic lesions on food anticipatory circadian rhythms in rats. *PLoS ONE* **6**, e24187.
1329 10.1371/journal.pone.0024187.

1330 41. Rastogi, A., and Mintz, E.M. (2017). Neural correlates of food anticipatory activity in mice
1331 subjected to once- or twice-daily feeding periods. *Eur. J. Neurosci.* **46**, 2265–2275.
1332 10.1111/ejn.13671.

1333 42. Gooley, J.J., Schomer, A., and Saper, C.B. (2006). The dorsomedial hypothalamic
1334 nucleus is critical for the expression of food-entrainable circadian rhythms. *Nat. Neurosci.*
1335 **9**, 398–407. 10.1038/nn1651.

1336 43. Knight, Z.A., Tan, K., Birsoy, K., Schmidt, S., Garrison, J.L., Wysocki, R.W., Emiliano, A.,
1337 Ekstrand, M.I., and Friedman, J.M. (2012). Molecular profiling of activated neurons by
1338 phosphorylated ribosome capture. *Cell* **151**, 1126–1137. 10.1016/j.cell.2012.10.039.

1339 44. Kuo, T. (2019). Dorsomedial hypothalamic prodynorphin neuron is crucial for expression
1340 of food anticipation in mice.

1341 45. Caglar, C., and Friedman, J. (2021). Restriction of food intake by PPP1R17-expressing
1342 neurons in the DMH. *Proc Natl Acad Sci USA* **118**. 10.1073/pnas.2100194118.

1343 46. Mistlberger, R.E., Yamazaki, S., Pendergast, J.S., Landry, G.J., Takumi, T., and
1344 Nakamura, W. (2008). Comment on “Differential rescue of light- and food-entrainable
1345 circadian rhythms”. *Science* **322**, 675; author reply 675. 10.1126/science.1161284.

1346 47. Mistlberger, R.E., Buijs, R.M., Challet, E., Escobar, C., Landry, G.J., Kalsbeek, A., Pevet,
1347 P., and Shibata, S. (2009). Standards of evidence in chronobiology: critical review of a
1348 report that restoration of Bmal1 expression in the dorsomedial hypothalamus is sufficient
1349 to restore circadian food anticipatory rhythms in Bmal1-/- mice. *J. Circadian Rhythms* **7**, 3.
1350 10.1186/1740-3391-7-3.

1351 48. Pendergast, J.S., Nakamura, W., Friday, R.C., Hatanaka, F., Takumi, T., and Yamazaki,
1352 S. (2009). Robust food anticipatory activity in BMAL1-deficient mice. *PLoS ONE* **4**, e4860.
1353 10.1371/journal.pone.0004860.

1354 49. Izumo, M., Pejchal, M., Schook, A.C., Lange, R.P., Walisser, J.A., Sato, T.R., Wang, X.,
1355 Bradfield, C.A., and Takahashi, J.S. (2014). Differential effects of light and feeding on
1356 circadian organization of peripheral clocks in a forebrain Bmal1 mutant. *eLife* **3**.
1357 10.7554/eLife.04617.

1358 50. Storch, K.-F., and Weitz, C.J. (2009). Daily rhythms of food-anticipatory behavioral activity
1359 do not require the known circadian clock. *Proc Natl Acad Sci USA* **106**, 6808–6813.
1360 10.1073/pnas.0902063106.

1361 51. Lee, S., Bookout, A.L., Lee, C.E., Gautron, L., Harper, M.J., Elias, C.F., Lowell, B.B., and
1362 Elmquist, J.K. (2012). Laser-capture microdissection and transcriptional profiling of the

1363 dorsomedial nucleus of the hypothalamus. *J. Comp. Neurol.* 520, 3617–3632.
1364 10.1002/cne.23116.

1365 52. Garfield, A.S., Shah, B.P., Burgess, C.R., Li, M.M., Li, C., Steger, J.S., Madara, J.C.,
1366 Campbell, J.N., Kroeger, D., Scammell, T.E., et al. (2016). Dynamic GABAergic afferent
1367 modulation of AgRP neurons. *Nat. Neurosci.* 19, 1628–1635. 10.1038/nn.4392.

1368 53. Lee, S., Lee, C.E., Elias, C.F., and Elmquist, J.K. (2009). Expression of the diabetes-
1369 associated gene TCF7L2 in adult mouse brain. *J. Comp. Neurol.* 517, 925–939.
1370 10.1002/cne.22199.

1371 54. Kim, D.W., Liu, K., Wang, Z.Q., Zhang, Y.S., Bathini, A., Brown, M.P., Lin, S.H.,
1372 Washington, P.W., Sun, C., Lindtner, S., et al. (2021). Gene regulatory networks
1373 controlling differentiation, survival, and diversification of hypothalamic Lhx6-expressing
1374 GABAergic neurons. *Commun. Biol.* 4, 95. 10.1038/s42003-020-01616-7.

1375 55. Berrios, J., Li, C., Madara, J.C., Garfield, A.S., Steger, J.S., Krashes, M.J., and Lowell,
1376 B.B. (2021). Food cue regulation of AGRP hunger neurons guides learning. *Nature* 595,
1377 695–700. 10.1038/s41586-021-03729-3.

1378 56. Mazzone, C.M., Liang-Gualipa, J., Li, C., Wolcott, N.S., Boone, M.H., Southern, M.,
1379 Kobzar, N.P., Salgado, I. de A., Reddy, D.M., Sun, F., et al. (2020). High-fat food biases
1380 hypothalamic and mesolimbic expression of consummatory drives. *Nat. Neurosci.* 23,
1381 1253–1266. 10.1038/s41593-020-0684-9.

1382 57. Imoto, D., Yamamoto, I., Matsunaga, H., Yonekura, T., Lee, M.-L., Kato, K.X., Yamasaki,
1383 T., Xu, S., Ishimoto, T., Yamagata, S., et al. (2021). Refeeding activates neurons in the
1384 dorsomedial hypothalamus to inhibit food intake and promote positive valence. *Mol.*
1385 *Metab.* 54, 101366. 10.1016/j.molmet.2021.101366.

1386 58. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J.M. (1994).
1387 Positional cloning of the mouse *obese* gene and its human homologue. *Nature* 372, 425–
1388 432. 10.1038/372425a0.

1389 59. Kalsbeek, A., Fliers, E., Romijn, J.A., La Fleur, S.E., Wortel, J., Bakker, O., Endert, E.,
1390 and Buijs, R.M. (2001). The suprachiasmatic nucleus generates the diurnal changes in
1391 plasma leptin levels. *Endocrinology* 142, 2677–2685. 10.1210/endo.142.6.8197.

1392 60. Schoeller, D.A., Cella, L.K., Sinha, M.K., and Caro, J.F. (1997). Entrainment of the diurnal
1393 rhythm of plasma leptin to meal timing. *J. Clin. Invest.* 100, 1882–1887.
1394 10.1172/JCI119717.

1395 61. Arble, D.M., Vitaterna, M.H., and Turek, F.W. (2011). Rhythmic leptin is required for
1396 weight gain from circadian desynchronized feeding in the mouse. *PLoS ONE* 6, e25079.
1397 10.1371/journal.pone.0025079.

1398 62. Jones, J.R., Simon, T., Lones, L., and Herzog, E.D. (2018). SCN VIP Neurons Are
1399 Essential for Normal Light-Mediated Resetting of the Circadian System. *J. Neurosci.* 38,
1400 7986–7995. 10.1523/JNEUROSCI.1322-18.2018.

1401 63. Pettit, N.L., Yap, E.-L., Greenberg, M.E., and Harvey, C.D. (2022). Fos ensembles
1402 encode and shape stable spatial maps in the hippocampus. *Nature* 609, 327–334.

1403 10.1038/s41586-022-05113-1.

1404 64. Stowie, A., Qiao, Z., Buonfiglio, D.D.C., Ehlen, J.C., Benveniste, M., and Davidson, A.J.
1405 (2021). Arginine-Vasopressin Expressing Neurons in the Murine Suprachiasmatic Nucleus
1406 Exhibit a Circadian Rhythm in Network Coherence *in vivo*. *BioRxiv*.
1407 10.1101/2021.12.07.471437.

1408 65. Friedman, J.M. (2019). Leptin and the endocrine control of energy balance. *Nat. Metab.* 1,
1409 754–764. 10.1038/s42255-019-0095-y.

1410 66. Rezai-Zadeh, K., Yu, S., Jiang, Y., Laque, A., Schwartzenburg, C., Morrison, C.D.,
1411 Derbenev, A.V., Zsombok, A., and Münzberg, H. (2014). Leptin receptor neurons in the
1412 dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but
1413 not food intake. *Mol. Metab.* 3, 681–693. 10.1016/j.molmet.2014.07.008.

1414 67. Todd, W.D., Venner, A., Anaclet, C., Broadhurst, R.Y., De Luca, R., Bandaru, S.S.,
1415 Issokson, L., Hablitz, L.M., Cravetchi, O., Arrigoni, E., et al. (2020). Suprachiasmatic VIP
1416 neurons are required for normal circadian rhythmicity and comprised of molecularly
1417 distinct subpopulations. *Nat. Commun.* 11, 4410. 10.1038/s41467-020-17197-2.

1418 68. Landry, G.J., Opiol, H., Marchant, E.G., Pavlovski, I., Mear, R.J., Hamson, D.K., and
1419 Mistlberger, R.E. (2012). Scheduled daily mating induces circadian anticipatory activity
1420 rhythms in the male rat. *PLoS ONE* 7, e40895. 10.1371/journal.pone.0040895.

1421 69. Edgar, D.M., and Dement, W.C. (1991). Regularly scheduled voluntary exercise
1422 synchronizes the mouse circadian clock. *Am. J. Physiol.* 261, R928-33.
1423 10.1152/ajpregu.1991.261.4.R928.

1424 70. Damiola, F., Le Minh, N., Preitner, N., Kornmann, B., Fleury-Olela, F., and Schibler, U.
1425 (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the
1426 central pacemaker in the suprachiasmatic nucleus. *Genes Dev.* 14, 2950–2961.
1427 10.1101/gad.183500.

1428 71. Pilorz, V., Cunningham, P.S., Jackson, A., West, A.C., Wager, T.T., Loudon, A.S.I., and
1429 Bechtold, D.A. (2014). A novel mechanism controlling resetting speed of the circadian
1430 clock to environmental stimuli. *Curr. Biol.* 24, 766–773. 10.1016/j.cub.2014.02.027.

1431 72. Dudley, C.A., Erbel-Sieler, C., Estill, S.J., Reick, M., Franken, P., Pitts, S., and McKnight,
1432 S.L. (2003). Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice.
1433 *Science* 301, 379–383. 10.1126/science.1082795.

1434 73. Grippo, R.M., Purohit, A.M., Zhang, Q., Zweifel, L.S., and Güler, A.D. (2017). Direct
1435 midbrain dopamine input to the suprachiasmatic nucleus accelerates circadian
1436 entrainment. *Curr. Biol.* 27, 2465-2475.e3. 10.1016/j.cub.2017.06.084.

1437 74. Assali, D.R., Sidikpramana, M., Villa, A.P., Falkenstein, J., and Steele, A.D. (2021). Type
1438 1 dopamine receptor (D1R)-independent circadian food anticipatory activity in mice. *PLoS*
1439 *ONE* 16, e0242897. 10.1371/journal.pone.0242897.

1440 75. Prosser, R.A., and Bergeron, H.E. (2003). Leptin phase-advances the rat suprachiasmatic
1441 circadian clock *in vitro*. *Neurosci. Lett.* 336, 139–142. 10.1016/s0304-3940(02)01234-x.

1442 76. Mendoza, J., Lopez-Lopez, C., Revel, F.G., Jeanneau, K., Delerue, F., Prinssen, E.,
1443 Challet, E., Moreau, J.L., and Grundschober, C. (2011). Dimorphic effects of leptin on the
1444 circadian and hypocretinergic systems of mice. *J. Neuroendocrinol.* 23, 28–38.
1445 10.1111/j.1365-2826.2010.02072.x.

1446 77. Ribeiro, A.C., Ceccarini, G., Dupré, C., Friedman, J.M., Pfaff, D.W., and Mark, A.L.
1447 (2011). Contrasting effects of leptin on food anticipatory and total locomotor activity. *PLoS*
1448 *ONE* 6, e23364. 10.1371/journal.pone.0023364.

1449 78. Gunapala, K.M., Gallardo, C.M., Hsu, C.T., and Steele, A.D. (2011). Single gene deletions
1450 of orexin, leptin, neuropeptide Y, and ghrelin do not appreciably alter food anticipatory
1451 activity in mice. *PLoS ONE* 6, e18377. 10.1371/journal.pone.0018377.

1452 79. Verhagen, L.A.W., Luijendijk, M.C.M., Hillebrand, J.J.G., and Adan, R.A.H. (2009).
1453 Dopamine antagonism inhibits anorectic behavior in an animal model for anorexia
1454 nervosa. *Eur. Neuropsychopharmacol.* 19, 153–160. 10.1016/j.euroneuro.2008.09.005.

1455 80. McHill, A.W., Melanson, E.L., Higgins, J., Connick, E., Moehlman, T.M., Stothard, E.R.,
1456 and Wright, K.P. (2014). Impact of circadian misalignment on energy metabolism during
1457 simulated nightshift work. *Proc Natl Acad Sci USA* 111, 17302–17307.
1458 10.1073/pnas.1412021111.

1459 81. Zhang, Y., Kerman, I.A., Laque, A., Nguyen, P., Faouzi, M., Louis, G.W., Jones, J.C.,
1460 Rhodes, C., and Münzberg, H. (2011). Leptin-receptor-expressing neurons in the
1461 dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose
1462 tissue circuits. *J. Neurosci.* 31, 1873–1884. 10.1523/JNEUROSCI.3223-10.2011.

1463 82. Enriori, P.J., Sinnayah, P., Simonds, S.E., Garcia Rudaz, C., and Cowley, M.A. (2011).
1464 Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown
1465 adipose tissue in spite of systemic leptin resistance. *J. Neurosci.* 31, 12189–12197.
1466 10.1523/JNEUROSCI.2336-11.2011.

1467 83. Tan, K., Knight, Z.A., and Friedman, J.M. (2014). Ablation of AgRP neurons impairs
1468 adaption to restricted feeding. *Mol. Metab.* 3, 694–704. 10.1016/j.molmet.2014.07.002.

1469 84. Podyma, B., Johnson, D.-A., Sipe, L., Remcho, T.P., Battin, K., Liu, Y., Yoon, S.O.,
1470 Deppmann, C.D., and Güler, A.D. (2020). The p75 neurotrophin receptor in AgRP
1471 neurons is necessary for homeostatic feeding and food anticipation. *eLife* 9.
1472 10.7554/eLife.52623.

1473 85. Moriya, T., Aida, R., Kudo, T., Akiyama, M., Doi, M., Hayasaka, N., Nakahata, N.,
1474 Mistlberger, R., Okamura, H., and Shibata, S. (2009). The dorsomedial hypothalamic
1475 nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature
1476 or clock gene expression in mice. *Eur. J. Neurosci.* 29, 1447–1460. 10.1111/j.1460-
1477 9568.2009.06697.x.

1478 86. Landry, G.J., Simon, M.M., Webb, I.C., and Mistlberger, R.E. (2006). Persistence of a
1479 behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation
1480 in rats. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 290, R1527-34.
1481 10.1152/ajpregu.00874.2005.

1482 87. Landry, G.J., Yamakawa, G.R., Webb, I.C., Mear, R.J., and Mistlberger, R.E. (2007). The
1483 dorsomedial hypothalamic nucleus is not necessary for the expression of circadian food-
1484 anticipatory activity in rats. *J. Biol. Rhythms* **22**, 467–478. 10.1177/0748730407307804.

1485 88. Stoleru, D., Peng, Y., Agosto, J., and Rosbash, M. (2004). Coupled oscillators control
1486 morning and evening locomotor behaviour of *Drosophila*. *Nature* **431**, 862–868.
1487 10.1038/nature02926.

1488 89. Garaulet, M., Gómez-Abellán, P., Alburquerque-Béjar, J.J., Lee, Y.C., Ordovás, J.M., and
1489 Scheer, F.A.J.L. (2013). Timing of food intake predicts weight loss effectiveness. *Int J
1490 Obes (Lond)* **37**, 604–611. 10.1038/ijo.2012.229.

1491 90. Chaix, A., Lin, T., Le, H.D., Chang, M.W., and Panda, S. (2019). Time-Restricted Feeding
1492 Prevents Obesity and Metabolic Syndrome in Mice Lacking a Circadian Clock. *Cell Metab.*
1493 **29**, 303-319.e4. 10.1016/j.cmet.2018.08.004.

1494 91. Grippo, R.M., Tang, Q., Zhang, Q., Chadwick, S.R., Gao, Y., Altherr, E.B., Sipe, L.,
1495 Purohit, A.M., Purohit, N.M., Sunkara, M.D., et al. (2020). Dopamine Signaling in the
1496 Suprachiasmatic Nucleus Enables Weight Gain Associated with Hedonic Feeding. *Curr.
1497 Biol.* **30**, 196-208.e8. 10.1016/j.cub.2019.11.029.

1498 92. Mistlberger, R.E., and Skene, D.J. (2005). Nonphotic entrainment in humans? *J. Biol.
1499 Rhythms* **20**, 339–352. 10.1177/0748730405277982.

1500 93. Lewis, P., Oster, H., Korf, H.W., Foster, R.G., and Erren, T.C. (2020). Food as a circadian
1501 time cue - evidence from human studies. *Nat. Rev. Endocrinol.* **16**, 213–223.
1502 10.1038/s41574-020-0318-z.

1503 94. Xie, Z., Sun, Y., Ye, Y., Hu, D., Zhang, H., He, Z., Zhao, H., Yang, H., and Mao, Y. (2022).
1504 Randomized controlled trial for time-restricted eating in healthy volunteers without obesity.
1505 *Nat. Commun.* **13**, 1003. 10.1038/s41467-022-28662-5.

1506 95. Leshan, R.L., Björnholm, M., Münzberg, H., and Myers, M.G. (2006). Leptin receptor
1507 signaling and action in the central nervous system. *Obesity (Silver Spring)* **14 Suppl 5**,
1508 208S-212S. 10.1038/oby.2006.310.

1509 96. Madisen, L., Zwingman, T.A., Sunkin, S.M., Oh, S.W., Zariwala, H.A., Gu, H., Ng, L.L.,
1510 Palmiter, R.D., Hawrylycz, M.J., Jones, A.R., et al. (2010). A robust and high-throughput
1511 Cre reporting and characterization system for the whole mouse brain. *Nat. Neurosci.* **13**,
1512 133–140. 10.1038/nn.2467.

1513 97. Habib, N., Li, Y., Heidenreich, M., Swiech, L., Avraham-Davidi, I., Trombetta, J.J.,
1514 Hession, C., Zhang, F., and Regev, A. (2016). Div-Seq: Single-nucleus RNA-Seq reveals
1515 dynamics of rare adult newborn neurons. *Science* **353**, 925–928.
1516 10.1126/science.aad7038.

1517 98. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J.,
1518 Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell
1519 data. *Cell* **184**, 3573-3587.e29. 10.1016/j.cell.2021.04.048.

1520 99. Michaud, J.L., Boucher, F., Melnyk, A., Gauthier, F., Goshu, E., Lévy, E., Mitchell, G.A.,
1521 Himms-Hagen, J., and Fan, C.M. (2001). Sim1 haploinsufficiency causes hyperphagia,

1562 657. 10.1038/s41592-019-0435-6.

1563 111. Han, S., Soleiman, M.T., Soden, M.E., Zweifel, L.S., and Palmiter, R.D. (2015).
1564 Elucidating an Affective Pain Circuit that Creates a Threat Memory. *Cell* 162, 363–374.
1565 10.1016/j.cell.2015.05.057.

1566 112. Kim, S., and McMahon, D.G. (2021). Light sets the brain's daily clock by regional
1567 quickening and slowing of the molecular clockworks at dawn and dusk. *eLife* 10.
1568 10.7554/eLife.70137.