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Abstract

Modern single-cell data analysis relies on statistical testing (e.g. differential expression testing) to
identify genes or proteins that are up-or down-regulated in relation to cell-types or clinical outcomes.
However, existing algorithms for such statistical testing are often limited by technical noise and
cellular heterogeneity, which lead to false-positive results. To constrain the analysis to a compact and
phenotype-related cell population, differential abundance (DA) testing methods were employed to
identify subgroups of cells whose abundance changed significantly in response to disease progression,
or experimental perturbation. Despite the effectiveness of DA testing algorithms of identifying critical
cell-states, there are no systematic benchmarking or comparative studies to compare their usages in
practice. Herein, we performed the first comprehensive benchmarking study to objectively evaluate
and compare the benefits and potential downsides of current state-of-the-art DA testing methods.
We benchmarked six DA testing methods on several practical tasks, using both synthetic and real
single-cell datasets. The task evaluated include, recognizing true DA subpopulations, appropriate
handing of batch effects, runtime efficiency, and hyperparameter usability and robustness. Based on
various evaluation results, this paper gives dataset-specific suggestions for the usage of DA testing
methods.

Introduction1

Modern single-cell technologies have enabled the measurement of thousands of genes of tens of proteins in samples2

collected in a variety of states, such as development [1, 2, 3], disease progression [4, 5, 6, 7], or after experimental3

perturbation [8, 9, 10]. In a single-cell dataset collected from multiple patient samples, heterogeneity is always4

present to some degree among all cell populations. For instance, (i) the number of profiled cells may vary across5

samples (ii) some cells in a single-cell sample might not respond to experimental perturbations or simply act6

as background cells in terms of clinical consequences [10]. Such cellular heterogeneity causes true biologically7

driven signals to be obscured by unrelated variability, making it difficult for downstream analysis to identify them8

or producing false positive results. Therefore, identifying some “clean” cell populations purely perturbed by9

the corresponding experimental conditions in a single-cell dataset becomes crucial for further statistical analysis10

[11, 12].11

To tackle this problem, differential abundance (DA) testing methods have been utilized to identify a cohesive12

subset of cells linked with clinical outcomes of interest (See Figure 1 for an intuitive illustration). DA testing13

methods accomplish this by identifying regions enriched with cells as a result of biological perturbations. One14

class of DA testing methods [13, 14, 15] identifies phenotype-associated subgroups of cells by determining if15

statistically significant changes in abundance occur in response to a biological perturbation. This method can16

effectively eliminate the cells that are unaffected by treatment condition since they are evenly dispersed across the17

treatments. Another category of DA testing approaches [10, 16] uses a different approach with no statistical testing.18
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In contrast, these approaches perform conditional density estimation on cells from various experimental conditions19

and select phenotypically significant subsets of cells based on their predicted density scores for each condition.20

DA testing methods can also be divided into two types based on their use of clustering: clustering-based methods21

[17, 18, 19] and clustering-free methods [10, 13, 14, 15, 16]. Since most clustering algorithms are unstable due to22

their nonconvexity and can only provide a rough partition for distinct cell states, many clustering-free methods23

have proven to be preferable to clustering-based methods [10, 13, 14].24
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Figure 1: An illustration of DA cells in
a dataset containing two samples under
two phenotypes.

Recent single-cell studies have demonstrated considerable success using25

DA testing methods to identify novel cell states from a broad landscape26

of profiled single cells. DA testing has been used to reveal enrichment of27

granulocytes, monocytes, and B cells in patients who died from COVID-28

19 [20]; identify rheumatoid arthritis (RA)-associated cell populations29

from a single-cell dataset of 18 patients with either rheumatoid or os-30

teoarthritis [15]; and discover a new subpopulation of cells in mouse31

intertypical thymic epithelial cells (TECs) that are depleted with age32

[14]. Despite the fact that numerous research efforts have gone into33

developing new DA methods, there have been considerably few studies34

providing thorough and quantitative comparisons of the strengths and35

weaknesses of the common DA testing approaches, especially those that36

are clustering-free. Furthermore, in the original papers introducing each37

new method, most of the results focused on unraveling insights into com-38

plicated biological processes and focused on elucidating superiority over39

clustering-based methods. Among the original DA testing studies, Ref.40

[14] is the only work that quantitatively compared present state-of-the-41

art DA testing methods for identifying DA cell populations. However,42

Ref. [14] presented simply numerical results without additional analysis,43

restricting their intepretability and comprehension. To address this deficiency, we intend to study current DA testing44

methods and assess their strengths and weaknesses in various circumstances.45

In this benchmarking study, we evaluated six DA testing methods, including both the clustering-based and clustering-46

free approaches. In our experiments, we compared the six DA testing methods using synthetic and real-world47

single-cell datasets. We examined various facets of the DA testing methods, such as (1) the precision for detecting48

DA subpopulations in data with diverse differential trajectory structures; (2) the capacity to handle technical and49

biological variables, such as batch effects; (3) runtime efficiency and scalability; and (4) usability and robustness50

with regard to hyperparameters. To aid in a better understanding, as a key result, we established in a synthetic51

dataset that several DA methods cannot perform well when the number of cells is significantly unbalanced between52

DA subpopulations. After investigating the characteristics of each method in relation to the unique characteristic53

of each of the diverse datasets, we ultimately provided data-specific suggestions for choosing the best DA testing54

methods to use in clinical settings.55

Main56

Description of datasets57

In this study, we evaluated the performance of six prevalent DA testing methods on three simulated datasets, a58

single-cell RNA sequencing dataset (scRNA-seq), COVID-19 PBMC [5] and a CyTOF dataset, BCR-XL [8].59

To facilitate thorough benchmarking, the experimental datasets differ in several ways, including, topology of60

differential trajectories, ratio or extent of differential abundance (DA ratio), and single-cell modality (e.g. protein vs61

gene measurement). The three synthetic datasets, for example, have different topological structures (linear, branch,62

and cluster) of their differential trajectories and DA ratios. The COVID-19 PBMC dataset measures the expression63

of genes, whereas the BCR-XL dataset measures the expression of proteins.64

Synthetic Datasets65

Using the R package dyntoy (described in Ref. [14]), we generated count matrices for three synthetic single-cell66

datasets with diverse topological structures, including linear trajectories, branching trajectories, and discrete clusters.67

Each dataset included six samples from a simulated experiment with three replicates (R1, R2, and R3) and two68

experimental conditions (C1 and C2). Different datasets may contain distinct cell populations of differing sizes.69

For example, the linear and branch datasets contain 7500 cells and 500 genes, whereas the cluster dataset contains70
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2,700 cells and 500 genes. To quantitatively benchmark DA testing methods, we generated ground-truth DA labels71

as follows: First, we selected one of the cell populations as the target population to exhibit differential abundance72

between the two experimental conditions, while considering the remaining cell populations as background cells.73

Next, using the same pipeline provided in Ref. [14], we calculated the probability for each cell under each condition74

(P (C1) or P (C2)). Lastly, we randomly assigned the ground-truth labels to each cell based on the conditional75

probability. To facilitate a thorough evaluation, for each dataset, we simulated different DA labels by varying (1)76

the target DA cell population; (2) the DA ratio in the target cell population; and (3) the random seed. Furthermore,77

we also simulated batch effects with varying magnitudes in the synthetic dataset by adding noises sampled from78

isotropic normal distribution with different variance. It is worth noting that in Ref. [14], the ground truth DA79

label for each cell is determined by a constant percentile threshold, t of the distribution P (C2) across simulations.80

However, in our strategy, t is adjusted adaptively depending on the size of the target cell population throughout the81

entire dataset. Formally, our t threshold is defined as,82

t =
#cells in the target population

#cells in the entire population
. (1)

83

Here, # represents the ‘number’, or count of cells in the respective bins of target or entire population. Visualizations84

for each of the synthetic datasets are shown in Supplementary Figure S1.85

COVID-19 PBMC Dataset86

The COVID-19 PBMC dataset is a single-cell RNA-sequencing dataset generated by profiling 44,721 peripheral87

blood mononuclear cells (PBMCs) from seven hospitalized COVID-19 patients, four of whom had acute respiratory88

distress syndrome, and six healthy controls [5]. Considering that one of the patients has two replicates (A and B),89

the COVID-19 dataset contains a total of 14 samples with different clinical symptoms, including 8 COVID-1990

samples and 6 healthy controls. In addition to basic clinical outcomes, this dataset contains information regarding91

the COVID-19 illness course of each patient, such as, severity classification at the time of admission (ICU/Floor),92

ventilation status, etc. In the original study (Ref. [5]), the authors investigated the changes in cell type proportions93

between the COVID-19 samples and the healthy controls and revealed that case severity was associated with the94

depletion or expansion of several canonical immune cell-types, including developing neutrophils and plasmablast.95

Therefore, the intended use of this dataset was to examine the efficacy of different DA testing approaches for96

identifying differentially abundant cell-populations.97

BCR-XL CyTOF Dataset98

The BCR-XL dataset presented in Ref. [8] is comprised of 172,791 human PBMCs collected across 16 CyTOF99

samples, eight of which were stimulated with B cell receptor/Fc receptor cross-linker (BCR-XL) with the remaining100

being case controls. Cells in this dataset belong to one of eight manually-gated cell populations, including B-cells101

IgM-, B-cells IgM+, CD8+ T-cells, CD4+ T-cells, DC, surface-cells, NK cells, and monocytes. There are 35102

measured markers in the BCR-XL dataset, but we only preserved 24 functionally meaningful markers in our103

experiments.104

Benchmarking overview105

In this benchmarking study, we intend to compare current state-of-the-art DA testing methodologies for identifying106

phenotype-associated cell-populations in an impartial and thorough manner, as well as to investigate their strengths107

and potential drawbacks in single-cell data analysis. Figure 2 depicts our benchmarking workflow. To assess108

the performance of DA testing methods for predicting DA cell populations, we used mass cytometry (CyTOF),109

single-cell RNA sequencing (scRNA-seq), and synthetic datasets created using dyntoy [21] and Splatter [22]. These110

experimental datasets covered a diverse range of biological contexts. For example, the synthetic datasets had111

various cell spreading topological structures in high-dimensional space, such as linear, branch and cluster, which112

each reflected a unique single-cell differential trajectories (see Supplementary Figure S1). We further included113

diverse, real CyTOF and scRNA-seq datasets with clinical outcomes, including peripheral blood mononuclear cells114

(PBMCs) profiled in patients with COVID-19 PBMC [5], and a BCR-XL CyTOF dataset measuring human PBMCs115

stimulated with B cell receptor/Fc receptor cross-linker (BCR-XL) [8].116

We evaluated a total of six distinct DA testing approaches, which can be broadly categorized into two groups: (i)117

clustering-based methods [23], and (ii) clustering-free methods [13, 16, 10, 14, 15]. For clustering-free methods,118

we benchmarked five methods including Cydar [13], Milo [14], DA-seq [16], Meld [10] and Cna [15]. Noting119
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Figure 2: Schematic illustration of the benchmarking workflow. Using both synthetic and real single-cell
datasets, six DA testing methods were evaluated under three configurations for the DA prediction task. (A)&(B).
First, single-cell RNA-seq and mass cytometry datasets are collected from profiled patients, or a synthetic datasets
are generated using the packages dyntoy [21] or splatter [22]; (C)&(D). Next, we evaluated the six clustering-based
[23] and clustering-free [13, 16, 10, 14, 15] DA testing methods on datasets with different topologies, DA ratios,
and technical biases such as batch effects; (E). Lastly, we compare the performance of the DA testing methods
using AUC score.

that clustering-free methods often exhibit superior performance in comparison to clustering-based methods, we120

compared all such results to the Louvain algorithm [23], a commonly used graph-based clustering method in121

single-cell data analysis. To further show the differences of the six DA testing methods, we compare their properties122

in Supplementary Table S1. Here, we provide a brief summary of the six DA testing approaches included in the123

following benchmark study. For more implementation details, see section Differential abundance (DA) testing124

methods in Methods.125

1. Cydar [13]: Cydar detects DA cell populations by assigning cells to hyperspheres and testing whether the126

number of cells in each hypersphere varies in a statistically-significant way between conditions. The spatial127

false discovery rate (FDR) throughout the high-dimensional space controls Cydar’s Type I error;128

2. DA-seq [16]: DA-seq predicts DA scores for each cell under two separate conditions by applying a logistic129

regression model. Label permutation is then used to empirically evaluate the statistical significance of the130

prediction results;131

3. Meld [10]: Meld calculates the likelihood that each cell belongs to or is prototypical of each condition, using132

a graph-based kernel density estimation (KDE) method. The DA cells are then selected by setting a heuristic133

likelihood threshold;134

4. Cna [15]: Cna uses random walks on graphs to generate a neighborhood abundance matrix (NAM),135

which quantifies the relative abundance of each sample within particular cellular neighborhoods. DA136

cell-populations are then ultimately identified through statistical testing based on the NAM across the137

conditions.138

5. Milo [14]: Milo begins by counting the number of cells of each sample within k-nearest neighborhoods and139

then applies a negative binomial generalized linear models (NB-GLM) to test the DA of each local graph.140

Milo, like Cydar, controls type-I error via spatial FDR;141

6. Louvain [23]: The Louvain method first clusters cells across samples using the Louvain algorithm, and then142

counts the cells of each sample within each cluster. Louvain further uses the same procedure as Milo to143

ultimately determine the DA cells.144

Due to the fact that the six DA testing methods employ diverse strategies to estimate DA cell populations, it is145

hard to find a single threshold applicable to all of the methods. To avoid such bias, we utilized the area under the146

receiver operator curve (AUC) score to objectively quantify the performance of the various DA testing methods.147

Noting that our datasets do not have ground truth DA labels, we employed a data-driven technique to construct148

such labels for each individual cell after setting the target DA cell populations. By aggregating results across all149
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datasets with different experimental configurations, we ultimately ranked the overall predictive performance of the150

six DA testing methods. This gauges how well cell populations that are strongly related with the corresponding151

conditions, such as phenotype and experimental perturbations, can be inferred via DA testing.152

In addition to accurately inferring the condition-specific cells, further issues should be addressed to make DA153

testing more applicable in real-world settings. First, in order to provide reliable predictions, a DA testing method154

must be robust to other variables in a dataset, such as batch effects and sample covariates. Second, a DA testing155

method should be resilient to datasets with different characteristics. For instance, (1) There are numerous single-cell156

profiling modalities, such as scRNA-seq and CyTOF to measure the expression of genes and proteins, respectively;157

(2) The structure of differential trajectories in single-cell datasets varies in high-dimensional gene or protein158

expression space; and (3) The size and differential abundance ratio of DA cell populations can vary between159

datasets. Finally, a practical DA testing method should be computationally efficient, such that it can be readily160

applied to single-cell datasets containing more than 100, 000 cells. Hence, we ran a series of experiments to evaluate161

and compare the performance of DA testing methods in various configurations and to see if they are capable of162

handling the challenges above. Furthermore, we also carried out studies to examine the sensitivity of results163

with respect to the input hyperparameters. This is crucial because, in practical applications, it might be difficult164

for users to specify an appropriate hyperparameter as input for a new given dataset without some background165

knowledge (Section Hyperparamter tuning and sensitivity). In our implementation, the hyperparameters were166

tuned as suggested in the original work. For specific hyperparameter values used in our experiments, refer to167

Supplementary Table S2.168
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Figure 3: Performance of the six DA testing methods for DA prediction on the three synthetic datasets (linear (A),
branch (B), and cluster (C)) with a range of DA ratios (0.75, 0.85, and 0.95) in the target DA cell population. The
boxplots represent the distributions of AUC scores for various target DA cell populations across multiple random
seeds.

DA testing performance on synthetic datasets169

First, the DA testing methods were evaluated on three synthetic datasets, referred to throughout the text as linear,170

branch, and cluster (see Supplementary Figure S1). Figure 3 and Supplementary Table S3 show the performance171

of the six DA testing methods on the three synthetic datasets and generally show how the performance changes172

with respect to DA ratios. On the synthetic datasets, we represented each individual high-dimensional cell in173

terms of its top 50 principle components (PCs), and systematically evaluated performance across varying DA174

ratios, RA target populations, and random seeds. When comparing the performance of the DA testing methods,175

we unsurprisingly observed that the accuracy of all DA methods as evaluated with AUC increased consistently as176

the DA ratio increased from 0.75 to 0.95 across the three datasets. This suggests that a higher DA ratio leads to a177

simpler and less-noisy DA testing problem (Figure 3). To quantify the performance of each method, we averaged178

the median AUC scores over all DA ratios. The average AUC scores of DA-seq, Meld, Milo, Cydar, Cna, and179

Louvain for the linear dataset were 0.91, 0.98, 0.98, 0.96, 0.79, and 0.80, respectively (Supplementary Table S3).180

On the linear dataset, the performance of the DA testing methods can be grouped into three major groups: (1) Meld,181

Milo, and Cydar; (2) DA-seq; and (3) Cna and Louvain. Meld and Milo were the most effective methods, and in182

all DA ratios, they performed slightly better than Cydar. DA-seq performed worse than the approaches in groups183

(1) but better than those in group (3). Similar patterns were also observed in the branch dataset (Figure 3B). The184

average AUC scores for Meld, Milo, and Cydar were 0.95, 0.95, and 0.93, respectively. The average AUC value for185
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DA-seq was 0.90, which was lower than Meld, Milo, and Cydar but higher than the other approaches. The average186

AUC values of Cna and Louvain for the branch dataset were 0.76 and 0.79, respectively. Noting that the DA testing187

methods provided similar performance and relative performance rankings on the linear and branching datasets, we188

hypothesize that this was due to their similar differential trajectories.189

In the cluster dataset, the averaged AUC scores of DA-seq, Meld, Milo, Cydar, Cna and Louvain were 1.00, 1.00,190

0.99, 0.98, 0.84 and 0.51, respectively (Figure 3C). The average AUC values of DA-seq, Meld, Milo, and Cydar191

were higher than their results on the linear and branch datasets. When examining the distribution of AUC scores192

across various seeds, we found extremely high variance, especially for DA ratios of 0.75 or 0.85. In addition,193

the imbalanced distribution of AUCs (high median value and variance) in Figure 3C revealed that the DA testing194

methods performed very poorly in a small subset of the experiments. To further explore this, we visualized boxplots195

of AUC scores for each target DA cell population on the cluster dataset (Supplementary Figure S2). This suggested196

that the DA testing methods perform well and consistently when the target DA population is M1 cell type or M3197

cell type, whereas for the M2 population (Supplementary Figure S2A), all the methods had a significant drop in198

performance compared to M1 and M3, indicating that the DA testing methods may not be effective in some special199

cases. In contrast to the linear and branch datasets, the cluster dataset has a more variable number of cells across200

populations. For example, the M2 population contained significantly more cells than the M1 and M3 populations.201

As a result, we hypothesized that the DA testing methods struggle when there is an imbalance and variable number202

of cells across populations, and specifically one such population contains substantially more cells than the others.203

To test this hypothesis, we subsampled the M2 population and ran a second experiment on a balanced cluster204

dataset. When the target DA population was M2 on the balanced cluster dataset, the performance of each method205

was greatly improved (Supplementary Figure S2B). In addition, compared to the results on the cluster dataset206

(Supplementary Figure S2A), the variance of AUC scores across the three target populations (M1, M2, and M3)207

was significantly reduced on the balanced cluster dataset, indicating that there were no strong biases between the208

various target DA populations after their numbers were balanced. Our experiments therefore revealed a possible209

limitation with respect to how the current DA testing methods are designed. Namely, these DA testing methods210

may not be able to adequately account for the biases caused by the imbalance in cell quantity across distinct cell211

populations and may therefore prioritize incorrect cells.212

DA testing performance on scRNA-seq and CyTOF Datasets213

Next, we used an scRNA-seq and a CyTOF dataset to benchmark the DA testing methods. The first dataset is a214

scRNA-seq dataset termed COVID-19 PBMC [5], which was profiled from seven hospitalized patients at varying215

stages of COVID-19 development and another six healthy donors. The COVID-19 PBMC dataset consists of216

44, 721 peripheral blood mononuclear cells (PBMCs) from 13 distinct cell types (Figure 4A) and the expression217

of 26, 361 genes. The second dataset is the BCR-XL mass cytometry dataset [8]. The BCR-XL dataset contains218

172, 791 human PBMCs analyzed from 16 CyTOF samples, of which eight were stimulated with B cell receptor/Fc219

receptor cross-linker (BCR-XL). Originally, the BCR-XL dataset consisted of 35 different measured parameters.220

The cell types within the BCR-XL dataset were manually gated using some predefined phenotypic markers (Figure221

1A). Note that these two datasets come from two distinct modalities. The COVID-19 PBMC dataset profiles the222

transcriptome, whereas the BCR-XL is a single-cell proteomics dataset. In addition, scRNA-seq datasets contain223

significantly more features than cytometry datasets (e.g., 26, 361 vs. 35). Consequently, the datasets we chose can224

adequately represent standard and widely used single-cell datasets.225

In the tests with the COVID-19 PBMC and BCR-XL datasets, we applied the same evaluation procedure as in the226

synthetic datasets. That is, we selected each cell type as a target DA cell population and evaluated the quality of227

each of the six DA testing methods across various DA ratios and three random seeds. We also generated the ground228

truth DA labels for each cell in the two real datasets similarly to how we did with the synthetic datasets. To reduce229

the computational complexity of the COVID-19 PBMC dataset, we used the top 50 PCs as input. For the BCR-XL230

dataset, we used its filtered raw features as input. Figure 4B and Supplemental Table S4 show the benchmarking231

results on the COVID-19 PBMC and BCR-XL datasets. Consistent with the pattern of the synthetic datasets,232

we also observed that the performance of all methods improved steadily as the DA ratio increased. Similarly,233

the variance of AUC scores also decreased as the DA ratio increased across datasets for all methods except for234

Cydar. This showed that, similar to the patterns observed in the synthetic dataset, the DA ratio can significantly235

affect the performance and stability of the DA testing methods. In the COVID-19 PBMC dataset, the mean AUC236

values for DA-seq, Meld, Milo, Cydar, Cna, and Louvain were 0.87, 0.96, 0.88, 0.60, 0.59, and 0.79, respectively.237

Meld ranked first among the six DA testing methods applied to the COVID-19 PBMC dataset, followed by Milo,238

DA-seq, Louvain, Cydar, and Cna, with Milo and DA-seq performing similarly, and Cydar and Cna also performing239

similarly. In the BCR-XL dataset, the corresponding average AUC values for DA-seq, Meld, Milo, Cydar, Cna,240
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Figure 4: (A) UMAP visualization of the cells in the COVID-19 PBMC scRNA-seq (left) and BCR-XL CyTOF
datasets (right), colored according to annotated cell-types. (B) Performance of the six DA testing methods for DA
prediction on the two real single-cell datasets (COVID-19 PBMC (left) and BCR-XL (right)) with a range of DA
ratios (0.75, 0.85, and 0.95) in the target DA cell type. The boxplots represent the AUC scores for different target
DA cell types (in A) evaluated over different random seeds.

and Louvain were 0.88, 0.98, 0.93, 0.74, 0.71, and 0.84. As a result, Meld was ranked first among the six DA241

testing techniques on the BCR-XL dataset as well, surpassing Milo, DA-seq, Louvain, Cydar, and Cna. Overall,242

the methods’ performances and rankings remained consistent in both the synthetic and real single-cell datasets,243

demonstrating that their performances are independent to the data but are reflections of their own capabilities. In244

addition, the performance of DA-seq, Meld, Milo, and Louvain on the COVID-19 PBMC and BCR-XL datasets245

was comparable to their performance on synthetic datasets, but Cydar and Cna showed a considerable fall in246

performance. This demonstrated that (1) DA-seq, Meld, Milo, and Louvain were more adaptable to different kinds247

of data, like synthetic, scRNA-seq, and CyTOF single-cell datasets; and (2) Cydar and Cna may not have been as248

adept at adjusting to the biases between synthetic and real datasets, or they may have been sensitive to changes in249

other factors, such as hyperparameters.250

DA testing performance on datasets with additional technical and biological covariates251

In addition to the clinical outcomes used in DA testing, such as clinical phenotype or disease status, single-cell252

datasets are often affected by additional technical and biological factors, such as batch effects, donor type, and cell253

cycle artifacts. These undesirable variables provide additional variance in the data and can confound the biological254

variations of relevance in the subsequent analysis, resulting in more false positives. In this subsection, we examine255

how the performance of DA testing methods changes when batch effects are present in the data, as well as how each256

DA testing method particularly accounts for additional covariates, such as batch effects. Out of the six DA testing257

methods, Cydar, Milo, Cna, and Louvain can explicitly include such external variables into their testing models258
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Figure 5: Performance of the six DA testing methods for DA prediction on the three synthetic datasets (linear (left),
branch (middle), and cluster (right)) with batch effects of varying magnitudes (from 0 to 1.5). When batchSd=0,
no batch effects are present. The boxplots represent the AUC scores for different target DA cell populations, DA
ratios, and random seeds.

to account for variance, whereas DA-seq and Meld do not. Following the procedure in Ref. [14], we simulated259

batch effects with a variety of magnitudes and added them to the three synthetic datasets. We then evaluated the260

performance of the six DA testing methods on the synthetic datasets containing batch effects (Figure 5). To exclude261

influence from different hyperparameters, we used the same hyperparameter values as when no batch effects were262

present. Overall, the results demonstrated that all DA methods exhibited poorer performance when batch effects263

were present in the data, in comparison to batch-effect free data, as exhibited by a decline in AUC scores with264

increasing magnitude of batch effects (Figure 5). This showed that technical artifacts such as batch effects had a265

significant adverse effect on the quality of DA testing methods. Of the six DA testing methods, Milo consistently266

performed the best over a range of batch effect magnitudes. Despite no explicit implementation to include batch267

labels in their models, DA-seq and Meld were inferior to the performance of Milo but outperformed the other268

approaches. We also noticed a strong negative link between how well DA-seq and Meld worked and how strong the269

batch effects were (Figure 5). Cydar, Cna, and Louvain were the weakest methods for handling batch effects as270

their performances were affected by even slight batch effects. Given that Cydar, Cna, and Louvain models covariate271

in the same way as Milo, their low performance was more likely due to their method-specific cell counting step. In272

addition, we conducted a second experiment to examine whether incorporating batch labels into the models could273

improve the performance. In this experiment, we applied Cydar, Milo, Cna, and Louvain on synthetic datasets274

using two different setups. In the first setup, batch labels were included in the models, whereas in the second275

setup, they were omitted. Supplementary Figure S3 illustrates the performance of these four approaches with276

or without inclusion of batch information. We discovered that, with the exception of Cydar, explicitly modeling277

batch effects can greatly enhance the performance of DA testing procedures in datasets with prominent batch278

effects. Furthermore, these experiments demonstrated that it is crucial for DA testing procedures to account for279

the variance introduced by additional technical and biological factors in order to produce accurate and meaningful280

results.281

Runtime efficiency and scalability of DA testing methods282

Next, we evaluated the runtime efficiency and scalability of the six DA testing methods. We measured the execution283

time of each method on the COVID-19 PBMC and BCR-XL datasets using the tuned hyperparameters. In the284

BCR-XL dataset containing more than 170, 000 cells, all methods were able to finish running within a few hours285

(Figure 6A). Additionally, some of the DA testing approaches with even higher efficiency, such as Cydar, Cna,286

and Louvain, only took a few minutes. Thus, we proved that efficiency is not a limiting factor for any of the six287

DA testing methods when applied to the vast majority of single-cell datasets. Noting that wall-clock runtime288

depends on numerous factors such as algorithm complexity, hyperparameters, and computing infrastructure, it289

cannot objectively and completely reflect the scalability of the DA testing methods. As a result, we conducted an290

additional experiment to quantify the scalability of the DA testing techniques by evaluating the relative runtime291

growth rate as the number of cells increased. Using the R package splatter [22], we constructed six single-cell292

datasets with increasing numbers of cells (4k, 10k, 15k, 30k, 50k, and 100k). To specifically evaluate the runtimes293

of the core components of the DA methods without the variable times required for hyperparameter selection, we294
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Figure 6: Runtime efficiency and scalability of the six DA testing methods. (A) Runtime of the six DA testing
methods on the COVID-19 PBMC (left) and BCR-XL (right) single-cell datasets. The error bars reflect the standard
deviation of runtime across various target DA cell populations, DA ratios, and random seeds. The execution times
were measured on the nodes of a cluster with Intel Xeon E5-2680 v3 CPUs and 256GB RAM. (B) Relative runtime
growth ratio of the six DA testing methods on the single-cell datasets as a function of an increasing number of cells
(4k, 10k, 15k, 30k, 50k, and 100k). The runtime of the smallest dataset was used to normalize the runtimes of the
larger datasets.

used default hyperparameters for all datasets. We quantified how well each method scaled by calculating the relative295

runtime growth with respect to the runtime on the smallest dataset with 4k cells for various data sizes. Figure 6B296

shows the relative runtime growth as a function of the number of cells in each dataset. Among the six DA testing297

methods, we discovered that Cna was the most scalable, while Louvain and Meld were the least scalable. The298

scalability of DA-seq, Milo, and Cydar fell between Cna and Meld, with Cydar being marginally superior to Milo299

and DA-seq. Notably, the majority of the runtime of the six approaches was spent either counting cells across300

conditions in cell neighborhoods or building the cell-to-cell graph across samples.301

Hyperparamter tuning and sensitivity302

We further evaluated the hyperparameter tunability and sensitivity of the six DA testing methods. Hyperparameters303

are crucial to the performance of machine learning methods and the best way to identify the optimal hyperparameters304

is through a line or grid search in hyperparameter space, which takes a lot of time and computational resources. In305

general, machine learning models with fewer hyperparameters are easier to tune. Furthermore, if a machine learning306

model’s performance is sensitive to its hyperparameters, it is challenging to identify the best hyperparameters,307

hence making the model’s performance unstable. Thus, we propose to examine two criteria to evaluate the DA308

testing methods, including the number of hyperparmaters and the overall sensitivity of hyperparameters. The309

number of hyperparameters reflects how easily a method can be tuned, and sensitivity of hyperparameters measures310

how stable the DA testing method is overall. In Supplementary Table S5, we outlined the hyperparameters of the311

six DA testing methods. Milo, Cydar and Cna only have one hyperparameter, k, which is the number of k-nearest312

neighbors to use in the graph-representation of the data. Alternatively, DA-seq, Meld, and Louvain have more313

hyperparameters (Supplementary Table S5). As a result, the hyperparameters of Milo, Cydar, and Cna are easier to314

tune than those of DA-seq, Meld, and Louvain.315

To test the hyperparameter sensitivity of each DA testing method, we evaluated their performance for predicting316

DA cells on three synthetic datasets (linear, branch, and cluster) and on the COVID-19 PBMC scRNA-seq dataset317

by altering their hyperparameters. Since Meld, Milo, Cna, and Louvain all share a common hyperparameter, k,318

we fixed k and solely tested the hyperparameter sensitivity relative to the other parameters in order to control319

variable. In contrast to other methods, DA-seq employs a range of hyperparameters k = [k1, . . . , kl] to generate320

k-nearest neighbor graphs. We altered the hyperparameters of DA-seq by replacing k1 with the same k used321

in the other methods, while varying the step size between ki and ki+1. The boxplots in Figure 7 visualize the322

variation in performance of DA-seq, Meld, Cydar, and Louvain, with each dot representing a run with specific323

hyperparameters. First, DA-seq had the lowest overall hyperparameter sensitivity, indicating that users do not324

need to modify its hyperparameters excessively for practical applications. Second, although having somewhat325

higher variance than DA-seq, Meld’s performance did not show a strong variance. Cydar and Louvain, on the326

contrary, consistently had high variance in their performances across all datasets. This experiment proved that Cydar327

and Louvain are hyperparameter-sensitive. The rationale for Cydar’s high hyperparameter sensitivity is because328
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Figure 7: Hyperparamter sensitivity of the six DA testing methods. Performance of the four DA testing methods
(DA-seq, Meld, Cydar, and Louvain) on the three synthetic datasets and the COVID-19 scRNA-seq dataset with
a range of DA ratios (0.75, 0.85, and 0.95) in the target DA cell population. The boxplots show (e.g. each data
point) the distribution of AUC scores across various hyperparameters. High variance implies sensitivity to choice
of hyperparameters.

finding an appropriate radius in high-dimensional space is inherently difficult, as data points become sparser as329

the dimensionality increases [24]. Louvain’s strong hyperparameter sensitivity is primarily due to the resolution330

parameter, which ultimately controls the number of clusters identified. Taken together, it is crucial to identify331

the optimal hyperparameters for Cydar and Louvain for real-world applications; otherwise, these algorithms may332

perform poorly in certain circumstances.333

Discussion334

In this work, we evaluated and compared six prominent DA testing methods for resolving cell populations in335

response to external variables, such as clinical phenotype or experimental perturbation. Our benchmarking workflow336

was designed to cover as many realistic applications of DA testing scenarios as possible, including diverse single-cell337

data types, various data topologies, and the existence of technique-induced biases. In our experiments, we assessed338

the DA testing methods using both synthetic and real single-cell datasets with distinct topological structures. In339

addition, simulated batch effects were generated and applied to the datasets to assess the robustness of DA testing340

methodologies. Thus, our benchmarking strategies offered a thorough, quantitative evaluation of the DA testing341

methods. We evaluated the performance of each method by calculating AUC scores to quantify the similarity342

between predicted and established ground-truth DA labels. By objectively comparing the performance of the six343

DA testing approaches on a variety of tasks, we determined that no single method outperformed the others across344

the board. In other words, the appropriate selection of DA testing methods depends on properties of the data and345

ultimate task of interest (e.g. the existence of batch effects). In the discussion that follows, we summarize our346
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experimental findings for each given task.347

The majority of the DA testing methods examined in our work, particularly Meld, Milo, and Cydar, demonstrated348

consistently strong accuracy across datasets and DA ratios for identifying DA cell types in synthetic datasets (Figure349

3 and Supplementary Table S3). Meld performed the best across all approaches for the real-world single-cell350

datasets, but Milo and DA-seq also attained satisfactory accuracy. When additional technical challenges, such351

as batch effects were present in the datasets, Milo was the most effective at correcting them and reducing their352

negative impacts on testing accuracy. In addition, we demonstrated that including batch labels in a DA testing model353

enhanced performance in comparison to not including them. As for runtime efficiency and overall scalability, all354

methods can successfully complete their workflows on typically-sized scRNA-seq and large CyTOF datasets using355

standard CPUs in a few hours. Finally, we looked at the sensitivity and usability of the hyperparameters used in the356

DA testing methods. While Milo required tuning of the fewest hyperparameters, DA-seq and Meld were robust357

to the selection of hyperparameters. Furthermore, our benchmarking evaluations identified a common problem358

across the majority of DA testing methods. In particular, all methods performed poorly, even on simple datasets,359

when a substantial imbalance of cells existed between cell-types. Our hypothesis is that such behavior is caused by360

the several data scaling options, which are intended to normalize the data. As this issue is seemingly complex, we361

leave a more in-depth analysis of this phenomenon across methods and datasets to our future work.362

Based on our thorough benchmarking analyses, the following are our general suggestions for the usage of DA363

testing methods in practice (Supplementary Table S6). First, we observed that Meld is the overall most accurate364

method when there is no substantial technical noise, such as batch effects. Moreover, in the event of technical or365

biological noise, Milo performs better on average than Meld. Our experiments further suggested that Milo, Cydar,366

Cna, and Louvain are all viable candidates for robustly identifying DA cell-populations, while controlling the false367

discovery rate. Milo, DA-seq, and Meld either have the fewest hyperparameters or are insensitive to hyperparameter368

changes. Therefore, they are the robust strategies for performing DA testing on a new dataset. Lastly, for large369

single-cell datasets with many cells, we found Cna to be the most scalable method; if long run times in your analysis370

are intolerable, we advise you to attempt scalable DA testing methods, such as Cna. We hope that the presented371

benchmarking study will assist users in selecting the optimal method for their DA testing tasks.372

Methods373

Data Pre-processing374

For all the synthetic datasets, the raw count matrices created by the generate_dataset() function in dyntoy [21]375

were first normalized using a log+1 transformation. Then, we projected the normalized gene expression data into376

principal component (PC) space and embedded the data into the manifold approximation and projection (UMAP)377

[25] space using the pre-computed top-50 PCs. In our analysis of the COVID-19 PBMC dataset, we utilized the378

previously processed data introduced in Ref. [5], whose processing procedures adhered closely to best practices for379

the analysis of single-cell data [26]. In addition to the data, the authors also provided embeddings for each cell380

according to both PCA and UMAP. The PC embeddings were generated using the normalized data of the highly381

variable genes and the UMAP embeddings were constructed using the top 50 PCs. In the BCR-XL CyTOF dataset,382

we eliminated 11 nonfunctional markers and used the 24 remaining functional markers (CD3, CD45, pNFkB, pp38,383

CD4, CD20, CD33, pStat5, CD123, pAkt, pStat1, pSHP2, pZap70, pStat3, CD14, pSlp76, pBtk, pPlcg2, pErk,384

pLat, IgM, pS6, HLA-DR, CD7) in our experiments. The markers in the BCR-XL dataset were normalized using385

an arcsinh transformation with a cofactor of 5, as suggested in [27].386

Differential abundance (DA) testing methods387

Problem Formulation388

We define a sample Xn×p = (x1, . . . ,xn)
⊤ to be the normalized gene or protein expression matrix with n cells and389

p measured features, where xi = (x1i, . . . , xpi)
⊤ is the feature vector for cell i. Given a collection of N samples390

{Xk}Nk=1 profiled from N individuals (donors), with a particular sample i associated with a label yi, the goal of DA391

testing is to identify a subset of cells exhibiting differential abundance (density) in response to the labels encoded392

(e.g. yi for individual i) across the samples. This DA testing problem can alternatively be stated as a density393

estimation problem [24]. In this case, each experimental condition can be viewed as a primary distribution, and the394

objective of DA testing is to detect cells with relatively lower or higher densities under each label or condition. In395

this subsection, we describe all of the benchmarking methods in this study. For a more detailed introduction about396

the DA testing methods, please refer to their respective original papers [23, 13, 16, 10, 14, 15].397
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Cydar398

Cydar [13] is a statistical testing approach developed to identify cell populations in single-cell mass cytometry data399

with a differential abundance of cells between conditions. Cydar’s central idea is to construct hyperspheres in the400

multi-dimensional marker space as local units to test if the number of cells among samples in each hypersphere401

is related to external labels, such as clinical or experimental outcomes. Given an N -sample single-cell dataset402

measuring p markers in each cell, Cydar’s testing pipeline works as follows: (1) Cydar randomly samples a subset403

of cells from the entire dataset and uses these cells as the centers of hyperspheres to allocate cells from all samples404

to the hyperspheres; (2) Cydar then counts the number of cells assigned to each hypersphere in each sample,405

resulting in an N -dimensional abundance vector; (3) Next, Cydar employs the negative binomial generalized406

linear models (NB-GLMs) in edgeR [12] to perform statistical testing on these count data with respect to clinical407

outcomes and other informational covariates, and assigns a P -value to each hypersphere; (4) Lastly, Cydar identifies408

the statistically significant hyperspheres as DA regions by controlling the spatial false discovery rate (FDR), a409

weighted form of FDR that regulates FDR across volume, at a predetermined threshold α. Here, Cydar applies the410

Benjamini-Hochberg (B-H) procedure [28] to calculate the maximum P -value needed to keep a hypersphere below411

the spatial FDR threshold α, which is defined as,412

max
i

{
p(i) : p(i) ≤ α

∑i
l=1 w(l)∑n
l=1 w(l)

}
. (2)

Here, n is the number of hyperspheres, p(1) < p(2) < . . . < p(n) order the P -values of the hyperspheres and w(l)413

is defined as weight, which is the reciprocal of the density of hypersphere (l). In our benchmark, Cydar v1.18414

(http://bioconductor.org/packages/cydar) was applied across all the experiments.415

DA-seq416

In DA-seq [16], a logistic regression classifier is used to compute a local DA score for each cell so that DA417

subpopulations can be identified. The logistic regression classifier takes the cells’ feature vectors as input, which418

measure the abundance of two biological conditions in the area around each cell at different scales. DA-seq trains419

the logistic regression classifier by using cells’ condition labels and the feature vectors. The fitted probability is then420

used as the DA score for each cell. In this case, the trained logistic regression model serves as a smoothing function421

that transforms a cell’s input feature vector to its corresponding soft DA score. Next, DA-seq uses a random422

permutation test to find statistically significant DA cells in the dataset. The upper and lower cut-off thresholds423

are based on the highest and lowest DA scores inferred under the null hypothesis that the condition labels are424

distributed randomly. In our experiments, we used the official DA-seq implementation, which can be accessed at425

https://github.com/KlugerLab/DAseq.426

Meld427

Meld [10] is a graph-based kernel density estimation method. It is used to estimate the likelihood of a sample428

(often referred as a cell) under various experimental perturbations. Inspired by the recent success of applying429

manifold learning techniques to single-cell data visualization [25, 29, 30], Meld extends kernel density estimation430

(KDE) from the regular spatial domain to a manifold represented by a cell-by-cell similarity graph denoted by431

G = (V,E). Here, Meld requires two steps to obtain the edge weights in G. First, the Euclidean distance between432

cells is calculated for a pair of cells, (i, j). Next, the weight (similarity) between a cell pair (i, j) by feeding their433

distance to some predefined kernel functions, such as the α-decaying kernel [30] or the MNN kernel [31].434

The Meld algorithm interprets the cell label as a signal across the cell-cell similarity network. It employs a435

low-pass graph filter [32] to de-noise the node labels across the graph and uses the smoothed label as the DA score436

measurement for each cell. Noting that this graph filtering step is performed independently on each condition, the437

smoothed condition labels for each cell must be normalized (summed to 1) in order to derive the conditional label438

associated likelihood. For experiments with several experimental and control duplicates, the Meld algorithm must439

be applied to each replicate separately, and the DA scores therefore must be averaged across replicates. Meld uses a440

heuristic strategy to choose DA cell subpopulations by setting a threshold on the per-cell likelihoods to determine441

whether a cell is in a zone where a certain label is more or less abundant. We used the Meld python package,442

which can be accessed at https://github.com/KrishnaswamyLab/MELD.443
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Cna444

Cna, or “co-varying neighborhood analysis”, identifies phenotype-associated cell populations by examining cell445

neighborhoods that co-vary in abundance with respect to certain sample covariates, such as experimental treatment446

or clinical outcome. Similar to Meld, the Cna approach begins by constructing a k-nearest neighbor graph of cells447

across all samples. Cna adopts the scanpy.pp.neighborhood() function from the scanpy package to encode448

the neighborhood associations between cells into a sparse weighted adjacency matrix A. Next, Cna uses a random449

walk to calculate the likelihood that the m′-th cell is in the neighborhood of the m-th cell. Formally, this is given450

by451

Ps
m′→m := (em′)

⊤
Ãsem. (3)

Here, s represents the steps of random walk , em and em′ are the indicator vector defined at indices m and m′,452

respectively, and Ã is the random-walk markov matrix with self-loops, whose entries are computed as,453

Ãm′,m :=
(I+A)m′,m

1 + Σm′′A·,m′′
. (4)

Here, I is an identity matrix and A is the weighted adjacency matrix that is computed in the graph building step.454

Letting c(n) denote the cells from sample n, then Rn,m is the expected number of cells that would arrive at the455

neighborhood of the m-th cell after s steps of random walking beginning from sample n. Formally this is calculated456

via Rn,m =
∑

m′∈c(n) P
s
m′→m. Cna further defines the neighborhood abundance matrix (NAM) Q ∈ Rn×m by457

normalizing the rows of R (summed to 1), where458

Qn,m =
Rn,m

ΣmRn,m
. (5)

Once the NAM is defined, Cna tests its association with a known sample-level covariate y using a linear regression459

model. The linear model is formally defined as,460

y = Ukβk + ϵ. (6)

Here, Uk represents the first k columns of Q’s left matrix of singular vectors U, βk is the vector of coefficients,461

and ϵ denotes zero-mean Gaussian noise. Thus, the P -value is calculated using a multivariate F -test for a range of462

ks, such that the one attaining the smallest P -value is ultimately selected. To identify the differentially abundant463

neighborhoods, Cna computes a “smoothed correlation” between each neighborhood m and the sample-level464

covariate y. The smoothed correlation is mathematically defined as,465

γ := Vk⋆

Dk⋆

βk⋆

. (7)

Here, k⋆ denotes the optimal number of singular vectors (e.g. components) determined by the multivariate F -test,466

Vk⋆

is the first k⋆ columns of Q’s right singular vector matrix, Dk⋆

is the top-left k⋆ × k⋆ submatrix of Q’s467

singular vector matrix and βk⋆

is the coefficient vector defined in 6. To assess the statistical significance, the null468

distribution of γ is obtained by fitting 6 using different permutations of y. Lastly, the DA cell sub-populations469

are determined by a given FDR threshold for γ. The Cna approach is implemented in python, and is available at470

https://github.com/immunogenomics/cna.471

Milo472

As an improved version of Cydar, Milo also uses NB-GLMs to test DA cells in single-cell datasets but replaces the473

hypersphere in Cydar with cell neighborhoods from the cell-cell similarity graph. Here, the neighborhood of a474

cell ci is defined as the set of first order neighbors(including ci itself) in a kNN graph created by the findKNN()475

function in the BiocNeighbors package. After counting the number of cells in the neighborhoods of several476

samples, Milo employs the same statistical testing pipeline with edgeR as Cydar, except that the testing unit477

is a cell-neighborood instead of a hypersphere. To reduce complexity, Milo samples only a small proportion478

(by default, 0.1) of cell neighbors to find DA neighborhoods. As various cell neighborhoods may share certain479

cells in the kNN graph, it is vital to highlight that a cell neighborhood must propagate its DA score to each480

of its respective cells. Hence, the DA score of a tested cell is ultimately determined by adding the DA scores481

of all the cell neighborhoods to which it belongs. In this work, we used the R-based implementation of Milo482

(https://github.com/MarioniLab/miloR), as suggested by the authors.483
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Louvain484

The Louvain algorithm [23] is a cluster-based approach for DA testing. Unlike other more granular approaches,485

which are performed on single cells [16, 10], hyperspheres [13], and cell neighborhoods [14, 15], Louvain’s results486

are typically coarser, operating on a cluster level, and hence can only determine whether a cell cluster is a DA487

region or not. In other words, if a cell cluster is determined to be a DA cluster, all cells insides this cluster become488

classifed as DA cells with identical DA scores. The Louvain method is implemented as follows: (1) a kNN graph489

or cell-to-cell similarity graph is constructed; (2) the Louvain algorithm partitions the graph into clusters [23]490

(implementation provided by the cluster_louvain() function in the R package igraph [33]); and (3) apply491

the statistical framework of Milo [14] to identify DA cell-populations. Note that the Louvain approach does not492

implement DA-score aggregation step introduced by Milo and therefore produces solely non-overlapping cell493

clusters.494

Evaluation and Metrics495

Evaluating and comparing the performance of the various DA testing methods is non-trivial due to their variable496

testing procedures for identifying and quantifying the significance of DA cells. Cydar, Milo, and Cna, for instance,497

employ traditional statistical testing measures like FDR and spatial FDR to detect DA cell populations, whereas498

DA-seq and Meld use a conditional probability threshold. Therefore, it is impossible to develop a uniform criterion499

that can be consistently applied to all methods. To eliminate the bias of selecting a distinct threshold for each500

approach, each method’s predicted labels were generated using a range of thresholds based on its own criterion.501

To quantify overall classification performance, we compared predicted labels with ground truth labels that were502

generated through simulation for each cell and had three distinct categories: (1) enriched in C1 (NegLFC, negative503

log fold-change in condition C2 vs. C1), (2) enriched in C2 (PosLFC, positive log fold-change in condition C2 v.s.504

condition C1), and (3) Not DA, respectively.505

To generate a list of evaluation thresholds, we first calculated DA scores (FDR or conditional probability, depending506

on the approach) under each method. Next, for each method, we specified the thresholds using the values at different507

percentiles (by default: 0% to 100% with 1% increments) of its DA scores. We then used the false positive rate508

(FPR) and true positive rate (TPR), two binary classification metrics, to assess the performance of each approach509

for each threshold, yielding a list of FPR and TPR pairs. We treated both the PosLFC and NegLFC as the “positive”510

label of binary classification to account for the fact that there are three possible ground-truth labels. The FPR and511

TPR are defined respectively as,512

FPR =
FP

FP + TN
, (8)

TPR =
TP

TP + FN
. (9)

Here, FP is the number of cells with false positive DA predictions, TN is the number of cells with true negative513

predictions, TP is the the number of cells with true positive predictions, and FN is the number of cells with false514

negative predictions. Finally, we connected the 2d-points of the FPR and TPR pairs sequentially with FPR plotted515

on the horizontal axis and TPR plotted on the vertical axis to construct receiver operator curves (ROC) and reported516

the area under ROC (AUC) score as the overall performance for each method.517

Data and code availability518

The raw data for the COVID-19 PBMC single-cell RNA-sequencing dataset is publicly available through the519

NCBI Gene Expression Omnibus with the accession number GSE150728. The authors of the original work also520

provide processed count matrices with manually annotated metadata and pre-computed embeddings in .h5ad521

and .rds formats, which can be downloaded from the Wellcome Sanger Institute’s COVID-19 Cell Atlas at522

https://www.covid19cellatlas.org/#wilk20. The raw data of the BCR-XL dataset including FCS files523

and their corresponding metadata and annotations can be downloaded from FlowRepository with experimental524

id: FR-FCM-ZYL8. All code to reproducethe results are available at https://github.com/CompCy-lab/525

benchmarkDA.526
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